

Delft University of Technology

New FPT Algorithms for Finding the Temporal Hybridization Number for Sets of
Phylogenetic Trees

Borst, Sander; van Iersel, Leo; Jones, Mark; Kelk, Steven

DOI
10.1007/s00453-022-00946-8
Publication date
2022
Document Version
Final published version
Published in
Algorithmica

Citation (APA)
Borst, S., van Iersel, L., Jones, M., & Kelk, S. (2022). New FPT Algorithms for Finding the Temporal
Hybridization Number for Sets of Phylogenetic Trees. Algorithmica, 84(7), 2050-2087.
https://doi.org/10.1007/s00453-022-00946-8

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00453-022-00946-8
https://doi.org/10.1007/s00453-022-00946-8

Algorithmica
https://doi.org/10.1007/s00453-022-00946-8

New FPT Algorithms for Finding the Temporal
Hybridization Number for Sets of Phylogenetic Trees

Sander Borst1 · Leo van Iersel2 ·Mark Jones1 · Steven Kelk3

Received: 29 July 2020 / Accepted: 28 January 2022
© The Author(s) 2022

Abstract
We study the problem of finding a temporal hybridization network containing at most
k reticulations, for an input consisting of a set of phylogenetic trees. First, we introduce
an FPT algorithm for the problem on an arbitrary set of m binary trees with n leaves
each with a running time of O(5k · n · m). We also present the concept of temporal
distance, which is a measure for how close a tree-child network is to being temporal.
Then we introduce an algorithm for computing a tree-child network with temporal
distance at most d and at most k reticulations in O((8k)d5k · k · n ·m) time. Lastly, we
introduce an O(6kk! · k · n2) time algorithm for computing a temporal hybridization
network for a set of two nonbinary trees. We also provide an implementation of all
algorithms and an experimental analysis on their performance.

Keywords Parameterized algorithms · Phylogenetic networks · Phylogenetic trees ·
Hybridization number

Leo van Iersel and Mark Jones were partly supported by the Netherlands Organization for Scientific
Research (NWO), Vidi Grant 639.072.602 and Mark Jones also by the gravitation Grant NETWORKS
from NWO.

B Leo van Iersel
L.J.J.vanIersel@tudelft.nl

Sander Borst
Sander.Borst@cwi.nl

Mark Jones
markelliotlloyd@gmail.com

Steven Kelk
steven.kelk@maastrichtuniversity.nl

1 Centrum Wiskunde & Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands

2 Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik
Broekmanweg 6, 2628 XE Delft, The Netherlands

3 Department of Data Science and Knowledge Engineering (DKE), Maastricht University, P.O. Box
616, 6200 MD Maastricht, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00946-8&domain=pdf
http://orcid.org/0000-0001-7142-4706

Algorithmica

1 Introduction

Phylogenetics is the study of the evolutionary history of biological species. Tradi-
tionally such a history is represented by a phylogenetic tree. However, hybridization
and horizontal gene transfer, both so-called reticulation events, can lead to multiple
seemingly conflicting trees representing the evolution of different parts of the genome
[1, 2]. Directed acyclic networks can be used to combine these trees into a more com-
plete representation of the history [3]. Reticulations are represented by vertices with
in-degree greater than one.

Therefore, an important problem is how to construct such a network based on a set
of input trees that are known to represent the evolutionary history for different parts
of the genome. The network should display all of these input trees. In general there
are many solutions to this problem, but in accordance with the parsimony principle
we are especially interested in the most simple solutions to the problem. These are
the solutions with a minimal number of reticulations. Finding a network for which
the number of reticulations, also called the hybridization number, is minimal now
becomes an optimization problem. This problem is NP-complete, even for only two
binary input trees [4]. The problem is fixed parameter tractable for an arbitrary set
of non-binary input trees if either the number of trees or the out-degree in the trees
is bounded by a constant [5]. For a set of two binary input trees an FPT algorithm
with a reasonable running time exists [6]. For more than two input trees theoretical
FPT algorithms and practical heuristic algorithms exist, but no FPT algorithm with a
reasonable running time is known. That is why we are interested in slightly modifying
the problem to make it easier to solve.

One way to do this is by restricting the solution space to the class of tree-child
networks, inwhich each non-leaf vertex has at least one outgoing arc that does not enter
a reticulation [7]. Theminimumhybridization number over all tree-child networks that
display the input trees is called the tree-child hybridization number. These networks
can be characterized by so-called cherry picking sequences [8]. This characterization
can be used to create a fixed parameter tractable algorithm for this restricted version
of the problem for any number of binary input trees with time complexity O((8k)k ·
poly(n,m)) where k is the tree-child hybridization number, n is the size of leaves and
m is the number of input trees [9].

The solution space can be reduced even further [10], leading to the problem of
finding the temporal hybridization number. The extra constraints enforce that each
species can be placed at a certain point in time such that evolution events take a
positive amount of time and that reticulation events can only happen between species
that live at the same time. For the problem of computing the temporal hybridization
number a cherry picking characterization exists too and it can be used to develop a
fixed parameter tractable algorithm for problems with two binary input trees with time
complexity O((7k)k · poly(n,m)) where k is the temporal hybridization number, n
is the number of leaves and m is the number of input trees [10]. In this paper we
introduce a faster algorithm for solving this problem in O(5k · n · m) time using the
cherry picking characterization. Moreover, this algorithm works for any number of
binary input trees.

123

Algorithmica

A disadvantage of the temporal restrictions is that in some cases no solution sat-
isfying the restrictions exists. In fact determining whether such a solution exists is
an NP-hard problem [11, 12]. Because of this our algorithm will not find a solution
network for all problem instances. However we show that it is possible to find a net-
work with a minimum number of non-temporal arcs, thereby finding a network that
is ‘as temporal as possible’. For that reason we also introduce an algorithm that also
works for non-temporal instances. This algorithm is a combination of the algorithm
for tree-child networks and the one for temporal networks introduced here.

In practical data sets, the trees for parts of the genome are often non-binary. This can
be either due to simultaneous divergence events or, more commonly, due to uncertainty
in the order of divergence events [13]. Thismeans thatmany real-world datasets contain
non-binary trees, so it is very useful to have algorithms that allow for non-binary input
trees. While the general hybridization number problem is known to be FPT when
either the number of trees or the out-degree of the trees is bounded by a constant [5],
an FPT algorithm with a reasonable running time (O(6kk! · poly(n))) is only known
for an input of two trees [14]. Until recently no such algorithm was known for the
temporal hybridization number problem however. In this paper the first FPT algorithm
for constructing optimal temporal networks based on two non-binary input trees with
running time O(6kk! · k · n2) is introduced.

We implemented and tested all new algorithms [15].
The structure of the paper is as follows. First we introduce some common theory and

notation in Sect. 2. In Sect. 3we present a new algorithm for the temporal hybridization
number of binary trees, prove its correctness and analyse the running time. In Sect. 4we
combine the algorithm from Sect. 3 with the algorithm from [9] to obtain an algorithm
for constructing tree-child networks with a minimum number of non-temporal arcs.
In Sect. 5 we present the algorithm for the temporal hybridization number for two
non-binary trees. In Sect. 6 we conduct an experimental analysis of the algorithms.

2 Preliminaries

2.1 Trees

A rooted binary phylogenetic X-tree T is a rooted binary tree for which the leaf set
is equal to X with |X | = n. Because we will mostly use rooted binary phylogenetic
trees in this paper we will just refer to them as trees. Only in Sect. 5 trees that are not
necessarily binary are mentioned, but we will explicitly call them non-binary trees.

Each of the leaves of a tree is an element of X . We will also refer to the set of
leaves in T as L(T). For a tree T and a set of leaves A with the notation T \A we
refer to the tree obtained by removing all leaves that are in A from T and repeatedly
contracting all vertices with both in- and out-degree one. Observe that (T \{x}) \{y} =
T \{x, y} = (T \{y}) \{x}. We will often use T to refer to a set of m trees T1, . . . , Tm .
We will write T \A for {T1\A, . . . , Tm\A} and L(T) = ∪m

i=1L(Ti).

123

Algorithmica

Fig. 1 The binary trees in (a) and (b) are both displayed by the network in (c)

2.2 Temporal Networks

A network on X is a rooted acyclic directed graph satisfying:

1. The root ρ has in-degree 0 and an out-degree not equal to 1.
2. The leaves are the nodes with out-degree zero. The set of leaves is X .
3. The remaining vertices are tree vertices or hybridization vertices

(a) A tree vertex has in-degree 1 and out-degree at least 2.
(b) A hybridization vertex (also called reticulation) has out-degree 1 and in-degree

at least 2.

We will call the arcs ending in a hybridization vertex hybridization arcs. All other
arcs are tree arcs. A network is a tree-child network if every tree vertex has at least
one outgoing tree arc.

We say that a networkN on X displays a set of trees T on X ′ with X ′ ⊆ X if every
tree in T can be obtained by removing edges and vertices and contracting vertices
with both in-degree 1 and out-degree 1. For a set of leaves A we define N \A to be
the network obtained from N by removing all leaves in A and afterwards removing
all nodes with out-degree zero and contracting all nodes with both in- and out-degree
one.

For a tree-child network N , the hybridization number r(N) is defined as

r(N) =
∑

v �=ρ

(d−(v) − 1).

where d−(v) is the in-degree of a vertex v and ρ is the root of N .
A tree-child network N with set of vertices V is temporal if there exists a map

t : V → R
+, called a temporal labelling, such that for allu, v ∈ V wehave t(u) = t(v)

when (u, v) is a hybridization arc and t(u) < t(v) when (u, v) is a tree arc. In Fig. 2
both a temporal and a non-temporal network are shown.

123

Algorithmica

Fig. 2 a A temporal labeling is shown in the network above, asserting that the network is temporal. b No
temporal labeling exists for this network. Therefore the network is not temporal

Fig. 3 No temporal network that displays these trees exists

For a set of trees T we define the minimum temporal-hybridization number as

ht (T) = min{r(N) : N is a temporal network that displays T }

This definition leads to the following decision problem.
Temporal hybridization

Instance: A set of trees T and an integer k
Question: Is ht (T) ≤ k?
Note that there are sets of trees such that no temporal network exists that displays

them. In Fig. 3 an example is given. For such a set T we have ht (T) = ∞.

2.3 Cherry Picking Sequences

Temporal networks can now be characterized by so-called cherry-picking sequences
[10]. A cherry is the set of children of a tree vertex that only has leaves as children.
So for binary trees a cherry is a pair of leaves. We will write (a, b) ∈ T if {a, b} is a
cherry of T and (a, b) ∈ T if there is a T ∈ T with (a, b) ∈ T . First we introduce
some notation to make it easier to speak about cherries.

123

Algorithmica

Definition 2.1 For a set of binary trees T on with the same leaf set define H(T) to be
the set of leaves that is in a cherry in every tree.

If two leaves are in a cherry together we call them neighbors. We also introduce
notation to speak about the neighbors of a given leaf:

Definition 2.2 Define NT (x) = {y ∈ X : (y, x) ∈ T }. For a set of trees T define
NT (x) = ∪T ∈T NT (x).

Definition 2.3 For a set of binary trees T containing a leaf x definewT (x) = |NT (x)|−
1. We will also call this the weight of x in T .

Using this theory, we can now give the definition of cherry picking sequences.

Definition 2.4 A sequence of leaves s = (s1, s2, . . . , sn) is a cherry picking sequence
(CPS) for a set of binary trees T with the same leaf set if it contains all leaves of T
exactly once and if for all i ∈ [n − 1] we have si ∈ H(T \{s1, . . . , si−1}). The weight
wT (s1, . . . sn) of the sequence is defined as wT (s) = ∑n−1

i=1 wT \{s1,...,si−1}(si).

Example 2.5 For the two trees in Fig. 1, (b, e, c, d, a) is a minimum weight cherry-
picking sequence of weight 2. Leaves b and c (indicated in bold) have weight 1 and
the rest of the leaves have weight 0 in the sequence.

For a cherry picking sequence s with si = x we say that x is picked in s at index i .

Theorem 2.6 ([10,Theorem 1, Theorem 2]) Let T be a set of trees on X . There exists
a temporal network N that displays T with ht (N) = k if and only if there exists a
cherry-picking sequence s for T with wT (s) = k.

This has been proven in [10,Theorem 1, Theorem 2]. The proof works by constructing
a cherry picking sequence from a temporal network and vice versa. Here, we only
repeat the construction to aid the reader, and refer to [10] for the proof of correctness.

The construction of cherry picking sequence s from a temporal network N with
temporal labeling t works in the following way: For i = 1 choose si to be a leaf x
of N such that t(px) is maximal where px is the parent of x in N . Then increase i
by one and again choose si to be a leaf x of N \{s1, . . . , si−1} that maximizes t(px)
where px is the parent of x in N \{s1, . . . , si−1}. In [10,Theorem 1, Theorem 2] it is
shown that now s is a cherry picking sequence with wT (s) = r(N).

