
 
 

Delft University of Technology

Image Reconstruction for Low-Field MRI

de Leeuw den Bouter, M.L.

DOI
10.4233/uuid:f3c4431d-368c-4a17-aacf-2d1283688a1a
Publication date
2022
Document Version
Final published version
Citation (APA)
de Leeuw den Bouter, M. L. (2022). Image Reconstruction for Low-Field MRI. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:f3c4431d-368c-4a17-aacf-2d1283688a1a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:f3c4431d-368c-4a17-aacf-2d1283688a1a
https://doi.org/10.4233/uuid:f3c4431d-368c-4a17-aacf-2d1283688a1a


IMAGE RECONSTRUCTION FOR LOW-FIELD MRI





IMAGE RECONSTRUCTION FOR LOW-FIELD MRI

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
maandag 2 mei 2022 om 10:00 uur

door

Merel Lisanne DE LEEUW DEN BOUTER

Wiskundig ingenieur, Technische Universiteit Delft, Delft, Nederland,
geboren te Capelle aan den IJssel, Nederland.



Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. M.B. van Gijzen, Technische Universiteit Delft, promotor
Dr. ir. R.F. Remis, Technische Universiteit Delft, promotor

Onafhankelijke leden:
Prof. dr. ir. C. Vuik Technische Universiteit Delft
Prof. dr. ir. A.W. Heemink Technische Universiteit Delft
Prof. dr. J. Dankelman Technische Universiteit Delft
Prof. dr. A.G. Webb, Universiteit Leiden en Technische Universiteit Delft
Dr. J. Obungoloch, Mbarara University of Science and Technology, Uganda

Printed by: ProefschriftMaken

Cover design by: Michelle Bettman

Copyright © 2022 by M.L. de Leeuw den Bouter

This research was supported by NWO-WOTRO (Netherlands Organization for Scientific
Research) under grant W07.303.101 and by the TU Delft | Global Initiative, a program of
the Delft University of Technology to boost Science and Technology for Global Develop-
ment.

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


CONTENTS

Summary ix

Samenvatting xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Low-field MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Scanners developed within this project . . . . . . . . . . . . . . . 4
1.4 Image reconstruction in (low-field) MRI . . . . . . . . . . . . . . . . . . 6

1.4.1 Model-based image reconstruction . . . . . . . . . . . . . . . . . 6
1.4.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.4 Compressed sensing . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.5 Super-resolution image reconstruction . . . . . . . . . . . . . . . 8
1.4.6 Correcting image distortions . . . . . . . . . . . . . . . . . . . . . 8

1.5 Contributions and outline . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 CG variants for `p -regularized image reconstruction 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Low-field MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Regularization of the problem . . . . . . . . . . . . . . . . . . . . 15
2.2.2 GCGLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 GCGME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Convergence of GCGLS and GCGME. . . . . . . . . . . . . . . . . 18
2.2.5 Types of regularization . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.6 Numerical simulations. . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Two-dimensional imaging using a hand-held single-sided MRI sensor: pre-
liminary findings 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



vi CONTENTS

4 Low-Field Magnetic Resonance Imaging Using Multiplicative Regularization 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Signal modeling and regularization . . . . . . . . . . . . . . . . . . . . . 41
4.3 Numerical discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Mixed Finite Difference Approach . . . . . . . . . . . . . . . . . . 44
4.4 MR imaging using multiplicative regularization. . . . . . . . . . . . . . . 45
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Two-Dimensional Imaging of Simulated Noise-Corrupted Low-Field
MR Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.2 Three-Dimensional Imaging of Measured Data . . . . . . . . . . . 50
4.5.3 Additive and multiplicative regularization . . . . . . . . . . . . . . 54

4.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Inversion of incomplete k-space data using support information 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Image Reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Noisy measurements. . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.3 Reconstructions Based on Experimental Low-Field MRI Data . . . . 71

5.4 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Deep learning for image distortion correction 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Dataset generation. . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.3 Convolutional neural network . . . . . . . . . . . . . . . . . . . . 81

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.1 Small Shepp-Logan phantom . . . . . . . . . . . . . . . . . . . . 82
6.4.2 Melon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.3 Head-sized Shepp-Logan phantom . . . . . . . . . . . . . . . . . 82

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Deep learning-based single image super-resolution 87
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.2 Convolutional neural network . . . . . . . . . . . . . . . . . . . . 89
7.2.3 Dataset and training . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Conclusion 99
8.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



CONTENTS vii

References 103

A Optimality property of GCGLS and GCGME 117

B Comparison of the condition numbers of GCGLS and GCGME: a simple case 119

C Increasing the number of CG iterations per IRLS iteration 121

D Signal model for general fields 123

E Increasing the number of iterations for multiplicative regularization 127

Acknowledgements 131

Curriculum Vitæ 133

Publications and Academic Activities 135





SUMMARY

Each year, hundreds of thousands of infants develop hydrocephalus ("water on the
brain"). This is a disease that, if untreated, leads to brain damage and ultimately death.
The prevalence of hydrocephalus is relatively high in children living in the Global South
(in sub-Saharan countries, for example), but access to advanced imaging technology is
usually limited in countries belonging to the Global South. This is especially problem-
atic for hydrocephalus, since magnetic resonance imaging often is the diagnostic tool of
choice for this disease, but MRI scanners are essentially out of reach due to their cost,
size, and stringent infrastructure demands. Therefore, the introduction of an inexpen-
sive, portable, low-field MRI scanner is clinically relevant. An interdisciplinary team
of researchers at the Leiden University Medical Center, Pennsylvania State University,
Mbarara University of Science and Technology and Delft University of Technology has
been working on the development of such low-field MRI scanners, with the first goal be-
ing to aid in the diagnosis of hydrocephalus in infants in sub-Saharan Africa. Within this
project, several prototypes and various dedicated image reconstruction techniques have
been developed. This dissertation focuses on the latter.

High-field MRI scanners have very strong and homogeneous static magnetic back-
ground fields, due to the superconducting magnets they are equipped with. To signifi-
cantly reduce production costs, the low-field scanners considered in this work use per-
manent magnets to realize their static background fields. Obviously, such background
fields are much weaker than in a high-field MRI scanner, leading to measured signals
with a significantly lower signal-to-noise ratio, since this ratio scales with the magnitude
of the background field. For spatial encoding (i.e., to distinguish what part of the signal
originates from what part of the body or object inside the scanner), high-field scanners
depend on gradient coils which superimpose a linearly varying magnetic field on the
background field. The first prototype we consider does not have any gradient coils. In-
stead, spatial encoding is carried out by making use of the inhomogeneities in the static
magnetic background field. Due to the nonbijective nature of the field, a single mea-
surement does not yield enough information for a reconstruction. However, by carrying
out several measurements and rotating the field between subsequent measurements,
image reconstruction should be possible. The second prototype follows the design of
high-field scanners more closely: it was designed such that the static magnetic field is as
homogeneous as possible and the scanner is equipped with three gradient coils to allow
for spatial encoding in three directions. In this case, the relationship between signal and
image can be described by a Fourier Transform.

Initially, we consider the first prototype, and we use our knowledge of the inhomo-
geneities in the static magnetic background field, combined with a number of different
field rotations, to obtain a linear system of equations describing the relationship be-
tween signal and image. This leads to an ill-posed inverse problem, which can be miti-
gated by posing it as a least-squares minimization problem, to which we add a regular-

ix
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ization term. Besides making the problem more well-posed, choosing an appropriate
regularization operator helps reduce the effect of noise on the image, which is espe-
cially relevant for low-field MRI. We reformulate this minimization problem such that
the Conjugate Gradient Minimal Error method can be used to solve it for nontrivial reg-
ularization matrices. We compare the performance of this method to the state-of-the-art
Conjugate Gradient Least Squares algorithm for different regularization terms and show
that the Generalized Conjugate Gradient Minimal Error method exhibits much faster
convergence for a number of relevant regularization terms.

Subsequently, we use the same algorithm for image reconstruction on data acquired
using a prototype of a single-sided portable MRI sensor which is being developed as a
spin-off of the original project. Such a scanner could be used to image subcutaneous
tissues and the spine, for example. Again, we use the inhomogeneities in the static mag-
netic field for spatial encoding, but instead of using different rotations, we now translate
the object between subsequent measurements. We present some preliminary imaging
results obtained in this manner using data acquired with the one-sided MRI sensor.

Using regularization in an additive way introduces an artificial regularization param-
eter which needs to be selected such that an optimal balance between the data fidelity
term and the regularization term is attained. Usually, this parameter tuning is done in
a heuristic manner, through extensive numerical experimentation, which can be time-
consuming. We introduce multiplicative regularization for low-field imaging. By multi-
plying the data fidelity term with a regularization term, which is a total variation func-
tional in our case, the problem of having to select such a regularization parameter is
eliminated. The resulting minimization problem is solved using a nonlinear Conjugate
Gradient algorithm. We apply this method to both simulated data and data acquired us-
ing the second low-field MRI scanner and demonstrate that this method can be relied
upon to yield good results, both when it is applied in an image reconstruction setting
and when it is used for denoising.

Additionally, we consider a scenario in which we are dealing with incomplete data.
In MRI, scan times tend to be long and contemporary MRI research has a strong focus
on techniques that can help reduce scan duration. In MRI, the acquired data is stored in
k-space, which is the spatial frequency domain. By only partially filling k-space, which
is equivalent to reducing the number of data points being sampled, scan times can be
reduced. Different techniques exist that can overcome the reduction in image quality
that is caused by the missing data points. We introduce a straightforward approach that
incorporates spatial support information into the problem statement, i.e., we use our
knowledge of the (approximate) location of the object to help invert the inverse problem.
This problem can be solved using a Conjugate Gradient algorithm. We demonstrate that
our relatively simple approach yields results that are of a quality comparable to images
obtained using a significantly more complex compressed sensing framework.

Finally, we focus on deep learning approaches to tackle two different imaging chal-
lenges. The first one is the correction of image distortions which can occur due to in-
homogeneities in the static magnetic background field and nonlinearities in the mag-
netic fields generated by the gradient coils. We train a neural network on a simulated
dataset consisting of undistorted images and their noisy, distorted counterparts, with
each input-output pair corresponding to different perturbations in the magnetic fields.
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The resulting network is then applied to a number of distorted images acquired using
the second low-field MRI scanner.

Instead of sampling only part of k-space to reduce scan time, one can also consider
acquiring an image of a lower resolution. Therefore, as our second challenge, we con-
sider a single image of a relatively low number of pixels, whose resolution we aim to
increase using a neural network. For the training stage, we rely on a high-field dataset
of brain images. By artificially downsampling these images and subsequently adding
noise in the k-space domain, we simulate the acquisition of low-resolution low-field MR
images. After training the network on these input-output pairs, we apply it to low-field
brain images acquired using the second MRI scanner and obtain good quality super-
resolution images.





SAMENVATTING

Op jaarbasis ontwikkelen honderdduizenden kinderen hydrocephalus ("waterhoofd"),
een ziekte die, indien deze onbehandeld blijft, leidt tot hersenschade en uiteindelijk de
dood tot gevolg heeft. De prevalentie van hydrocephalus is relatief hoog bij kinderen in
het Mondiale Zuiden (bijvoorbeeld in sub-Sahara Afrika), maar de toegang tot geavan-
ceerde beeldvormingstechnologie is daar meestal beperkt. Dit is problematisch in het
geval van hydrocephalus, omdat magnetic resonance imaging als diagnostisch hulpmid-
del meestal de voorkeur geniet, maar MRI scanners in wezen onbereikbaar zijn vanwege
hun kosten, grootte en de strenge eisen waaraan de infrastructuur moet voldoen. Dit
maakt de introductie van een betaalbare, mobiele MRI scanner met een lage veldsterkte
klinisch relevant. Een interdisciplinair team van onderzoekers van het Leiden Universi-
tair Medisch Centrum, Pennsylvania State University, Mbarara University of Science and
Technology en de Technische Universiteit Delft reeds een aantal jaren werkt aan het ont-
wikkelen van dergelijke MRI scanners met een lage veldsterkte, waarbij het eerste doel
is om te kunnen assisteren bij het diagnosticeren van hydrocephalus bij kinderen in lan-
den in sub-Sahara Afrika. Binnen dit project zijn een aantal prototypes en verschillende
toegespitste beeldreconstructietechnieken ontwikkeld. Deze dissertatie richt zich op het
laatstgenoemde.

Hoge veldsterkte MRI scanners hebben zeer sterke en homogene statische magneti-
sche achtergrondvelden, vanwege de supergeleidende magneten waarmee ze zijn uitge-
rust. Om de kosten significant te reduceren, gebruiken de lage veldsterkte MRI scanners
die we in dit werk beschouwen permanente magneten om hun statische achtergrond-
velden te realiseren. Uiteraard zijn dergelijke achtergrondvelden veel zwakker dan in
een MRI scanner met een hoge veldsterkte. Dit leidt ertoe dat de signalen die gemeten
worden een significant lagere signaal-ruisverhouding hebben, omdat deze verhouding
schaalt met de sterkte van het magnetisch veld.

Voor spatiële codering (dat wil zeggen, om te kunnen onderscheiden welk deel van
het signaal door welk deel van het lichaam of object in de scanner wordt opgewekt) ge-
bruiken hoge veldsterkte MRI scanners gradiëntspoelen die een lineair variërend veld
bovenop het achtergrondveld genereren. Het eerste prototype dat we beschouwen heeft
geen gradiëntspoelen. In plaats daarvan vindt spatiële codering plaats door gebruik te
maken van inhomogeniteiten in het statische magnetische achtergrondveld. Doordat
het veld niet bijectief is, levert een enkele meting niet genoeg informatie op voor een
reconstructie. Echter, door verschillende metingen uit te voeren en het veld te roteren
tussen opeenvolgende metingen, zou het mogelijk moeten zijn om een beeld te recon-
strueren. Het tweede prototype is meer conform het ontwerp van een hoge veldsterkte
MRI scanner: het is zo ontworpen dat het achtergrondveld zo homogeen mogelijk is en
het is uitgerust met drie gradiëntspoelen om spatiële codering in drie dimensies mo-
gelijk te maken. In dit geval kan een Fourier Transform worden gebruikt om de relatie
tussen signaal en afbeelding te beschrijven.

xiii
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Eerst beschouwen we het eerstbeschreven prototype, en we gebruiken onze kennis
van de inhomogeniteiten in het statische magnetische achtergrondveld, gecombineerd
met een aantal verschillende veldrotaties, om een lineair stelsel van vergelijkingen te
verkrijgen dat de relatie tussen signaal en afbeelding beschrijft. Dit leidt tot een slecht-
gesteld invers probleem, wat kan worden verholpen door het te poneren als een mini-
mimalisatieprobleem in de vorm van een kleinste-kwadratenterm, waarbij we een regu-
larisatieterm optellen. Behalve dat dit het probleem meer welgesteld maakt, zorgt het
kiezen van de juiste regularisatieoperator ervoor dat het effect van ruis op de afbeelding
beperkt wordt, wat bijzonder relevant is voor lage veldsterkte MRI. We herformuleren
het minimalisatieprobleem dusdanig dat de Conjugate Gradient Minimal Error methode
gebruikt kan worden om het op te lossen voor niet-triviale regularisatiematrices. We
vergelijken de prestaties van deze methode met het gangbare Conjugate Gradient Least
Squares Algoritme voor verschillende regularisatietermen en laten zien dat de Generali-
zed Conjugate Gradient Minimal Error methode veel snellere convergentie vertoont voor
een aantal relevante regularisatietermen.

Vervolgens gebruiken we hetzelfde algoritme om afbeeldingen te reconstrueren met
data verkregen met een unilaterale mobiele MRI sensor die ontwikkeld wordt als een
spin-off van het originele project. Een dergelijke scanner zou bijvoorbeeld gebruikt kun-
nen worden om onderhuidse weefsels en de ruggengraat in beeld te brengen. Wederom
gebruiken we de inhomogeniteiten in het statische magnetische veld voor spatiële co-
dering, maar in plaats van verschillende rotaties te gebruiken, transleren we het object
nu tussen de metingen in. We presenteren enkele voorlopige resultaten in de vorm van
afbeeldingen die we hebben gereconstrueerd met data uit de unilaterale MRI sensor.

Als regularisatie op een additieve manier wordt uitgevoerd, introduceert dat een ar-
tificiële regularisatieparameter die geselecteerd moet worden zodanig dat een optimale
balans tussen de dataterm en de regularisatieterm wordt bewerkstelligd. Meestal wordt
deze parameter afgestemd op een heuristische manier, door middel van uitgebreide nu-
merieke experimentatie, wat tijdrovend kan zijn. Wij introduceren multiplicatieve regu-
larisatie voor beeldvorming in de context van lage veldsterkte MRI. Door de dataterm
met een regularisatieterm te vermenigvuldigen, wat een total variation functionaal is in
ons geval, wordt het probleem van het selecteren van een regularisatieparameter geëli-
mineerd. We lossen het voortvloeiende minimalisatieprobleem op met een nonlineair
Conjugate Gradient algoritme. We passen deze methode toe op gesimuleerde data en
op data verkregen met het tweede lage veldsterkte MRI prototype en laten zien dat deze
methode gebruikt kan worden om goede resultaten te bereiken, zowel wanneer deze ge-
bruikt wordt in een reconstructieprobleem als om een afbeelding te ontdoen van ruis.

Vervolgens beschouwen we een scenario waarin we te maken hebben met incom-
plete data. MRI scans duren meestal lang en hedendaags MRI onderzoek heeft een sterke
focus op technieken die kunnen helpen om de scanduur te reduceren. In MRI wordt de
vergaarde data opgeslagen in de k-ruimte, oftewel het spatiële frequentiedomein. Door
de k-ruimte slechts gedeeltelijk te vullen, wat equivalent is aan het reduceren van het
aantal datapunten dat wordt bemonsterd, kan de scanduur worden verminderd. Er be-
staat een verscheidenheid aan technieken die gebruikt kunnen worden om de reductie
in beeldkwaliteit, die gepaard gaat met een kleiner aantal datapunten, te compenseren.
We introduceren een eenvoudige aanpak waarbij we het inverse probleem oplossen door
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onze kennis over waar het object zich (bij benadering) bevindt te verwerken in de pro-
bleembeschrijving. Dit probleem lossen we wederom op met een Conjugate Gradient
algoritme. We tonen aan dat onze relatief eenvoudige aanpak resultaten oplevert die
van een kwaliteit zijn die vergelijkbaar is met afbeeldingen verkregen met een aanpak
gestoeld op compressed sensing, die significant complexer is.

Tot slot richten we ons op deep learning technieken om twee verschillende beeld-
vormingsproblemen aan te pakken. Het eerste is het corrigeren van vervormingen in af-
beeldingen die kunnen optreden door inhomogeniteiten in het achtergrondveld en door
nonlineariteiten in de magnetische velden die worden opgewekt door de gradiëntspoe-
len. We trainen een neuraal netwerk op een gesimuleerde dataset bestaande uit niet-
vervormde afbeeldingen en hun ruizige vervormde tegenhangers, waarbij elk invoer-
uitvoerpaar overeenkomt met andere verstoringen in de magnetische velden. Het voort-
vloeiende netwerk wordt vervolgens toegepast op een aantal vervormde afbeeldingen
die we verkregen hebben uit data van de tweede lage veldsterkte MRI scanner.

In plaats van het slechts deel bemonsteren van de k-ruimte om de scanduur te ver-
minderen, kan men ook overwegen om een afbeelding van een lagere resolutie te verga-
ren. Als onze tweede uitdaging beschouwen we daarom een afbeelding met een relatief
klein aantal pixels, waarvan we de resolutie willen vergroten met een neuraal netwerk.
Voor de trainingsfase beroepen we ons op een dataset van breinafbeeldingen verkregen
met hoge veldsterkte MRI scanners. Door de resolutie van deze afbeeldingen kunstma-
tig te verkleinen en ruis toe te voegen aan de overeenkomstige data in de k-ruimte, si-
muleren we de acquisitie van lage veldsterkte MRI afbeeldingen met een lage resolutie.
Na het netwerk getraind te hebben op deze invoer-uitvoerparen, passen we het toe op
breinafbeeldingen verkregen met de tweede MRI scanner. We concluderen dat de super-
resolutie resultaten van goede kwaliteit zijn.





1
INTRODUCTION

1.1. BACKGROUND
Magnetic Resonance Imaging (MRI) scanners use strong magnetic fields to visualize the
internal structure of the human body in a non-invasive manner. Unfortunately, access
to MRI technology is largely confined to countries belonging in the upper-middle and
high-income brackets. In a 2016 paper [1], it was calculated that there was 1 MRI scanner
per 25 million people in SSA and 25 MRI scanners per 1 million people in the northern
hemisphere. According to a 2019 paper [2], 11 countries in Africa, the largest of which
has a population of 65 million, have no access to MRI technology at all. For a detailed
overview on global MR accessibility, the reader is referred to [2].

There are several reasons for the lack of MRI scanners in SSA and low- and middle-
income countries in general. Commercial MRI scanners, which usually have field strengths
of 1.5 or 3 T, cost about 1 million euros per tesla [3]. Additionally, annual service con-
tracts cost hundreds of thousands of euros [4]. Finally, in order to operate and repair
MRI scanners, a high level of expertise is required.

Therefore, the introduction of low-cost, portable low-field MRI scanners is of great
clinical relevance for low- and middle-income countries, although it should be noted
that the impact of such scanners could potentially reach even further than that. An in-
terdisciplinary team of researchers and engineers from the Leiden University Medical
Center (LUMC, The Netherlands), Pennsylvania State University (PSU, United States of
America), Mbarara University of Science and Technology (MUST, Uganda) and Delft Uni-
versity of Technology (TUD, The Netherlands) has been developing a low-cost, portable
head-only low-field MRI scanner since 2017. We aim to keep the costs of this scan-
ner below 50,000 euros and to make it straightforward to install, operate and main-
tain. To truly make MRI technology available to everyone, all software developed within
this project is open source and by making the complete technical documentation avail-
able, the hardware is as well. This project is part of the Open Source Imaging Initiative
(https://www.opensourceimaging.org) [5], which aims to make modern healthcare
instruments available to a wider audience.

1
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We consider resolving hydrocephalus the first milestone such a scanner should be
able to achieve, since visualizing infant hydrocephalus is arguably one of the simplest
challenges in MRI. Hydrocephalus is one of the most prevalent childhood neurological
disorders [6]. As stated in [7]: "Although a precise definition is controversial, hydro-
cephalus generally refers to a disorder of cerebrospinal fluid (CSF) physiology resulting
in abnormal expansion of the cerebral ventricles, typically associated with increased in-
tracranial pressure." If untreated, hydrocephalus can lead to macrocephaly, cognitive
dysfunction, and death [8]. In [8], it is estimated that each year, approximately 180,000
infants develop hydrocephalus in Africa, and 380,000 worldwide. It stands to reason that
most of these 180,000 cases occur in sub-Saharan Africa (SSA), as the vast majority of the
African population lives there. The elevated prevalence of infant hydrocephalus in SSA
is due to the high birth rate as well as the very high incidence of hydrocephalus arising
from infections such as ventriculitis and meningitis [9–11].

Magnetic resonance imaging is generally the diagnostic tool of choice for the treat-
ment planning and monitoring of hydrocephalus, because unlike computed tomogra-
phy (CT), which is another viable option, it does not require potentially dangerous ion-
izing radiation [12] to visualize the internal structure of the human body. Even for infants
with an open fontanel, who can be screened using cranial ultrasonography, an MRI scan
typically provides more information about cause and anatomy [7].

The vital step in visualizing hydrocephalus is the segmentation of the image into
brain and CSF [13]. This is a straightforward task, since CSF and white/grey matter have
very different T1 times [14]. Additionally, to locate fluid accumulations in the brain, a
relatively low spatial resolution is sufficient. In [15] it is reported that values of 2-3 mm
in the in-plane direction, and 5 mm in the through-plane direction are required.

1.2. MAGNETIC RESONANCE IMAGING
MRI scanners consist of three main components: a main magnet, gradient coils and a
radiofrequency (RF) system [16]. In conventional MRI, superconducting magnets are
generally employed to generate a homogeneous static magnetic background field with a
strength of several tesla. Such a strong field must be generated at a temperature of 4.2 K,
which means that cryogenic cooling is required [17]. The magnet and cryostat make up a
significant part of the total cost of an MRI scanner [18]. Secondly, there are three gradient
coils, which are designed to generate time-dependent, spatially nonuniform magnetic
fields. Usually, each of the gradient coils produces a magnetic field that varies linearly
in one direction. The gradient coils allow for spatial encoding of the signal. Finally, the
RF system consists of a transmitter coil that is responsible for the excitation of the spins
inside the scanner, and a receiver coil which picks up the corresponding signal [19].

Roughly speaking, MRI works as follows. All physical objects consist of atoms, which
in turn consist of nuclei and the electrons orbiting them. Nuclei of atoms with an odd
atomic weight, such as the hydrogen atom, have an angular momentum called spin,
which generates its own microscopic magnetic field (or magnetic moment). In the ab-
sence of an external magnetic field, the orientation of each of these is random. However,
when an external magnetic field is applied, the magnetic moments align themselves in
such a way that a net magnetic moment is generated. In a conventional MRI scanner, this
external magnetic field is generated by the superconducting magnets. The precessional
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frequency of the spins is linearly dependent on the strength of the magnetic field. By
applying a linearly varying field on top of the strong homogeneous field, this frequency
is made to vary linearly as well, which allows for spatial encoding. Applying such a gradi-
ent during readout enables frequency encoding, while the presence of a gradient before
readout allows for phase encoding. Just before readout, a radiofrequency (RF) pulse is
applied to change the orientation of the magnetic moments. After this, the magnetic
moments gradually relax back to their equilibrium positions. This relaxation process
generates a signal in the receiver coil. By carrying out this procedure repeatedly with dif-
ferent gradient strengths, the so-called k-space (or spatial Fourier domain) is filled with
the different measurements. The image can subsequently be obtained by applying an
inverse Fourier transform to this k-space matrix [19].

