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Abstract. This paper presents an efficient strategy for the Bayesian calibration of parameters of aerodynamic
wind turbine models. The strategy relies on constructing a surrogate model (based on adaptive polynomial chaos
expansions), which is used to perform both parameter selection using global sensitivity analysis and parameter
calibration with Bayesian inference. The effectiveness of this approach is shown in two test cases: calibration
of airfoil polars based on the measurements from the DANAERO MW experiments and calibration of five yaw
model parameters based on measurements on the New MEXICO turbine in yawed conditions. In both cases, the
calibrated models yield results much closer to the measurement data, and in addition they are equipped with an
estimate of the uncertainty in the predictions.

1 Introduction

Aeroelastic wind turbine models based on blade element mo-
mentum theory (BEM) are used extensively within the wind
energy community for simulating rotor characteristics such
as aerodynamic loads, power, and thrust. They are indis-
pensable tools for the design and optimization of wind tur-
bines. However, in several situations, the accuracy of such
models can be unsatisfactory when comparing the results of
the model predictions with experiments (Buhl and Manjock,
2006). For instance, the “blind comparison” study organized
by NREL (Simms et al., 2001) revealed large differences
when comparing the predictions of different aeroelastic mod-
els with experimental measurements. In some cases, differ-
ences exceeded 200 %, even when simple operating condi-
tions were being considered (i.e., uniform wind speed, fixed
blade pitch, and zero yaw angle). The differences were at-
tributed to the several empirical correction factors or tun-
ing parameters integrated into the aeroelastic models that
are used to improve the unsteady aerodynamic and aeroelas-
tic force predictions. More recent results show better agree-
ments, at least for simple wind tunnel conditions, but many

challenges exist, for example in dynamic wake prediction
and yaw, especially in the context of upscaling (see Schep-
ers et al., 2021, chap. 12). Examples are dynamic wake cor-
rection factors or dynamic stall model parameters (Wang
et al., 2016). These empirical correction factors suffer from
inherent uncertainties. As explained by Leishman (2002) and
Sørensen and Toft (2010), a major challenge is to identify the
uncertainties associated with wind turbine aerodynamics in
order to develop more rigorous models suitable for a wider
range of operating conditions, as well as to better integrate
and validate these models with reference to good-quality ex-
perimental measurements. Similarly, Abdallah et al. (2015)
concluded that the uncertainties in the model parameters
used in aeroelastic models have a significant impact on the
accuracy of model predictions. In other words, in order to
build robust aeroelastic wind turbine models with a quan-
tified level of uncertainty, it is important to calibrate these
models in a framework that includes uncertainty estimates
(Murcia, 2016).

A common approach to calibrate aerodynamic models is
via parameter tuning, in which one assumes that the form
of the model is in principle correct and that the errors in
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the model outcomes can be reduced by properly choosing
the value of one or more parameters. These parameter val-
ues are preferably independent of the model inputs; i.e., they
should lead to accurate predictions for a wide range of oper-
ating conditions. Examples of parametric model calibration
in wind energy applications can be found in Bottasso et al.
(2014), Murcia et al. (2018), and van Beek et al. (2021).
In these calibration studies, either least-squares methods or
maximum likelihood estimation (MLE) methods are used.
MLE determines the model parameters such that it max-
imizes the likelihood that describes the (presumed) rela-
tion between model and measurement data (Severini, 2000).
However, a major drawback of least-squares and MLE meth-
ods is that prior information is not naturally included (Smith,
2013). Using prior information is especially relevant when
few measurement data are available, which is a common sit-
uation in wind turbine model calibration (van Kuik et al.,
2016). Consequently, the MLE method can exhibit large un-
certainty in the estimation of the parameters and, as a re-
sult, in the model predictions. Furthermore, in least-squares
or MLE methods, parameters are typically considered deter-
ministic (fixed but unknown) so that a point estimate (plus
confidence intervals) results, which does not provide details
regarding the full probability distribution of the calibrated
parameters (Smith, 2013).

In order to address these issues, the goal of this paper is
to set up a framework for calibrating aerodynamic wind tur-
bine models that also works in case of limited measurement
data and gives full uncertainty estimates (in terms of prob-
ability density functions) of the calibrated parameters. We
propose a rigorous approach to the calibration problem by
recasting it in a probabilistic setting using a Bayesian frame-
work (Kennedy and O’Hagan, 2001). Within this framework,
the model parameters are posed as random variables, and
it is possible to include prior knowledge by specifying a
prior distribution, thus allowing model calibration even when
small sample sizes are available. Bayes’ theorem (Bayes,
1763) is then used to calculate the posterior distribution of
the model parameters conditioned on the given measurement
data. The posterior distribution gives more information than
MLE about the calibrated parameters; i.e., it gives the en-
tire posterior probability density function, from which point
estimates such as the posterior mean and the standard devi-
ation can be calculated (if required). Furthermore, the cal-
ibration can be verified by computing the posterior predic-
tive distribution (Gelman et al., 2013). Since the expres-
sion for the posterior distribution is generally not available
in an analytically tractable form (Gelman et al., 2013), we
will resort to Markov chain Monte Carlo (MCMC) methods
to sample from the posterior distribution (Papageorgiou and
Traub, 1996; Andrieu et al., 2003). The main downside of
the Bayesian approach, associated with the MCMC sampling
step, is its high computational expense. We will alleviate this
issue by constructing a surrogate model of the full aerody-
namic model (Sudret, 2008) and perform the MCMC sam-

pling with the surrogate model in lieu of the full model. In
this work, polynomial chaos expansions (PCEs) (Laloy et al.,
2013) will be used, which can be constructed using a rela-
tively small number of aerodynamic model runs.

In addition, the cost of the Bayesian calibration can be re-
duced by eliminating non-influential parameters. These can
be determined by performing a sensitivity analysis (Oak-
ley and O’Hagan, 2004). In this study we will employ a
variance-based global sensitivity analysis using Sobol’ in-
dices (Sobol’, 2001), based on our earlier work (Kumar et al.,
2020). Determining Sobol’ indices is straightforward once
the PCE surrogate model has been determined.

The novelty of this work lies in the construction of a
Bayesian framework for aerodynamic wind turbine model
calibration. In addition to that, two realistic calibration
studies based on the DANAERO MW experiments (Mad-
sen et al., 2010) and the New MEXICO experimental data
(Boorsma and Schepers, 2016) were performed. The for-
mer dataset will be used to calibrate airfoil polars, while
the latter will be used to calibrate yaw model parameters.
The DANAERO experiments were supplied by DTU within
the framework of IEA Task 29. Although extensive compar-
isons between results from a large variety of codes (including
the Aero-Module employed in this study) were performed on
DANAERO and New MEXICO in Task 29 (Schepers et al.,
2018, 2021), no thorough uncertainty analysis and calibra-
tion were performed yet. We stress that, even though these
studies show a realistic application of our method with actual
data, they correspond to idealized situations, and the main
purpose of this paper is to demonstrate the calibration frame-
work and its potential for application to a wide variety of
wind engineering problems.

The outline of this paper is as follows: Sect. 2 dis-
cusses the two experimental datasets considered in this study
(DANAERO and New MEXICO). Section 3 describes the
aerodynamic code used in this work (the so-called Aero-
Module) plus parametrization of its inputs and outputs. The
Bayesian calibration methodology, which is accelerated by
constructing a PCE-based surrogate model, is detailed in
Sect. 4. Finally, the results of the calibration and discussion
are presented in Sect. 5 followed by conclusions drawn in
Sect. 6.

2 Experimental data description

In order to demonstrate the proposed Bayesian calibration
framework, measurements from two experiments constitute
the basis for the analysis, which are explained in Sect. 2.1
and 2.2.

2.1 DANAERO MW experiment

The objective of the DANAERO MW experiment was to
provide an experimental basis that can improve the under-
standing of the fundamental aerodynamic and aeroacoustic
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phenomena using a full-scale wind turbine model (Madsen
et al., 2010). A 2.3 MW NM80 turbine located at the Tjære-
borg Enge site and a nearby met mast were both instrumented
with various sensors. A LM38.8 m test blade (schematic) in-
strumented with pressure taps at four blade sections is shown
in Fig. 1 (left). The data acquisition rate was 35 Hz, and in
total about 275 10 min time series were acquired between
July and September 2009, which were made available for the
present analysis.

