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Chapter 1

Introduction

1.1 Global Sustainability Challenges and Innovation Per-
formance

Decades of rapid economic and technological progress have raised living standards and life ex-
pectancy in many parts of the world. Yet this progress has also created new global challenges such
as climate change (Intergovernmental Panel on Climate Change 2015, 2018) and ageing popula-
tions (European Commission 2010; World Health Organization 2019). Technological innovation is
expected to play an important role in addressing these sustainability challenges (European Com-
mission 2013, 2014b, 2019; United Nations 2015).
The urgency of the sustainability challenges is highlighted in official reports by the World Health
Organization and the Intergovernmental Panel on Climate Change. Concerning the global impact
of ageing populations, the World Health Organization notes that:

Rapid population ageing in low- and middle-income countries is an emergent, un-
precedented dynamic with unique implications and opportunities for these societies,
as well as for other more aged societies … while the financial impact [of ageing] is
not predicted to be catastrophic, it still represents an important, complex concern for
decision-makers. (World Health Organization 2004, 2)

Ageing populations increase demand for medical care and raise concern about its affordability. If
increasing demand and costs are not addressed then ageing populations may threaten the sustain-
ability of national healthcare systems (European Commission 2018; World Health Organization
2019). With regard to climate change, the Intergovernmental Panel on Climate Change (IPCC)
has warned that:

Warming of the climate system is unequivocal, and since the 1950s, many of the ob-
served changes are unprecedented over decades to millennia. The atmosphere and
ocean have warmed, the amounts of snow and ice have diminished, and sea level has
risen. … Human influence on the climate system is clear, and recent anthropogenic
emissions of greenhouse gases are the highest in history. Recent climate changes have
had widespread impacts on human and natural systems. (Intergovernmental Panel on
Climate Change 2015, 2)
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To address the challenge of an ageing population, the World Health Organization draws attention
to the importance of “social and technological innovations in potentially cost-effective, scalable
solutions” (World Health Organization 2004, 7) to ensure that healthcare remains accessible and
affordable. Concerning climate change, the International Energy Agency and the United Nations
Environment Program also emphasize the role of technological innovation in the sustainable en-
ergy sector to help address the challenges related to climate change (International Energy Agency
2016; REN21 2017). Innovation, climate change, public health and the need for sustainable in-
dustrialization and economic growth are also mentioned in the Sustainable Development Goals,
which were adopted by the United Nations General Assembly in 2015, signaling their relevance
in international politics (United Nations 2017). The social and economic importance of health
and sustainable energy innovations suggests that they occur within a broader context of socio-
technological transitions that involve not only technological innovations but also changes in social
behavior, regulation and economic activity (Geels et al. 2011; Geels 2012; Ohta 2019).
Along with socio-technological transitions, changes in the global spatial distribution of innovation
activity are also underway. Most prominent among these is the rapid and sustained increase in
innovation performance in parts of Asia (Hobday 1995; Hu and Mathews 2005). Concisely defined,
innovation performance is the ability to generate new knowledge and apply it in an economically
useful way (Acs, Anselin, and Varga 2002; Tidd, Bessant, and Pavitt 2005). Innovation generates
great economic value, both for the innovators and for society in general (Nordhaus 2004; Tidd,
Bessant, and Pavitt 2005) and as a result the innovation performance of firms and knowledge
creating institutions is one of the main determinants of long-term economic success and a nation’s
global standing (Tidd, Bessant, and Pavitt 2005; Dicken 2007; European Commission 2010, 2013).
The increasing innovation performance in Asia and the continuing high innovation performance of
the United States have understandably raised concerns among European policy makers, who fear
that lagging innovation performance will erode the long-term global economic competitiveness of
Europe and its global economic, social and political influence (European Commission 2010, 2013).
In assessing the European Union’s science and technology development, the European Commission
(2013) notes:

Science and technology development in Asia and the United States are more focused on
transformative and pervasive technologies and more oriented towards emerging global
markets. The United States is strengthening its profile as a world leading center
for science and technology in health, biotechnologies, nanotech and ICT. China is the
world’s biggest producer of scientific publications in the fields of energy and ICT, while
Japan has the highest rate of technology development in energy and in environmental
technologies. In comparison, the EU is less focused on strategic areas and tends to
scatter its efforts on a wider range of scientific fields and technologies, with the risk of
dominating none. (European Commission 2013, 8)