The construction of a temporal network N from a cherry picking s is somewhat
more technical: for cherry picking sequence s1, . . . , st , define Nn to be the tree, only
consisting of a root and leaf sn Now obtainNi fromNi+1 by adding node si and a new
node psi , adding edge (psi , si) subdividing (px , x) for every x ∈ NT \{s1,...,si−1}(si)
with node qx and adding an edge (qx , psi) and finally suppressing all nodes with in-
and out-degree one. Then N = N1 displays T and r(N) = wT (s).

The theorem implies that the weight of a minimum weight CPS is equal to the
temporal hybridization number of the trees. Because finding an optimal temporal
reticulation network for a set of trees is an NP-hard problem [11], this implies that
finding a minimum weight CPS is an NP-hard problem.

123

Algorithmica

Fig. 4 An example showing the neighbour relation for the trees in Fig. 1, together with a constraint (b, d).
Two elements x, y ∈ X are depicted as adjacent if x ∈ NT (y) i.e. if x and y appear in a cherry together.
An arc from x to y indicates the presence of a constraint (x, y)

Definition 2.7 We call two sets of trees T and T ′ equivalent if there exists a bijection
fromL(T) toL(T ′) such that applying it to the leaves of T maps T to T ′. We call them
equivalent because they have the same structure and consequently the same (temporal-)
hybridization number, however the biological interpretation can be different.

3 Algorithm for Constructing Temporal Networks from Binary Trees

Finding a cherry picking sequence comes down to deciding in which order to pick the
leaves. Our algorithm relies on the observation that this order does not always matter.
Intuitively the observation is that the order of two leaves in a cherry picking sequence
only matters if they appear in a cherry together somewhere during the execution of
the sequence. Therefore the algorithm keeps track of the pairs of leaves for which
the order of picking matters. We will make this more precise in the remainder of this
section. The algorithm now works by branching on the choice of which element of a
pair to pick first. These choices are stored in a so-called constraint set. Each call to the
algorithm branches into subcalls with more constraints added to the constraint set. As
soon as it is known that a certain leaf has to be picked before all of its neighbors and
is in a cherry in all of the trees, the leaf can be picked.

Definition 3.1 Let C ⊆ L(T) × L(T). We call C a constraint set on T if every pair
(a, b) ∈ C is a cherry in T . A cherry picking sequence s = (s1, . . . , sk) of T satisfies
C if for all (a, b) ∈ C , we have si = a and (a, b) ∈ T ′ and wT ′(a) > 0 with
T ′ = T \{s1, . . . , si−1} for some i .

Intuitively, a cherry picking sequence satisfies a constraint set if for every pair (a, b)
in the set a is picked with positive weight and (a, b) is a cherry just before picking a.
This implies that a occurs in the cherry picking sequence before b.

We now prove a series of results about what sets of constraints are valid, which will
then be used to guide our algorithm.

Observation 3.2 Let s be a cherry picking sequence for T and wT (x) > 0 and a, b ∈
NT (x). Then s satisfies one of the following constraint sets:

{(a, x)}, {(b, x)}, {(x, a), (x, b)}.
Proof Let i be the lowest index such that si ∈ {x, a, b}. If si = x , then (x, a) ∈
T \{s1, . . . , si−1} and (x, b) ∈ T \{s1, . . . , si−1}, so s satisfies {(x, a), (x, b)}. If si =
a, then there is a T ∈ T \{s1, . . . , si−1}with (x, b) ∈ T , so (a, x) /∈ T , which implies
that wT \{s1,...,si−1}(si) > 0, so s satisfies {(a, x)}. Similarly if si = b then s satisfies
{(b, x)}.
�

123

Algorithmica

Fig. 5 Illustration ofExample 3.3, showing the possible constraint sets ona, b, d implied byObservation 3.2

Fig. 6 Illustration of Example 3.5, showing the two possible constraints on d and e implied by Observa-
tion 3.4, in the case that there already exists a constraint (d, b) ∈ C and thus d ∈ π1(C)

Example 3.3 The trees in Fig. 1a, b contain the cherries (a, b) and (d, b). So by Obser-
vation 3.2 every cherry picking sequence for these trees satisfies one of the constraint
sets {(a, b)}, {(d, b)}, {(b, a), (b, d)}. For example, (b, d, c, e, a) is a cherry pick-
ing sequence of weight 2 for these trees. This sequence satisfies the constraint set
{(b, a), (b, d)}. See Figure 5.

This observation implies that the problem can be reduced to three subproblems,
corresponding to either appending {(a, x)}, {(b, x)} or {(x, a), (x, b)} to C . As we
will see, this is used by the algorithm. It is possible to implement an algorithm using
only this rule, but the running time of the algorithm can be improved by using a second
rule that branches into only two subproblems when it is applicable. The rule relies on
the following observation. Here we will write πi (C) = {ci : (c1, c2) ∈ C}.
Observation 3.4 If C is satisfied by s then for all x ∈ π1(C) and y ∈ NT (x) we have
that either C ∪ {(y, x)} or C ∪ {(x, y)} is also satisfied by s.

Proof If x ∈ π1(C) then C contains a pair (x, a). If a = y it is trivial that s satisfies
C ∪ {(x, y)} = C . Otherwise Observation 3.2 implies that s satisfies one of the
constraint sets {(a, x)}, {(y, x)}, {(x, a), (x, y)}. Because s satisfies {(x, a)}, s can
not satisfy {(a, x)}. So s will satisfy either {(y, x)} or {(x, a), (x, y)}.
�
Using this observation we can let the algorithm branch into two paths by either adding
(x, y) or (y, x) to the constraint set C if x ∈ π1(C).

Example 3.5 Consider again the situation in Example 3.3. Suppose we guess that the
solution satisfies the constraint set {(d, b)}. Then we have d ∈ π1(C). Hence, we are
in the situation of Observation 3.4 and we can conclude that either (d, e) or (e, d) can
be added to the constraint set C . See Fig. 6.

We define G(T ,C) to be the set of cherries for which there is no constraint in C , so
G(T ,C) = {(x, y) : (x, y) ∈ T ∧(x, y), (y, x) /∈ C}. Observe that (x, y) ∈ G(T ,C)

is equivalent with (y, x) ∈ G(T ,C).
Before proving the next result about constraints, we need the following lemma. It

states that if we have a set of trees, a leaf that is in a cherry in all of the trees and a

123

Algorithmica

corresponding cherry picking sequence then the following holds: for every element in
a cherry picking sequence, we can either move it to the front of the sequence without
affecting the weight of the sequence or there is a neighbor of this element that occurs
earlier in the sequence.

Lemma 3.6 Let (s1, s2, . . .) be a cherry picking sequence for a set of trees T that
satisfies constraint set C. Let x ∈ H(T). Then at least one of the following statements
is true:

(1) There exists an i such that si = x and s′ = (si , s1, . . . , si−1, si+1, . . .) is a cherry
picking sequence for T satisfying C and w(s) = w(s′).

(2) If si = x then there exists a j such that s j ∈ NT (x) and j < i .

Proof Let r be the smallest number such that sr ∈ NT (x) ∪ {x}. In case sr �= x it
follows directly that condition (2) holds for j = r . For sr = x we will prove that
condition (1) holds with i = r . The key idea is that, because si is not in a cherry with
any of s1, . . . , si−1, removing si first will not have any effect on the cherries involving
s1, . . . , si−1.

More formally, take an arbitrary tree T ∈ T . Now take arbitrary j, k with s′
j = sk .

Now we claim that for an arbitrary z we have (s′
j , z) ∈ T \{s′

1, . . . , s
′
j−1} if and only

if (sk, z) ∈ T \{s1, . . . , sk−1}.
For s′

j = s′
1 = si = sk this is true because none of the elements s1, . . . , si−1 are in

NT (si) so for each z we have (s′
1, z) ∈ T if and only if (si , z) ∈ T \{s1, . . . , si−1}.

For k with k < i we have s′
j+1 = s j . Because si /∈ NT (s j) we have that (s j , z) ∈

T \{s′
1, . . . , s

′
j } = {s1, . . . , s j−1, si } if and only if (s j , z) ∈ T \{s1, . . . , s j−1}.

For k > i we have j = k and also T \{s′
1, . . . s

′
j−1} = T \{s1, . . . s j−1} because

{s1, . . . s j−1} = {s′
1, . . . s

′
j−1}. It directly follows that (s′

j , z) ∈ T \{s′
1, . . . s

′
j−1}

if and only if (s j , z) ∈ T \{s1, . . . s j−1}.
Now because we know that for each k we have sk ∈ H(T \{s1, . . . , sk−1}) and

sk = s′
j is in exactly the same cherries in T \{s1, . . . , sk−1} as in T \{s′

1, . . . , s
′
j−1},

we know that s′
j ∈ H(T \{s′

1, . . . , s
′
j−1}), that wT \{s′1,...,s′j−1}(s

′
j) = wT \{s1,...,sk−1}(sk)

and that s′ satisfies C . This implies that s′ is a CPS with wT (s) = wT (s′).
�
As soon as we know that a leaf in H(T) has to be picked before all its neighbors

we can pick it, as stated by the following lemma.

Lemma 3.7 Suppose x ∈ H(T) and constraint set C is satisfied by cherry picking
sequence s of T , with {(x, n) : n ∈ NT (x)} ⊆ C. Then there is a cherry picking
sequence s′ with s′

1 = x and w(s′) = w(s).

Proof This follows from Lemma 3.6, because statement (2) can not be true because
for every j with s j ∈ NT (x) we have (x, s j) ∈ C and therefore i < j for si = x . So
statement (1) has to hold which yields a sequence s′ with w(s) = w(s′) and s′

1 = x .
�
The following lemma shows that we can also safely remove all leaves that are in a

cherry with the same leaf in every tree.

Lemma 3.8 Let s be a cherry picking sequence for T satisfying constraint set C with
x /∈ π1(C) and x /∈ π2(C). If x ∈ H(T) and wT (x) = 0, then there is a cherry
picking sequence s′ with s′

1 = x and w(s′) = w(s) satisfying C.

123

Algorithmica

Proof Because wT (x) = 0 we have NT (x) = {y}. Then from Lemma 3.6 it follows
that a sequence s′ exists such that either s′′ = (x)|s′ or s′′ = (y)|s′ is a cherry picking
sequence for T and wT (s′′) = w(s) and s′′ satisfies C . However, because the position
of x and y in the trees are equivalent (i.e. swapping x and y does not change T) both
are true.
�

We are almost ready to describe our algorithm. There is one final piece to introduce
first: the measure P(C). This is a measure on a set of constraints C , which will be
used to provide a termination condition for our algorithm. We show below that P(C)

provides a lower bound on the weight of any cherry picking sequence satisfying C ,
and so if during any recursive call to the algorithm P(C) is greater than the desired
weight, we may stop that call.

Definition 3.9 Let ψ = log(2)
log(5)
 0.4307. Let P(C) = ψ · |C | + (1 − 2ψ)|π1(C)|.

Lemma 3.10 If cherry picking sequence s for T satisfies C, then wT (s) ≥ P(C).

Proof For x = si with i < n we prove that for Cx := {(a, b) : (a, b) ∈ C ∧
a = x} we have wT \{s1,...,si−1}(x) ≥ P(Cx). If |Cx | = 0, then P(Cx) = 0 and the
inequality is trivial. If |Cx | = 1, then there is some (x, b) ∈ C , which implies that
wT \{s1,...,si−1}(x) > 0, so wT \{s1,...,si−1}(x) ≥ |π1(Cx)| = 1 ≥ P(C). Otherwise if
|Cx | ≥ 2, then wT \{s1,...,si−1}(x) = NT (x) − 1 ≥ |Cx | − 1 = ψ · |Cx | − 1 + (1 −
ψ)|Cx | ≥ ψ · |Cx | − 1+ 2(1− ψ) = ψ · |Cx | + (1− 2ψ) = P(Cx). Now the result
follows because wT (s) = ∑n−1

i=1 wT \{s1,...,si−1}(si) ≥ ∑n−1
i=1 P(Csi) = P(C).
�

We now present our algorithm, which we split into two parts. The main algorithm
is CherryPicking, a recursive algorithm which takes as input parameters a set of
trees T , a desired weight k and a set of constraints C , and returns a non-empty set of
cherry picking sequences for T of weight at most k satisfying C , if they exist.

The second part is the procedure Pick. In this procedure zero-weight cherries
and cherries for which all neighbors are contained in the constraint set are greedily
removed from the trees.

3.1 Proof of Correctness

In this section a proof of correctnesswill be given. First some properties of the auxiliary
procedure Pick are proven.

Observation 3.11 Suppose Pick(T ′, k′,C ′) returns (T , k,C, p).

1. There are no x ∈ H(T) with wT (x) = 0.
2. There are no x ∈ H(T) with {(xi , n) : n ∈ NT (i−1) (xi)} ⊆ C.

Lemma 3.12 (Correctness of Pick) Suppose Pick(T ′, k′,C ′) returns (T , k,C, p).

1. If a cherry picking sequence s of weight at most k for T that satisfies C exists then
a cherry picking sequence s′ of weight at most k′ for T ′ that satisfies C ′ exists.

2. If s is a cherry picking sequence of weight at most k for T that satisfies C then p|s
is a cherry picking sequence for T ′ of weight at most k′ and satisfying C ′.

