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Abstract. This work presents a fault-tolerant control scheme for sen-
sory faults in robotic manipulators based on active inference. In the
majority of existing schemes a binary decision of whether a sensor is
healthy (functional) or faulty is made based on measured data. The deci-
sion boundary is called a threshold and it is usually deterministic. Fol-
lowing a faulty decision, fault recovery is obtained by excluding the mal-
functioning sensor. We propose a stochastic fault-tolerant scheme based
on active inference and precision learning which does not require a priori
threshold definitions to trigger fault recovery. Instead, the sensor preci-
sion, which represents its health status, is learned online in a model-free
way allowing the system to gradually, and not abruptly exclude a failing
unit. Experiments on a robotic manipulator show promising results and
directions for future work are discussed.

1 Introduction

Safety is paramount for autonomous systems designed for operating in the real
world. External dangers in the environment such as steep and slippery terrain
encountered by planetary rovers [15] can compromise entire missions. In addi-
tion to external dangers, internal system components can also fail and possibly
lead to dangerous outcomes if a proper fault-tolerant (FT) control scheme is not
present. Building systems that are robust to the presence of faulty components,
such as sensors and actuators, is addressed in the FT literature [8,24,32]. Gen-
erally speaking, FT control consists of fault detection, which provides a signal
representing whether a system component is faulty; fault isolation, which iden-
tifies the exact faulty component, and fault recovery, which typically contains a
switching or a re-tuning procedure of the running controllers to accommodate
for the fault.
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Several methods are available for fault detection, but model-based meth-
ods are among the most powerful and appealing, as they provide theoretical
guarantees [8]. These methods rely on monitoring system outputs using mathe-
matical models to generate ‘symptoms’ called residual signals. These signals are
then compared to carefully designed detection thresholds: the sensor is ‘faulty’
if a threshold is exceeded or ‘healthy’ otherwise. To recover from a fault, the
recovery actions are usually performed through controller reconfiguration, that
entails adapting the controller parameters, or switching to another controller or
to backup sensors and actuators [22]. When modelling external dangers or mon-
itoring faulty systems, robust detection thresholds are essential. Robust thresh-
olds used in existing work (such as [7] or [32]) are often deterministic, but this
is sub-optimal. For instance, if the safety threshold for a rover on a slippery
terrain slope is 15 ◦C, this means that a slope of 14.9 is safe but 15.1 is unsafe.
Additionally, a slope of 15.1 ◦C and 40 ◦C are ‘equally unsafe’.

In this paper we build upon two ideas in the literature. First, the usage
of a stochastic fault tolerant formulation (e.g. [9,30]). This allows the agent
to overcome the issues mentioned above. Additionally, we leverage an unbiased
active inference controller (u-AIC) [3], evolved from previous active inference
controllers (AIC) [1,6,25]. Active inference is a promising framework for FT
control which has already been shown to facilitate fault-detection, isolation and
recovery for robotic systems with sensory faults [3,26].

Besides fault tolerance, active inference showed promising performance in
many control and state-estimation problems in robotics [16,17]. Particularly
interesting are the works on robot arm control [23,25,29], which highlighted
the adaptive properties of active inference. Active inference also shares similar-
ities with the control as inference framework [18]. A more extensive analysis of
active inference and its relation to control as inference can be found in [14,20].

The main contribution of this paper is a FT controller for robot manipu-
lators with sensory faults based on unbiased active inference with a stochastic
decision boundary. Unlike previous work [3], here we model the precision (inverse
covariance) of each sensor in our system and determine the probability of the
sensor being healthy to be proportional to its precision. Our approach allows
for fault-tolerant behaviour without needing any threshold definition a priori,
and without the need to design additional ad-hoc recovery mechanisms. Finally,
this work can be used stand-alone or in conjunction with other methods for
fault-detection and isolation in order to estimate the faults.