1.3. LOW-FIELD MRI
The stronger the magnetic field, the higher the signal-to-noise ratio (SNR). Eliminating
the superconducting magnet from the MRI system, while significantly reducing the cost,
inevitably leads to a weaker magnetic field and a several hundredfold reduction in SNR
[20]. However, as Sarracanie and Salameh state in [21]: "One of the main misconcep-
tions is that low-field MRI translates into poor image resolution, often associated with
poor image quality. It is important, as scientists, to state that this concept is purely and
simply wrong. Magnetic field strength has by no means ever been a limit to an achiev-
able image resolution." In the same paper, the authors go on to explain that over the
last 4 decades, the difference in images acquired using 1.5 T scanners shows that field
strength is certainly not the only factor determining image quality, but instead, mod-
ern electronics, high performance acquisition techniques, high sensitivity detectors and
image processing all play an important role. We believe that by using these and other
advancements, low-field MR image quality can be improved to a sufficient level for di-
agnostic purposes as well.

Using low-field MRI to image the human body is no new concept [20]. The useful-
ness of low-field MRI was identified from the onset of MRI in the 1980s [13]. For example,
Sepponen et al. [22] used static low-field MRI with a main field strength of 20 mT to study
cerebral lesions in 1985. In 1992, do Nascimento et al. [23] demonstrated the feasibilty
of human brain imaging using a home-built low-field MRI scanner operating at 16 mT.
In 1993, Macovski and Connolly [24] showed that human hand and wrist imaging is pos-
sible in a homogeneous, weak magnetic field, after the application of a pre-polarizing
pulsed magnetic field. This technique allows for signal acquisition at very low frequen-
cies, while benefiting from the higher SNR provided by the pre-polarizing field.

Furthermore, a notable group of detectors is formed by the superconducting quan-
tum devices (SQUIDs), see for example [25–27], that work in the microtesla range. More
recently, Sarracanie et al. [28] and Lother et al. [15] produced Helmholtz coil-based sys-
tems designed for brain imaging operating at 6.5 and 23 mT respectively. The former
team acquired high quality images of the human brain. However, the size and weight of
these scanners are an impediment to making them truly portable.

The past few years have seen the advent of low-field MRI scanners based on Halbach
cylinders (or Halbach arrays). The Halbach cylinder, which was introduced in 1980 by
Klaus Halbach [29], is a configuration of permanent magnets that, combined, yield a ho-
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mogeneous static magnetic field, while, ideally, keeping the magnetic field strength out-
side the bore equal to zero. In practice, due to the discrete nature of the magnets and the
finite length of the bore, the generated field will never be perfectly homogeneous. Cooley
et al. [30, 31] showed that two-dimensional MR image reconstruction using a low-field
MRI scanner based on a Halbach cylinder is feasible. The magnetic field generated by
such a configuration of permanent magnets is oriented in the transverse direction, un-
like in high-field MRI scanners. The field was mapped accurately and they incorporated
this in the model describing the relationship between signal and image. To eliminate
the difficulties caused by the non-bijective mapping from field to image, they carried
out their imaging experiments by rotating the Halbach array between acquisitions. The
Cooley group also introduced a low-field MRI scanner which, besides a built-in gradient
in the static background field, uses two coil-based gradients for phase-encoding [32].
Ren et al. [33, 34] designed a portable low-field scanner for 2D head imaging based on
a Halbach array in which the magnets are arranged in an inward-outward pair of rings,
generating a magnetic field which is oriented along the bore, similar to high-field MRI
scanners.

1.3.1. SCANNERS DEVELOPED WITHIN THIS PROJECT

The PSU team developed a low-field MRI scanner using a pre-polarizing magnetic field,
as described in [13], see Figure 1.1a. This scanner, which was designed such that it can be
assembled manually using off-the-shelf electronics and materials that can be obtained
easily. It has a Field of View (FoV) with a 22 cm diameter of spherical volume, a back-
ground magnetic field of 2.66 mT and a pre-polarizing magnetic field with a strength of
27 mT and is equipped with 3 gradient coils.

As a joint venture, the LUMC and TUD teams developed a low-field MRI scanner
based on a Halbach cylinder. The original design, which can be seen in Figure 1.1b, con-
sisted of 4 rings of 24 N52 neodymium magnets of 25×25×25 mm3 that generated a static
magnetic field of about 60 mT. At a later stage, an additional ring of magnets designed
specifically for shimming was added, as well as a ring to superimpose a gradient on top
of the background field. A thorough description of this scanner can be found in [35].
The idea was, as Cooley et al. did in [30], to use an accurate map of the magnetic field
for spatial encoding and to carry out several measurements of the same object, while the
field (or object) was rotated between measurements. The rotations were meant to elim-
inate any problems arising because of the nonbijectivity of the magnetic field. Many
insights were gained from this design but acquiring images of good quality proved too
challenging. The idea of using different rotated versions of the same magnetic field to
obtain sufficient information for image reconstruction was abandoned. Instead, the
LUMC team designed a new scanner, see Figure 1.1c, with three coil-based gradients,
as described in [36], to be used for frequency- and phase-encoding, which make 3D im-
age reconstruction possible. Additionally, the configuration of the Halbach array was
altered significantly: the second scanner, with a bore diameter of 27 cm and a length of
50 cm, consists of 2948 smaller N48 neodymium magnets of 12×12×12 mm3 distributed
over 23 rings, which yield a more homogeneous field of approximately 50 mT. At a later
stage, additional shimming rings were added to increase the homogeneity even more. A
thorough description of the scanner can be found in [20] and [37].
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(a) PSU prototype (b) LUMC/TUD prototype

(c) LUMC prototype (d) LUMC single-sided MRI sensor

Figure 1.1: MRI scanners developed within this project

As a spin-off of the original project, a single-sided low-field MRI sensor was devel-
oped at the LUMC. The prototype, which is shown in Figure 1.1d, consists of a configu-
ration of 36 neodymium magnets of 12×12×12 mm3 arranged in a square grid and has a
size of 10×10×2 cm3. The configuration of magnets generates a magnetic field which is
oriented mainly in the direction perpendicular to the surface of the magnet. It is approxi-
mately linear around a height of 2 mm above the magnet, which allows for slice selection.
Over the course of the last few decades, several groups have developed single-sided MRI
(or NMR) sensors, see for example [38–43], and, to the best of our knowledge, 2D and 3D
images have only ever been acquired by mounting gradient coils on the sensor, to allow
for spatial encoding in two or three dimensions. Our approach is different. The magnetic
field generated by the magnets is not perfectly linear, but if we map the inhomogeneities
accurately, we can use those for spatial encoding. Note that this is equivalent to the ap-
proach we aimed to take with the first LUMC/TUD prototype. However, instead of using
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rotations to acquire a sufficient amount of information for a reconstruction, we translate
the object in between measurements. Using a single-sided sensor places no restrictions
on the size of the object being imaged. Additionally, this prototype is lightweight enough
to be portable. Therefore, the introduction of such a sensor could potentially increase
MRI accessibility. Possible applications include the imaging of subcutaneous structures
and the spine.

1.4. IMAGE RECONSTRUCTION IN (LOW-FIELD) MRI
There is a vast literature on the subject of image reconstruction in MRI, which in itself
covers a myriad of different aspects. Therefore, it is impossible to give a comprehensive
overview of this topic here. We will focus on the subtopics that have been relevant within
the low-field MRI project.

1.4.1. MODEL-BASED IMAGE RECONSTRUCTION

In conventional MRI, the relationship between signal (or k-space) and image is governed
by a Fourier Transform. However, for this relationship to be valid, we need the assump-
tions of a homogeneous static background field and linear gradients to hold. If they
do not, as was the case for the first low-field MRI prototype that was developed within
the scope of our project, it is necessary to take these "imperfections" in the field into
account. We chose to do that via model-based image reconstruction [44], where the ac-
curate knowledge of the magnetic fields is used to build a matrix that relates the signal
to the image in a linear fashion. If the static background field is homogeneous and the
gradients perfectly linear, this matrix is equal to the FFT operator, in which case calcu-
lations with this operator and its inverse can be carried out very efficiently. However, in
general it is not straightforward to find a solution in a direct manner. Therefore, iterative
methods are usually applied to solve the inverse problem of converting signal to image.

1.4.2. REGULARIZATION

To find a(n approximate) solution to the linear system of equations, we can minimize the
corresponding least-squares (data fidelity) term. Such a minimization problem is some-
times called a variational problem. It can be beneficial to incorporate a regularization
term/penalty in the minimization problem, which enforces prior information that may
be available about the solution. For instance, in case the measured signal is corrupted
by a lot of noise, such a regularization term can help suppress the effects of noise on the
resulting image. In this work, we will see several instances where a total variation (TV)
penalty is incorporated in the minimization problem. TV regularization is a popular reg-
ularization method that penalizes jumps between neighboring pixels. The rationale be-
hind using such a regularizer in MRI is based on the observation that neighboring pixels
are likely to represent the same tissue and hence have the same intensity.

Regularization is usually carried out in an additive manner: the sum of a least-squares
term and a regularization term constitutes the minimization problem, with a regulariza-
tion parameter determining how much each term should contribute. In a noisy setting
where TV is used to regularize the problem, the solution will be either overly smooth or
noisy if the parameter is not tuned correctly. While methods exist that select this param-
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eter automatically, see for example [45], this is usually simply done through extensive
numerical experimentation. In this work, we look at regularization in an additive man-
ner, but we also investigate multiplicative regularization for low-field MR imaging.

1.4.3. DEEP LEARNING

One of the drawbacks of solving a nonlinear image reconstruction problem, as is the
case when TV regularization is used, is the long reconstruction time. Secondly, TV or any
other type of sparsifying regularization can lead to reconstructions that appear overly
blocky or unnatural, reducing acceptance by clinicians. Moreover, the regularization pa-
rameter needs to be selected, as well as (hyper)parameters of the algorithm that is used
to solve the minimization problem, which can result in reconstructions of poor qual-
ity. One way to circumvent these problems is by using deep learning, which means that
an artificial neural network is trained on a (large) dataset of available images and their
corresponding k-space data. By training the network on appropriate data, it "learns" to
reconstruct images and this process should, in general, teach the network to generalize
to unseen data. Of course, the network needs to be trained, which can take a long time,
and (hyper)parameters of the network should be chosen in advance, but after training,
the problem of parameter selection is eliminated and reconstructions can be carried out
rapidly.

Over the past few years, an abundance of deep learning techniques has been applied
to MRI data and images. For a review on the application of deep learning to all aspects
of MRI, the reader is referred to [46]. In [47], an overview on MR image reconstruction
using deep learning can be found. In that paper, two different types of artifical neural
networks are considered: those that are based on unrolled algorithms and those that
are not. Neural networks of the first type typically attempt to find a solution to a vari-
ational problem which takes the mathematical model relating k-space data and image
into account. Then, the network is based on an iterative reconstruction algorithm with
a predetermined number of steps where each of the steps is explicitly incorporated into
the network ("unrolling") and the regularization parameters and regularizing functions
are learned through training. This effectively eliminates the choosing of hyperparame-
ters for each new reconstruction problem, while still staying true to the structure of the
variational model. Examples of unrolled neural networks are ISTA-net [48] (based on
Iterative Shrinkage Thresholding Algorithm (ISTA)), ADMM-net [49] (based on the Alter-
nating Direction Method of Multipliers (ADMM)), the Learned Primal-Dual algorithm
[50] and the Variational Network [51]. The networks that are not based on unrolled algo-
rithms typically use more standard network architectures. A neural network of this type
that has received a lot of attention in the MRI community is the automated transform by
manifold approximation (AUTOMAP) network by Zhu et al. [52], which directly learns a
mapping from k-space data to image.

1.4.4. COMPRESSED SENSING

In MRI, scan times are typically long and a significant amount of contemporary research
focuses on speeding up the acquisition process while maintaining image quality, with
the focus usually being on compressed sensing (CS) techniques. Typically, acquisition
speedup is accomplished by sampling only a subset of k-space. Traditionally, sampling
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k-space is done by following Cartesian trajectories, but more complex trajectories, like
radial and spiral ones, can be used as well. If only a subset of k-space is acquired, some of
the pre-defined trajectories are skipped. This can be done in a random or a non-random
fashion.

1.4.5. SUPER-RESOLUTION IMAGE RECONSTRUCTION
Super-resolution (SR) image reconstruction describes the process of using a number of
low-resolution (LR) images to obtain a high-resolution (HR) image, see for example [53].
We can differentiate between 2 cases: single image super-resolution (SISR), in case only
one LR image is available, and multiple image super-resolution (MISR), when the in-
formation contained in several different images of the same object is combined to yield
one HR image. The super-resolution problem is an ill-posed one. The algorithms used to
tackle this problem can be grouped into three categories: interpolation-based methods,
reconstruction-based methods and learning-based algorithms [49]. Interpolation-based
methods, like bicubic interpolation and k-space zero-padding, are generally efficient but
lack accuracy in their ability to reconstruct high-frequency components. Reconstruction-
based methods solve a minimization problem that incorporates prior knowledge about
the solution. These methods usually perform better than interpolation-based methods,
but they are computationally expensive and require extensive hyperparameter tuning.
Learning-based methods, which learn relationships between HR and LR image pairs
from data, tend to outperform the other methods. Of the learning-based category, deep
learning-based methods yield the best results. For MRI, super-resolution techniques are
interesting in case we have only LR images are available, which can occur when it is im-
perative to have short scanning times, in the case of subject motion or because of SNR
considerations [54]. The first two considerations are especially relevant here because the
low-field MRI scanner is meant to be used on infants, for whom lying still could prove
challenging.

1.4.6. CORRECTING IMAGE DISTORTIONS
In low-field MRI, and to a lesser extent in high-field MRI, inhomogeneities are present
in the static background field and gradients can deviate from the ideal linear scenario.
When these imperfections are not taken into account and an inverse Fourier Transform
is applied to the k-space data, distortions occur in the resulting images. It can be trou-
blesome to obtain accurate maps of the magnetic fields. We present a deep learning
approach that corrects simple images without explicit maps of the magnetic fields.

1.5. CONTRIBUTIONS AND OUTLINE
In this thesis, we focus on different aspects of image reconstruction and image process-
ing for low-field MRI. The main contributions and outline of this thesis are as follows:

1. In Chapter 2, we first present a low-field MRI signal model that can be employed
to reconstruct images from signals acquired using a low-field MRI scanner with-
out gradient coils. We use this model to simulate the signal generation in a low-
field MRI scanner. In low-field MRI, we generally need to include regularization
to counteract the effects of a low SNR. To solve the resulting minimization prob-
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lem, we introduce a new generalization of the conjugate gradient method for reg-
ularized and weighted least-squares problems: Generalized Conjugate Gradient
Minimal Error (GCGME). We compare the performance of GCGME to the stan-
dard Generalized Conjugate Gradient Least Squares (GCGLS) method and con-
clude that GCGME outperforms GCGLS in terms of convergence speed in case a
total variation function is used as a regularizer.

2. In Chapter 3, we reconstruct images from data acquired with a single-sided hand-
held low-field MRI sensor. Such a device is being developed as a spin-off of the
original project. We show preliminary results that were obtained using data ac-
quired with this sensor.

3. We discuss multiplicative regularization for low-field MRI in Chapter 4. Usually,
regularization is carried out in an additive manner, which necessitates the inclu-
sion of an artificial regularization parameter in the minimization problem. Tuning
such a parameter typically requires extensive numerical experimentation which
is not desirable in a clinical setting. By multiplying the least-squares term by a
regularizing functional (instead of adding), the need for such a parameter is elim-
inated. We apply this technique to simulated data and measured data acquired
using the LUMC low-field MRI scanner with gradient coils and demonstrate that
this type of regularization has good denoising capabilities.

4. Chapter 5 introduces an imaging method that, given undersampled k-space data,
uses (approximate) support information of the object being scanned to improve
image quality. It hinges on a straightforward equation that can be solved using a
conjugate gradient algorithm. Usually, compressed sensing techniques (in which
support information is generally not taken into account) are used to carry out im-
age reconstruction in the case of undersampled k-space data. However, these
techniques tend to be computationally expensive and require the tuning of reg-
ularization parameters. We show that, for simulated and measured low-field MRI
data sets acquired with the LUMC low-field MRI scanner, our method yields re-
sults which are of a similar quality as images obtained using a compressed sensing
approach. Additionally, our method is much simpler to implement.

5. In Chapter 6, we discuss the occurrence of image distortions because of gradient
nonlinearities and inhomogeneities in the static magnetic background field. Our
aim is to use a deep learning-based approach to correct for such distortions in
the acquired images. We use numerical simulations to generate a large dataset of
undistorted images and their distorted, noisy counterparts. Each individual input-
output sample in the training set corresponds to a different set of perturbed mag-
netic fields, because we strive to make the network applicable to images obtained
using different low-field MRI scanners. Subsequently, we train a neural network
to transform the distorted images back to their undistorted versions. The trained
network is then used to correct images acquired using different versions of the
LUMC low-field MRI scanner. We show preliminary results obtained using this
deep learning approach.
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6. Chapter 7 describes a deep learning-based super-resolution technique. We focus
on single image super-resolution for low-field MR brain images. We take high-
resolution images from a database of high-field MR images and generate their
noisy, low-resolution counterparts. Subsequently, we train a neural network on
these input-output pairs. After training, we apply the network to different low-
field brain images. The super-resolution images produced by the network are of
a similar quality compared to the high-resolution images that were acquired us-
ing the LUMC low-field scanner. However, the scan time needed to obtain these
low-resolution images is four times shorter.
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CG VARIANTS FOR

`p -REGULARIZED IMAGE

RECONSTRUCTION

2.1. INTRODUCTION
In this chapter, we consider the low-field MRI scanner shown in Figure 2.1a. Its design,
which is described in more detail in [35], is based on a Halbach cylinder, i.e., a config-
uration of permanent magnets that generates a magnetic field inside the cylinder and
a very weak, or in the ideal case, no magnetic field outside of it. Imaging can be done
by making use of the variations in the magnetic field. However, due to the nonlinearity
of the magnetic field inside the Halbach cylinder, the resulting reconstruction problem
is very ill-posed. This field leads to non-bijective mappings and potentially gives rise to
aliasing artifacts in the solution. Additionally, in the center of the cylinder, there is very
little variation in the field, limiting the spatial resolution in that area. Another complica-
tion we face is low signal-to-noise ratios. Nevertheless, in a similar project, Cooley et al.
[30] have shown that it is possible to reconstruct magnetic resonance images given sig-
nals obtained with a device based on a Halbach cylinder, using a simplified signal model
in which similar assumptions are made as in high-field MRI. In this chapter, we revisit
the underlying physics and formulate the general signal model for MRI without making
these assumptions.

This chapter is based on the article:

M.L. de Leeuw den Bouter, M.B. van Gijzen, and R.F. Remis, Conjugate gradient variants for `p -
regularized image reconstruction in low-field MRI, SN Applied Sciences 1, 1736 (2019).
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Regularization is required to limit the influence of noise on the solution of the im-
age reconstruction problem as much as possible. In this chapter, we reformulate the
weighted and regularized least-squares problem such that the Conjugate Gradient Mini-
mal Error (CGME) method (see for example [55]) can be used to solve it for nontrivial co-
variance and regularization matrices, filling a gap in existing literature as far as we know.
We do this by deriving the Schur complement equation for the residual. A similar ap-
proach is taken by Orban and Arioli [56] to derive generalizations of the Golub-Kahan al-
gorithm. Using these algorithms, they formulate generalizations of LSQR, Craig’s method
and LSMR (see [55]) for the general regularization problem. We explain in which cases
Generalized CGME (GCGME) may have an advantage over Generalized Conjugate Gra-
dient least-squares (GCGLS). Additionally, we apply GCGME to MRI data with different
types of regularization.

This chapter results from our efforts to address the challenges of low-field MRI using
advanced image processing. It is interdisciplinary in nature, with an emphasis on im-
age reconstruction techniques. The contributions of this chapter include a signal model
for low-field MRI that does not rely on any field assumptions as encountered in high-
field MRI. Also, a new generalization of the conjugate gradient method is presented for
the weighted and regularized least-squares problem, including an analysis of when this
generalization is expected to perform best. Although we focus on a low-field MRI setting,
this algorithm is generally applicable to `p -regularized least-squares problems.

2.1.1. LOW-FIELD MRI
In MRI, the internal structure of the body is made visible by measuring a voltage signal
that is induced by time variations of the transverse magnetization within a body part of
interest. Based on this measured signal, an image of the spin density of different tissue
types may be obtained. The spin density is often denoted by ρ but we will use the symbol
X .

To be specific, first the body part of interest is placed in a static magnetic field ~B =
B0(~r )~ix that is oriented in the x-direction in our Halbach measurement setup (see Figure
2.1a) with a position-dependent x-component B0 = B0(~r ). A net magnetization

~Meq = M0(~r )~ix with M0(~r ) = γ2ħ2

4kBT
X (~r )B0(~r ) (2.1)

will be induced that is oriented in the same direction as the static magnetic field. In
the above expression, γ = 267 · 106 rad s−1 T−1 is the proton gyromagnetic ratio, ħ =
1.055 ·10−34 m2 kg s−1 is Planck’s constant divided by 2π, kB = 1.381 ·10−23 m2 kg s−2 K−1

is Boltzmann’s constant, and T is the temperature in kelvin.
Subsequently, a radiofrequency pulse is emitted to tip the magnetization towards the

transverse y z-plane. After this pulse has been switched off (in our model this happens
at t = 0), the magnetization rotates about the static magnetic field with a precessional
frequency ω (also known as the Larmor frequency) given by

ω(~r ) = γB0(~r ) (2.2)

and will relax back to its equilibrium given by Eq. (2.1). During this process, an elec-
tromagnetic field is generated that can be locally measured outside the body using a
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receiver coil. This measured signal is amplified, demodulated, and low-pass filtered,
which means that the received signal, which we will denote by b, can be described by
[19]:

b(t ) =
∫
~r∈D

c(~r )ω(~r )e−t/T2(~r )M⊥(~r ,0)e−i∆ωt d~r , (2.3)

where D is the domain occupied by the body part of interest, T2(~r ) is the transverse re-
laxation time, c(~r ) is the so-called coil sensitivity with amplification included, M⊥(~r ,0)
is the transverse magnetization at t = 0, and ∆ω is the difference between the Larmor
frequency and the demodulation frequency that is used. We take this demodulation fre-
quency to be the frequency that corresponds to the static magnetic field at the center of
our imaging domain.

Furthermore, using Eq. (2.2) in the expression for M0, we have

M0(~r ) = γħ2

4kBT
X (~r )ω(~r ) (2.4)

and since the initial transverse magnetization M⊥(~r ,0) is proportional to M0(~r ), we can
also express our signal model as

b(t ) =
∫
~r∈D

c(~r )ω2(~r )e−t/T2(~r )X (~r )e−i∆ωt d~r , (2.5)

where it is understood that all remaining proportionality constants have been incorpo-
rated in the coil sensitivity c(~r ). Conventionally, the spatial dependence of ω is ignored.
Therefore, the ω2 term usually does not appear in MRI literature. However, we incorpo-
rate it into our model because of the relatively large inhomogeneities in the magnetic
field we are considering. We remark that Eq. (2.5) is a general MRI signal model, but
it is more suitable for low-field MRI because the assumptions made for high-field MRI
(namely, a very strong and homogeneous magnetic field) do not hold for low-field. Ig-
noring T2 relaxation, the final signal model becomes

b(t ) =
∫
~r∈D

c(~r )ω2(~r )X (~r )e−i∆ω(~r t d~r . (2.6)

We note that, in practice, the signal b(t ) is contaminated by noise.

MODEL-BASED IMAGE RECONSTRUCTION

In high-field MRI, the magnetic field is manipulated in such a way that Eq. (2.6) con-
stitutes a Fourier Transform. The resulting linear problem is well-posed, and the image
can be efficiently obtained using an inverse FFT. However, in low-field MRI, the mag-
netic field can be strongly inhomogeneous, which prevents us from using standard FFT
routines. Model-based image reconstruction can be applied instead [44].

We divide the domain into pixels, where each pixel has side lengths of ∆x and ∆y in
the x- and y-direction, respectively, so it has an area of ∆x∆y . We denote the slice thick-
ness by ∆z. Now, we can discretize Eq. (2.6) using a "center-of-pixel" approximation to
obtain a system of equations:

b(1) = A(1)x+e(1), (2.7)
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where b(1) is the vector form of the noisy signal b(t ):

b = [
b(t1),b(t2), ...,b(tQ )

]T , (2.8)

acquired at discrete time instances tq , q = 1, ...,Q, x is the discrete vector representation
of the image X (~r we aim to reconstruct, e(1) is a noise vector and the elements of the
model matrix A(1) are described by

a j k = c(~rk )ω2(~rk )e−i∆ω(~rk )t j∆x∆y∆z. (2.9)

As can be seen in Figure 2.2, the field has a high degree of symmetry. The precessional
frequency depends linearly on the magnitude of the field, which means that several pix-
els will correspond to the same frequency. Therefore, it is impossible to determine the
contribution of each pixel to the signal if we use only one measured signal. By rotating
the object to be imaged and hence obtaining a multitude of different signals correspond-
ing to different rotations of the same object, we aim to mitigate this problem. The same
approach was taken by Cooley et al. [30]. More formally, denoting the measurement
number by l and disregarding the noise vector, we can write

b(l ) = A(l )x, (2.10)

where A(l ) is recalculated according to the new position of the phantom. Then, all L
measurements can be combined into one system of equations

b(1)

b(2)

...
b(L−1)

b(L)

=


A(1)

A(2)

...
A(L−1)

A(L)

x, (2.11)

which we will write as

b = Ax. (2.12)

2.2. METHODOLOGY
The model that is used to reconstruct X is given by the linear system of Eqs. (2.7). We
can attempt to solve for x by finding a solution to the least-squares problem

min
x

1

2
‖Ax−b‖2

2. (2.13)

This can be done by applying the conjugate gradient method introduced by Hestenes
and Stiefel in 1952 [57] to the normal equations

AH Ax = AH b, (2.14)

with AH denoting the Hermitian transpose of A.
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The conjugate gradient method tailored to Eq. (2.14) was proposed in [57] and is
usually denoted by CGLS (Conjugate Gradient for least-squares). The difference with the
standard conjugate gradient method lies in the increased stability of the CGLS method.
A review of the literature reveals that this method is known by other names as well. In
[58], Saad calls it CGNR (Conjugate Gradient Normal Residual), while Hanke [59] and
Engl [60] use the term CGNE (Conjugate Gradient for the Normal Equations).

