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a b s t r a c t

Repetitive control enables the exact compensation of periodic disturbances if the internal model
is appropriately selected. The aim of this paper is to develop a novel synthesis technique for
repetitive control (RC) based on a new more general internal model. By employing a Gaussian
process internal model, asymptotic rejection is obtained for a wide range of disturbances through
an appropriate selection of a kernel. The implementation is a simple linear time-invariant (LTI) filter
that is automatically synthesized through this kernel. The result is a user-friendly design approach
based on a limited number of intuitive design variables, such as smoothness and periodicity. The
approach naturally extends to reject multi-period and non-periodic disturbances, exiting approaches
are recovered as special cases, and a case study shows that it outperforms traditional RC in both
convergence speed and steady-state error.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Repetitive control (RC) can effectively improve positioning
erformance for systems that have dominant repeating errors, ex-
mples include Merry, Kessels, Heemels, van de Molengraft, and
teinbuch (2011), Shan and Leang (2012). Asymptotic rejection
f repeating disturbances in RC is enabled by the internal model
rinciple (Francis & Wonham, 1976). In particular, a disturbance
odel is specified as a time-domain memory loop, such that an
rror that is periodic with the same period can be fully compen-
ated (Goodwin & Sin, 2014; Hara, Yamamoto, Omata, & Nakano,
988).
Repetitive control is only applicable to periodic signals with

known period due to the traditional delay-based buffer as an
nternal disturbance model. A key assumption to achieving good
erformance is that the delay size matches the known period of
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MECH), and the ECSEL Joint Undertaking under n. 101007311 (IMOCO4.E). This
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which is (partly) financed by the Netherlands Organisation for Scientific Research
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paper was recommended for publication in revised form by Associate Editor
Tongwen Chen under the direction of Editor Ian R. Petersen.
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ttps://doi.org/10.1016/j.automatica.2022.110273
005-1098/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
the disturbance. As a result, RC is very sensitive to small vari-
ations in the disturbance period and non-periodic disturbances
are even amplified (Steinbuch, 2002). This limits achievable per-
formance in practice, e.g., if the disturbance period is uncertain,
or does not fit into the delay size which is an integer multiple
of the sample time. In addition, many practical applications have
multiple periodic components in the error. If multiple periodic
disturbances occur, then their sum may have a very large com-
mon multiple, or can even be non-periodic if there is no common
multiple, i.e., a situation where traditional RC memory loops are
not directly applicable.

Several modifications have been made to the memory loop in
RC to improve robustness and performance. In Steinbuch (2002)
and Steinbuch, Weiland, and Singh (2007) robustness for small
variations in the period time is addressed by incorporating mul-
tiple memory loops referred to as higher-order RC (HORC). This
results in a trade-off between period uncertainty and sensitivity
to non-periodic disturbances, which can be tuned optimally as
shown in Pipeleers, Demeulenaere, de Schutter, and Swevers
(2008). In Cao and Ledwich (2002) an approach is presented
for disturbance periods that are not an integer multiple of the
sample time through interpolation. In Chang, Suh, and Oh (1998)
and Zhou et al. (2007) extensions of RC are presented to learn
multi-period disturbances by connecting multiple RCs, that each
address a single period, in different configurations. However, the
design of multi-period RC requires a sequential design proce-

dure to take the interaction between different RCs into account,

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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t the expense of increased complexity in the design proce-
ure, as shown in Blanken, Bevers, Koekebakker, and Oomen
2020). Moreover, the above approaches are extensions or com-
inations of the traditional delay-based non-parametric mem-
ry loop tailored towards specific refinements instead of generic
pproaches.
Parametric internal models for RC enable rejection of a wider

lass of disturbances, e.g., matched basis functions and adaptive
C approaches in Cuiyan, Dongchun, and Xianyi (2004), Pérez-
rancibia, Tsao, and Gibson (2010) and Shi, Longman, and Na-
ashima (2014). In this approach, a set of basis functions is
efined by selecting all relevant frequencies in the error, subse-
uently, the corresponding coefficients are learned. This allows to
earn multi-period disturbances and non-periodic disturbances,
ut it requires each specific frequency and its harmonics to be
elected a priori.
In view of generic internal models for RC, recent develop-

ents in kernel-based approaches such as Gaussian Process (GP)
egression have shown to be promising, general results include,
dentification and control of LTI systems (Pillonetto & De Nico-
ao, 2010; Scampicchio, Chiuso, Formentin, & Pillonetto, 2019),
on-linear systems (Berkenkamp, Moriconi, Schoellig, & Krause,
016; Mazzoleni, Scandella, Formentin, & Previdi, 2020). GP re-
ression is a non-parametric approach that allows learning a
ide range of functions, more specifically, a distribution over

unctions is learned, by specifying prior knowledge in the sense
f a kernel function through hyperparameters (Murphy, 2012;
illiams & Rasmussen, 2006). Gaussian processes are utilized

n RC for the compensation of spatially periodic disturbances
n Mooren, Witvoet, and Oomen (2020). Here, GP regression is
mployed with a periodic kernel to learn a continuous func-
ion from the non-equidistant observations, which is periodic
n the spatial domain and potentially non-periodic in the time
omain. In contrast to parametric internal models for RC, where
he basis functions have to be selected explicitly, the GP is a
on-parametric approach that only requires selecting a periodic
ernel function with a few intuitive tuning parameters. However,
he further use of GPs in time-domain RC is not yet explored
nd the computational complexity of GPs hampers the practical
mplementation.

Although recently substantial improvements have been made
o the robustness and applicability of RC, a unified internal model
or RC that covers a wide range of disturbances is not yet avail-
ble. The aim of this paper is to present a generic internal model
or RC that efficiently uses Gaussian Processes to enable the re-
ection of a wide variety of disturbances, including, single-period,
ulti-period, and non-periodic disturbances, by specifying distur-
ance properties in a kernel function. By learning a continuous
unction, the disturbance period is not restricted to be an integer
ultiple of the sample time allowing for rational disturbance
eriods, which is different in, e.g., Hara et al. (1988) and Nagahara
nd Yamamoto (2016). The following contributions are identified:

C1 a generic RC design framework and computationally inex-
pensive internal disturbance model using GP is presented,
including prior selection, LTI representation, stability anal-
ysis, and a design procedure (Sections 3 and 4);

C2 performance and robustness analysis is performed, pro-
viding new insights for RC synthesis from a kernel-based
perspective (Section 5); and

C3 implementation aspects that improve learning within the
first period are presented (Section 6).

everal existing approaches are recovered as special cases of the
resented framework, and a generic case study is performed to

alidate the approach.

2

Fig. 1. Control setting with multi-period disturbance d(k) with k ∈ N and
repetitive controller R.

The paper is outlined as follows. In Section 2, the disturbance
attenuation problem and considered class of disturbances are
introduced. In Section 3, the Gaussian-process-based RC (GPRC)
is developed, including LTI case and stability conditions (C1). In
Section 4, design of GPRC and provides design procedure (C1). In
Section 5, the performance and robustness of GPRC are analyzed,
and existing methods are recovered as special cases (C2). In Sec-
tion 6, learning in the first period is improved (C3). In Section 7,
a case study validates the developed approach and Section 8
presents conclusions and ongoing research.

