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ABSTRACT This paper studies and compares the gap selection process of multiple vehicle classes
(passenger cars, delivery vans, and trucks) within their discretionary lane changing activities. Given a
trajectory or a sequence of gap selection decisions, we aim to predict whether a vehicle will change or keep
a lane. For this purpose, we use a large trajectory dataset, collected for the Netherlands, consisting of 3,647
trajectories of passenger car drivers, 1,080 trajectories of delivery van drivers, and 2,226 trajectories of truck
drivers. We apply gated recurrent unit neural networks to separately model their gap selection processes.
These three models can not only handle class imbalance but also capture long-term interdependencies. The
models can predict gap selection of three vehicle classes with geometric mean accuracies of 84% or higher.
To obtain insights into their gap selection processes, we apply a gradient-based technique to analyze what
neural networks have learned. Our results suggest that there exist significant differences between vehicle
classes in terms of the importance of historical information and features. Trucks seem to value a relatively
long period, recent 6 seconds, of driving experience to select gaps compared to passenger cars and delivery
vans. In addition, the perception of road topology seems to be a significant factor for delivery vans and trucks,
contrary to passenger cars which highly value their kinematic features and interactions with surrounding
vehicles, to select gaps. These insights offer a novel contribution towards better understanding and modeling
of the driving behavior of multiple vehicle classes.

INDEX TERMS Driving behavior, discretionary lane-changing, gap selection, trajectory data, gated
recurrent unit neural network, class imbalance, explainable AI.

I. INTRODUCTION
Lane-changing is an important aspect of driving behavior that
has a significant influence on road capacity [1], safety [2],
and emissions [3]. Two main categories of lane changing can
be distinguished: mandatory and discretionary. Mandatory
lane changes arise from either infrastructural or traffic control
related constraints, or from the drivers’ need to follow a
path that leads to his or her—for brevity, we will use male
adjectives in the ensuing—destination. Discretionary lane
changes are associated with the driver’s desire to improve
his current driving conditions. Discretionary lane-changing
(DLC) is typically structured as a hierarchical process [4], [5]
where a driver (1) makes a decision-in-principle (that driving

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Tong .

conditions on the current lane are below some desired level
and can be improved by shifting to another lane); assesses (2)
the options for this lane change (which target lane to move to)
and (3) the necessary conditions ( the suitability of available
gaps on potential target lane(s)); and then finally (4) takes
action (initiates and executes the lane change) or not (rejects
available gaps, or even abandons the entire lane change
maneuver).

Gap selection is an important stage of the lane-changing
process where drivers explicitly look for a suitable and safe
opportunity in order to initiate their desired lane-changing
maneuver. This stage has been extensively studied for pas-
senger car drivers [5]–[9] whereas other vehicle classes such
as trucks or delivery vans have not received any attention.
Although previous research [10], [11] shows that trucks seem
to significantly affect traffic operations, only the first two
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steps of the hierarchical model for DLC decisions of truck
drivers have been investigated [4]. Inter-vehicle interactions
during lane change have been shown to affect traffic oper-
ations; therefore, it is of vital importance to investigate and
compare the lane change behavior of multiple vehicle classes
to ensure reliable, efficient, and safe traffic operations. To the
best of our knowledge, our paper is the first that focuses
particularly on the third step of this hierarchy, studies the gap
selection process of delivery van and truck drivers within their
DLC maneuvers, and compares it with that of passenger car
drivers.

The gap selection behavior of vehicles can be formulated as
a binary decision problem with two outcomes: lane-changing
(accept) and lane-keeping (reject). This problem is solved
using a wide range of techniques in the existing literature:
rule-based [12], statistical [6], [7], econometrical [8], and
artificial intelligence (AI) models [5], [9]. Most of the earlier
works assume instantaneous decision-making in the sense
that only features or variables at a specific time instant affect
the gap selection decision process. Typically, this time instant
is taken just before a vehicle starts shifting laterally, which is
an indication that a gap has been accepted [5], [13]. Although
some literature [8], [14], [15] shows that historical data
may also influence the gap selection process, such long-term
interdependencies are typically not considered. In this paper,
we consider the long sequences (or trajectories) of up to
20 sec to fill this gap.

The objective of this paper is to obtain insights into the
gap selection process of multiple vehicle classes in their
DLC maneuvers using AI. To this end, we frame the gap
selection process of truck drivers as a many-to-one sequence
classification problem and train a gated recurrent unit neural
network (GRUNN) model to learn and model such temporal
dependencies over longer periods. To assess what this neural
network, in the end, has learned—and whether this makes
sense behaviorally, we apply explainable AI techniques such
as a gradient-based technique [16] and variable importance.

Most previous research works calibrate and validate their
gap selection models using data from a specific type of
topology (e.g., a weaving section [5], [7]–[9]). In this paper,
we use a larger trajectory dataset that covers many differ-
ent topologies situated around 14 different bottlenecks in
the Netherlands including on-ramps, off-ramps, and weaving
sections [17], [18]. We incorporate these different topologies
in the gap selection model as part of the feature set fed to the
GRUNN model and consider for example type of topology,
length of the infrastructural bottleneck, and the number of
lanes on the mainline carriageway.