On the other hand, the second normal equations

AAH y = b, x = AH y (2.15)

can be solved using the conjugate gradient method as well. In the literature, this is usu-
ally called CGME (Conjugate Gradient Minimal Error). However, in [61] it is called CGNE
(Conjugate Gradient Normal Error), while [62] uses the term Craig’s method. It was in-
troduced by Craig in 1955 [63]. CGLS and CGME are discussed by Björck in [55], Hanke in
[59] and Saad in [58]. While CGLS minimizes the residual r = b−Ax in the `2 norm over
the Krylov subspace x0 +Kk (AH A,AH b−AH Ax0), CGME minimizes the error (over the
same subspace). The main drawback of this latter method is that, in theory, it only works
for consistent problems for which b ∈ R(A). This means that the method is of limited use
for most problems in practice, because the presence of noise renders the system incon-
sistent. In [64], this problem is circumvented by defining an operator Q that projects
b onto the column space of A. Subsequently, Ax = Qb can be solved using CGME. The
obvious disadvantage of this method is that Qb has to be calculated and stored.

2.2.1. REGULARIZATION OF THE PROBLEM
The system of Eqs. (2.7) is ill-posed. Regularization of an ill-posed problem aims to make
the problem less sensitive to noise by taking into account additional information, i.e., it
aims at turning an ill-posed problem into a well-posed one. Like many iterative methods,
both CGLS and CGME have a regularizing effect if the iterating procedure is stopped
early: keeping the number of iterations low prevents the noise from corrupting the result
too much. If a large number of iterations is used, noise can have a very strong effect on
the solution. The regularizing properties of CGLS were established by Nemirovskii in [65]
and are discussed in [55], [60] and [59], among others. CGME’s regularizing effect was
demonstrated by Hanke in [66]. However, we are interested in what Hansen [45] calls
general-form Tikhonov regularization, i.e. adding a regularization term to minimization
problem (2.13), leading to

min
x

1

2
‖Ax−b‖2

W + 1

2
τ‖x‖2

R (2.16)

where W is a weighting matrix, and R is a Hermitian positive definite matrix. Using a
CG algorithm to solve Eq. (2.16) is a natural choice [44]. The CG method is often used
to solve image reconstruction problems in MRI when a conventional Fourier model is
insufficient (see for example [67], [68] and [69]). Additionally, it is used as a building
block for other algorithms used in MRI by Pruessman [70], Ramani and Fessler [71] and
Ye et al. [72], among others. It is straightforward to generalize CGLS to regularized and
weighted least-squares problems of the form of Eq. (2.16). In this case, because of the
well-posedness of the resulting minimization problem, the noise does not influence the
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solution as much as when Eq. (2.13) is considered and increasing the number of itera-
tions does not lead to a noisier solution. In this work we will use W = C−1, where C is the
covariance matrix of the noise:

min
x

1

2
‖Ax−b‖2

C−1 +
1

2
τ‖x‖2

R (2.17)

For our application, the noise can be considered to be white, which means that C = I.
However, for completeness, we consider the general case. In case R = I, Eq. (2.17) re-
duces to a minimization problem with standard Tikhonov regularization [73]. The op-
timal value of the regularization parameter τ is usually unknown. An approach that is
often used to find a suitable value is the L-curve method [45]. By taking the gradient and
setting it equal to 0, the normal equations are obtained:

(AH C−1A+τR)x = AH C−1b. (2.18)

Again, the conjugate gradient method can be used to solve Eq. (2.18). We will use the
term GCGLS (Generalized CGLS) to refer to the conjugate gradient method applied to
the normal Eqs. (2.18).

Saunders [62] extended Craig’s method, which is mathematically equivalent to CGME,
to the regularized least-squares problem with C = I and R = I. He introduces an addi-
tional variable s and considers the constrained minimization problem

min
x,s

1

2

∥∥∥∥(
x
s

)∥∥∥∥2

(2.19)

subject to
(
A

p
τI

)(x
s

)
= b.

By defining r̃ = p
τs = b−Ax, he shows that this constrained minimization problem is

equivalent to

min
x

1

2
‖Ax−b‖2 + 1

2
τ‖x‖2. (2.20)

For every τ> 0,
(
A

p
τI

)(x
s

)
= b is consistent and hence, Eq. (2.20) can be solved using

CGME. Unfortunately, no advantages to using CGME were found. Note that such a refor-
mulization is necessary because the standard way of including the regularization matrix
R = I, by simply solving the so-called damped least-squares problem(

Ap
τI

)
x =

(
b
0

)
(2.21)

using CGME, is not possible, due to the inconsistency of the system. Reformulation of
CGME for general-form regularization can be achieved using a Schur-complement ap-
proach as will be shown below.

Again, we consider Eq. (2.17). We introduce the variable r = C−1(b − Ax) and we
note that ||Ax−b||2

C−1 = ||r||2C. Then, minimization problem (2.17) can be formulated as
a constrained minimization problem:

min
r,x

1

2
||r||2C + 1

2
τ||x||2R (2.22)
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s.t. r = C−1(b−Ax)

and using the technique of Lagrange multipliers, we find that

r = C−1(b−Ax) and τRx = AH r. (2.23)

If we eliminate r from Eq. (2.23), the original normal Eqs. (2.18) are obtained, whereas if
we assume τR is invertible and we subsequently eliminate x, we end up with a different
set of equations. As mentioned before, the first option leads to the GCGLS method. The
latter approach leads to the GCGME method.

2.2.2. GCGLS

By applying the conjugate gradient method to Eq. (2.18) and making some adjustments
to increase stability (see [55] for details), the GCGLS algorithm is obtained, see Algorithm
1. Here, M is the total number of data points measured and N is the number of pixels
in the image. The residual of the normal Eqs. (2.18) is denoted by sk . We remark that
the vectors on the left side can be overwritten by the vectors on the right. Only 8 vectors
have to be stored, namely x, r, s, p, q, Rx, Rp and C−1q. Note that the recursion for Rxk+1

is included to avoid an extra multiplication with R. It can be ignored in case R = I. In this
algorithm, only three matrix-vector multiplications are carried out per iteration: Apk+1,
AH rk+1 and Rpk . Additionally, one system with C has to be solved (if C 6= I). A slightly
different formulation of the GCGLS algorithm can be found in [69].

Algorithm 1 GCGLS

Require: A ∈CM×N ,C ∈CM×M ,R ∈CN×N ,x0,∈CN ,b ∈CM ,τ ∈R≥0;
Ensure: Approximate solution xk such that ‖AH rk −τRxk‖ É T OL.

1: r0 = C−1(b−Ax0), s0 = AH r0 −τRx0, p0 = s0; q0 = AH p0, γ0 = sH
0 s0, k = 0

2: while
p
γk > T OL and k < kmax do

3: ξk = qH
k C−1qk +τpH

k Rpk

4: αk = γk
ξk

5: xk+1 = xk +αk pk

6: Rxk+1 = Rxk +αk Rpk

7: rk+1 = rk −αk C−1qk

8: sk+1 = AH rk+1 −τRxk+1

9: γk+1 = sH
k+1sk+1

10: βk = γk+1
γk

11: pk+1 = sk+1 +βk pk

12: qk+1 = Apk+1

13: k = k +1
14: end while
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Algorithm 2 GCGME

Require: A ∈CM×N ,C ∈CM×M ,R ∈CN×N ,r0 ∈CM ,b ∈CM ,τ ∈R>0;
Ensure: Approximate solution xk such that ‖b−Axk −Crk‖ É T OL.

1: x0 = 1
τR−1AH r0

2: s0 = b−Ax0 −Cr0, p0 = s0, q0 = AH p0, γ0 = sH
0 s0, k = 0

3: while
p
γk > T OL and k < kmax do

4: ξk = 1
τqH

k R−1qk +pH
k Cpk

5: αk = γk
ξk

6: rk+1 = rk +αk pk

7: xk+1 = xk + αk
τ R−1qk

8: sk+1 = sk −αk ( 1
τAR−1qk +Cpk )

9: γk+1 = sH
k+1sk+1

10: βk = γk+1
γk

11: pk+1 = sk+1 +βk pk

12: qk+1 = AH pk+1

13: k = k +1
14: end while

2.2.3. GCGME
If τR is invertible, x can be eliminated from Eq. (2.23), yielding(

1

τ
AR−1AH +C

)
r = b. (2.24)

Subsequently, x can be obtained from r as:

x = 1

τ
R−1AH r. (2.25)

In [56], Arioli and Orban derive a generalization of Craig’s method [63] based on
Schur complement (2.24). In Algorithm 2, we formulate a similar generalization of the
CGME method applied to this system. We are not aware this generalization of CGME
has been formulated elsewhere. Here, sk is the residual of the normal Eqs. (2.24). Note
that the original CGME algorithm can be recovered from the generalized CGME algo-
rithm given above by taking 1

τR = I and C = O, the zero matrix. Only 7 vectors have to
be stored, namely x, r, s, p, q, R−1q and Cp. GCGME needs four matrix operations per
iteration: Cpk , AH pk+1, R−1qk and AR−1qk .

We remark that there is an essential difference between GCGLS and GCGME. GCGLS
iterates for the solution vector x and the equality rk = C−1(b−Axk ) is explicitly imposed.
The equality xk = 1

τR−1AH rk is not enforced, and is only (approximately) satisfied after

convergence. GCGME, on the other hand, iterates for rk . The equality xk = 1
τR−1AH rk is

enforced, while rk = C−1(b−Axk ) is only satisfied approximately after convergence.

2.2.4. CONVERGENCE OF GCGLS AND GCGME
The convergence of the conjugate gradient method depends on the condition number
of the system matrix. Again, suppose that CG is used to solve the system Lu = f for the
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unknown vector u, where L is a Hermitian positive definite (HPD) matrix and f is a known
vector. Then the following classical convergence bound holds [55]:

‖u−uk‖L ≤ 2

(p
κ2(L)−1p
κ2(L)+1

)k

‖u−u0‖L, (2.26)

where κ2(L) is the `2-norm condition number of L, which, for HPD matrices, is equal to

κ2(L) = λmax(L)

λmin(L)
(2.27)

in which λmax(L) and λmin(L) are the largest and smallest eigenvalue of L, respectively.
In this section we bound the condition numbers of the two Schur complement matrices
in Eqs. (2.18) and (2.24) to gain insight into when GCGME can be expected to perform
better than GCGLS, and vice versa. Given two HPD matrices K and M, the following
bound on the condition number holds:

λmax(K)+λmin(M)

λmin(K)+λmax(M)
≤ κ2(K+M) ≤ λmax(K)+λmax(M)

λmin(K)+λmin(M)
. (2.28)

This inequality follows from Weyl’s theorem [74], which states that for eigenvalues of
Hermitian matrices K and M, the following holds:

λi (K)+λmin(M) ≤λi (K+M) ≤λi (K)+λmax(M). (2.29)

Here λi (K) denotes any eigenvalue of the matrix K. For GCGLS we have that

K = τR , M = AH C−1A (2.30)

and, using the following inequalities

λmax(AH C−1A) ≤ σmax(A)2

λmin(C)
, λmin(AH C−1A) ≥ 0, (2.31)

with σmax(A) the largest singular value of A, we get that

τλmax(R)λmin(C)

τλmin(R)λmin(C)+σmax(A)2 ≤ κ2(AH C−1A+τR) (2.32)

≤ τλmax(R)λmin(C)+σmax(A)2

τλmin(R)λmin(C)

Analogously, for CGME, we have

K = C , M = 1

τ
AR−1AH (2.33)

and using similar manipulations as above we obtain

τλmin(R)λmax(C)

τλmin(R)λmin(C)+σmax(A)2 ≤ κ2(
1

τ
AR−1AH +C) (2.34)
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≤ τλmin(R)λmax(C)+σmax(A)2

τλmin(R)λmin(C)

These inequalities indicate that if

λmax(C)λmin(R) Àλmax(R)λmin(C) ⇔ κ2(C) À κ2(R) (2.35)

GCGLS can be expected to perform best, and that if

κ2(R) À κ2(C) (2.36)

GCGME should be preferred. This latter situation may occur when the regularization
term is minimized in the `p -norm with p ∈ (0,1], as we will discuss in the next section.
In Appendix B, we analyze a specific and simple case and determine the specific val-
ues of the regularization parameter for which we expect GCGME to converge faster than
GCGLS and vice versa.

2.2.5. TYPES OF REGULARIZATION
Instead of an `2-penalty, we will consider the more general case of an `p -penalty with
p ∈ (0,2]. Then, the minimization problem becomes

min
x

1

2
||Ax−b||22 +

1

p
τ||Fx||pp . (2.37)

A vast literature regarding this `2`p -minimization problem is available. In for example
[75], [76], [77] and [78], this problem is solved using a majorization-minimization ap-
proach. In this work, we will focus on the classical approach using Iterative Reweighted
Least-Squares (IRLS), also known as Iterative Reweighted Norm (IRN), see for example
[55], for solving minimization problem (2.37), in which GCGLS and GCGME can be used
as building blocks. Their performances will be compared. We choose the IRLS algorithm
for three reasons: its simplicity, the fact that it is a well-known technique and that in this
algorithm, the regularization matrix changes in each iteration, which makes it especially
interesting for us, because we can test whether GCGME indeed performs better in case
Eq. (2.36) holds. This work is not meant to evaluate the performance of IRLS as a solver
for Eq. (2.37) and we do not compare it with other methods. For completeness, however,
we do mention that we could also have chosen to evaluate both approaches as a building
block of the Split-Bregman method [79] for the `1-regularized problem, for example. In
[76], Chan and Liang use CG as a building block for their half-quadratic algorithm that
solves Eq. (2.37) as well. A comparison between GCGLS and GCGME could be carried
out in this context too.

IRLS is an iterative method that can solve an `p -regularized minimization problem
by reducing it to a sequence of `2-regularized minimization problems. Note that for a
vector m of length N ,

||m||p =
(

N∑
i=1

|mi |p
)1/p

(2.38)
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so

||m||pp =
N∑

i=1
|mi |p . (2.39)

Furthermore, F is some regularizing matrix. We introduce

min
x

1

2
||Ax−b||22 +

1

2
τ||x||2FH DF, (2.40)

where

D := diag

(
1

|Fx|2−p

)
, (2.41)

and |Fx| is the element-wise modulus of Fx. This is simply another instance of minimiza-
tion problem (2.17), with R = FH DF. However, now R depends on x. So, when the kth
iterate xk is known, xk+1 is found as follows:

xk+1 = argmin
x

1

2
||Ax−b||22 +

1

2
τ||x||2FH Dk F, (2.42)

where

Dk = diag

(
1

|Fxk |2−p +ε
)

. (2.43)

This is repeated until convergence. Furthermore, in Eq. (2.43), ε is a small number that
is added to the denumerator to prevent division by zero. We will use ε = 10−6. We ob-
serve that in each IRLS iteration, we simply encounter an instance of minimization prob-
lem (2.17) again with Rk = FH Dk F, which can be solved using either GCGLS or GCGME.
When carrying out calculations with D−1

k , we will use

D−1
k = diag

(|Fxk |2−p)
. (2.44)

Due to the sparsity-inducing property of the `p penalty when p ≤ 1 (see for example
[80]), D−1

k will contain an increasing number of entries nearly equal to zero. In cases

where F is an invertible matrix, R−1
k = F−1D−1

k (FH )−1. When GCGME is used, we can
take advantage of this structure, instead of calculating Rk and working with its inverse.
Moreover, when F is an orthogonal matrix, no additional computations are necessary to
compute inverses.

The regularization matrix R = FH Dk F will become ill-conditioned when elements
of Fxk become small. Therefore, we expect that, when combined with IRLS, GCGME
will perform better than GCGLS for p ≤ 1. Numerical experiments are carried out to
investigate this further.

DIFFERENT CHOICES FOR p
We will minimize the following`1-regularized least-squares problem and the`1/2-regularized
least-squares problem to obtain approximations to the optimal solution x. For a general
F, this results in the following two minimization problems:

min
x

1

2
||Ax−b||22 +τ||Fx||1. (2.45)
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and

min
x

1

2
||Ax−b||22 +2τ||Fx||1/2

1/2. (2.46)

We note that in the latter case, the objective function is not convex which means that
the obtained solution does not necessarily correspond to a global minimum, see for ex-
ample [81]. For each of these two minimization problems, we will consider two different
regularization operators.

REGULARIZING USING THE IDENTITY MATRIX

First, we set F = I. In case the `1 penalty is used, the minimization problem reduces to

min
x

1

2
||Ax−b||22 +τ||x||1. (2.47)

This is known as LASSO (Least Absolute Shrinkage and Selection Operator) regulariza-
tion which was first introduced by Tibshirani in [82]. If the regularization parameter is
set to a sufficiently high value, the resulting solution will be sparse. The same holds for
the `1/2-regularized minimization problem:

min
x

1

2
||Ax−b||22 +2τ||x||1/2

1/2. (2.48)

The rationale behind choosing the regularization operator this way is the fact that the
intensity of many pixels in MRI images is equal to 0. In both cases (p = 1 and p = 1/2),

the regularization matrix reduces to Rk = Dk = diag
(

1
|xk |2−p

)
and its inverse is simply

R−1
k = D−1

k = diag
(|xk |2−p

)
. This is especially useful for GCGME, because calculating the

product of R−1 and a vector is trivial in this case.

REGULARIZING USING FIRST ORDER DIFFERENCES

Additionally, we consider the case where F is a first order difference matrix T that cal-
culates the values of the jumps between each pair of neighboring pixels. We define the
2D first-order difference operators that calculate the value of the jumps between neigh-
boring pixels in the x-direction and y-direction as Tx and Ty respectively. Then, the
complete regularizing operator is

T =
(

Tx

Ty

)
. (2.49)

This type of regularization is known as anisotropic total variation regularization. A rea-
son for choosing F = T is that neighboring pixels are very likely to have the same val-
ues in MR images. This is due to the fact that neighboring pixels tend to represent the
same tissue. However, T is not a square matrix, which means that Rk has to be calcu-
lated explicitly and then inverted when GCGME is used. Although this makes regular-
ization with first order differences in combination with GCGME less attractive than with
GCGLS, we do include this technique to investigate the relative reconstruction quality of
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this widely used regularization method. The resulting minimization problems are equal
to Eqs. (2.45) and (2.46) with F = T:

min
x

1

2
||Ax−b||22 +τ||Tx||1. (2.50)

and

min
x

1

2
||Ax−b||22 +2τ||Tx||1/2

1/2. (2.51)

FOUR DIFFERENT MINIMIZATION PROBLEMS

We will investigate all four minimization problems (2.47), (2.48), (2.50) and (2.51). Since
the least-squares term is the same in all four minimization problems, the difference be-
tween them lies in the penalty term used, as summarized in Table 2.1. In each of the four
cases, we will use both GCGLS and GCGME to compare their rate of convergence.

Table 2.1: Overview of the 4 different minimization problems considered in this work.

Regularization matrix I Regularization matrix F
`1-penalty minx

1
2 ||Ax−b||22 +τ||x||1 minx

1
2 ||Ax−b||22 +τ||Tx||1

`1/2-penalty minx
1
2 ||Ax−b||22 +2τ||x||1/2

1/2 minx
1
2 ||Ax−b||22 +2τ||Tx||1/2

1/2

2.2.6. NUMERICAL SIMULATIONS
For our simulations, we use a simulated magnetic field as shown in Figure 2.1a. (We also
have access to a measured field map, but it is measured on a very coarse grid, making
it unsuitable for our purposes.) The magnetic field within the FoV of 14 cm by 14 cm is
clearly inhomogeneous, as can be seen in Figure 2.2. The magnetic field has an approxi-
mately quadrupolar profile. This is because the Halbach cylinder is designed to generate
a field that is as uniform as possible. However, due to practical limitations, such as the
finite length of the cylinder, this uniformity cannot be attained, leading to a quadratic
residual field profile, see for example [30] and [83]. We do not use a switched linear
gradient coil, as is done in conventional MRI. Instead, the inhomogeneous background
field is used for readout encoding. For a thorough exploration of the use of non-bijective
encoding maps in MRI, we refer the reader to [83], [84], [85], [86] and [87].

Performing slice selection in the presence of a nonhomogeneous background field is
nontrivial, but this complication is ignored here. We assume that the entire measured
signal originates from one slice. We simulate the signal generation inside the Halbach
cylinder using Eqs. (2.9) and (2.7). The dwell time is set to ∆t = 5 ·10−6, and the readout
window is 0.5 ms, leading to 101 data points per measurement. Additionally, the field
is rotated by 5° after each individual measurement, so in order to cover a full circle, 72
different angles are considered. We note that this is similar to a radial frequency-domain
trajectory dataset in conventional MRI. In [83], quadrupolar fields are used to generate
such a dataset. However, the field we are using is only approximately quadrupolar, so
it is not a true radial frequency-domain trajectory experiment. The system consists of
72∗ 101 = 7272 equations. The numerical phantom of 64x64 pixels is shown in Figure
2.1b, resulting in a matrix A of size 7272×4096. We assume that the repetition time TR is
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long enough for the magnetization vector to relax back to its equilibrium. Also, the echo
time is assumed to be so short as to make T2-weighting negligible.
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(b) Numerical phantom

Figure 2.1: Low-field MRI prototype and numerical phantom.
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Figure 2.2: Magnetic field B0 within the Field of View. (b) and (c) show the 1D variations in the FoV.



2.3. RESULTS AND DISCUSSION

2

25

Since the background field is almost homogeneous in the center, as can be seen
in Figure 2.2, we decided to place the object of interest in the numerical phantom off-
center. Within a homogeneous region in the field, distinguishing between the different
pixels is impossible. Another obstacle in the reconstruction process is the fact that the
background field is almost symmetrical in both the x- and the y-axis, potentially leading
to aliasing artifacts in the lower half of the image (because the object of interest is placed
in the upper half of the image). We could reconstruct the phantom by leaving out all the
columns in matrix A corresponding to the pixels in the lower half of the image. Another
way of circumventing this problem is by using several receiver coils with different sen-
sitivity maps to break the symmetry of the problem [83], [87]. However, we choose not
to take these approaches so we can see how severe these artifacts are for the different
objective functions.

The coil sensitivity c is assumed to be constant so it is left out of the calculations.
White Gaussian noise is added so the covariance matrix C is simply the identity matrix.
We assume an SNR of 20. The numerical experiments are carried out using MATLAB
version 2015a. Often, CG is stopped once the residual is small enough. However, GCGLS
and GCGME are solving different normal equations, so the residuals are different for
both methods. Therefore, a comparison using such a stopping criterion would not be
fair. Instead, a fixed number of CG iterations is used per IRLS iteration. The value of the
regularization parameter τ is chosen heuristically. The number of IRLS iterations is set
to 10. We consider both 10 and 1000 CG iterations per IRLS iteration. The initial guess
x0 in GCGLS (and r0 in GCGME) is the zero vector. During the first IRLS iteration, we set
D = I, which means that R = F∗F. After the first IRLS iteration, we calculate the weight
matrix D according to Eq. (2.43). We use warm starts, i.e., we use the final value of our
iterate xk (or rk for GCGME) of the previous IRLS iteration as an initial guess for the next
IRLS iteration.

2.3. RESULTS AND DISCUSSION
Table 2.2 shows the parameters that were chosen for all four different minimization
problems. The regularization parameter was chosen heuristically in each case.

Table 2.2: Overview of the choice of parameters for the four different minimization problems considered in
this work.

Regularization matrix I Regularization matrix F
`1-penalty minx

1
2 ||Ax−b||22 +τ||x||1 minx

1
2 ||Ax−b||22 +τ||Tx||1

10 IRLS iterations 10 IRLS iterations
10 CG iterations 10 CG iterations
τ= 1.5 ·10−1 τ= 1 ·10−2

`1/2-penalty minx
1
2 ||Ax−b||22 +2τ||x||1/2

1/2 minx
1
2 ||Ax−b||22 +2τ||Tx||1/2

1/2
10 IRLS iterations 10 IRLS iterations
10 CG iterations 10 CG iterations
τ= 5 ·10−3 τ= 2.5 ·10−3

The objective function values are plotted as a function of the iteration number in
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Figure 2.3 and all resulting images are shown in Figure 2.4. We note that in all cases
(except perhaps the ‖x‖1/2

1/2 one), GCGME yields a result that resembles the original more
than GCGLS does. GCGLS tends to yield aliasing artifacts in the lower half of the image.
This effect is less pronounced for the GCGME results, especially when ‖Tx‖1/2

1/2 is used
as the penalty term. We see that GCGME attains a lower objective function value in all
cases. However, both methods should in theory converge to the same value for the ‖x‖1-
and ‖Tx‖1-penalty terms. Evidently, GCGLS has not converged yet. If we increase the
number of CG iterations to 1000, GCGLS and GCGME converge to the same result, as can
be seen in Appendix C. The GCGME result is the same, whether 10 or 1000 CG iterations
are carried out, from which we conclude that GCGME has already converged in the first
case. However, GCGLS needs a significantly larger number of iterations to converge. In
case F = I, GCGLS and GCGME both need 0.069 seconds per iteration. When F = T,
GCGME needs slightly more time per iteration than GCGLS: 0.072 versus 0.069 seconds.
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Figure 2.3: Objective function value as a function of the iteration number for the four different penalty terms.
The vertical black lines indicate the start of a new IRLS iteration.
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Figure 2.4: Reconstruction results for the four different penalty terms. In all four cases, the GCGLS and the
GCGME result are shown.
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2.3.1. DISCUSSION OF THE RESULTS
GCGLS needs a large number of CG iterations to converge, while for GCGME, this num-
ber is small (typically, 10 is sufficient). This can be explained by the observation that
as we get closer to the solution, many elements of the vector |Fxk |2−p will converge to
zero, due to the sparsity-enforcing properties of the `p penalty when p ≤ 1. Therefore,
D−1

k = diag
(|Fxk |2−p

)
will contain an increasing number of very small entries, resulting

in the matrix Rk = FH Dk F becoming more and more ill-conditioned as the number of
IRLS iterations grows. That means that, after a few IRLS iterations, κ2(Rk ) À κ2(I) will
hold, in which case GCGME performs better than GCGLS, which is consistent with our
results.

It is interesting to note that when the number of CG iterations for GCGLS is set to 10,
GCGLS appears to have reached convergence after 4-5 IRLS iterations, yielding an image
with aliasing artifacts in the form of an additional shape in the lower half of the image,
as well as regions of intensity in the corners of the image. However, convergence is not
actually attained yet, but it is simply very slow. The number of CG iterations needs to be
increased to 1000 before convergence is reached.

We observe that the ‖Tx‖1/2
1/2 penalty is best at repressing the aliasing artifacts in the

lower half of the image.