2. Problem formulation

2.1. Control setting

The considered problem is depicted in Fig. 1, where P is a
discrete-time linear time-invariant (LTI) system, C is a stabilizing
feedback controller, and R is an add-on type repetitive controller
(RC) that is specified in the forthcoming sections. The goal is to
reject the input disturbance d(k) with k ∈ Z≥0, where d(k) is a
sampled version of a continuous disturbance dc(t) with t ∈ R,
i.e., d(k) = dc(kTs). Without loss of generality the sample time is
scaled to Ts = 1. Furthermore, noise v is present that follows an
independent, identically distributed (i.i.d.) Gaussian distribution
with zero mean.

Definition 1. The control goal is to asymptotically reject the
disturbance-induced error ed(k), given by e(k) in Fig. 1 for v(k) =

0, i.e.,

lim
k→∞

ed(k) = 0 (1)

by designing R. In the case that R is LTI, then

ed = − P(I + PC)−1  
SP

(I + SPR)−1  
SR

d (2)

where SR is the modifying sensitivity, that is a measure for the
performance improvement through R, and SP is the process sen-
sitivity when R = 0.

Asymptotic rejection for a wide range of disturbances is ob-
tained through a generic internal disturbance model in R which
is investigated next.

Remark 1. The RC configuration in R is slightly different from the
traditional one, e.g., as in Steinbuch et al. (2007). If R is linear,
these are equivalent due to the commutative property of linear
systems. The presented one has particular advantages in view of
the GP prior as the RC output is equal to the disturbance in an
ideal setting.

2.2. Internal model control

The internal model principle states that asymptotic distur-
bance rejection is obtained by including a model of the distur-
bance generating system in a stable feedback loop, see, e.g., Fran-
cis and Wonham (1976). By the final value theorem (Schiff, 1999),
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Fig. 2. Example: a continuous time disturbance dc (t) ( ) with period T = 3π
rom which discrete samples d(k) ( ) with sample frequency 1 Hz are taken,
.e., the discrete time sequence d(k) is non-periodic for all k while the continuous
ime signal dc (t) is periodic with the period time T ∈ R.

t can be shown that a constant disturbance d(k) = 1 with Z-
transform (1 − z−1)−1, is asymptotically rejected with a factor
(1 − z−1)−1 in the open-loop PC . For periodic disturbances with
period T ∈ N, a model of the disturbance generating system
consists of a delay-based buffer z−N , with N = T , in a feedback
loop, i.e.,

Rconv(z) =
z−N

1 − z−N =
1

zN − 1
, (3)

which is the most simple form of conventional RC, that it is often
employed with a learning filter for stability, to asymptotically
attenuate any disturbance with period time T , see, e.g., Goodwin
and Sin (2014). However, disturbances with a rational period time
T ∈ R, as illustrated in Fig. 2, do not fit in these traditional buffers
and require additional interpolation.

The following general class of disturbances is considered in
this paper.

Definition 2. The continuous-time disturbance is defined as

dc(t) =

nd∑
i=1

dci (t), (4)

which is a multi-period disturbance consisting of nd ∈ N periodic
scalar-valued signals dci (t) ∈ R that are smooth and satisfy

dci (t) = dci (t − βTi), (5)

with β ∈ Z, and Ti ∈ R is the period time of the ith component.
Moreover, the frequency content of the disturbance signal is
contained below the Nyquist frequency, i.e., π , to avoid aliasing.

The disturbance (4) is a single-period disturbance if nd = 1 or
a multi-period disturbance with nd > 1; in the latter case dc(t) is
either periodic with a period equal to the least common multiple
(LCM)

T = lcm{T1, T2, . . . , Tnd} ∈ R, (6)

or is non-periodic if there is no least common multiple.
Existing extensions of traditional internal models for RC that

cover multi-period disturbances lead to a complicated design pro-
cedure due to interaction between different RCs, see, e.g., Blanken
et al. (2020). Alternatively, the buffer size N in (3) can be chosen
equal to the common multiple (6) yielding slow learning perfor-
mance if T is very large. Yet, a generic internal model for the class
of disturbances in Definition 2 is not available.

2.3. Gaussian process RC setup

The RC structure that is presented in this paper is shown in
Fig. 3, where L is a learning filter and the proposed GP-based
3

Fig. 3. Gaussian process repetitive controller R with Gaussian-process-based
buffer MGP = µGPΓ and internal model of the disturbance generating
system Gd .

internal model of the disturbance generating system is given by
Gd with MGP = µGPΓ the GP-based memory. Moreover, Γ ∈

RHN×1
∞

(z) is a delay line that accumulates the past N ∈ N samples
of its input yd ∈ R, i.e.,

Γ :=

{
x(k + 1) = Ax(k) + Byd(k)
w(k) = Cx(k) + Dyd(k),

(7)

where x ∈ RN is the state, and[
A B
C D

]
=

⎡⎢⎣ 0 0 1
IN−1 0 0
0 0 1

IN−1 0 0

⎤⎥⎦ , (8)

which results in the vector valued signal w(k) ∈ RN . Finally,
µGP

∈ R1×N is a vector of, possibly time-varying, coefficient that
are designed and formally introduced in the forthcoming sections.

2.4. Problem definition

In this paper, a systematic design approach for the repeti-
tive controller R is presented, by developing a generic Gaussian-
process-based internal disturbance model for the disturbances
in Definition 2, see Fig. 3. A Gaussian process (GP) specifies
disturbance properties through a kernel function and hyperpa-
rameters, which enables to model a wide range of disturbances
as in Definition 2. The following requirements are addressed:

R1 asymptotic rejection for a wide range of disturbances,
i.e., periodic, multi-period, and non-periodic disturbances,
in the setting in Fig. 1, and

R2 a user-friendly approach for synthesizing R by specifying
disturbance properties, such as periodicity and smooth-
ness, through a kernel function.

A framework that utilizes GP-based internal models in RC to cover
both R1 and R2 is presented.

3. Gaussian process buffer in repetitive control

In this section, the generalized Gaussian process repetitive
control (GPRC) framework to synthesize the repetitive controller
R is introduced. The GPRC setup is further outlined in Section 3.1,
after which the GP internal model is presented in Section 3.2.
Conditions under which GPRC is LTI and non-conservative stabil-
ity conditions are provided in Sections 3.3 and 3.4 respectively,
constituting contribution C1.

3.1. Gaussian process repetitive control setup

The GP-based repetitive controller R in Fig. 3 contains the GP-
based disturbance model Gd that is designed using GP-regression
to generate a continuous model of the true disturbance dc . A
sample of d̂c is parameterized as

d̂ (k) = µGPw(k) (9)
µ k
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here µGP
k ∈ R1×N are, in general, time-varying coefficients

hat follow from GP regression elaborated in detail in Section 3.2.
oreover, in Section 3.3 mild conditions are provided under
hich µGP is time invariant.
The data used for GP-regression is given by the noisy data

amples in

(k) =
[
yd(k) yd(k − 1) . . . yd(k − N + 1)

]⊤ (10)

to estimate a continuous function d̂c of the true disturbances dc
for compensation. To compose the data set for GP regression,
define the vector with corresponding time instances

X(k) =
[
t(k) t(k − 1) . . . t(k − N + 1)

]⊤
, (11)

constituting the data set DN (k) = (w(k), X(k)) that contains N
pairs (yd, t) of observations. At each sample k the data DN (k) is
sed to perform GP regression resulting in the coefficients µGP

k
s shown next.

emark 2. Note that all the past data can be used for GP regres-
ion, i.e., all samples yd(k′) with k′

∈ {1, 2, . . . , k} at sample k such
that w(k) ∈ Rk. However, here N is fixed analog to traditional
RC approaches, generalization to larger buffers is conceptually
straightforward, for example, using on-line GP regression (Bijl,
Schön, van Wingerden, & Verhaegen, 2017; Umlauft, Beckers,
Capone, Lederer, & Hirche, 2020).