This paper contributes to the existing literature by:
1. building gated recurrent unit neural network models to

capture the gap selection process of multiple vehicle
classes (passenger cars, delivery vans, and trucks) dur-
ing their discretionary lane changing;

2. considering historical sequential data and external fac-
tors arising from topologies in the modeling framework
of the gap selection process; and

3. comparing the gap selection process of multiple vehicle
classes (passenger cars, delivery vans, and trucks) by
unraveling their latent gap selection mechanisms and
identifying key features that impact their gap selection
through explainable AI techniques.

This paper is organized in the following way. It begins
by providing a theoretical background on GRU neural net-
works and related techniques to interpret their predictions.
Subsequently, the data generation process is described. The
next section presents an experimental setup to model the
gap selection process of truck drivers. Then, the subse-
quent section presents the model performance and its inter-
pretability. Afterward, the findings and their implications are
discussed. Finally, the paper concludes with some recommen-
dations for further research work.

II. RELATED BACKGROUND
A gated recurrent unit neural (GRU) network model is
selected in this paper to model the gap selection behav-
ior of multiple vehicle classes (passenger cars, delivery
vans, and trucks). A major advantage of this approach over
other approaches (e.g., rule-based, econometrical, statistical,
fuzzy-logic) is that it can learn long-term temporal interde-
pendencies. The first part of this section discusses the inner
workings of GRU neural networks. The second part presents
strategies to handle class imbalance which is often a case
in real-world trajectory datasets. To interpret predictions and
learn more about the gap selection behavior, the third part of
this section presents explainable AI techniques.

A. GATED RECURRENT UNIT NEURAL NETWORKS
A recurrent neural network (RNN) is a widely used method
that can handle time-series data for prediction purposes.
However, an RNN suffers from well-known problems of
vanishing and exploding gradients during backpropaga-
tion and is not very good at capturing very long-term
dependencies. To overcome these obstacles, long short-
term memory (LSTM) neural networks were proposed [19].
Cho et al. [20] proposed a GRU neural network or GRUNN,
which is a variant of LSTM. Compared to LSTM, GRUNNs
have simplified connections and a reduced number of param-
eters. While LSTM contains three gates (input gate, forget
gate, and output gate), the GRU comprises two gates, namely
the update gate and the reset gate. The update gate controls the
extent to which the state information of the previous moment
is passed to the current state. While the reset gate controls
how much information of the previous state is stored in the
current candidate state h̃t . In this way, GRU can improve upon
the training efficiency by relying on the memory ability of
neurons and fewer tensor operations. The architecture of a
GRU cell is shown in Fig. 1.

The forward propagation process of GRU is as follows
(see (1)-(4)):

zt = σ (Wz · [ht−1, xt ]+ bz) (1)

rt = σ (Wr · [ht−1, xt ]+ br ) (2)
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FIGURE 1. Architecture of a GRU cell (adapted from (Cho et al. [20])).

h̃t = tanh(Wh · [rt∗ht−1, xt ]+ bh) (3)

ht = (1− zt) ∗ht−1 + zt ∗ h̃t (4)

where xt denotes the input vector at time t . ht denotes the state
of the system at time t . h̃t denotes the current candidate state.
z and r denote the update gate and reset gate, respectively. σ
denotes the Sigmoid function.Wz,Wr , andWh refer to weight
matrices. bz, br , and bh refer to bias vectors.

B. RELEVANCE OF CLASS IMBALANCE TO
UNDERSTANDING LANE-CHANGING BEHAVIOR
Most of the current research on lane-changing does not
address the problem of class imbalance. However, there
seems to be a large gap between the number of lane-changing
trajectories and lane-keeping trajectories in most of the col-
lected datasets [5]. This results in class imbalance because
of an unequal distribution of instances belonging to target
classes. The performance of traditional classifiers is likely
to be affected if they are trained on imbalanced datasets.
To handle this problem, previous research has used several
techniques: data-level methods, algorithmic modifications,
and ensemble methods [21]. In this paper, we use cost-
sensitive learning (an algorithmic approach) and an ensemble
method which are particularly useful in imbalanced classifi-
cation problems.

1) COST-SENSITIVE LEARNING
It is an algorithmic method where we specify different
misclassification costs for instances belonging to different
classes. Class-specific weights are computed in (5).

Wi =
N

C ∗ ni
(5)

where Wi denotes the weight for class i,N denotes the total
number of instances, C denotes the total number of classes,
and ni denotes the number of instances belonging to the class
i.

2) ENSEMBLE METHOD
This approach incorporates the strengths of random under-
sampling (RUS) and bagging [21]. RUS is a form of data
sampling that randomly selects majority class instances and
removes them from the dataset until the desired class dis-
tribution is achieved. In this way, several balanced training

subsets are created by RUS of the majority class. Each subset
contains all the minority class instances and an equal number
of randomly selected majority class instances. The number of
training subsets i.e. M can be chosen equal to the imbalance
ratio [21]. In this way, we train M different models and
aggregate their output using the majority voting approach to
determine the final prediction.

