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ABSTRACT
Empirical evidence suggests that the emotional meaning of facial
behavior in isolation is often ambiguous in real-world conditions.
While humans complement interpretations of others’ faces with
additional reasoning about context, automated approaches rarely
display such context-sensitivity. Empirical findings indicate that
the personal memories triggered by videos are crucial for predict-
ing viewers’ emotional response to such videos — in some cases,
even more so than the video’s audiovisual content. In this arti-
cle, we explore the benefits of personal memories as context for
facial behavior analysis. We conduct a series of multimodal ma-
chine learning experiments combining the automatic analysis of
video-viewers’ faces with that of two types of context information
for affective predictions: (1) self-reported free-text descriptions of
triggered memories and (2) a video’s audiovisual content. Our re-
sults demonstrate that both sources of context provide models with
information about variation in viewers’ affective responses that
complement facial analysis and each other.

CCS CONCEPTS
• Human-centered computing → Empirical studies in ubiq-
uitous and mobile computing.
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1 INTRODUCTION
The capacity of video content to induce specific emotions – e.g.,
feelings of joy, sadness, and even disgust – is an essential motivator
for people to engage with them [4]. For this reason, research is
exploring the development of intelligent media technologies that
can recognize and learn from users’ emotional responses, e.g., to
facilitate personalized content recommendations [30].

The automatic analysis of facial behavior is traditionally an essen-
tial method for automatic affect detection [19], including the recog-
nition of emotional responses to video stimuli (e.g., [44, 61, 62]).
However, findings from empirical psychology increasingly reveal
that the face offers only limited insight into a person’s feelings
outside of artificially created laboratory settings [26]. Rather than
displaying a clear correspondence with a persons’ affective state,
numerous studies have demonstrated that the emotional meaning
of spontaneous facial behavior in the real world is often ambiguous
and highly variable [3]. These findings have direct consequences
for the performance of automatic systems that analyze faces for
detecting affective states of users. Studies evaluating commercially
available software have also revealed challenges for predictions to
correspond with self-reported affect [32], as well as the perceptions
of third-party observers [25].

Instead of relying solely on interpreting behavioral cues, human
perceivers draw on contextual knowledge about the background
and present situation of an observed person to reason about po-
tential influences on their feelings [31, 42, 67]. The insights gained
by this act of emotional perspective-taking can complement any
information offered by behavior in isolation, thereby enabling an
observer to make accurate inferences even for ambiguous cases
(e.g., [41]). However, context-sensitive approaches remain under-
explored in automatic affect detection [23], despite researchers
generally acknowledging their potential [60, 66, 68]. Likely causes
for this neglect are the substantial challenges involved in (1) iden-
tifying relevant contextual influences for emotional responses in
an application setting, as well as (2) developing technical solutions
that provide automatic systems with an awareness of them [29].
Overcoming these challenges requires systematic exploration of
person- and situation-specific influences in computational model-
ing activities [23] informed by findings from the social sciences
[3]. Compared to emotional responses in general, situations in
which video stimuli are consumed by an individual provide a more

Long Paper ICMI '20, October 25–29, 2020, Virtual Event, Netherlands

153

https://doi.org/10.1145/3382507.3418814
https://doi.org/10.1145/3382507.3418814


constrained scenario for the exploration of relevant contextual in-
fluences. For example, it is reasonable to assume that the video’s
content has a strong influence on viewers’ emotional responses
and that its analysis can aid automatic affect detection (e.g., [62]).
However, numerous other important influences exist [60].

In this article, we contribute to the development of context-
sensitive recognition of video-induced emotions by demonstrating
the benefits of accounting for video-triggered personal memories
as additional context in automated predictions. Empirical findings
indicate that media are both powerful cues for personal memories
in observers [5, 43] and that the evoked memories are a powerful
causal influence on emotional responses [35]. Moreover, the feelings
associated with any memories triggered by a video in this way
closely relate to its overall emotional impact [22], i.e., positive
memories lead to amore positive response to a video. These findings
indicate that information about the content of personal memories
associated with a particular video can provide insights into its
emotional impact. Moreover, because triggeredmemories constitute
a contextual influence shaping or even causing emotions during
video-viewing, they may also facilitate inferences when viewers do
not overtly express their feelings. For this reason, accounting for
the occurrence and emotional significance of personal memories in
automated predictions has a strong potential to complement the
analysis of viewers’ behaviors.

One possible way to achieve this is through the automatic anal-
ysis of text or speech data in which individuals explicitly describe
memories triggered in them while watching a video. Findings indi-
cate that people frequently disclose memories from their personal
lives to others [55, 65], for example, in service of social bonding
or emotion regulation processes [7]. There is evidence that people
share memories for similar reasons on social media [11], and that
they readily describe memories triggered in them by social media
content [17]. Additionally, research is extensively exploring both
the automatic affective analysis of text-data from social media [47],
and that of face-to-face dialog [12]. Building on existing work in
this area, we have previously established that self-reported free-
text descriptions video-triggered memories can be successfully used
for predictions, improving performance over automatic analysis of
video content in isolation [20]. Motivated by this, we present here
the following contributions to the field:

• We conduct a series of multimodal machine learning ex-
periments using a dataset capturing peoples’ emotional re-
sponses to music videos to predict induced emotions based
on analysis of viewers’ facial behavior, in combination with
memory content and video content. Our findings demon-
strate that incorporating information about both forms of
context improves predictive performance.