3.2. Gaussian process disturbance model

The compensation signal (9) with coefficients µGP
k is an es-

timate of the disturbance that is obtained using data and prior
knowledge through GP regression. In this section, it is shown how
GP regression is used to model the disturbance and consequently
synthesize these coefficients.

First, consider the prior disturbance model d̂c given by a GP

d̂c(t) ∼ GP(m(t), κ(t, t ′)), (12)

that is a distribution over functions which is completely de-
termined by its prior mean function m(t) and prior covariance
function κ(t, t ′) : Rn

×Rm
↦→ Rn×m with n and m the size of t and

′ respectively. The choice of a covariance function depends on
he disturbance properties, e.g., periodicity, which is investigated
n detail in Section 4.2 by taking the additive structure in (4) into
ccount. For presentation purposes, m(t) = 0, the results can
asily be extended for non-zero mean function, see, e.g., Murphy
2012). Next, it is shown how the prior knowledge (12) and the
ata DN is used to compute µGP

k in (9).
The data set DN contains noisy observations of the model d̂c(t)

in (12), i.e.,

w(k) =

⎡⎢⎢⎢⎣
d̂c(t(k))

d̂c(t(k − 1))
...

d̂c(t(k − N + 1))

⎤⎥⎥⎥⎦+ ϵ, (13)

here ϵ ∼ N (0N , σ 2
n IN ), with 0N a matrix of zeros of size

×N , that follows an independent, identically distributed (i.i.d.)
aussian distribution with zero mean and variance σ 2

n as a result
f the noise v.
Predictions of the disturbance model for compensation can

e made at arbitrary X∗ ∈ R, denoted by d̂c(X∗) = d̂c
∗
, based

n the data DN and prior (12). Moreover, for the application in
C, predictions are made at the current time, i.e., the test point
ecomes X∗ = t(k) ∈ Z≥0 since Ts = 1. The joint prior distribution

w
ˆc

]
∼ N

([
0
]

,

[
K + σ 2

n IN K∗

⊤

])
, (14)
d
∗

0 K
∗

K∗∗

4

defines the correlation between the data w(k) and the test point
X∗, where K = κ(X, X) ∈ RN×N is the covariance function κ
evaluated at all pairs of (X, X), and similarly for K∗ = κ(X, X∗) ∈

RN and K∗∗ = κ(X∗, X∗) ∈ R. From (14) it follows that the
predictive posterior distribution at the test point X∗ becomes
p(d̂c

∗
|DN , X∗) = N (d̂µ, Σ) where

d̂µ(k) = K⊤

∗
(K + σ 2

n IN )
−1w(k), (15a)

Σ(k) = K∗∗ − K⊤

∗
(K + σ 2

n IN )
−1K∗, (15b)

are the mean and variance respectively, see, e.g., Murphy (2012,
Chapter 4.3). The posterior mean d̂µ is equal to the maximum a
posteriori (MAP) estimate, and is used for compensation, yielding
that the coefficients µGP

k in (9) are given by

µGP
k = K⊤

∗
(K + σ 2

n IN )
−1. (16)

By performing GP regression (15) at each sample, updated co-
efficients µGP

k are obtained through (16) for compensation. In
contrast to traditional RC with internal disturbance model (3),
GPRC enables compensation within the first period. Furthermore,
by using a GP function estimator a more general setting is estab-
lished in which also multi-period and non-periodic disturbances
can be captured with suitable prior, as shown in Section 5.

3.3. LTI representation of GPRC

In this section, conditions are presented under which the co-
efficients µGP in (16) are time invariant, rendering the repetitive
controller in Fig. 3 to be LTI.

Assumption 1. Consider the following assumptions on the co-
variance function κ and training data set DN ;

A1 the covariance function κ in (12) is a stationary function,
i.e., a function of the relative difference τ (k) = t(k) − t ′(k),
see, e.g., Williams and Rasmussen (2006, p.82);

A2 the vector X(k) ∈ RN in (11) contains equidistantly sam-
pled time instances with N fixed; and

A3 the test point X∗(k) = t(k + α) with α ∈ Z constant.

Theorem 1. Under Assumption 1, the repetitive controller R in Fig. 3
is LTI and given by

R =
MGPL

1 − MGP
, (17)

where the GP buffer MGP is a finite impulse response (FIR) filter

MGP (z) = µGPΓ (z) =

N−1∑
i=0

µGP
i z−i, (18)

with time-invariant coefficients µGP .

Proof. If µGP in (16) is time-invariant under Assumption 1, then
R in Fig. 3 is LTI and of the from (17). Hence, it is shown that (16)
is time-invariant under A1–A3. First, K is obtained by evaluating
the kernel function κ at all combinations of (X(k), X(k)) with X(k)
in (11), these combinations are given by

τ (k) = X(k)1⊤

N − 1NX(k)

=

⎡⎢⎢⎢⎢⎣
tk − tk tk − tk−1 . . . tk − tk−N+1

tk−1 − tk tk−1 − tk−1
...

...
. . .

tk−N+1 − tk . . . tk−N+1 − tk−N+1

⎤⎥⎥⎥⎥⎦
hich is Toeplitz, 1N ∈ RN is a matrix of ones, and tk−i = t(k− i).
econd, from assumption A2 it follows that τ (k) = τ (j) ∀ (k, j) ∈
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. Similarly for K∗ that is obtained by evaluating κ at all pairs
X(k), X∗) given by

τ̄ (k) = X⊤
− 1⊤

N X∗ =
[
X∗ − tk . . . X∗ − tk−N+1

]
which, under assumptions A3, satisfy that τ̄ (k) = τ̄ (j) ∀ (k, j) ∈

Z. Third, under assumption A1, the kernel matrices K and K∗

are a function of κ(τ ) and κ(τ̄ ) respectively. Since, τ and τ̄ are
time-invariant, so are K and K∗, as a result, rendering (16) time
invariant, such that R is of the form (17) which completes the
proof.

Consequently, the RC output (9) is given by the following FIR
operation

d̂µ(k) =

N−1∑
i=0

µGP
i yd(k − i), (19)

with fixed coefficient µGP that follow from (16). In addition, the
internal disturbance model is now also LTI and given by

Gd =
MGP

1 − MGP
. (20)

s a result, the synthesis of a generalized, possibly multi-period,
C reduces to the selection of a covariance function κ . By evalu-
ting (16), this framework then facilitates the construction of ap-
ropriate FIR coefficients µGP , through which it enables efficient

implementation of GPs in RC, allowing for larger flexibility, and
offers superior performance in the first period due to continuous
updating.