123

Algorithmica

Algorithm 1
1: procedure CherryPicking(T , k,C)
2: if k − P(C) < 0 then
3: return ∅
4: end if
5: T ′, k′,C ′, p ←Pick(T , k,C)
6: if |L(T ′)| = 1 then
7: return {p}
8: else if π1(C

′) � L(T ′) then
9: return ∅
10: else if k′ − P(C ′) ≤ 0 then
11: return ∅
12: end if
13:
14: R ← ∅
15: if ∃(x, y) ∈ G(T ′,C ′) : wT (x) > 0 ∧ x ∈ π1(C

′) then
16: R ← R∪ CherryPicking(T ′,k′,C ′ ∪ {(x, y)})
17: R ← R∪ CherryPicking(T ′,k′,C ′ ∪ {(y, x)})
18: else if ∃(x, a) ∈ G(T ′,C ′) : wT ′ (x) > 0 ∧ x /∈ π2(C

′) then
19: Choose b �= a such that (x, b) ∈ G(T ′,C ′)
20: R ← R∪ CherryPicking(T ′,k′,C ′ ∪ {(a, x)})
21: R ← R∪ CherryPicking(T ′,k′,C ′ ∪ {(b, x)})
22: R ← R∪ CherryPicking(T ′,k′,C ′ ∪ {(x, a), (x, b)})
23: end if
24: return {p|r : r ∈ R}
25: end procedure

Algorithm 2
1: procedure Pick(T ′, k′,C ′)
2: (T (0), k1,C1) ← (T ′, k′,C ′)
3: p(0) ← ()

4: i ← 1
5: while ∃xi ∈ H(T (i−1)) : wT (i−1) (x) = 0 ∨ {(xi , n) : n ∈ NT (i−1) (xi)} ⊆ Ci−1 do

6: p(i) ← p(i−1)|(xi)
7: ki ← ki−1 − wT (i−1) (xi)

8: T (i) ← T (i−1)\{xi }
9: Ci ← {(a, b) ∈ Ci−1 : a �= xi }
10: i ← i + 1
11: end while
12: return T (i−1), ki−1,Ci−1, p

(i−1)

13: end procedure

Proof We will prove the first claim for (T , k,C, p) = (T (i), ki ,Ci , p(i)) for all i
defined in Pick. We will prove this with induction on i . For i = 1 this is obvious
because T (1) = T , p(1) = (), C1 = C and k1 = k.

Now assume the claim is true for i = i ′. Now there are two cases to consider:

– If we have {(xi ′ , n) : n ∈ NT (xi ′)} ⊆ Ci ′ we know fromLemma 3.7 that if a cherry
picking sequence s satisfying Ci exists then also a cherry picking sequence (x)|s′
that satisfies C ′ exists with w(p|(x)|s′) = w(p|s). Note that this implies that s′ is
a cherry picking sequence for T (i+1) = T ′\{x}, that Ci+1 = c ∈ C ′ : x /∈ {c1, c2}

123

Algorithmica

is satisfied by si+1 and that w(si+1) = w(si) − wT (i) (xi) = ki − wT (i) (x). So this
proves the statement for i = i ′ + 1.

– Otherwise we have wT (i ′) (x) = 0 and x /∈ π1(C) and x /∈ π2(C). Then the
statement for i = i ′ + 1 follows directly from Lemma 3.8.

Let j be themaximal value such that x j is defined in a given invocation of Pick.We
will prove the second claim for (T , k,C, p) = (T (i), ki ,Ci , p(i)) for all i = 0, . . . , j
with induction on i . For i = 0 this is trivial. Now assume the claim is true for i = i ′
and assume s is a cherry picking sequence for T (i ′+1) of weight at most ki ′+1 that
satisfies Ci ′+1. Then if xi ′ is defined, it will be in H(T (i ′)), so s′ = (xi ′)|s is a cherry
picking sequence for T (i ′). Because wT i ′ (xi ′) = ki ′ − ki ′+1, s′ will have weight at
most ki ′ . We can write Ci ′ = Cx ∪ C−x where Cx = {(a, b) : (a, b) ∈ Ci ′ ∧ a = x}
and C−x = Ci ′ \Cx . Note that s satisfies Ci ′+1 = C−x , so s′ = (xi ′)|s also satisfies
Ci ′+1. Because for every (a, b) ∈ Cx , also (a, b) ∈ T i ′ , s′ also satisfies Cx , so s′
satisfies Ci ′ . Now it follows from the induction hypothesis that pi

′+1|s = pi
′ |s′ is a

cherry picking sequence for T ′ of weight at most k′ and satisfying C ′.
�
Note that on line 19 of Algorithm 1 an element b �= a with (x, b) ∈ G(T ′,C ′) is

chosen. The following lemma states that such an element does indeed exist.

Lemma 3.13 When the algorithm executes line 19 there exist an element b �= a with
(x, b) ∈ G(T ′,C ′).

Proof Because wT ′(x) > 0, there is at least a b �= a such that b ∈ NT ′(x)\{x}.
Because x /∈ π2(C ′) we have (b, x) /∈ C ′. If (x, b) ∈ C ′ then x ∈ π1(C ′), but then x
satisfies the if-statement on line 15 and it would not have gotten to this line. Therefore
(x, b) /∈ C ′ and so (x, b) ∈ G(T ′,C ′).
�

The proof of correctness of Algorithm 1 will be given in two parts. First, in
Lemma 3.14 we show that for any feasible problem instance the algorithm will return
a sequence. Second, in Lemma 3.15 we show that every sequence that the algorithm
returns is a valid cherry picking sequence for the problem instance.

Lemma 3.14 Whena cherry picking sequence ofweight atmost k that satisfiesC exists,
then a call to CherryPicking(T , k,C) from Algorithm 1 returns a non-empty set.

Proof Let W (k, u) be the claim that if a cherry picking sequence s of weight
at most k exists that satisfies constraint set C with n2 − |C | ≤ u, then calling
CherryPicking(T , k,C) will return a non-empty set. We will prove this claim
with induction on k and n2 − |C |.

For the base case k = 0 if a cherry picking sequence of weight k exists, by Obser-
vation 3.11.1 we will have |L(T ′)| = 1. In this case a sequence is returned on line
7.

Note that we can never have a constraint set C with |C | > n2 because C ⊆ L(T)2.
Therefore W (k,−1) is true for all k.

Now suppose W (k, n2 − |C |) is true for all cases where 0 ≤ k < kb and all cases
where k = kb and n2−|C | ≤ u.We consider the case where a cherry picking sequence

123

Algorithmica

s of weight at most k = kb + 1 exists for T that satisfies C and n2 − |C | ≤ u + 1.
Lemma 3.10 implies that k − P(C) ≥ 0, so the condition of the if-statement on line
2 will not be satisfied.

From Lemma 3.12 it follows that a CPS s′ of weight at most k′ exists for T ′ that
satisfies C ′. From the way the Pick works it follows that either k′ < k or n2 −C ′ =
n2 −C . If |L(T ′) = 1 then {()} is returned and we have provenW (kb +1, u+1) to be
true for this case. Because s′ satisfiesC ′, we know thatπ1(C) ⊆ L(T ′).We know there
is a y ∈ NT ′(s′

1) with (s′
1, y) /∈ C ′, because otherwise s′

1 would be picked by Pick.
Also s′ satisfies C ′ ∪ {(s′

1, y)}, which implies that k ≥ P(C ′ ∪ {(s′
1, y)}) > P(C ′), so

the condition of the if-statement on line 10 will not be satisfied.
Note that we have (s′

1, x) ∈ G(T ′,C ′), wT ′(s′
1) > 0 and s′

1 /∈ π2(C ′).
This implies that either the body of the if-statement on line 15 or the body of the

else-if-statement on line 18 will be executed.
Suppose the former is true. ByObservation 3.4we know that s satisfiesC ′∪{(x, y)}

or C ′ ∪ {(y, x)}. Because (x, y) ∈ G(T ′,C ′) we know |C ′ ∪ {x, y}| = |C ′ ∪ {y, x}| =
|C ′|+1 and therefore n2−|C ′ ∪{x, y}| = n2−|C ′ ∪{y, x}| ≤ u. So by our induction
hypothesis we know that at least one of the two subcalls will return a sequence, so the
main call to the function will also return a sequence.

If instead the body of the else-if-statement on line 18 is executed we know by
Observation 3.2 that at least one of the constraint sets C ′

1 = C ∪ {(a, x)}, C ′
2 =

C ∪ {(b, x)} and C ′
3 = C ∪ {(x, a), (x, b)} is satisfied by s. Note that |C ′

3| ≥ |C ′
2| =

|C ′
1| ≥ |C ′| + 1, so n2 − |C ′

3| ≤ n2 − |C ′
2| = n2 − |C ′

1| ≤ u. By the induction
hypothesis it now follows that at least one of the three subcalls will return a sequence,
so the main call to the function will also return a sequence. So for both cases we have
proven W (kb + 1, u + 1) to be true.
�
Lemma 3.15 Every element in the set returned by CherryPicking(T , k,C) from
Algorithm 1 is a cherry picking sequence for T of weight at most k that satisfies C.

Proof Consider a certain call to CherryPicking(T , k,C). Assume that the lemma
holds for all subcalls to CherryPicking. We claim that during the execution every
element that is in R is a partial cherry picking sequence for T ′ of weight at most k′
that satisfies C ′. This is true because R starts as an empty set, so the claim is still
true at that point. At each point in the function where sequences are added to R, these
sequences are elements returned by CherryPicking(T ′, k′,C ′′) with C ′ ⊆ C ′′.
By our assumption we know that all of these elements are cherry picking sequences
for T ′ of weight at most k′ and satisfy C ′′. The latter implies that every element also
satisfies C ′ because C ′ ⊆ C ′′. The procedure now returns {p|r : r ∈ R} and from
Lemma 3.12 it follows that all elements of this set are cherry picking sequences for T
of weight at most k and satisfying C .
�

3.2 Runtime Analysis

The key idea behind our runtime analysis is that at each recursive call in Algorithm 3,
the measure k − P(C) is decreased by a certain amount, and this leads to a bound
on the number of times Algorithm 1 is called. It is straightforward to get a bound of

123

Algorithmica

O(9k). Indeed, it can be shown that for k < |C |/2 no feasible solution exists, and so
the algorithm could stop whenever 2k − |C | < 0. One call to the algorithm results
in at most 3 subcalls, and in each subcall |C | increases by at least one. Then the total
number of subcalls to Algorithm 1 would be bounded by O(32k) = O(9k). By more
careful analysis, and using the lower bound of P(C) on the weight of a sequence
satisfying C , we are able to improve this bound to O(5k).

We will now state some lemmas that are needed for the runtime analysis of the
algorithm. We first show that the measure k− P(C)will never increase at any point in
the algorithm. The only time this may happen is during Pick, as the values of k and
C are not otherwise changed, except at the point of a recursive call where constraints
are added to C (which cannot increase P(C)). Thus we first show that Pick cannot
cause k − P(C) to increase.

Lemma 3.16 Let (s, T ′, k′,C ′) = Pick(T , k,C) from Algorithm 1. Then k′ −
P(C ′) ≤ k − P(C).

Proof We will prove with induction that for the variables ki and Ci defined in the
function body, we have ki − P(Ci) ≤ k − P(C) for all i , from which the result
follows. Note that for i = 0 this is trivial. Now suppose the inequality holds for i . If
wT (i) (xi+1) = 0, then we have Ci+1 = Ci , so:

ki+1 − P(Ci+1) = ki − wT (i) (xi) − P(Ci)

≤ ki − P(Ci)

Otherwise we must have, {(xi+1, n) : n ∈ NT (i) (xi+1)} ⊆ Ci , so:

ki+1 − P(Ci+1) = (ki − wT (i) (xi)) − (P(Ci) − (wT (i) (xi) + 1) · ψ − (1 − 2ψ))

= ki − P(Ci) − (wT (i) (xi) − 1)(1 − ψ)

≤ ki − P(Ci)

≤ k − P(C)

The next lemmawill be used later to show that a recursive call toCherryPicking
always increases k − P(C) by a certain amount.

Lemma 3.17 For a and b on line 19 of Algorithm 1 it holds that a /∈ π1(C ′) and
b /∈ π1(C ′).

Proof Suppose a ∈ π1(C ′). Then (a, z) ∈ C ′ for some z ∈ NT ′(x). IfwT ′(a) > 0 then
a satisfies the conditions in the if-statement on line 15, so line 19would not be executed.
If wT ′(a) = 0 then we must have |NT ′(a)\{a}| = 1, so NT ′(a)\{a} = {x}, which
implies that z = x . But (a, x) /∈ C ′ because (x, a) ∈ G(T ′,C ′), which contradicts
that (a, z) ∈ C ′. So a /∈ π1(C ′). Because of symmetry, the same argument holds for
b.
�

We now give the main runtime proof.

Lemma 3.18 CherryPicking from Algorithm 1 has a time complexity of O(5k ·
nm).

123

Algorithmica

Proof The non-recursive part of CherryPicking(T ,k,C) can be implemented to
run in O(n · m) time by constructing H(T (i)) from H(T (i−1)) in each step. To prove
the lemma, we will bound the number of calls that are made to CherryPicking.

