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Abstract. Non-parametric Bayesian networks (NPBNs) are
graphical tools for statistical inference widely used for reli-
ability analysis and risk assessment and present several ad-
vantages, such as the embedded uncertainty quantification
and limited computational time for the inference process.
However, their implementation in hydrological studies is still
scarce. Hence, to increase our understanding of their appli-
cability and extend their use in hydrology, we explore the po-
tential of NPBNs to reproduce catchment-scale hydrological
dynamics. Long-term data from 240 river catchments with
contrasting climates across the United States from the Catch-
ment Attributes and Meteorology for Large-sample Studies
(CAMELS) data set will be used as actual means to test
the utility of NPBNs as descriptive models and to evaluate
them as predictive models for maximum daily river discharge
in any given month. We analyse the performance of three
networks, one unsaturated (hereafter UN-1), one saturated
(hereafter SN-1), both defined only by hydro-meteorological
variables and their bivariate correlations, and one saturated
network (hereafter SN-C), consisting of the SN-1 network
and including physical catchments’ attributes. The results
indicate that the UN-1 network is suitable for catchments
with a positive dependence between precipitation and dis-
charge, while the SN-1 network can also reproduce discharge
in catchments with negative dependence. The latter can re-
produce statistical characteristics of discharge (tested via the
Kolmogorov–Smirnov statistic) and have a Nash–Sutcliffe
efficiency (NSE) ≥ 0.5 in ∼ 40% of the catchments anal-
ysed, receiving precipitation mainly in winter and located in
energy-limited regions at low to moderate elevation. Further,
the SN-C network, based on similarity of the catchments, can
reproduce discharge statistics in ∼ 10% of the catchments
analysed. We show that once a NPBN is defined, it is straight-

forward to infer discharge and to extend the network itself
with additional variables, i.e. going from the SN-1 network to
the SN-C network. However, the results also suggest consid-
erable challenges in defining a suitable NPBN, particularly
for predictions in ungauged basins. These are mainly due to
the discrepancies in the timescale of the different physical
processes generating discharge, the presence of a “memory”
in the system, and the Gaussian-copula assumption used for
modelling multivariate dependence.

1 Introduction

Strategies for water resources management and planning
mostly rely on predictions from hydrological models (Hra-
chowitz and Clark, 2017). Such models are mathematical
representations of the relationship between catchment struc-
ture and response behaviour (Wagener et al., 2007). In the
history of hydrological modelling, two main model philoso-
phies can be identified: models aiming at explicitly rep-
resenting physical processes at different degrees of com-
plexity, hereafter referred to as process-based models, and
process-agnostic models relying on relationships between
one or multiple system input and output variables, for ex-
ample, precipitation and streamflow, without further assump-
tions on underlying mechanistic processes, hereafter data-
driven models (Todini, 2011). A trade-off between what we
defined process- and data-driven models is represented by the
Data-Based Mechanistic approach (DPM; Young and Beven,
1994) for modelling complex systems in hydrology and in
general. Such an approach looks for parametrically efficient,
low-order, dominant-mode models identified and validated
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based on stochastic methods and associated statistical analy-
sis (Young and Beven, 1994).

Data-driven models in general differ on the input–output
technique implemented, which might not have a conven-
tional physical interpretation (Todini, 2011), such as multi-
linear regression functions (e.g. Barbarossa et al., 2017), arti-
ficial neural network (e.g. Beck et al., 2015), long short-term
memory networks (e.g. Kratzert et al., 2019), and probabilis-
tic graphical models (e.g. Paprotny and Morales-Nápoles,
2017). For river discharge prediction at longer time resolu-
tions, such as monthly, data-driven models are the predom-
inant models found in the literature (e.g. Barbarossa et al.,
2017; Sivakumar et al., 2001; Ren et al., 2020; Fathian et al.,
2019; Anmala et al., 2000; Wei et al., 2012).

A wide range of scientific publications illustrates progress
in formulations and implementations of both process-based
and data-driven hydrological models, highlighting their re-
spective potentials. However, among data-driven models,
less attention has so far been given to explicitly representing
the interdependence between inflow and outflow via high-
dimensional probability functions. Bi- and multivariate prob-
ability functions, such as copulas, have been mostly imple-
mented to derive critical flood design values when multi-
ple flood characteristics are of interest (e.g. Salvadori and
De Michele, 2004; Grimaldi and Serinaldi, 2006) or when
flood events result from the interaction between multiple
physical drivers (e.g. Moftakhari et al., 2017; Bevacqua
et al., 2017). Recently, vine-copula-based models for high-
dimensional probability, such as non-parametric Bayesian
networks (NPBNs), have gained popularity in hydrologi-
cal studies (e.g. Sebastian et al., 2017; Couasnon et al.,
2018; Paprotny and Morales-Nápoles, 2017). Different ap-
plications of NPBNs can be found in the scientific litera-
ture (e.g. Morales-Nápoles et al., 2014a; Jesionek and Cooke,
2007; Hanea and Ale, 2009; Kosgodagan-Dalla Torre et al.,
2017). In reliability studies, Morales-Nápoles and Steenber-
gen (2014) implemented NPBNs for modelling complex traf-
fic systems and showed that they can be used for computing
design values for individual axles, vehicle weight, and max-
imum bending moments of bridges within certain time inter-
vals. In hydrological studies, Sebastian et al. (2017) adopted
NPBNs for generating synthetic storm events along Galve-
ston Bay (Texas) based on different tropical cyclone charac-
teristics at landfall and demonstrated their ability to gener-
ate plausible boundary conditions for coastal riverine models
for flood analyses. Similarly, Couasnon et al. (2018) applied
NPBNs to model and assess the impact of flooding gener-
ated by the interaction between coastal and riverine drivers
while accounting for the spatial dependence between river
tributaries. Paprotny and Morales-Nápoles (2017) introduced
the use of NPBNs for river discharge mean annual maximum
and return period estimation and showed results comparable
to physically based models.

In the scientific literature, Bayesian networks (BNs) have
been implemented in multiple fields to model the proba-

bilistic relationship between variables. Weber et al. (2012)
reviewed BNs’ applications in reliability, risk, and mainte-
nance areas and showed that BNs are tools able to address in-
dustrial system modelling in relation to increase complexity.
Aguilera et al. (2011) reviewed the implementation of BNs in
environmental sciences and concluded that their application
is still scarce due to the necessity of discretising continuous
variables and the limited availability of software. In a more
recent application of BNs on natural hazards’ estimation, Vo-
gel et al. (2014) showed their flexibility and applicability
through three real case studies, highlighting their ability to
express information flow and independence assumptions be-
tween candidate predictors.

NPBNs, similar to BNs, are probabilistic graphical models
representing high-dimensional probability distribution func-
tions of system properties with complex dependence struc-
tures (Hanea et al., 2015) and support probabilistic inference
of system characteristic(s) by conditioning on known char-
acteristics (Kurowicka and Cooke, 2002).The joint probabil-
ity distribution is determined by defining the dependence be-
tween pairs of variables. Such a non-parametric joint proba-
bility distribution is then more flexible compared to a theoret-
ical parametric multivariate distribution because the depen-
dence between variables is not fixed by the theoretical para-
metric model, but it depends on how the variables (nodes of
the network) are connected to each other (arcs and parenting
order). NPBNs’ potential resides in several characteristics:
(i) the uncertainty quantification is embedded in the model
given that all the variables included in the network and con-
tributing to discharge generation are treated as random vari-
ables; (ii) all the variables, not only river discharge, can be in-
ferred by conditioning on the remaining variables; (iii) causal
relationships between variables from prior knowledge can be
imposed in the network, but, at the same time, unknown re-
lationships can be learned; (iv) information from different
catchments can contribute to improve inference; (v) and the
computational time is limited.