3.4. Stability analysis

In this section, the stability of GPRC with LTI repetitive con-
troller R in (17) is analyzed in the setting in Fig. 1, resulting in
non-conservative stability conditions.

Theorem 2. Consider Fig. 1 with repetitive controller (17) in Theo-
em 1, a specified kernel function κ and a buffer size N. Suppose all
oles of SP and L are in the open unit disk, and the feedback loop in
ig. 1 is asymptotically stable, then the closed-loop is stable if and
nly if the image of −MGP (z)(1 − SP(z)L(z));

• makes no encirclements around the point −1, and
• does not pass through the point −1,

s z traverses the Nyquist contour D in Fig. 4, see, Skogestad and
ostlethwaite (2007).

roof. The setting in Fig. 1 is stable if and only if SP ∈ RH∞ and
R = (1 + SPR)−1

∈ RH∞. First, SP is proper and stable by the
ssumption in Theorem 2. Second, substituting R (17) in SR (2)
ives

R =
1 − MGP

1 − MGP (1 − SPL)
, (21)

the Nyquist theorem, see, e.g., Skogestad and Postlethwaite (2007,
Theorem 4.14), states that SR is stable if and only if the image
of −MGP (z)(1 − SP(z)L(z)) (i) encircles the point −1 in anti-
clockwise direction Pol times, and (ii) does not pass through the
point −1 as z traverses the D, where Pol is the number of poles
of −MGP (1 − SPL) inside D.

It remains to show that Pol = 0, i.e., there are no unstable
poles in −M(1−SPL). This holds true since MGP is a FIR filter, see
Theorem 1, with all poles in the origin, and, SP and L are stable
by the assumptions in Theorem 2, which completes the proof.
 b

5

Fig. 4. Nyquist contour D with inner radius 1, outer radius infinity, and the
parallel lines infinitely close to the real axis.

Theorem 2 provides a non-conservative condition to check
stability given MGP in (18) that contains the GP buffer. If the
resulting closed-loop is unstable, e.g., due to modeling errors, the
following slightly more conservative frequency-domain condition
is provided to tune R for stability.

Corollary 1. Theorem 2 is satisfied if

MGP (ejω)
(
1 − SP(ejω)L(ejω)

)
< 1, (22)

for all ω ∈ [0, π].

Corollary 1 yields that the closed-loop is stable if (i) a perfect
model is available, i.e., LS−1

P = 1, or (ii) if model errors appear
L ̸= S−1

P then MGP in (18) must be designed to act as a robustness
filter and stabilize the closed-loop SR, which is further addressed
in Section 5.

4. Design methodology for Gaussian process RC

In this section, design guidelines are presented for the learn-
ing filter and selection of suitable prior knowledge through the
covariance function κ for the class of disturbances in Definition 2.
Finally, a procedure to implement GPRC is provided.

4.1. Learning filter design

The learning filter L in the repetitive controller (17) is present
for stability, i.e., from Theorem 2 it follows that by designing L as

L = S−1
P , (23)

then (1 − SPL) renders zero satisfying Theorem 2 regardless of
MGP .

Direct inversion of SP may lead to an unstable or non-causal
inverse, e.g., if P contains non-minimum phase zeros. By em-
ploying finite preview a bounded approximate inverse of SP
can be obtained, e.g., using Zero-Phase-Error-Tracking-Control
(ZPETC) (Tomizuka, 1987; van Zundert & Oomen, 2017) yielding
L of the form

L = Lcznl ≈ S−1
P (24)

where Lc is causal and znl with nl ≤ N is a possible finite preview.
A practical implementation for the non-causal L filter (24) is

presented in Fig. 5, where the error is filtered with the causal part
Lc yielding

yd(k) = −LcSP (d(k) + d̂µ(k)) + q−nl d̂µ(k), (25)

= −d(k − nl), (26)

where q is the forward time-shift operator, to be a delayed
version of the disturbance with nl samples. This delay is com-
ensated by a preview in the memory MGP , i.e., the test point
ecomes X = t(k + n ), to implement the non-causal part of L.
∗ l



N. Mooren, G. Witvoet and T. Oomen Automatica 140 (2022) 110273

c

w

T
l
a
i
d
a
i
N
p
d

i
c
r
t
a
(

n
i
w

4

r

Fig. 5. Practical RC implementation with a non-causal learning filter L with
ausal equivalent Lc and preview znl .

Remark 3. Note that X∗ = t(k+nl) is an estimate of d̂c at t(k+nl)
being nl samples in the future. This is possible by introducing
smoothness in the GP prior as shown later.

4.2. Prior selection

In this section, a suitable covariance function κ in (12) that
specifies prior knowledge for the class of disturbances in Defini-
tion 2 is presented.

The additive structure in Definition 2 is imposed on the dis-
turbance model (12) by parameterizing it as a sum of nd periodic
functions with periods Ti, i.e.,

d̂c(t) =

nd∑
i=1

d̂ci (t), with d̂ci (t) ∼ GP(0, κi(t, t ′)), (27)

where d̂ci are samples from nd independent GPs with periodic
covariance function κi. Hence, d̂c(t) in (27) is referred to as an
additive GP, see, e.g., Durrande, Ginsbourger, and Roustant (2011),
with an additive covariance function

κ(t, t ′) =

nd∑
i=1

κi(t, t ′), (28)

that is simply the sum of the individual covariance functions κi.
The periodic covariance function κi is of the form

κi(t, t ′) = σ 2
f ,i exp

(
−2 sin2( π (t−t ′)

Ti
)

l2i

)
, (29)

ith hyperparameters Θi =
{
Ti, li, σf ,i

}
where

• Ti ∈ R is the period of the ith component;
• li ∈ R is the smoothness of d̂ci , i.e., choosing l large implies

less higher harmonics and vise versa; and
• σf ,i ∈ R is a gain relative to the other components and the

noise variance σ 2
n .

he periodic covariance function (29) is often encountered in
iterature, see, e.g., Duvenaud (2014, Chapter 2.2) and Williams
nd Rasmussen (2006, Chapter 4.2). Note that κ is non-periodic
f there is no least common multiple as in (6) for non-periodic
isturbances. An example of the periodic kernel function κi, and
non-periodic kernel that is a sum of two periodic kernels,

ncluding random samples taken from the prior distributions
(0, κi(t, t ′)) are shown in Fig. 6. This allows to capture both
eriod and non-periodic disturbances in the GP-based internal
isturbance model.
In GPRC with kernel function (28) the disturbance period is

ncluded through the hyperparameter Ti that may be rational, in
ontrast to traditional RC, allowing to reject disturbances with a
ational period time. The number of components nd specifies if
he disturbance is single-period (nd = 1) or multi-period (nd ≥ 2)
nd can be determined with for example a power spectral density
PSD) estimate of a measured error signal, where n equals the
d

6

Fig. 6. Example: Top plot shows three examples of periodic covariance functions
κi(t, t ′) as a function of t − t ′ with hyperparameters T1 = 50, l1 = σf ,i = 1 in
( ) and with l2 = 0.25 in ( ). This shows that if t − t ′ is close to zero or
the period Ti , then t and t ′ are highly correlated. Also the sum of two periodic
kernels with periods T1 = 50 and T2 = 10π is shown ( ) yielding a non-
periodic kernel function. The bottom plot shows random samples taken from the
distributions N (0, κi(t, t ′)), these samples both periodic and have more ( ) or
less ( ) smoothness, or become non-periodic ( ) with a non-periodic kernel
that is the sum of two periodic kernels.

number of fundamental frequencies. Finally, if the periods Ti do
ot have a common multiple, then the resulting kernel function
s non-periodic. Hence, the prior (28) is flexible and can be tuned
ith only a limited number of intuitive hyperparameters.