In the current study, we aim to calibrate airfoil polars (to be
described later), and only a subset of the entire DANAERO
dataset will be used. To be precise, data from “Run 14”
(a single 10 min time series) on the first measurement day
(16 July 2009) is used. This corresponds to a case with little
yaw and shear and with little turbulence (roughly constant in-
flow conditions) under normal operation. The inflow veloc-
ity for this case is around 6 m s−1, and the rotational speed
is 12 rpm. Within this particular 10 min series, the data cor-
responding to 200 s< t < 450s were used, in which almost
constant wind and rotor speed were observed. For more de-
tails, we refer to Madsen et al. (2018). As a result, we have
normal force measurements y(%)(t) at the four blade sections
(% = 1,2,3,4) at Nt = 8750 discrete time steps, gathered in
the data matrix y:

y=

y
(1)(t1) · · · y(1)(tNt )
...

...

y(4)(t1) · · · y(4)(tNt )

 , (1)

where tj = jτ/Nt and τ = 250 s. The radial positions (mea-
sured from the center of the hub) corresponding to these sec-
tions are r = (13.116,19.06,30.216,36.775)m; see Fig. 1
(left). To obtain the distance from the blade root, as used in
the Aero-Module calculations, we subtract the distance from
the blade root to the hub center, which is 1.24 m. Although
using a single 10 min time series corresponding to a single
operating condition is generally insufficient to perform accu-
rate BEM model calibration, this experiment is merely used
as a first demonstration of our framework. A more advanced
calibration run involving multiple operating conditions will
be performed with the data from the New MEXICO experi-
ment described in the next section.

Besides the data obtained directly from the Tjæreborg
Enge site, airfoil polars were obtained from several wind tun-
nel tests, such as those on the NACA 63-418 airfoil cross-
section in the LM Wind Power wind tunnel (Madsen et al.,
2010); see Fig. 1 (right). These airfoil polars consist of lift,
drag, and moment coefficients as a function of angle of
attack. Four polars are used in this study, whose location
roughly (but not exactly) corresponds to the measurement
positions mentioned above. These polars will form the in-
puts to our BEM code (see Sect. 3.1) and are to be calibrated
in this study.

2.2 New MEXICO experiment

The main objective of the New MEXICO experimental cam-
paign was to create a database of detailed aerodynamic
and load measurements on an experimental wind turbine to
be used for computational model validation and improve-
ment (Boorsma and Schepers, 2014, 2016). To this aim, a
three-bladed 4.5 m diameter wind turbine model was built
and tested in the large low-speed facility of the German–
Dutch wind tunnel (DNW-LLF) during a campaign in June–
July 2014 (see Fig. 2); a detailed description of the experi-
ment is available in Boorsma and Schepers (2014). The data
acquisition system consists of dynamic pressure sensors di-
vided over five sections and distributed over three blades:
at 25 % and 35 % (blade 1), 60 % (blade 2), and 82 % and
92 % (blade 3) radial position, respectively. These were post-
processed to obtain (amongst others) sectional normal forces,
whose variations with azimuth and yaw angle will be consid-
ered in this study.

The corresponding operating conditions (scenarios) are
described by a vector Si :

Si = (ρ∞,V∞,β,φ), i = 1, . . . ,NS, (2)

where ρ∞ is the density, V∞ is the inflow velocity, β is the
yaw angle, φ is the pitch angle, and NS is the number of op-
erating conditions. For the yawed flow case, 29 runs were
performed in total, but in this study we restrict ourselves to
NS = 3, corresponding to IDs 935, 939, and 948 (see Ta-
ble 1). These conditions are such that a significant induced
velocity is expected (so that the yaw model will have a sig-
nificant effect), while at the same time there is little dynamic
stall occurring. For each operating condition, there is a cor-
responding dataset containing the normal force as a function
of azimuth at five radial sections % = 1, . . . ,5 (the tangen-
tial force is also available but not used here due to the large
uncertainty associated with the measurements). Similar to
Eq. (1), this will be denoted by the data matrix y but now
with an additional subscript i to indicate that there is a data
matrix corresponding to each different operating condition:

yi =

y
(1)(t1) · · · y(1)(tNt )
...

...

y(5)(t1) · · · y(5)(tNt )


i

, i = 1, . . . ,NS . (3)

3 Aerodynamic wind-turbine model

3.1 Aero-Module description and uncertainties

TNO (Netherlands Organisation for Applied Scientific Re-
search) is the developer of a state-of-the-art aerodynamic
model based on a BEM formulation, called the Aero-Module
(Boorsma and Grasso, 2015) (formerly developed by ECN,
now part of TNO). The model simulates the aerodynamic
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Figure 1. Schematic of NM80 wind turbine blade implemented with surface pressure taps (left) and NACA 63-418 airfoil blade section
tested in the LM Wind Power wind tunnel in Lunderskov (right) (Özçakmak et al., 2018).

Figure 2. New MEXICO rotor tested in the DNW-LLF wind tunnel
(Boorsma and Schepers, 2014, 2016).

Table 1. New MEXICO operating conditions considered for yaw
model calibration.

Scenario Run ρ∞ V∞ β φ

ID (kg m−3) (m s−1) (◦) (◦)

S1 935 1.20395 10.04 15.01 −2.3
S2 939 1.20395 9.98 30.01 −2.3
S3 948 1.20453 9.98 45.01 −2.3

behavior of wind turbines by combining the concept of mo-
mentum conservation of the flow (BEM theory) and can be
coupled to an aeroelastic model that solves the equations of
motion for the structure, possibly extended with the hydro-
dynamics of the sea and control algorithms. In this work, we
concentrate on the first aspect, namely the prediction of flow
and blade forces as given by the BEM method. All calcula-
tions are done for a rigid construction, since the effects from
flexibilities are considered small: in New Mexico a small
rigid rotor was used, and for DANAERO the elastic effects

were found to be small (Schepers et al., 2021). A detailed
description of the BEM approach within the Aero-Module is
beyond the scope of the current discussion and can be found
in Boorsma et al. (2012). Important for the current discus-
sion is to distinguish between different types of inputs in the
Aero-Module. The first type of inputs consists of external
(operating) conditions, such as wind speed and air density.
The second type consists of turbine specifications, such as
the blade geometry. The third type consists of model param-
eters inherent to the BEM formulation, such as lift and drag
polars, tip correction factors, and yaw model parameters. For
the case of a rigid turbine, with a uniform inflow field, the
main uncertainties in this third type (the BEM model param-
eters) mainly arise from the following (Abdallah et al., 2015).

– Airfoil aerodynamics. The static airfoil data from wind
tunnel experiments or from 2D airfoil codes, utilized as
an input for the BEM simulations, have significant un-
certainties and can be inaccurate (Bak et al., 2010).

– Empirical models. Several empirical models such as dy-
namic stall models, 3D correction models, and Prandtl
correction models are used to include unsteady and 3D
effects in BEM models (Wang et al., 2016; Schepers,
2012). It is often the choice of a designer to select be-
tween different empirical models, which can suffer from
modeling uncertainty.

In the current study we will focus on calibrating this third
type of input parameters, i.e., the model parameters, in par-
ticular static airfoil data (lift, drag, and moment polars) and
yaw model parameters. However, we stress that the calibra-
tion framework that is presented here can be directly applied
to the first and second type of uncertainties as well.

In mathematical notation, these uncertainties
will be captured in a vector of model parameters
θM = (θM, 1, . . . ,θM,Nθ ) ∈ RNθ , to be described in more
detail in Sect. 3.2. The Aero-Module for a certain wind
turbine is denoted by M and returns a vector of outputs Y ,
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Figure 3. Flowchart for our Bayesian calibration framework.

depending on the (uncertain) model parameters θM and on
the (given) value of the operating conditions Si :

Yi = Yi(θM)=M(θM,Si), i = 1, . . . ,NS, (4)

where NS is the number of operating conditions. The out-
put Y contains, amongst others forces, moments and power,
which are generally time-dependent. Typically only a subset
of the entire Aero-Module output, indicated as the quantity
of interestQ, will be used to perform sensitivity analysis and
calibration of the model. This will be further described in
Sect. 3.3. It should be stressed that θM, Y , and Q are random
vectors, each of which is associated with a joint probability
density function.