Starting from these premises, the main objective of this
study is to further explore and test the suitability of NPBNs as
a tool to reproduce catchment-scale hydrological dynamics
and to explore challenges involved when inferring maximum
daily river discharge in any given month. More specifically,
long-term data from 240 river catchments across the United
States from the Catchment Attributes and Meteorology for
Large-sample Studies (CAMELS; Newman et al., 2015; Ad-
dor et al., 2017) data set will be used as actual means to test
the utility of NPBNs as descriptive models and to evaluate
them as predictive models for maximum daily river discharge
considering the catchments individually and in a group, to
explore catchment similarity.
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2 Catchments and data

For this study, we make use of the CAMELS data set (New-
man et al., 2015; Addor et al., 2017). CAMELS provides ho-
mogenised long-term hydro-meteorological data and catch-
ment attributes of catchments across the contiguous United
States. To limit potentially adverse effects of spatial het-
erogeneity, we analyse 240 catchments from the CAMELS
data set with areas ≤ 200 km2 (see Table S1 in the Supple-
ment). For each selected catchment, we considered hydro-
meteorological data and catchment attributes in Table 1. As
the objective of this study is to model maximum daily river
discharge in any given month from 1980 to 2013, we further
process daily hydro-meteorological data as follows: (1) ex-
tract the maximum daily discharge for every given month
from daily specific discharge; (2) extract maximum daily
precipitation over the previous 7 d from the day of the oc-
currence of the maximum discharge, and (3) calculate the
mean over the previous 7 d from the day of the occurrence of
the maximum discharge value of the remaining daily vari-
ables. Consequently, we generate a multidimensional data
set in which all the variables are related to the occurrence
of the maximum daily discharge event in a given month.
The selection of these concomitant variables came after a
preliminary investigation of the strength of the correlation
between maximum discharge and both maximum and cu-
mulative precipitation over different time windows (Fig. S1
in the Supplement). In addition, we investigate whether the
maximum precipitation event extracted over the 7 d prior to
the maximum daily discharge is also the maximum precip-
itation event occurring that month. We observe that this is
the case almost every month for stations at low to moder-
ate altitude (Fig. S2 in the Supplement), supporting the as-
sumption that in such catchments maximum daily discharge
is mainly driven by maximum daily precipitation events in
any given month. Such data pre-processing aims to generate
a multivariate time series with independent and identically
distributed (iid) observations. By selecting maximum daily
discharge, we assume that such discharge peaks, and corre-
sponding hydro-meteorological variables, result from differ-
ent underlying weather events. However, in particular, dis-
charge data do, inevitably and as a result of catchment mem-
ory effects, show some degree of autocorrelation (Fig. S3 in
the Supplement), which might affect the correlation strength
with the remaining variables. We will further discuss this as-
pect in the Discussion section.

Catchments’ attributes from the CAMELS database were
used without further processing. The attribute aridity, Ar[–],
refers to the ratio of long-term means of potential evapo-
transpiration calculated using Priestley–Taylor formulation
and precipitation, where values higher/lower than 1 indi-
cate water-/energy-limited regions. The attribute precipita-
tion seasonality ps[–] (Woods, 2009) describes the temporal
concentration of intra-annual precipitation occurrence and
takes positive/negative values when precipitation peaks occur

in summer/winter. For further details on catchment attributes
and their derivation, the reader is referred to CAMELS
database documentation (Addor et al., 2017).

Catchments located in the eastern and central-eastern
United States (56 %) are characterised by an average size
of about 94 km2 and average daily specific discharge of
1.3 mm d−1 (Fig. 1a). These catchments are mostly situated
at moderate elevations (average altitude 304 m a.s.l.; Fig. 1d)
and in energy-limited areas (Ar∼ 0.77; Fig. 1b) with lit-
tle precipitation seasonality (ps ∼ 0.09; Fig. 1c). In contrast,
catchments located in the western and central-western United
States (44 %) have an average size of about 61 km2 and are
on average located at higher elevations, with ∼ 760 m a.s.l.
in the western United States and 2300 m a.s.l. in the central-
western region, where precipitation falls mostly over win-
ter (ps between ∼−0.9 and −0.2; Fig. 1d). While catch-
ments in the western United States are on average lo-
cated in energy-limited areas (Ar∼ 0.6), they are located
in water-limited regions in the central-western United States
(Ar∼ 1.7; Fig. 1b). This difference is reflected in the mean
daily discharge, which is 3.1 and 0.64 mm d−1 respectively
(Fig. 1a). Catchments in the central-western United States,
given their elevation, have the highest ratio of daily precipi-
tation falling as snow in a day with temperatures below zero
(∼ 0.5; Fig. 1e – daily fraction of snow).

In the majority of the catchments selected (86 %), the
correlation between maximum daily discharge (Qmax) and
maximum precipitation over 7 d (Pmax) is positive, mean-
ing that discharge is mainly driven by precipitation runoff
(Fig. 2a). Catchments with negative correlation are mostly
located in water-limited regions (Fig. 2c) and at elevations
above 1500 m a.s.l. (Fig. 2b). Furthermore, in such catch-
ments, precipitation occurs mainly in winter, and the fraction
of snow is greater than 0.4 (Fig. 2e, f).

Hydro-meteorological variables and catchment attributes
described so far are used in the following as input to repro-
duce catchment-scale hydrological dynamics via NPBNs.

3 Probabilistic graphical models: Bayesian networks

Pearl (1985) first formalised the term Bayesian network (BN)
as a class of networks represented by influence diagrams
or networks to model the probabilistic relationship between
variables. Afterwards, BNs became a popular tool for dealing
with uncertain domains (Aguilera et al., 2011).

A BN is defined by two components (Aguilera et al.,
2011): a qualitative component, being a directed acyclic
graph (DAG), where the nodes are the random variables of
the model and the arcs connecting two nodes indicate their
statistical dependence, and a quantitative component, being
the conditional distribution of each variable (child) given its
direct preceding variables (parents). Given a network of n
nodes (variables) {X1, . . . ,Xn} and a set of parent nodes Si
for node i, the joint density (mass in the discrete case) is de-
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Table 1. Hydro-meteorological data and catchment attributes used in this study.