• Using statistical analysis, we establish that video content
and memory descriptions provide strong complementary
information about viewers’ experience of pleasure and domi-
nance, but not arousal. Memories emerged as the best overall
source of information for predictions.

• We outline opportunities for future research to account more
comprehensively for memory-influences in automated affect
detection and potential benefits for applications.

In the remaining article, we first discuss related work on context-
sensitive automatic affect detection and motivate our choice of
affect representation. Then we describe the dataset and approach
for predictive modeling used in our empirical investigations. We
conclude with a detailed analysis and discussion of our findings.

2 BACKGROUND AND RELATEDWORK
2.1 Context in Affect Detection
In the following, we provide a brief discussion of some types of
contextual information that psychological research has identified
as relevant for human emotion perception, and how existing tech-
nological research addresses it. When interpreting another person’s
facial expression, humans rely on sensory information present in
the scene surrounding it and previous knowledge and experiences
that they bring into the scene [31]. A basic form of sensory infor-
mation is other behavioral signals and cues, e.g., body posture and
gestures [67]. Such cross-behavior context has been extensively ex-
plored in multimodal analysis approaches, especially with speech as
an added modality, typically showing performance improvements
[19]. Additionally, human perceivers rarely observe (facial) behav-
ior in the form of isolated snapshots but instead as firmly embedded
in a temporal context. Exploiting such temporal dependencies of
behavioral data is conceptually relatively straight forward. It is
the topic of a substantial amount of technological research in au-
tomated affect detection (see Rouast et al. [56] for an overview of
recent deep learning-based approaches).

The observable scene surrounding another person can be an es-
sential source of information for inferences of their emotional state
[67]. Importantly, it forms the foundation for perceivers to reason
about aspects of the situation-specific context that causes or shapes
the other’s response. Such information about triggering events has
a strong role in interpreting facial behavior [42]. Affective detec-
tion work has only tentatively explored this aspect because it is
conceptually challenging to translate into automatic systems and
generally lacks available corpora for modeling [23]. Notably, how-
ever, Kosti et al. [38] demonstrate the benefits offered by the visual
scene as context in a large-scale approach for image-based affect
detection. In contrast to generic affect detection, video-induced
emotion recognition provides a more constrained scenario regard-
ing situation-specific contextual influences. For example, due to the
nature of the task, it is reasonable to assume that the eliciting video
stimulus’s content is an essential driver of emotional responses. For
this reason, several multimodal approaches have combined analysis
of it with that of facial behavior (e.g., [36, 44, 62]). Similarly, when
viewing occurs in a social setting with multiple persons, looking at
other viewers’ behavior might provide context for predictions in
computational models [46].

To summarize: while individual research projects model relevant
influences on video-induced emotions, accounting for context is not
yet pursued systematically. Notably, cognitive influences during
consumption, such as elicited personal memories, have not yet been
explored in computational work.

2.2 Representing Affective States for Detection
A challenging aspect of developing systems for automatic affect
detection is the conceptualization of the targeted states [19], includ-
ing a formal scheme according to which the system characterizes
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and distinguishes between affective states – i.e., an affect represen-
tation. Affective Computing research has traditionally relied on
two types of schemes to represent emotions for recognition: cate-
gorical and dimensional frameworks. Categorical schemes classify
emotions in terms of a set of discrete states, such as happiness or
anger. On the other hand, dimensional schemes describe human
affect in terms of points in a continuous, multidimensional space,
where each dimension is supposed to capture an aspect that is
crucial for discriminating between different feelings. Traditionally,
face-based affect detection has favored categorical schemes, since
the underlying psychological theories postulate a strong connec-
tion between certain prototypical facial expressions and feelings.
However, empirical evidence suggests that these associations are
highly context-dependent and overall comparatively weak outside
of laboratory studies [3]. Moreover, categorical schemes have been
considered as not expressive enough to capture the degree of nu-
ance relevant for some real-world applications, leading researchers
to increasingly favor dimensional schemes [57]. A widely used di-
mensional framework is Pleasure-Arousal-Dominance (PAD) [45]. It
describes emotions in terms of the three dimensions pleasure (P)
(is an experience pleasant or discomforting?), arousal (A) (does it
involve a high or low degree of bodily excitement?), and dominance
(D) (does it involve the experience of high or low control over the sit-
uation?). Because of its popularity for both psychological research
(e.g. the widely used IAPS corpus [39]) and automatic affect detec-
tion (e.g.DEAP [36], or EMOTIC [37] corpora), we use it to represent
emotions in our modeling activities. Additionally, PAD captures
dominance (in contrast to only Pleasure and Arousal), which can
be linked to emotional appraisals important for applications [9].

3 DATASET
In this section, we provide an overview of a corpus collected via
crowd-sourcing for our modeling activities. It captures people’s
responses to music videos that they are watching on their electronic
devices, including audiovisual recordings of their faces and free-text
descriptions of their memories.