.3. Design procedure

The following procedure summarizes the design steps that are
equired to implement GP-based RC.

Procedure 1 (GPRC design).

Given a measured frequency response function (FRF) ŜP(ejω)
and a parametric model SP, perform;

(1) Invert ŜP to obtain Lc and non-causal part znl with nl ≥ 0
in (24), e.g., using ZPETC.

(2) Determine nd in (27), e.g., using a PSD estimate of the error.
Then, set i = 1 and repeat the following.

(a) Choose the period Ti, smoothness li and gain σf ,i for
κi in (29).

(b) until i = nd, set i → i + 1 and repeat step 2a.

(3) Choose a buffer size N ∈ N, e.g., a good starting point
is N ≥

∑nd
i=1 Ti which yields sufficient design freedom,

although smaller buffer sizes are possible with appropriate
prior, see Remark 4.

(4) Define

X =
[
N N − 1 . . . 1

]⊤
, (30a)

X∗ = N + nl, (30b)

and evaluate κ in (28) for κ(X, X) and κ(X, X∗) to obtain K
and K∗ respectively.

(5) Compute FIR coefficient µGP in (16) and verify stability
with ŜP using Theorem 2 or Corollary 1 (Remark 5).
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emark 4. To model a periodic signal with period T at least T
ndependent parameters are required. By including a correlation
hrough smoothness (l > 0) or periodicity in the kernel, a smaller
uffer size N < T can be used in practice.

emark 5. The FIR filter MGP influences stability if L ̸= S−1
P ,

it is shown in Section 5 that increasing smoothness yield more
robustness for modeling errors.

5. Performance and robustness

The generic GPRC framework introduced in the previous sec-
tions is further analyzed, i.e., it is shown under which conditions
traditional RC and Higher-order RC (HORC) (Steinbuch et al.,
2007) are recovered as a special case of GPRC. Furthermore, by
a suitable kernel choice GPRC improves robustness for period
variations or reduces the sensitivity with respect to noise similar
to Steinbuch et al. (2007). Furthermore, GPRC applied to multi-
period disturbances and disturbances with a rational period time
is analyzed.

5.1. Recovering traditional RC

GPRC recovers traditional RC for a specific type of prior, i.e., a
periodic kernel without smoothness. In traditional RC the buffer
MT = z−(N−nl) is a pure delay, hence, the output is simply a
delayed version of the input. This is recovered in GP-based RC
as follows.

Theorem 3. In the setting in Fig. 5 and under the conditions in
Theorem 1, then with N = T ∈ N, a periodic kernel (28) where
nd = 1 and T = N, σ 2

n = 0, σ 2
f = 1, and l → 0, the memory

MGP = z−(N−nl), (31)

recovers traditional RC.

Proof. To show that MGP (z) = z−(N−nl), note that this is equiva-
lent to showing that d̂µ(k) = yd(k − N + nl). The output d̂µ(k) =

µGPw(k) with w(k) in (10), hence by showing that the vector

µGP
=
[
0N−nl−1 1 0nl−1

]⊤
∈ RN (32)

implies that M = z−(N−nl). Substitute σ 2
n = 0 and σ 2

f = 1, then in
the limit case the kernel function (29) is of the form

lim
l→0

κ = lim
l→0

exp
(
a(k)
l2

)
=

{
0 if a(k) ̸= 0
1 if a(k) = 0

where a(k) = −2 sin2
(

πτ (k)
Ti

)
= 0 ∀ τ (k) = βTi with τ (k) =

(k)−X ′(k) and β ∈ Z. With X(k) in (11) this leads to K = IN and
imℓi→0 K⊤

∗
K−1 is of the form (32) which completes the proof.

Hence, by setting smoothness to zero and the kernel period
imited to an integer, the traditional RC memory is recovered.
ext, it is shown that GPRC is not limited to disturbances that
ave an integer period time through introducing smoothness.

emark 6. Theorem 3 shows that setting l → 0 recovers
raditional RC, which does not take inter-sample behavior into
ccount (Nagahara & Yamamoto, 2016). In the following subsec-
ions, the smoothness l > 0 resulting in a smooth and continuous
isturbance estimate, also in-between the discrete data point,
.e., the inter-sample modeling error is reduced. In Nagahara
nd Yamamoto (2016), sampled-data signal reconstruction is em-
loyed to generate a continuous-time disturbance model that
xplicitly takes inter-sample behavior into account in RC.
7

Fig. 7. Example 1: Modifying sensitivity function SR (top plot) and impulse
response of MGP (bottom plot) for GPRC without smoothness and T = 11
( ), and with smoothness with T = 10.5 ( ). Including smoothness yield
that many FIR coefficients µGP are non-zero ( ) for automatic interpolation,
which enables suppression at 1/Nd and higher harmonics, whereas traditional
C performance in much worse ( ).

5.2. GPRC for discrete-time non-periodic disturbances

Traditional RC is not applicable to rational period times as in
Definition 2 with T ∈ R which are non-periodic in discrete time,
for these disturbances additional interpolation is required, see,
e.g., Cao and Ledwich (2002). In contrast, it is shown that GPRC
can suppress disturbances that have a rational period time.

In GPRC the disturbance period is specified through the kernel
function (29) where Ti ∈ R, and is not necessarily related to the
buffer size N ∈ N as in traditional RC. It is shown in Theorem 3
hat if l → 0 and T is an integer, then MGP is a pure delay
such that d̂µ in (19) depends solely on yd(k − T ). In the case
hat T is rational then y(k − T ) is not directly available, i.e., it
s in-between two samples, but it is estimated from the available
nputs using a smoothness l > 0 also estimating the disturbance
n-between samples. Hence, smoothness enables interpolation
or disturbances with a rational period time as shown in the
ollowing example.

xample 1. Consider the problem of rejecting a disturbance with
rational period time Td = 10.5 samples, for which the kernel

29) with T = Td, l = 10 and σf = 1 is designed. The resulting
odifying sensitivity SR and the FIR coefficients µGP are shown

n Fig. 7. As a comparison, a traditional RC with N = 11 is also
rovided.
The modifying sensitivity SR shows that GPRC ( ) attenuates

the disturbance at the fundamental frequency 1/Td and its har-
monics, through combining the available inputs w(k) to estimate
d̂c(k− Td) as in (19) with coefficients µGP ( ), yielding automatic
interpolation. In contrast, it is evident that traditional RC ( )
attenuates the disturbance at the wrong frequency 1/N which
may even amplify the actual disturbance indicated by ( ).
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.3. Recovering HORC