Consider the tree of calls to CherryPicking that are made in a single run
of CherryPicking(T ,k,C). Each node in this tree corresponds to a call to
CherryPicking and the children of this node correspond to its recursive calls.
Let t(k,C) be the number of leaves of this tree. Observe that every internal node has
at least two children. This implies that the number of nodes in the tree is upper bounded
by 2t(k,C).

We will now show using induction that t(k,C) ≤ 5k−P(C)+1, thereby proving the
lemma. For −1 ≤ k − P(C) ≤ 0 the claim follows from the fact that the function
will return on either line 3 or line 11 and therefore will not do any recursive calls.

Now assume the claim holds for −1 ≤ k − P(C) ≤ w. Consider an instance with
k − P(C) ≤ w +ψ . Note that k′ − P(C ′) ≤ k − P(C) (Lemma 3.16). If the function
CherryPicking does any recursive calls then it either executes the body of the
if-clause on line 15, or the body of the else-if clause on line 18.

If the former is true, then the function does 2 recursive calls. The number of leaves
in the call-tree of CherryPicking(T , k, C) will now be the sum of the number
of leaves in the call-trees of the recursive calls. Each recursive call to the function
CherryPicking(T ′, k′, C ′′) is done with a constraint set C ′′ for which |C ′′| =
|C ′|+1. Therefore for both subproblems P(C ′′) ≥ P(C ′)+ψ and also k′ − P(C ′′) ≤
k′ − P(C ′) − ψ ≤ k − P(C) − ψ ≤ w. By our induction hypothesis we have
t(k′,C ′′) ≤ 5k

′−P(C ′′)+1 ≤ 5k−P(C)−ψ+1 Hence:

t(k,C) ≤ 2 · 5k−P(C)−ψ+1 = 5ψ5k−P(C)−ψ+1 = 5k−P(C)+1.

If instead the body of the else-if statement on line 18 is executed then 3 recursive
subcalls are made. Consider the first subcall CherryPicking(T ′, k′,C ′′). We have
C ′′ = C ′ ∪ {(a, x)}. Because (x, a) ∈ G(T ′,C ′) we have (a, x) /∈ C ′. Therefore
|C ′′| = |C ′| + 1. By Lemma 3.17 we know that a /∈ π1(C ′), but we have a ∈ π1(C ′),
so |π1(C ′′)| = |π1(C ′)| + 1. Therefore P(C ′′) = P(C ′) + 1 − ψ , so k′ − P(C ′′) =
k′ − P(C ′) − 1 + ψ ≤ k − P(C) − 1 + ψ < k − P(C) − ψ ≤ w. By our induction
hypothesis we now know that t(k′,C ′′) is bounded by 5k′−P(C ′′)+1 ≤ 5k−P(C)−ψ . By
symmetry the same holds for the second subcall.

For the third subcall CherryPicking(T ′, k′,C ′′), because (x, a), (x, b) ∈
G(T ′,C ′) we have |C ′′| = |C ′| + 2, and because x /∈ π1(C ′) we have |π1(C ′′)| =
|π1(C ′)| + 1. So we know that P(C ′′) = P(C ′) + 2ψ + (1 − 2ψ) = P(C ′) + 1 and
k′ − P(C ′′) + 1 ≤ k − P(C). Therefore t(k′,C ′′) ≤ 5k−P(C).

Summing the leaves of these subtrees, we see:

t(k,C) ≤ 2 · 5k−P(C)−ψ + 5k−P(C) = 5k−P(C) + 5k−P(C) ≤ 5k−P(C)+1

This proves the induction claim for k − P(C) ≤ w + ψ .
�
Theorem 3.19 CherryPicking(T , k,C) fromAlgorithm1 returns a cherry picking
sequence of weight at most k that satisfies C if and only if such a sequence exists. The
algorithm terminates in O(5k · n · m) time.

123

Algorithmica

Fig. 7 The difference between the tree-child reticulation number and the temporal reticulation number on
the dataset generated in [9]. If no temporal network exists, the instance is shown under ‘Not temporal’.
Instances for which it could not be decided if they were temporal within 10 minutes (2.6% of the instances),
are excluded

Proof This follows directly from Lemmas 3.15, 3.14 and 3.18.
�

4 Constructing Non-temporal Tree-Child Networks from Binary Trees

For every set of trees there exists a tree-child network that displays the trees. However
there are sets of trees for which no temporal network displaying the trees exist, so we
can not always find such a network. As shown in Fig. 7, approximately 5 percent of
the instances used in [9] do not admit a temporal solution.

In this section we introduce theory that makes it possible to quantify how close
a network is to being temporal. We can then pose the problem of finding the ‘most’
temporal network that displays a set of trees.

Definition 4.1 For a tree-child networkwith vertices V we call a function t : V → R
+

a semi-temporal labeling if:

1. For every tree arc (u, v) we have t(u) < t(v).
2. For every hybridization vertex v we have t(v) = min{t(u) : (u, v) ∈ E}.
Note that every network has a semi-temporal labeling.

Definition 4.2 For a tree-child network N with a semi-temporal labeling t , define
d(N , t) to be the number of hybridization arcs (u, v) with t(u) �= t(v). We call these
arcs non-temporal arcs.

Definition 4.3 For a tree-child network N define

d(N) = min{d(N , t) : t is a semi-temporal labeling of N }

123

Algorithmica

Call this number the temporal distance ofN . Note that this number is finite for every
network, because there always exist semi-temporal labelings.

The temporal distance is away to quantify how close a network is to being temporal.
The networkswith temporal distance zero are the temporal networks.We can now state
a more general version of the decision problem.

Semi-temporal hybridization
Instance: A set of m trees T with n leaves and integers k, p.
Question: Does there exist a tree-child networkN with r(N) ≤ k and d(N) ≤ p?

There are other, possibly more biologically meaningful ways to define such a tem-
poral distance. The reason for defining the temporal distance in this particular way is
that an algorithm for solving the corresponding decision problem exists. For further
research it could be interesting to explore if other definitions of temporal distance are
more useful and whether the corresponding decision problems could be solved using
similar techniques.

Van Iersel et al. presented an algorithm to solve the following decision problem in
O((8k)k · poly(m, n)) time.

Tree-child hybridization
Instance: A set of m trees T with n leaves and integer k.
Question: Does there exist a tree-child network N with r(N) ≤ k?

Notice that for p = k Semi- temporal hybridization is equivalent to Tree-

child hybridization and for p = 0 it is equivalent to Temporal hybridization.
The algorithm for Tree- child hybridization uses a characterization by Linz and
Semple [8] using tree-child sequences, that we will describe in the next section. We
describe a new algorithm that can be used to decide Semi- temporal hybridization.
This algorithm is a combination of the algorithms for Tree- child hybridization

and Temporal hybridization.

4.1 Tree-Child Sequences

First we will define the generalized cherry picking sequence (generalized CPS), which
is called a cherry picking sequence in [9]. We call it generalized cherry picking
sequence because it is a generalization of the cherry picking sequence we defined
in Definition 2.4.

Definition 4.4 A generalized CPS on X is a sequence

s = ((x1, y1), . . . , (xr , yr), (xr+1,−), . . . , (xt ,−))

with {x1, x2, . . . , xt , y1, . . . , yr } ⊆ X . A generalized CPS is full if t > r and
{x1, . . . , xt } = X .

123

Algorithmica

For a tree T on X ′ ⊆ X the sequence s defines a sequence of trees (T (0), . . . , T (r))

as follows:

– T (0) = T .
– If (x j , y j) ∈ T (j−1), then T (j) = T (j−1)\{x j }. Otherwise T (j) = T (j−1).

We will refer to T (r) as T (s), the tree obtained by applying sequence s to T .
A full generalized CPS on X is a generalized CPS for a tree T if the tree T (s) con-

tains just one leaf and that leaf is in {xr+1, . . . , xt }. If such a sequence is a generalized
CPS for all trees T ∈ T , then we say it is a generalized CPS for T . The weight of the
sequence is then defined to be wT (s) = |s| − |X |.

A generalized CPS is a tree-child sequence if |s| ≤ r + 1 and y j �= xi for all
1 ≤ i < j ≤ |s|. If for such a tree-child sequence |s| = r , then s is also called a
tree-child sequence prefix.

It has beenproven that a tree-child networkdisplaying a set of treesT with r(N) = k
exists if and only if a tree-child sequence s with w(s) = k exists [8]. The network can
be efficiently computed from the corresponding sequence. The algorithm presented
by Van Iersel et al. works by searching for such a sequence.

We will show that it is possible to combine their algorithm with the algo-
rithm presented in Sect. 4. This yields an algorithm that decides Semi- temporal

hybridization in O(5k(8k)p · k · n · m) time.

Definition 4.5 Let s = ((x1, y1), . . . , (xt ,−)) be a full generalized CPS. An element
(xi , yi) is a non-temporal element when there are j, k ∈ [t] with i < j < k ≤ t and
x j �= xi and xk = xi .

Definition 4.6 For a sequence s we define d(s) to be the number of non-temporal
elements in s.

Lemma 4.7 Let s be a full tree-child sequence s for T . Then there exists a networkN
with semi-temporal labeling t such that r(N) ≤ wT (s) and d(N , t) ≤ d(s).

The full proof of Lemma4.7 is given in the appendix.We construct a tree-child network
N from s in a similar way to [8,Proof of Theorem 2.2], working backwards through
the sequence. At each stage when a pair (x, y) is processed, we adjust the network to
ensure there is an arc from the parent of y to the parent of x . Our contribution is to
also maintain a semi-temporal labeling t on N . This can be done in such a way that
for each pair (x, y), at most one new non-temporal arc is created, and only if (x, y) is
a non-temporal element of s. This ensures that d(N , t) ≤ d(s).

Lemma 4.8 For a tree-child network N there exists a full tree-child sequence s with
d(s) ≤ d(N) and wT (s) ≤ r(N).

The full proof of Lemma 4.8 is given in the appendix. We construct the sequence
in a similar way to [8,Lemma 3.4]. The key idea is that at any point the network
will contain some pair of leaves x, y that either form a cherry (where x and y share a
parent) or a reticulated cherry (where the parent of x is a reticulation, with an incoming
edge from the parent of y). We process such a pair by appending (x, y) to s, deleting
an edge from N , and simplifying the resulting network. By being careful about the

123

Algorithmica

order in which we process reticulated cherries, we can ensure that we only add a non-
temporal element to s when we delete a non-temporal arc from N . This ensures that
d(s) ≤ d(N , t).

Observation 4.9 A tree-child sequence s can not contain both (a, b) and (b, a).

Observation 4.10 If a tree-child sequence s has a subsequence s′ that is a generalized
cherry picking sequence for T , then s is also a generalized cherry picking sequence
for T .

Lemma 4.11 If s = ((x1, y1), . . . , (xr+1,−)) is a generalized CPS for T and there
is a z such that yi �= z for all i . Then (T \{z})(s) = T (s) and therefore s is also a
generalized CPS for T \{z}.
Proof Suppose this is not true. Because T (s) consists of a tree with only one leaf xr+1,
this implies that L((T \{z})(s)) � L(T (s)). Let i be the smallest index for which we
have that L((T \{z})((x1, y1), . . . , (xi , yi))) � L(T ((x1, y1), . . . , (xi , yi))\{z}).

This implies that xi ∈ L((T \{z})((x1, y1), . . . , (xi , yi))) but xi /∈ L(T ((x1, y1),
. . . , (xi , yi))\{z}), so (xi , yi) /∈ (T \{z})((x1, y1), . . . , (xi−1, yi−1)), but (xi , yi) ∈
T ((x1, y1), . . . , (xi−1, yi−1))\{z}. Let p be the lowest vertex that is an ancestor of
both xi and yi in the tree (T \ {z})((x1, y1), . . . , (xi−1, yi−1)). Because xi and yi
do not form a cherry in this tree, there is another leaf q that is reachable from p.
Becauseq ∈ L(T ((x1, y1), . . . , (xi−1, yi−1))\{z}),q is also reachable from the lowest
common ancestor p′ in T ((x1, y1), . . . , (xi−1, yi−1))\{z}, contradicting the fact that
(xi , yi) is a cherry in this tree.
�

4.2 Constraint Sets

The new algorithm also uses constraint sets. However, because the algorithm searches
for a generalized cherry picking sequence, we need to define what it means for such
a sequence to satisfy a constraint set.

Definition 4.12 A generalized cherry picking sequence s = ((x1, y1), . . . , (xk, yk))
for T satisfies constraint setC if for every (a, b) ∈ C there is an i with (xi , yi) = (a, b)
and there is a tree T ∈ T for which (a, b) /∈ T (s1, . . . , si−1).

In Definition 2.1 the function H(T) was defined for sets of binary trees with the
same leaves. After applying a tree-child sequence not all trees will necessarily have
the same leaves. Because of this, we generalize the definition of H(T) to sets of binary
trees.

Definition 4.13 For a set of binary trees T , let

H(T) = {x ∈ L(T) : ∀T ∈ T if x ∈ T then x is in a cherry in T }.