3.1 Data Collection Procedure
We collected data from 300 crowd-workers via Amazon Mechan-
ical Turk, providing a compensation of 6 USD each. Before any
data collection, crowd-workers had to give their informed consent
regarding the study procedure and all aspects of data collection
and future use. Subjects first filled in a survey with additional in-
formation about themselves and their current situation. Then, we
exposed each to a random selection of 7 stimuli from our pool of
42 music videos (see below for the selection of stimuli). During the
playback, we recorded the participants’ faces with their device (Face
Recordings). After each clip, we requested ratings for the emotions
it had induced (Induced Emotion), followed by a questionnaire about
whether the video had caused them to recollect any personal mem-
ories. If this was the case, subjects were required to describe these
memories with a short text (Memory Descriptions) and additional
ratings of their feelings about them (Memory-Associated Affect).
This procedure resulted in a total of 2098 unique responses from
the participants. Out of these, a total of 978 responses of 260 unique
participants included the recollection of at least one memory. We
focus only on the subset of these responses for our experiments, for

Table 1: Response Data Overview

𝑀 (𝑆𝐷) 𝑀𝑖𝑛/𝑀𝑎𝑥

Induced Emotion Pleasure 0.29 (0.53) -1.00/1.00
𝑁 = 932 Arousal -0.03 (0.80) -1.00/1.00

Dominance 0.25 (0.58) -1.00/1.00

Mem.-Assoc. Affect Pleasure 0.34 (0.53) -1.00/1.00
𝑁 = 932 Arousal 0.05 (0.79) -1.00/1.00

Dominance 0.30 (0.58) -1.00/1.00

Memory Descr. Word No. 25.07 (15.45) 3/103
𝑁 = 932

Face Recordings Length (s) 60.44 (2.10) 50.33/69.27
𝑁 = 932 Frame No. 1812.87 (63.28) 1510/2078

which also viable face recordings exist. After filtering out corrupted
cases (e.g. malformed video data or incomplete recordings), this
resulted in a combined set of 932 responses (see Table 1).

3.2 Video Stimuli
We collect responses from viewers to a selection of 42 music video
segments from among a set of 150 that were previously evaluated
for their induced affect as part of creating the DEAP dataset [36].We
chose these stimuli for two reasons: (1) the strong capacity of music
to trigger personal memories [35], and (2) existing PAD ratings
from multiple viewers for each evaluated video. We hypothesized
that responses to stimuli with low variation across viewers’ PAD-
ratings might be more directly driven by video content, and as
such, either not produce or not be influenced by sources of person-
specific variation, such as personal memories. For this reason, we
used the existing ratings to balance our selections videos for low
and high variation responses.

3.3 Response Data
Induced Emotions: Weasked participants to provide self-reports

on their emotional responses to videos as pleasure-, arousal- and
dominance-ratings. For this, they rated their experiences with the
AffectButton instrument on a continuous scale in the interval of
[−1, +1]. This rating tool is a 2d-widget displaying an iconic facial
expression that changes in response to users’ mouse or touch in-
teractions. They can then provide ratings by selecting the facial
expression that best fits the affect they want to express (see [10]
for a detailed description and a validation study).

Memory Descriptions: Memory descriptions had to be pro-
vided in English and contain a minimum of three words. For each
video, subjects could report as many memories as they had experi-
enced. However, only 51 out of the 978 responses for which videos
had triggered any memories involved 2 or more. For such multi-
memory cases, we use the PAD ratings for memory-associated
affect to identify the single memory in the response with the high-
est intensity of affect and retain only this in the modeling dataset.
This filtering resulted in a total of 978 memory descriptions – one
for each viewers’ response.

Face Recordings: Recordings were captured by the devices that
participants used when engaging with our online data collection
application in their browser. While we enforced some constraints
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(e.g., to perform the task in a quiet setting), recordings are cap-
tured in conditions that are largely uncontrolled, reflecting the
diverse ways in which people engage with media content in their
daily lives. Therefore, recordings possess a wide range of differ-
ent lighting conditions, are captured with different quality devices,
and show crowd-workers changing postures (and even places). We
transcoded all recordings from their original format to 30 frames
per second. Several collected clips were corrupted by showing only
a black screen, containing multiple individuals or encoding errors.
Moreover, some possessed a duration abnormally shorter or longer
than the 60 seconds of our video clips. We retained only uncor-
rupted recordings in the range of 50-70 seconds for the modeling
activities reported in this article. This filtering left us with a set
of 932 recordings of viewers’ responses for which both memory
descriptions and behavior are available.

4 PREDICTIVE MODELING
4.1 Overview
In line with most previous work on affect detection using dimen-
sional representations, we address modeling viewers’ emotional
responses as a regression problem [19]. Support Vector Machines
are a widely deployed approach when modeling affective responses
to media content, especially in regression settings (see the reviews
of technical work by Wang et al. [66], and more recently Zhao et
al. [68]). For this reason, we use Support Vector Regressors with a
Radial Basis Function (RBF)-kernel as predictors in our experiments.

An essential aspect of building context-sensitive affect detection
is how information from different modalities is integrated into a
single prediction, i.e., multimodal fusion. Existing work has primar-
ily relied on either feature- or decision-level fusion of modalities,
with neither approach showing clear superiority over the other [19].
However, previous work in which we explore both types of fusion
for video content and memory-descriptions indicates a stronger
overall performance of a decision-level approach usi

ng stacked generalization on this task, compared to feature-level
fusion [20]. Motivated by this, we conduct all our experiments us-
ing only this approach to decision-level fusion. Figure 1 provides
a graphical overview of the entire machine learning pipeline that
we deploy for predictions of induced emotions. Processing is un-
dertaken in a traditional two-stage approach of feature extraction
and multimodal prediction. The pipeline is deployed separately for
predicting pleasure, arousal, and dominance.