2 Problem Statement and Background

The FT scheme in this paper is derived for a class of systems, namely serial robot
manipulators equipped with sensors for joint position and velocity, and end-
effector location. In the following, the problem and the setup are described, and
some background knowledge on u-AIC for torque control from [3] is presented.
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Problem Setup. Consider a robotic manipulator with state x comprising of
its joint positions and velocities x = [q q̇]�. The available sensors provide noisy
joint position and velocities yq, yq̇ readings. In addition, the end-effector Carte-
sian position yv is available through a visual sensor. The system’s output is
represented by y = [yq, yq̇, yv] ∈ R

d. The proprioceptive sensors and the visual
sensor are affected by zero mean Gaussian noise η = [ηq,ηq̇,ηv]. Additionally,
the visual sensor is affected by barrel distortion. The system is controlled through
an u-AIC [3] which steers the robot arm to a (changing) desired configuration
in joint space μd, providing the control input u ∈ R

m as torques to the joints.

Background: Unbiased Active Inference Controller. In this section we
briefly describe the u-AIC as introduced in [3], to which an interested reader
is referred for more details on the derivations of the following equations. The
novel FT method presented in this paper in Sect. 3 builds upon the u-AIC, but
instead of employing an ad-hoc hard update of the precision of a faulty sensor
after fault detection, it relies on online precision learning during operations.

Let us consider x = [q q̇]� and let us define a probabilistic model where
actions are modelled explicitly:

p(x,u,yv,yq,yq̇) = p(u|x)
︸ ︷︷ ︸

control

p(yv|x)p(yq|x)p(yq̇|x)
︸ ︷︷ ︸

observation model

p(x)
︸︷︷︸

prior

(1)

Note that with the u-AIC the information about the desired goal to be reached
is encoded in the distribution p(u|x). In this paper, as in [1], we assume that
an accurate dynamic model of the system is not available to keep the solution
system agnostic and to highlight once again the adaptability of the controller.

The u-AIC aims at finding the posterior over states as well as the posterior
over actions p(x,u|yv,yq). The posteriors are approximated using a variational
distribution Q(x,u). We can make use of the mean-field assumption (Q(x,u) =
Q(x)Q(u)) and the Laplace approximation, and assume the posterior over the
state x Gaussian with mean μx [13]. Similarly for the actions, the posterior u is
assumed Gaussian with mean μu. By defining the Kullback-Leibler divergence
between the variational distribution and the true posterior, one can derive an
expression for the so-called free-energy F as [3]:

F = − ln p(μu,μx,yv,yq,yq̇) + C (2)

Considering Eq. (1) and assuming Gaussian distributions, F becomes:

F =
1
2
(ε�

yq
Σ−1

yq
εyq

+ ε�
yq̇

Σ−1
yq̇

εyq̇
+ ε�

yv
Σ−1

yv
εyv

+ ε�
x Σ−1

x εx + ε�
u Σ−1

u εu + ln |ΣuΣyq
Σyq̇

Σyv
Σx|) + C,

(3)

The terms εyq
= yq − μ, εyq̇

= yq̇ − μ′, εyv
= yv − gv (μ) are the sensory

prediction errors respectively for position, velocity, and visual sensory inputs.
The controller represents the states internally as μx = [μ, μ′]�. The relation
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between internal state and observation is expressed through the generative model
of the sensory input g = [gq, gq̇, gv]. Position and velocity encoders directly
measure the state, thus gq and gq̇ are linear (identity) mappings. To define gv,
instead, we use a Gaussian Process Regression (GPR). This is particularly useful
because we can model the noisy and distorted sensory input from the camera,
and at the same time we can compute a closed form for the derivative of the
process with respect to the beliefs μ, required for the state update laws. For
details, see [3].