The analysis carried out in this study is based on the
procedure shown in Fig. 3, including the steps that will be
separately described in the following sub-sections. The pro-
posed Bayesian calibration approach is performed using the
UQLab uncertainty quantification software (Marelli and Su-
dret, 2014), especially the recently developed Bayesian in-
version module (Wagner et al., 2022).

3.2 Input parametrization

3.2.1 DANAERO case: uncertainty in polars

For the DANAERO case, we will consider the uncertainties
associated with the airfoil aerodynamics: lift coefficient (Cl),
drag coefficient (Cd), and moment coefficient (Cm). These
coefficients are functions of both angle of attack α and radial

position r along the blade (also Reynolds number and Mach
number, but this dependence is not studied here); this gives
rise to a very large number of uncertain parameters. In order
to reduce this number, we parametrize these uncertainties as
a function of angle of attack and radial position.

The parametrization as a function of radial position is
automatically accounted for within the Aero-Module code:
the user has to provide the lift, drag, and moment polars
only for a few airfoil sections along the radius of the blade,
e.g., Cl, j (α) for j = 1. . .Nsec, with Nsec being the number of
airfoil sections. The Aero-Module interpolates these polars
to other radial positions based on the relative airfoil thick-
ness.

The parametrization as a function of angle of attack is per-
formed as follows. Given a reference polar, e.g., Cl, ref, j (α)
for the lift coefficient at airfoil section j , a perturbed polar
C̃l, j is obtained by scaling the reference curve as follows:

C̃l, j (α)={
Cl, ref, j (α) · (1+1Cl, j ) αmin ,j < α < αmax ,j ,

Cl,ref ,j (α) otherwise.
(5)

The same equation is used for the drag and moment coef-
ficients. The value of 1Cl, j determines how much the ref-
erence curve is scaled. The bounds αmin,j and αmax,j indi-
cate for each airfoil section j which part of the polar is per-
turbed. The unperturbed and perturbed parts of the polar are
combined via a non-uniform rational basis spline (NURBS)
curve. A similar equation holds for the drag and moment
coefficients. Example curves obtained with different realiza-
tions of 1Cl, 1Cd, and 1Cm are shown in Fig. 4.

For the DANAERO case, where the number of air-
foil sections is Nsec = 4, the parametrization of lift, drag,
and moment coefficients leads to the following Nθ = 12-
dimensional parameter vector θM:

θM = (1Cl, 1, . . .,1Cl, 4,1Cd, 1, . . . ,1Cd, 4,1Cm, 1,

. . . ,1Cm, 4). (6)

One advantage of the multiplicative type of parametriza-
tion Eq. (5) is that the uncertainty becomes largest when
the magnitude of the reference curve is large; this is phys-
ically meaningful, as lift curves tend to be most uncertain
around the region of maximum lift (and/or at high angles
of attack, but these are not considered here). However, other
types of parametrization could be considered. For example,
Bottasso et al. (2014) considered an additive type of correc-
tion (i.e., Cl, ref+1Cl), with1Cl expressed in terms of shape
functions and coefficients, and applied a decorrelation pro-
cedure to improve the identifiability of the drag coefficients.
Matthäus et al. (2017) obtained a perturbed lift curve by in-
terpolating between two reference lift curves corresponding
to clean and rough states. In Abdallah et al. (2015), a number
of typical points along the Cl(α) curve (e.g., maximum lift,
separation point) was used to construct a parametric spline
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Figure 4. Examples of perturbed Cl, Cd, and Cm polars at Sect. 2 as described by Eq. (5), with αmin =−10◦ and αmax = 50◦.

approximation to the lift curve. Since the focus of this arti-
cle lies in showing how the combination of surrogate models,
sensitivity analysis, and Bayesian inference can be used for
efficient calibration, we have not considered such more ad-
vanced polar parametrizations, but we note that it is possible
to use any of them within our calibration framework.

3.2.2 New MEXICO case: uncertainty in yaw model

With the New MEXICO experiments, as described in
Sect. 2.2, the goal is to calibrate a set of parameters that de-
termine the yaw model of the Aero-Module. This yaw model
is described in Schepers (2012) and consists of 10 ampli-
tude coefficients denoted by AMkl and 10 phase coefficients
denoted by PHkl (k = 1,2; l = 1 . . .5), which are used in an
equation for the induced velocity in yawed conditions (see
Eq. C1 in Appendix C). We will (as a proof of concept) cali-
brate only the first five parameters of this model; i.e., we take

θM = (AM11,AM12,AM13,AM14,AM15). (7)

The nominal values for these coefficients can be found in
Appendix B in Schepers (2012) and are repeated in Ap-
pendix C. The other yaw model parameters are associated
with the phase shift of the induced velocity and with higher-
order harmonics and will be left at their nominal values, since
the number of experimental data considered here is too lim-
ited to perform a sensible calibration.

3.3 Output parametrization and quantity of interest

The Aero-Module predictions given by Eq. (4) involve a
large set of time-dependent quantities, making the dimension
of the output effectively very high dimensional. For the pur-
pose of sensitivity analysis and model calibration, it is highly
desirable to reduce the dimensionality of the output. As a first
step (both for DANAERO and New MEXICO simulations),
out of all possible outputs (forces, moments, power, etc.) we
restrict ourselves to the normal forces FN (“normal” indicat-
ing normal to the chord), interpolated to the radial positions
corresponding to the measurement positions.

3.3.1 DANAERO case: time-independent results

For the DANAERO case, the inflow conditions in the Aero-
Module are assumed constant in time, and given that there is
no shear or yaw, this results in normal force predictions that
are steady state (time-independent). The experimental data
are, on the other hand, only approximately steady state since
they were performed in atmospheric conditions. The ques-
tion then arises of how to perform the comparison between
simulation and experiment in order to perform the desired
calibration. The most natural possibility would probably be
to average the experimental data in time. However, since we
have only a single 10 min time series at this condition, this
would effectively reduce the number of measurement points
to just a single point, which would be too little to perform
any sensible calibration. As a compromise, we decided to
split the time series into a number of subsets (10, 50, 100,
and 200) of the 8750 data points mentioned in Eq. (1), at reg-
ularly spaced intervals. The mean of each subset is then con-
sidered to be an independent measurement point that will be
used in the calibration process (as if they were correspond-
ing to different measurements). This approach allows us to
clearly show the effect of increasing the number of measure-
ment points on the convergence of the posterior distribution
of the airfoil polars. This will be further detailed in Sect. 5.1.

3.3.2 New Mexico case: time-dependent results

For the New MEXICO case, the operating conditions lead to
results that are periodic in time. There are five measurement
positions, and after radial interpolation of the Aero-Module
output to these positions, we effectively have for each oper-
ating condition Si an output matrix of the following form:

Yi(θM)=


F

(1)
N (t1). . .F (1)

N (tNt )
F

(2)
N (t1) . . .F (2)

N (tNt )
F

(3)
N (t1) . . .F (3)

N (tNt )
F

(4)
N (t1) . . .F (4)

N (tNt )
F

(5)
N (t1) . . .F (5)

N (tNt )

 ∈ R5×Nt . (8)
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Here we write for notational simplicity that the time in-
stances t1 . . . tNt of the simulation are the same as the mea-
surement time instances; see Eq. (1). This is in general not
the case but is not very important because of the dimension-
ality reduction technique that we use to compress the output
data, which is described next.

Since the normal force is relatively smooth in time, the
solutions at different time instances are highly correlated,
and dimensionality reduction techniques can be effectively
applied. Commonly used techniques are based on principal
component analysis (PCA) or the related singular value de-
composition (SVD); see for example Bottasso et al. (2014)
and Wagner et al. (2020). In this work, the normal forces are
periodic in time, and a suitable reduction technique is to de-
compose the output signal into Fourier modes via a discrete
Fourier transform:

F̂
(%)
N (k)=

1
Nt

Nt−1∑
j=0

F
(%)
N (tj )exp−i2πjk/Nt ,

k = 0,1, . . .,Nk − 1, (9)

where i =
√
−1 and the resulting coefficients F̂ (%)

N (k) are
complex valued. Note that both FN and F̂N effectively de-
pend on the parameters θM, but this dependence is omitted
here to keep the notation concise. The normal force at a given
section (%) is then approximated by keepingNk Fourier coef-
ficients (ordered as k1,k2, . . . ) that correspond to the modes
that have the largest power spectral density (PSD), plus the
mean of the signal (k = 0). The selection of the PSD peaks
was easy to automate since the peaks are easily distinguish-
able from any background noise, and the signals are well
represented in terms of a few Fourier coefficients. We ex-
pect this to be true also for different operating conditions,
although we recommend as a best practice to plot the origi-
nal output alongside the Fourier representation when moving
to new test cases.