An overview of the different information sources that we use
as inputs and the feature-sets that we extract from them compris-
ing different modalities for fusion and predictions can be found
in Table 2. In total, we extract features from three different input
sources: (1) recordings of viewers’ faces, (2) the video stimuli that
they are exposed to, and (3) free-text descriptions of triggered mem-
ories. The outcome of preprocessing and feature extraction in the
first stage are 5 distinct feature-sets denoting different modalities
for predicting viewers’ response: (1) Facial Expressions, (2) Gaze,
(3) Head Posture, (4) Video Content, and (5) Memory Content. De-
tails about the preprocessing and feature extraction stages for each
of these modalities are listed below. We extract many of these
modality features from the input sources on a per-frame- or per-
word-basis. For predictions, we aggregate these to the response

  

Ridge 
Meta-Regressor

INDUCED
EMOTION

MEMORY
DESCRIPTION

Feature 
Extraction

Preprocessing

Aggregation

MEMORY CONTENT
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Figure 1: Overview of our approach for predictive modeling
and decision-level multimodal fusion.

Table 2: Overview of Extracted and Modality-specific Fea-
ture Sets from Input Sources and their Aggregation

MODALITY FEATURES # EXTR. SOURCE # AGGR.

E Action Units 17 Face Rec. 13498

G Direction 8 Face Rec. 6352

P Pos./Orient. 6 Face Rec. 4764

V Theory-inspired 271 Vid. Stim. 271
Deep Visual 4096 4096
Visual Sentiment 4342 4342
openSMILE 1582 1582

M Lexical 130 Mem. Descr. 130
W. Embeddings 500 500

𝐸: Facial Expressions;𝐺 : Gaze; 𝑃 : Head Pose;𝑉 : Video Content;
𝑀 : Memory Content

level using statistical functions. Note that the extraction and ag-
gregation stages for video stimuli and memories are identical to
those described in our earlier work [20]. In the second stage, each
aggregated modality-specific feature set is provided as input into
a Support Vector Regressor for predictions. Finally, we fuse the
outcome of these modality-specific models at the decision-level via
stacking by an L2-regularized linear model ("Ridge" regression). All
machine learning models use the implementation from the python
library Scikit-Learn [53].

4.2 Face Recordings Processing
We deploy the software OpenFace 2.0 [2] for extracting feature-
sets for Expressions, Head Pose, and Gaze from the face recordings
in our dataset at the level of individual frames. All frame-level
features for a recording are concatenated along the time-axis, and
each resulting time series is aggregated to the response-level using
statistical functions. For this purpose we rely on the tsfresh python
package [16], which implements 63 best practice methods for time
series characterization, computing a total of 794 generic features
1 per series. See Table 2 for details about the amount of extracted
and aggregated features per response.
1A detailed list of the types of extracted time-series features is available here: https:
//tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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Facial Expressions: OpenFace extracts information about fa-
cial muscle movements and expressions in terms of a subset of
the Facial Action Coding System (FACS). This coding scheme al-
lows fine-grained descriptions of complex facial configurations by
decomposing them into the activation of the combination of 45
individual muscles, i.e., Action Units. It is a widely used scheme for
the objective characterization of facial expressions. For our model,
we extract the intensity of activation of the 17 Facial Action Units
provided by OpenFace (AU Intensities). Intensities range from 0 − 5,
whereby a value of 0 denotes no activation of the action unit in
question, and a value of 5 an activation at maximum intensity. We
drop any frames in videos with corrupted predictions (i.e., that are
non-numeric or fall outside the 0 − 5 range specified by the Open-
Face developers for valid AU intensities). This filtering resulted in
the exclusion of 3886 frames.

Gaze: In addition to facial expressions, we extract features about
viewers’ gaze direction as a distinct modality for predictions from
each frame. They consist of an 8-dimensional vector, containing the
(𝑋,𝑍,𝑌 ) gaze direction in world coordinates for each eye separately
and the horizontal and vertical gaze angles.

Head Pose: Finally, we extract features describing the location
and orientation of a person’s head in relation to the camera to
capture head pose as a distinct modality for predictions. Location is
provided as a three-dimensional vector by denoting the (𝑋,𝑌, 𝑍 )-
position of the head in millimeters relation to the camera. On the
other hand, orientation information is a vector of radians marking
the pitch, yaw, and roll around the camera. Together, this results in
the extraction of a 6-dimensional feature vector.

4.3 Video Stimulus Processing
For the representation of the content of video stimuli as a modality
in prediction, we extract different features from their visual and
audio-tracks (see below). For visual analysis, we first export one
frame per second of the video and extract features from it. The
resulting frame-level feature vectors are then concatenated along
the time axis, and aggregated by taking the mean. For extracting
audio-features, we first split each video’s audio track into a sepa-
rate file, before using an existing software solution for processing
(openSMILE). This software provides aggregated feature vectors of
a fixed length to characterize the entire audio signal. See below for
details about the extracted audio and visual features.

Theory-inspired Descriptors: Research on affective visual con-
tent analysis has developed descriptors inspired by psychology and
art theory. We use a set of such descriptors developed by Macha-
jdik & Hanburry [40], as well as those of Bhattacharya et al. [6] to
characterize each of the extracted video frames. This combination
has been used previously in affective content analysis (e.g., [58]).