Data type Unit Symbol Estimated monthly value Original resolution

Specific discharge mm d−1 Qmax daily max daily

Temperature ◦C T mean over 7 d prior Qmax daily

Precipitation mm d−1 Pmax max over 7 d prior Qmax daily
Shortwave downward radiation W m−2 R mean over 7 d prior Qmax daily

Water vapour pressure Pa Vp mean over 7 d prior Qmax daily

Monthly runoff coefficient – Cm ratio monthly discharge daily precip.
and cumulative precipitation and discharge

Elevation m a.s.l. Elv – constant

Slope m km−1 Slp – constant

Aridity – Ar – constant

Precipitation seasonality – ps – constant

Fraction of forest – ff – constant

fined as

f (x1, . . . ,xn)=

n∏
i=1
fxi |Si (xi |Si). (1)

The (conditional) independence relationships embedded in
the probabilistic model can be easily visualised in the graph-
ical representation of the network (Pearl, 1985). Moreover,
the absence of an arc guaranties the conditional indepen-
dence between two “source” variables (Hanea et al., 2015),
while the direction of the arc indicates the “flow of infor-
mation” (Vogel et al., 2014). Strictly speaking, probabilistic
dependence does not have a “direction”. However, when it
can be easily related to causality, it is convenient to think of
a flow of information.

BNs differ on how nodes and arcs are quantified, and the
inference process depends on this quantification. Discrete
BNs specify the source nodes, i.e. nodes without parents, as
discrete random variables and conditional probability tables
for child nodes (Hanea et al., 2006). Hybrid BNs (HBNs) in-
volve both discrete and continuous variables. HBNs specify
marginal distributions for nodes without parents and condi-
tional distributions for child nodes. HBNs can be fully para-
metric, in which marginals and joint probabilities are from
parametric families, or fully discrete, in which continuous
variables are discretised (Hanea et al., 2015). Discretisation
of continuous variables, however, has the drawback of re-
quiring a very large number of partitions to guarantee a good
approximation of the variables.

Figure 3 is an illustrative example of the qualitative
component of a BN for the variables {X1,X2,X3}. The
quantitative component is given by fX1(x1), fX2(x2), and
fX3|S3(x3|S3), where S3 = {X1,X2} is a set containing the
parents of node X3. The joint probability resulting from

the above information is f (x1,x2,x3)= fX1(x1) · fX2(x2) ·

fX3|S3(x3|S3). From Fig. 3, it is possible to determine the de-
pendence relationships between the nodes. The absence of
the arc connecting X1 and X2 implies their independence
(X1 ⊥X2). However, X1 and X2 are conditional dependent
on when information on X3 becomes available; i.e. X1 and
X2 are dependent given X3 (X1�⊥X2|X3).

3.1 Non-parametric Bayesian networks

Kurowicka and Cooke (2005) introduced a vine-copula-
based approach for HBNs called non-parametric Bayesian
networks (NPBNs). NPBNs specify the nodes as arbitrary
invertible distribution functions and the arcs as (conditional)
rank correlations realised by a chosen one-parameter bivari-
ate copula (Kurowicka and Cooke, 2005). This construction
has two main implications: the parent–child dependence is
realised by bivariate pieces of dependence, and the informa-
tion required to quantify the network reduces to a number
of marginal distributions equal to the number of nodes and
a number of (conditional) dependence parameters (parame-
terised by Spearman’s rank correlation) equal to the number
of arcs in the network (Hanea et al., 2015).

Hanea et al. (2015) demonstrated that the vine-copula-
based approach determines a unique joint distribution of
the n nodes given: (1) a DAG with n nodes specifying
the conditional independence relationships; (2) n variables
{X1, . . . ,Xn} assigned to the nodes and described by invert-
ible marginal distributions {F1, . . . ,Fn}; (3) arcs ip−k→ i

for the node i and its ordered set of p parent nodes Si =
{i1, . . . , ip} specified by the (conditional) rank correlation in
Eq. (2); and (4) a copula realising the (conditional) correla-
tions in (3), for which correlation 0 denotes independence. It

Hydrol. Earth Syst. Sci., 26, 1695–1711, 2022 https://doi.org/10.5194/hess-26-1695-2022
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Figure 1. Catchment attributes extracted from the CAMELS database: (a) mean daily discharge (mm d−1); (b) aridity as PET/P; (c) precip-
itation seasonality, where positive (negative) indicates precipitation peaks in summer (winter); (d) elevation (m a.s.l.); (e) daily fraction of
snow indicates the fraction of precipitation falling as snow in the case of temperatures below zero; and (f) fraction of forest.

is worth noting that the parent set Si for node i does not have
a unique order.

{
ri, ip−k , k = 0

ri, ip−k |ip, ... ,ip−k+1 , 1≤ k ≤ p− 1
(2)

Considering the DAG in Fig. 1, the joint probability of
the associated NPBN is uniquely quantified given invertible
marginal distributions {F1,F2,F3} and the (conditional) rank
correlation for the two arcs r1, 3 and r2, 3|1, or r2, 3 and r1, 3|2
depending on the parent ordering for node 3.
The choice of the copula to quantify the arcs is arbitrary.
However, only the joint normal copula allows for rapid cal-
culation and inference for complex problems (Hanea et al.,
2015). For this reason, in this study, we adopt the proto-
col presented in Hanea et al. (2006) based on the Gaussian-

copula assumption. This protocol computes the joint distri-
bution function of n variables {X1, . . . ,Xn} with invertible
marginal distributions {F1, . . . ,Fn} by the following:

– The set of variablesX is transformed in standard normal
variables Y via the transformation Yi =8−1(Fi(Xi))

for each node i, where 8 is the univariate standard nor-
mal distribution. The transformation is strictly increas-
ing, so after the transformation the (conditional) rank
correlation is unchanged.

– To each arc of the network, the quantity ρi, j |D =

2sin(π · rj, i|D/6) is assigned, where (i,j) and D are
the conditioned and the conditioning set respectively,
and rj, i|D and ρi, j |D are the conditional rank correla-
tion and the partial product moment of the normal vari-
ables respectively. A unique joint normal distribution,

https://doi.org/10.5194/hess-26-1695-2022 Hydrol. Earth Syst. Sci., 26, 1695–1711, 2022
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Figure 2. Catchment attributes based on the correlation between maximum daily discharge, Qmax, and maximum precipitation over the
previous 7 d, Pmax. Panel (a) shows the geographical location of catchments with negative correlation between Qmax and Pmax (red dots)
and catchments with positive correlation (green dots). Panel (b) shows the distribution of the attribute elevation of catchments with negative
(red) and positive (green) correlation against the overall distribution (grey). Panels (c) to (f) show the same comparison as panel (b) but of
the following attributes: aridity, area, precipitation seasonality, and fraction of snow respectively.

Figure 3. Illustrative Bayesian network with three nodes.

and so a unique correlation matrix, satisfying the partial
correlation specification is determined.

– The correlation matrix R is computed recursively based
on the partial correlations.

The joint distribution of the initial variables X and their
specified dependence is then realised by sampling a sam-
ple Ỹ from the joint normal distribution with correlation
matrix R and transforming it back to its original units via
X̃i = F

−1
i (8(Ỹi)) for every node i.

NPBNs based on the normal copula assumption are im-
plemented in the open-source MATLAB toolbox BANSHEE
(Paprotny et al., 2020), which is used in this study to carry
out the analyses.