Lemma 4.14 If s = ((x1, y1), . . . , (xr+1,−)) is a tree-child sequence for T and
(a, b) ∈ T , then there is an i such that (xi , yi) = (a, b) or (xi , yi) = (b, a).

123

Algorithmica

Proof Let T ∈ T be a tree in T containing cherry (a, b). Because s fully reduces T ,
T (s) consists of only the leaf xr+1. So a or b has to be removed from T by applying
s. Without loss of generality we can assume a is removed first. This can only happen
if there is an i with (xi , yi) = (a, b).
�

Now we prove that if there are two cherries (a, z) and (b, z) in T , then we can
branch on three possible additions to the constraint set, just like we did for cherry
picking sequences.

Lemma 4.15 Let s be a tree-child sequence for T and a, b ∈ NT (z) with a �= b. Then
s satisfies one of the following constraint sets:

{(a, z)}, {(b, z)}, {(z, a), (z, b)}.
Proof From Lemma 4.14 it follows that either (a, z) or (z, a) is in s and that either
(b, z) or (z, b) is in s. Now let si = (xi , yi) be the element of these that appears first
in s. Now we have three cases:

1. If xi = a, then si = (a, z). Let T ∈ T be the tree in which (b, z) is a cherry. Now
(b, z) ∈ T (s1, . . . , si−1), so (a, z) ∈ T (s1, . . . , si−1). Because (si+1, . . . , sr+1)

is a tree-child sequence for T (s1, . . . , si), this implies that there is some j > i
with x j = a. Consequently {(a, z)} is satisfied by s.

2. If xi = b, then the same argument as in (1) can be applied to show that {(b, z)} is
satisfied by s.

3. If xi = z, then we either have yi = a or yi = b. Without loss of generality we
can assume yi = a. We still have (b, z) ∈ T (s1, . . . , si−1), which implies that
there is some j > i with (x j , y j) = (b, z) or (x j , y j) = (z, b). Because j > i
and s is tree-child, we know that y j �= z. So (x j , y j) = (z, b), and consequently
{(z, a), (z, b)} is satisfied by s.

�
We also prove that if a ∈ π1(C) and (a, b) ∈ T , then we only need to do two

recursive calls.

Lemma 4.16 Let s be a tree-child sequence for T that satisfies constraint set C and
a, b ∈ NT (z) with (z, b) ∈ C. Then s satisfies one of the following constraint sets:
{(a, z)}, {(z, a)}.
Proof From Lemma 4.15 it follows that s satisfies one of the constraint sets {(a, z)},
{(b, z)} and {(z, a), (z, b)}. However, because s satisfiesC and (z, b) ∈ C , fromObser-
vation 4.9 it follows that (b, z) does not appear in s. Therefore s has to satisfy either
{(a, z)} or {(z, a), (z, b)}. If s satisfies {(z, a), (z, b)}, then it also satisfies {(z, a)}.
�
Next, we prove an analogue to Lemma 3.10.

Lemma 4.17 If a tree-child sequence s = ((x1, y1), . . . , (xr , xy), (xr+1,−)) for T
satisfies constraint set C, then wT (s) ≥ P(C).

Proof For z ∈ L(T)\{xr+1}, let Cz := {(a, b) : (a, b) ∈ C ∧ a = z} and let
Sz := {(xi , yi) : i ≤ r∧xi = z}.We show that we have |Sz |−1 ≥ P(Cx). If |Cz| = 0,

123

Algorithmica

then P(Cz) = 0 and the inequality is trivial. If |Cz| = 1, then from the definition of
constraint sets it follows that |Sz | ≥ 2, so |Sz | − 1 ≥ 1 ≥ P(Cz). Otherwise if
|Cz| ≥ 2, then because Cz ⊆ Sz , |Sz | − 1 ≥ |Cz | − 1 = ψ · |Cz| − 1+ (1− ψ)|Cz| ≥
|Cz| − 1 + 2(1 − ψ) = |Cz| + (1 − 2ψ) = P(Cz). Now the result follows because
wT (s) = |s|− |L(T)| = ∑

z∈L(T)\{xr+1}(|Sz |−1) ≥ ∑
z∈L(T)\{xr+1} P(Cz) = P(C).

�
Next we prove that if a leaf z is in H(T) and appears in s with all of its neighbors,
then we can move all elements containing z to the start of the sequence.

Lemma 4.18 If s = ((x1, y1), . . . , (xr+1,−)) is a tree-child sequence for T , z ∈ H(T)

and I is a set of indices such that {yi : i ∈ I } = NT (z) and xi = z for all i ∈ I . Then
the sequence s′ obtained by first adding the elements from s with an index in I and
then adding elements (x, y) of s for which x �= z is a tree-child sequence for T . We
have d(s′) ≤ d(s).

Proof We can write s′ = ((x ′
1, y

′
1), . . . , (xr+1,−)) = sa |sb where sa consists of the

elements {si : i ∈ I } and sb is s with the elements at indices in I removed. First we
prove that s′ is a tree-child sequence. Suppose that s′ is not a tree-child sequence.
Then there are i, j with i < j such that x ′

i = y′
j . Note that we can not have that

y′
j = z, because of how we constructed s′. This implies that both indices i and j are

in sb, implying that sb is not tree-child. But because sb is a subsequence of s this
implies that s is not tree-child, which contradicts the conditions from the lemma. So
s′ is tree-child.

We now prove that s′ fully reduces T . Because T (sa) = T \{z} from Lemma 4.11
it follows that sa |s is a generalized CPS for T . Because z /∈ L(T (sa)), T (sa |s) =
T (sa |sb). So s′ is a generalized CPS for T .

Finally since for every non-temporal element in s′ the corresponding element in s
is also non-temporal, we conclude that d(s′) ≤ d(s).
�

4.3 Trivial Cherries

We will call a pair (a, b) a trivial cherry if there is a T ∈ T with a ∈ L(T) and
for every tree T ∈ T that contains a, we have (a, b) ∈ T . They are called trivial
cherries because they can be picked without limiting the possibilities for the rest of
the sequence, as stated in the following lemma.

Lemma 4.19 If s = ((x1, y1), . . . , (xr+1,−)) is a tree-child sequence for T of
minimum length and (a, b) is a trivial cherry in T , then there is an i such that
(xi , yi) = (a, b) or (xi , yi) = (b, a). Also, there exists a tree-child sequence s′
for T with |s| = |s′|, d(s′) ≤ d(s) and s′

1 = (a, b).

Proof This follows from Lemma 4.18.
�
The following lemma was proven in [9,Lemma 11].

Lemma 4.20 Let sa |sb be a tree-child sequence for T with weight k. If T (sa) contains
no trivial cherries, then the number of unique cherries is at most 4k.

123

Algorithmica

Algorithm 3
1: procedure SemiTemporalCherryPicking(T , k, k�, p,C)
2: if k − P(C) < 0 then
3: return ∅
4: end if
5: T ′, k′,C ′, f ←Pick(T , k,C)
6: if |L(T ′)| = 1 then
7: return { f }
8: else if k′ − P(C ′) ≤ 0 ∨ π1(C

′) � L(T ′) then
9: return ∅
10: end if
11:
12: R ← ∅
13: if ∃(x, y) ∈ T : wT (x) > 0 ∧ x ∈ π1(C

′) then
14: R ← R∪ SemiTemporalCherryPicking(T ′, k′, k�, p, C ′ ∪ {(x, y)})
15: R ← R∪ SemiTemporalCherryPicking(T ′, k′, k�, p, C ′ ∪ {(y, x)})
16: else if ∃(x, a) ∈ G(T ′,C ′) : wT ′ (x) > 0 ∧ x /∈ π2(C

′) then
17: Choose b �= a such that (x, b) ∈ G(T ′,C ′)
18: R ← R∪ SemiTemporalCherryPicking(T ′, k′, k�, p, C ′ ∪ {(a, x)})
19: R ← R∪ SemiTemporalCherryPicking(T ′, k′, k�, p, C ′ ∪ {(b, x)})
20: R ← R∪ SemiTemporalCherryPicking(T ′, k′, k�, p, C ′ ∪ {(x, a), (x, b)})
21: else if p > 0 then
22: P ← {(x, y) ∈ T ′ : y ∈ T ′ ∀T ′ ∈ T ′ ∧ x /∈ π2(C)}
23: if |P| > 8k� then
24: return ∅
25: end if
26: for (x, y) ∈ P do
27: C ′′ ← C\{(x, y)}
28: if |{(x, z) ∈ C}| = 1 then
29: C ′′ ← C ′′\{(x, z) ∈ C}
30: end if
31: R ← R ∪ {(x, y)|r : r ∈ SemiTemporalCherryPicking(T ′((x, y)), k′ − 1, k�, p − 1,

C ′′)}.
32: end for
33: end if
34: return { f |r : r ∈ R}
35: end procedure

Algorithm 4
procedure Pick(T ′, k′,C ′)

(T (1), k1,C1) ← (T ′, k′,C ′)
p(1) ← ()

i ← 1
while ∃xi ∈ H(T (i)) : (

wT (i) (xi) = 0 ∨ {(xi , n) : n ∈ NT (i) (xi)} ⊆ Ci
) ∧ (∀y ∈ NT (i)∀T ∈ T :

y ∈ T) do
(n1, . . . , nt) ← NT (xi)
p(i+1) ← p(i)|((xi , n1), . . . , (xi , nt))
ki+1 ← ki − wT (i) (xi)

T (i+1) ← T (i)

Ci+1 ← {c ∈ Ci : x /∈ {c1, c2}}
i ← i + 1

end while
return T (i), ki ,Ci , pi

end procedure

123

Algorithmica

Lemma 4.21 If ((x1, y1), . . . , (x2, y2), (xr+1,−), , (xt ,−)) is a full tree child-sequence
of minimal length for T satisfying C and H(T)\π2(C) = ∅, then (x1, y1) is a non-
temporal element.

Proof First observe that x1 /∈ π2(C)because the sequence satisfiesC . Suppose (x1, y1)
is a temporal element. This implies that there is an i such that for all j < i we have
x j = x1 and xk �= x1 for all k ≥ i . This implies that for every T ∈ T there is a j < i
such that x1 is not in T ((x j , y j)). Consequently (x j , y j) is a cherry in T . Because
this holds for every tree T ∈ T we must have x1 ∈ H(T)\π2(C), contradicting the
assumption that H(T)\π2(C) = ∅.
�

4.4 The Algorithm

We now present our algorithm for Semi- temporal hybridization. As with Tree-
child hybridization, we split the algorithm into two parts: SemiTemporalCh
erryPicking(Algorithm3) is themain recursiveprocedure, andPick(Algorithm4)
is the auxiliary procedure.

The key idea is that we try to follow the procedure for temporal sequences as much
as possible. Algorithm 3 only differs fromAlgorithm 1 in the case where neither of the
recursion conditions of Algorithm 1 apply, but there are still cherries to be processed.
In this case, we can show that there are no trivial cherries, and hence Lemma 4.20
applies. Then we may assume there are at most 4k∗ unique cherries, where k∗ is the
original value of k that we started with. In this case, we branch on adding (x, y) or
(y, x) to the sequence, for any x and y that form a cherry.Any such pairwill necessarily
be a non-temporal element, and so we decrease p by 1 in this case.

Lemma 4.22 (Correctness ofPick) SupposePick(T ′, k′,C ′) in Algorithm 4 returns
(T , k,C, p). Then a tree-child sequence s of weight at most k for T , that satisfies C,
exists if and only if a tree-child sequence s′ of weight at most k′ for T ′, that satisfies
C ′, exists. In this case p|s is a tree-child sequence for T ′ of weight at most k′ and
satisfying C ′.

The proof for this lemma is the same as for Lemma 3.12, but uses Lemma 4.18

Lemma 4.23 Let s� be a tree-child sequence prefix, T � a set of trees with the
same leaves and define T := T �(s�). Suppose k, p ∈ N and C ∈ L(T)2. When
a generalized cherry picking sequence s exists and such that s�|s is a tree-child
sequence for T �, that satisfies C with wT � (s�|s) ≤ k�, and such that d(s) ≤ p,
SemiTemporalCherryPicking(T , k, k�, p,C) fromAlgorithm 3 returns a non-
empty set.

A full proof of this lemma is given in the appendix.

Lemma 4.24 Let s� be a tree-child sequence prefix, T � a set of trees with the
same leaves and let T := T �(s�). Let k, p ∈ N and C ∈ L(T)2. If a call to
SemiTemporalCherryPicking(T , k, k�, p,C) returns a set S, then for every
s ∈ S, the sequence s′ = s�|s is a tree-child sequence for T � with d(s) ≤ p and
w(s) ≤ k.

123

Algorithmica

The proof of this lemma is similar to the proof of Lemma 3.14 using Lemma 4.22.

Lemma 4.25 Algorithm 3 has a running time of O(5k · (8k)p · k · n · m).

Proof This can be proven by combining the proofs from Lemmas 3.18 and 4.20.
�
Theorem 4.26 SemiTemporalCherryPicking(T , k, k, p,∅) from Algorithm 3
returns a nonempty set of tree-child cherry picking sequences for T , of weight at most
k, with at most p non-temporal elements, if and only if such a sequence exists. The
algorithm terminates in O(5k · (8k)p · k · n · m) time.