Deep Visual Descriptors: Deep learning forms an essential part
of the automatic analysis of image data. Instead of relying on engi-
neered visual input descriptors, deep models can learn effective and
reusable representations for prediction tasks from training data.
We use the activation of the FC1-layer of a pre-trained VGG16 net-
work [59] from the Keras framework for python [15] as features
to capture a video frame’s visual content (4096 dimensions). This

representation has been used extensively as a baseline in bench-
marking challenges for affective content analysis [18].

Visual Sentiment Descriptors: Prior research has established
automatic detections of Adjective-Noun Pairs (ANPs) in visual mate-
rial as useful high-level features for describing the affective content
of visual stimuli (e.g., [44, 58]). ANPs are labels that denote objects
or persons in an image, coupled with an affective attribute (in the
spirit of "creepy forest"). We use the class-probabilities assigned by
the DeepSentiBank Network [13] for any of the ANPs in its ontology
as features describing a frame’s content.

openSMILE:. To represent the audio content of the music videos
in our dataset we rely on the software openSMILE in the config-
uration “emobase2010" for feature extraction. It derives low-level
descriptors from audio signals in a windowed fashion and aggre-
gates them statistically into a single feature vector (see [57] for a
detailed description). Benchmarking challenges for affective con-
tent analysis have used these features as a baseline approach [18].

4.4 Memory Descriptions Processing
We first clean memory descriptions by replacing references to spe-
cific years or decades (e.g., "1990", or "the 90s") with generic terms
(e.g. "that year" or "that decade"). Additionally, we replace any num-
bers with 0 and expand all contractions present (e.g., "can’t" is
transformed into "cannot"). To model the affective impact of per-
sonal memories we extract word-level features that have proven
successful in state-of-the-art models for predicting emotional states
from social media text in a regression setting (see [47]): (1) Lexical
Features and (2) Word Embeddings (see below for details). We then
concatenate all word-level features in order of their appearance in
the description, before taking the average to create a description-
level representation.

Lexical Features: These features are created by parsing descrip-
tions into word-level tokens and retrieving associated affective rat-
ings from various affective dictionaries. We apply lemmatization
before the lookup to remove word inflections to account for dif-
ferences between words in descriptions and the form contained in
lexica. The combination of the dictionaries that we initially selected
for feature extraction [1, 8, 14, 33, 48–52, 63, 64] has achieved state-
of-the-art performance for affect regression [24]. We extended this
list by a new source containing word-level ratings for Pleasure,
Arousal, and Dominance [47], and lexica-based VADER Sentiment
ratings [34]. We aggregate word-level ratings to the description-
level by averaging.

WordEmbeddings: We leverage two pre-trainedword embedding-
models to represent each word in the memory description texts as
a real-valued feature vector: (1) Word2Vec-model pre-trained on the
Google News dataset, resulting in a 300-dimensional feature vector
when applied to a word, and (2) a GloVE-model [54] pre-trained on
theWikipedia 2014 and Gigaword 5 corpora. It encodes individual
words as a 200-dimensional feature vector. For both implementa-
tions we rely on the Gensim-library for python [69].

5 EMPIRICAL INVESTIGATION
To explore the influence of memory and video-content as contex-
tual information for facial behavior in predictions, we conduct an
ablation study of our model. This approach exhaustively compares
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Table 3: Comparison of the test-performance of our model (𝑅2
𝑇𝑒𝑠𝑡

) when predicting Induced Pleasure, Arousal and Dominance
with access to only individual (vs. 𝑁𝑜𝑛𝑒-baseline) or multiple modalities (vs. only Facial Expressions (𝐸)

INDUCED PLEASURE INDUCED AROUSAL INDUCED DOMINANCE

𝑅2
𝑇𝑒𝑠𝑡

vs 𝑁𝑜𝑛𝑒 𝑅2
𝑇𝑒𝑠𝑡

vs 𝑁𝑜𝑛𝑒 𝑅2
𝑇𝑒𝑠𝑡

vs 𝑁𝑜𝑛𝑒

Unimodal M (SD) Δ𝑅2
𝑇𝑒𝑠𝑡 𝑡 (𝑑𝑓 ) 𝑝 M (SD) Δ𝑅2

𝑇𝑒𝑠𝑡 𝑡 (𝑑𝑓 ) 𝑝 M (SD) Δ𝑅2
𝑇𝑒𝑠𝑡 𝑡 (𝑑𝑓 ) 𝑝

𝑁𝑜𝑛𝑒 -0.01 (0.01) – – – -0.01 (0.01) – – – – – – –
𝐸 0.02 (0.03) 0.03 5.96 (29) <.001*** 0.04 (0.04) 0.05 8.15 (29) <.001*** 0.03 (0.03) 0.04 8.97 (29) <.001***
𝐺 -0.01 (0.02) -0.00 -1.13 (29) .87 -0.01 (0.02) -0.00 -1.27 (29) .89 -0.01 (0.01) -0.00 -1.04 (29) .85
𝑃 -0.01 (0.01) -0.00 -1.3 (29) .9 -0.01 (0.02) 0.00 0.04 (29) .48 -0.01 (0.02) 0.00 1.58 (29) .06
𝑉 0.11 (0.04) 0.12 18.85 (29) <.001*** 0.02 (0.02) 0.03 9.52 (29) <.001*** 0.08 (0.03) 0.09 14.43 (29) <.001***
𝑀 0.15 (0.05) 0.16 17.13 (29) <.001*** 0.02 (0.03) 0.03 6.19 (29) <.001*** 0.06 (0.03) 0.07 14.21 (29) <.001***