4 NPBNs as a model for river discharge generation

The aim of this study is to investigate the suitability of
NPBNs to reproduce catchment-scale hydrological dynam-
ics. The rationale adopted to identify suitable DAG consists
of representing a catchment as a system in which discharge

is generated by the interaction between the input of the sys-
tem, for example, precipitation, the state of the system, for
example, soil moisture, and the output of the system, for ex-
ample, river discharge (Fig. 4a). This schematisation allows
us to define, via the associated NPBN, the joint probability
distribution function of the variables (nodes) representing the
input, state, and output of the system catchment and subse-
quently infer the variable of interest, i.e. river discharge, via
conditioning on the remaining variables. This schematisa-
tion, hereafter graph type I, can easily be extended to include
additional variables, such as physical attributes (e.g. eleva-
tion) of the system catchment, resulting in the schematisation
in Fig. 4b, hereafter graph type II. Graph type I determines
the joint probability distribution of input (I ), output (O), and
state (S) of a catchment considered as a single element; i.e.
the nodes are defined by the observations taken at one single
catchment. Such joint distributions can be used to infer infor-
mation on that single catchment. On the other hand, graph II
defines the joint probability distribution of input (I ), output
(O), state (S), and attribute (A) of the catchments, and the
nodes are defined by pooled observations derived by merg-
ing observations at multiple locations. This way of defining
the nodes implies that also the attribute nodes, which are
constant value in time for a given catchment, become ran-
dom variables, and so they can be modelled as additional
nodes in the network. From the joint distribution defined by
graph type II, we can derive the joint probability distribu-
tion of the input, output, and state variables of one single
catchment; i.e. graph type I, via conditioning on the attributes
of that catchment, Fg−I (I,O,S) = Fg−II (I,O,S|Ag−I ).
Fg−I (I,O,S), derived from conditioning Fg−II (I,O,S,A),
benefits from information provided by similar catchments.

Hydrol. Earth Syst. Sci., 26, 1695–1711, 2022 https://doi.org/10.5194/hess-26-1695-2022
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Graph type II can then be implemented for ungauged catch-
ments by exploiting information from gauged catchments
with similar attributes.

In graph type I, the following continuous hydro-
meteorological variables will be considered here: Pmax, T ,
R, Vp, (input),Qmax (output), andCm (proxy for system state
component). In graph type II, the following nodes are added:
Elv, Slp, Ar, ps, and ff (system attributes, Table 1). It is worth
mentioning that in a preliminary analysis (not shown here),
we tested the use of ESA CCI (https://esa-soilmoisture-cci.
org/, last access: 27 November 2018) remote sensing soil
moisture data since measurements are available from 1978,
similarly to the CAMELS data set. However, the presence of
missing values significantly affected the length of the multi-
variate data set of hydro-meteorological variables considered
for training and testing the networks of interest. Moreover,
the coarse spatial resolution and the time lag between the
response of river discharge and soil moisture to external in-
put, such as precipitation, led us to rather use the monthly
runoff coefficient here as a proxy for system state. A more
in-depth discussion is presented in Sect. 6 – Discussion and
challenges.

Network selection, i.e. moving from a graph to a DAG by
selecting arcs connecting a given set of nodes to model de-
pendence, is challenging due to the high number of possi-
ble configurations describing a given set of variables. In this
study, we selected two DAGs a priori: a DAG in which the
variables are parent nodes, with one child being the variable
Qmax, and a DAG in which all the variables are connected via
arcs, resulting in a saturated network. We will refer to them as
the unsaturated network (UN) and saturated network (SN) re-
spectively. UN can be considered as a multilinear regression
function in which the discharge is the dependent variable,
and the remaining variables are the independent (explana-
tory) variables, with coefficients defined by the rank correla-
tion between the variables and discharge. Such explanatory
variables are assumed to be independent of each other. How-
ever, in such a network, discharge is inferred as a function of
all the other variables, while the other variables, for example,
Pmax, T , R, Vp, and Cm, only depend on the discharge. This
implies that this unsaturated network is suitable only if the
variable to be inferred is determined a priori, as in this case
discharge, since our interest is in reproducing river discharge.
SN, on the contrary, accounts for the interdependence of all
the variables and does not have a pre-defined variable of in-
terest which can influence the design of the network struc-
ture, as in UN. However, network selection, i.e. number and
direction of the arcs and parent nodes ordering, is to some ex-
tent arbitrary. In addition, the strength of the arcs, determined
by the dependence between nodes, can be based entirely on
observations, as in this study, but can also be elicited from
experts (Morales et al., 2008; Hanea et al., 2010). Hence,
network definition and selection will be further discussed in
Sect. 6 – Discussion and challenges.

In this study, we investigate two networks, one unsatu-
rated (hereafter UN-1), as shown in Fig. 4c, and one satu-
rated (hereafter SN-1), as shown in Fig. 4d, to generate river
discharge considering each catchment as a single element.

To further explore the applicability of NPBNs in hydrolog-
ical studies, we investigate the potential of a single saturated
network (hereafter SN-C, Fig. 4e) to reproduce maximum
daily river discharge over many catchments and eventually
also in ungauged basins. Such a network builds upon the SN-
1 network and, in addition, includes attribute nodes. We im-
plement the SN-C network on a subsample of the 240 catch-
ments with a positive correlation between Pmax and Qmax
and Nash–Sutcliffe efficiencies (NSEs) ≥ 0.5, calculated us-
ing the SN-1 network. In doing so, we group catchments with
a similar property and performance at the catchment level a
priori. From the SN-C network, we only infer statistical char-
acteristics of river discharge rather than specific events, as we
do from UN-1 an SN-1.

The joint distribution function associated with each net-
work (UN-1, SN-1, and SN-C) is derived following the pro-
tocol presented in Hanea et al. (2006) and discussed in the
previous section. We assume a normal copula for quantifying
(conditional) rank correlations and empirical cumulative dis-
tribution functions for describing the marginal distributions
of the different nodes.

4.1 NPBN testing

To assess the potential of NPBNs as probabilistic models for
catchment dynamics, we first test the networks (UN-1, SN-1,
and SN-C) as descriptive models. Subsequently, we evaluate
the networks as predictive models. In this study, the term test-
ing process refers to analyses performed on the descriptive
models, while the term evaluation process refers to analyses
performed on predictive models. In the evaluation process,
elsewhere also referred to as validation process, the data set
used to determine the networks, i.e. quantification of the de-
pendence between nodes, differs from the data set used to
evaluate the performance of the network in estimating dis-
charge. In the testing process, elsewhere also referred to as
verification process (Hanea et al., 2015), the entire set of ob-
servations available is used to first determine the networks
and then to test it via diagnostic metrics, such as the NSE
and Kolmogorov–Smirnov (KS) test here. This approach im-
plies that the minimum requirement for a network is to repro-
duce the observations used for quantifying the model itself.
At the same time, it can happen that the limited number of
available observations does not allow for the definition of a
representative training set and a test set (Hanea et al., 2015),
preventing the possibility of evaluating the predictive capa-
bilities of the model. In the evaluation process, we perform
a k-fold cross-validation by randomly selecting 10 years, be-
tween 1980 and 2013, as a test set, while the remaining years
are used as a training set.
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Figure 4. Graphs and qualitative networks (DAGs) used in this study. Panels (a) graph type I and (b) graph type II show the rationale
underlying the selection of the variables in the networks. Panels (c) and (d) represent the networks for analysing catchments as single
elements, UN-1 and SN-1 respectively. Panel (e) shows the network for analysing a group of catchments from contrasting climates, SN-C.