GPRC can improve the robustness of RC with respect to noise
r uncertain period times similar to HORC, where p ∈ N buffers
−N are combined, see, e.g., Pipeleers et al. (2008) and Steinbuch
t al. (2007). Next, it is shown that HORC is a special case of GPRC,
hile at the same time the GP framework allows for substan-
ially larger design freedom for the HORC controller. Consider the
ollowing Lemma and Theorem that provides conditions under
hich HORC is recovered, after which two examples illustrate the
xtended design freedom.

emma 1. Consider GPRC under Assumption 1, then for all (i, j) ∈

1, 2, . . . ,N} and i ̸= j the kernel matrix K (i, j) = 0 if and only if
ts inverse K−1(i, j) = 0.

roof. Under Assumption 1 the matrix K ∈ RN×N is square and
ymmetric K = K⊤. Decompose K as UΣU⊤ where Σ ∈ RN×N

s a diagonal matrix with singular values and U =

u⊤

1 u⊤

2 . . . u⊤

N

]⊤
∈ RN×N is unitary such that the row-

ectors ui ∈ R1×N are orthogonal, i.e., ⟨ui, uj⟩ = δij ∀i, j where
ij is the Kronecker delta and ⟨·, ·⟩ is the inner product defined
ver span{u1, u2, . . . , uN}. Furthermore, U−1

= U⊤ yielding that
he inverse K−1

= (U⊤ΣU)−1
= UΣ−1U⊤.

To show that K (i, j) = uiΣu⊤

j = 0 if and only if K−1(i, j) =

iΣ
−1u⊤

j = 0 the following property must hold

i ∈ Ker(Σu⊤

j ) ⇔ ui ∈ Ker(Σ−1u⊤

j ) (33)

or all (i, j) ∈ {1, 2, . . . ,N} except for i = j, which holds true
since U is unitary and by using that Ker(uj) = Ker(Σuj), see,
.g., Bernstein (2009, p.115), which completes the proof.

emma 2. In the setting in Fig. 5 and under Assumption 1, then
ith the kernel (29) where l → 0, N = pT ∈ N and p ∈ N, the FIR

ilter MGP in (18) is of the form

GP =

p∑
i=1

wiz−(iN−nl), (34)

ith weights wi ∈ R.

Proof. If l → 0 and N = pT then with the same reasoning as in
Theorem 3 it can be shown that K = κ(X, X) has non-zero values
on the diagonal, all Nth off-diagonals and is zero elsewhere, i.e.,

K =

⎧⎨⎩
K (i, i + kN) ̸= 0,
K (i + kN, i) ̸= 0,
0 elsewhere,

(35)

ith k, i ∈ N which is the same structure as (K + σ 2
n )

−1 using
emma 1. Furthermore, the vector K∗(i) ̸= 0 for i = N − nl + 1
nd zero elsewhere. Then, µGP in (16) is of the form
GP

=
[
0N−nl+1 w1 0N−1 w2 . . . 0N−1 wN

]
, (36)

hich implies that MGP is a equal to (34) which completes the
proof.

Lemma 2 shows that GPRC recovers the same structure as
HORC, with weights wi for i = 1, 2, . . . , p that depend on the
ernel and hyperparameters. Sections 5.3.1 and 5.3.2 illustrate
hat noise-robust RC and period-time robust RC in Steinbuch et al.
2007) are closely recovered with a suitable kernel function.
8

5.3.1. GPs for period-time robust RC
A form of HORC improves robustness for uncertain period

times, which is recovered by GPRC through a locally periodic ker-
nel, that allows for slight variations in the disturbance estimate
and is given by

κLP(t, t ′) = exp
(

−
(t − t ′)2

2l2s

)
κ(t, t ′), (37)

here κ in (29) is the periodic kernel and ls the local smoothness.
The following example shows that noise robust HORC is closely
recovered by HORC with a locally periodic kernel.

Example 2. A GPRC is designed with a buffer size N = 3T where
T = 20 and a locally periodic kernel (37) with hyperparameters
T = 20, σf = 1, l → 0, ls = 225 and σ 2

n = 10−6 yielding weights

(w1, w2, w2) = (2.93, −2.92, 0.98) (38)

in Lemma 2 that closely resemble the weights obtained in Stein-
buch et al. (2007). The modifying sensitivity SR is shown in
Fig. 8 for GPRC ( ) and HORC ( ) which are almost identical
and significantly improve disturbance rejection for a wide range
compared to traditional RC ( ).

Hence, GPRC closely recovers period-time robust RC in Stein-
buch et al. (2007) using a suitable kernel function with a specific
smoothness.

5.3.2. GPs for noise robust RC
GPRC can improve noise robustness with respect to traditional

RC by using smoothness l > 0 in a periodic kernel, even out-
erforming noise-robust HORC with a smaller buffer size. Noise
obust RC as in Steinbuch et al. (2007) is recovered using a
eriodic kernel without smoothness l → 0. This is illustrated in
he following example.

xample 3. A GPRC is designed using the periodic kernel (29)
ithout smoothness l → 0 and T = 20, σf = 1 and σn = 10−7.
he buffer Γ contains N = 3T samples. This results in the weights

w1, w2, w2) = (0.48, 0.33, 0.19), (39)

s in Lemma 2, that closely resemble the weights for noise-robust
ORC in Steinbuch et al. (2007). With the same periodic kernel
here now smoothness is included l = 100 and the buffer size

is much smaller N = T samples, then noise robust HORC is
utperformed.
The resulting modifying sensitivities are shown in Fig. 8 where

oise-robust GPRC without smoothness ( ) recovers noise-
robust HORC ( ). By employing the extended design freedom
in GPRC, i.e., using smoothness, then, even with a smaller buffer
size ( ), it outperforms HORC due to averaging over potentially
p to all N samples.

Examples 3 and 2 show that HORC is recovered without
smoothness and an appropriate kernel, furthermore, introducing
smoothness yields additional design freedom to improve noise
robustness with a much smaller buffer size than HORC. However,
including smoothness also leads to less disturbance attenuation
at high frequencies as shown in Fig. 9.

5.4. GPs for multi-period RC

The periodic kernel (28) in Section 4.2 also enables rejection
of multi-period disturbances. Using a multi-period kernel GPRC
suppresses the disturbance at specific frequencies instead of all
harmonics of the common multiple, resulting in less amplifi-
cation of non-periodic errors similar to Blanken et al. (2020)
or Griñó and Costa-Castelló (2005) where only odd frequencies
are rejected. This is illustrated in the following example.
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Fig. 8. Modifying sensitivity SR with traditional RC ( ) as baseline. HORC
in Steinbuch et al. (2007) for noise robustness ( ) with N = 3T is recovered by
GPRC a periodic kernel ( ). Also HORC for period variations ( ) is recovered
ith a locally periodic kernel ( ). Introducing smoothness ( ) outperforms

noise-robust HORC with a smaller buffer size N = T .