As an indication of the seriousness of these concerns, the European Union has launched the 80
billion euro Horizon 2020 program to raise the innovation performance of its member countries
(European Commission 2010). Meanwhile the Netherlands has announced a 20 billion euro Na-
tional Growth Fund which aims to enhance Dutch economic and innovation performance (General
Affairs 2020). The global geopolitical importance of innovation performance is also shown by the
current trade disputes between China and the United States. The dispute over the export of 5G
telecommunication network equipment by China’s Huawei concerns American objections to the
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acquisition of high technology by Chinese firms and American attempts to block the export of
Chinese high technology products (Fan 2019a).
The global importance of health and sustainable energy technology creates an urgent need for a
global analysis of innovation performance of the two sustainability technology sectors. The current
literature suggests that such a global analysis should focus on technology clusters because it is
increasingly clear that many of the factors influencing innovation performance act at the cluster
scale (Cooke 2007; Crescenzi and Rodrı́guez-Pose 2011; Crescenzi et al. 2019). The analysis should
also include global knowledge networks, which play an important role as enablers or enhancers of
cluster innovation performance (Bathelt, Malmberg, and Maskell 2004; Ter Wal and Boschma 2011;
Crescenzi et al. 2019). In addition the literature notes important differences between technological
sectors from an evolutionary perspective, namely their phase of development (Ter Wal and Boschma
2011; Alkemade et al. 2015; Frenken, Cefis, and Stam 2015), and from the perspective of their
knowledge base (Asheim and Coenen 2005; Stankiewicz 2002; Davids and Frenken 2018). These
sectoral differences appear to influence innovation performance on a global scale. Viewed from
these theoretical perspectives, the research in this dissertation addresses three main knowledge
gaps:

I. The changing global spatial distribution, agglomeration patterns and global knowledge net-
works of sustainability technology clusters,

II. The relationship between the innovation performance of sustainability technology clusters
and their agglomeration, knowledge network, national innovation system and path depen-
dence characteristics,

III. The influence of socio-technological transitions, sectoral knowledge base and development
phase on sustainability technology clusters, including the innovation performance of these
clusters.

The aforementioned knowledge gaps arise because of a lack of research and innovation-related
data about the sustainability technology sectors that is global in scope, yet at the spatial scale
of technology clusters. This hinders statistical analysis of the relationship between innovation
performance and other cluster characteristics. The lack of data also limits the analysis of how
socio-technological transitions, the sectoral knowledge base and the sectoral development phase
influence the innovation performance of sustainability technology clusters.
The dissertation’s research aims and objectives follow from these knowledge gaps (section 1.2),
which in turn lead to the research questions (section 1.3). The research questions are followed by
a discussion of the research relevance (section 1.4). Chapter 1 concludes with an outline of the
research approach and dissertation structure (section 1.5).

1.2 Research Aims and Objectives

The aim of this dissertation is to understand how health technology and sustainable energy tech-
nology clusters have developed spatially and over time. The research explores the locations of these
technology clusters and the cluster characteristics associated with high innovation performance.
These insights, which are further discussed below, can enhance current empirical and theoretical
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perspectives on cluster innovation performance and provide information for policy makers seeking
to raise the innovation performance of sustainability technology clusters.

While there is an extensive literature on evolutionary economic geography (Trippl et al. 2015),
innovation systems (Pino and Ortega 2018; Suominen, Seppänen, and Dedehayir 2019) and global
innovation diffusion (Zanello et al. 2016), the extent to which these theoretical perspectives apply
to all sectors is often unclear. There are significant differences between sectors in terms of how
knowledge is created and transmitted (Pavitt 1984; Malerba and Orsenigo 1997; Battistella, De
Toni, and Pillon 2016; Fabiano, Marcellusi, and Favato 2020), and in the evolutionary path or
development phase of sectors (Ter Wal and Boschma 2011). Innovation activity is known to vary
depending on the regional and national context, such as the local presence of research-intensive
universities or research funding (Zanello et al. 2016; Szczygielski et al. 2017; Miao et al. 2018; Pino
and Ortega 2018). Accordingly, although sectoral innovation processes are global in their scale,
involving researchers and organizations from around the world (Dicken 2007; Binz and Truffer
2017), local and sector-specific factors can significantly influence cluster innovation performance
(Gertler and Wolfe 2006; Binz and Truffer 2017).