C. INTERPRETING THE TRAINED GRUNN MODEL
The interpretability of AI models is a challenging prob-
lem that has been gaining increasing attention for the last
few years. In this paper, we consider a gradient-based tech-
nique [16], [22] to interpret the trainedmodel. The advantages
of this technique over other methods (e.g., shapely values) are
the ease of implementation and faster processing time.

The backpropagation-based approach [16], [22] is used
to compute the attributions for all input features in a single
forward and backward pass through the network and adapted
for our use. Given a single target output, the goal is to
determine the contribution of each input to the output. Let’s
define N are total instances present in the test dataset and the
input is of shape (T × F). Here, T denotes the total number
of time steps and F denotes the total number of features.
Equation 6 presents the contribution of input xntf to the output
S(xn) for a single instance n.

gntf =

∣∣∣∣∣∂S (xn)∂xntf

∣∣∣∣∣ ∀n ∈ N , t ∈ T , f ∈ F (6)

where gntf denotes attributions that are of the same shape as
that of input xntf .
Then, we run over all the instances present in the test

dataset and compute the global-level attribution gtf using (7).

gtf =
1
N

∑N

n=1
gntf ∀t ∈ T , f ∈ F (7)

The matrix G ∈ RT×F is composed of gtf elements that
contain the average value of absolute gradient. A heat map or
attribution map generated from the matrix G can reveal the
dynamics behind the gap selection process of drivers. Higher
values of the elements of the matrix G imply greater impor-
tance on the prediction output. Further, we can derive feature
importance (Gf ) and time-step importance (Gt ) using (8)
and (9).

Gf =
1
T

∑T

t=1
gtf ∀f ∈ F (8)

Gt =
1
F

∑F

f=1
gtf ∀t ∈ T (9)

III. DATA PREPARATION TO MODEL GAP SELECTION
USING GRU NEURAL NETWORK MODELS
This section is composed of three parts. The first part presents
the characteristics of the trajectory dataset. Afterward, the
second section describes the feature set used to build gap
selection models. Finally, the third section elaborates on cre-
ating datasets for training and testing the models.
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FIGURE 2. Locations where the trajectory dataset is collected (each
location comprises two bottleneck sites on each side of a bi-directional
motorway).

A. TRAJECTORY DATA
In this paper, a trajectory dataset is used to develop the gap
selection decision models for multiple vehicle classes [17].
This dataset is a freely available resource that has been used
in research before to understand driving behavior [18], [23].
The data comprise vehicle trajectories obtained through aerial
imaging in the vicinity of 14 infrastructural bottlenecks
located in the Netherlands, which include 3 on-ramps, 3 off-
ramps, and 8 weaving sections (see Fig. 2).

This dataset was collected using a high-resolution camera
attached to a hovering helicopter. The sites represent isolated
discontinuities and their lengths are at most 1100 m meaning
that the trajectories can be captured using the helicopter
method. For each site, 30 min of the video feed was col-
lected at the onset of evening congestion, that is, between
14:00 and 17:00 h. These 14 bottleneck sites included in
this dataset sites either have a three-lane or a two-lane
mainline carriageway with one auxiliary lane. For further
information about the data collection, the reader may refer
to van Beinum et al. [18]. Note that traffic operates under
keep-right regulations in the Netherlands. Further, trucks are
forbidden to drive on the left lane on carriageways with more
than 2 lanes, except in the case of 2× 2 weaving sections
(where they are allowed to drive on the left-most lane).

The trajectory dataset is processed as follows.

1. We label vehicles shorter than 5.6 m as cars and longer
than 12 m as trucks. Vehicles that fall in between are
labeled as delivery vans.

2. Vehicles traveling on mainline carriageways are con-
sidered; vehicles entering onto a mainline carriageway
from an on-ramp or exiting a mainline carriageway
through an off-ramp are not considered since these two
maneuvers fall under mandatory lane changing.

3. Vehicles making multiple lane changes on the mainline
carriageway are excluded since these are more likely to
bemandatory lane changes. Similar consideration is also
made in a previous study [5].

4. Only vehicles changing lanes from right to left on main-
line carriageways are considered. Vehicles changing

lanes to the right side are excluded because traffic oper-
ates under keep-right regulations in the Netherlands.

5. In this way, two types of trajectories are considered: lane
keeping (drivers do not change lanes) and lane changing
(drivers change lanes to their left).

6. The trajectory data contain noisy speed and acceleration
estimates.We use a Savitzk–Golay filter [26] to improve
these estimates.

7. Concerning lane keeping trajectories, only trajectories
pertaining to drivers who show normal or relaxed car
following behavior are included. Any aggressive car
following behavior, if detected, is used to exclude that
trajectory. Aggressiveness in the car-following behav-
ior is assessed through a time-to-collision-based (TTC)
indicator. The aggressiveness is assumed to be present
if the TTC value is less than 4 s, which is also used in
previous research [24], [25].