Fig. 9. Modifying sensitivity with GPRC for a periodic kernel with three different
levels of smoothness l = 10−6 ( ), l = 10 ( ) and l = 100 ( ),
howing that smoothness improves robustness for noise and reduces disturbance
ejection at higher frequencies.

xample 4. The modifying sensitivity with a multi-period kernel
here nd = 2, T1 = 20, T2 = 15, and l → 0 is shown in Fig. 10

or buffer size N = T1 + T2 = 35 samples ( ) and for a larger
uffer size N = lcm(T1, T2) = 60 ( ).
Fig. 10 shows that only disturbances with fundamental fre-

uencies 1/T1 and 1/T2 are suppressed, compared to traditional
C with N = 60 samples ( ) that yield unnecessary disturbance

suppression at 1/T and harmonics. The FIR coefficients µGP in
18) are given in Fig. 11, which are non-zero at the multiples of
1 and T2 and the difference between both.

Example 4 illustrates that by only introducing disturbance
uppression where this is required, less amplification of noise
t intermediate frequencies is obtained, due to Bode’s Sensitivity
ntegral.

emark 7. Example 4 shows that a buffer size of N = T1+T2, as in
emark 4 is sufficient to suppress the disturbance, with more data
he robustness with respect to noise is improved by averaging out
ver multiple samples.

emark 8. If uncertain period times, noise and multi-period
isturbances appear at the same time, then a sum of locally
eriodic kernels KLP in (37) can be used. In this case, ls acts tuning
arameter for the trade-off between noise robustness or period-
ime uncertainty. Specifically, if ls is large, then κLP has more
emphasis on noise robustness, i.e., limls→∞ κLP = κ , and if ls is
small then period uncertainties are more taken into account.
9

Fig. 10. Modifying sensitivity SR for multi-period GPRC with nd = 2, T1 = 20
and T2 = 15 samples with buffer size N1 = T1 + T2 = 35 samples ( ) and
N2 = lcm(T1, T2) = 60 samples. As a comparison, the traditional RC with N = 60
is also shown ( ).

Fig. 11. FIR coefficients µGP with a multi-period kernel where nd = 2, T1 = 20,
T2 = 15, yielding non-zero FIR coefficients µGP at T1 , T2 and the difference
between them for N1 = 35 ( ) and with N2 = 60 ( ).

5.5. Robustness for model errors

Robustness for model errors in RC is often improved by design-
ing a robustness filter Q , typically a low-pass filter, that is placed
in series with the buffer MGP . Next, it is shown that robustness is
naturally included in GPRC by increasing smoothness. Theorem 2
provides a non-conservative stability condition where MGP has a
similar role as the traditional Q filter in RC, see, e.g., Hara et al.
(1988) and Steinbuch (2002).

If smoothness l → 0 and nd = 1, then by Theorem 3 MGP =

z−(N−nl) which has magnitude |MGP (ejω)| = 1∀ω, see ( ) in
Fig. 12. To improve robustness, the buffer MGP (ejω) < 1 for
the frequencies where model errors are present. In Fig. 12 MGP
is given for l = 1 ( ) and l = 0.5 ( ) resulting in a low-
pass characteristic which increases robustness for high-frequency
modeling errors.

From an intuitive point of view, higher smoothness yields
a smoother disturbances estimate d̂c , and thereby less high-
frequency content in the RC output d̂µ. Hence, learning is lim-
ited in the high-frequency range, i.e., where the model is not
reliable, having a similar effect as a Q filter in traditional ap-
proaches. Hence, smoothness also imposes an upper bound on
the frequency content of the disturbance that can be learned.

Remark 9. The markers ( ) and ( ) in Fig. 12 indicate the magni-
tude of MGP (ejω) for ω =

2π
T and its harmonics. In between these

frequencies the magnitude of µGPΓ is small, hence disturbances
at those frequencies are filtered out. Note that MGP > 1 for some
frequencies, which is allowed as long as Theorem 2 is satisfied.
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Fig. 12. Magnitude of MGP for a periodic kernel with nd = 1 and T = 360 and
hree settings of smoothness, i.e., l = 10−3 ( ), l = 0.5 ( ) and l = 1 ( ).
he markers ( ) and ( ) indicate fundamental frequencies f =

1
T and harmonics

top plot). This shows that smoothness leads to a low-pass characteristic in
GP , which in turn increases robustness.

emark 10. GPRC can be extended with a robustness filter Q
f desired, i.e., MGP (z) → Q (z)MGP (z) to satisfy the stability
ondition (22).

. Implementation aspects: dealing with initial conditions

The previous sections establish an LTI framework for RC syn-
hesis using GPs. In this section, performance in the first N sam-
les is improved even further by taking into account the initial
onditions of the buffer Γ , which may limit performance in the
TI case. Two solutions are provided to avoid this.

.1. Limitations of the LTI case

The problem that arises in the LTI case is that the initial
ondition of the buffer Γ , which is zero by default, appears as
bservations of the disturbance in the training data set DN during
he first N samples. Performing GP regression with these incorrect
observations gives a worse disturbance estimate. After the first N
samples, the initial condition of Γ disappears from the buffer. To
improve GPRC in the first N samples, the following two solutions
re provided.

.2. Discarding observations

A simple solution is to discard the first N observations from
the data set DN that correspond with the initial conditions of the
memory Γ . This is done by introducing a time-varying selection
matrix Ξk such that w(k) = ΞkΓ ∈ RN̄(t) where

Ξk =
[
IN̄(t) 0N̄(t)×(N−N̄(t))

]
∈ RN̄(t)×N (40)

with N̄(t) ≤ N the time-varying number of samples that are used
for GP regression. After N samples N̄(t) = N thus Ξk = IN such
that the LTI case in Theorem 1 is recovered.

Note that this approach requires computing (16) at each sam-
ple during the first N samples, which is computationally demand-
ing. Therefore, an alternative solution is introduced next.

6.3. Time-varying kernel to improve learning

A second solution is to choose a sufficiently high noise vari-
ance σ 2

r ≫ σ 2
n for the undesired inputs such that these are

reflected less in the RC output. This can be done by modifying the
matrix (K + σ 2I ) in (16), by replacing the diagonal matrix with
n N

10
noise variances σ 2
n IN with the following time-varying diagonal

matrix

K k
v = Skσ 2

r + (IN − Sk)σ 2
n (41)

where

Sk =

[
0∆ 0
0 IN̄−∆

]
(42)

is a selection matrix in which

∆ =

⎧⎨⎩
0 if k ≤ nl,

N if k − nl ≥ N,

k − nl otherwise,
(43)

such that after N samples Sk = 0N and the LTI case is recovered.
The time-varying matrix K k

v is diagonal with noise variance
σ 2
r for GP inputs that correspond to the initial condition of Γ ,
nd the variance is σ 2

n for the GP inputs that represent the
isturbance. In this way, the observations with a large variance
ave negligible influence on the posterior mean (15a), resulting
n a significant improvement in convergence during the first N
amples if smoothness is included as shown in Section 7.

emark 11. Both solutions lead to a time-varying system in the
first N samples and are equivalent to the LTI repetitive controller
in Theorem 1 after N samples.

7. Generic case study

In this section, a simulation case study is performed in the
most general case, i.e., a multi-period disturbance with a rational
period-time, in presence of noise, and a very large common
multiple such that traditional RC methods are not directly appli-
cable. In addition, the effect of increasing smoothness and model
uncertainties is illustrated.