Complementing these general theoretical perspectives are a wealth of sector case studies with dif-
ferent spatial scales, scopes and objectives. While such sector case studies are insightful, they
usually lack a global perspective and their value in cross-sector comparisons is limited due to dif-
ferences in research approach, methodology and the countries or technology clusters being studied.
Comparative global studies of multiple sectors are relatively rare (Castellani, Jimenez, and Zanfei
2013; Alkemade et al. 2015) and appear non-existent for sustainability technology sectors. This
knowledge gap and the limitations of sector case studies can be illustrated by the photovoltaics
sector, one of the most extensively studied sustainable energy sectors in recent years. Academic
studies of the photovoltaics sector have focused on specific countries in the context of industrial
policy, national and international technology transfer and competition (De La Tour, Glachant,
and Ménière 2011; Grau, Huo, and Neuhoff 2012; Vidican et al. 2012; Klitkou and Godoe 2013;
Lo, Wang, and Huang 2013; Wu 2014; Zheng and Kammen 2014; Kim and Kim 2015). In some of
these studies a comparisons between a small number of countries is made. These comparisons in-
clude China, Germany, South Korea, Norway, Taiwan and the United Arab Emirates and a group
of European countries (Monforti, Gaetani, and Vignati 2016). There are also studies of specific
technology clusters (or cities/regions) within a country (Boeckle et al. 2010; Klitkou and Coenen
2013; West 2014; Dewald and Fromhold-Eisebith 2015; Luo, Lovely, and Popp 2017; Nielsen 2017).
However, only a few global studies explore the worldwide growth and spatial distribution of pho-
tovoltaics innovation at the country-level (Breyer et al. 2013) and the cluster-level (Leydesdorff
et al. 2014).

The lack of specificity of current theories about innovation performance, combined with a lack of
results from sectoral case studies that can be generalized to other sustainability technology sectors,
leads to the formulation of the four research objectives of this dissertation. The first objective
concerns the need to develop a methodology to identify and characterize sustainability technology
clusters on a global scale. The second and third research objectives seek to develop a deeper
understanding of the global spatial distribution of sustainability technology clusters and global
inter-cluster knowledge networks based on the new methodology. The fourth research objective
is concerned primarily with the innovation performance of sustainability technology clusters. The
objectives are presented first, followed by the reasons for their inclusion in this study.