8. To account for the effect of historical information,
a maximum span of 20 s is considered to analyze the
gap selection decision process since more than 95% of
truck drivers are observed to changes lanes within the
first 20 s in the trajectory dataset.

9. For every vehicle in the trajectory dataset, we have
position (lateral and longitudinal coordinates), length,
dynamics (speed, acceleration), relative measurements
with the surrounding vehicles (distance gap and relative
speed) available at a resolution of 10 frames/second.

10. Relevant data are sampled at a frequency of 0.5 s which
means we collect two data points per second. The aver-
age parameter values for a sampling instant t are com-
puted by averaging data for the interval [t−0.4,t] [5].
The reasons for taking the average value over 0.5 s
are a) to maintain consistency with the previous research
[4, 5, 7, 27; (b) to reduce the error caused by using
instantaneous values in the trajectory data; and (c) to be
in line with driver’s perception time [5].

11. The lane-changing process for a vehicle begins when
it starts to drift laterally and ends when it stabilizes its
lateral position after changing to a neighboring lane. The
time instances are marked as lane change initiation and
lane change completion, For a lane changing vehicle,
the lane change initiation point is termed as T which
refers to a relative increase in the lateral position of a
vehicle with respect to time. 40 data points within a
span of [T−19.5,T ] are considered for a lane changing
trajectory as shown in Fig. 3.

12. For a lane keeping vehicle, T refers to the last point
in its observed or recorded trajectory. As shown in
Fig. 3, 40 data points are considered within a span of
[T−19.5,T ].

A total of 3,647 trajectories of passenger car drivers are
obtained out of which 2,803 are lane-keeping and 844 are
lane-changing trajectories. For delivery van drivers, a total
of 1,080 trajectories are extracted out of which 898 are lane-
keeping and 182 are lane-changing trajectories. A total of
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FIGURE 3. Figure showing span and data sampling for (a) lane-changing
and (b) lane-keeping trajectories of drivers (Note: ∗ denotes a data
sampling instant at a resolution of 0.5 s.)

FIGURE 4. A driver during the gap-selection process (Note: SV: subject
vehicle; CL: current leader; CF: current follower; FL: future leader; and FF:
future follower).

2,226 trajectories of truck drivers are obtained out of which
2,103 are lane-keeping and 123 are lane-changing trajecto-
ries. Further, vehicle class-specific datasets suffer from class
imbalance due to the presence of fewer lane-changing labels
compared to the dominant lane-keeping labels.

B. FEATURE SELECTION
Trajectories can be viewed as sequences of decisions (lane-
changing/lane-keeping) taken by drivers over time. At each
time step, drivers can consider different features to make a
decision. A typical gap selection scenario at a specific instant
of time is presented in Fig. 4. Here, the subject vehicle (SV) is
trying to move to the target lane from his current lane. During
this process, the SV might be involved in interactions with
up to four vehicles in its surroundings, as also considered by
Balal et al. [5]. In the current lane, the SV interacts with its
current leader (CL) and current follower (CF).Whereas in the
target lane, its interactions are with the future leader (FL) and
future follower (FF).

In this paper, we consider three dimensions that are hypoth-
esized to affect this decision process. These capture the
characteristics of the subject vehicle, its interaction with
surrounding vehicles, and its perception of a topology (see
Table 1). Typically only the first two dimensions are consid-
ered in previous research works [5]–[9].

Please note that it might not always be the case for the
SV to be involved with four other vehicles during its lane
changing process. For such situations where a surrounding
vehicle is not observed or recorded in the trajectory dataset,
we use a default value of 250 m for the distance gap spacing.
A higher value such as 250 m also suggests that a vehicle is
not affected by an unobserved surrounding vehicle. During
the data collection, the camera captures more of the area than
just the bottleneck section; therefore, 250 m seems to be a
justified assumption in this respect. Similarly, for the speed

TABLE 1. Features describing vehicle’s interaction during lane-changing.

TABLE 2. Data split for vehicle classes.

of an unobserved surrounding vehicle, we assume its speed
to be 0 m/s to compute the speed difference with the SV.

C. CONSTRUCTING DATA FOR TRAINING AND TESTING
Having identified key features, we will now prepare data for
our GRUNN model.

1) DATA SPLIT
We split the whole dataset into three parts: 80% train-
ing dataset, 10% validation dataset, and 10% test dataset.
Table 2 shows the instances belonging to lane-keeping and
lane-changing classes for every considered split and every
vehicle class. The model is trained on the training dataset.
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TABLE 3. Confusion matrix.

Hyperparameters of the model are tuned using the validation
dataset. Finally, the performance of the model is tested on a
test dataset.

2) FEATURE ENGINEERING
We consider 12 continuous and 3 categorical features (see
Table 1). To support faster learning, the continuous features
are standardized [28] where the values of each feature vec-
tor component xi are centered around the mean with a unit
standard deviation (see (10)):

x̃i =
xi − µxi
sxi

(10)

where x̃i depicts the normalized feature vector component,
and µxi and sxi the mean and standard deviation of xi.