2.4. CONCLUSION
We formulated a general MRI signal model describing the relationship between mea-
sured signal and image which is more suitable for low-field MRI because the assump-
tions that are usually made in high-field MRI do not necessarily hold in this case. The
discretized version yields a linear system of equations that is ill-posed. Regularization
is needed to obtain a reasonable solution. We considered the weighted and regularized
least-squares problem. A second set of normal equations was derived, which allowed us
to generalize the Conjugate Gradient Minimal Error (CGME) method to include nontriv-
ial weighting and regularization matrices.

We compared our GCGME method to the classical GCGLS method by applying both
to data simulated using our signal model. Different regularization operators were con-
sidered: the identity matrix and the anisotropic total variation operator that determines
the size of the jumps between neighboring pixels. The regularization term was measured
in the `1-norm and the ` 1

2
-norm and Iterative Reweighted least-squares (IRLS) was used

to solve the resulting minimization problems. In each IRLS iteration, an `2-regularized
minimization problem was solved using GCGLS or GCGME.

GCGME converges much faster than GCGLS, due to the regularization matrix be-
coming increasingly ill-conditioned as the number of IRLS iterations grows. This makes
GCGME the preferred algorithm for our application.
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TWO-DIMENSIONAL IMAGING

USING A HAND-HELD

SINGLE-SIDED MRI SENSOR:
PRELIMINARY FINDINGS

3.1. INTRODUCTION
Several sensors based on single-sided nuclear magnetic resonance (NMR) have been de-
veloped over the course of the last few decades. While the principle is the same, such
NMR sensors are called MRI sensors if they are used for medical purposes. NMR sen-
sors do not place any restrictions on the size of the object being imaged as the sample
is placed outside of the magnet, as opposed to conventional NMR (or MRI) scanners
in which the object of interest is enclosed by the magnet. Hence, these sensors allow
for near-surface scanning of arbitrarily large objects. A complete overview on single-
sided (mobile) NMR can be found in [88] and [89]. Applications include well logging
[90], food analysis [91, 92] and medical testing/imaging [40, 42]. If such a sensor is small
and lightweight enough to be truly portable, it increases MRI accessibility.

An example of a one-sided NMR sensor is the NMR-MOUSE (Nuclear Magnetic Res-
onance MObile Universal Surface Explorer) as described in [38], which consists of two
semicylindrical permanent magnets with antiparallel magnetization placed 13 mm apart.
The magnets generate a static magnetic field parallel to the magnet surface. In the gap
between the magnets, an RF coil is placed to excite the object and detect the NMR sig-
nal. In [39], another type of NMR-MOUSE was introduced, which is based on a simple
bar magnet that generates a static magnetic field with a built-in, approximately con-
stant gradient. The RF coil is placed on top of one of the poles. In [93], Casanova and
Blümich mounted an appropriate gradient coil system on top of this NMR-MOUSE and
demonstrated the feasibility of two-dimensional imaging, and in Perlo et al. [94], using

29
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this same magnet, three-dimensional spatial resolution was achieved by combining a
two-dimensional imaging sequence with the application of slice selection pulses.

Ever since the NMR-MOUSE was introduced over two decades ago, different research
groups have developed their own single-sided NMR sensors. Examples focusing on hard-
ware design can be found in [43, 95–100]. Other papers describe the hardware design
and present 2D images as well. For example, in [101] 2D images were obtained using a
single-sided NMR sensor based on an adjustable array of permanent magnets. He et al.
[40] introduced a design based on a reduced Halbach magnet meant to assess the depth
of burn injuries and showed promising preliminary results, including images of a simple
burn model. Greer et al. [41] noted that, due to their commercial unavailability, single-
sided NMR sensors are still relatively uncommon and introduced an NMR sensor that is
easily reproducible, single-sided and portable and they presented a 2D image that was
reconstructed from data acquired using this sensor.

The single-sided MRI sensor we consider, which is shown in Figure 1.1d, was de-
veloped at the Leiden University Medical Center. It consists of a configuration of 36
neodymium permanent magnets. Each magnet is of size 12×12×12 mm3. The orienta-
tion and location of each of the magnets was determined using an artificial intelligence
(AI) model that was developed at the LUMC, which combines a deep neural network-
based encoder and an analytical forward model [102]. This model aims to find a con-
figuration of the 36 magnets that generates a static magnetic field with a built-in linear
gradient and is as homogeneous as possible. The resulting magnetic field has a linearly
increasing static magnetic field with a gradient of approximately -0.5 T/m at a height of
2 cm above the surface of the magnets, allowing for slice selection. The output of the
AI model was used to 3D print a casing to hold the 36 magnets. The resulting device
is 10×10×2 cm3 in size and weighs less than 1 kilogram. Possible applications of this
scanner include the imaging of subcutaneous structures and the spine.

As far as we know, all 2D (and 3D) images presented in single-sided NMR literature
have been reconstructed based on data acquired using a magnet equipped with gradient
coils. Adding such gradient coils to a magnet enables 2D (or 3D) spatial encoding, but
it also makes the sensor more complex. Therefore, in our design, we decided to forgo
the gradient coils. The inhomogeneities in the static magnetic field will be used for spa-
tial encoding instead, as is done in for example [103] and [104]. However, due to the
nonbijective nature of the magnetic field generated by the magnet, as was the case in
Chapter 2, a single measurement will not yield a sufficient amount of information for
a reconstruction. Therefore, we will use an approach that is similar to the one we took
in Chapter 2: several measurements are carried out, with the object of interest being
translated within the field of view (FoV) between subsequent measurements.

3.2. IMAGE RECONSTRUCTION

The relationship between the measured signal b(t ) and the spin density X (~r ) of the ob-
ject of interest is given by

b(t ) =
∫
~r∈D

c(~r )X (~r )e−i∆ω(~r )t d~r , (3.1)
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with c(~r ) the receiver coil sensitivity and ∆ω(~r ) defined as

∆ω(~r ) = γB(~r )−ωmod, (3.2)

where γ is the gyromagnetic ratio, B the static magnetic field strength and ωmod the de-
modulation frequency. We can discretize Eq. (3.1), yielding the linear system of equa-
tions

b(1) = A(1)x, (3.3)

where b(1) is the signal b(t ) measured at discrete time instances, x is the unknown im-
age (whose values represent the spin density in each voxel) and A(1) is the model matrix
whose elements, ignoring constants, are described by

a j k = c(~rk )e−i∆ω(~rk )t j , (3.4)

with j denoting the j th time sample and k denoting the voxel number, using lexico-
graphic ordering. To acquire a sufficient amount of information for a reconstruction, we
carry out a number of measurements, between which the sample is translated. Denoting
the translation vector corresponding to measurement l by~r (l ), we can write

b(l ) = A(l )x, (3.5)

with

a(l )
j k = c(~rk −~r (l ))e−i∆ω(~rk−~r (l ))t j . (3.6)

Then, we can combine all L measurements into one system of equations
b(1)

b(2)

...
b(L−1)

b(L)

=


A(1)

A(2)

...
A(L−1)

A(L)

x, (3.7)

which we will write as

b = Ax. (3.8)

Instead of solving Eq. (3.8) directly, we solve the more well-posed minimization problem

argmin
x

1

2
‖b−Ax‖2

2 +λ‖Tx‖1, (3.9)

where T is defined as the 3D anisotropic total variation (TV) operator

T =
Tx

Ty

Tz

 , (3.10)

with Tx , Ty and Tz first-order differencing matrices that calculate the values of the jumps
between neighboring pixels in the x-, y- and z-direction respectively.
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3.3. EXPERIMENT

The static magnetic background field was mapped on a grid of 30x30x10 mm3, between
22 mm and 32 mm above the magnet, with a step size of 1 mm, using an F71 Lakeshore
Teslameter with a 3-axis Hall probe. We interpolate the resulting field map to a resolu-
tion of 0.25 mm in the z-direction (i.e., perpendicular to the magnet). This choice was
motivated by the observation that the field varies significantly in the z-direction, much
more so than in the other two directions, and it is likely that the original resolution is
not sufficient for an accurate discretization of the field. We leave the resolution in the
other two directions unaltered so as not to make the problem more underdetermined
than necessary. The demodulation frequency corresponds to 49.866 mT, which approxi-
mately coincides with the center of the magnetic field "slice" at z = 28.5 mm.

The complete experimental setup is shown in Figure 3.1. In this setup, the config-
uration of magnets is positioned inside a Faraday cage, which was mounted on top of
an xy-stage. This stage allows for the translation of the magnets inside the Faraday cage.
The magnets are located just below the sample housing, which contains the phantom,
as well as an RF coil circuit. The RF coil is a copper wire with a diameter of 0.8 mm that
was wound around the phantom. The sample housing can be removed from the setup.

Figure 3.1: On the left, the experimental setup is shown. On the right, the lid has been removed, showing the
magnet. The lid functions as a sample housing. It contains the phantom and the RF coil circuit.

Figure 3.2 shows the magnetic field map for nine different equidistant slices between
z = 27.5 and z = 29.5 mm. The coil sensitivity maps for the same slices are shown in
Figure 3.3. These maps were obtained by first determining the reflection coefficient S11

of the RF coil as a function of frequency and then mapping these values to the corre-
sponding frequencies in the field. We note that the coil sensitivity plots exhibit contour
lines which are of a somewhat unusual nature. Their appearance can be explained by
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the fact that during the design phase, this specific configuration of magnets was selected
because the transverse magnetic field components exhibit an almost linear decay. How-
ever, the z-component is not negligible, as is reflected in the coil sensitivity maps. We
observe that in each slice, a relatively small part of the FoV is "seen" by the coil.

B [mT]

x (mm)

-15 -10 -5 0  5  10 15 

y
 (

m
m

)

15 

10 

5  

0  

-5 

-10

-15

48

49

50

51

52

53

(a) z = 27.5 mm

B [mT]

x (mm)

-15 -10 -5 0  5  10 15 

y
 (

m
m

)

15 

10 

5  

0  

-5 

-10

-15

48

49

50

51

52

53

(b) z = 27.75 mm

B [mT]

x (mm)

-15 -10 -5 0  5  10 15 

y
 (

m
m

)

15 

10 

5  

0  

-5 

-10

-15

48

49

50

51

52

53

(c) z = 28 mm

B [mT]

x (mm)

-15 -10 -5 0  5  10 15 

y
 (

m
m

)

15 

10 

5  

0  

-5 

-10

-15

48

49

50

51

52

53

(d) z = 28.25 mm

B [mT]

x (mm)

-15 -10 -5 0  5  10 15 

y
 (

m
m

)

15 

10 

5  

0  

-5 

-10

-15

48

49

50

51

52

53

(e) z = 28.5 mm

B [mT]

x (mm)

-15 -10 -5 0  5  10 15 

y
 (

m
m

)

15 

10 

5  

0  

-5 

-10

-15

48

49

50

51

52

53

(f) z = 28.75 mm

B [mT]

x (mm)

-15 -10 -5 0  5  10 15 

y
 (

m
m

)

15 

10 

5  

0  

-5 

-10

-15

48

49

50

51

52

53

(g) z = 29 mm

B [mT]

x (mm)

-15 -10 -5 0  5  10 15 

y
 (

m
m

)

15 

10 

5  

0  

-5 

-10

-15

48

49

50

51

52

53
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(i) z = 29.5 mm

Figure 3.2: Magnetic field strength for different values of z.
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Figure 3.3: Coil sensitivity maps for different values of z.



3.4. RESULTS

3

35

Figure 3.4: Schematic used for the 3D printing of the phantom. The tube is 30 mm in length and 18 mm in
diameter. The depth of the M-shaped cutout is equal to half of the tube length.

For the first test of the setup and the image reconstruction method, we use a simple
phantom in the shape of the letter M. The schematic used for the 3D printing of the mold
is shown in Figure 3.4. The M-shaped cutout was filled with olive oil. We acquire a signal
for seven different translations of this object, with the translations being 2 mm in the
x- and/or y-direction. For each translation, the acquisition parameters were as follows:
repetition time 200 ms, echo time 20 ms, dwell time 5 µs, 512 data points, 2000 averages.

3.4. RESULTS
We solve minimization problem (3.9) for this experiment, using the Alternating Direction
Method of Multipliers (ADMM) [105]. The resulting 3D image is shown in Figure 3.5. We
see that, while the result is far from perfect, the shape of an M can be discerned.

3.5. DISCUSSION
While the result we obtained is promising, we are far from being able to make any defini-
tive claims about the quality of our image. The M-shape is clearly visible in some slices.
However, we noticed that the shape of the coil sensitivity map seems to influence the
outcome, with bands of higher intensity where the coil sensitivity is at its highest. We
cannot completely rule out the possibility that the coil sensitivity pattern could have
influenced the outcome of the image reconstruction process in such a way that sym-
metric shapes with vertical or horizontal lines, like an M-shape, are favored, especially
considering that we used a type of regularization that encourages piece-wise constant
solutions. Other factors which are known to have an impact on the final solution include
the accuracy of the field map, the value of the regularization parameter and the accuracy
of the translations. Therefore, to ensure the consistency of our approach, we need to
carry out more experiments with different kinds of phantoms.

To obtain a sufficient amount of information for a reconstruction, we carried out
seven measurements, with the phantom being translated by 2 millimeters between them.
These translations were executed by hand, which is a relatively inaccurate method for
such short distances. It is not unlikely that this had a negative impact on the reconstruc-
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(b) z = 27.75 mm
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(c) z = 28 mm
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(d) z = 28.25 mm

B [mT]

x (mm)

-15 -10 -5 0  5  10 15 

y
 (

m
m

)

15 

10 

5  

0  

-5 

-10

-15

×10
-5

0

1

2

3

4

5

6

7

8

(e) z = 28.5 mm
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(f) z = 28.75 mm
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(g) z = 29 mm
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(h) z = 29.25 mm
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(i) z = 29.5 mm

Figure 3.5: Slices of the reconstructed three-dimensional image.
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tion. One of the next steps is the introduction of a stepper motor driver that can be used
to move the stage on which the phantom is placed in an automated manner. This should
eliminate the translations as a source of inaccuracy in the model.

In conventional MRI scanners, the static magnetic background field is oriented in
the z-direction, i.e., along the bore. The magnetic field being oriented exclusively in one
of the three Cartesian directions allows for a relatively simple model describing the re-
lationship between signal and image. The main magnetic field component of the MRI
sensor we considered points in the x-direction, by which we mean one of the two direc-
tions parallel to the surface of the magnet. However, the other two components are not
negligible. In the center of each slice, these two components are very small, but moving
5 mm in each direction yields a z-component which is about 10% of the x-component,
and if we move even further we encounter percentages of more than 30%. It is yet unclear
to what extent these concomitant field components could invalidate the signal model.
By starting out with the Bloch equation, it is possible to derive a model describing the
relationship between signal and image for a general static magnetic background field,
see Appendix D. However, the resulting expression depends on some quantities that are
hard to determine, most notably the orientation of the magnetization. In our current
setup, it is unclear what this orientation is. In theory, though, it is possible to deter-
mine the orientation of the magnetic moment in each voxel by numerically solving the
Bloch equation describing the precession of the magnetization vector before readout. To
do that, we need, besides a map of the B1-field, all parameters describing the RF pulse,
which is far from trivial. Due to the very high frequency of the B1-pulse, the time step
in the numerical integration scheme has to be very small. This makes carrying out this
analysis very computationally expensive, especially for a 3D scenario. Additionally, we
are working with a spin echo sequence. To accurately model the orientation of the mag-
netization at the time we are acquiring the signal, we would need to incorporate T2 and
T ∗

2 (and possibly T1) relaxation. While this might still be feasible for a phantom with
known relaxation times, it is not when attempting to image human tissues, which is the
application we are interested in. Therefore, we decided to not pursue using the more
general signal model described in Appendix D any further. Instead, we simply stuck to
the original signal model of Eq. (3.1).

3.6. CONCLUSION
In this chapter, we described our first attempt at image reconstruction using data ac-
quired with a single-sided portable MRI sensor. Instead of mounting gradient coils on
top of the sensor for spatial encoding, we used an accurate map of the relatively inho-
mogeneous static magnetic field generated by the sensor’s array of permanent magnets.
Since a single measurement does not yield a sufficient amount of information for a re-
construction, we carried out a number of different measurements, with the sample being
translated between them. We used a sample in the shape of the letter M for our experi-
ment. Our reconstruction results showed an approximate outline of an M in a number
of slices.
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LOW-FIELD MAGNETIC

RESONANCE IMAGING USING

MULTIPLICATIVE

REGULARIZATION

4.1. INTRODUCTION
A direct consequence of having a weaker background field is that low-field MR scanners
inevitably yield significantly noisier signals than their high-field counterparts. Moreover,
depending on the type of low-field scanner that is used, the background field may not
be (sufficiently) uniform throughout the object and the gradient fields that are used for
imaging may not be linear or are only approximately linear within some subdomain of
the object or body part that we want to image. Loosely speaking, a uniform background
field and linear gradient fields ultimately lead to a Fourier transform representation of
the measured MR signals and MR imaging essentially amounts to applying an inverse
Fourier transform to the measured data. Deviations from these ideal background and
gradient fields lead to imaging artifacts when an inverse Fourier transform is applied,

This chapter is based on the article:

M.L. de Leeuw den Bouter, M.B. van Gijzen, and R.F. Remis, Low-field magnetic resonance imaging
using multiplicative regularization, Magnetic Resonance Imaging, 75, 21-33 (2021)

and additional work.
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as can be seen in [37]. Even when the background field and gradient fields can be con-
sidered constant and linear throughout the object, then still noisy reconstructions are
obtained, since the acquired signals usually have a low signal-to-noise ratio (SNR).

There is a vast literature on image reconstruction in MRI. An excellent overview of
many relevant techniques is given in [106]. In the case of nonlinear gradients, a model-
based image reconstruction as described in [44] and [104], among others, can be em-
ployed instead of the standard inverse Fourier Transform. In this chapter, we will make
use of this model-based image reconstruction as well. However, other methods exist
that correct for nonlinear magnetic fields as a post-processing step, i.e. these methods
are applied to the image obtained after having applied a standard technique like the in-
verse Fourier Transform to the k-space data. In [107] for example, spherical harmonic
deconvolution methods are used to achieve this result.

In this chapter, we employ an MR imaging technique that, using model-based image
reconstruction, addresses the aforementioned issues of imaging using nonlinear mag-
netic fields and the contamination of the signal by noise. Specifically, we pose our low-
field imaging problem as an optimization problem that minimizes a (least-squares) data
fidelity term in which nonuniform background fields and nonlinear gradients are taken
into account through a generalized signal model. Furthermore, noise effects are sup-
pressed by incorporating a weighted `2-norm total variation objective function into the
optimization procedure. Total variation regularization penalizes jumps between neigh-
boring pixels. The additive variant is often used in MR imaging to denoise images while
still maintaining their edges, see for example Chapter 2 and [108–111], among many oth-
ers.

It is customary to include such a regularization term in an additive manner into
an optimization framework. However, one of the main drawbacks of such an additive
scheme is that an artificial regularization parameter must be chosen that balances the
data fidelity and regularization terms. While methods for choosing this parameter ex-
ist, see for example [112], they are often computationally expensive and do not allow for
fast (real-time) imaging. Moreover, typically a regularizing parameter needs to be deter-
mined for each new available data set, which leads to even larger computation times in
case multiple data sets need to be processed.

Inspired by the success of multiplicative regularization in wave field inversion, see
[113–116], for instance, we include regularization in a multiplicative manner as well.
In the resulting iterative imaging algorithm, the image is then updated using a Polak-
Ribière type of conjugate gradient directions, see for example [117]. Two practical ad-
vantages of this scheme are that there is no effective regularization parameter that needs
to be computed and reconstruction results can be monitored as the scheme progresses.
A similar multiplicative regularization approach was applied to image deblurring prob-
lems in [118].

We apply our imaging method to low-field noise-corrupted simulated data using
nonlinear gradient fields and to measured data obtained with the low-field scanner shown
in Figure 1.1c.

We consider k-space data corresponding to an apple, a melon and the brain of a
healthy volunteer, which were acquired using the MR scanner described in [20]. More-
over, the effects of a nonlinear frequency encoding gradient are also studied using noise-
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corrupted simulated data. We resort to simulated data in this case, since we do not have
measured background or gradient fields available. We do stress, however, that if such
measured fields are available, then these can be easily incorporated into our imaging
scheme. Imaging results will be presented for a regularizing objective function based on
the minimization of a weighted total variation term. We demonstrate that the method
indeed effectively suppresses noise for a given data set without any extra computations
to determine a regularization parameter.

4.2. SIGNAL MODELING AND REGULARIZATION
The starting point of our imaging procedure is the voltage signal b(t ) that is measured
by a receive coil of the low-field scanner. Assuming that the complete object is excited,
we have for this signal the representation

b(t ) =
∫

r∈D
e−i∆ω0(r)t e−i2πk(r,t )·r X (r)dV , (4.1)

where∆ω0(r) = γB0(r)−ωmod is the difference between the local Larmor frequencyγB0(r)
and the demodulation frequency ωmod, with γ the proton gyromagnetic ratio. Further-
more, X (r) is the image and D is the imaging domain or Field of View (FoV). The image
X depends on the proton density, coil sensitivity, etc. and is expressed in [Vm−3]. Note
that here, we used a slightly different version of Eq. (2.6). Finally,

k(r, t ) = γ

2π

∫ t

τ=0
G(r,τ)dτ, (4.2)

where G(r,τ) =Gx (r,τ)ix+Gy (r,τ)iy+Gz (r,τ)iz [Tm−1] is the gradient vector correspond-
ing to the application of the gradient coils of the scanner. This model takes background
field inhomogeneities into account through ∆ω0(r) and nonuniformities in the gradient
fields are modeled using the spatially dependent gradient vector G. In case the back-
ground field can be considered uniform throughout the object, we have B0(r) = B0, and
the gradient vector does not depend on position, which means that G(r,τ) = G(τ), our
signal model simplifies to

b(t ) = X̃ [k(t )] =
∫

r∈D
e−i2πk(t )·r X (r)dV , (4.3)

where we have taken ωmod = γB0 and

k(t ) = γ

2π

∫ t

τ=0
G(τ)dτ. (4.4)

In this case the signal b(t ) is a three-dimensional spatial Fourier transform X̃ [k(t )] of the
image X (r).

The data used for imaging consists of time samples of the voltage signal. Introducing
the time instances tn = (n − 1)∆t for n = 1,2, ..., N with ∆t > 0 and taking into account
that the image X has the domain D as its support, we may write

b(tn) =
∫

r∈D
e−i∆ω0(r)tn e−i2πk(r,tn )·r X (r)dV , (4.5)
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for n = 1,2, ..., N .
We discretize the unit cube by subdividing the domain into nonoverlapping voxels,

where each voxel has a positive side length ∆x, ∆y , and ∆z in the x-, y-, and z-direction,
respectively. The volume of a voxel is denoted by V∆ = ∆x∆y∆z. Then, we discretize
Having introduced the voxelization of our imaging domain, we discretize the integral in
(4.5) using the composite midpoint rule and obtain

b = Ax, (4.6)

where
b = [b(t1),b(t2), ...,b(tN )]T , (4.7)

and A is the matrix representation of the integral operator in Eq. (4.5). In case we have a
homogeneous background field and linear gradient fields and N = PQR, we use A = F ,
where F is the 3D unitary Discrete Fourier Transform (DFT) matrix, so AH =F−1.

In practice, the measured data contains noise. Now in high-field MRI, the noise level
is much lower than in low-field MRI. Simply applying an inverse 3D Fourier transform
to the measured signal generally yields images of excellent quality in high-field MRI. In
a low-field setting, however, the background and gradient fields may not be hommoge-
neous and linear, respectively, within the complete object and, as mentioned earlier, the
required signals typically have a much lower SNR. Consequently, even when the back-
ground and gradient fields can be considered uniform, a straightforward application of
an inverse Fourier transform to the measured data will lead to very noisy reconstructions
in general.

To address both of these issues, we pose the imaging reconstruction problem as an
optimization problem and minimize an objective function that consists of a data fidelity
term describing the mismatch between the observed and the modeled data, and a regu-
larizing term, which suppresses the influence of noise on the reconstructions. In partic-
ular, in many regularized optimization methods the objective function that needs to be
minimized is of the form

F (x) = F data(x)+λF reg,add(x), (4.8)

where F data(x) is the data fidelity term, F reg,add(x) some regularizing function (often cho-
sen to be a variant of the total variation (TV) operator), and λ is a regularization pa-
rameter. The main drawback of using objective functions of the form (4.8) is that to
reconstruct an image, the artificial regularization parameter λ needs to be selected for
each new data set that is acquired. Strategies for choosing this parameter exist, of course
(such as the L-curve method [45]), but such approaches are computationally demanding
and generally require extensive numerical experimentation for each new available data
set.

Instead of using an additive approach, we follow [113, 114, 116, 118], for example, and
set up an iterative reconstruction algorithm that is based on multiplicative regularization
in which at each iteration the objective function is of the form

F (x) = F data(x)F reg,mult(x). (4.9)

Here, F reg,mult is the regularizing function, which is, in general, of a different form than
the regularizer in Eq. (4.8). Specifically, for multiplicative regularization, it is usually
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defined such that F reg,mult(x) = 1 at an optimal point. A major advantage of such a mul-
tiplicative approach is that no extra computations are required to determine an effective
regularization parameter. Here, we focus on the application of multiplicative regulariza-
tion to invert low-field MR data. For theoretical properties of multiplicative regulariza-
tion the reader is referred to [114, 119, 120], for example.

As a first step we introduce the standard 2-norm data misfit objective function as

F data(x) = ‖b−Ax‖2
2

‖b‖2
2

. (4.10)

Subsequently, we set up our iterative scheme and assume that at the kth iteration we
have some approximation xk−1 of the image available. The next iterate xk is now con-
structed by minimizing the objective function

Fk−1(x) = F data(x)F TV
k−1(x), (4.11)

where F TV
k−1(x) is the discretized counterpart of the weighted `2-norm total variation

functional

F TV
k−1(X ) =

∫
r∈Du

|∇X |2 +δ2
k−1

|∇Xk−1|2 +δ2
k−1

dV. (4.12)

Here, X and Xk−1 are the continuous counterparts of x and xk−1, respectively, and δ2
k−1

is given by

δ2
k−1 = F data(xk−1)2

∫
r∈Du

|∇Xk−1|2 dV. (4.13)

In our algorithm, we only work with this particular choice of δ2
k−1, but other choices

are possible as well, see [113] and [115]. In each iteration, Eq. (4.11) is minimized. This
choice of F TV(x) promotes solutions that are piecewise constant. Note that if this process
converges, we have limk→∞ xk−1 = x and hence limk→∞∇xk−1 = ∇x, which means that
limk→∞ F TV

k−1(x) = 1.
For ill-posed problems, as encountered in wavefield imaging and contrast source in-

version (CSI), for example, the total objective function typically shows a convergence be-
havior as descibed in [113, 114]. Specifically, in CSI the data functional is typically large,
at the start of the iterative process, giving a large weight to the regularizing functional. As
the iterative process progresses, the regularizing function will start to approach a value of
1 and the focus will shift towards minimizing the data functional, as illustrated in [121].
However, here we consider imaging problems which are well-posed (Fourier transform)
or at least less ill-posed than in CSI, which means that, given a reasonable initial guess,
the value of the data functional will be small. Therefore, we cannot expect the same be-
havior, except that if the process converges, the regularizing functional will converge to
1.