𝑅2
𝑇𝑒𝑠𝑡

vs 𝐸 𝑅2
𝑇𝑒𝑠𝑡

vs 𝐸 𝑅2
𝑇𝑒𝑠𝑡

vs 𝐸

Multimodal M (SD) Δ𝑅2
𝑇𝑒𝑠𝑡 𝑡 (𝑑𝑓 ) 𝑝 M (SD) Δ𝑅2

𝑇𝑒𝑠𝑡 𝑡 (𝑑𝑓 ) 𝑝 M (SD) Δ𝑅2
𝑇𝑒𝑠𝑡 𝑡 (𝑑𝑓 ) 𝑝

𝐸 +𝑉 0.12 (0.04) 0.10 20.02 (29) <.001*** 0.06 (0.04) 0.02 8.25 (29) <.001*** 0.1 (0.03) 0.07 11.49 (29) <.001***
𝐸 +𝑀 0.16 (0.06) 0.14 16.12 (29) <.001*** 0.06 (0.03) 0.02 5.73 (29) <.001*** 0.09 (0.04) 0.06 12.67 (29) <.001***
𝑉 +𝑀 0.19 (0.05) 0.17 20.1 (29) <.001*** 0.04 (0.03) 0.00 0.24 (29) .41 0.11 (0.04) 0.08 10.15 (29) <.001***

𝐸 +𝑉 +𝑀 0.2 (0.05) 0.18 22.97 (29) <.001*** 0.07 (0.04) 0.04 8.41 (29) <.001*** 0.13 (0.04) 0.09 16.55 (29) <.001***

𝑁𝑜𝑛𝑒 : Predictions use mean of target in development-set; 𝐸: Facial Expressions;𝐺 : Gaze; 𝑃 : Head Pose;𝑉 : Video Content;𝑀 : Memory Content;

Figure 2: Test-performance (𝑅2
𝑇𝑒𝑠𝑡

) of our model for Induced Pleasure, Arousal and Dominance when using Facial Expressions
(E), Gaze (G), Head Pose (P), Video Content (V ), Memory Content (M), or their multimodal fusions for predictions. None is a
baseline always predicting the mean of targets in the development-set for tests. Error bars denote the 95% confidence interval.

the relative contributions of each modality and their multimodal
combinations when predicting video-induced pleasure, arousal, and
dominance. Notably, we collect samples for the test-performance
of our model when having access to different modalities and con-
duct statistical analyses to quantify the contributions of context
modalities (1) across affective dimensions (i.e., do they improve
our model’s overall performance?), as well as (2) within specific
dimensions (i.e., do they provide our model with insights into some
particular aspects of viewers’ experience?).

5.1 Experimental Setup
For training and evaluation of our model, we rely on nested 5-Fold-
Leave-Persons-Out Cross-Validation. This procedure creates folds
in such a way that no data from the same person is simultaneously
available for both training and evaluation. The outer loop of the
nested cross-validation splits the entire dataset into 5 folds, from
which we hold out a single fold for testing the performance of
selected models. The inner loop uses the remaining 4 folds for
optimizing the hyperparameters of the machine learning models
through a grid search. To gain a better estimate of the influence of
different modalities on the test performance of models, we repeat
this procedure 6-times, resulting in samples of𝑁 = 30 data points of
test performance for each investigated combination of modalities.

5.2 Results and Analysis
A graphical overview of the distribution of test performance (𝑅2

𝑇𝑒𝑠𝑡
)

achieved by our model when provided with access to different
combinations of modalities can be seen in Figure 2. Furthermore,
Table 3 provides the results of a statistical analysis of the differences
between these samples of test performance2.

Comparisons of Unimodal Performance vs. None-Baseline:
We assess whether and which individual modalities facilitate an
average test performance (𝑅2

𝑇𝑒𝑠𝑡
) that is significantly above a base-

line that always predicts the sample mean of the target variable in
the development set used to build it (𝑁𝑜𝑛𝑒). One-sided t-tests of
performance samples where our model has only access to gaze- or
head posture modalities indicate no improvement over this base-
line. For this reason, we exclude them from all further analyses.
Moreover, a look at the performance of modalities across targeted
affective dimensions shows that memory content offers the high-
est individual performance for pleasure. In contrast, for predicting

2Because we have obtained samples for test-performance 𝑅2
𝑇𝑒𝑠𝑡

from different repeti-
tions of the nested cross-validation scheme these are no longer independent. However,
following procedures outlined by Field et al. [27] we assessed the need for a hierarchical
analysis using linear mixed-effects models to account for this nesting in comparisons
within affective dimensions and found no significant improvements over simple linear
models. Consequently, we stick to the more common procedures for statistical analysis
resulting in Table 3.
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Table 4: Effects ofModalities andTargetedAffect Dimension
on Model Performance (𝑅2

𝑇𝑒𝑠𝑡
)