Categorical features are converted into numerical forms via
one-hot encoding [28], which represents categorical features
in k possible categories as a binary feature vector of length k .
The binary vector marks the class label with a value of 1 and
all other positions with a value of 0. Consequently, a total
of 19 features are considered in this paper. The target is a
binary variable that comprises two labels: lane-changing (LC)
and lane-keeping (LK). These labels are encoded as integer
variables where 1 and 0 refer to lane-changing and lane-
keeping, respectively. First, we learn a standardization func-
tion on the training dataset. Then, we transform validation
and test datasets using the already learned standardization
function to ensure that the model is not peaking at these two
datasets.

3) PADDING THE TRAJECTORY DATA
When processing sequence data, it is common for individual
samples to have different lengths. In our case, not all trajec-
tories contain sufficient data for the desired span of 20 s. This
is where padding is used to make all sequences in a batch of
a given standard length (i.e., 40 time steps in our case) before
one starts training the network. In this paper, trajectories are
pre-padded so that they all are of the same size, i.e., 40 time
steps.

IV. EXPERIMENTAL SETUP
This section begins by specifying the evaluation metric that
is used to assess the model performance. Subsequently, the
architecture of the proposed GRUNN model and its parame-
ters that need to be optimized are presented.

A. EVALUATION METRIC
The confusion matrix is widely used to evaluate the perfor-
mance of a classifier as shown in Table 3. For the binary
classification, a confusion matrix is represented as a 2× 2

matrix, which comprises four elements: TP (true positives),
the number of correctly predicted positive instances; TN
(true negatives), the number of correctly predicted negative
instances; FP (false positives), the number of incorrectly
predicted negative instances; and FN (false negatives), the
number of incorrectly predicted positive instances.

These elements are used to derive traditional evaluation
metrics such as accuracy

(
=

TP+TN
TP+TN+FP+FN

)
. Having dis-

cussed previously that our dataset is an imbalanced dataset
with more instances of lane-keeping (majority or nega-
tive class) than lane-changing (minority or positive class)
ones, traditional evaluation metrics might provide biased
results [29], [30]. Therefore, we consider geometric mean
accuracy or G-mean that integrates recalls of both classes and
is used in previous research to classify imbalanced datasets.
G-mean can be expressed by (11):

G−mean =
√
TPR · TNR (11)

where TPR
(
=

TP
TP+FN

)
denotes true positive rate or accu-

racy on the minority class and TNR
(
=

TN
TN+FP

)
denotes true

negative rate or accuracy on the majority class. G-mean tries
to maximize the accuracy of each class while keeping these
accuracy values balanced. Thus, a higher G-mean value indi-
cates that the comprehensive performance of a classifier is
better.

B. MODEL SPECIFICATION
The model is specified using several layers which take an
input, i.e., a trajectory, and outputs the target; i.e., a label
denoting either a lane-changing or lane-keeping decision. The
following layers are considered in this paper.

1. Input layer: The input is of the shape (time steps, num-
ber of features). For this paper, the input is of the
shape (40, 19).

2. Masking layer: A masking layer is added on top of the
input layer so that model knows that missing time steps
of an input should be skipped when processing the data.
These missing time steps can be identified using the
padded values which we have described earlier during
data processing.

3. A gated recurrent (GRU) layer: A GRU layer followed
by a dropout layer is added on top of the masking
layer. The dropout layer is used to avoid overfitting and
can subsequently improve themodel generalization. The
GRU layer can memorize previous information and feed
the same to next time-steps using the activation function.
In the case of a multi-layered GRUNN, more GRU
layers can be stacked here. Each of which is followed
by a dropout layer.

4. Dense layer: The output of the (final) GRU layer is
collected at the latest time-step T using a dense layer.
We use the Sigmoid activation function here to output
the probability of classifying a trajectory as a lane-
changing one.

30648 VOLUME 10, 2022
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C. SELECTION OF MODEL PARAMETERS
In this section, we discuss the model parameters of our
GRUNNmodel that include hyperparameters of the GRUNN
model and a choice of strategy to deal with class imbalance.
A selection of optimal hyperparameters is shown to improve
the GRUNNmodel performance [31]. Therefore, The follow-
ing hyperparameters are considered in this paper.

1. The number of hidden layers: The multi-layer neu-
ral network architectures are shown to improve model
performance and can achieve better realization than a
single-layer architecture [32]. Therefore, we investigate
the model performance with more than one hidden layer.

2. The number of units: The number of hidden units is a
very important parameter of our GRUNN model, as the
different number of hidden units may greatly affect the
prediction precision. To choose the best value, we exper-
iment with different hidden units and select the optimal
value by comparing the predictions.

3. Dropout rate: Dropout is a technique to reduce overfit-
ting. Its central idea is to take a model that is overfit-
ting and train sub-models derived from it by randomly
removing units for each training batch. The number of
units to retain is controlled by a hyperparameter known
as the dropout rate.

4. Learning rate: Learning rate is a parameter related to the
optimization algorithm used while training the neural
network. It controls how quickly the algorithm updates
the weights at each iteration. A larger learning rate
makes the model learn faster.