Objective 1: To develop a methodology for identifying and characterizing sectoral technology
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clusters on a global scale.
Currently, there is no global data set of innovation indicators describing sectoral technology clus-
ters. While there are global innovation performance indexes at the national level (Schwab and
Sala-i-Martin 2015; Dutta and Lanvin 2016) and sub-national studies describing aggregate in-
novation at the regional or city level (Bergquist, Fink, and Raffo 2017; Hollanders, Es-Sadki,
and Merkelbach 2019), these studies lack sectoral data. Scientometric data such as patents and
scientific publications have been used to identify life sciences, photovoltaics and semiconductor
clusters on a global scale (Duranton and Overman 2005; Leydesdorff et al. 2014; Catini et al.
2015; Alcácer and Zhao 2016). Unfortunately these studies have not gone beyond a descriptive
analysis of cluster locations, size or global knowledge networks (Leydesdorff et al. 2014) and they
have not addressed measurement issues such as the home-bias effect (Bacchiocchi and Montob-
bio 2010). Hence there is no clear global overview on sustainability technology clusters. In this
study sustainability technology clusters are defined as spatial concentrations of sustainable energy
technology-related R&D.
The cluster identification methodology developed in this dissertation can be applied to any sector
that produces sufficient patents, including the sustainability technology sectors. The methodology
addresses known measurement biases (Bacchiocchi and Montobbio 2010; Laurens et al. 2015) and
adopts spatial analysis methods from fields used in statistics (Rosenblatt 1956; Parzen 1962) and
public health (Han et al. 2016; Ma et al. 2016). After completing the cluster identification process
innovation indicators are extracted from the identified cluster data. These indicators are then used
for descriptive and explanatory analysis of sustainability technology clusters in this study.
Objective 2: To analyze the changing global spatial distribution of sustainability technology
clusters.
The aforementioned lack of data about the spatial distribution and innovation performance of
sustainability technology clusters means that relatively little is known about the location, size
or country-distribution of health technology and sustainable energy technology clusters. Yet a
global study at the cluster scale has important benefits. First, it allows global shifts in innovation
activity to be observed at the very important cluster scale (Porter 2000; Dicken 2007; Miao et
al. 2018). Second, the observation of clusters over time offers an opportunity to explore the
path-dependence of innovation activity, which appears to manifest itself strongly at the regional
level but is not fully understood, especially in relation to sustainability technology sectors and
socio-technological transitions (Boschma and Frenken 2006; Crescenzi and Rodrı́guez-Pose 2011).
Third, a global cluster study allows comparison to be made between different types of sectors and
sectoral clusters (Iammarino and McCann 2006). Agglomeration and the inter-cluster knowledge
network characteristics are of particular interest because of their perceived importance to cluster
innovation performance and are addressed under objective 3 (Porter 2000; Bathelt, Malmberg, and
Maskell 2004; Boschma 2005; Gertler and Levitte 2005; Capello 2009).
Objective 3: To analyze agglomeration and knowledge network characteristics of sustainability
technology clusters.
Agglomeration characteristics, such as economies of scale or adjacency to nearby clusters, have been
shown to vary across sectors and clusters based on variations in institutional structures (Breschi
and Malerba 1997; Iammarino and McCann 2006), the sectoral knowledge base (Stankiewicz 2002;
Asheim and Coenen 2005), and the development phase of a sector (Martin and Simmie 2008; Martin
and Sunley 2011; Ter Wal and Boschma 2011). Differences in agglomeration can be reflective of
different kinds of innovation processes taking place in a particular sector (Tidd 2001; Binz and
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Truffer 2017). Earlier empirical work by Castellani, Jimenez, and Zanfei (2013) and Alkemade
et al. (2015) has shown that research collaboration knowledge networks also vary by industry
sector, with the healthcare and pharmaceuticals sector in particular showing a high frequency of
international research collaborations.
A greater understanding of sectoral differences in spatial distribution, agglomeration, and knowl-
edge networks provides context for a statistical analysis of technology cluster innovation perfor-
mance. Analyzing agglomeration characteristics and knowledge network characteristics leads to
Objective 4, which concerns an attempt to attribute variations in cluster innovation performance
to differences in the spatial distribution, agglomeration, and knowledge network characteristics of
technology clusters.
Objective 4: To analyze the cluster characteristics associated with the innovation performance
of sustainability technology clusters.
The relationship between various cluster or regional characteristics and innovation output has been
successfully explored in a number of previous studies. These studies involved the development
of knowledge production functions incorporating agglomeration, knowledge networks and path
dependence (Ó hUallacháin and Leslie 2007; Ponds, Oort, and Frenken 2009; Charlot, Crescenzi,
and Musolesi 2014; Crescenzi and Jaax 2017). An adaptation of such a knowledge production
function, a cluster innovation performance model, is implemented in this study, in order to identify
the cluster characteristics associated with the innovation performance of sustainability technology
clusters.
A greater understanding of the development and spatial distribution of sustainability technology
clusters is also very relevant from a policy perspective, which leads to a fifth and final research
objective for this study.
Objective 5: To explore the policy relevance of the cluster identification methodology and the
research results.
Innovation policies focused on sustainability technologies are high on national and international
policy agendas, and will likely remain there as challenges related to climate change, ageing and pub-
lic health increase (World Health Organization 2004; Intergovernmental Panel on Climate Change
2015). However the implementation of these policy goals also takes place at the level of cities and
spatial clusters (Bulkeley et al. 2016; Evans, Karvonen, and Raven 2016; Van Geenhuizen and
Holbrook 2018; Van Geenhuizen and Nejabat 2021). Therefore the identification of technology
clusters, and an enhanced understanding of the factors associated with cluster innovation per-
formance, provide important information that can be used to evaluate and improve cluster-level
innovation policies. These insights are also relevant from the perspective of national and European
economic competitiveness, as clusters are widely seen as a spatial level that can strongly influence
innovation performance (European Commission 2013). The policy relevance of the research is
briefly discussed in section 7.5 of chapter 7 in order to give directions for future in-depth research.