Effect 𝑑𝑓𝑛 𝑑𝑓𝑑 𝐹 𝑝

𝐸 1 701.999 120.738 <.001***
𝑉 1 701.999 388.018 <.001***
𝑀 1 701.999 550.757 <.001***

𝐷𝐼𝑀 2 18.000 263.067 <.001***
𝐸 ∗𝑉 1 701.999 4.124 <.05*
𝐸 ∗𝑀 1 701.999 3.333 .068
𝑉 ∗𝑀 1 701.999 58.049 <.001***

𝐸 ∗𝐷𝐼𝑀 2 701.999 7.194 .01**
𝑉 ∗𝐷𝐼𝑀 2 701.999 30.274 <.001***
𝑀 ∗𝐷𝐼𝑀 2 701.999 117.646 <.001***
𝐸 ∗𝑉 ∗𝑀 1 701.999 0.563 .454

𝐸 ∗𝑉 ∗𝐷𝐼𝑀 2 701.999 0.254 .776
𝐸 ∗𝑀 ∗𝐷𝐼𝑀 2 701.999 0.243 .784
𝑉 ∗𝑀 ∗𝐷𝐼𝑀 2 701.999 12.374 <.001***

𝐸 ∗𝑉 ∗𝑀 ∗𝐷𝐼𝑀 2 701.999 0.070 .932

𝐷𝐼𝑀 : Targeted Affect Dimension; 𝐸: Facial Expressions; 𝑉 :
Video Content;𝑀 : Memory Content;

arousal, facial expressions provide the best performance, while the
best performing modality for dominance is video content. This
spread is an indicator of the overall complementary nature of these
modalities for predictions of induced emotions.

Comparison of Multimodal Performance vs. Facial Expres-
sions: In addition to individual modalities’ performance, we tested
whether combinations of context information and facial expres-
sions result in improved model performance. For this purpose, we
conduct paired t-tests between performance samples from models
using only facial expressions (𝐸) with those from having additional
access to video content (𝑉 ) or memory descriptions (𝑀). We also
compare the performance of having only access to both context
sources (𝑉 + 𝑀) to facial expressions. These comparisons reveal
that analyzing memory descriptions provides substantial benefits
to facial analysis for predicting pleasure and dominance. The same
is true for access to video content, either alone or in combination
with memory content. However, neither context modality facilitates
improvements over facial expressions for arousal.

Relationship betweenModalities and Test-Performance: To
further understand the relationship between our model’s access to
individual modalities and its test-performance within and across
affective dimensions, we conduct a multi-way analysis of variance.
For this purpose, we construct a linear mixed-effects model with
𝑅2
𝑇𝑒𝑠𝑡

as the dependent variable. We include fixed-effects for (1) the
type of affective dimension targeted by the model (𝐷𝐼𝑀), (2) ac-
cess to Facial Expressions (𝐸), (3) Video Content (𝑉 ), (4) Memory
Content (𝑀) modalities, as well as (5) their multi-way interactions.
To account for the nesting of samples in our analysis, we include
random effects dependent on the identity of repetitions (maximum
random effects structure supported by the data is determined em-
pirically; resulted in intercept only).

As expected, the results of this analysis in Table 4 show signif-
icant main-effects for each modality on model performance. The
positive coefficients of these effects indicate that access to each
modality has a significantly positive impact on performance across
affective dimensions (𝐸: 𝑏 = 0.05; 𝑉 : 𝑏 = .03; 𝑀 : 𝑏 = 0.02). More-
over, average test performance is greater when models have access
to memory content compared to video content (𝑀vs𝑉 : 𝑡 (29) =

Figure 3: Marginal means of Model Performance (𝑅2
𝑇𝑒𝑠𝑡

)
with/without access to Memory and Video Content modal-
ities. Converging lines indicate negative interactions due to
overlapping information.

2.17,𝑝 < .05), or facial expressions (𝑀vs𝐸: 𝑡 (29) = 9.37, 𝑝 < .001).
Apart from this, there is a significant effect of 𝐷𝐼𝑀 on test perfor-
mance, showing that our model’s average performance varies sys-
tematically across affective dimensions, independent of the modali-
ties involved.

Further, inspection reveals no significant interactions between
the context modalities and facial expressions (𝐸), indicating that –
independent of the targeted affective dimension – no substantial
overlap in provided information exists between them. This finding
demonstrates the complementary nature of context information
for facial analysis. In contrast, there is a significant interaction
between memory- and video-content (𝑉 ∗𝑀), indicating overlap.
The coefficient for this effect in the analysis reveals the negative
influence of this interaction on model performance (𝑏 = −0.01),
showing that their benefits diminish when both modalities are
accessible. Moreover, this interaction’s strength seems to depend on
the affective dimensions targeted bymodels (𝑉 ∗𝑀∗𝐷𝐼𝑀). A glimpse
at the interaction plots in Figure 3 provides further insights into
the nature of this relationship. Especially when predicting pleasure,
video, and memory content provide overlapping information for
our model, reducing their positive impact on performance.