An example of the Fourier representation of the normal
force with three coefficients is shown in Fig. 5 (right), to-
gether with the experimental results and their Fourier rep-
resentation (also with three coefficients) on the left. The
physics of the yaw model (Schepers, 2012) is such that its
parameters are meant to change the amplitude and the phase
shift of the normal forces (via the induced velocities) and not
their mean value. Therefore, the mean of the signal will be
left out from the calibration. Furthermore, as we focus on
calibrating the parameters of the yaw model that are ampli-
tude coefficients (see Eq. 7), we will use the amplitude of the
first mode (and not the phase shift).

3.3.3 Summary

The two previous sections can be summarized by introducing
the quantity of interest Qi for a certain operating condition

Si and model parameters θM as

Qi(θM) :=Q
(
Yi(θM)

)
∈ RNsec×Nk , i = 1, . . . ,NS . (10)

For the DANAERO case we have

DANAERO: Q=


F̂

(1)
N (0)
F̂

(2)
N (0)
F̂

(3)
N (0)
F̂

(4)
N (0)

 , (11)

while for the New MEXICO case we have

New MEXICO: Qi =


|F̂

(1)
N (k1)|
|F̂

(2)
N (k1)|
|F̂

(3)
N (k1)|
|F̂

(4)
N (k1)|
|F̂

(5)
N (k1)|

 , i = 1,2,3, (12)

where k1 = 1 for this test case, since the most energetic mode
coincides with the one with the lowest frequency.

4 Methodology

4.1 PCE-based surrogate model

In order to perform parameter sensitivity and parameter cal-
ibration, typically a high number of computationally expen-
sive Aero-Module runs M(θM) are required. To reduce the
computational time, a surrogate model or emulator is con-
structed (for the quantity of interest) and used in lieu of
the full model. Examples of some popular surrogate models
include kriging (Gaussian process regression), polynomial
chaos expansion (PCE), support vector machines (SVMs),
and radial basis functions (RBFs) (Schöbi, 2019). In this
study, a PCE-based surrogate model will be used because
PCE has been found to be an efficient method in comput-
ing the stochastic responses of complex computational mod-
els (Soize and Ghanem, 2004; Guo et al., 2018; Dutta et al.,
2018).

The PCE surrogate model is constructed to approximate
the quantity of interest as predicted by the aerodynamic
model:

QPC
i (θM)≈Qi(θM), i = 1, . . . ,NS, (13)

where the subscript i indicates that a different surrogate
model is built for each operating condition Si , which depends
on the same parameter set θM. This subscript will be left out
in what follows if no confusion can arise. A PCE approx-
imation QPC(θM) of the aerodynamic model Q(θM) can be
defined as a weighted sum of multivariate polynomials in θM
(Marelli and Sudret, 2019; Smith, 2013):

QPC(θM)=
∑
k∈K

wk9k(θM), (14)
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Figure 5. Representation of measurements (a, solid lines) and Aero-Module output (b, solid lines) using three Fourier coefficients (dashed)
at different radial sections, for scenario S1 (run 935) of the New MEXICO experiment (last revolution shown).

where 9(θM) is the multivariate polynomial basis, and wk
is the coefficient corresponding to basis function 9k. k is
the multi-index, and K is the set of multi-indices describ-
ing which polynomial basis functions are used. The set K in
Eq. (14) depends on the truncation scheme; in this work, a
hyperbolic truncation scheme is used with truncation param-
eter equal to 0.75 (Blatman, 2009). Furthermore, an adap-
tive strategy is followed in which sparse PCE expansions are
pursued, by favoring low rank truncation schemes (i.e., pe-
nalizing the norm ‖w‖1). To achieve this, the coefficients wk
are computed from the following adapted least-squares min-
imization problem (Marelli and Sudret, 2019):

ŵ= argmin
w

E
[(

wT9(θM)−Q(θM)
)2
]
+ λ||w||1. (15)

This equation is solved with the least-angle regression
(LARS) algorithm (Efron et al., 2004), given that a set of
N samples of θM have been provided, which we denote by
θ

(n)
M , with n= 1 . . .N . We will use Latin hypercube sampling

to obtain these samples.
The LARS algorithm in the context of PCE starts with

all PCE coefficients set to zero and then iteratively selects
polynomials based on the correlation with the current resid-
ual. After every iteration an a posteriori error, namely the
leave-one-out (LOO) cross-validation error εLOO, is com-
puted (Marelli and Sudret, 2019):

εLOO =
1
N

N∑
n=1

(
Q(θ (n)

M )−QPC\(n)(θ (n)
M )

)2
, (16)

where QPC\(n) denotes the PCE surrogate model trained by
leaving the nth sample out. The surrogate model with the
smallest εLOO is then chosen as the best PCE model.

4.2 Sensitivity analysis

Sensitivity analysis aims at finding which input parameters
θM of the Aero-Module explain at best the uncertainties
or variations in the model predictions. Sensitivity analysis
aids in identifying non-influential parameters that can subse-
quently be fixed at their nominal values in the calibration pro-
cess. In this work, a so-called global sensitivity analysis us-
ing a variance-based Sobol’ decomposition technique is per-
formed. For the sake of conciseness, we describe this tech-
nique briefly; a more detailed description in the same context
of aerodynamic wind turbine models is available elsewhere
(Kumar et al., 2020).

The idea of a variance-based analysis is to relate the vari-
ance in the model inputs to the variance in the model output.
The Sobol’ indices are defined as a ratio of variances. An
important advantage of using PCE as surrogate model is that
once the PCE coefficients are determined, the first-order and
the total-order Sobol’ indices can be obtained directly with-
out any additional model evaluations. In this work the total-
order Sobol’ index ST

i , corresponding to θM, i , is used and is
given by

ST
i =

1
D

∑
k∈Ki

w2
k, i = 1, . . .,Nθ , (17)

where Ki is a subset of K which consists of the set of mul-
tivariate polynomials that are non-constant in the ith input
parameter θM, i , and D = Var[QPC(θM)] is the variance of
the PCE. The total sensitivity indices can be interpreted as
an importance measure for the parameter θM, i : a large ST

i

implies, roughly speaking, that θM, i has a strong influence
on Y . These total indices include possible interaction effects
between the parameters, which can be excluded by looking
at the first-order indices. For the New MEXICO test case
such an interaction is indeed present, but since it does not
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change the conclusions from the analysis, this will not be
further reported here. Note that the sensitivity analysis is per-
formed without taking into account any measurement data; it
is purely model-based. Furthermore, it should be noted that
the analysis assumes that the parameters θM, i are indepen-
dent.

4.3 Bayesian calibration

A widely used Bayesian calibration framework has been in-
troduced by Kennedy and O’Hagan (2001). The framework
can be used to predict the “true” behavior of a computa-
tional model by calibrating model parameters θM to make
the model predictions Y most likely to represent measure-
ments y. We assume that the discrepancyE between the PCE
approximation to the Aero-Module prediction, QPC, and the
measurement data y is of additive type, so that we can write

Qd
i =Q

PC
i (θM)+E, i = 1, . . . ,NS . (18)

The subscript i corresponds again to operating condition Si .
QPC is the PCE approximation to the quantity of interest
given by a few Fourier coefficients computed from the Aero-
Module output Y ; see Eq. (10). Qd is the quantity of interest
for the measurement data y, which is determined in a similar
fashion. The discrepancy term E accounts for both model er-
ror and measurement errors and is assumed to be a normally
distributed random vector, written as

E ∼N
(
0,6(θE)

)
, (19)

where N
(
0,6(θE)

)
denotes the multivariate normal distribu-

tion with zero mean value and diagonal covariance matrix 6
parametrized by a set of variance parameters θE ∈ RNsec·Nk .
E will typically have a dependence on the operating condi-
tion, but for sake of simplicity this is not considered in our
test cases. We furthermore note that for the sake of simplicity,
and also due to the lack of knowledge of the model bias term,
the discrepancy term is assumed to have a zero mean. This is
a commonly used approach in Bayesian model calibration,
meaning that, on average, we believe the model is able to
reproduce the data. More advanced approaches are possible
(e.g., using a Gaussian process to model the discrepancy),
also in the context of UQLab (by providing a user-defined
likelihood function).