Proof This follows directly from Lemmas 4.24, 4.23 and 4.25.
�

5 Constructing Temporal Networks from Two Non-binary Trees

The algorithms described in the previous sections only work when all input trees are
binary. In this section we introduce the first algorithm for constructing a minimum
temporal hybridization number for a set of two non-binary input trees. The algorithm
is based on [14] and has time complexity O(6kk! · k · n2).

We say that a binary tree T ′ is a refinement of a non-binary tree T when T can be
obtained from T ′ by contracting some of the edges. Now we say that a network N
displays a non-binary tree T if there exists a binary refinement T ′ of T such that N
displays T ′. Now the hybridization number ht (T) can be defined for a set of non-binary
trees T like in the binary case.

Definition 5.1 For a set of non-binary treeswe let the set of neighbors NT (x)be defined
as NT (x) := {y ∈ L(T)\{x} : ∃T ∈ T : {x, y} is a subset of some cherry in T }.
Definition 5.2 A set S ⊆ NT (x) is a neighbor cover for x in T if S ∩ NT (x) �= ∅ for
all T ∈ T .

Definition 5.3 For a set of non-binary trees T , define wT (x) as the minimum size of
a neighbor cover of x in T minus 1.

Note that computing the minimum size of a neighbor cover comes down to finding
a minimum hitting set, which is an NP-hard problem in general. However if |T | is
constant, the problem can be solved in polynomial time. Note that for binary trees this
definition is equivalent to the definition given in Definition 2.3.

Next Definition 2.1 is generalized to non-binary trees.

Definition 5.4 For a set of non-binary trees T with the same leaf set define H(T) =
{x ∈ L(T) : ∀T ∈ T : NT (x) �= ∅}.

The non-binary analogue of Definition 2.4 is given by the following lemma.

Definition 5.5 For a set of non-binary trees T with n = L(T), let s = (s1, . . . , sn−1)

be a sequence of leaves. Let T0 = T and Ti = Ti−1\{s1, . . . , si }. The sequence s is a
cherry picking sequence if for all i , si ∈ H(T \{s1, . . . , si−1}). Define the weight of
the sequence as wT (s) = ∑n−1

i=1 wTi−1(si).

123

Algorithmica

Lemma 5.6 A temporal network N that displays a set of nonbinary trees T with
reticulation number r(N) = k exists if and only if a cherry picking sequence of
weight at most k exists.

Proof Note that this is a generalization of Lemma 2.6 to the case of non-binary input
trees and the proof is essentially the same. A cherry picking sequence with weight k
can be constructed from a temporal network with reticulation number k in the same
way as in the proof of Lemma 2.6.

The construction of a temporal network N from a cherry picking s is also very
similar to the binary case: for cherry picking sequence s1, . . . , st , defineNt+1 to be the
network, only consisting of a root, the only leaf of T \{s1, . . . , st } and an edge between
the two. For each i let Si be a minimal neighbor cover of si in T \{s1, . . . , si−1}. Now
obtain Ni from Ni+1 by adding node si , subdividing (px , x) for every x ∈ Si with
node qx and adding an edge (qx , si) and finally suppressing all nodes with in- and
out-degree one. It can be shown that r(N) = wT (s).
�
Lemma 5.7 If s is a cherry picking sequence for T and for x ∈ H(T) we have
wT (x) = 0 then there is a cherry picking sequence s′ for T with wT (s′) = wT (s) and
s′
1 = x.

Proof We have NT (x) = {y}. Now let z be the element of {x, y} that appears in s first
with si = z. Now s′ = (si , s1, . . . , si−1, si+1, . . .) is a cherry picking sequence for T
with wT (s′) = wT (s). If z = x , then this proves the lemma. Otherwise we note that
by swapping x and y in T , the trees stay the same. So we can also swap x and y in s′
without affecting the weight. Now s′ = x , which proves the lemma.
�

The algorithm relies on some theory from [14], that we will introduce first.
For a vertex v of T we say that all vertices reachable by v form a pendant subtree.

For a pendant subtree S we define L(S) to be the set of the leaves of S. Now we define

Cl(T) = {L(S) : S is a pendant subtree of T }.

We call this the set of clusters of T . Then we define Cl(T) = ⋃
T ∈T Cl(T). Call a

cluster C with |C | = 1 trivial. Now we call a nontrivial cluster C ∈ Cl(T) a minimal
cluster if there is no C ′ ∈ Cl(T) with C ′ nontrivial and C ′

� C .
In a cherry picking sequence s we say that at index i the cherry (si , y) is reduced

if there is a T ∈ T such that NT \{s1,...,si−1}(si) = {y}.
Lemma 5.8 Let T be a set of trees with |T | = 2 such that T contains no leaf x
with wT (x) = 0. Let s be a cherry picking sequence for T . Then there is a minimal
cluster C in T and a cherry picking sequence s′ = (s′

1, . . .) for T with s′
i ∈ C for

i = 1, . . . , |C | − 1 and wT (s′) ≤ wT (s).

Proof Let p be the first index at which a cherry is reduced in s. Let (a, b) be one of
the cherries that is reduced at index p. Now there will be a cherry in T that contains
both a and b. Let C be one of the minimum clusters that is contained in this cherry.
Let x be the element of C that occurs last in s. Then let c1, . . . , ct be the elements
from C\{x} ordered by their index in s. We claim that for any permutation σ of [t]

123

Algorithmica

we have s′ = (cσ(1), . . . , cσ(t))|(s\(C\{x})) is a cherry picking sequence for T and
wT (s′) ≤ wT (s).

Let i be the index of the last element of C\{x} in s. Suppose that s′ is not a CPS
for T . Let j be the smallest index for which s′

j /∈ H(T \{s′
1, . . . , s

′
j−1}).

Let T ∈ T be such that s′
j is not in a cherry in T \{s′

1, . . . , s
′
j−1}. Choose k such

that sk = s′
j . Now there are three cases:

– Suppose j > i , then k = j and {s1, . . . , sk−1} = {s′
1, . . . , s

′
j−1}. This implies that

s′
j ∈ H(T \{s′

1, . . . , s
′
j−1}), which contradicts our assumption.

– Otherwise, suppose s′
j ∈ {c1, . . . , ct }. Then j ≤ t . Now sk has to be in a cherry in

T \{s1, . . . , sk−1}. Because no cherries are reduced before index i in s this means
that s′

j is in a cherry in T . Because no cherries are reduced in s′ before index t ,
this implies that the same cherry is still in T \{s′

1, . . . , s
′
j−1}, which contradicts

our assumption.
– Otherwise we must have j ≤ i . Because no cherries are reduced before index i
in s this means that s′

j is in a cherry Q in T . If this cherry contains a leaf y with
s′
w = y for w > j , then s′

j is still in a cherry in T \{s′
1, . . . , s

′
j−1}, contradicting

our assumption, so this can not be true. However, that implies that the neighbors of
sk in T \{s1, . . . , sk−1} are all elements of {c1, . . . , ct }. Let v be the second largest
number such that cv is one of these neighbors. Let q be the index of cv in s. Now
cherry Q will be reduced by s at index max(q, j) < i , which contradicts the fact
that C is contained in a cherry of T that is reduced first by s.

To prove that wT (s′) ≤ wT (s), we will prove that for s j = s′
k we have

wT \{s1,...,s j−1}(s j) ≥ wT \{s′1,...,s′k−1}(s
′
k).

Note that for j ≥ i this is trivial, so assume j < i . If s j ∈ C\{x}, then
wT \{s1,...,s j−1}(s j) ≥ wT (s j), because no cherries are reduced before i , which implies
that no new elements are added to cherries before i . For the same reason we must
have s j ∈ H(T). Because there are no x ∈ H(T) with wT (x) = 0. Because
|T | = 2, we have wT (x) ≤ 1 for all x , hence wT (s j) = 1. So wT \{s′1,...,s′k−1}(s

′
k) ≤

wT \{s1,...,s j−1}(s j) = 1.
�

5.1 Bounding the Number of Minimal Clusters

By Lemma 5.8, in the construction of a cherry picking sequence, we can restrict
ourselves to only appending elements from minimal clusters. We use the following
theory from [14] to bound the number of minimal clusters.

Definition 5.9 Define the relation x
T−→ y for leaves x and y of T if every nontrivial

cluster C ∈ Cl(T) also contains y.

Observation 5.10 ([14,Observation 2]) If T contains no zero-weight leaves, the rela-

tion
T−→ defines a partial ordering on L(T).

123

Algorithmica

Now call x ∈ L(T) a terminal if there is no y �= x with x
T−→ y. Now we will

first show that all minimal clusters contain a terminal. Then a bound on the number
of terminals gives a bound on the number of minimal clusters.

Lemma 5.11 If T contains no zero-weight leaves, every minimal cluster contains a
terminal.

Proof Let C be a minimal cluster of T . Let x be an element of C that is maximal in C
with respect to the partial ordering ‘

T−→’ (if we say that x
T−→ y means that y is ‘greater

than or equal to’ x). Now suppose that x is not a terminal. Then there is an y such that

x
T−→ y. However then y ∈ C , but this contradicts the fact that x is a maximal element

in C with respect to ‘
T−→’. Because this is a contradiction, x has to be a terminal.
�

Lemma 5.12 Let T be a set of trees with ht (T) ≥ 1 containing no zero-weight leaves.
Let N be a network that displays T . Then T contains at most 2r(N) terminals that
are not directly below a reticulation node.

Proof We reformulate the proof from [14,Lemma 3]. We use the fact that for each
terminal one of the following conditions holds: the parent px of x in N is a reticulation
(condition 1) or a reticulation is reachable in a directed tree-path from the parent px
of x (condition 2). This is always true because if neither of the conditions holds then

another leaf y is reachable from px , implying that x
T−→ y, which contradicts that x is

a terminal.
Let R be the set of reticulation nodes in N and let W be the set of terminals in

T that are not directly beneath a reticulation. We describe a mapping F : W → R
such that each reticulation r is mapped to at most d−(r) times. Note that for each
x ∈ W condition 2 holds. For these elements let F(x) = y where y is a reticulation
reachable from p(x) by a tree-path. Note that there can not be a path from p(x) to y
containing only tree arcs when x �= y are both in H(T) because then x → y which
contradicts that x is a terminal. It follows that each reticulation r can be mapped to at
most d−(r) times: at most once per incoming edge. Then for the set of terminals �

we have |�| ≤ ∑
r∈R d

−(r) ≤ ∑
r∈R(1 + (d−(r) − 1)) ≤ |R| + k ≤ 2k.
�

Lemma 5.13 Let T be a set of nonbinary trees such that ht (T) ≥ 1. Suppose that T
contains no zero-weight leaves. Then any set S of terminals in T with |S| ≥ 2ht (T)+1
contains at least one element x ∈ H(T) such that there is a cherry picking sequence
s for T with wT (s) = ht (T) and s1 = x.

Proof Let N be a temporal network that displays T such that r(N) = ht (T) with
corresponding cherry picking sequence s. From the Lemma 5.12 it follows that at
most r(N) terminals exist in T that are not directly below a reticulation. So there is
an x ∈ S that is directly below a reticulation.

Now let T ′ be the set of all binary trees displayed by N . Note that s is a cherry
picking sequence for T ′. Let i be such that si = x . Because x is directly below a
reticulation inN , for all j < i we have s j /∈ NT ′(x), which implies by Lemma 3.6 that
s′ = (si , s1, . . . , si−1, si+1, . . .) is a cherry picking sequence for T ′ with wT ′(s′) =
wT ′(s) = r(N) = ht (T). Now wT (s′) ≤ wT ′(s′) = ht (T), so wT (s′) = ht (T).
�

123

Algorithmica

Algorithm 5
1: procedure CherryPicking(T , k)
2: s ← ()

3: while ∃x ∈ H(T) : wT (x) = 0 do
4: T ← T \{x}
5: s ← s|(x)
6: end while
7:
8: if |L(T)| = 1 then
9: return {s}
10: else if k = 0 then
11: return ∅
12: end if
13:
14: S ← set of terminals in T
15: if |S| > 2k then
16: S′ ←subset of S of size 2k + 1
17: for x ∈ S′ ∩ H(T) do
18: R ← R ∪ {(x) | x : x ∈ CherryPicking(T \{x}, k − 1) }
19: end for
20: else
21: for q ∈ S do
22: D ← set of minimum clusters that contain q
23: if ∃y, z : D = {{q, y}, {q, z}} then
24: for x ∈ {q, y, z} ∩ H(T) do
25: R ← R ∪ {(y) | x : x ∈ CherryPicking(T \{y}, k − 1)}
26: end for
27: else
28: for C ∈ D do
29: for x ∈ C : C\{x} ⊆ H(T) do
30: (c1, . . . , ct) ← C\{x}
31: R ← R ∪ {(c1, . . . , ct) | x : x ∈ CherryPicking(T \{c1, . . . , ct }, k − t)}
32: end for
33: end for
34: end if
35: end for
36: end if
37: return {s|x : x ∈ R}
38: end procedure

5.2 Run-Time Analysis

Lemma 5.14 The running time of CherryPicking(T , k) from Algorithm 5 is
O(6kk! · k · n2) if T is a set consisting of two nonbinary trees.