5. Batch size: A neural network is trained in batches.
A batch is defined as the number of samples used for
each iteration during the training process. Therefore, it is
important to find the optimal batch size to achieve a
good model performance.

Two strategies are used to handle the class imbalance
problem in our case where the majority class (LK) contains
17 times more instances than the minority class (LC). The
first strategy deals with class imbalance by assigning different
classes with different weights, which are in proportion to their
corresponding misclassification costs. The second strategy
deals with training a model on a balanced dataset that has
equal distribution of both majority (or LK) and minority
(or LC) classes. An ensemble classifier is developed which
aggregates the results by training models on several balanced
datasets. The number of balanced datasets is equal to the
proportion of instances in the majority class to the minority
class.

In this paper, the grid-search method is used to search for
the optimal values of parameters. As shown in Table 4, the
tuning range is the range out of which the most appropriate
value is selected. For each combination of hyperparameters
and a choice of strategy to deal with class imbalance, we train
the GRUNN on the training dataset. The proposedmodel uses
the Adam algorithm [33] as our optimizer. The maximum
number of epochs is set as 100 and the early stopping criterion

TABLE 4. Parameter selection for GRUNN models.

is adopted to prevent overfitting. In this process, the training
is stopped if its performance does not improve over 10 con-
secutive epochs. All the experiments are coded with Keras
2.4.0, TensorFlow 2.3.0, scikit-learn 0.24.1, NumPy 1.19.2,
and pandas 1.2.3 in python 3.8.5.

Three separate GRUNN models are built: GRUNN-PC
(passenger cars), GRUNN-DV (delivery vans), and
GRUNN-T (trucks). After comparing the model’s perfor-
mance (or G-mean) on the validation dataset under different
parameter values, the optimal values of hyperparameters are
selected. Table 4 shows the selected hyperparameters for
these three models.

V. RESULTS
Having identified the best model parameters, this section
will focus on applying these models to respective test
datasets. The performance of the trained GRUNN models
(GRUNN-PC, GRUNN-DV, and GRUNN-T) are evaluated
on the respective test datasets that have been kept aside. This
section is further divided with respect to the vehicle classes
considered in this paper. In each subsection, the prediction
performance of models is discussed in the first part. After
that, model interpretability (or explainable AI) techniques are
used to explain what models have learned to gain insights into
the gap selection process.

A. PASSENGER CARS
Table 5 shows the performance of the trained GRUNNmodel
for passenger cars, i.e., GRUNN-PC. It can be observed
that this model achieves the G-mean of 88.35%. This model
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TABLE 5. Model performance on the test dataset for passenger cars
(GRUNN-PC).

FIGURE 5. Heat map showing the dynamic gap selection process of
passenger cars.

FIGURE 6. Variable importance for passenger cars.

can accurately predict 87.05% of LC and 89.67% of LK
trajectories.

Now, wewill use model interpretability (or explainable AI)
techniques to discover new knowledge about the gap selection
process of passenger cars. Fig. 5 shows the dynamics behind
the gap selection process of passenger cars by using a heat
map. This heat map is a 2D representation, consisting of
average absolute gradient values, that can be used to deter-
mine what parts of the input contribute to the classification,
and how important are these parts to the result. It can be
observed that passenger car drivers seem to dynamically vary
their attention over the feature set. For instance, they seem
to consider their characteristics (speed and acceleration) to
be more important than other features at the time instant
T−0.5 s. On the contrary, at the time instant T , which is closer
to the instance of their decision-making, they seem to shift
their attention to their interactions with surrounding vehicles
(distance gap of the vehicle SV with the vehicle CL (dCL)
and the speed difference between the vehicles SV and FL
(1vFL)) and topological related features (the type of topology
(ttop= Off− ramp)).
Let us now turn to the variable importance, which cap-

tures its contribution to the target activation using gradient

TABLE 6. Model performance on the test dataset for delivery vans
(GRUNN-DV).

values. The higher the value of the gradient, the higher will
be the contribution of that variable on the target activation.
We consider both feature importance and time importance,
at a global level, to explain the gap selection process of
passenger car drivers (see Fig. 6). Looking at the feature
importance, the three features that contribute most to the
target activation are a passenger car driver’s speed (vSV), his
acceleration (aSV), and the speed difference with the vehicle
FF (1vFF). Their reliance on their interactions with their
respective future followers might indicate that they consider
safety during lane changing. The feature importance plot
suggests that topological features might not play a significant
role in the gap selection process of passenger car drivers since
their characteristics and their interactions with surrounding
vehicles seem to dominate their gap selection process. If we
now consider the time importance, it is observed that around
three-fourths of the contribution can be captured by the time
interval [T−1.5,T ]. This suggests that passenger car drivers
do not rely only on instantaneous information at T rather they
also consider historical information when it comes to gap
selection. Nevertheless, a large value of the average gradient
at the time instance T indicates the passenger car drivers seem
to place higher weights on the instantaneous information to
decide whether to accept or reject gaps.