The parameters θE are known as hyperparameters and will
be calibrated together with the model parameters θM. The
combined parameter vector θ = (θM,θE) is assumed to be
distributed according to a so-called prior distribution π (θ ):

π (θ )= π (θM)π (θE), (20)

where we have assumed that the prior on the model param-
eters and on the hyperparameters is independent. The Gaus-
sian discrepancy model from Eq. (19) induces the following

likelihood function:

L(θ;Qd)=N
(
Qd
|QPC(θM),6(θE)

)
. (21)

The expression for the posterior distribution of the param-
eters θ then follows from Bayes’ theorem (Gelman et al.,
2013):

π (θ |Qd)=
L(θ;Qd)π (θ )

Z

with Z =

∫
L(θ;Qd)π (θ ) dθ, (22)

where π (θ |Qd) is the posterior distribution and Z is the
normalizing factor called the evidence (the integration is
over the domain of θ ). The posterior distribution π (θ |Qd)
in Eq. (22) can be interpreted as the degree of belief about
the parameters θ given the measurement dataQd. Commonly
reported point estimates derived from the posterior are the
mean and the maximum a posteriori (MAP) estimate, defined
as the value where the posterior distribution is maximum,
i.e., θMAP = argmaxθπ (θ |Qd). We will also report the pos-
terior predictive, which is obtained by propagating the poste-
rior distribution, given by Eq. (22), through the model

π (Q̂d
|Qd)=

∫
L(θ;Q̂d)π (θ |Qd) dθ. (23)

Here Q̂d represent future observations of the quantity of in-
terest, so the posterior predictive expresses the probability of
observing new data Q̂d given existing dataQd. The posterior
predictive is computed by using the samples of the posterior
and evaluating the likelihood from the PCE model evalua-
tions (adding an independently sampled discrepancy term)
(Wagner et al., 2022).

The computation of the high-dimensional integral Z in
Eq. (22) is not tractable for a general model QPC(θM). The
computation of Z can be circumvented by using Markov
chain Monte Carlo (MCMC) methods, which avoid the need
to compute Z. MCMC techniques construct Markov chains
to produce samples distributed according to the posterior dis-
tribution. With these samples, the posterior characteristics
can be evaluated. In this work, we will use the so-called
affine-invariant ensemble sampler (AIES) (invariant to affine
transformations of the target distribution), which requires lit-
tle tuning and is suitable for cases where strong correlations
exist between the parameters (Goodman and Weare, 2010).
However, each posterior sample still requires an evaluation
of the likelihood (see Eq. 22), so even with AIES thousands
of model evaluations are still needed to obtain an accurate
posterior. The PCE-based surrogate model QPC will there-
fore be used in place of the full Aero-Module Q.

5 Results and discussion

In this section, the framework presented in Sect. 4 is ap-
plied to (i) calibrate the sectional lift polars that are input
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to the Aero-Module using the DANAERO MW experiment
and (ii) to calibrate the yaw model parameters of the Aero-
Module using the New MEXICO experimental dataset.

5.1 Lift polar calibration with DANAERO data

As described in Sect. 2.1, the NM80 turbine at a mean wind
speed at hub height set to 6.1 m s−1 will be considered. The
turbine rotational speed is set to 12.3 rpm, the pitch angle is
set to 0.15◦, and the yaw angle is set to zero.

5.1.1 Sensitivity analysis

In order to build the PCE surrogate model 14, the Aero-
Module is evaluated at a number of random samples of the
parameter vector θM (given by Eq. 6). We specify a normal
distribution for each component of θM:

θM, i ∼N
(
0,σC), i = 1, . . . ,Nθ , (24)

where C stands for either 1Cl, 1Cm, or 1Cd. We take
σC = 0.125 (for all sections, as well as for lift, drag, and mo-
ment coefficient). This choice is such that the original polar is
perturbed around its mean and that 95 % of the samples will
fall within ±25% of the unperturbed value. It also encodes
our belief that very large perturbations from the original polar
are less likely than small perturbations. To avoid unphysical
realizations (unlikely but not impossible), the normal distri-
bution is truncated to have a bounded support of [−0.5,0.5].
The resulting perturbed polars follow from Eq. (5), and ex-
amples are shown in Fig. 4.
N = 32 model evaluations were sufficient to achieve an

LOO error (Eq. 16) smaller than 10−3 (for details we refer
to Appendix B). The total-order Sobol’ indices ST

i follow-
ing Eq. (17) are computed with the PCE surrogate model,
as explained in Sect. 4.1–4.2. The resulting Sobol’ indices
expressing the sensitivity of the mean normal force at each
radial section towards the perturbation in the lift, drag, and
moment coefficients are shown in Fig. 6. Note that we report
here the sensitivity indices for the sectional normal forces,
which is an extension compared to our sensitivity analysis
(Kumar et al., 2020), where we considered the total nor-
mal force. Figure 6 indicates that the variation in the nor-
mal forces can be completely attributed to the variation in
the lift coefficients. This conclusion is in line with what has
been reported for the total normal force (Kumar et al., 2020).
However, we should note that it was not trivial to obtain these
results, because there was an inconsistency between the pro-
vided (“planform”) thickness distribution of the blade and
the provided thickness of the four airfoil sections. We have
therefore changed the airfoil thicknesses as is explained in
Appendix B2.

With the corrected thickness distribution the sensitivity
analysis confirms what we know from BEM theory, namely
that the sectional normal force dFN depends on Cl and Cd

Figure 6. Sensitivity of sectional normal force with respect to per-
turbations in airfoil polars with adapted thickness.

via

dFN = dL(α)cosα+ dD(α) sinα

where

{
dL(α) = Cl(α) 1

2ρV
2cdr,

dD(α) = Cd(α) 1
2ρV

2cdr.
(25)

Here dL and dD are the sectional lift and drag forces respec-
tively, α is the local angle of attack, V is the relative veloc-
ity, dr indicates a spanwise section, and c is the local chord
length. Since the angle of attack is only a few degrees at the
measurement stations under consideration and the drag co-
efficient at small α is much smaller than the lift coefficient
at small α, the normal force is dominated by the lift coeffi-
cient. Note that since we consider the relation between nor-
mal force (normal to the chord) and lift, the twist or pitch
angle of the blade does not enter in Eq. (25). The moment
coefficient does not influence the normal force, which is con-
sistent with aerodynamic theory.

Given that the sensitivity of the normal force is dominated
by the lift coefficients, we will consider only the calibration
of the lift coefficients in the next section. Calibrating the drag
or the moment coefficients would require one to either use
different measurement data (e.g., tangential force measure-
ments) or to use a more advanced technique to deal with
the low identifiability of the drag coefficients, such as the
SVD-based decorrelation technique proposed by Bottasso
et al. (2014). Since the purpose of this test case is mainly
to show an example of our methodology (sensitivity analy-
sis and Bayesian inference with surrogate models) and not to
accurately calibrate the airfoil polars over several operating
conditions, this is not considered here.

5.1.2 Calibration

Following the sensitivity analysis, Bayesian calibration was
performed for eight parameters, namely the four model pa-
rameters 1Cl, 1–1Cl, 4 and the four discrepancy parameters
θE, 1–θE, 4, using the normal force measurements obtained
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from the DANAERO MW experiment. The surrogate model
constructed in Sect. 5.1.1 is retrained, without the drag and
moment coefficients as uncertain parameters, again using
N = 32 runs of the Aero-Module. Since the sampling method
is random (LHS), the surrogate model used for the calibration
can in principle be somewhat different from the one used for
the sensitivity analysis. In practice the surrogate model for
calibration will be even more accurate, since it involves fewer
parameters.