4.3. NUMERICAL DISCRETIZATION
To arrive at the discretized counterpart Fk−1(x) of Fk−1(X ), we use the weighting func-
tion

wk−1(r) = 1

|∇Xk−1|2 +δ2
k−1

(4.14)
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and write Eq. (4.12) as

F TV
k−1(X ) = δ2

k−1

∫
r∈Du

wk−1(r)dV +
∫

r∈Du

wk−1(r)|∇X (r)|2 dV , . (4.15)

where ∇=
(
∂
∂x , ∂

∂y , ∂
∂z

)
is the nabla operator. Discretizing the integrals in (4.15) using the

composite midpoint rule, we obtain

F TV
k−1(X ) ≈ δ2

k−1V∆
P∑

p=1

Q∑
q=1

R∑
r=1

wk−1(xp , yq , zr )

+V∆
P∑

p=1

Q∑
q=1

R∑
r=1

wk−1(xp , yq , zr )|∇X |2(xp , yq , zr ),

(4.16)

with P , Q and R denoting the number of voxels in the x-, y- and z-direction, respectively.
The partial derivatives in the gradient operator on the right-hand side of Eq. (4.16) are
approximated by two-point forward or backward difference formulas with a Dirichlet
boundary condition. We can use matrices Dx; f , Dy ; f and Dz; f (Dx;b , Dy ;b and Dz;b) to
carry out forward (or backward) differencing in the x-, y- and z-direction. Denoting the
3D image array by X, we introduce its vectorized counterpart as x = vec(X), where we use
lexicographical ordering. Similarly, wk−1 represents the vector form of Eq. (4.14).

Having introduced these vectors and matrices, we can write Eq. (4.16) more com-
pactly as

F TV
k−1(X ) ≈ δ2

k−1V∆ eT Wk−1e+V∆
(
gH

x Wk−1gx +gH
y Wk−1gy +gH

z Wk−1gz

)
= δ2

k−1V∆ eT Wk−1e+V∆
∑

i=x,y,z
gH

i Wk−1gi ,
(4.17)

where e is the PQR ×1 vector of ones, Wk−1 = diag(wk−1), and

gx = Dx x, gy = Dy x, and gz = Dz x (4.18)

with Dξ a forward or backward differencing matrix. Finally, substituting the gradient
vectors of Eq. (4.18) into Eq. (4.17) gives

F TV
k−1(X ) ≈ F TV

k−1(x) := δ2
k−1V∆ eT Wk−1e+V∆ xH Lw x, (4.19)

where Lw is a three-dimensional weighted approximate Laplacian given by

Lw = DT
x Wk−1Dx +DT

y Wk−1Dy +DT
z Wk−1Dz . (4.20)

In practice, one can use forward finite differences or backward finite differences to im-
plement the total variation functional. Another option is to use mixed finite differences,
which combines these two.

4.3.1. MIXED FINITE DIFFERENCE APPROACH
As mentioned before, the partial derivatives in Eq. (4.16) are approximated by forward
or backward two-point finite difference formulas and the differentiation matrices Dξ in
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the above formulas are either all forward differentiation matrices Dξ;f or backward dif-
ferentiation matrices Dξ;b. Another option is to mix the forward and backward differenc-
ing operators. Specifically, introducing the forward and backward x-coordinate gradient
vectors as

gx;f = Dx;fx and gx;b = Dx;bx (4.21)

with similar definitions for the forward and backward y- and z-coordinate gradient vec-
tors, we approximate F TV

k−1(X ) as

F TV
k−1(X ) ≈ δ2

k−1V∆ eT Wk−1e+ V∆
2

∑
i=x,y,z

gH
i ;bWk−1gi ;b +gH

i ;fWk−1gi ;f (4.22)

which is equivalent to Eq. (4.19), but with the mixed finite difference Laplacian

Lw = 1

2

[
DT

x;bWk−1Dx;b +DT
x;fWk−1Dx;f

]
+ 1

2

[
DT

y ;bWk−1Dy ;b +DT
y ;fWk−1Dy ;f

]
+ 1

2

[
DT

z;bWk−1Dz;b +DT
z;fWk−1Dz;f

]
.

(4.23)

Extensive numerical testing has shown that the mixed finite-difference approach leads
to faster convergence than implementations that use forward or backward difference
operators only. Therefore, we use this mixed finite-difference approach in our imple-
mentation of multiplicative regularization.

4.4. MR IMAGING USING MULTIPLICATIVE REGULARIZATION
As mentioned above, at the kth step of the algorithm we assume that we have an approx-
imation xk−1 available. We update the image according to the update formula

xk = xk−1 +βk dk , (4.24)

where dk is the Polak-Ribière update direction given by [113]

dk = gk +
Re[gH

k (gk −gk−1)]

‖gk−1‖2
2

dk−1 (4.25)

with d0 = 0 and gk the gradient of the objective function

Fk−1(x) = F data(x)F TV
k−1(x) (4.26)

evaluated at x = xk−1. Using the product rule, this gradient is given by

gk = gdata
k F TV

k−1(xk−1)+F data(xk−1)gTV
k = gdata

k +F data(xk−1)gTV
k , (4.27)

where we have used F TV
k−1(xk−1) = 1 and gdata

k is the gradient of F data at x = xk−1 given by

gdata
k =−2‖b‖−2

2 AH rk−1 (4.28)
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with rk−1 = b−Axk−1 the data residual. Furthermore, gTV
k is the gradient of F TV

k−1 at x =
xk−1 and using Eq. (4.19) is easily obtained as

gTV
k = 2V∆Lw xk−1. (4.29)

The gradient of Fk−1 at x = xk−1 now follows as

gk = 2
[
−‖b‖−2

2 AH rk−1 +V∆F data(xk−1)Lw xk−1

]
. (4.30)

Note that for position independent background and linear gradient fields we have AH =
F−1, i.e. AH is an inverse Fourier Transform.

Finally, to obtain the update coefficient βk , we substitute x = xk−1+βdk in the objec-
tive function Fk−1(x) = F data(x)F TV

k−1(x) and determine the update coefficient by solving
the equation

∂Fk−1(xk−1 +βdk )

∂β

∣∣∣∣
β=βk

= 0. (4.31)

Explicitly, Fk−1(xk−1 +βdk ) = F data(xk−1 +βdk )F TV
k−1(xk−1 +βdk ), where

F data(xk−1 +βdk ) = a0 +a1β+a2β
2 and F TV

k−1(xk−1 +βdk ) = 1+b1β+b2β
2 (4.32)

with

a0 = F data(xk−1), a1 =−2
Re(rH

k−1Adk )

‖b‖2
2

, and a2 =
‖Adk‖2

2

‖b‖2
2

(4.33)

and

b1 = 2V∆Re(xH
k−1Lw dk ) and b2 =V∆dH

k Lw dk . (4.34)

Note that a2 and b2 are always positive. With these results, the update coefficient follows
from Eq. (4.31) as the root for which the polynomial a0b1 + a1 +2(a0b2 + a1b1 + a2)β+
3(a1b2 + a2b1)β2 +4a2b2β

3 is minimized. The roots can be found analytically, or using
a built-in polynomial root-finding algorithm. To summarize, the overall algorithm is as
follows:
LOW-FIELD MULTIPLICATIVELY REGULARIZED MR IMAGING

1. Given an initial guess of the low-field MR image x0

2. For k = 1,2, ...,

(a) Compute the gradient vector gk as given by Eq. (4.30);

(b) Compute the Polak-Ribière update direction dk ;

(c) Compute the update coefficient βk ;

(d) Update the low-field MR image: xk = xk−1 +βk dk .
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Remark: Consider the case of position independent background and linear gradient
fields. We then have AH =F−1 and the gradient vector becomes

gk (xk−1) = 2
[
−‖b‖−2

2 F−1rk−1 +V∆F data(xk−1)Lw xk−1

]
. (4.35)

As an initial guess, let us take x0 = F−1b. This initial guess is very noisy, but the data
is exactly matched and F data(x0) = 0. Consequently, g(x0) = 0 and the algorithm stops
after one iteration with x1 = x0. In this case, where we have a homogeneous back-
ground field and perfectly linear gradient fields, which is often assumed in practice, we
use our algorithm as a denoising algorithm by setting the gradient at the kth iteration
to g(xk−1) = Lw xk−1. We now update in directions determined by the gradient of the
TV-term only. Starting with a masked initial guess x0 = MF−1b, where the mask M ze-
roes out any components of F−1b for which it is a priori known that the image at the
corresponding location vanishes, F data(xk ) will generally increase as k increases and if
limk→∞ F TV

k−1(xk ) = 1 then the objective function Fk−1(x) will asymptote to F data(x∗) as
k → ∞, where x∗ = limk→∞ xk−1 = limk→∞ xk is the converged image in which noise
variations have been minimized (suppressed).

4.5. RESULTS
In this section we illustrate the performance of our multiplicatively regularized imaging
and denoising algorithm. In Section 4.5.1 we use the algorithm to reconstruct the well-
known 2D Shepp-Logan phantom from simulated and noise-corrupted low-field data
with a frequency encoding gradient that is nonlinear. The data matrix A is not equal to a
standard DFT matrix in this case and simply applying an inverse DFT to the data would
lead to highly distorted reconstructions. We therefore use the algorithm as an iterative
reconstruction algorithm to recover the Shepp-Logan phantom from the data.

Subsequently, in Section 4.5.2, we apply our algorithm to data acquired using the
low-field scanner described in [20]. This scanner has been constructed such that the
background and gradient fields are approximately constant and linear throughout the
imaging domain. We take this into account in our data model and the data matrix A is as-
sumed to be equal to a unitary three-dimensional DFT matrix in this case. The algorithm
is now used as a denoising algorithm and images of an apple, a melon and a brain will be
presented to demonstrate the performance of the method on measured data for which a
Fourier signal representation is assumed to be applicable. In Section 4.5.3, we compare
our multiplicatively regularized 2D and 3D results with images obtained by solving the
additively regularized minimization problem

xadd = argmin
{‖b−Ax‖2

2 +λ‖Tx‖1
}

, (4.36)

where the second term is the total variation term, with T the anisotropic total variation
operator as defined in Eqs. (2.49) and (3.10) for 2D and 3D, respectively. We solve this
minimization problem using the Alternating Direction Method of Multipliers (ADMM),
see for example [105].

The experiments were carried out in MATLAB R2015a on a desktop PC with an In-
tel(R) Xeon(R) W-2123 CPU (3.60GHz).
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4.5.1. TWO-DIMENSIONAL IMAGING OF SIMULATED NOISE-CORRUPTED

LOW-FIELD MR DATA

In low-field MRI, inhomogeneities may be present in the background field and gradients
may not be perfectly linear. To investigate the performance of the algorithm as an image
reconstruction algorithm in such cases, we consider a two-dimensional low-field recon-
struction problem in which field perturbations are taken into account. Many different
field perturbations can be considered, of course, but in all cases signals are obtained
for which the relationship between the signal and the object is no longer governed by a
DFT. To fix the idea, we therefore focus on signal generation in an MR scanner in which
the frequency encoding gradient is not perfectly linear. Specifically, we introduce a per-
turbation of the gradient field that is relative to the gradient strength. To this end, we
scale the frequency encoding gradient such that we can describe its strength to be in the
range [−.5, .5) and we use x̃ and ỹ to denote the location in the FoV such that x̃ = −.5
corresponds to the left and x̃ = .5 to the right boundary of the FoV, and ỹ =−.5 and ỹ = .5
to the lower and upper boundary, respectively. The gradient field is now perturbed by
the function .5x̃ ỹ+ .05x̃2+ .35ỹ2. The unperturbed gradient field is shown in Figure 4.1a,
while the perturbed gradient field is shown in Figure 4.1b.

Since the background and (nonlinear) gradient profiles are known, we can use the
discretized version of Eq. (4.5) to obtain the model matrix A. As an image or model solu-
tion, we take the Shepp-Logan phantom of Figure 4.2a and we use matrix A to generate
the data. Subsequently, white Gaussian noise with an SNR of 20 is added to the data in
the spatial frequency domain. We note that not taking the distorted gradient into ac-
count leads to the image shown in Figure 4.2b, which is obviously a deformed image of
the true object.
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(b) Perturbed gradient

Figure 4.1: In an ideal scenario, the frequency encoding gradient is linear (a). In these simulations, however,
the gradient is perturbed and nonlinear (b). The black lines are contour lines.

Having the noise-corrupted data available, we apply our multiplicative regulariza-
tion scheme to this data in an attempt to reconstruct the Shepp-Logan model solution.
Mixed finite differences and the 2D version of the Laplacian matrix given in Eq. (4.23) are
used to implement the total variation functional. As an initial guess, we use x0 =αAH b,
where α is chosen such that F data(x0) is minimized. This initial guess is depicted in
Figure 4.2c. Subsequently, we use this x0 to define F TV

0 (x), and start iterating. The re-
construction that we obtain after 50 iterations is shown in Figure 4.2d. The algorithm’s
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progress is shown in Appendix E, where we can see that the algorithm manages to pro-
gressively denoise the image, while maintaining the edges and structures in the phan-
tom.

Figure 4.3 shows the value of the objective function F (x) as a function of the iteration
number, for the two-dimensional Shepp-Logan image. The values of F TV(x) and F data(x)
are plotted as well. We note that, as expected, F TV converges to 1, while the other two
steadily grow to a larger value that enables this convergence. The increasing value of
F data(x) can be explained by the observation that our matrix A does not deviate all that
much from a Fourier Transform, which means that the term ‖b − Ax0‖2 is close to 0.
However, since x0 is too noisy, this solution does not meet the smoothness requirements
of the total variation functional. Instead we iterate towards a solution that minimizes
the least-squares term under the constraint that F TV(x) is equal to 1. One iteration takes
1.79 seconds, which is relatively long but this can be explained by the fact that we need
to explicitly calculate the matrix A and its transpose, since we cannot rely on the Fast
Fourier Transform (FFT) due to the nonlinear gradient.
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Figure 4.2: Reconstruction results.
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Figure 4.3: Plots of the objective function value F (x) (left), which is equal to the product of F T V (middle) and
F data (right), for the two-dimensional Shepp-Logan image.

Additionally, we consider the same Shepp-Logan phantom, but with a decreased SNR
of 5. This is more realistic in a low-field MRI setting. The inverse FFT reconstruction, ini-
tial guess and the multiplicatively regularized reconstruction are shown in Figs. 4.4b,
4.4c and 4.4d, respectively, and for different iteration numbers, the reconstructions are
shown in Appendix E. This result was obtained after 50 iterations. We see that the algo-
rithm manages to denoise the image, but some structures are lost. This is not due to the
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method itself, but because the SNR is simply too low. As will be shown later, an additively
regularized method is not able to recover these structures either. The convergence plots
are shown in Figure 4.5, which showcase the same behavior as in the higher SNR case.
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Figure 4.4: Reconstruction results for an SNR of 5.
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Figure 4.5: Plots of the objective function value F (x) (left), which is equal to the product of F T V (middle) and
F data (right), for the two-dimensional Shepp-Logan image. In this case, the SNR was lowered to 5.

4.5.2. THREE-DIMENSIONAL IMAGING OF MEASURED DATA
This section contains reconstructed images of an apple, a melon and a brain that were
scanned using the low-field scanner of [20].

Table 4.1: Parameter settings for the different imaging experiments

Apple Melon Brain
Repetition time (TR) 3000 ms 2000 ms 500 ms
Echo time (TE) 30 ms 30 ms 20 ms
Number of voxels 64×64×64 128×128×128 128×128×50
Imaging domain/FoV 128×128×128 mm3 200×200×200 mm3 224×224×175 mm3

Pulse duration 100 µs 100 µs 100 µs
Acquisition bandwidth 10 kHz 20 kHz 20 kHz
Echo train length Not applicable Not applicable 4

APPLE EXPERIMENT

In our first experiment, an apple is imaged using a spin-echo sequence whose parame-
ters are given in the second column of Table 4.1. As an initial guess, we take a masked
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version of the three-dimensional inverse DFT of the k-space obtained during the apple
experiment. The 35th slice of this initial guess is shown in Figure 4.6a. Clearly, the initial
guess is contaminated by noise and the mask that is used is visible. We use this initial
guess to determine F TV

0 (x), after which we start the iterative process.
To remove the noise from the initial image, we use the algorithm as a denoising al-

gorithm and use a mixed difference approach with the Laplacian matrix of Eq. (4.23) in
the discretized total variation functional. One iteration takes approximately 0.3 seconds.
This is very fast compared to the Shepp-Logan problem, for which the problem is smaller
(64×64 pixels instead of 64×64×64 pixels), which can be explained by the fact that here,
the FFT can be employed. We observe that the amount of noise in the image decreases
as the iteration process continues, as can be seen in Figure E.3 in the Appendix. After 30
iterations an image of good quality is obtained, with the apple’s shape and seeds being
clearly visible and the noise having been eliminated. Figure 4.7 shows the convergence
plots for our algorithm. Again, we see that F TV converges to 1.

(a) Initial guess (b) Algorithm result

Figure 4.6: Reconstruction result of the 35th slice of the apple.
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Figure 4.7: Plots of the objective function value F (x) (left), which is equal to the product of F T V (middle) and
F data (right), for the three-dimensional apple image.

Iterating further leads to a result that is somewhat oversmoothed, which is similar
to the results obtained in the simulated 2D setting with a low SNR. Therefore, it is ad-
visable to stop the iterative process early (semi-convergence). Finally, we note that the
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reconstructed images are obtained essentially in real-time and the reconstructions can
be monitored as the iterative scheme progresses, which is of great importance in practice
when a scanner is used for diagnostic purposes.

MELON EXPERIMENT

In our second experiment, a melon is imaged using a spin-echo sequence with the pa-
rameter settings given in the third column of Table 4.1. Here, too, we construct an initial
guess by masking the image that is obtained by applying an inverse three-dimensional
DFT to the data. Note that this data set has twice as many data points in each Carte-
sian direction as the data set in the apple experiment. The 64th slice of the initial guess
is shown in Figure 4.8a. The mask that is used is clearly visible and again a very noisy
initial image is obtained. To remove this noise, we use mixed finite differences to im-
plement the total variation functional and the resulting reconstruction of the melon is
shown in Figure 4.8b.

(a) Initial guess (b) Algorithm result

Figure 4.8: Reconstruction result of the 64th slice of the melon.
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Figure 4.9: Plots of the objective function value F (x) (left), which is equal to the product of F T V (middle) and
F data (right), for the three-dimensional melon image.

As can be seen in Figure E.4 in Appendix E, the noise level in the images decreases
with the iteration number. We note that some individual pixels appear overly bright or
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dark, which may be removed by iterating further but this leads to oversmoothing, since
the SNR is very low. We therefore terminate the iterative process after 20 iterations. Fi-
nally, even though the complex data set of the melon is eight times larger than the apple
data set, the method still produces images essentially in real time that can be monitored
as the scheme progresses. Each iteration takes approximately 2 seconds. In Figure 4.9,
the convergence plots are shown, which follow the same pattern as before.

IN VIVO BRAIN EXPERIMENT

In the final experiment, an in vivo 3D data set was acquired from the brain of a healthy
volunteer, using a turbo spin echo sequence, with the parameters as given in Table 4.1.
To speed up acquisition time, a cylindrical k-space coverage pattern was used. The left
column of Figure 4.10 shows two slices of the initial guess, which is a masked version of
the image obtained after having applied an inverse DFT to the k-space data. We termi-
nate the algorithm after 40 iterations.

(a) Initial guess (slice 24) (b) Algorithm result (slice 24)

(c) Initial guess (slice 34) (d) Algorithm result (slice 34)

Figure 4.10: Two different slices of the reconstructed brain image.

Two slices of the final image are shown in the right column of Figure 4.10. Figure
E.5 in Appendix E shows the algorithm’s output for different iteration numbers, again
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demonstrating that the longer the algorithm is allowed to iterate, the more it denoises
the image.
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Figure 4.11: Plots of the objective function value F (x) (left), which is equal to the product of F T V (middle) and
F data (right), for the three-dimensional brain image.

4.5.3. ADDITIVE AND MULTIPLICATIVE REGULARIZATION

Finally, in Figure 4.12, our multiplicatively regularized reconstructions are shown next
to additively regularized reconstructions. We tuned the regularization parameter λ in a
heuristic manner such that the background noise disappears, while the different struc-
tures are still visible. For all experiments, we used 10 ADMM iterations and within each
ADMM iteration, we used 10 iterations of the Conjugate Gradient (CG) algorithm to solve
the first minimization problem. We observe that, in terms of image quality, additive
and multiplicative regularization yield comparable results, but no parameter tuning is
required in the multiplicative case. This is reflected in the peak signal-to-noise ratios
(PSNR), shown in Table 4.2, which we were only able to calculate for the simulated case
because no ground truth was available for the measured data. We see that multiplicative
regularization achieves a somewhat higher PSNR for low SNR and a marginally lower
PSNR for high SNR. Furthermore, in Table 4.3, the computing times for the 2 different
algorithms (our algorithm and the ADMM algorithm solving the additively regularized
problem) are shown. We note that it might be possible to lower the computation time
for the additively regularized problem by decreasing the number of either ADMM or CG
iterations. This table shows that, for our test problems, the computation times for mul-
tiplicative regularization are quite competitive compared to additive regularization. Ad-
ditionally, the computation time shown for additive regularization does not include the
time spent searching for an appropriate regularization parameter (requiring repeated
execution of the algorithm in general), which is a problem that is completely eliminated
when using a multiplicatively regularized approach.

Table 4.2: PSNR for different reconstructions of the Shepp-Logan phantom.

Multiplicative regularization Additive regularization
SNR 20 37.30 37.34
SNR 5 33.83 30.41
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Figure 4.12: Images of the Shepp-Logan phantom using simulated data with an SNR of 20 (top row) and an
SNR of 5 (second row), an apple (third row), a melon (fourth row) and a brain (bottom row) based on measured
data, using additive regularization (left column) and multiplicative regularization (right column).
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Table 4.3: Computing time (and total number of iterations) for the different reconstructions in seconds.

Multiplicative regularization Additive regularization
Shepp-Logan (SNR 20) 94.19 (50 iterations) 194.81 (100 iterations)
Shepp-Logan (SNR 5) 89.87 (50 iterations) 193.29 (100 iterations)
Apple 5.42 (30 iterations) 6.3 (100 iterations)
Melon 36.50 (20 iterations) 81.20 (100 iterations)
Brain 24.49 (40 iterations) 28.34 (100 iterations)

4.6. CONCLUSION AND DISCUSSION
In this chapter we applied a multiplicative regularization approach to low-field MR imag-
ing. By multiplying a least-squares data fidelity function by a regularizing total varia-
tion function that is differentiable, we avoid the problem of having to determine and
compute a regularization parameter as is required for additive regularization. The re-
sulting multiplicative regularization problem is nonlinear and is solved by using a non-
linear conjugate gradient scheme with Polak-Ribière update directions. Furthermore,
we showed that the algorithm can be used as an image reconstruction and denoising
algorithm by applying the method to two-dimensional simulated noise-corrupted MR
data obtained with a nonlinear gradient field and to three-dimensional measured data
obtained with a low-field Halbach scanner. We demonstrated that multiplicative regu-
larization yields very promising results, converging within a few iterations, whether we
are dealing with two-dimensional noisy data for which a Fourier signal representation is
no longer valid, or with three-dimensional measured data for which a Fourier transform
relationship between signal and image can be assumed. Moreover, accurate reconstruc-
tions are obtained essentially in real time in case a Fourier signal model is applicable.
We observed that in case of a low SNR, it is better to stop the iterative process somewhat
early (semi-convergence), to maintain the edges in the image. For a high SNR, edges are
preserved while noise is eliminated, even for a large number of iterations.

In this work, we focused on a low-field MRI setting with one single receiver coil. How-
ever, multiplicative regularization may also be applied to data acquired in a high-field
MRI scanner equipped with several coils, of course, and we intend to test its perfor-
mance against more standard high-field reconstruction techniques used today.

Moreover, in future work we will also focus on incorporating measured background
and gradient fields of practical low-field MR scanners into the data model that is used
in our multiplicative regularization scheme. Obviously, this is particularly important in
case the background and gradient fields are such that a standard Fourier transform sig-
nal representation is no longer valid, since otherwise significant distortions in the image
are obtained as we demonstrated for two-dimensional simulated MR data. Standard
FFTs can no longer be used in this case and accurate images may only be obtained by
solving the image reconstruction problem as an optimization problem. In our multi-
plicative scheme, forming matrix-vector products with the model matrix A is then the
main computational bottleneck, since computing the action of the Laplacian of the total
variation functional on a vector involves sparse finite difference operators only. Conse-
quently, to reduce the reconstruction time of the method, efficient routines to compute
matrix-vector products with the data matrix A have to be developed, possibly involv-
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ing nonuniform FFTs. Finally, we intend to include compressed sensing techniques into
our multiplicative regularization framework as well, since this may lead to reduced scan
times and a reduction of motion artifacts, for example.