Proof Let f (n) be an upper bound for the running time of the non-recursive part of the
function. We claim that the maximum running time t(n, k) for running the algorithm
on trees with n leaves and parameter k is bounded by 6kk!k f (n).

For k = 0 it is clear that this claim holds. Now we will prove that it holds for any
call, by assuming that the bound holds for all subcalls.

123

Algorithmica

If |S| > 2k, then the algorithm branches into 2k + 1 subcalls. The total running
time can then be bounded by

(2k + 1)t(n, k − 1) + f (n) ≤ (2k + 1)6k−1(k − 1)!(k − 1) f (n) + f (n)

≤ 6k(k)!(k) f (n).

If the condition of the if-statement on line 23 is true, then for that q the function
does 3 subcalls with k reduced by one. So the recursive part of the total running time
for this q is bounded by

3t(n, k − 1) ≤ 3 · 6k−1(k − 1)!(k − 1) f (n) ≤ 6k(k!)(k) f (n).

If the condition on line 23 holds then there is at most one d ∈ D with |d| ≤ 2. Using
this information we can bound the total running time of the subcalls that are done for
q in the else clause by

∑

d∈D
|d|t(k − |d| + 1) ≤

∑

d∈D
|d|6k−|d|+1(k − |d| + 1)!(k − |d| + 1) f (n)

≤
∑

d∈D
|d|6k−|d|+1(k − |d| + 1)!(k − |d| + 1) f (n)

≤ (k − 1)!(k − 1) f (n)
∑

d∈D
|d|6k−|d|+1 (1)

≤ (k − 1)!(k − 1) f (n)(2 · 6k−1 + 3 · 6k−2) (2)

= (k − 1)!(k − 1) f (n)2k−1(9 · 3k−2)

= (k − 1)!(k − 1) f (n)2k−13k . (3)

Note that (2) follows from the fact that x �→ x6k−x+1 is a decreasing function for
x ∈ [1,∞). So for each q the running time of the subcalls is bounded by (k − 1)!(k −
1) f (n)2k−13k . Now the total running time is bounded by

f (n) + (k − 1)!(k − 1) f (n)2k−13k |S| (4)

≤ f (n) + (k − 1)!(k − 1) f (n)2k−13k2k (5)

≤ f (n) + k!(k − 1) f (n)6k (6)

≤ 6kk!k f (n) (7)

Because the non-recursive part of the function can be implemented to run in O(n2)
time the total running time of the function is O(6kk! · k · n2).
�
Lemma 5.15 Let T be a set of non-binary trees. If ht (T) ≤ k, thenCherryPicking
(T , k) from Algorithm 5 returns a cherry picking sequence for T of weight at most k.

Proof First we will prove with induction on k that if ht (T) ≤ k then a sequence is
returned.

123

Algorithmica

For k = 0 it is true because if ht (T) = 0, as long as L(T) > 1 then |H(T)| > 0
and all elements of H(T) will have zero weight, so they are removed on line 4. After
that L(T) = 1 so an empty sequence will be returned, which proves that the claim is
true for k = 0.

Now assume that the claim holds for for k < k′ and assume that ht (T) ≤ k′. Now
we will prove that a sequence is returned by CherryPicking(T , k) in this case.
After removing an element x with weight zero on line 4 we still have ht (T) ≤ k′
(Lemma 5.7). If |L(T)| = 1, an empty sequence is returned. If this is not the case then
0 < ht (T) ≤ k, so the else if is not executed.

If |S| > 2k then from Lemma 5.13 it follows that for S′ ⊆ S with |S′| = 2k + 1
there is at least one x ∈ S′ such that ht (T \{x}) ≤ k′ − 1. Now from the induction
hypothesis it follows that CherryPicking(T \{x}, k′) returns at least one sequence,
which implies that R is not empty. Because of that the main call will return at least
one sequence, which proves that the claim holds for k = k′.

The only thing left to prove is that every returned sequence is a cherry picking
sequence for T . This follows from the fact that only elements from H(T) are appended
to s and that R consists of cherry picking sequences for T \{s1, . . . , st }.
�

6 Experimental Results

We developed implementations of Algorithms 1, 5 and 3, which are freely avail-
able [15]. To analyse the performance of the algorithms we made use of dataset
generated in [9] for experiments with an algorithm for construction of tree-child net-
works with a minimal hybridization number.

6.1 Algorithm 1

In Fig. 8 the running time of Algorithm 1 on the dataset from [9] is shown. The results
are consistent with the bound on the running time that was proven in Sect. 3. Also, the
algorithm is able to compute solutions for relatively high values of k, indicating that
the algorithm performs well in practice.

The authors of [9] also provide an implementation of their algorithm for tree-child
algorithms. The implementation contains several optimizations to improve the running
time. One of them is an operation called cluster reduction [16]. The implementation
is also multi-threaded. In Fig. 9 we provide a comparison of the running times of the
tree-child algorithmwithAlgorithm 1. In this comparisonwe let both implementations
use a single thread, because our implementation of the algorithm for computing the
hybridization number does not support multithreading. The implementation could
however be modified to solve different subproblems in different threads which will
probably also result in a significant speed-up. ForAlgorithm1we see that the difference
in time complexity between the O((8k)k) algorithm and the O(5k) algorithm is also
observable in practice.

123

Algorithmica

Fig. 8 The running time ofAlgorithm 1 on problem shown relative to the corresponding temporal hybridiza-
tion number. A timeout of 10 min was used. Instances for which the algorithm timed out are shown in red
at the value of k where they timed out. On the log scale the exponential relation is clearly visible. However
fitting an exponential function on the data yields a O(2.5k) function for temporal hybridization number k,
while the worst-case bound that we proved is O(5k)

Fig. 9 Difference between the running time of Algorithm 1 and the algorithm for tree-child networks from
[9]

6.2 Algorithm 5

We used the software from [9] to generate random binary problem instances and after-
wards randomly contracted edges in the trees to obtain non-binary problem instances.
We used this dataset to test the running time of Algorithm 5. The results are shown in

123

Algorithmica

Fig. 10 Running time of Algorithm 5 on a generated set of instances consisting of trees with average
out-degree 2.5 relative to the temporal hybridization number. A timeout of 10 min was used

Fig. 11 Difference between the running time of Algorithm 3 and the algorithm for constructing tree-child
networks from [9] on all non-temporal instances in the dataset from [9]

Fig. 10. We see that the algorithm is usable in practice and has a reasonable running
time.

6.3 Algorithm 3

Algorithm 3was tested on all non-temporal instances in the dataset from [9]. In Fig. 11
the running time of Algorithm 3 is compared to that of the algorithm from [9]. The
data show that the algorithm from [9] is often faster than Algorithm 3. However, there

123

Algorithmica

are also instances for which Algorithm 3 is much faster. Hence, in practice it can be
worthwile to run this algorithm on instances that cannot be solved by the algorithm
from [9] in a reasonable time. It should also be noted that we only tested the algorithms
on a relatively small dataset.

7 Discussion

Algorithm 1, the algorithm for constructing minimum temporal hybridization net-
works, has a significantly better running time than the algorithms that were known
before. The results from the implementation show that the algorithm also works well
in practice. However this implementation could still be improved, for example by
making use of parallelization.

While we also present an algorithm that finds optimal temporal networks for non-
binary trees, the running time of this algorithm is significantly worse and, moreover, it
only works for pairs of trees. An open question is whether this could be improved to a
running time of O(ck · poly(n)) for some c ∈ R, perhaps using techniques similar to
our approach for binary trees. Another important open problem is whether Temporal
Hybridization is FPT for a set of more than two non-binary input trees.

In Sect. 4 a metric is provided to quantify how close a hybridization network is
to being temporal. However, other, possibly more biologically meaningful, metrics
could also be used for this purpose. An open problem is whether an FPT algorithm
exists that solves the decision problem associated with these metrics.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Omitted Proofs

Lemma 4.7. Let s be a full tree-child sequence s for T . Then there exists a network
N with semi-temporal labeling t such that r(N) ≤ wT (s) and d(N , t) ≤ d(s).

Proof This can be proven by constructing a tree-child network from the tree-child
sequence as described in [8,Proof of Theorem 2.2]. We will show that a semi-temporal
labeling satisfying our constraints exists for the resulting network. We will write

s = ((x1, y1), . . . , (xr , yr), (xr+1,−))

Now we merge all consecutive elements (xi , yi), (xi+1, yi+1), . . . , (xi+ j , yi+ j) for
which xi = xi+1 = · · · = xi+ j into one element (xi , {yi , yi+1, . . . , yi+ j }) and call

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

the resulting sequence s′. Call an element of this sequence temporal if all corresponding
elements in s are temporal. Call it non-temporal if all corresponding elements in s are
non-temporal. Observe that it can not happen that some of the corresponding elements
are temporal while some are non-temporal. The following algorithm now constructs
a suitable network and temporal labeling:

1. LetNr+1 be the network consisting of root ρ, vertex xr+1 and edge (ρ, xr+1). Set
i := r . Define tr+1 : L(T) → {−∞} ∪ N. Set t(ρ) := 0 and tr+1(xr+1) := 1 and
for all other z ∈ L(x) set tr+1(z) = −∞.

2. If i = 0, contract all edges with in- and out-degree 1 inN1 and return the resulting
network together with t1.

3. Set ti := ti+1.
4. For the element s′

i = (x,Y) do the following:

(a) If s′
i is a temporal element then x /∈ L(Ni+1). In this case let Ni be the

network obtained from Ni+1 by adding vertex x , vertex px , edge (px , x),
subdividing edge (py, y) by vertex vy and adding edge (vy, px) for all y ∈ Y .
Set ti (px) := −∞.

(b) Otherwise s′
i is a non-temporal element and x ∈ L(Ni+1). In this case let Ni

be the network obtained fromNi+1 by subdividing (py, y) for all y ∈ Y with
a new vertex vy and adding the edge (vy, px).

5. Set τ = max{maxy∈Y ti (py), ti (px) − 1}. For all y ∈ Y set ti (vy) := τ + 1 and
ti (y) := τ + 2. If s′

i is a temporal element set ti (px) := τ + 1 and ti (x) := τ + 2.
6. Decrease i by one. Go to step 2.

Note that the construction of the network is equivalent to the one described in [8,Proof
of Theorem 2.2], where it is also proven that the resulting network is a tree-child
network that is fully reduced by s. The only thing we have to prove is that t is a
semi-temporal labeling of N with d(N , t) ≤ d(s).

We will prove with induction on i that ti is a semi-temporal labeling forNi . For Nn

it is clear that this is true. Consider an arbitrary edge (u, v) inNi . If the edge was also
inNi+1, then ti+1(u) = ti (u) and ti+1(v) = ti (v), so the edge satisfies the conditions
for being semi-temporal.

Nowwewill go through all newly introduced edges inNi and show that they satisfy
the conditions for being semi-temporal.

– In Item4a edges (py, vy), (vy, y), and (vy, px) are created for all y ∈ Y and (px , x)
is created. Because ti (vy) = τ + 1 > ti (py) and ti (y) = τ + 2 > τ + 1 = ti (vy)
the first two edges are semi-temporal. Because in this case s′

i is a temporal element
ti (px) := τ +1 and ti (x) := τ +2 will be set in step 5, so (px , x) is semi-temporal.
Consequently ti (vy) = τ + 1 = ti (px), so (vy, x) is also semi-temporal.

– In Item 4b edges (py, vy), (vy, y), (vy, px) for all y ∈ Y .
Note that before these edges are added we already have ti (w) = ti (px) for some
parent x of px . From step 5 it follows that ti (vy) = τ + 1 > ti (py), that p(y) =
τ + 2 > τ + 1 and that t(px) ≤ τ + 1 = t(vy). Therefore all of the created edges
are semi-temporal. We also have ti (w) = ti (px) < ti (x), so these edges remain
semi-temporal.

123

Algorithmica

Note that the only place where non-temporal reticulation edges can be introduced
is in Item 4b in the creation of edges (vy, px) for all y ∈ Y . This only happens for
non-temporal items s′

i and for each of this item at most |Y | non-temporal reticulation
edges are created, so d(Ni , ti) ≤ d(Ni+1, ti+1)+|Y |. Because a non-temporal element
(x,Y) in s′ corresponds to |Y | non-temporal elements in s, this implies that d(N , t) ≤
d(s).
�
Lemma 4.8. For a tree-child networkN there exists a full tree-child sequence s with
d(s) ≤ d(N) and wT (s) ≤ r(N).

Proof We provide a way of constructing a tree-child sequence s from a tree-child
network N with semi-temporal labeling t such that d(s) = d(N). We do this by
modifying the proof from [8,Lemma 3.4]. Let ρ denote the root ofN and let v1, . . . , vr
denote the reticulations in the network. Let 	ρ, 	1, . . . , 	r denote the leaves at the end
of the paths Pρ, P1, . . . , Pr starting at v1, . . . , vr respectively and consisting of only
tree arcs.

We will call a set {x, y} with parents px and py in a given network a cherry if
px = py . We will call it a reticulated cherry if px and py are joined by a reticulation
edge (py, px). In this case we call x the reticulation leaf of the cherry. We call such
a reticulated cherry temporal if t(py) = t(px), otherwise we call it non-temporal.