In the Bayesian analysis, the prior on the model parameters
is taken the same as in Eq. (24). The prior on the discrepancy
parameters is taken as a uniform distribution:

θE, i ∼ U(0,σ 2
E), i = 1, . . .,4. (26)

Note that θE (N2 m−2) and σ 2
E model the variance between

model and data and are therefore positive quantities. We
take σ 2

E = 5× 104 (so that σE ≈ 223 N m−1), which we de-
termined by considering the standard deviation in the mea-
surement data (around 100 N m−1) and doubling this value
to get a sufficiently broad prior. One could argue that this er-
ror should depend on the radial position along the blade, but
this was not assumed in our prior specification. Instead, we
did not want to introduce too much (possibly wrong or bi-
ased) a priori knowledge about the radial dependence but let
the calibration process “do the job”.

The PCE-based surrogate model for the quantity of inter-
est, QPC(θM), is used in place of the Aero-Module through-
out the analyses. The AIES algorithm with 102 parallel
chains and 103 steps is deployed (in total 105 MCMC iter-
ations and concomitant surrogate model evaluations). Con-
vergence is assessed based on the Gelman–Rubin diagnostic
(Wagner et al., 2022) and visual inspection of the MCMC
trace plots (see Fig. B4 in the Appendix), and a burn-in of
50 % is used. With the full Aero-Module, this would take
several weeks to compute on a desktop computer. By using
the surrogate model instead, this is reduced to less than an
hour.

As discussed in Sect. 3.3.1, the number of measurements
is varied to illustrate the effect on the posterior distribu-
tion of the parameters. As an example, Fig. 7a illustrates
how the prior on 1Cl, 1 (truncated normal) becomes more
and more dominated by the data when the number of mea-
surement points increases. The marginal posteriors for the
other parameters show similar behavior. If additional data
points were to be included, the posterior would become even
stronger peaked (almost independent of the prior distribu-
tion).

In what follows, we will focus on the case where 200 mea-
surement points are used for the calibration. Figure 8 shows
the resulting samples of the posterior distribution for all pa-
rameters. The ellipsoidal form of the two-dimensional scat-
terplots indicates that the different parameters are uncorre-
lated to good approximation. This is consistent with the out-
come of the sensitivity analysis, which showed that each sec-
tional lift force was basically only depending on the force

Table 2. Summary of prior and posterior distribution for
DANAERO calibration with 200 measurements.1Cl is dimension-
less, and θE has dimensions N2 m−2.

Parameter Prior Posterior – Posterior –
MAP standard

deviation

1Cl,1 N (0, 0.125) −0.23 1.1× 10−2

1Cl,2 N (0, 0.125) −0.17 1.1× 10−2

1Cl,3 N (0, 0.125) −0.22 7.1× 10−3

1Cl,4 N (0, 0.125) −0.21 5.6× 10−3

θE,1 U(0, 50000) 2.9× 103 2.9× 102

θE,2 U(0, 50000) 4.6× 103 5.1× 102

θE,3 U(0, 50000) 9.0× 103 9.4× 102

θE,4 U(0, 50000) 7.0× 103 7.3× 102

coefficient at the very same section and not depending on
the lift coefficient at other sections. Note that if the original
thickness distribution were to be used (see Appendix B2), a
strong correlation between the lift coefficients at Sects. 3 and
4 would show up.

A summary of the posterior marginals displayed in Fig. 8
is compiled in Table 2 in terms of the MAP and the stan-
dard deviation. Based on the MAP values, an example of a
calibrated Cl polar, compared with the reference Cl polar, is
shown in Fig. 7b. The MAP values of the lift coefficients all
lie around −0.2, meaning that the original lift coefficients
need to be corrected by about 20 % in order to match the ex-
perimental results (we will comment on this relatively large
change in the next paragraph). Table 2 also lists the stan-
dard deviation associated with the 1Cl parameters, which is
in all cases small, confirming the observation of Fig. 7a that
the posterior is sharply peaked when sufficient measurement
points are included.

Given the samples of the posterior distribution, the poste-
rior predictive distribution is computed following Eq. (23)
and plotted along with the measurement data, the uncali-
brated model results, and the model evaluated at the MAP in
Fig. 9. Clearly, the calibrated Aero-Module (MAP) is over-
lapping with the mean of the experimental data. Furthermore,
the posterior predictive (which expresses the probability of
observing new data given the calibrated lift polars) centers
nicely around the MAP and encapsulates the experimental
data well. The results of the uncalibrated Aero-Module at the
third and fourth radial section are very unlikely given the cal-
ibrated lift polars.

We note that in order to obtain the posterior predictive
of other possible quantities of interest not considered in
this work (such as the power output or the blade bending
moment), one would preferably add these quantities to the
model output list before the surrogate model is being trained,
so that the posterior predictive can be efficiently evaluated
without requiring full model runs. Alternatively, one could

https://doi.org/10.5194/wes-7-759-2022 Wind Energ. Sci., 7, 759–781, 2022



770 B. Sanderse et al.: Efficient Bayesian calibration of aerodynamic wind turbine models

Figure 7. Calibration results for the lift coefficient at the first radial section. (a) Posterior of1Cl,1 with increasing number of measurements.
(b) The calibrated Cl,1 polar evaluated at the MAP of the posterior (obtained with 200 measurements), compared to the uncalibrated polar.

Figure 8. Samples of the posterior distribution of model parameters θM = (1Cl,1. . .1Cl,4) and discrepancy parameters θE = (θE,1. . .θE,4)
for the DANAERO test case with 200 measurements. The orange crosses correspond to the MAP estimates.

use the full Aero-Module with the calibrated parameters and
use these to determine the posterior predictive for the power,
but that would be computationally very expensive.

It is important to note that using the obtained lift polars
and hyperparameters in a predictive setting for a different
set of operating conditions will require careful considera-
tion. Firstly, using a single operating condition for calibrat-
ing the lift polars, as is currently the case, makes their valid-
ity to other operating conditions limited. Secondly, the dis-

crepancy between model and measurement data (consisting
of both model and measurement errors), E in Eq. (18), has
been fully accounted for by calibrating the lift coefficient. It
is highly likely that E depends also on other factors, such
as the simplifications (missing physics) present in BEM the-
ory, the unsteadiness of the atmospheric conditions, and the
uncertainty in the measurements. This is perhaps the rea-
son why that relatively large changes (around 20 %) in the
sectional lift coefficients are needed to achieve a match be-
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Figure 9. Comparison of uncalibrated and calibrated Aero-Module
predictions of sectional normal forces with the DANAERO mea-
surements. The grey shaded areas indicate the posterior predictive
distributions. The large blue crosses indicate the mean of the mea-
surement data (at each section), and the small crosses indicate the
200 measurements (at each section). The Aero-Module predictions
are obtained from the surrogate model and are essentially indistin-
guishable from the full Aero-Module results, which have therefore
been omitted for the sake of clarity.

tween the Aero-Module and the experimental data. Lastly,
the values obtained for the hyperparameters θE, 1–θE, 4 are
very much dependent on the aerodynamic model and the data
used. These values currently include both the measurement
noise and the model inadequacy, which are not expected to
be the same for a different set of measurements, a different
operating condition, or a different aerodynamic model.

5.2 Yaw model calibration with New MEXICO data

In the previous section we showed as a proof of concept how
the combination of surrogate modeling, sensitivity analysis,
and Bayesian inference can be used to calibrate parameters
of the Aero-Module. The test case was relatively simple in
the sense that only a single operating condition was used, and
because the relation between lift coefficient and normal force
(Eq. 25) is linear, the sensitivity analysis and calibration re-
sults were quite straightforward. In this section we move to
a more advanced test case, in which the parameters of a yaw
model are calibrated based on normal force measurements.

5.2.1 Sensitivity analysis

As mentioned in Sect. 2.2, experiments and corresponding
simulations were carried out for three different operating
conditions; the values are shown in Table 1. The parame-
ters to be calibrated are the yaw model parameters given by

Eq. (7) and repeated here for convenience:

θM = (AM11,AM12,AM13,AM14,AM15). (27)

The nominal (uncalibrated) values for these parameters are
listed in Table C1 in Appendix C. A normal distribution is
assumed for each amplitude coefficient, based on consulta-
tion with the developer of the yaw model (Schepers, 2012):

AM∼N (µ,σ ), (28)

where µ equals the nominal value provided in Table C1, and
σ is taken equal to 0.1. This value is such that the spread in
the experimental data can be captured by the Aero-Module
(as will be needed for calibration) and also makes sure that
the induced velocity is likely to remain positive.