5
INVERSION OF INCOMPLETE

K-SPACE DATA USING SUPPORT

INFORMATION

5.1. INTRODUCTION
In many application areas, ranging from geophysics to MRI, one is confronted with the
problem of reconstructing an object, a function, or an image from incomplete Fourier
spectral data (see, e.g. [122–124]). This is an ill-posed problem in general and very dif-
ficult or impossible to solve without any additional information (support or sparsity in-
formation, for example). However, by taking a priori information about the object into
account, it may be possible to successfully reconstruct the object of interest based on
incomplete Fourier data. In compressed sensing (CS), for example, we take into account
that the object or image has a sparse representation in some basis and accurate recon-
structions are possible provided that the undersampling artefacts are incoherent [125].
As an illustration, in MRI the prototype CS problem consists of minimizing the objective
function

Fcs(x) = ‖Sk (d−Fx)‖2
2 +λ‖Ψx‖1, (5.1)

where Ψ is a sparsifying transform, F the (unitary) discrete Fourier transform (DFT)
matrix, d the data vector, and Sk a diagonal matrix with ones and zeros on the diagonal

This chapter is based on the article:

M.L. de Leeuw den Bouter, P.M. van den Berg, and R.F. Remis, Inversion of incomplete spectral data
using support information with an application to magnetic resonance imaging, Journal of Physics
Communications, 5, 055006 (2021).
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representing incoherent k-space measurements, where a diagonal entry equal to one
corresponds to a point in k-space for which data is available. Often, an additional to-
tal variation functional is added to the above objective function as well and the bases
that are used for the sparsifying transform Ψ are typically global bases (wavelets, noise-
lets, etc.) defined over the complete field of view (FoV). With CS, no information about
the support of the object is required to successfully image the object of interest. How-
ever, optimization algorithms that minimize objective functions that consist of a least-
squares objective function characterizing the data fidelity and an `1 objective function
that enforces sparsity are generally more complex than algorithms that minimize only a
least-squares objective function. In addition, in CS a regularization parameter needs to
be determined to balance the two terms in the total objective function.

In this chapter, we consider the problem of reconstructing a bounded object from in-
complete spectral data in case the support of the object is known. Our motivation comes
from MRI where, at least in principle, the support of the object or body part of interest
can be determined before an actual clinical scan takes place. During the so-called pre-
scan, for example, an image is produced based on not-fully-sampled k-space data. From
this image, the FoV is determined and this scan can also be used to estimate the sup-
port of the object and its location within the FoV. In general, this approximate support
is not exact, of course, but for single body parts (a head, an arm, or a leg, for example)
the support can be determined in a fairly straightforward manner using binary maps.
Determining approximate supports in case multiple (possibly disjoint) objects or body
parts are present within the FoV may be more challenging, but the overall idea remains
the same. Here, we essentially follow this approach and determine the approximate sup-
port of an object (an apple) based on incomplete data that was obtained with a low-field
MR scanner [20, 37, 126]. We show that image quality improves when this (approximate)
support information is included in the reconstruction algorithm. Further examples in
which different undersampling patterns are used are presented as well to demonstrate
that directly including support information in the reconstruction algorithm generally
improves image quality.

Having support information available, our objective is to reconstruct the image within
the FoV from incomplete spectral data. In this case, we can still use CS techniques, of
course. In [127], for example, a CS technique is introduced that takes partially known
support information into account, while in [128] and [129] the CS problem is formulated
as an optimization problem that aims at finding the solution to the data equation which
has the smallest number of components outside of the support.

In this work, however, we propose a much simpler reconstruction algorithm in case
support information is known. Specifically, we build upon the work presented in [122]
and propose an image reconstruction algorithm, which is essentially the conjugate-gradient
least-squares (CGLS) algorithm applied to the normal equation that corresponds to a
space- and frequency-restricted Fourier transform equation. In [122], this approach
was proposed for one-dimensional space- and band-limited Fourier transform prob-
lems, while here we generalize this approach to two- and three-dimensional imaging
problems. In particular, we consider two- and three-dimensional (random) undersam-
pling patterns in the spectral domain that are typically used in MRI to speed up data
acquisition and study the performance of the method. We stress that for the two- and
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three-dimensional spatial support functions and spectral domain undersampling pat-
terns considered here, we have to resort to numerical methods, since analytical results
concerning the eigenfunctions and singular functions of the corresponding truncated
Fourier operators are not available (as in Slepian-Pollak theory [124, 130]). Finally, we
also compare our reconstructions to reconstructions obtained using CS techniques and
possible extensions of the method (parallel imaging and total variation regularization)
are briefly discussed as well.

5.2. BASIC EQUATIONS
The starting point of our analysis is the discrete Fourier transform equation

d =Fx, (5.2)

where x is a discrete (vectorized) image function defined on the FoV, F is the unitary dis-
crete Fourier transform (DFT) in one, two, or three dimensions, and d is a vector contain-
ing Fourier transform data. As we have seen before, Eq. (5.2) follows from discretizing
Eq. (4.3)).

We assume that the support of an object located within the FoV is known and intro-
duce its indicator or support matrix as a diagonal matrix Sx , where a diagonal element is
equal to the indicator function of the object applied to the pixel (2D) or voxel (3D) that
corresponds to this diagonal element. The support matrix Sx is obviously idempotent,
that is, it satisfies S2

x = Sx and the image vector x satisfies x = Sx x. Furthermore, when
spectral data is only available within a subdomain of Fourier space, we introduce a sup-
port matrix Sk for this subdomain in k-space as well, where the diagonal elements of Sk

indicate for which points in k-space spectral data is available. The support matrix Sk is
idempotent and available k-space data is given by the vector Sk d.

Having introduced the support matrices Sx and Sk , we can now formulate our re-
construction problem, which consists of retrieving the image vector x = Sx x from the
equation

SkFSx x = Sk d or ASx x = Sk d, (5.3)

where we have introduced the space- and band-limited discrete Fourier transform as
A = SkFSx . As pointed out in e.g. [122], in a continuous setting such a reconstruction
problem can be formulated in terms of an integral equation of the second kind for the
image function restricted to its support. A similar approach can be followed in the gen-
eral discrete case considered here. In particular, we start with the full DFT of the image
and write

Fx =FSx x = SkFSx x+ (I−Sk )FSx x = Sk d+ (I−Sk )FSx x. (5.4)

Applying the inverse Fourier transform F−1 =F H to this equation, we get

x =F H Sk d+F H (I−Sk )FSx x (5.5)

and by restricting this equation to the object domain by multiplying the above equation
on the left by the support matrix Sx , we arrive at the equation

(I−K)Sx x = h, (5.6)
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where h = SxF H Sk d and K = SxF H (I − Sk )FSx . Equation (5.6) is the discrete coun-
terpart of the integral equation presented in [122] for one-dimensional problems. If
this equation is solved using the Neumann series starting with a vanishing initial guess
one arrives at the Papoulis-Gerchberg algorithm or alternating orthogonal projection
method [123].

However, as pointed out in [122] for the one-dimensional continuous case, the one-
dimensional continuous counterpart of (5.6) can also be written as a normal equation
involving the truncated Fourier transform operator. This approach can be extended to
the general case considered here as well. Specifically, given the definition of the space-
and band-limited DFT matrix A, it is easily verified that

(I−K)Sx = AH A (5.7)

and since h = SxF H Sk d = AH d, we can write (5.6) as

AH Ax = AH d, (5.8)

showing that solving (5.6) is equivalent to solving the normal equation (5.8). As is well
known, any solution that minimizes the least-squares objective function

F (x) = ‖Sk d−Ax‖2
2 (5.9)

satisfies the normal equation (5.8) as well.
From Slepian-Pollak theory [130] we know that in the one-dimensional continuous

case, the left and right singular functions of the Fourier transform that is band- and
space-limited to the intervals [−k0,k0] and [−a0, a0] in k- and x-space, respectively, have
these intervals as their support. Moreover, the left and right singular functions are com-
plete on L2[−k0,k0] and L2[−a0, a0], respectively, and all singular values of the trun-
cated Fourier transform belong to the interval [0,1] with clustering occurring around
zero and one. Some of these one-dimensional spectral results have been extended to
higher dimensions [124] (in two dimensions to functions with circular support in ordi-
nary and k-space, for example), but no such theory exists for the truncated two- or three-
dimensional discrete Fourier transforms considered here with general x- or k-space in-
dicator functions.

Therefore, let us first consider computing the singular value decomposition (SVD) of
matrix A given by A = UΣVH , where the columns ui of U and the columns vi of V are the
left and right singular vectors of matrix A, respectively, and Σ is a diagonal matrix with
the nonnegative singular values σi of A on its diagonal arranged in decreasing order.
With the SVD of matrix A at our disposal, let Vk = span{v1,v2, ...,vk } be the space spanned
by the first k right singular vectors that correspond to the first k largest singular values
σ1 ≥σ2 ≥ ... ≥σk > 0. We can then take the kth truncated SVD solution

xk = argminx∈Vk
F (x) (5.10)

as an approximate solution to (5.8). Care must be exercised when selecting k, however,
since a poorly chosen k may lead to an overly smooth reconstruction or the approximate
solution xk is heavily affected by noise that is present in the data.
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For reconstruction problems encountered in practice, however, computing the SVD
of matrix A comes at prohibitively high computational costs. Computing matrix-vector
products with matrix A, on the other hand, can be carried out at “FFT speed" and we
therefore resort to iterative methods that solve the reconstruction problem. Specifically,
instead of the approximate solutions of (5.10), we take

xk = argminx∈Kk
F (x), (5.11)

as approximate solutions, where Kk = span{AH d, (AH A)AH d, ..., (AH A)k−1AH d} is the kth
Krylov subspace generated by AH A and vector AH d. The CGLS algorithm [55] that starts
with a vanishing initial guess produces approximations xk that satisfy (5.11) and we
therefore use this algorithm to solve the reconstruction problem. The reason for tak-
ing the xk of (5.11) as approximate solutions comes from the observation that the first
Krylov subspace vector (right-hand side vector)

AH d = VΣUH d =
N∑

i=1
σi (uH

i d)vi (5.12)

predominantly contains contributions from right singular vectors that correspond to the
largest singular values. Furthermore, matrix A has many zero singular values and since
in CGLS the largest singular values are typically approximated first, we expect that xk

mainly contains information about the right singular vectors that correspond to the first
k singular values. In fact, in case of noisy data, the regularizing effects of CGLS may be
used to obtain stable reconstructions by terminating the iterative process after a certain
number of iterations (semiconvergence, see e.g. [45]). For completeness, we mention
that the approximations xk of (5.11) may also be generated by the LSQR algorithm [55].

Finally, we note that if we add a sparsifying regularizer to the objective function of
(5.9), we end up with the prototype objective function of CS (5.1). If the image has a
sparse representation in some basis and the imaging artefacts are incoherent, CS may
accurately reconstruct the image without any support information. However, when this
support information is available then CS techniques may not be necessary and solving
the normal equation (5.8) with CGLS and a vanishing initial guess may already give satis-
factory reconstruction results. In the following section we present reconstruction results
for k-space undersampling patterns typically used in MRI, which illustrate that solving
the normal equation with CGLS indeed may be sufficient in these cases and no CS tech-
niques are necessary.

5.3. IMAGE RECONSTRUCTION
To illustrate the performance of the CGLS imaging algorithm in case support informa-
tion is available, we consider reconstruction problems for noise-free and noisy 2D and
3D data sets. In our 2D experiments we use a Shepp-Logan phantom with 64×64 pixels
[131] as the model solution and a brain image from the Kirby 21 dataset [132] with 256
pixels in each spatial direction. These phantoms and their supports are shown in Fig-
ure 5.1. The support of the 2D Shepp-Logan phantom consists of 1988 out of a total of
4096 pixels (≈ 49%), and the support of the 2D brain image has a size of 23892 out of a
total of 65536 pixels (≈ 36%).
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(a) Shepp-Logan

phantom

(b) Shepp-Logan

support function

(c) Brain image (d) Brain support

function

Figure 5.1: Model solutions (a) and (c) and their support (b) and (d) shown in white.

We consider six different undersampling patterns with Fourier or k-space support
functions illustrated in Figure 5.2. The first support function (Figure 5.2a) is a square un-
dersampling pattern that leaves out the edges of k-space. The second support function
(Figure 5.2b) is a pattern of random lines with all center lines being sampled, while the
third pattern (Figure 5.2c) consists of completely random lines (so not all center lines
are sampled). An undersampling pattern consisting of random points (Figure 5.2d) is
also considered, along with a radial pattern and a spiral pattern (Figures 5.2e and 5.2f,
respectively).

(a) Square (b) Random lines

(full center)

(c) Random lines

(d) Random points (e) Radial (f) Spiral

Figure 5.2: Tested undersampling patterns. White represents k-space points that are taken into account during
reconstruction, black points are not used during reconstruction. The exact undersampling patterns that are
used for the brain image experiment with 256×256 k-space points are shown. For the 64×64 Shepp-Logan
case, the undersampling patterns look similar.
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In all cases, the undersampling factor is (approximately) equal to two. We note that
in MRI, some of these patterns are more difficult to implement in practice than others
due to hardware limitations. Additionally, we remark that in reality, when using a radial
or spiral pattern, the sampled points do not necessarily fall on a Cartesian grid. To make
the application of an inverse Fourier transform to k-space possible, an iterative process
called gridding [133, 134] may be used to transform the measured data into a Cartesian
format. In this work, however, we do not take these limitations into consideration and
simply assume that we have access to undersampled k-space data in Cartesian format.

Figure 5.3 shows the reconstruction results for the Shepp-Logan phantom and the six
different undersampling patterns of Figure 5.2. Specifically, the model solution is shown
in the left column, while the reconstructions obtained by simply applying an inverse FFT
(IFFT) to incomplete spectral data are shown in the second column. The reconstructions
that are obtained using CGLS starting with a vanishing initial guess are shown in the
fourth column of Figure 5.3. These results were obtained after 1000 CGLS iterations or
when the residual dropped below a tolerance of 10−10. We observe that for all cases,
CGLS with known support information yields images of improved quality compared to
images obtained by simply applying an IFFT. This is also reflected in the peak signal-to-
noise ratio (PSNR) values presented in Table 5.1.

For the brain image, the reconstruction results are shown in Figure 5.4 and detailed
views of the reconstructions within the domain indicated by the white square in Fig-
ure 5.1c are shown in Figure 5.5. Comparing the reconstruction results obtained using
an IFFT with the reconstructions obtained using CGLS, we again observe that including
support information significantly improves the quality of the reconstructions. To quan-
tify this statement, we compute the PSNR values of the various reconstructions shown in
Figure 5.4 and the results are presented in Table 5.2. We observe that for all undersam-
pling patterns the PSNR values of the reconstructions obtained with CGLS and support
information included are higher than the PSNR values of the reconstructions obtained
with an IFFT without support information. We note that the CGLS algorithm performs
particularly well for a random points undersampling pattern (The norm of the error of
the reconstruction result is in the order of 10−8 for the brain image). Unfortunately, such
a sampling pattern is very difficult or impossible to realize during practical MR scans.
Furthermore, in the case of a spiral or radial undersampling pattern, our algorithm us-
ing support information significantly increases the PSNR of the reconstruction.

Table 5.1: PSNRs of the Shepp-Logan reconstructions obtained using an IFFT, CS, and the CGLS algorithm with
support information included for the six undersampling patterns of Figure 5.2.

Undersampling pattern PSNR (IFFT) PSNR (CS) PSNR (CGLS)
(a) Square 21.40 26.46 38.49
(b) Random lines (full center) 19.97 34.56 30.52
(c) Random lines 18.05 24.25 22.16
(d) Random points 17.21 24.13 72.31
(e) Radial 20.71 47.61 39.82
(f) Spiral 19.85 51.51 45.12
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Model IFFT CS CGLS
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Figure 5.3: Reconstructed Shepp-Logan images: (a) square, (b) random lines (with center), (c) random lines,
(d) random points, (e) radial, (f) spiral undersampling pattern. First column: model solution, second column:
IFFT reconstruction, third column: CS reconstruction, fourth column: CGLS reconstruction with support in-
formation.
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Table 5.2: PSNRs of the Kirby reconstructions obtained using an IFFT, CS, and the CGLS algorithm with support
information included for the six undersampling patterns of Figure 5.2.

Undersampling pattern PSNR (IFFT) PSNR (CS) PSNR (CGLS)
(a) Square 36.37 30.76 38.38
(b) Random lines (full center) 30.37 33.97 37.73
(c) Random lines 16.54 17.26 32.00
(d) Random points 15.61 16.97 209.45
(e) Radial 33.80 35.99 45.25
(f) Spiral 29.80 38.35 47.55

5.3.1. COMPRESSED SENSING

The image reconstruction problem may also be solved with CS techniques, of course.
No support information is required in this case, but CS imaging algorithms are generally
more complex than the CGLS approach considered in this paper.

As an illustration, let us consider the CS problem that consists of finding the image
function x that minimizes the objective function

Fcs(x) = ‖Sk (d−Fx)‖2
2 +λ‖Ψx‖1, (5.13)

for the undersampling patterns of Figure 5.2. Here, Ψ is the Daubechies wavelet oper-
ator [135] and λ is a regularization parameter, which is determined in a heuristic man-
ner through numerical experimentation. No support information is included and the
minimization problem is solved using the Alternating Direction Method of Multipliers
(ADMM). For all experiments, we used 100 ADMM iterations and within each ADMM it-
eration, we used 10 iterations of the Conjugate Gradient (CG) algorithm to solve the first
minimization problem. The reconstruction results for the Shepp-Logan phantom and
the Kirby model are shown in the third column of Figures 5.3, 5.4, and 5.5. The PSNR
values of the corresponding CS reconstructions are presented in Tables 5.1 and 5.2.

From Figure 5.3 and Table 5.1 we observe that for the Shepp-Logan phantom, CGLS
with support information included generally produces reconstructions of a similar qual-
ity as the reconstructions obtained with CS. In most cases, the PSNR values of the CS
reconstructions are (somewhat) larger, except for the square and random points under-
sampling patterns. In these cases, CGLS outperforms CS and, as mentioned above, es-
pecially the CGLS reconstruction for a random points undersampling pattern is of a very
high quality.

From Figures 5.4 and 5.5 and Table 5.2 we observe that for the Kirby data set, CGLS
in general again produces reconstructions of a similar quality as the reconstructions ob-
tained with CS, except that here the PSNRs of all CGLS reconstructions are larger than
the PSNRs of the corresponding CS reconstructions. A random points undersampling
pattern, in particular, produces a CGLS reconstruction that is clearly superior to the CS
reconstruction. Moreover, for a random lines undersampling pattern, CGLS produces
a reconstruction that is significantly better than the reconstruction obtained with CS as
well with a PSNR that is almost twice as large as the PSNR of the CS reconstruction.
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Figure 5.4: Reconstructed brain images: (a) square, (b) random lines (with center), (c) random lines, (d) ran-
dom points, (e) radial, (f) spiral undersampling pattern. First column: model solution, second column: IFFT
reconstruction, third column: CS reconstruction, fourth column: CGLS reconstruction with support informa-
tion.
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Model IFFT CS CGLS

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.5: Patch of each of the reconstructed brain images: (a) square, (b) random lines (with center), (c)
random lines, (d) random points, (e) radial, (f) spiral undersampling pattern. First column: model solution,
second column: IFFT reconstruction, third column: CS reconstruction, fourth column: CGLS reconstruction
with support information.

5.3.2. NOISY MEASUREMENTS
To demonstrate the performance of the CGLS reconstruction method in the case of noisy
data, we again consider reconstructing the Shepp-Logan and Kirby phantoms from their
corresponding incomplete k-space data, but now the data is contaminated by noise with
an SNR of 50. For both phantoms, we restrict ourselves to a spiral undersampling pat-
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tern, since the effects of noise are similar for the other undersampling patterns and noisy
data is also considered in Section 5.3.3, where we apply the proposed CGLS algorithm to
measured data.

Model IFFT CGLS
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Figure 5.6: Reconstructed images based on noisy spiral data with an SNR of 50: (a) Shepp-Logan phantom, (b)
brain image, (c) patch of the same brain image. Left column: Model solution, center column: IFFT reconstruc-
tion, right column: CGLS reconstruction with support information.

In Figure 5.6, the model solutions (first column), the reconstructions obtained with
an inverse FFT (second column), and the reconstructions obtained with the CGLS algo-
rithm with support information included (third column) are shown for the Shepp-Logan
phantom (first row), the Kirby head model (second row), and for the region indicated
by the white square in Figure 5.1c (third row). These results clearly show that the CGLS
algorithm, with support information included, yields reconstructions that resemble the
model solution much more accurately than the reconstruction obtained by simply ap-
plying the inverse Fourier transform to the undersampled data. This is also confirmed
by the PSNR values shown in Table 5.3.
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Table 5.3: PSNRs of the reconstructions obtained by applying a simple IFFT to noisy spiral data and using CGLS
with support information.

PSNR (IFFT) PSNR (CGLS)
Shepp-Logan 19.75 34.82
Brain 29.34 37.82

5.3.3. RECONSTRUCTIONS BASED ON EXPERIMENTAL LOW-FIELD MRI DATA

In this section, we apply the proposed reconstruction method to a 3D data set, which was
acquired using a spin-echo sequence on the low-field MRI scanner described in [20].
The scanning parameters of the measurement are reported in Table 5.4. An apple was
placed inside the scanner and all imaging was carried out using a single receive coil. We
note that the signals that were obtained have an SNR that is much lower than the SNR of
signals measured in typical commercial MR scanners (in this case, the SNR is about 6).

Table 5.4: Scanning parameters used in the apple imaging experiment.

Parameter Value
Repetition time (TR) 3 s
Echo time (TE) 30 ms
Imaging domain/FoV 128 × 128 × 128 mm3

Pulse duration 100 µs
Acquisition bandwidth 10 kHz
Number of averages 1

Applying a 3D inverse Fourier transform to fully sampled k-space data results in a
3D reconstruction of the apple and some slices of this reconstruction are shown in the
left column of Figure 5.7. These reconstructions serve as model solutions, since we ob-
viously do not have a perfect or high SNR model solution available in this case.

To illustrate the performance of CGLS, we again consider a k-space undersampling
pattern of random lines with the center of k-space completely sampled. The resulting
undersampling factor is equal to two and the reconstruction results obtained by simply
applying an inverse FFT to the incomplete data set and after 100 iterations of the CGLS
algorithm are shown in the second and third column of Figure 5.7, respectively. We ob-
serve that an image is obtained which visually resembles the original full k-space solu-
tion. The PSNR values in Table 5.5 also show that using support information increases
the PSNR from 24.02 (IFFT reconstruction) to 61.92 (CGLS reconstruction).

Table 5.5: PSNR of the 3D apple reconstructions obtained using a simple inverse Fourier transform and using
CGLS with support information included.

PSNR (IFFT) PSNR (Support)
Apple image 24.02 61.92
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Model IFFT CGLS

(a)

(b)

(c)

Figure 5.7: Some slices of the reconstructed 3D apple for a stack of random lines undersampling patterns. Left:
Model solution, center: IFFT reconstruction, right: CGLS reconstruction with support information included.

5.4. CONCLUSION AND DISCUSSION
In this chapter we discussed an imaging method that can be applied if the support of an
object within a certain FoV is known and its spatial Fourier transform is only known on a
certain k-space undersampling pattern. We demonstrated that the CGLS algorithm ap-
plied to the corresponding truncated Fourier transform equation produces reconstruc-
tions that are essentially of a similar quality as reconstructions obtained by solving a
standard CS problem in which support information is not taken into account. In par-
ticular, for the Shepp-Logan phantom and a range of two-dimensional k-space under-
sampling patterns, the CGLS algorithm produces reconstructions with PSNR values that
are generally slightly smaller than the PSNR values of the corresponding CS reconstruc-
tions. However, for a realistic head model the PSNR values of the CGLS reconstructions
are typically larger than the PSNR values of the CS reconstructions. Specifically, in the
case of a random points undersampling pattern, the CGLS reconstructions of the Shepp-
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Logan phantom and the head model have significantly larger PSNR values than their CS
counterparts. For both phantom models, the PSNR values of the CGLS reconstructions
are also larger than the PSNR values of the reconstructions obtained by simply applying
an IFFT to the available incomplete data sets.

In 3D, an improvement in the reconstructions was also observed when support in-
formation is taken into account. The CGLS algorithm was applied to a measured data
set obtained with a low-field MR scanner. For a random lines undersampling pattern
the method was able to provide reconstructions with sufficient detail and PSNR values
that are significantly larger than the PSNR values of the reconstructions obtained via a
standard IFFT. In conclusion, when support information about the object is available,
a straightforward application of the CGLS algorithm to a truncated Fourier transform
equation definitely improves simple IFFT-based reconstructions and, at least for the un-
dersampling patterns considered here, generally provides reconstructions with a quality
similar to reconstructions obtained via standard CS techniques.

Carrying out a Fourier reconstruction using a reduced number of data points invari-
ably leads to imaging artifacts. In this work, we considered basic CGLS and CS recon-
struction algorithms to address this problem. More advanced CS techniques can be used
as well, of course, (see [136–145], for example), but the same holds true for the CGLS al-
gorithm. For example, in an MR setting, the use of multiple receive coils can be included
in the reconstruction process and parallel imaging techniques analogous to SENSE [146]
and GRAPPA [147] may be developed. Furthermore, total variation regularization may
be included in the reconstruction process as well, either in an additive or multiplicative
manner [148].
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DEEP LEARNING FOR CORRECTION

OF IMAGE DISTORTIONS CAUSED BY

FIELD INHOMOGENEITIES AND

GRADIENT NONLINEARITIES

6.1. INTRODUCTION
Because of the weaker background field, MR signals generated in low-field MRI scanners
suffer from a lower signal-to-noise ratio (SNR) than those generated in high-field scan-
ners. Additionally, as is the case in high-field MR scanners as well, the static background
field may not be sufficiently homogeneous throughout the Field of View (FoV) and the
magnetic fields generated by the gradient coils may not be linear or are only approxi-
mately linear, depending on the type of scanner used. In case the static background field
is homogeneous and the gradient fields are linear, the signal model describing the rela-
tionship between image and measured signal reduces to a Fourier transform. If the static
background field and/or the gradient fields deviate from these assumptions, artifacts
occur in the image when a simple inverse Fourier transform is applied to the measured
data. Many approaches exist that correct for image distortions caused by gradient non-
linearities and by inhomogeneities in the static background field. Model-based image

This chapter is based on the article:

M.L. de Leeuw den Bouter, R.F. Remis, and M.B. van Gijzen, Deep learning for correction of image
distortions caused by background field inhomogeneities and gradient nonlinearities in low-field MRI, to
be submitted to SCEE 2022 proceedings, July 2022.
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reconstruction can be used for example [103, 104]. Another approach is given in [149],
where Janke et al. use spherical deconvolution methods. For these methods to work, the
inhomogeneities and nonlinearities need to be known explicitly. If accurate field maps
are not available, a method like conjugate phase reconstruction, as introduced in [150],
can be used. In [151], field and image are estimated simultaneously. However, the first
method requires a set of images of the same object with different echo times, and the
second one uses multiple receiver coils to acquire a sufficient amount of information to
achieve its goal. In this chapter, we focus on a scenario in which we have one image, ac-
quired using a single receiver coil. We assume we do not have access to exact maps of the
static magnetic background field nor the fields generated by the gradient coils. Our goal
is to correct images that have been distorted because of nonlinear gradient fields and/or
inhomogeneities in the static background field, without having to incorporate any ex-
act field maps. Three examples of distorted low-field MR images are shown in Figures
6.1, 6.2 and 6.3. These images originated from measurements carried out using differ-
ent versions of the low-field scanner described in [20] and [37]. The phantom that was
used to acquire the first image was a small real-life version of the Shepp-Logan phan-
tom [131] shown in Figure 6.1. The second image was obtained by imaging a melon.
For the final experiment, an additional Shepp-Logan phantom was created. While the
first one was less than 10 cm in diameter, this later version was comparable in size to a
human head. Clearly, the resulting images have been distorted by gradient nonlineari-
ties and/or static background field inhomogeneities. The small Shepp-Logan phantom
was imaged using the earliest version of the scanner and the resulting image is more
severely distorted than the other two images, which is consistent with the fact that the
homogeneity of the scanner’s background field and the linearity of the gradient fields
were improved in each updated version of the scanner. However, the melon’s shape still
deviates from the round shape we would expect to see and so does the second Shepp-
Logan image. Our goal is to correct for these distortions. To accomplish this goal, we
train a convolutional neural network on a large dataset generated using simulations, in
which the inhomogeneities and nonlinearities causing the distortions vary from sample
to sample. Over the last couple of years, neural networks have been applied successfully
to different problems in MR imaging, see for example [46, 152–154]. By using a dataset
with distortions caused by variable static background fields and gradient nonlinearities,
we aim to realize a trained network that is capable of correcting image distortions for
low-field MRI scanners in general, without having to retrain it for every single scanner
with a different measured dataset. Therefore, testing the network on experimental data
originating from three different versions of the low-field MRI scanner, with a different
static background field and different magnetic fields generated by the gradient coils, is
warranted.
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Figure 6.1: Initial reconstruction (left) of a small Shepp-Logan phantom (right) obtained by applying a 2D
inverse Fast Fourier Transform to the measured data.
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Figure 6.2: Initial distorted reconstruction of a melon.