In both the testing and evaluation process, we first test the
assumption of the joint normal copula for modelling the bi-
variate dependence via the Cramér–von Mises test. Then, we
use the d-calibration score to test the assumption that the net-
work selected, UN-1, SN-1, or SN-C, can model the overall
multivariate dependence structure. Afterwards, we test and
evaluate the performances of the networks as descriptive and
predictive models, respectively, in inferring discharge data
via the two-sample Kolmogorov–Smirnov (KS) test and the
Nash–Sutcliffe efficiency (NSE) coefficient.

The Cramér–von Mises (CvM) statistic S provides an in-
dication of the distance between the empirical copula Cn
and the theoretical copula Cθ , for example, Gaussian copula
(Genest and Favre, 2007):

S = n

n∑
i=1

{
Cn

(
R1
i

n+ 1
,
R2
i

n+ 1

)
−Cθ

(
R1
i

n+ 1
,
R2
i

n+ 1

)}2

, (3)

where R1
i and R2

i are the ith ranks of the n observations.
The CvM test provides a measure of goodness of fit of a
theoretical copula. S = 0 means a perfect fit. We test the
normal copula assumption in modelling dependence via
bivariate correlation by performing the CvM test on the pairs
of variables resulting from the combination of the network
nodes (variables). We compare the empirical copula of each
pair with four different parametric copulas, widely used in
hydrological studies, namely Gaussian (or normal), Frank,
Gumbel, and Clayton. The characteristics of the Gaussian
and the Frank copula are similar, in the sense that they are
both suitable models for variables which do not have a strong
association between each other when both take low/high

values. On the other hand, Gumbel and Clayton copulas are
suited to model variables with a strong dependence at the
upper and lower tail, respectively.

The d-calibration (dc) metric (Morales-Nápoles et al.,
2014b) is a goodness-of-fit measure of the joint probability
distribution function defined via NPBN against the empirical
distribution.

dc = 1− dh, (4)

where dh is the Heillinger distance between the empirical
correlation matrix of the variables (nodes of the network)
and the NPBN correlation matrix. dc takes values between
0 and 1, with a high score implying that the two correlation
matrices are similar.

The two-sample Kolmogorov–Smirnov (KS) is a non-
parametric hypothesis testing technique assessing whether
two samples, Y and Ỹ , belong to the same population
(Massey, 1951). The KS test statistic D∗ is defined as

D∗ =max
y

(
|FY (y)−FỸ (y)|

)
. (5)

The null hypothesis H0 is FY = F
Ỹ

against alternatives. In
this study, we consider a level of significance α = 0.05.

The Nash–Sutcliffe efficiency coefficient (NSE) (Nash and
Sutcliffe, 1970) measures the predictive capabilities of the
NPBN.

NSE= 1−
∑N
i=1(y

i
sim− y

i
obs)∑N

i=1(y
i
obs− yobs)

, (6)
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where ysim is the simulated specific discharge, yobs is the ob-
served specific discharge, yobs is the observation mean, and
N is the total number of observations. Values of NSE lower
than 0 indicate that the observation mean (yobs) is a better
predictor than the model adopted. Values close to 1 suggest
very good model performances.

NPBN treats hydro-meteorological data and catchment at-
tributes as random variables. This implies that during the in-
ference process, the NPBN returns, at each time step, a con-
ditional distribution function of the target variable, i.e. the
distribution of maximum daily river discharge conditioned
on the remaining hydro-meteorological data and attributes.
From this conditional distribution of river discharge, 1000
possible discharge realisations are sampled, and the 50th
percentile is taken as the estimated discharge value for that
particular combination of hydro-meteorological data and at-
tributes. Similarly, the confidence interval (CI) of the esti-
mated discharge value is determined as the 5th and the 95th
percentile of the 1000 realisations of the conditional distri-
bution.

5 Results

In this section, we first show the potential of NPBNs in esti-
mating maximum daily river discharge when a catchment is
modelled as single elements. Afterwards, we present the ca-
pability of NPBNs to model catchments in a cluster to even-
tually infer river discharge of an ungauged basin given its
attributes.

5.1 Catchment as single elements

We first analyse the performances of the UN-1 and SN-1 net-
works as descriptive models. In Fig. 5a, the results of the
CvM test show that the best copula model among the four
tested is the Frank copula for ∼ 55 % of the pairs, the Gaus-
sian copula for ∼ 10 %, and the Gumbel and Clayton for
∼ 20 % of the pairs respectively. This suggests that about
65 % of the pairs, i.e. pairs best modelled with either Frank
or Gaussian copula, show a dependence without a strong as-
sociation between low and high values. Hence, this result
supports the normal copula assumption of NPBNs, since the
Gaussian copula is a suitable model for such type of depen-
dence. In Fig. 5b, boxplots summarising the results in terms
of d-calibration score indicate that, on average, the SN-1 net-
work, with a median of ∼ 0.8, better captures the overall de-
pendence between variables. Indeed, the d-calibration score
compares the empirical correlation matrix of the variables
with the correlation matrix resulting from the DAG. A low
d-calibration score for the UN-1 network (median of∼ 0.25)
can be linked to the strong assumption of independence be-
tween pairs of variables in which one variable in the pair is
not discharge. A further insight about the suitability of the
UN-1 and SN-1 networks is via NSE, which describes how a

network is able to reproduce discharge events given informa-
tion about Pmax, T , R, Vp, and Cm. For catchments in which
the correlation betweenQmax and Pmax is negative, i.e. catch-
ments in water-limited regions and at high elevations, the
SN-1 network returns a higher value of NSE compared to the
UN-1 network (red dots above the identity line; Fig. 5c). This
result provides evidence that, in catchments where the dis-
charge generation process is not predominantly precipitation
driven, it is important to account for the interaction between
other hydro-meteorological variables and catchment current
state. Finally, based on the expectedQmax simulated with the
network, for each catchment, we estimated the 0.5, 0.05, and
0.95th quantile, and we compare them with the same quan-
tiles from observations. While the observed and simulated
mid-quantiles in both the UN-1 and SN-1 networks, respec-
tively, broadly correspond (Fig. 5d), Fig. 5e shows that in the
SN-1 network, lower quantiles are overestimated (dark grey
histogram with most mass on values> 1), while upper quan-
tiles are underestimated (dark grey histogram with most mass
on values< 1; Fig. 5f). Conversely, the UN-1 network shows
greater variability in simulating discharge since a clear pat-
tern of over- or underestimation is not visible, especially for
the 0.95th quantiles (Fig. 5f). These results likely reflect the
property of the Gaussian copula of no tail dependence.

The preliminary analysis on the descriptive capabilities of
the UN-1 and SN-1 networks suggests that the SN-1 net-
work is better suited for describing the dynamics of river
discharge compared to UN-1. However, when we look more
in depth into SN-1 network performances, we can observe
that only 66 % of the catchments have a NSE higher than 0.5
(Fig. 6a), which in the literature is considered as an accept-
able performing model (Moriasi et al., 2007; Newman et al.,
2015). Such catchments receive precipitation mainly in win-
ter (mean ps ∼−0.19), are located in energy-limited regions
(mean Ar∼ 0.78), and are mostly green areas (mean fraction
of forest∼ 0.91). At the same time, in 85 % of the catch-
ments, the H0 of the KS test cannot be rejected (average p
value= 0.49), suggesting that the sample of maximum daily
river discharge simulated from the network derives from the
same distribution as the sample observed. This result implies
that the network captures the average behaviour of the catch-
ment well in the long term (tested via KS test), while it has
limitations when inferring single events (tested via NSE).