Similar to the previous case, a PCE is set up by draw-
ing random samples from the parameter vector. In Appendix
C the convergence of the LOO error is assessed, and it is
shown that by taking N = 256 samples (for each scenario)
the LOO error is at most on the order of a few percent, which
is sufficient to obtain accurate Sobol’ indices (and to per-
form calibration). The total-order Sobol’ indices ST follow-
ing Eq. (17) are computed for the five-dimensional param-
eter vector θM. In contrast to the DANAERO case (where
the normal force at section i depended exclusively on the lift
coefficient at section i), in this case the normal force at a cer-
tain section depends on the value of all model parameters, so
that many more simulations are required to obtain an accu-
rate surrogate model.

The resulting plots for the total Sobol’ indices are shown
in Fig. 10 for all three operating conditions. It is clear that pa-
rameter AM11 is especially important at the inner part of the
blade, whereas parameters AM12 and AM13 become increas-
ingly important for the outboard sections. AM14 and AM15
have little dependency on r but instead increase in impor-
tance when the yaw angle is increased. This behavior is con-
sistent with expression (C1). Overall, it can be concluded that
all parameters are significantly influencing the normal force
behavior (under the assumed distributions).

5.2.2 Calibration

The sensitivity analysis did not identify clear non-influential
parameters, so all five yaw model parameters will be included
in the calibration process. The experimental data for the cal-
ibration consist of the normal force measurements obtained
from the New MEXICO experiment. However, the normal
force measurements at Sect. 3 were not included in the cali-
bration process, for the following reasons. Firstly, in Schep-
ers et al. (2018) it was shown that the normal force ampli-
tude measured at Sect. 3 (for case 2.1) appeared to be much
lower than predicted by both BEM and computational fluid
dynamics (CFD) codes. Secondly, it turned out that under the
assumed range for the AM parameters, it was not possible to
get amplitudes as small as reported in the measurement data
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Figure 10. Sensitivity analysis for three different operating conditions: S1 (top), S2 (middle), and S3 (bottom). Here θM =
(θ1,θ2,θ3,θ4,θ5)= (AM11,AM12,AM13,AM14,AM15).

(and this could not be fixed by increasing the range). Perhaps
this could be fixed by including the other parameters of the
yaw model, but it is also likely that the measurement data
are off at this point. Therefore, the normal force at Sect. 3
has been removed from the surrogate model constructed in
Sect. 5.2.1 for the purpose of calibration. The resulting PCE-
based surrogate model for the quantity of interest, QPC(θM),
is based on 768 samples (256 for each scenario) and used in
place of the Aero-Module throughout.

The prior on the model parameters is taken the same as in
Eq. (28). Given the limited number of measurement data, the
discrepancy parameters are not calibrated in this test case but
are chosen to be fixed (with the same value for each scenario
and each radial section) at θE = σ 2, where σ is taken equal to
3 as a rough estimate based on the uncertainty bands reported
in Schepers et al. (2018). Like in the previous test case,
the AIES MCMC algorithm with 103 steps and 102 parallel
chains is deployed. The posterior samples and the marginal
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Figure 11. Samples of the posterior distribution of yaw model parameters for the New MEXICO test case. The orange crosses correspond
to the MAP estimates.

distributions are shown in Fig. 11, and corresponding statis-
tics are given in Table 3 (for MCMC trace plot examples,
we refer to Fig. C2 in Appendix C). One can observe that
the posterior distributions are still Gaussian-like, but with a
shifted mean and a smaller standard deviation than the prior
distribution. The largest shift (in absolute sense) is incurred
for parameters AM14 and AM15; the smallest shift happens
for AM13, which is hardly changed when compared to the
prior. In contrast to the DANAERO test case, where the pos-
terior was very much dominated by the data, the posterior
for the New MEXICO case is still close to the prior, because
fewer data points are used. The posterior samples indicate a
clear correlation between parameters AM12 and AM13 and
between AM14 and AM15. This result is consistent with the
yaw model expression (Eq. C1), since AM12 and AM13 both
relate to the relative radius, whereas AM14 and AM15 both
relate to the yaw angle.

The normal force amplitudes that are obtained with the
calibrated model parameters (based on the MAP) are shown
for all operating conditions in Fig. 12, together with the mea-
surement data and the uncalibrated model output. Overall,
we observe that the calibration of the parameters has led to
much improved model predictions. This is especially evi-
dent for the outboard sections for operating conditions S2
and S3. For other scenarios and/or radial sections also an
improvement is generally observed, except for a few points,
where the match is slightly worse (e.g., S2, Sect. 2). Since the
likelihood function in Bayes (Eq. 21 with covariance matrix

Table 3. Summary of prior and posterior distribution for New
MEXICO yaw model calibration.

Parameter Prior Posterior – Posterior –
MAP standard

deviation

AM11 N (0.445, 0.1) 0.41 0.046
AM12 N (−1.78, 0.1) −1.75 0.078
AM13 N (1.63, 0.1) 1.64 0.068
AM14 N (−0.0543, 0.1) 0.085 0.071
AM15 N (0.367, 0.1) 0.52 0.075

chosen as 6 = σ 2I ) weighs the discrepancy in the different
model outputs equally, it is not surprising that at some points
the discrepancy can increase slightly, while at other points it
is significantly reduced: on average the model fits the data
much better.

6 Conclusions

In this article we have proposed a computationally efficient
framework to calibrate model parameters in aerodynamic
wind turbine models. The three main ingredients that we
use are (i) a (polynomial) surrogate model that approximates
the wind turbine model, (ii) a sensitivity analysis to de-
termine the most influential parameters, and (iii) Bayesian
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Figure 12. Comparison of uncalibrated and calibrated Aero-Module predictions with the New MEXICO measurements in terms of the
normal force amplitude. The grey areas (violin plots) are constructed from 500 draws of the posterior predictive distribution. The Aero-
Module predictions are obtained from the surrogate model and are essentially indistinguishable from the full Aero-Module results, which
have therefore been omitted for the sake of clarity.

inference to calibrate parameters in a probabilistic setting.
The Bayesian inference step, which is typically computa-
tionally very expensive to solve, is made computationally
affordable through the use of the surrogate model. Evaluat-
ing 105 MCMC iterations takes less than an hour with the
surrogate model, whereas it would take weeks with the full
Aero-Module model (when running on a desktop computer).
The polynomial nature of the surrogate model furthermore
allows quick evaluation of the Sobol’ indices in the sensitiv-
ity analysis. The entire framework, known as UQ4Wind, is
built around the UQLab software and tested on TNO’s aero-
dynamic code Aero-Module.

Two realistic calibration studies have been performed with
our proposed UQ4Wind framework in this paper. In the first
test case, we have used part of the DANAERO experimental
dataset to show how airfoil polars can be calibrated using
normal force measurements. The sensitivity analysis clearly

indicated that out of the lift, drag, and moment coefficients,
the lift coefficient is most influential. After calibrating the
lift coefficient values at the four radial sections, an excellent
match with the experimental data was observed.

In the second test case, we have used part of the New
MEXICO experimental dataset to calibrate five parameters
of the yaw model that is used in the Aero-Module to estimate
the induced velocity in yawed conditions. In order to handle
the time dependence of both measurements and code output,
we used a Fourier transform and considered the amplitude
of the most dominant Fourier mode as the quantity of inter-
est for the calibration. The calibrated model leads to much
improved model predictions, especially regarding the normal
force amplitude at the outboard sections of the blade under
significant yaw misalignment.

In both cases, the result of the Bayesian approach con-
sists of distributions of the calibrated model parameters (the
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posterior distribution). The posterior distribution allows us to
make predictions under uncertainty, for example by comput-
ing the posterior predictive distribution, from which proba-
bilistic statements can be deduced. At the same time, exist-
ing knowledge on the model parameters (e.g., expert knowl-
edge) can be included via the prior distribution, and any rela-
tion (not necessarily Gaussian) between model and measure-
ment data can be specified by choosing a likelihood func-
tion. These aspects form the true strength of the Bayesian
approach. However, it should be realized that in the practical
setting of calibrating an aerodynamic wind turbine model,
it is not always clear how representative choices for the prior
distribution or the likelihood are to be made. For the cases in-
vestigated in this paper, we have relied on expert knowledge
and inspection of the measurement data. We acknowledge
that this process should be carefully performed when consid-
ering different experimental datasets and/or model parame-
ters. Similarly, the choice of distribution used in the sensi-
tivity analysis (and in particular the corresponding variance)
can determine to a large extent the Sobol’ indices and has to
be performed with care.