Additionally, εu is the prediction error on the control action while εx is the
prediction error on the state. The latter is computed considering a prediction of
the state x̂ at the current time-step such that εx = (μx − x̂). The prediction is a
deterministic value x̂ = [q̂ ˆ̇q]� which can be computed in the same fashion as the
prediction step of, for instance, a Kalman filter. The prediction is approximated
propagating forward in time the current state belief using the following simplified
discrete time model:

x̂k+1 =
[

I IΔt
0 I

]

μx,k (4)

where I represents an unitary matrix of suitable size. This form assumes that
the position of each joint is thus computed as the discrete time integral of the
velocity, using a first-order Euler scheme. This approximation can be avoided if a
better dynamic model of the system is available, and in that case predictions can
be made using the model itself. Finally, by choosing the distribution p(u|x) to
be Gaussian with mean f∗(μx,μd), we can steer the systems toward the target
μd without biasing the state estimation. This results in εu = (μu − f∗(μx,μd)).

In the u-AIC state-estimation and control are achieved using gradient descent
the free-energy. This leads to:

μ̇u = −κu
∂F

∂μu
, μ̇x = −κμ

∂F

∂μx
, (5)

where κu and κμ are the gradient descent step sizes.

3 Precision Learning for Fault-Tolerant Control

In previous work [3], the u-AIC is used in combination with an established
FT approach to achieve fault detection and recovery. In particular, the sensory
prediction errors in the free-energy are used as residual signals for fault detection
purposes. The statistical properties of the residuals are analysed offline and
healthy boundaries are defined. At runtime, a healthy residual set is computed
and if the current residual is outside the admissible set, the relative sensor is
marked as faulty. When a fault is detected, the precision (or inverse covariance)
of the sensor is abruptly set to zero, that is P = Σ−1 = 0, to exclude that sensor
from the optimization of the free-energy. This idea is summarised in Fig. 1.

In this work, we propose a different approach to achieve fault recovery
through online precision learning with u-AIC instead ad-hoc hard switches in
the controller’s parameters. Figure 2 shows thee difference with respect to [3].
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Fig. 1. Fault-tolerant pipeline from [3]. The term Σ−1
f represents the precision of the

detected faulty sensor.

Fig. 2. New fault-tolerant pipeline with precision learning, in contrast to previous work
[3] from Fig. 1.

Learning Sensory Precision. For a sensor y, we can update an inverse pre-
cision matrix Σ−1

y using gradient descent on F as done in [1,2]:

Σ̇−1
y = −κσ

∂F

∂Σ−1
y

. (6)

However, we need to ensure that precision remains a positive number. Performing
gradient descent does not inherently guarantee that.

First, consider a one-dimensional problem where state x and observation
y are scalars. The observations is affected by zero-mean Gaussian noise with
a variance of σ2 (also a scalar). The scalar precision is defined as the inverse
variance ω = 1/σ2. As explained, performing gradient descent on the free-energy
with respect to ω may result in it being negative. A simple solution is to perform
a reparameterization with a strictly positive function such as an exponential. I.e.
we assume that ω = exp ζ and we perform gradient descent on ζ:

ζ̇ = −κζ
∂F

∂ζ
(7)

where κζ is the gradient step-size. Another way is to set a lower bound on the
variance (as done in [5]). Both methods ensure the variance being positive.

Diagonal Precision Matrix. Guaranteeing a positive semi-definite matrix in
an n-dimensional case is not as straightforward. However, in the context of a
robotic manipulator, one can reasonably assume that the observation noise on
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each sensor is independent [1,23,25]. This means that the covariance (and pre-
cision) matrices are diagonal.

P =

⎡

⎢

⎢

⎣

ω1

ω2

...
ωn

⎤

⎥

⎥

⎦

Given this assumption, every element on the diagonal is positive and can be
updated in the same fashion as the scalar case (Eq. (7)).