To further investigate the ability of NPBNs to estimate
maximum daily river discharge, we evaluate the perfor-
mances of the SN-1 network as a predictive model. We limit
the investigation to the SN-1 network since the above results
suggest that it is a descriptive model for a larger number of
catchments with contrasting characteristics compared to the
UN-1 network. The k-fold cross-validation test is applied to
catchments with a NSE greater than 0.5 in the testing process
described above, here 159 catchments. We perform five sim-
ulation runs, and, in every run, 10 years were randomly se-
lected as the test set. We consider the performances in terms
of NSE calculated as mean value of the five runs. Results
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Figure 5. Results of the testing process when the UN-1 and SN-1 networks are used as descriptive models of the 240 catchments considered
as single elements. Panel (a) shows the percentage of pairs with the copula on the x axis as best fit. Panel (b) shows the variability of the
d-calibration score across catchments. Panel (c) shows the comparison between UN-1 and SN-1 in terms of NSE as a function of the sign of
the correlation (rs) betweenQmax and Pmax. Red dots indicate negative correlation (r−s ), while green dots (r+s ) indicate positive correlation.
The identity line (grey) is used as an indicator to visually compare the results from UN-1 and SN-1 networks. Dots on the line indicate
matching results between the two networks, while dots above/below the line indicate higher values of NSE associated with the NS-1/UN-1
network. Panels (d) to (f) show the histograms of the ratio between simulated and observed discharge quantiles, i.e. 0.5, 0.05, and 0.95th
quantiles, for the UN-1 (light grey) and SN-1 (dark grey) network. Panel (d) shows that the UN-1 and SN-1 networks simulate the 0.5th
quantile similarly, while panel (e) and (f) show that the SN-1 network generally over- and underestimates the 0.05 and the 0.95th quantile
respectively. Panel (e) and (f) show also that the UN-1 network does not have a clear tendency to over- or underestimate the quantiles.

Figure 6. Performances of the SN-1 network in terms of NSE for the 159 catchments with NSE ≥ 0.5 in the testing process. Panel (a)
compares the performances of the training and test set. Panel (b) shows the value of NSE per catchment. Panel (c) shows the p value resulted
from the KS test per catchment. Panel (d) shows the overall fraction of observations falling inside the estimated discharge uncertainty bounds
per catchment.
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indicate that 25 % of the catchments have a higher NSE in
the test set than the training set (Fig. 6a). In general, one
would expect a better performance in the test set compared
to the training set, since the metric for evaluating model per-
formances uses the same data set for quantifying and testing
the model. Hence, the fact that the training set performs bet-
ter than the test set could depend on the random selection
of the years for evaluating the network. This random pro-
cedure might have split the original data set into two data
sets with different characteristics. This could be due to the
relatively small number of years of observations which are
subsequently divided into even smaller data sets. In contrast,
around 55 % of the catchments analysed (about 40 % of the
total catchments) have a NSE in the test set≥ 0.5 (Fig. 6b)
and, at the same time, a NSE in the test set equal to or lower
than the training set (Fig. 6a), meaning that the SN-1 net-
work in these catchments provides reliable estimates of river
discharge events and long-term characteristics. In a recent
study, Ren et al. (2020) investigated the performances of re-
gression models based on a variety of filter-based feature se-
lection methods to estimate average monthly river discharge
in three catchments from the CAMELS data set. The results
obtained in terms of NSE ranged from ∼ 0.6 to ∼ 0.8, val-
ues similar to the average (mean) performance of the SN-
1 network (NSE∼ 0.596), investigated here for maximum
daily river discharge. Kratzert et al. (2019) used CAMELS
data set to evaluate the performances of hydrological mod-
els. They investigated the performances of the long short-
term memory (LSTM) network to estimate daily river dis-
charge in 530 catchments and included also, among other
models, the performances of the Sacramento Soil Moisture
Accounting (SAC-SMA) conceptual model. For the sake of
discussion, we look at the performances of the LSTM net-
work without catchments’ attributes and SAC-SMA from
Kratzert et al. (2019) for a subset of catchments also analysed
in this study. The results of Kratzert et al. (2019) are avail-
able at https://github.com/kratzert/lstm_for_pub (last access:
6 October 2021). The LSTM network without catchment at-
tributes and the SAC-SMA conceptual model for daily river
discharge have an average (mean) performance of NSE∼
0.603 and ∼ 0.598 respectively. The SN-1 network, inves-
tigated here, for maximum daily river discharge, has an aver-
age (mean) performance of NSE∼ 0.596. In general, NSEs
obtained for simulations on a daily temporal scale tend to
be lower than the ones on a monthly temporal scale due to
the higher number of observations over a common fixed pe-
riod of time (Moriasi et al., 2007). However, other studies
suggest that for both daily and monthly model simulations,
a satisfactory performance is given when 0.37<NSE< 0.75
(Van Liew et al., 2007). To further evaluate the performance
of NPBNs for maximum river discharge, we perform the KS
test. In about 95 % of the catchment, the KS testH0 cannot be
rejected (Fig. 6c). Such a result is in agreement with the one
found in the testing process of the descriptive model, that the
SN-1 network shows limitations when inferring single events

(tested via NSE) but is fairly good when inferring long-term
behaviour (tested via KS).

NPBNs provide a quantification of the uncertainty around
the estimated river discharge values. We then quantify the
uncertainty of the estimated maximum river discharge. On
average and across all catchments, observed discharge in the
test set falls within the simulated confidence interval (5th and
95th percentile) about 63 % of the time, ranging between a
minimum of 45 % and a maximum of 78 % (Fig. 6d).

To further evaluate the results of the SN-1 network in es-
timating maximum daily river discharge, the hydrograph of
three stations, i.e. no. 6746095 (Colorado), no. 11481200
(California), and no. 14306340 (Oregon), with contrasting
characteristics are shown in Fig. 7.