7.1. System and disturbance

The case study is performed in the setting in Fig. 1, where P is
a discrete-time second order mass–spring-damper system given
by

P(z) =
0.05(z + 1)

z2 − 1.99z + 0.99
, (44)

see Fig. 16, for which a stabilizing PD controller is designed

C(z) =
5.0047(z + 1)(z − 0.8104)
(z − 0.5171)(z + 0.02961)

, (45)

resulting in a 0.1 Hz bandwidth.
A multi-period disturbance dc(t) is present that contains two

fundamental periods T1 = 20 samples and T2 = 31.5 samples
such that the common multiple is very large T = 1260 samples,
also i.i.d. Gaussian distributed noise with σn = 10−3 is added to
the disturbance. A PSD of the disturbance is depicted in Fig. 13.

Remark 12. GPRC is also applicable if there is no common
multiple, i.e., to non-periodic disturbances. In this case study, a
large common multiple is chosen to compare GPRC steady-state
performance with traditional RC as a benchmark.

7.2. GPRC design

The learning filter L is designed as (23) using ZPETC resulting
in a causal filter Lc and a non-causal part with nl = 1 sample
preview.

The corresponding hyperparameters with the multi-period
kernel (28) are n = 2, T = 20, T = 31.5, including two different
d 1 2
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Fig. 13. Power spectral density of the multi-period disturbance, containing two
fundamental periods T1 = 20 samples and T2 = 31.5 samples.

Fig. 14. Error 2-norm as function of T1 with PD ( ). GPRC with N1 = 52 in ( )
that converges after 3T1 , and with buffer size N1 = 104 ( ) GPRC converges after
T1 . With a time-varying prior noise variance (41) the error ( ) convergence is
uch faster (l = 1), converges to a larger error with a larger smoothness (l = 3)
).

levels of smoothness l1,2 = 1 and l1,2 = 3, and σf = 1 and
n = 10−3 are kept constant. The buffer Γ is implemented with
wo buffer sizes N1 = T1 + T2 = 52 samples and N2 = 2N1 = 104
amples to illustrate the effect of including more data.
Simulations are conducted with PD control only, PD with LTI

PRC in Theorem 1 with the varying prior variance (41) in the
irst N samples where σr = 103. As a comparison, traditional RC
ith a buffer size N = 1260 is also implemented.

.3. Results

The 2-norm of the error computed over the fundamental pe-
iod T1 is shown in Fig. 14, steady-state performance is analyzed
sing the power spectral density (PSD) and cumulative power
pectrum (CPS) of the converged error, see Fig. 15. The following
bservations can be made.

• The contribution of the disturbance, i.e., the peaks in the PSD
in Fig. 15 of the error without RC ( ), is fully rejected
by GPRC ( ), that has a buffer size (N1 = 52) much
smaller than the period time of the disturbance (T = 1260).
The GPRC error-norm ( ) in Fig. 14 significantly drops after
3T1 ≈ 52 samples when sufficient observations are available
(Remark 4) and the initial condition of Γ vanished from the
buffer.

• Increasing the buffer size to N2 = 104 ≪ T reduces the
amplification of noise compared with buffer size N1 (Sec-
tion 5.3.2), yielding a lower cumulative error ( ) than with
N1 ( ), see Fig. 15. As a consequence of the larger buffer
size the initial condition of Γ vanishes after N2 samples
yielding slower convergence as shown by the error-norm ( )
in Fig. 14 that drops after 5T ≈ 104 samples.
1

11
Fig. 15. Power spectral density and cumulative power spectrum of the con-
verged error with PD ( ), GPRC with buffer size N1 = 52 and l1,2 = 1
as a baseline ( ) that fully rejects the disturbance. In addition, with buffer
ize N2 = 104 ( ) noise is amplified less, and with too much smoothness
l1,2 = 3 ( ) the higher frequency harmonics are not rejection sufficiently. As a
comparison traditional RC with a very large buffer size N = lcm(T1, T2) = 1260
amples ( ) is outperformed by GPRC and the lower bound is given by the
noise induced error ( ).

• Convergence in the first N2 samples is significantly im-
proved by dealing with the initial conditions using a time-
varying kernel (41) ( ) compared with the LTI case ( ), see
Fig. 14. After N2 samples both methods have the same error.

• Increasing smoothness from l1,2 = 1 to l1,2 = 3 essentially
cuts-off learning in the high-frequency range. This reduces
disturbance attenuation at high-frequencies as shown by
( ) in Fig. 15, and by ( ) in Fig. 14.

• A perturbed model with a significant mismatch in the high-
frequency range is also used to compute the learning filter,
see Fig. 16. Increasing the smoothness allows to deal with
this model mismatch, as discussed in Section 5.5, i.e., satisfy
the stability condition in Theorem 2 as shown in the Nyquist
plot in Fig. 16. The effect of increasing smoothness is dis-
cussed in the previous topic. This effect is similar to using a
low-pass robustness filter in traditional RC.

• Finally, GPRC ( ) can outperform traditional RC ( ) both
in convergence as in steady-state error while using a signif-
icantly smaller buffer.

hese observations confirm that GPRC is applicable to the general
ase, i.e., a multi-period disturbance with a rational period time
nd a very large common multiple, while using only a small buffer
ize and a limited number of intuitive design variables. Moreover,
lso in practical situations, e.g., if model mismatches and noise
re present, then GPRC is applicable with an appropriate kernel
hoice. For this example T1 and T2 are selected such that a
omparison with traditional RC can be made, i.e., a large common
ultiple exists. However, in general, the existence of a common
ultiple is not a restriction and GPRC is readily applicable to non-
eriodic disturbances as well. A major advantage of GPRC is a new
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Fig. 16. Top plot shows the true system P( ), a perturbed model ( ) that
is used for RC as well as the model mismatch ( ) that is significant (up to
100%) beyond 0.1 Hz. The bottom plot shows the Nyquist stability test for
moothness l1 = l2 = 10 ( ) that is unstable, by increasing the smoothness to
1 = 50 and l2 = 10 the RC is stabilized ( ) since there are no encirclements
of the point −1 + 0i.

way of designing the repetitive controller that, as shown here,
naturally extends to for example multi-period disturbances.

8. Conclusions

A generic repetitive control framework for asymptotic rejec-
tion of single-period, and multi-period disturbances, with poten-
tially rational period times, is enabled through a Gaussian process
(GP) based internal model. The presented GP-based approach also
enables compensation within the first period, in contrast to many
existing RC approaches. The disturbance is modeled using GP re-
gression, which is a non-parametric approach that combines data
with prior knowledge. Prior knowledge is included in the form of
a kernel function with periodicity and smoothness, which allows
modeling a wide range of disturbances by specifying intuitive
tuning parameters. It appears that under mild assumptions the
GP-based RC approach is LTI and more specifically given by an
FIR filter, such that it is computationally inexpensive, stability
conditions can be provided and several existing approaches are
recovered as a special case. Moreover, applying GP-based RC for
non-linear systems is conceptually possible following the devel-
opments in this paper by reformulating the stability conditions
for the non-linear case which is a part of future research. Ongoing
work focuses on utilizing the posterior variance of the distur-
bance model to improve robustness against model errors and
incorrect prior.
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