B. DELIVERY VANS
Table 6 presents the model performance for delivery vans.
The GRUNN-DV model is able to achieve the G-mean of
84.06%. The accuracies with which thismodel can predict LC
and LK trajectories are balanced. The model can accurately
predict 85% of LC and 83.14% of LK trajectories.

Fig. 7 shows the dynamics behind the gap selection pro-
cess of delivery van drivers by using a heat map. It can be
observed that delivery van drivers also seem to dynamically
vary their attention over the feature set similar to passenger
car drivers. However, noticeable gradients for delivery van
drivers encompass more time instants than passenger car
drivers. This suggests that delivery van drivers utilize more
historical information than passenger car drivers towards
selecting gaps.

Let us now turn to the variable importance, which cap-
tures its contribution to the target activation using gradi-
ent values. We consider both feature importance and time
importance, at a global level, to explain the gap selection
process of delivery van drivers (see Fig. 8). Looking at the
feature importance, the three features that contribute most
to the target activation are the interactions of delivery van
drivers with surrounding vehicles, captured by the distance
gap with the vehicle CL (dCL) and the vehicle FL (dFL), and
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FIGURE 7. Heat map showing the dynamic gap selection process of
delivery vans.

FIGURE 8. Variable importance for delivery vans.

type of topology (ttop= Off− ramp). The feature importance
suggests that delivery van drivers consider their interactions
and their perception of a topology more salient than their
characteristics. Further, their reliance on their interactions
with the current leader and future leader might indicate they
consider them as a trade-off to evaluate traffic conditions and
maneuverability on both lanes. If we now consider the time
importance, it is observed that around three-fourths of the
contribution can be captured by the time interval [T−3,T ].
Interestingly, most of the effect is produced by the gradient
values computed at the time instance T as also highlighted
in the heat map. This suggests that delivery van drivers not
only consider historical information from previous time-steps
but also rely on current information to decide on the gap
selection.

C. TRUCKS
Third, the performance of the model for trucks (GRUNN-T)
is discussed in Table 7. This model can achieve the G-mean
of 87% on the respective test dataset of trucks. Further, the
model can accurately predict 92.31% of LC and 82% of LK
trajectories.

Fig. 9 shows the dynamics behind the gap selection process
of truck drivers by using a heat map. Truck drivers, similar
to passenger car and delivery van drivers, dynamically vary
their attention on the considered feature set. Yet, truck drivers
differ in the manner how salient they consider historical
information. The heatmap in Fig. 9 indicates that they seem to
be more anticipatory [34] than passenger car or delivery van

FIGURE 9. Heat map showing the dynamic gap selection process of
trucks.

FIGURE 10. Variable importance for trucks.

TABLE 7. Model performance on the test dataset for trucks (GRUNN-T).

drivers as noticeable gradient values cover more time span
than passenger car and delivery van drivers.

Moving to the variable importance (Fig. 10), the three
features that contribute most to the target activation are the
truck driver’s speed (vSV), the distance gap he maintains with
the vehicle CL (dCL), and the type of topology he is driving
on (ttop= Off− ramp). These top three features also encom-
pass all three dimensions (subject vehicle’s characteristics,
its interaction with surrounding vehicles, and its perception
of the topology) considered while developing the feature
set and thus showing entirely different behavior than both
passenger car and delivery van drivers. Consequently, these
features have much more impact on the classification score
than other features. If we now consider the time importance,
it is observed that around three-fourths of the contribution can
be captured by the time interval [T−6,T ]. This suggests that
truck drivers do not rely only on instantaneous information at
T rather they also consider previous time-steps or historical
information when it comes to gap selection.

VI. DISCUSSION
The discussion section is composed of four parts. In the
first part, the uniqueness of the trajectory dataset is
described. Next, the gap selection behavior of multiple
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TABLE 8. Comparison of the gap selection process of multiple vehicle
classes.

vehicle classes is compared. Then, the performance of our
models (GRUNN-PC, GRUNN-DV, and GRUNN-T) is com-
pared with the state-of-the-art. The last part discusses the
implications and possible applications of our models.

This paper has used a large trajectory dataset that contains
multiple vehicle classes. 3,647 trajectories of passenger car
drivers, 2,226 trajectories of truck drivers, and 1,080 tra-
jectories of delivery van drivers are present in this dataset.
Unlike the widely used NGSIM dataset [35], our dataset
contains significant numbers of trucks and delivery vans. This
has a significant advantage over the earlier study focused
on modeling lane-changing motivations of trucks [4], which
used limited data of only 39 trajectories of truck drivers.
Moreover, this dataset is also unique in terms of analyzing the
behavior of delivery van drivers as other available trajectory
datasets (e.g., NGSIM [35] and highD [36]) may not contain
delivery vans.