Fault-Tolerant Control as Precision Learning. Consider the sum of the
sensory prediction errors in the free-energy from Eq. (3):

F =
1
2
(ε�

yq
Σ−1

yq
εyq

+ ε�
yq̇

Σ−1
yq̇

εyq̇
+ ε�

yv
Σ−1

yv
εyv

+ ...) + C, (8)

Intuitively, when a sensor is faulty, the related sensory prediction error will nec-
essarily be higher since sensory readings and internal beliefs will drift away.
After a fault, the estimated precision through our precision learning scheme will
be much lower than the original P = Σ−1. Thus its weight in the free-energy
F , and so in the state-estimation and control equations as in Eq. (5) will natu-
rally become lower than the other healthy sensors. Its weight essentially adjusts
proportionally to the degree of the sensor being faulty. Note that this allows for
automatic fault recovery but it does not provide explicit fault detection. In case
the latter is needed for a potential user or an additional supervisory system,
traditional techniques can be used as the one presented in [3] in conjunction
with precision learning.

FT control for sensory faults can now be done using precision learning in
several ways. The first way is to use it as a stand-alone and activate preci-
sion learning for all sensors during operation. In this case, no other methods
are needed, no thresholds are designed and the recovery emerges naturally. As
mentioned before, the drawback is that the users can not be ‘alerted’ for the
presence of a fault (since there is no explicit fault-detection). The second way,
which addresses this issue, is to use an established algorithm for fault detection
(such as the one presented in [3]) and then, only after a fault is detected, allow
precision update.

Interestingly, performing precision learning as presented in this section can
make the state-estimation noisier since the agents only relies on the current
observation (rather than a batch of last k observations) for the update and
both the uncertainty of the state and precision are not quantified. An additional
approach would then be to consider the last k observations for the update, but
this is out of the scope of this work.

To summarise, the precision learning in this paper can either be activated at
all times or only after a fault is detected. Activating the precision learning at all
times with a small step-size for the gradient seems to work best.
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4 Results

We apply the methods in Sect. 3 on a 2-DOF robotic manipulator. We test three
scenarios: a) precision learning at all times, b) precision learning only when a
fault is detected and c) a deterministic update as done in [3]. Note that the
latter has access to a model and uses data to determine a threshold offline. This
is not the case for the first two options where only model-free precision learning
is performed. The results are summarized in the Table 1. In the simulations, the
sensors are injected with zero-mean Gaussian noise. The standard deviation of
the noise for encoders and velocity sensors is set to σq = σq̇ = 0.001, while the
one for the camera is set to σv = 0.01. The camera is also affected by barrel
distortion with coefficients K1 = −1.5e−3, K2 = 5e−6, K3 = 0 (values are
similar to work from [19,28]).

Table 1. Mean Squared Error (MSE) for different methods of fault-tolerant control.
PL indicates precision learning

Joints with encoder
fault

Joints without
encoder fault

No fault-tolerance 0.0036 0.0020

PL at all time 5.422 e−5 4.527 e−5

PL + fault-detection 6.097 e−5 4.134 e−5

Deterministic fault recovery 0.5946 e−5 0.3579 e−5

The agents starts in configuration x0, then moves to the targets x1 and x2.
At t = 8 s a fault is injected. The encoder fault is such that the output related to
the first joint freezes. For a discrete step k it holds then yq(k) = [q1(kf ), q2(k)]�

for k ≥ kf and kf = 8. The fault detection and recovery of such a fault, as well
as the system’s response, are reported below in Fig. 3.

As seen in Fig. 3, the system is not able to reach the set-point after the
occurrence of the fault if online precision update is not allowed. The robot arm
reaches a different configuration to minimise the free-energy, which is built fusing
the sensory information from the (faulty) encoders and the (healthy) camera.
However, when the faulty encoder is adjusted using precision learning, the agent
is able to reach the final configuration.