Start off with an empty sequence σ0. Set N0 := N and i := 1.

1. If Ni−1 consists of a single vertex x then set σi := σi−1|((x,−)) and return σi .
2. If there is a cherry {x, y} in Ni−1, then

(a) If one of {x, y}, say x , is an element of {	1, . . . , 	r } and v j is not a reticulation
in Ni−1 set xi := x and yi := y.

(b) Otherwise let {xi , yi } := {x, y} such that xi /∈ {	p, 	1, . . . , 	r }.
(c) Set σi = ((xi , yi))|σi−1. LetNi be the tree-child network obtained fromNi−1

by deleting xi .
(d) Go to step 5.

3. Else, if there is a non-temporal reticulated cherry {x, y} inNi−1 with x the reticu-
lation leaf then set σi = σi−1|((xi , yi)). LetNi be the tree-child network obtained
fromNi−1 by deleting the edge (yi , xi) and suppressing vertices of both in-degree
and out-degree one.

4. Else, there has to be a temporal reticulated cherry {x, y} in Ni−1 with x the
reticulation leaf. Let q1, . . . , qt be the set of leaves that x is in a reticulation
cherry with inNi−1. Set σi = σi−1|((x, q1), . . . , (x, qt)). LetNi be the tree-child
network obtained fromNi−1 by deleting vertex x and suppressing vertices of both
in-degree and out-degree one.

5. Increase i and go to step 1.

The proof that this yields a full tree-child sequence s for N with wT (s) ≤ r(N) can
be found in [8,Lemma 3.4], so we will omit it here. Note that non-temporal elements
can only be added to s in step 3 and each time this happens a non-temporal arc is
removed from the network. Consequently the resulting tree-child sequence can not
contain more non-temporal elements than the number of non-temporal arcs in N . It
follows that d(s) ≤ d(N).
�

123

Algorithmica

Lemma 4.23. Let s� be a tree-child sequence prefix, T � a set of trees with the
same leaves and define T := T �(s�). Suppose k, p ∈ N and C ∈ L(T)2. When
a generalized cherry picking sequence s exists and such that s�|s is a tree-child
sequence for T �, that satisfies C with wT � (s�|s) ≤ k�, and such that d(s) ≤ p,
SemiTemporalCherryPicking(T , k, k�, p,C) fromAlgorithm3 returns a non-
empty set.

Proof Let W (k, u) be the claim that if a tree-child sequence s for T of weight at most
k exists that satisfies constraint setC with n2−|C | ≤ u and d(s) ≤ p, such that s�|s is
a tree-child sequence of weight at most k�, then the algorithm will return a non-empty
set. We will prove this claim with induction on k and n2 − |C |.

For the base case k = 0, if a generalized cherry picking sequence of weight k exists
we must have that all cherries in T are trivial cherries. Therefore |L(T ′)| = 1, and a
non-empty set is returned.

Note that we can never have a constraint set C with |C | > n2 because C ⊆ L(T)2.
Therefore W (k,−1) is true for all k.

Now suppose W (k, n2 − |C |) is true for all cases where 0 ≤ k < kb and all cases
where k = kb andn2−|C | ≤ u.Weconsider the casewhere a sequence swithd(s) ≤ p
of weight at most k = kb + 1 exists for T that satisfies C and n2 − |C | ≤ ub + 1 such
that s�|s is a tree-child sequence for T � with wT � (s�|s) ≤ k�. Now we will prove that
a non-empty set is returned by the algorithm.

Lemma 4.17 implies that k − P(C) ≥ 0, so the if-statement on line 2 will not be
satisfied. From Lemma 4.22 it follows that a tree-child cherry picking sequence s′ for
T ′ of weight at most k′ exists for T ′ that satisfies C ′. From the way Pick works it
follows that either k′ < k or n2 − C ′ = n2 − C . If |L(T ′)| = 1 then {()} is returned
and we have proven W (kb + 1, u + 1) to be true for this case. Otherwise s′ is not
empty, so k′ − P(C ′) ≥ wT (s′) > 0. Because s′ satisfies C ′, π1(C ′) ⊆ L(T ′). So the
condition on line 8 is not satisfied.

Now we are left with three cases:

1. If there is a pair (x, y) ∈ G(T ′,C ′) with wT (x) > 0 ∧ x ∈ π1(C ′), then from
Lemma 4.16 it follows that s satisfies either C ′ ∪ {(x, y)} or C ′ ∪ {(y, x)}. From
our induction hypothesis it now follows that either SemiTemporalCherryPic
king(T ′, k′, p, C ′ ∪ {(x, y)}) or SemiTemporalCherryPicking(T ′, k′, p, C ′ ∪
{(y, x)}) will return a non-empty set. Therefore R will not be empty, so a non-
empty set will be returned.

2. Otherwise, if there is a pair (x, a) ∈ G(T ′,C ′) with wT ′(x) > 0 ∧ x /∈ π2(C ′),
there is a b �= awith (x, b) ∈ G(T ′,C ′), for the same reasons as in Lemma3.13 for
the temporal case. Now from Lemma 4.15 it follows that s satisfies C ′ ∪ {(a, x)},
C ′ ∪{(b, x)} orC ′ ∪{(x, a), (x, b)}. From our induction hypothesis it now follows
that the corresponding subcall will return a non-empty set. Therefore R will not
be empty, so a non-empty set will be returned.

3. Because the conditions in both the if and the else-if statement are not satisfied it
follows that H(T)\π2(C) is empty. Indeed, any x ∈ H(T)must havewT ′(x) > 0,
as otherwise it would have been removed by Pick, and for any x ∈ H(T)\π2(C)

there exists at least one y with (x, y) ∈ G(T ′,C), as otherwise {(x, n) : n ∈
NT ′(x)} ⊆ C ′ and again x would be removed by Pick. Then either case 1 (if

123

Algorithmica

x ∈ π1(C)) or case 2 (otherwise) would apply.
Now fromLemma4.21 it follows that s1 has to be a non-temporal element. Observe
that for s′

1 = (x, y) we must have x /∈ π2(C), because otherwise s′ has to contains
some element (z, x), but such an element can not appear after an element (x, y),
because the sequence is a tree-child sequence. Also y has to be in all trees in T ′,
because otherwise s contains an element (y, z), which contradicts the assumption
that s|s′ is tree-child. So now we have shown that s′

1 ∈ P . Each element of P is
a cherry in T ′. Lemma 4.20 implies that there are at most 4k� unique cherries in
T ′. Therefore it follows that |P| ≤ 8k�. Because s′

1 ∈ P , there R is not empty
because the result of SemiTemporalCherryPicking(T ′(s′

1), k
′ − 1, p − 1,C ′′) is

added to R, which by our induction hypothesis is a non-empty set.
�

References

1. Mallet, J., Besansky, N., Hahn, M.W.: How reticulated are species? BioEssays 38(2), 140–149 (2016).
https://doi.org/10.1002/bies.201500149

2. Soucy, S.M., Huang, J., Gogarten, J.P.: Horizontal gene transfer: building the web of life. Nat Rev
Genet 16(8), 472–482 (2015). https://doi.org/10.1038/nrg3962

3. Bapteste, E., van Iersel, L., Janke, A., Kelchner, S., Kelk, S.,McInerney, J.O.,Morrison, D.A., Nakhleh,
L., Steel, M., Stougie, L., Whitfield, J.: Networks: expanding evolutionary thinking. Trends Genet.
29(8), 439–441 (2013). https://doi.org/10.1016/j.tig.2013.05.007

4. Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent
evolutionary history. Discrete Appl. Math. 155(8), 914–928 (2007). https://doi.org/10.1016/j.dam.
2006.08.008

5. van Iersel, L., Kelk, S., Scornavacca, C.: Kernelizations for the hybridization number problem on
multiple nonbinary trees. J. Comput. Syst. Sci. 82(6), 1075–1089 (2016). https://doi.org/10.1016/j.
jcss.2016.03.006

6. Bordewich, M., Semple, C.: Computing the hybridization number of two phylogenetic trees is fixed-
parameter tractable. IEEE/ACM Trans. Comput. Biol. Bioinformatics 4(3), 458–466 (2007). https://
doi.org/10.1109/tcbb.2007.1019

7. Cardona, G., Rossello, F., Valiente, G.: Comparison of tree-child phylogenetic networks.
arXiv:0708.3499 [cs, q-bio] (2007). http://arxiv.org/abs/0708.3499. ArXiv: 0708.3499

8. Linz, S., Semple, C.: Attaching leaves and picking cherries to characterise the hybridisation number
for a set of phylogenies. Adv. Appl. Math. 105, 102–129 (2019). https://doi.org/10.1016/j.aam.2019.
01.004

9. van Iersel, L., Janssen, R., Jones, M., Murakami, Y., Zeh, N.: A practical fixed-parameter algorithm
for constructing tree-child networks from multiple binary trees. arXiv:1907.08474 [cs, math, q-bio]
(2019). http://arxiv.org/abs/1907.08474. ArXiv: 1907.08474

10. Humphries, P.J., Linz, S., Semple, C.: Cherry picking: a characterization of the temporal hybridization
number for a set of phylogenies. Bull. Math. Biol. 75(10), 1879–1890 (2013). https://doi.org/10.1007/
s11538-013-9874-x

11. Humphries, P.J., Linz, S., Semple, C.: On the complexity of computing the temporal hybridization
number for two phylogenies. Discrete Appl.Math. 161(7–8), 871–880 (2013). https://doi.org/10.1016/
j.dam.2012.11.022

12. Döcker, J., van Iersel, L., Kelk, S., Linz, S.: Deciding the existence of a cherry-picking sequence is
hard on two trees. Discrete Appl. Math. 260, 131–143 (2019). https://doi.org/10.1016/j.dam.2019.01.
031

13. Linz, S., Semple, C.: Hybridization in nonbinary trees. IEEE/ACMTrans. Comput. Biol. Bioinformat-
ics 6(1), 30–45 (2009). https://doi.org/10.1109/TCBB.2008.86

14. Piovesan, T., Kelk, S.M.: A simple fixed parameter tractable algorithm for computing the hybridization
number of two (not necessarily binary) trees. IEEE/ACM Trans. Comput. Biol. Bioinformatics 10(1),
18–25 (2013). https://doi.org/10.1109/TCBB.2012.134

123

https://doi.org/10.1002/bies.201500149
https://doi.org/10.1038/nrg3962
https://doi.org/10.1016/j.tig.2013.05.007
https://doi.org/10.1016/j.dam.2006.08.008
https://doi.org/10.1016/j.dam.2006.08.008
https://doi.org/10.1016/j.jcss.2016.03.006
https://doi.org/10.1016/j.jcss.2016.03.006
https://doi.org/10.1109/tcbb.2007.1019
https://doi.org/10.1109/tcbb.2007.1019
http://arxiv.org/abs/0708.3499
http://arxiv.org/abs/0708.3499
http://arxiv.org/abs/0708.3499
https://doi.org/10.1016/j.aam.2019.01.004
https://doi.org/10.1016/j.aam.2019.01.004
http://arxiv.org/abs/1907.08474
http://arxiv.org/abs/1907.08474
http://arxiv.org/abs/1907.08474
https://doi.org/10.1007/s11538-013-9874-x
https://doi.org/10.1007/s11538-013-9874-x
https://doi.org/10.1016/j.dam.2012.11.022
https://doi.org/10.1016/j.dam.2012.11.022
https://doi.org/10.1016/j.dam.2019.01.031
https://doi.org/10.1016/j.dam.2019.01.031
https://doi.org/10.1109/TCBB.2008.86
https://doi.org/10.1109/TCBB.2012.134

Algorithmica

15. Borst, S.: Temporal hybridization number algorithm implementations (2020). https://doi.org/10.5281/
zenodo.3601812. https://github.com/mathcals/temporal_hybridization_number

16. Linz, S., Semple, C.: A cluster reduction for computing the subtree distance between phylogenies.
Ann. Combin. 15(3), 465–484 (2011). https://doi.org/10.1007/s00026-011-0108-3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.5281/zenodo.3601812
https://doi.org/10.5281/zenodo.3601812
https://github.com/mathcals/temporal_hybridization_number
https://doi.org/10.1007/s00026-011-0108-3

	New FPT Algorithms for Finding the Temporal Hybridization Number for Sets of Phylogenetic Trees
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Trees
	2.2 Temporal Networks
	2.3 Cherry Picking Sequences

	3 Algorithm for Constructing Temporal Networks from Binary Trees
	3.1 Proof of Correctness
	3.2 Runtime Analysis

	4 Constructing Non-temporal Tree-Child Networks from Binary Trees
	4.1 Tree-Child Sequences
	4.2 Constraint Sets
	4.3 Trivial Cherries
	4.4 The Algorithm

	5 Constructing Temporal Networks from Two Non-binary Trees
	5.1 Bounding the Number of Minimal Clusters
	5.2 Run-Time Analysis

	6 Experimental Results
	6.1 Algorithm 1
	6.2 Algorithm 5
	6.3 Algorithm 3

	7 Discussion
	A Omitted Proofs
	References