Three GRUNN models are proposed in this paper:
GRUNN-PC (passenger cars), GRUNN-DV (delivery vans),
and GRUNN-T (trucks). These three models show that there
exist significant differences with respect to the gap section
process among these three vehicle classes (see Table 8).
Passenger car drivers seem to be more concerned about their
kinematic features and the motion of the lag vehicle in the
target lane during gap selection.Whereas delivery van drivers
give more weight to the traffic conditions in the current
and target lane by looking at their gap spacing with the
respective leading vehicles along with their perception of
the topology. Truck drivers, on the other hand, consider a
three-dimensional view that includes their vehicle kinematics
(speed), their interactions with the surroundings (gap spacing
with the current leader), and their perception of topology.
Our findings demonstrate that topological factors are impor-
tant to consider while analyzing the lane-changing behavior
especially of commercial vehicles such as delivery vans and
trucks. This fills a gap in the literature, as highlighted by
Rahman et al. [37]. An advantage of our models is that they
can be used on a general road network consisting of multiple
topologies (e.g., on-ramps, off-ramps, and weaving sections).
If we compare the time importance for multiple vehicle
classes, we observe that gap selection is not an instantaneous
process but a sequential one. This finding is consistent with
previous research [5], [9], [13] which noted that passenger

car drivers seem to consider lagged information for a specific
time instant in their gap selection process. We show that the
effect of memory or historical information is more salient
for trucks than passenger cars or delivery vans. Especially,
the last 6 seconds largely influence the gap selection process
of truck drivers. Time importance plots also suggest that
historical information generally has a fading effect on the gap
selection process of vehicles which means that memory is
not always constant. Previous research has also noted similar
fading effects for the car following behavior [38].

This paper used imbalanced datasets to analyze the gap
selection behavior of multiple vehicle classes. A large body
of research is concentrated on passenger cars where most
of these works built balanced datasets retrieved from widely
used NGSIM data. In lieu of any reference study on the
gap selection behavior of delivery van and truck drivers, the
performance of our three models is compared with previous
research on passenger car drivers which uses imbalanced
datasets [5], [15], [39], [40]. These studies report G-mean
in the range of 66.39-90.50% which is in accordance with
the performances of our models. It is also encouraging to
compare the performance of our models with other traffic-
related studies [29], [30] on imbalanced classification which
report G-mean in the range of 70.40-88.50%. It seems that
the performance of our models (GRUNN-PC, GRUNN-DV,
and GRUNN-T) is on par with these earlier studies.

Due to the dataset used, the empirical findings presented
in this paper seem to be valid for drivers operating in the
Netherlands. We expect that these findings may apply to all
European countries with similar driving regulations. For other
countries with different driving rules, further research is rec-
ommended so that the gap selection process of international
drivers can be compared. This paper is an important step
in improving our understanding regarding the microscopic
phenomena ofmultiple vehicle classes that give rise tomacro-
scopic or observable effects. Overall, these findings hold the
potential to improve current models, to perform improved
traffic and safety assessments, and eventually to support the
design of advanced autonomous systems, for example aiming
at guidance for the lane changing process. These advanced
systems may use sensors instrumented in the subject vehicle
or vehicle-to-vehicle (V2V) communication technology to
feed inputs to the GRU neural network model. The input
variables related to the perception of a road topology may be
transmitted via digital mapping services.

VII. CONCLUSION
Gap selection is an important part of the discretionary lane
changing activity. To understand and unravel the latent gap
selection mechanisms of multiple vehicle classes, we use
gated recurrent unit neural network (GRUNN) models on a
large and unique trajectory dataset, collected for the Nether-
lands, that comprises lane changing trajectories of passen-
ger cars, delivery vans, and trucks. The proposed vehicle
class specific models are able to handle the class imbalance
observed in the trajectory dataset. Moreover, these models

30652 VOLUME 10, 2022



S. Sharma et al.: Unraveling Gap Selection Process During Discretionary Lane Changing by Vehicle Class

can capture temporal interdependencies, by incorporating
historical information, and the effect of external factors aris-
ing from the perception of a road topology.

The proposed models are interpreted using explainable AI
techniques in order to obtain insights into the gap selec-
tion process of multiple vehicle classes. We show that gap
selection is a sequential process governed by the impact of
historical information or decisions and this impact fades over
time. Passenger cars and delivery vans mostly utilize up to
3 seconds of recent driving experiences towards selecting
gaps in contrast to trucks which rely on a longer dura-
tion of nearly up to 6 seconds. Using feature importance,
we find that the most important factors associated with
gap selection differ by vehicle classes. Passenger cars focus
on their kinematic features (speed, acceleration) and their
interactions with surrounding vehicles (the speed difference
with the lag vehicle in the target lane). Whereas delivery
vans utilize their interactions (gap spacing with current and
future leading vehicles) and the type of topology. Trucks,
on the other hand, consider a three-dimensional view that
includes their kinematics (speed), their interactions with the
surroundings (gap spacing with the current leading vehicle),
and their perception of topology during their gap selection
process.

The issue of lane-changing is an intriguing one that could
be usefully explored in further research by using recent
advances in AI and newly available trajectory datasets.
Future research might explore the lane-changing execution
of multiple vehicle classes. More broadly, a further study
could also build integrated models, by also accounting for
the inter-driver difference, to capture full lane-changing
dynamics.
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