Figure 3 reports the results when precision learning is being done during
the full operational time. Alternatively, one could only use precision leaning
when a fault is detected. This yields a response that is almost identical. The
Mean Squared Error (MSE) between the belief and the true position (μx − x)
is computed on a sample of test runs and reported in the Table 1. The results
are reported for both the joint whose encoder is faulty, and joints with healthy
encoders. In both cases, hard update of the precision to zero has the lowest
MSE; however, the approaches based on precision learning do not require any
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Fig. 3. System’s response in the case of encoder fault with and without precision
learning applied at all times. The fault is injected at t = 8 s and indicated with a
dot-dashed line.

previous information or a threshold definition thus it is simpler to implement.
Yet, precision learning has a satisfactory performance while accommodating a
sensory fault.

5 Improving Precision Learning: A Discussion

In this paper, we perform a simple modification to the unbiased active inference
controller: adding precision learning for all sensors. We show that this results in
stochastic fault-tolerance to sensory faults, i.e. the precision of a faulty sensor will
decrease automatically making its relative weight in the control and estimation
laws smaller. This eliminates the need to learn a threshold from data offline.
Additionally, no ah-hoc recovery action is required. The controller automatically
adjusts to the new precision.

In the experiments, we compared precision learning to a state-of-the-art
method. Precision learning was an order of magnitude worse in performance
but still satisfactory. Note that precision learning did not require any data or
training offline to determine thresholds or recovery strategies. Finally, precision
learning performs stochastic fault-detection rather than deterministic.

Most importantly, this approach based on precision learning can be improved
in many ways. First, rather than computing a point-mass estimate, we can explic-
itly model the precision as a random variable and perform inference on it.

We can perform Bayesian inference by modelling the precision as a random
variable and computing a posterior over it. In the one dimensional case we use
a Gamma prior on the precision ω as

Γ (ω; a, b) =
ba

Γ (a)
ωa−1e−ωb.
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Given that the observation model is Gaussian, this choice is beneficial since it is
the conjugate prior [4,21], where a and b are the parameters of the distribution
and Γ (a) = (a− 1)! is a factorial function. For example, Γ (5) = 4! = 24. Now to
compute the posterior, we multiply the prior with the Gaussian likelihood model
of p(y|ω) and obtain the posterior which is also a Gamma distribution as shown
below.

p(ω) = Γ (ω; a, b) ∝ ωa−1e−ωb

p(ω|y) ∝ p(y|ω)p(ω) ∝ ω0.5+a−1e−ω(b+
(y−C)2

2 )

p(ω|y) = Γ (ω; a +
1
2
, b +

(y − C)2

2
)

The last equation shows a simple update rule to modify the belief over the
precision for every data point. In the optimization for the state, the following
quantities are used: expected precision E[ω] = a/b, Mode[ω] = (a − 1)/b and
V ar[ω] = a/b2. In the n-dimensional case, the same procedure can be done but
with a Wishart distribution rather than a Gamma.

Additionally, we could use a batch of k observation to learn the precision
rather than just one observation. Many approaches for covariance/precision esti-
mation have been successful in robotics e.g. [27,31,33,34]. Additionally, many
other approaches within the active inference literature can be used for effective
precision learning such as dynamic expectation maximization (DEM) [11,12].
These will be explored and compared in future work.

6 Conclusions

This paper presents a fault-tolerant controller based on active inference. We
model the precision (inverse covariance) of each sensor in our system and deter-
mine the probability of the sensor being healthy to be proportional to its pre-
cision. Rather than reasoning about whether a sensor is faulty or not, we rea-
son about the degree to which the sensor is faulty. We present gradient based
approaches to approximate the precision matrices of the system. The results
show that the precision learning is a promising approach for fault-tolerant con-
trol. It allows for robust behaviour without needing any threshold definition a
priori, without designing additional ad-hoc recovery mechanisms, and can be
used stand-alone or in conjunction with other methods. The results using pre-
cision learning was satisfactory but an order of magnitude away from the to
state-of-the-art. However, precision learning was not trained on data offline and
performs a stochastic update. Bayesian methods can be used to improve the per-
formance of the approach. Additionally, in all cases regarding precision learning,
the performance can be improved by considering the last k observations rather
than just one. Future work will address this.
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