The catchment in Colorado is located in a water-limited
area (Ar∼ 1.1) above 3000 m a.s.l., it has a negative correla-
tion between Qmax and Pmax, and precipitation falls mainly
in winter (negative value of ps). The results of the evaluation
process show that the SN-1 network can reproduce the statis-
tical characteristics of the maximum river discharge observed
(KS-H0 non-rejected, p value= 0.82) as well as the seasonal
variability (Fig. 7d). Moreover, the scatter plot in Fig. 7a
shows simulations in agreement with observations (mean ab-
solute percentage error (MAPE) ∼ 0.47). The mean value of
NSE across the five runs is 0.82, and 56 % of the observations
fall within the simulation confidence interval (Fig. 7d). The
catchment in California is located in an energy-limited region
(Ar∼ 0.54) at ∼ 300 m. a.s.l. Here, there is a positive corre-
lation betweenQmax and Pmax, and precipitation falls mainly
in the winter season (negative ps). The SN-1 network is able
to simulate the statistical characteristics of the observed dis-
charge (KS-H0 non-rejected, p value= 0.72). Moreover, the
simulations follow the seasonal variability of the observa-
tions (Fig. 7e), even though it is less pronounced than in Col-
orado, and ∼ 50 % of the observations fall within the model
CI. The mean value of NSE across the five runs is 0.68, and
the MAPE is ∼ 0.83. This result reflects the fact that few
simulations in the test set (Fig. 7b) deviate significantly from
observations. Finally, the catchment in Oregon is located in
an energy-limited region (Ar∼ 0.38) at ∼ 400 m. a.s.l., and
it has a positive correlation between Qmax and Pmax. Precip-
itation falls mainly in the winter season (negative ps). The
SN-1 network is able to reproduce the statistical character-
istics of maximum river discharge (KS-H0 non-rejected, p
value= 0.86), and the discharge seasonal variability is cap-
tured by the model (Fig. 7f). The NSE across the five runs
is 0.79, and MAPE is ∼ 0.60. In the hydrograph in Fig. 7f,
it can be observed that in 2001, the seasonal variability typi-
cal of the other years is less pronounced. Also, the CI (shaded
red area) is larger compared to the rest. This is likely a conse-
quence of the fact that 3 consecutive years (1999, 2000, and
2001; Fig. 7f) were randomly selected for model evaluation,
including the year 2001.

These results show the potential of the SN-1 network to
model the river discharge generation process in catchments
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Figure 7. Comparison between maximum daily river discharge simulations from run 1 and observations of three different catchments. The
grey shaded areas indicate years belonging to the test set. The shaded red areas represent the simulation confidence interval evaluated as the
5th and the 95th percentile.

with contrasting climate exploiting information from the in-
teraction between the different inputs of the system catch-
ment, i.e. R, Vp, T , P , and Cm, even when precipitation is
not the main discharge driver, for example, in Colorado.

5.2 Catchments in a cluster

We implement the SN-C network on a subsample of 133
catchments with a positive correlation between Pmax and
Qmax and NSE calculated based on the SN-1 network greater
than 0.5 in the previous analysis considering catchments as
single elements.

We first test the performance of the SN-C network as
a descriptive model. Similar to the results obtained previ-
ously, Frank and Gumbel copulas are the best theoretical
copulas for about 50 % of the pairs, supporting the choice
of the NPBN. The d-calibration score is about 0.84, mean-
ing that the network captures the interdependence between

variables obtained via the empirical correlation matrix well.
In contrast, the KS test indicates that in only 20 % of the
cases analysed here, the model can reproduce maximum
daily river characteristics (H0 cannot be rejected, average p
value= 0.24). Given the limitation of the descriptive model
in reproducing statistical characteristics of maximum river
discharge, single events are not inferred as for the UN-1 and
SN-1 networks.

We note that removing one station from the overall pool of
observations has a very small effect on the empirical correla-
tion matrix of the empirical variables, the correlation matrix
associated with the network, and the cumulative distribution
of each node: the observations belonging to one catchment
are around 0.8 % of the total observations from all the catch-
ments. This shows that the SN-C network is quite robust.
Hence, we further evaluate the robustness of the SN-C net-
work performances as a predictive model by leave-one-out
cross-validation. The KS test is performed for each catch-
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Figure 8. Results from the KS test on the SN-C network. Panel (a) shows the p value of the KS test results at the corresponding catchment
location. A p value≤ 0.05 indicates that H0 is rejected. Two locations are highlighted: station no. 11481200 in California and station
no 02299950 in Florida. Such stations are further analysed in panel (b). Here, the solid grey line indicates the cumulative distribution
function modelling the Qmax node in the SN-C network. The red lines represent the observed (dashed) and simulated (solid line) Qmax
distribution at the catchment in California. The green lines represent the observed (dashed line) and simulated (solid line) Qmax distribution
at the catchment in Florida. The comparison of the coloured lines with the grey line shows that by conditioning on catchments’ attributes,
the SN-C network returns discharge values in the range of the discharge observable at the catchment. The comparison between solid and
dashed lines of the same colour indicates whether conditioning on attributes is sufficient for a good discharge estimation. In Florida the model
performs well (the two lines overlap), while in California the model cannot reproduce low quantiles well.

ment using the value of maximum daily river discharge ob-
served and simulated via the SN-C network, calibrated with-
out the information of the catchment analysed (evaluation
process). This is done to assess the potential of such a net-
work in exploiting the information from catchments with
similar attributes. The descriptive and the predictive mod-
els perform similarly, suggesting that the SN-C network is
quite robust. The KS test results show that in only 15 % of
the subsample of catchments analysed here (Fig. 8a green
dots; 10 % of the total number of catchments), the H0 cannot
be rejected (p value 0.20), meaning that in only 15 % of the
catchments, the distribution of simulated and observedQmax
belongs to the same distribution family. Such catchments are
characterised by a relatively strong correlation between Pmax
and Qmax (median around 0.53) and are in energy-limited
regions (aridity median ∼ 0.74) at moderate elevations (me-
dian ∼ 500 m a.s.l.). Moreover, in such catchments, precipi-
tation is on average constant over the year (ps 0.08). How-
ever, there is no clear pattern in catchment attributes of those
catchments with H0 rejected in the predictive model but not
rejected in the descriptive model.

To further analyse the results, we look at one catchment
in California (no. 11481200), where the H0 is rejected, and
one in Florida (no. 02299950), where the H0 cannot be re-
jected. Figure 8b shows that conditioning the SN-C network
on catchments’ attributes leads to a subsample of discharge
values in the range of the observed ones. However, low quan-
tiles are not well captured (dashed coloured lines departing
from the corresponding solid lines in Fig. 8b), especially in
the catchment in California (red line).

6 Discussion and challenges

The performances of NPBNs indicate that the interdepen-
dence between hydro-meteorological information should be
explicitly modelled to better capture the river discharge char-
acteristics at the catchment level: the SN-1 network provides
higher NSE values compared to the UN-1 network. Addi-
tionally, it suggests that at least the networks trained at the
catchment scale, i.e. SN-1 and UN-1, show potential to de-
scribe the hydrological response, while more research will be
needed to develop meaningful NPBNs trained across a range
of multiple catchments. Indeed, in our study, river discharge
could only be poorly captured by this network type, i.e. SN-
C, which reflects the common issue of information transfer
in hydrological modelling.

By further considering the results just obtained we identify
six issues related to both NPBN properties (i.e. data qual-
ity and quantity, independence of weather events, feasibility
of testing procedure, and Gaussian-copula assumption) and
the river discharge generating process (i.e. catchment hetero-
geneity, and interacting spatial and temporal scales) that we
believe have influenced the networks’ performances. We dis-
cuss these issues in details, and, when possible, we propose
a way to address them.