Figure 6.3: Initial reconstruction (left) of a head-sized Shepp-Logan phantom (right) obtained by applying a
2D inverse Fast Fourier Transform to the measured data.
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6.2. SIGNAL MODEL
Using r to denote position and assuming a 2D scenario, the relationship between signal
b(t ) and image/spin density X (r), ignoring relaxation effects, is described by the well-
known equation [19]

b(t ) =
∫

r∈FoV
X (r)e−i∆ω0(r)t e−i 2πk(t )·r dr, (6.1)

where γ denotes the gyromagnetic ratio, ∆ω0(r) = γB0(r)−ωmod is the difference be-
tween the static background field B0 and the demodulation frequency ωmod, and k can
be described by

k(t ) = γ

2π

∫ t

0
G(τ) dτ. (6.2)

Here, G(r,τ) = [
Gx (r,τ), Gy (r,τ)

]T
is the vector corresponding to the gradients generated

by the gradient coils. For a spin-echo experiment, Eq. (6.1) can also be written as [19]

b(t ) =
Ï

object
X (x, y)e−iγ(B f (x,y)t+n∆Bp (x,y)Tpulse) dx dy, (6.3)

where n is used to denote the nth excitation cycle, Tpulse the duration of the phase-
encoding pulse, B f (x, y) is the magnetic field present during readout (the subscript f
stands for frequency encoding) and ∆Bp (x, y) is the difference in phase encoding gradi-
ent from one excitation cycle to the next, such that the total magnetic field generated by
the phase encoding gradient is described by Bp (x, y) = n∆Bp (x, y) (where the subscript
p is used to denote phase encoding)1. Note that in Eq. (6.3), the static background field
and the field generated by the frequency encoding gradient have been absorbed into the
same term B f (x, y). The gradient vector G in Eq. (6.2) is then given by:

G =
{
∇B f , for t > Tpulse (frequency encoding)

∇Bp , for t < Tpulse (phase encoding).
(6.4)

In Eq. (6.3), we use B f (x, y) = B̃ f (x, y)− 1
γωmod and Bp (x, y) = B̃p (x, y)− 1

γωmod, where

B̃ f (x, y) and B̃p (x, y) are the actual magnetic field strengths (of around 50 mT) present
during frequency and phase encoding, respectively. As mentioned before, B f (x, y) is
used to signify the sum of the background field and the additional magnetic field that is
generated by a frequency-encoding gradient coil. In the term By (x, y), we only consider
the nonlinearities in the magnetic field generated by the phase-encoding coil, not the
background field inhomogeneities. The reason is that since the length of the phase-
encoding pulse is constant, the background field inhomogeneities yield a constant phase
difference whose only effect is an additional phase in the resulting image.

1The magnitude of the field Bp (x, y) generated during the phase encoding pulse is determined by the amount
of current being sent through the phase encoding gradient coil. Increasing (or decreasing) the current by a
factor will simply lead to an increase (or decrease) of the magnitude of the magnetic field by the same factor.
This means we can also include nonlinearities present in Bp (x, y), since the nonlinearities are simply rescaled
from one excitation cycle to the next. Hence, the term ∆Bp (x, y) is equal to the magnetic field generated by
the phase encoding gradient coil corresponding to the excitation cycle denoted by n = 1 and, in general, for
each excitation cycle, we can simply write Bp (x, y) = n∆Bp (x, y).
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6.3.1. EXPERIMENTAL SETUP

SMALL SHEPP-LOGAN PHANTOM

The small Shepp-Logan phantom shown in Figure 6.1b was imaged using a very early
version of the low-field MRI scanner described in [20] and [37] in March of 2019. A spin-
echo pulse sequence was used with the parameter settings in Table 6.1.

Table 6.1: Parameter settings for the small Shepp-Logan imaging experiment.

Parameter Value
Repetition time (TR) 1 s
Echo time (TE) 10 ms
Number of complex data points 128×128
Imaging domain/Field of view (FoV) 120×120 mm2

Pulse duration 100 µs
Acquisition bandwidth 50 kHz
Number of averages 8

MELON

To assess whether the method generalizes to other objects, we will also include the im-
age shown in Figure 6.2. This image is not as clearly distorted as the Shepp-Logan image,
but its shape does deviate from the shape we would expect a melon to have. The image
shown is the 64th slice of a 128×128×128 pixel 3D image. For this experiment, a turbo
spin-echo sequence was used with the parameters as shown in Table 6.2. This experi-
ment was carried out on a more advanced version of the same low-field MRI scanner in
March of 2020.

Table 6.2: Parameter settings for the melon imaging experiment.

Parameter Value
Repetition time (TR) 2 s
Echo time (TE) 30 ms
Number of complex data points 128×128×128
Imaging domain/Field of view (FoV) 200×200×200 mm3

Pulse duration 100 µs
Acquisition bandwidth 20 kHz
Echo train length 16

HEAD-SIZED SHEPP-LOGAN PHANTOM

The final experiment was carried out using a larger Shepp-Logan phantom in November
of 2020. While the earlier Shepp-Logan phantom had a diameter of less than 10 cm, this
one was comparable in size to a human head. The parameters that were used here were
comparable to the ones used for the first Shepp-Logan experiment, except that the FoV
was significantly larger.
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6.3.2. DATASET GENERATION
We simulated a dataset of 100,000 2D model images of 128 × 128 pixels and their dis-
torted counterparts. Each image consists of a set of superimposed ellipses of intensities
varying between 0 and 1. The reasoning behind this is that the images we are trying to
improve, namely, images of a Shepp-Logan phantom and a melon, consist of ellipses as
well. This training set was inspired by [50], where a Shepp-Logan phantom was recon-
structed using a convolutional neural network trained to do iterative image reconstruc-
tion on Computed Tomography (CT) data simulated using images consisting of ellipses.

In MRI, it is common to expand the magnetic fields in terms of spherical harmonics
for correction and analysis [155–158]. Therefore, for each sample, B f (x, y), the magnetic
field present during readout, and Bp (x, y), the magnetic field which is present during
the phase encoding step, are perturbed by adding spherical harmonics of the second
and third order of random magnitude to the ideal magnetic fields whose magnitudes
increase linearly in the x- and y-direction, respectively. When perturbing B f , we actually
perturb the total sum of the static background field and the magnetic field generated by
a frequency encoding gradient and do not distinguish between the two. We stress again
that by using a dataset with varying gradient nonlinearities and inhomogeneities, we aim
to make our approach applicable to a variety of low-field MRI scanners using a gradient-
based design.
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Figure 6.4: Three samples in the dataset. Top row: model images, bottom row: distorted images. Frequency
encoding was done in the horizontal direction, phase encoding in the vertical direction.

Specifically, field perturbations were introduced by first mapping the "model" mag-
netic field values between -1 and 1. We restricted the magnitude of the perturbations
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by allowing the maximum deviation in the magnetic fields to be in the range (-0.6,0.6).
Additionally, images which were distorted to the point that ellipses crossed an image
boundary were eliminated from the dataset.

Using these distorted magnetic field maps, we simulated the signal generation using
Eq. (6.3), leading to distorted images with intensity variations. We added complex Gaus-
sian white noise to all signals, with variable signal-to-noise ratios (SNRs). Applying an
IFFT to these noisy signals yields a complex-valued, noisy, distorted image. We took the
magnitude of these images as the input to the network. Subsequently, the intensities of
both distorted and undistorted images were rescaled such that the maximum pixel value
in both types of images is equal to 1. Some samples in the dataset are shown in Figure
6.4.

To ensure rotational invariance as much as possible, each sample in the dataset was
included 4 times: the original images (distorted and undistorted) and the same images
rotated by 90◦, 180◦ and 270◦, leading to a dataset of 400,000 samples.

6.3.3. CONVOLUTIONAL NEURAL NETWORK
A convolutional neural network of the U-Net architecture was chosen for the purpose
of correcting the image distortions caused by gradient nonlinearities. U-Net was intro-
duced in 2015 by Ronneberger et al. [159] for biomedical image segmentation. Variations
of it have been used for medical image reconstruction, see for example [160].
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Figure 6.5: The U-Net convolutional neural network.



6

82 6. DEEP LEARNING FOR IMAGE DISTORTION CORRECTION

U-Net consists of a contracting path and an expanding path. The contracting path is
built up of blocks consisting of 3x3 convolutional layers, batch normalization layers, rec-
tified linear unit (ReLU) activation functions and max pooling layers. The max pooling
layers make sure that the feature maps are downsampled, and with each max pooling
layer, the number of channels is doubled. The blocks in the expanding path consist of
3× 3 convolutional layers, batch normalization layers, ReLU activation functions and
upsampling layers. After each upsampling layer, the number of channels is halved. The
output of each level of the encoder is used as part of the input of the corresponding de-
coder level (skip connections). The exact architecture is shown in Figure 6.5.

We used 90% of the samples in the simulated dataset for training and 10% for val-
idation. Each input-output pair consisted of the noisy distorted image and the corre-
sponding undistorted image. We chose L1-loss as our loss function. The batch size was
set to 20, and we used the Adam optimizer [161] with a learning rate of 10−3, β1 = 0.9,
β2 = 0.999, ε= 10−8, for 20 epochs.

6.4. RESULTS

6.4.1. SMALL SHEPP-LOGAN PHANTOM

After training the network, we feed the distorted original image shown in Figure 6.6a to
the network, which was obtained by simply applying an inverse Fourier transform to
the measured k-space data. The resulting U-Net reconstruction is shown in Figure 6.6b.
We see that the network succeeds at correcting most of the distortions caused by the
nonlinearities in the magnetic fields of the MRI scanner. The ellipses in the phantom
have recovered their shape. The outermost ellipse is only partially reconstructed, but
this can be explained by the observation that this particular ellipse corresponds to a thin
line, especially at the bottom and the sides of the physical phantom, which is difficult to
fill, therefore containing very little fluid, see Figure 6.1b. This is confirmed by the original
reconstruction, in which some segments of the outermost ellipse are barely visible, as
can be seen in Figure 6.6a. Moreover, we note that the network manages to successfully
denoise the entire image.

6.4.2. MELON

Additionally, we feed the image shown in Figure 6.7a to the neural network, and we ob-
tain the result in Figure 6.7b. The network output looks rounder and is much more rem-
iniscent of a melon’s shape. Additionally, all noise has been removed from the image.

6.4.3. HEAD-SIZED SHEPP-LOGAN PHANTOM

Finally, we provide the network with the distorted Shepp-Logan image shown in Figure
6.8a. The resulting output is shown in Figure 6.8b. While the resulting image has been
denoised and the very top part of the object contour looks rounder and arguably better
than before, some distortions have not been corrected at all and the shape of the upper-
most circle inside the phantom has even deteriorated.
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Figure 6.6: Small Shepp-Logan image: input and output of the trained convolutional neural network.
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Figure 6.7: Melon image: input and output of the trained convolutional neural network.

(a) Distorted image (b) Network result

Figure 6.8: Head-sized Shepp-Logan image: input and output of the trained convolutional neural network.
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6.5. DISCUSSION
We have seen that the network’s performance is not always robust when it comes to dif-
ferent types of input. It is difficult to pinpoint what is causing this, due to the lack of
interpretability exhibited by neural networks.

We are using simulated data to train the network, while we want to apply it to real
data. A possible explanation of the network’s inability to fully correct the distortions in
the head-sized Shepp-Logan reconstruction is that it might have been subjected to mag-
netic fields whose nonlinearities are incongruent with the types of nonlinearities present
in the training set. In the training set, we only included magnetic field nonlinearities in
the form of spherical harmonics of the second and third order. We might not be able to
correct for all types of artifacts in this way, but often an approximation of a low order can
already be sufficient. It is possible that this is the case for the first two experiments, but
not the final one.

Besides the simulated training data possibly not being able to generalize to the real-
world scenario, the problem might lie in the specific architecture we used. While the
U-Net is omnipresent in the field of image segmentation and has been used for some
image reconstruction problems, we are attempting to tackle a different and very specific
problem. We experimented with different architectures and the U-Net yielded the best
results. However, in the rapidly expanding field of deep learning, different and more
advanced neural networks are being developed on a daily basis. It is very likely that
some of these would outperform the U-Net in this specific context.

Another assumption we made in this work is that the images consist of only ellipses.
We made this choice because we know that our target images, the Shepp-Logan phan-
toms and the melon, can also be described as such. We will work on extending this ap-
proach to different images that do not necessarily consist of ellipses.

The current network architecture does not yield any output from which to effectively
gauge the size and shape of the nonlinearities present in the magnetic fields, causing
the distortions. We attempted to remedy this by, among other approaches, adding a
spatial transformer or a diffeomorphic layer as introduced by Jadenberg et al. in [162]
and Detlefsen et al. in [163], respectively, to the network. These are layers that deform
the image grid. Since gradient nonlinearities and background field inhomogeneities also
effectively deform the grid, we hoped that such an approach would give us the exact grid
deformation caused by the nonlinearities and inhomogeneities. However, these did not
prove to be effective for our dataset and further research is required.

6.6. CONCLUSION
In this work, we presented our first attempts at correcting distortions caused by back-
ground field inhomogeneities and gradient nonlinearities in low-field MR images (which
were acquired using a single receiver coil) using a convolutional neural network. We
trained a convolutional neural network of the U-Net architecture on a simulated dataset
consisting of distorted, noisy images and their undistorted counterparts. By training the
network on a simulated dataset with varying static background field inhomogeneities
and gradient nonlinearities, we aimed to make it applicable to a variety of low-field MRI
scanners using a gradient-based design. To test our approach, we used images of two
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real-world Shepp-Logan phantoms and a melon and obtained varying results. While the
most recent experiment, carried out using a head-sized Shepp-Logan phantom, did not
lead to an improvement in image quality, the network performed well when provided
with the original reconstructions of the first small Shepp-Logan phantom and the melon:
the resulting images were denoised and the distortions were eliminated to a large extent.
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DEEP LEARNING-BASED SINGLE

IMAGE SUPER-RESOLUTION

7.1. INTRODUCTION
The low-field scanner described in [37] was designed to accommodate infants’ heads.
In general, scan times are long in MRI and a significant amount of contemporary MRI
research focuses on accelerating the acquisition process. Clearly, staying still for dozens
of minutes on end is even more challenging for infants than for adults, and hence efforts
should be taken to make the scan duration as short as possible, while maintaining good
image quality.

Assuming a full sweep of the spatial frequency domain, i.e., k-space, a shorter scan
duration corresponds to an image of a lower resolution. Super-resolution image recon-
struction techniques attempt to reconstruct a high-resolution (HR) image from one low-
resolution (LR) image or several LR images, see for example [53]. We will focus on single
image super-resolution (SISR), in which case we only have one LR image at our disposal.
SISR is an ill-posed problem, because one LR image can correspond to several different
HR images, and hence it does not have a unique solution.

We note that, to decrease the scan time and still reconstruct an image of good quality,
one could also resort to compressed sensing (CS) techniques [106] by sampling only part
of k-space and assuming that the image is sparse in some transform domain. However,

This chapter is based on the article:

M.L. de Leeuw den Bouter, G. Ippolito, T.P.A. O’Reilly, R.F. Remis, M.B. van Gijzen, and A.G. Webb,
Deep learning-based single image super-resolution for low-field MR brain images, submitted to Nature
Scientific Reports, December 2021.
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we will focus on super-resolution (SR) image reconstruction instead. This decision was
based on the observation that the SR problem is more straightforward than the CS prob-
lem. We will use a deep learning technique to improve image quality and, after being
trained on LR-HR image pairs, our neural network should be applicable to all low-field
MR brain images of the resolution the network was trained on. In the CS problem, on
the other hand, there is an additional variable: the k-space sampling pattern. If we were
to train a network on data acquired using a specific k-space sampling pattern, it is highly
unlikely that the network would generalize to images acquired using a different pattern.

One class of methods that can be used for SISR relies on interpolation, like bicubic
interpolation [164], Lanczos interpolation [165] and zero-padding the k-space data, the
latter of which is common for MRI images. These methods are efficient and straightfor-
ward but the results they provide are generally lacking in accuracy when it comes to re-
covering high-frequency components [49]. Reconstruction-based SR methods generally
pose the problem as a minimization problem in which prior knowledge about the solu-
tion is incorporated, thereby restricting the solution space. Examples can be found in
[166], [167], [168], [169] and [170]. Drawbacks of reconstruction-based methods are that
they are generally computationally expensive and that they require the tuning of hyper-
parameters. Learning-based (or example-based) methods are the third class of methods
that can be used to tackle the problem of SISR. In general, these methods use machine
learning to extract relationships between LR images and their HR counterparts. They are
computationally fast and usually perform well [49]. Examples include methods based
on Markov random fields [171], sparse representations [172, 173] and neighbor embed-
dings [97]. Of the learning-based methods, methods using deep learning (DL) generally
outperform all other reconstruction-based and learning-based methods [49]. Examples
of convolutional neural networks that have been used for SISR are SRCNN [174], SR-
DenseNet [175] and SRGAN [176], among many others. For a more complete overview of
the DL methods that have been used for super-resolution, the reader is referred to [177].

Deep learning has been applied to the problem of SISR in MRI before. Pham et al.
[178] applied a 3D version of the SRCNN network to MR brain images. Similarly, Chen et
al. [81] developed DCSRN, a densely connected convolutional network, which is closely
related to a 3D version of SRDenseNet, that was trained to carry out super-resolution
on 3D MR brain images as well. Masutani et al. [179] applied modified versions of the
SRCNN architecture and the U-Net [159] architecture to cardiac MRI images. Chen et
al. [180] trained a multi-level densely connected network using a generative adversarial
network (GAN)-based loss function.

In this work, we employ a convolutional neural network of the SRDenseNet architec-
ture [175] to carry out SISR on MR brain images. The main contribution and the nov-
elty of our work is in the application: we focus on low-field MR brain images. Low-field
MRI is a rapidly growing field with a lot of potential, but it also comes with challenges.
This paper demonstrates the potential of deep learning-based methods in addressing
the challenges in low-field MR imaging.
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7.2.1. BACKGROUND
Given a low-resolution 2D image y, our aim is to acquire its high-resolution counterpart
x. The relationship between x and y can be modeled as follows:

y =F−1
LR DF HR x+n, (7.1)

where F−1
LR is the inverse FFT operator applied in the LR domain, D is an operator that

selects only the low-frequency components in k-space, which, in our case, is of size
64x64, F HR is the FFT operator for the HR regime (128x128) and n is an (unknown)
noise vector. The goal of super-resolution is to find an approximate inverse of the oper-
ator F−1

LR DF HR . We note that the standard super-resolution problem is generally posed
differently, i.e., the HR image is assumed to undergo blurring and downsampling, cul-
minating in an LR image. However, using Equation (7.1) follows the low-resolution MRI
acquisition process more accurately.

7.2.2. CONVOLUTIONAL NEURAL NETWORK
We chose a convolutional neural network of the SRDenseNet architecture for our appli-
cation. Our choice was motivated by SRDenseNet’s good performance, combined with
its manageable number of parameters. We note that, as there is a vast literature on deep
learning-based methods for super-resolution, other networks may be applicable as well
[174, 176, 177]. SRDenseNet was introduced by Tong et al. in [175]. It consists of blocks
of densely connected convolutional layers ("dense blocks"). In every dense block, which
is consistent with the DenseNet architecture [181], each convolutional layer receives as
input the concatenated outputs of all preceding convolutional layers, as shown in Figure
7.1.
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Figure 7.1: A dense block, which is a fundamental component of the SRDenseNet architecture, contains eight
convolutional layers that receive the outputs of all preceding layers as input.

By reusing feature maps in this way the learning of redundant features is avoided.
Instead, the current layer is forced to learn supplemental information. As in the original
paper, we will use 8 dense blocks of 8 convolutional layers each, where each convolu-
tional layer produces 16 feature maps, which means that each dense block yields 128
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feature maps. In each convolutional layer, the kernel size is 3x3. After the final dense
block, a bottleneck layer with convolutional kernels of size 1x1 is used to reduce the
number of feature maps to 256, followed by a transpose convolutional layer (which is
often called a deconvolution layer) which upsamples the image to HR space. Note that
in this work, the upsampling factor is equal to 2 and hence we use only one single trans-
pose convolutional layer with a stride of 2, as opposed to the 2 transpose convolutional
layers in the original SRDenseNet which was used for an upsampling factor of 4. Finally,
another convolutional layer with a 3x3 kernel is applied to reduce the output to a single
channel.
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Figure 7.2: The SRDenseNet convolutional neural network [175] that is used to carry out single image super-
resolution on low-field MR images.

All layers except for the final convolutional layer use a nonlinear ReLU (Rectified Lin-
ear Unit) activation function. Additionally, skip connections are employed to feed the
output of each dense block to each of the subsequent dense blocks, as is consistent with
the SRDenseNet_All architecture showcased in the original paper [175]. The complete
architecture, which has 1,910,689 trainable parameters, is shown in Figure 7.2.

7.2.3. DATASET AND TRAINING
In this work, we focused on 2D images, but it should be noted that this approach can
be extended to 3D. We generated a training and validation set using 2D images obtained
from the NYU fastMRI Initiative database (fastmri.med.nyu.edu) [182, 183]. As such,
NYU fastMRI investigators provided data but did not participate in analysis or writing of
this manuscript. A listing of NYU fastMRI investigators, subject to updates, can be found
at the aforementioned website. The primary goal of fastMRI is to test whether machine
learning can aid in the reconstruction of medical images. The database consists of slices
of T1-weighted, T2-weighted and FLAIR (fluid-attenuated inversion recovery) images,
acquired using 1.5 T and 3 T MRI scanners. By training on such a variety of MR brain
images, the resulting network should be applicable to images acquired using different
sequences as well, without the need to re-train the network whenever the parameter

fastmri.med.nyu.edu
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settings change. We note that, even if we were planning on applying the trained network
to, for example, T1-weighted low-field MR images only, it would still make sense to train
the network on high-field MR images acquired using different kinds of sequences, mak-
ing it adaptable to different kinds of input. The reason for this is that the relaxation times
vary with field strength and hence, a T1-weighted image acquired using a low-field scan-
ner might look different from one acquired using a high-field scanner. One parameter
to be careful with, though, is the image size. All input images and output images in the
training set are of size 64×64 and 128×128, respectively. Because of the purely convolu-
tional nature of the network, it is possible to use images of a different size as input. The
network should be able to accommodate small deviations in size. However, it is unlikely
that it would generalize to images that deviate significantly in size from the images in the
training set.

Figure 7.3: Examples of HR-LR image pairs in the training set. The first row contains four different HR images,
with the white squares denoting patches whose zoomed-in versions are shown in the second row. In the third
row, the corresponding (noisy) LR images are shown, with the fourth row containing LR versions of the patches
in the second row.
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The images in the database have different sizes. As we are interested in HR images
of 128×128 pixels, all images were resized to 128×128 pixels. This was done by using
an FFT to convert the images to k-space data, selecting the central part of k-space and
subsequently applying an inverse Fast Fourier Transform (FFT), as in Eq. (7.1). After
that, we downsample these HR images to LR images of 64× 64 pixels, by, again, using
Eq. (7.1), i.e., we use an FFT to convert the image to k-space, select the central part of
k-space (of size 64×64) and apply an inverse FFT to obtain an LR image. To obtain noisy
LR images, we add complex Gaussian noise in k-space, with the noise level varying from
image to image. We used a range of noise levels consistent with the low-field MR im-
ages we have seen in practice. This step is necessary to make the convolutional neural
network generalize to images acquired using a low-field MRI scanner, which, due to the
weaker magnetic field, yields signals with a relatively low SNR [21]. In this way, 29,059
and 17,292 image pairs were obtained from the training and validation sets that are pro-
vided in the dataset, respectively. We assigned 10,000 of the 17,292 image pairs in the
validation set to our own validation set, and the other 7,292 to our test set. Some exam-
ples of image pairs present in the training set are shown in Figure 7.3. We note that the
data was split at the patient level, and hence, no data leakage occurred.

Since SRDenseNet is a purely convolutional neural network, it is possible to train
on patches instead of complete images, which requires less memory during training.
Furthermore, using patches allows us to generate more data. Therefore, we used the
HR-LR image pairs to create 190,000 pairs of patches to train the network on, and 10,000
pairs of patches for validation, the HR and their corresponding LR patches having a size
of 32×32 pixels and 16×16 pixels, respectively.