Another aspect that requires careful attention is the selec-
tion of proper datasets. Initially, the plan was to use more
datasets from both DANAERO and New MEXICO in the
calibration runs, but it turned out that many were not di-
rectly useful, for example because of non-constant operating
conditions (DANAERO) or because the normal forces ob-
tained from pressure distributions were not considered ac-
curate enough in yawed conditions (New MEXICO). As an
alternative, it is also possible to use models with a higher
physical fidelity (e.g., free vortex wake models, which per-
form well in yawed conditions) to generate data for the cali-
bration.

A last aspect for future consideration is that of the steady
nature of the DANAERO test case, for which the airfoil po-
lars could be calibrated without taking into account the ef-
fect of the dynamic stall model. In more realistic settings
(e.g., turbulent inflow), one would have to calibrate both the
airfoil polars and the dynamic stall model simultaneously. In
the current case, time-dependent data were not available for
further cross-validation, and the accuracy of the calibrated
polars in dynamic flow conditions remains uncertain. We
note that if such data were to be available, one should re-
alize that the simultaneous calibration of both dynamic stall
model parameters and airfoil polars would constitute a high-
dimensional problem that might be computationally very ex-
pensive. Our approach, in which such effects are separated
by using a time-dependent and a time-independent case, is
effectively a way to reduce the high dimensionality of such a
calibration problem.

Overall, we believe that the combination of surrogate mod-
eling, sensitivity analysis, and Bayesian inference provides
a powerful approach towards model calibration. Calibrated
models with a quantified level of uncertainty have many ap-
plications in the wind energy industry beyond the aerody-

namic models considered in this study, such as calibrating a
dynamic wind farm control model (this is part of our ongoing
work). Another topic within wind energy that could benefit
from the UQ4WIND framework could be the calibration of
low-order acoustic models using empirical correction factors
for wind turbine noise estimation. Furthermore, calibration
of engineering wake models, which typically contain several
uncertain model parameters (such as wake expansion coef-
ficients), would benefit from calibration using high-fidelity
models such as CFD results.

Appendix A: Surrogate model details and UQLab
settings

The surrogate model is built using LARS. The sampling
scheme is Latin hypercube sampling (LHS) in all cases.
Adaptive, sparse LARS is used, with possible polynomial
degrees from 1 to 4 and truncation parameter 0.75 for
DANAERO, as well as polynomial degrees from 1 to 10 and
a truncation parameter range from 0.5 to 1.5 for New MEX-
ICO.

For the sensitivity analysis, the main UQLab commands
are

– uq_createInput (definition of model parameters),

– uq_createModel (once for definition of model and
quantities of interest and once for setting up the PCE
surrogate model), and

– uq_createAnalysis (determining Sobol’ indices
based on surrogate model).

For the Bayesian calibration, the same sequence
of commands is used, with the difference that the
uq_createAnalysis command then takes as input
the options for the Bayesian calibration (prior, likelihood,
experimental data, MCMC settings).

Appendix B: Details of lift polar calibration

B1 LOO convergence

The surrogate model should be accurately approximating the
full Aero-Module in order to use it for sensitivity analysis
and Bayesian inference. Figure B1a shows that the LOO er-
ror of the normal force at each airfoil section rapidly con-
verges upon increasing the number of samples. The conver-
gence of the LOO also becomes more regular when adapt-
ing the thickness distribution as will be described in the next
Sect. B2, which can be observed in Fig. B1b. This is because
the surrogate model at a certain section becomes almost inde-
pendent of the parameters (lift coefficients) at other sections,
making it easier to train. Note that the reported data points
are obtained by averaging over five simulation runs (so for
N = 16 we perform 5× 16 simulations) in order to smooth
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out the randomness introduced by the LHS sampling method.
For the results in Sect. 5.1 we use the surrogate model with
N = 32.

Figure B1. Convergence of LOO error as function of number of samples for DANAERO test case with 12 parameters. Each data point
corresponds to the average over five runs. (a) Original thickness distribution. (b) Adapted thickness distribution.

B2 Thickness adaptation

When using the original input files to perform the
DANAERO sensitivity study, it turned out that the normal
force at Sect. 3 depended on the lift coefficient at both
Sects. 3 and 4 (see Fig. B2). This peculiarity is caused by
an inconsistency between the provided (planform) thickness
distribution of the blade and the provided thickness of the
four airfoil sections, as shown in Fig. B3. The lift coeffi-
cient at any radial position along the blade is determined
by checking the local thickness in the planform graph and
then interpolating the lift coefficient from nearby airfoil sec-
tions, based on the relative thickness. For example, at Sect. 3
(r = 29 m), the planform thickness is around 0.189. This
value lies in between the values of Sect. 3 (t/c = 0.197)
and Sect. 4 (t/c = 0.187) but is much closer to Sect. 4 than
Sect. 3. This explains the large effect of 1Cl, 4 on the force
at Sect. 3.

After consultation with the DANAERO experts, the thick-
ness of the airfoil sections was changed to match the plan-
form data (see Fig. B3). Figure 6 shows the results of the
sensitivity analysis, indicating that with the adapted sectional
thicknesses, we correctly obtain the expected dependency of
the sectional normal force on the corresponding sectional lift
coefficient. Thus, apart from identifying influential parame-
ters, the sensitivity analysis step in our framework can also
be used to correct inconsistencies in the model formulation.

B3 Calibration

Figure B4 shows two examples of the convergence of the
MCMC chains for the parameter 1Cl, 1 and hyperparameter
θE, 1, where 200 data points were used for the calibration.
The plot shows 100 chains that have been run for 1000 steps
using the AIES algorithm. The trace plots for the other pa-
rameters show very similar behavior.

Figure B2. Sensitivity of sectional normal force with respect to
perturbations in airfoil polars with original thickness.
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Figure B3. Thickness distribution of DANAERO blade according to the planform data and the original and adapted airfoil sectional data.
The discrepancy explains the observed sensitivity of the force at Sect. 3 towards the lift coefficient at Sect. 4.

Figure B4. Examples of MCMC chains and resulting posterior for model parameter 1Cl,1 and hyperparameter θE,1, using 200 measure-
ment points. For the results reported in Sect. 5.1, the first 50 % of the chains is discarded (so-called burn-in).

Appendix C: Details of yaw model calibration

The yaw model that is calibrated concerns an expression for
the induced velocity (Schepers, 2012). The general form is

ui(r,β,φr ,θM)= ui, 0
(
1−A1(r,β,θM)

cos(φr −ψ1(r,β,θM))−A2(r,β,θM)
cos(2φr −ψ2(r,β,θM))

)
. (C1)

Here r is the relative radius (r = r/R), φr is the azimuth
angle, and β is the yaw angle. In this study, we focus on
θM = (AM11, . . . ,AM15), which appears in the expression
for A1:

A1(r,β,θM)= AM11+AM12r +AM13r
2

+AM14 sin |β| +AM15sin2β. (C2)

Note that each parameter is multiplied by a factor that is be-
tween 0 and 1, since 0≤ r ≤ 1 and 0≤ β ≤ 90◦.
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The nominal values for the yaw model parameters are
given in Table C1 and taken from (Schepers, 2012).

The convergence of the LOO error for the New MEXICO
case, for all three operating conditions, is shown in Fig. C1.
Examples of MCMC trace plots for two selected parameters
(AM11 and AM14) are shown in Fig. C2. The trace plots for
the other parameters are similar.

Table C1. Summary of nominal value for yaw model parameters: amplitude coefficients (dimensionless).

AM11 AM12 AM13 AM14 AM15

0.445 −1.78 1.63 −0.0543 0.367

Figure C1. Surrogate model convergence for S1 (dash–dot), S2 (dashed), and S3 (solid). Each data point corresponds to the average over
five runs.

Figure C2. Examples of MCMC chains and resulting posterior for parameters AM11 and AM14. For the results reported in Sect. 5.2, the
first 50 % of the chains is discarded (so-called burn-in).
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