– Catchment heterogeneity. River discharge generation is
the result of underlying physical processes at different
timescales, and it occurs in catchments with spatially
heterogeneous characteristics. Such complexity affects
the performances of a fixed model configuration (i.e.
network nodes and interdependence, as summarised by
arcs) in which the timescale of the different processes
involved is implicitly treated.
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– Data quality and quantity. NPBNs, similarly to other
models, are sensitive to the quantity and quality of the
data used for network quantification. In a NPBN, hydro-
meteorological observations and catchment attributes
are modelled as random variables, via a parametric (or
empirical) distribution function learned from the data
themselves. This requires that (for static models) obser-
vations used in the training process are also represen-
tative of future inference; i.e. they have time-invariant
statistics. Such statistics are quite sensitive to the quan-
tity and quality (measurement errors) of the data. This
is particularly relevant when modelling extremes, both
low and high, since observations of these are already
scarce. The results obtained in this study reflect to some
extent such difficulty. For example, the SN-1 network
for modelling a catchment as single elements over- and
underestimates the 5th and the 95th percentile respec-
tively (Fig. 5e, f).

– Interacting spatial and temporal scales. River discharge
at the outlet of a catchment is generated from the inter-
action between many, partially simultaneously occur-
ring physical processes, such as direct runoff, infiltra-
tion, and evaporation. These processes are characterised
by different spatial and temporal scales and can vary
substantially within and across catchments. Specifically,
as tested here, in a NPBN the causal relationship be-
tween river discharge and hydro-meteorological vari-
ables is modelled via (conditional) correlation, which,
however, is a measure of dependence and does not im-
ply causation. Therefore, to model the temporal compo-
nent of the underlying physical processes, we sampled
hydro-meteorological variables within a 7 d time win-
dow prior to the maximum discharge event. However,
with this procedure we might have missed some rele-
vant interaction, such as the different response of river
discharge to a precipitation event due to soil conditions.
In this regard, further analysis, for example, on how to
account more explicitly for soil moisture content (af-
ter a preliminary analysis not shown here using ESA
CCI products, we only considered monthly runoff coef-
ficient) could improve the results. Our preliminary as-
sessment (results are not shown here) is that there are
not enough available remote sensing soil moisture data
to provide a representative multivariate data set because
of high amounts of missing data, especially over the
winter season. Furthermore, the variability of soil mois-
ture content is much higher than discharge, for exam-
ple, in response to a precipitation event. This is also due
to the fact that soil moisture is more sensitive to other
input variables, such as temperature, compared to river
discharge. Hence, it is challenging to identify at which
time frame (i.e. maximum/mean over week/day) infor-
mation on soil moisture is relevant for improving maxi-
mum daily river discharge in any given month.

– Independence of weather events. NPBNs are graphi-
cal models to construct a joint distribution function on
a given set of random variables represented as nodes
in a DAG. At a monthly timescale, the temporal scale
considered in this study, samples used in the quantifi-
cation process are not always time-independent. The
sampling procedure of the multivariate data set based
on maximum daily events contributes to guarantee-
ing the time-independence property of the events sam-
pled, since events should be driven by different weather
systems. However, some autocorrelation, particularly
in discharge data, was observed (Fig. S3). To address
this, future research exploring dynamic non-parametric
Bayesian networks is recommended Hanea et al. (2013).

– Feasibility of testing procedure. BN model selection
is a challenging task due to the high number of pos-
sible DAG configurations determining a multivariate
probability function describing a given set of variables,
where each configuration is de facto a possible hypoth-
esis on the system functioning and may in principle be
tested. Furthermore, the same DAG can be quantified
differently based on the ordering of the parent nodes.
NPBNs specify the nodes as arbitrary invertible distri-
bution functions and the arcs as (conditional) rank cor-
relation (Kurowicka and Cooke, 2005). The conditional
correlation depends on the parent ordering chosen for a
given child (node). For example, the network in Fig. 3
can be quantified by two pairs of (conditional) rank cor-
relations: r1,3 and r2, 3|1 or r2, 3 and r1, 3|2. In the former
case, the parent order is {1, 2} and in the latter {2, 1}.
In general, given n nodes, the saturated DAG (all the
nodes connected) has nn−2 possible parent–child com-
binations (Morales-Nápoles, 2010), and this number in-
creases when testing other DAG configurations justi-
fied by prior information. This large number of poten-
tial models would render network selection on the bases
of a “brute force” procedure (evaluating a large por-
tion of the space of models) computationally unfeasi-
ble. For such a reason, we imposed the network con-
figuration based on prior knowledge about the relation-
ship between the variables, and we investigated model
performances based on the model outcome. This strat-
egy, however, can affect the capability of the model as a
catchment descriptor and can conceal relationships that
may seem illogical or unlikely a priori. Hydrological ap-
plications require a good knowledge of the interactions
and dependencies in a system, which are often largely
unknown beyond individual catchments, and this is re-
flected in the fact that in this study, NPBNs, which re-
quire information to model dependence, perform better
for catchments as single elements than for catchments
in a cluster.

– Gaussian-copula assumption. NPBNs, introduced by
Kurowicka and Cooke (2005) and implemented in this
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study, assume that the arcs are quantified via the nor-
mal or Gaussian copula (Nelsen, 2006) because only
this copula allows for rapid calculation and inference
for complex problems (Hanea et al., 2015). However,
the normal copula does not capture important asymme-
tries often observed in data (for example, lower and up-
per tail dependence), meaning that it is not able to prop-
erly model relationships where extreme values (mini-
mum and/or maximum values) are more strongly as-
sociated than values not in the joint tails of the dis-
tribution. This issue can be solved by quantifying the
arcs based on a different copula family. In this way, the
join distribution function of the nodes in the network is
realised via vine copulas. However, a complete theory
of vine copula conditionalisation does not exist, mak-
ing the process at the least computationally demanding
and consequently preventing their applicability to high-
dimensional studies such this one.

7 Conclusions

The main objective of this study was to further explore
and test the suitability of NPBNs as a tool to reproduce
catchment-scale hydrological dynamics and to explore chal-
lenges involved when inferring maximum daily discharge,
since applications of NPBNs in hydrology are still limited. In
this study, we investigated 240 catchments across the United
States, obtained from the CAMELS data set, aiming at test-
ing the ability of NPBNs to estimate maximum daily river
discharge. We showed that, once a NPBN is defined, it is
straightforward to infer any of its variables, i.e. discharge,
when the remaining variables are known and extend the net-
work itself with additional variables, i.e. going from the SN-
1 network containing only hydro-meteorological variables to
the SN-C network containing hydro-meteorological variables
and catchments’ attributes. The NPBNs individually trained
to specific catchments showed potential to reproduce maxi-
mum daily river discharge in a wide range of environments
with an average NSE of 0.59 (predictive models), while in the
literature the performances of regression models for average
monthly river discharge showed NSEs ∼ 0.6 to ∼ 0.8 (Ren
et al., 2020), and the performances for daily river discharge
showed NSEs of∼ 0.603 and∼ 0.598 for the LSTM network
and SAC-SMA model respectively (Kratzert et al., 2019). On
the other hand, the SN-C network trained across sets of many
contrasting catchments exhibited modest skill, i.e. only 10 %
of the catchments with an average KS test p value of 0.20.
This calls for additional analyses to overcome the limitations
encountered and discussed in the previous section to support
future studies using statistical-based models. Future research
directions will focus on improving the understanding of the
timescale at which the many hydro-meteorological variables
leading to discharge generation interact. For this purpose, we
recommend investigating the potential of dynamic BNs to ex-

plicitly model the “memory” of the system (i.e. autocorrela-
tion in the variables). Another research direction is exploring
vine copulas to better capture the possible asymmetries ob-
served in extremes.
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