The convolutional neural network was implemented in TensorFlow [184]. The Adam
optimizer [161] with a learning rate of 10−3 was used to minimize the mean-squared
error loss between the network output and the model HR image patches. Additionally,
we investigated two different loss functions: `1-loss and HFEN (High-Frequency Error
Norm) loss [185]. However, after visual inspection of the resulting images, we found that
the mean-squared error loss outperformed the others. We used a batch size of 20 and
a total number of epochs of 74 because this corresponded to the smallest value of the
validation loss. The training was carried out on a Titan X Geforce GPU (12GB) and took
about 5 hours.

LOW-FIELD MR IMAGE ACQUISITION

Two three-dimensional in vivo scans of the brains of two healthy volunteers were ac-
quired using the low-field MRI scanner described in [20, 37]. We will use different (2D)
slices of the resulting 3D images as our network input. Both experiments were carried
out using a turbo spin echo sequence. For the first experiment, the following parameters
were used: FoV (field of view) 224×224×175 mm3, 128×128×50 voxels, TR /TE (repetition
time/echo time) = 500 ms/20 ms, echo train length 4, acquisition bandwidth 20 kHz, no
signal averaging, cylindrical k-space coverage. The second experiment was carried out
with a different set of parameters: FoV 180×180×240 mm3, 160×120×60 voxels, TR /TE

= 400 ms/20 ms, echo train length 5, acquisition bandwidth 20 kHz, no signal averaging.
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7.3. RESULTS

To get some idea of what image quality we can expect when we apply SRDenseNet to
noisy LR images, we first focus on the output of the network when we present it with
high-field MR images that were artificially down-sampled and contaminated with noise.
To this end, we use images from the test set (so the network has not seen these images
before). In the first column of Figure 7.4, HR images (of 128x128 pixels) of three dif-
ferent brains are shown. The corresponding LR images (of 64x64 pixels), which we ob-
tained by eliminating the high-frequency components in k-space, are shown in the sec-
ond column. By zero-padding the k-space data corresponding to the LR image to a size
of 128x128, the images in the third column were obtained. Additionally, the LR images
were fed into the trained convolutional neural network, resulting in the images in the
fourth column. We observe that using a convolutional neural network, instead of a sim-
ple zero-padding operation, can improve the quality of SR images. The images produced
by the network are sharp and most of the structures that are present in the HR images are
recovered. The peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
values of the SR images are shown in Table 7.1.

Table 7.1: PSNR and SSIM values of the reconstructions obtained by zero-padding the k-space data and by
applying SRDenseNet to the three different MR brain images shown in Figure 7.4.

Zero-padding (PSNR/SSIM) SRDenseNet (PSNR/SSIM)
First brain 35.39/0.9506 41.79/0.9875
Second brain 37.14/0.9706 45.47/0.9953
Third brain 36.54/0.9265 42.69/0.9876

Three slices, of 128x128 pixels, of the first 3D low-field image acquired are shown
in the first column of Figure 7.5. (We note that, since cylindrical k-space coverage was
employed, the HR image could have been of a slightly better quality. However, we be-
lieve it suffices for our purposes.) The second column shows the corresponding 64x64
pixel LR images, which were obtained after eliminating the high-frequency components
from k-space and adding noise. These images are used as the network input. The third
and fourth column show the images obtained after zero-padding the k-space data (cor-
responding to the LR image) and the results obtained using SRDenseNet. We observe
that for these low-field LR images, a convolutional neural network can help improve im-
age quality, compared to a simple zero-padding result. The edges are sharp and high-
frequency components seem to be recovered to a large extent.

Figure 7.6 shows the 128x128 pixel HR images reconstructed using the data acquired
during the second experiment (note that these HR images were obtained from the origi-
nal 160x120 slices by eliminating the outermost pixels in one direction and zero-padding
the image in the other), the corresponding 64x64 pixel LR images which are used as the
input to the network, the image obtained after carrying out zero-padding in k-space and
the super-resolution images generated by the network. Here, too, we see that the net-
work yields images that are sharp and contain significantly more details than the input
LR images.
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7.4. DISCUSSION AND CONCLUSION
Scan times are long in MRI, and it is desirable to decrease scan duration as much as pos-
sible, while maintaining sufficient image quality. Super-resolution image reconstruc-
tion aims to increase the resolution of one or several LR images. In this work, we used
a convolutional neural network of the SRDenseNet architecture to carry out single-image
super-resolution for brain images acquired using a low-field MRI scanner. We pre-processed
images from a publicly available dataset to obtain pairs of noisy LR images (which were
meant to emulate low-field MR images as much as possible) and noise-free HR im-
ages, on which we subsequently trained the network. The network was shown to yield
sharp super-resolution images upon being presented with noisy low-resolution images
acquired using a low-field MRI scanner. We note that, by training on noisy LR images
and their noise-free HR counterparts, the network has strong denoising capabilities as
well. This is especially relevant for low-field MRI, compared to high-field MRI, as one of
the key differences between the two is the much lower SNR we have to deal with in the
former. Additionally, this approach is fast: it can be carried out in only a few seconds.

The low-field HR images that are available are somewhat contaminated by noise,
which makes them different from objective ground truth images. Therefore, gauging the
quality of our SR reconstructions is challenging. However, based on visual inspection,
the convolutional neural network seems to capture most of the structures and details
in the SR image that are present in the HR image.These results indicate that it might be
possible to decrease the scan duration by a factor of 4 and still reconstruct images of
sufficient quality, using a deep learning-based method.

We do note that it is of the utmost importance to be cautious when it comes to the
output of neural networks. While they are very powerful, it is well known that convolu-
tional neural network are not infallible: at times they can produce artifacts or they can
fail to produce significant details. We will apply this network to more low-field MR brain
images, to gauge how often such errors occur. Additionally, it is vital that radiologists are
included in the evaluation of the performance of our approach (or any deep learning-
based medical imaging approach, for that matter).

While a convolutional neural network exists that is closely related to a 3D version
of SRDenseNet [81], we decided to first focus on super-resolution for 2D images, as the
training phase requires less computation power and less memory. However, in the fu-
ture, we will make extending this approach to 3D a priority. This is especially interesting
for low-field MRI as 3D acquisitions have the advantage of a higher SNR.

We trained the network on MR brain images which were acquired using high-field
MRI scanners. While using low-field data might have been preferable to prevent po-
tential modeling errors, we followed this approach because a large amount of data is
required to train the network and acquiring enough low-field MR images to train the
network from scratch is not feasible. By adding noise to the (reduced) k-space data cor-
responding to each of the images in the database, we attempted to simulate low-field
MRI data. When a sufficient number of low-field MR images does become available, we
could use transfer learning to tailor the network even more towards low-field MR images.
In transfer learning, knowledge about one task is transferred to a related task [186]. In
deep learning, it can be used when the amount of data available is insufficient to train
a network to carry out the task at hand, but a large dataset or a pre-trained network is
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available for a similar task, see for example Dar et al. [187] In our case, we could acquire
a small dataset of low-field MR images (i.e., a few dozen) and apply transfer learning to
our trained network, using this small dataset.

The potential of deep learning-based techniques to address imaging bottlenecks in
the field of low-field MRI was demonstrated by Koonjoo et al. [188] They use an end-to-
end deep convolutional neural network approach to boost SNR in low-field MR images
acquired from highly noise-corrupted data. We note that in their paper, they describe
using high-field MR data and images to train their neural network as well.

In conclusion, the main contribution of this paper is that our results show that deep
learning-based methods have the potential to tackle another problem in the field of low-
field MR imaging, namely how to increase the resolution of noisy LR images. We believe
that, using these techniques, it is possible to bring low-field MRI technology a step closer
to being used in clinical practice.
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HR LR Zero-padding SRDenseNet

Figure 7.4: In the first column, we have three different HR images (which are high-field MR images from the
database) from our test set. These HR images are our reference images, i.e., in an ideal scenario, the network
would generate these exact images. The first, third and fifth rows show the full images, in the second, fourth
and sixth rows we find zoomed-in versions of patches of the images in the first, third and fifth rows. The
second column shows the noisy LR images corresponding to the HR images in the first column. These images
are fed into the trained convolutional neural network. The third column shows the SR images obtained by
zero-padding k-space, and in the fourth column, we see SR images obtained by applying SRDenseNet.
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HR LR Zero-padding SRDenseNet

Figure 7.5: In the first column, we have three different HR slices of a brain image acquired using a low-field
MRI scanner. These HR images are our reference images. The first, third and fifth rows show the full images,
in the second, fourth and sixth rows we find zoomed-in versions of patches of the images in the first, third and
fifth rows. The second column shows the LR images corresponding to the HR images in the first column. These
images are fed into the trained convolutional neural network. The third column shows the SR images obtained
by zero-padding k-space, and in the fourth column, we see SR images obtained by applying SRDenseNet.
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HR LR Zero-padding SRDenseNet

Figure 7.6: In the first column, we have three different HR slices of a different brain image acquired using a
low-field MRI scanner. These HR images are our reference images. The first, third and fifth rows show the
full images, in the second, fourth and sixth rows we find zoomed-in versions of patches of the images in the
first, third and fifth rows. The second column shows the LR images corresponding to the HR images in the first
column. These images are fed into the trained convolutional neural network. The third column shows the SR
images obtained by zero-padding k-space, and in the fourth column, we see SR images obtained by applying
SRDenseNet.
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Hydrocephalus is a debilitating condition that is highly prevalent in infants in sub-
Saharan Africa. The diagnostic tool of choice is an MRI scanner. However, access to
MRI technology is limited in low- and middle-income countries. The research described
in this dissertation was carried out as part of an interdisciplinary project that aims to
develop an inexpensive, portable MRI scanner to be introduced in Uganda. This disser-
tation is on image reconstruction in low-field MRI, which means that we focused on the
problem of creating an MR image, given a signal acquired using a low-field MRI scanner.

Within the scope of this project, several low-field MRI scanners were developed.
Initially, we considered a scanner with an inhomogeneous static magnetic background
field. If a sufficiently accurate map of this magnetic field is available, the inhomogeneities
can be used for spatial encoding. We used a signal model that incorporates such a map
to describe the relationship between signal and image. However, due to the nonbijective
nature of the magnetic field, a single measurement does not yield a sufficient amount
of information for a reconstruction. This problem can be remedied by acquiring several
signals, after each of which the object within the scanner is either translated or rotated,
and subsequently combining all information in one system of equations. In Chapter 3,
we presented some preliminary results that were acquired using such a scanner.

The most promising low-field scanner developed in this project is the prototype de-
veloped at the LUMC. Its main component is a Halbach cylinder with thousands of neo-
dymium magnets that, combined, generate a relatively homogeneous background field.
Furthermore, it is equipped with three gradient coils that generate linear (or almost lin-
ear) magnetic fields that allow for spatial encoding in three directions. Therefore, the re-
lationship between signal and image can approximately be described by a Fourier trans-
form, as in high-field MRI.

One of the main problems in low-field MRI is the low signal-to-noise ratio. One of the
ways to counteract the effects this has on the image is by posing the image reconstruc-
tion problem as a minimization problem with a data fidelity term and a regularization
term, the latter of which allows us to include prior knowledge we have about the solu-
tion. In case the original problem is ill-posed, as is true for the scenario where we use
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the inhomogeneities in the field for spatial encoding, adding a regularization term can
make the minimization problem more well-posed as well. In Chapter 2, we introduced a
variant of the conjugate gradient algorithm that can be used to solve this minimization
problem efficiently for a relevant class of regularization terms. Usually, regularization is
carried out in an additive manner, where an artificial regularization parameter is intro-
duced to balance the data fidelity term and the regularization term. However, finding
the right value for this parameter is usually done through extensive numerical exper-
imentation, which can be undesirable in practice. Chapter 4 described multiplicative
regularization for low-field MR imaging. By multiplying the data fidelity term by a regu-
larizing functional, we eliminate the need for an artificial regularization parameter. We
showed that this approach yields images of a quality comparable to images obtained by
solving an additively regularized minimization problem, but without the need to tune
an artificial regularization parameter.

Low-field MR images can end up seriously distorted due to inhomogeneities in the
static magnetic background field and nonlinearities in the magnetic fields generated by
the gradient coils. In Chapter 6, we trained a convolutional neural network on distorted
images and their undistorted counterparts to be able to correct for distortions in low-
field MR images. We applied the network to different images acquired using the LUMC
low-field scanner and observed that in two out of three cases, the network yielded an
image in which the distortions had been eliminated to a large extent.

In MRI, scan times are long. In contemporary MRI research, a lot of emphasis is
placed on speeding up the acquisition process. For us, this is even more relevant, as the
low-field scanner is tailored towards infants, for whom lying still is arguably more chal-
lenging than adults. One way to reduce the scan time, is to only acquire enough data
to partially fill k-space. Chapter 5 focused on this kind of scenario. We showed that, by
incorporating support information into the problem in a straightforward manner and
solving the resulting system of equations using a conjugate gradient algorithm, the im-
age quality improves. We compared our results to images acquired using a compressed
sensing approach and observed that they were of a similar quality. However, our method
is significantly more straightforward and does not require the tuning of parameters. An-
other way to reduce the scan time is by lowering the resolution of the target image. Then,
one can attempt to increase the resolution as a post-processing step. In Chapter 7, we
did that by training a convolutional neural network on noisy low-resolution images and
their high-resolution counterparts. The resulting network was able to generate super-
resolution images of a promising nature when presented with low-resolution images ac-
quired using the LUMC low-field scanner.

8.1. OUTLOOK
Our goal is to introduce a low-field MRI scanner in Uganda, that can be used to aid in the
diagnosis and treatment of hydrocephalus. Over the last four years, significant progress
has been made towards attaining this goal.

Our contribution to this scanner was in the form of algorithms to be used in different
scenarios. Many of them can easily be used in practice. We tested all of them thor-
oughly, but more research needs to be carried out when it comes to the learning-based
approaches. Deep learning is very powerful and the results look promising, especially
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when it is used to carry out super-resolution, but due to the lack of available data as of
yet, making any definitive claims about these methods for this application is difficult.
Furthermore, we trained the networks on either simulated or high-field MRI data. Ac-
quiring appropriate low-field datasets could help tailor the networks to this particular
application. We do stress that care must be taken when using images acquired using
deep learning-based methods in clinical practice. While the benefits of deep learning
are undeniable, we cannot exclude the possibility of a misleading output image every
now and then. Therefore, we would advise to always present the original image along-
side the network output, and solely use the latter as an addition to the former.

Within this project, several prototypes have been produced, with the LUMC scanner
the most likely candidate to be used and/or replicated successfully in Uganda. In the
near future, this scanner will be transported to Uganda to test it in the setting it was
designed for. Later, clinical trials will be carried out to assess its performance versus
commonly used CT scanners. With this research, we hope to have contributed towards
making low-field MRI technology more accessible to all people around the world.
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A
OPTIMALITY PROPERTY OF GCGLS

AND GCGME

Suppose we have a linear system of equations Lu = f with solution u∗. L is a hermitian
positive definite (HPD) matrix. Then, at iteration k, the conjugate gradient method finds
uk such that ||uk −u∗||L, the error induced by the system matrix L, is minimized over the
Krylov subspace u0 +Kk (L, f) := u0 + span{f,Lf,L2f, ...,Lk−1f}. This means that, in every
iteration, GCGLS minimizes

min
xk

(xk −x)H (AH C−1A+τR)(xk −x) ⇔ (A.1)

min
xk

(r− rk )H C(r− rk )+τ(xk −x)H R(xk −x) , rk = C−1(b−Axk ) ⇔
min

xk
‖r− rk‖2

C +τ‖x−xk‖2
R , rk = C−1(b−Axk )

for xk −x0 ∈ Kk (AH C−1A+τR,AH C−1r0 +τRx0). For every iteration of GCGME, the fol-
lowing holds:

min
rk

(r− rk )H (
1

τ
AR−1AH +C)(r− rk ) ⇔ (A.2)

min
rk

τ(x−xk )H R(x−xk )+ (r− rk )H C(r− rk ), xk = 1

τ
R−1AH rk

min
rk

‖r− rk‖2
C +τ‖x−xk‖2

R , xk = 1

τ
R−1AH rk

with rk − r0 ∈ Kk (r0, 1
τAR−1AH +C). Note that GCGLS and GCGME minimize the same

weighted combination of the errors in the residual and in the solution, but over different
subspaces and under different constraints.
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B
COMPARISON OF THE CONDITION

NUMBERS OF GCGLS AND

GCGME: A SIMPLE CASE
In this section we consider a very simple but illustrative case that allows us to analyze
the condition numbers, and hence the convergence speed, of GCGME and GCGLS. We
demonstrate, depending on the regularization parameter, which method is to be pre-
ferred. We set A =F and the noise is assumed to be white noise, so C = I. We define the
regularization matrix to be the discretized 2D Laplacian L complemented with Dirichlet
boundary conditions. Choosing the regularization matrix in this way means that large
jumps in the reconstructed image x are discouraged. In that case, GCGLS solves

(I+τL)x =F∗v, (B.1)

where F∗ =F−1 is the inverse 2D Fourier Transform. GCGME solves(
1

τ
FL−1F∗+ I

)
r = b , (B.2)

x = 1

τ
L−1F∗r.

The convergence speed of GCGLS and GCGME depends on the condition number of the
matrices I+τL and 1

τFL−1F∗+ I, respectively. The eigenvalues of the Laplacian L are

This appendix is based on the article:

M.L. de Leeuw den Bouter, M.B. van Gijzen, and R.F. Remis, CG Variants for General-Form Regu-
larization with an Application to Low-Field MRI, Numerical Mathematics and Advanced Applications
ENUMATH 2019: European Conference, Egmond aan Zee, The Netherlands, September 30-October 4,
673-681 (2021).
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well-known and hence we can find explicit expressions for the condition numbers. For
GCGLS, we have

κ2 (I+τL) = 1+8τcos2
(
π
2

1
N+1

)
1+8τsin2

(
π
2

1
N+1

) . (B.3)

Here, we assume that our image consists of N×N pixels. For GCGME, we make use of the
fact that FL−1F∗ is a similarity transformation and therefore has the same eigenvalues
as L−1, yielding

κ2

(
1

τ
FL−1F∗+ I

)
=

1+ 1
8τsin2

(
π
2

1
N+1

)
1+ 1

8τcos2
(
π
2

1
N+1

) . (B.4)

These condition numbers can be shown to be equal when

τ∗ = 1

8cos
(

π
2(N+1)

)
sin

(
π

2(N+1)

) . (B.5)

Figure B.1 shows a plot of the condition numbers as a function of the value of the
regularization parameter τ, in case N = 128. We observe that when τ < τ∗, GCGLS is
handling a matrix with a smaller condition number, whereas the GCGME system has a
smaller condition number when τ > τ∗ is large. Therefore, we expect GCGME to attain
faster convergence for large τ.
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Figure B.1: Condition numbers of the GCGLS matrix I+τL and the GCGME matrix 1
τFL−1F∗+I as a function

of the value of the regularization parameter τ.



C
INCREASING THE NUMBER OF CG
ITERATIONS PER IRLS ITERATION

In Section 2.3, minimization problem

min
x

1

2
||Ax−b||22 +τ||Fx||1

is solved for two different regularization operators F. The number of (inner) CG itera-
tions per (outer) IRLS iteration was set to 10. The results seem to indicate that GCGME
converges to a lower value of the objective function for all cases. However, here we in-
crease the number of CG iterations to 1000 and we show that the convergence of GCGLS
is simply very slow compared to the convergence of GCGME, and 10 iterations is not
enough for GCGLS to make any visible progress towards the minimum. In Figures C.1
and C.2, we see that both methods converge to the same objective function value.
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Figure C.1: Reconstruction results with F = I, τ = 1.5 ·10−1 and 1000 CG iterations per IRLS iteration. In the
rightmost figure, the value of objective function (2.47) is plotted as a function of the iteration number. The
vertical black lines indicate the start of a new IRLS iteration
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Figure C.2: Reconstruction results with F = T, τ = 1 · 10−2 and 1000 CG iterations per IRLS iteration. In the
rightmost figure, the value of objective function (2.50) is plotted as a function of the iteration number. The
vertical black lines indicate the start of a new IRLS iteration



D
SIGNAL MODEL FOR GENERAL

FIELDS

In this analysis, we ignore relaxation effects. We follow the derivation in [189] and adapt
it to our case. We are interested in the magnetization m(r, t ). Denoting the magnetic
field by B, the Bloch equation looks as follows

dm(r, t )

d t
= γ[m(r, t )×B(r, t )]. (D.1)

We suppose that the orientation of B does not change with time, so we can write B(r, t ) =
B(r) = B(r)ê(r), with B(r) the magnitude of the magnetic field and ê(r) its orientation.
Then, the Bloch equation can be rewritten:

dm(r, t )

d t
=−γB(r)[ê(r)×m(r)] (D.2)

=−ω(r)[A(r)m(r, t )]. (D.3)

Here, ω(r) = γB(r) is the Larmor frequency and A(r) represents the cross product in ma-
trix form:

A(r) =
 0 −ez (r) ey (r)

ez (r) 0 −ex (r)
−ey (r) ex (r) 0

 . (D.4)

The orientation of ê(r) is determined by the total applied magnetic field. The eigenvalues
of A are λ−1 =−i , λ0 = 0 and λ1 = i , where i is the imaginary unit. The eigenvectors are

v−1 =
−ex (r)ey (r)− i ez (r)

1−e2
y (r)

−ey (r)ez (r)+ i ex (r)

 , v0 = ê(r), v1 =
−ex (r)ey (r)+ i ez (r)

1−e2
y (r)

−ey (r)ez (r)− i ex (r)

 . (D.5)
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Denoting the initial magnetization m(r,0) by m0(r), m(r, t ) is described by

m(r, t ) =
1∑

l=−1
e−i lω(r)t vl (r)(vl (r)∗m0(r)). (D.6)

The precession of the magnetization produces a magnetic flux in the receiver coil,
described by

Φ(t ) =
∫

r∈D
W(r) ·m(r, t ) dr, (D.7)

whereD the imaging domain and W is the receive field. Then, Faraday’s law of induction
states that the voltage induced in the receive coil is given by [19]:

V (t ) =−∂Φ(t )

∂t
=− ∂

∂t

∫
r∈D

W(r) ·m(r, t ) dr. (D.8)

Substituting equation (D.6) into equation (D.8) yields

V (t ) =− ∂

∂t

∫
r∈D

1∑
l=−1

e−i lω(r)t (W(r)∗vl (r))(v∗l (r)m(r, t )) dr. (D.9)

Our quantity of interest is the spin density ρ(r). We know that for the magnitude of the
initial magnetization, the following holds:

m0(r) = ρ(r)
γħ2

4kT
ω(r). (D.10)

Here, ħ = h
2π where h is Planck’s constant, k is Boltzmann’s constant and T is the tem-

perature. We will assume the temperature to be constant. Using equation (D.10), but
ignoring the constants, we can rewrite equation (D.9):

V (t ) =− ∂

∂t

∫
r∈D

1∑
l=−1

ρ(r)ω(r)e−i lω(r)t (W(r)∗vl (r))(vl (r)∗m̂(r, t )) dr, (D.11)

where m̂(r, t ) is the orientation of the initial magnetization. Interchanging the order of
the operations, we get

V (t ) =−
∫

r∈D

1∑
l=−1

∂

∂t
ρ(r)ω(r)e−i lω(r)t (W(r)∗vl )(v∗l m̂(r, t )) dr (D.12)

=
∫

r∈D

1∑
l=−1

i lρ(r)ω2(r)e−i lω(r)t (W(r)∗vl (r))(vl (r)∗m̂(r, t )) dr (D.13)

=
∫

r∈D
− iρ(r)ω2(r)e iω(r)t (W(r)∗v−1(r))(v−1(r)∗m̂(r, t ))
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+ iρ(r)ω2(r)e−iω(r)t (W(r)∗v1(r))(v1(r)∗m̂(r, t ))dr (D.14)

When quadrature phase sensitive detection is used, the signal is multiplied by a factor
of e iω0t , where ω0 is the demodulation frequency which typically corresponds to the
frequency in the center of the field, and subsequently passes through a low-pass filter.
Only the term including v1 will make it through the low-pass filter. Now, including the
coil sensitivity c(r), the final signal is given by

S(t ) =
∫

r∈D
iρ(r)c(r)ω2(r)e−i (ω(r)−ω0)t (W(r)∗v1(r))(v1(r)∗m̂(r, t ))dr. (D.15)

We note that (W(r)∗v1(r))(v1(r)∗m̂(r, t )) is equivalent to a voxel-wise weighting.





E
INCREASING THE NUMBER OF

ITERATIONS FOR MULTIPLICATIVE

REGULARIZATION

In Figs. E.1 and E.2, the Shepp-Logan reconstructions (for an SNR of 20 and an SNR of 5)
are shown for a larger number of iterations. (To obtain the results shown in Figures 4.2d
and 4.4d, we stopped after 50 iterations.) We see that in the low SNR case, the result be-
comes very blurry and we lose all the small structures in the image if we iterate too long.
In the case of a higher SNR of 20, some oversmoothing is taking place when the iteration
number exceeds 50 but much less severely than in the low SNR case. We see something
similar happening in Figs. E.3 and E.4, where the apple and melon reconstructions are
shown for a larger number of iterations. We note that, for the apple experiment, increas-
ing the number of iterations to 45 yields an image that is slightly blurrier than the image
obtained after 30 iterations, which is the result that is shown in Fig. 4.6b. However, for
the melon, we see that when the number of iterations exceeds approximately 20 (which
is the number of iterations used for the reconstruction in Fig. 4.8b, the amount of blur
in the image becomes excessive.

These observations suggest that stopping the algorithm before full convergence is
attained yields a solution of better quality. This is especially important in case of a low
SNR.
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Figure E.1: Reconstruction of the Shepp-Logan phantom, with an SNR of 20, for different iteration numbers.
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Figure E.2: Reconstruction of the Shepp-Logan phantom, with an SNR of 5, for different iteration numbers.
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(a) Initial guess (b) Iteration 5 (c) Iteration 10 (d) Iteration 15 (e) Iteration 20

(f) Iteration 25 (g) Iteration 30 (h) Iteration 35 (i) Iteration 40 (j) Iteration 45

Figure E.3: Reconstruction of the 35th slice of the apple for different iteration numbers.
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(f) Iteration 25 (g) Iteration 30 (h) Iteration 35 (i) Iteration 40 (j) Iteration 45

Figure E.4: Reconstruction of the 64th slice of the melon for different iteration numbers.
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Figure E.5: Reconstruction of the 34th slice of the brain for different iteration numbers.
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