6 DISCUSSION
Empirical Findings: The findings from our empirical investi-

gation demonstrate that information about what viewers are watch-
ing, and what that reminds them off is is highly complementary to
the insights offered by analysis of their facial behavior. The bene-
fits of the video- and memory-content modalities for predictions
manifest both by increasing the average performance of models
across affective dimensions and offering specific benefits for indi-
vidual affective dimensions. Depending on what aspect of affective
experience applications are interested in, they may benefit from
knowledge about some contextual influence more than knowledge
about others. Furthermore, our results indicate that viewers’ self-
reported memory descriptions provide significant performance ben-
efits across affective dimensions in our experiments. This finding is
congruent with our earlier investigations, where we compared the
performance of memory descriptions for predictions to that of only
video content [20]. This capacity of text-based memory descriptions
for predicting emotional responses should motivate computational
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research to provide automatic systems with access to this informa-
tion. The first step towards this could be to mine video-associated
memory descriptions from social media content, e.g., by automati-
cally identifying relevant user comments. Moreover, technological
approaches could explore how the emotional meaning of already
collected memory descriptions relates to novel viewing situations
and videos. More generally, personal memories form a crucial con-
textual driver for video-induced emotions [22], and accounting for
their impact in automatic predictions could facilitate a broad range
of novel applications [21], e.g., affect-based reminiscence support
technology. More comprehensively addressing personal memories
forms a substantial challenge for computational modeling because
of their person- and situation-specific nature. Doing so requires –
apart from technological contributions – also developing datasets
and corpora that capture the occurrence and emotional impact of
memories on responses.

Apart from insights about the context, our results indicate that
the affective information provided by facial behavior provides in
isolation is comparatively low. This observation is congruent with
the findings of Hirt et al. [32], demonstrating an overall lack of cor-
respondence between face-based affect predictions and emotional
experience in a human-computer interaction setting. One possible
explanation is that people scarcely express their emotions through
the face when viewing videos alone on their devices. Psychological
theory overall argues for the essential social functions of emotional
expressions [28], e.g., facilitating bonds with others. As such, there
may be little functional need for displaying them in single-person
settings. If this is the case, the usefulness of facial behavior for
predictions in such a setting may be inherently limited. However, it
is important to note that our analyses of facial behavior rely on data
automatically extracted through OpenFace. The automatic analy-
sis of the face recordings in our dataset is a substantial challenge
for existing technology: lighting conditions vary, viewers move
or change position, etc. These adverse conditions likely hurt the
accuracy with which the OpenFace-software can extract facial fea-
tures, providing an alternative explanation for their relatively low
value for predictions. Ultimately, however, our current study cannot
differentiate with certainty whether participants’ low expressivity
or error in automatic recognition is the cause for the relatively
low performance of predictions based on facial behavior. However,
analysis of facial expressions consistently facilitates performance
across all dimensions of viewers’ affective states, outperforming
both context-modalities for arousal predictions. This finding further
highlights the necessity of combining different information sources
in automatic affect detection to achieve accuracy and robustness
in-the-wild.

Limitations: Despite the insights provided by our empirical
investigation, there are several methodological limitations to their
validity. For once, an additional explanation for our model’s compar-
atively weak performance when relying on facial behavior might
be that it fails to exploit the rich temporal context of these behav-
ioral signals sufficiently. More sophisticated temporal modeling
techniques explored in affect recognition, e.g., LSTMs, might result
in better absolute performance, but also require large corpora for
training [56]. Another explicit limitation of our approach is that we
analyze only responses in our dataset for which viewers reported

having recollected memories. However, the information provided
by facial behavior about emotional experiences may differ when
no memories are involved. For example, gaze patterns might pro-
vide more information in this case, because visual content is more
directly driving responses. Future research could explore such dif-
ferences in facial behavior patterns during video-induced emotions
more directly. Finally, while we explicitly instructed participants
only to report memories if they had experienced them during the
video, the sequence in which we asked for affective self-reports
may affect whether and what memories are recollected, or how
they are evaluated. Future investigations should actively minimize
such influences in their study design, e.g., by spacing out describing
and evaluating memory content over time.

7 SUMMARY AND CONCLUSION
Analysis of individuals’ facial behavior is an extensively researched
approach for automatic detection of affect. However, the emotional
meaning of facial expressions in isolation can be ambiguous. For
this reason, humans extensively rely on potential causes for the
emotions experienced by others as additional context for their infer-
ences. Apart from videos’ content, an essential cause for emotional
responses is the triggering of viewers’ personal memories. This
article has explored the impact of providing an automatic affect de-
tection system with additional information about both of these two
influences to contextualize the analysis of viewers’ facial behavior.
Our machine learning experiments’ findings indicate that this com-
bination facilitates more accurate predictions than looking at facial
behavior in isolation. Moreover, while adding context information
improves models’ overall accuracy, individual sources provide par-
ticular advantages for predicting specific affective dimensions. This
complementary nature of sourcesmeans that application developers
might make meaningful trade-offs by choosing which information
to incorporate for predictions. More generally, awareness of con-
textual influences may facilitate more accurate predictions and
provide clear and immediate benefits for downstream tasks to build
on them meaningfully (e.g., by reacting adequately to the likely
cause of viewers’ emotional response). Predicting emotions in a
video-viewing setting may be particularly suitable for exploring as-
pects of context and their integration into affect detection because
it is relatively clearly defined and constrained regarding potential
influences compared to other types of situations.

Overall, our investigations reveal the analysis of viewers’ mem-
ory descriptions as a substantial source of information about their
affective responses. For this reason, affect-detection systems can
benefit from technological research that provides them as input
for predictions, e.g., by automatically mining memory descriptions
from viewers’ social media comments or associating existing mem-
ory descriptions with new video content. Ultimately, however, only
computational modeling that systematically explores predicting
occurrence (when?), content (what?), and influence (what does it
do?) can adequately address the influence of personal memories as
a context for predictions emotional responses.
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