1.3 Research Questions

The main research question addressed in this dissertation is:
What are the dynamic spatial distribution and innovation performance patterns of sustainability
technology clusters and how are they influenced by cluster characteristics, such as agglomeration
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and knowledge networks, and sectoral differences?

Eight research sub-questions address the different aspects of sustainability technology clusters,
their spatial distribution and the factors associated with cluster innovation performance. Research
sub-question 1 and 2 address the global spatial distribution, agglomeration and knowledge network
characteristics of sustainability technology clusters. Research sub-questions 3-6 cover the (mutual)
causal relationship between cluster innovation performance and agglomeration, national innova-
tion system, knowledge networks and path dependence characteristics of the cluster. Research
sub-question 7 and 8 direct attention to the sectoral differences between health technology and
sustainable energy technology clusters and other high technology sectors

The research sub-questions are based on two different theoretical perspectives of technology clus-
ters: a spatial perspective and an institutional or systems perspective. From a spatial perspective,
technology clusters are viewed as spatial concentrations of innovation activity from a particular
sector. Although technology clusters are found in globally distributed locations, they are part of
interconnected global knowledge and business networks (Feldman and Florida 1994; Audretsch
and Feldman 1996b; Breschi and Malerba 1997; Castells 2010). Viewed from an institutional or
systems perspective, a technology cluster is part of a global sectoral innovation system, which is
influenced by global networks of suppliers, customers, and competitors (Porter 2000; Binz and
Truffer 2017). The globalization of sectoral innovation systems is partly driven by organizations
seeking to acquire the best research and ideas (and the people behind them) at the most competitive
price, regardless of their location (Audretsch, Lehmann, and Wright 2014; Locke and Wellhausen
2014). Globalization is also driven by increasing technological complexity and global competitive
pressures, coupled with the falling cost and rising quality of transportation and communications
technologies, which facilitate research and business activities over long distances (Bruche 2009;
Audretsch, Lehmann, and Wright 2014; Locke and Wellhausen 2014; Alkemade et al. 2015).

In addition to these global factors, specific location-bound territorial characteristics also shape the
spatial distribution of innovation performance. These include the presence of local institutions, ac-
cumulated skills, knowledge, and experience (Martin and Simmie 2008; Ter Wal and Boschma 2011)
and spatial proximity due to agglomeration, which can facilitate, among other things, face-to-face
meetings, knowledge spillovers and collaborations (Cooke, Heidenreich, and Braczyk 2004; Storper
and Venables 2004; Leamer and Storper 2014). The relative strength of global and territorial fac-
tors is likely to vary between sectors depending on their knowledge base, cluster structure, global
knowledge networks, value chains, and other sector-specific innovation characteristics (Pavitt 1984;
Archibugi and Iammarino 2002; Iammarino and McCann 2006; Asheim et al. 2007; Alkemade et
al. 2015). It may also depend on the type of innovation activity that is taking place during differ-
ent phases of the industry life cycle (e.g. development of new products or optimization of existing
products and processes) (Audretsch and Feldman 1996a; Martin and Sunley 2011; Tavassoli 2015).
In this sense the cluster characteristics and innovation performance of technology clusters is shaped
by regional, national, and sectoral innovation systems (Nelson and Rosenberg 1993; Breschi and
Malerba 1997; Cooke, Heidenreich, and Braczyk 2004; Binz and Truffer 2017).

Before considering the factors that influence innovation performance, the dynamic global spatial
distribution of sustainability technology clusters is described based on a new methodology aimed
at identifying sustainability technology clusters. In terms of the spatial dynamics of clusters and
innovation performance, an increasing number of R&D locations are found in East Asia while some
other regions of the world, notably parts of Europe, are experiencing a relative decline in innovation
activity (Dicken 2007; Malecki 2014; Miao et al. 2018). However it is not clear whether this shift
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applies equally to all sectors, and whether the health technology and sustainable energy technology
sectors are part of such a shift. This lack of information about the sustainability technology sectors
leads to the formulation of the first research sub-question and supporting sub-questions:
Research Sub-question 1: What is the global spatial distribution of sustainability technology
clusters and how has it changed in recent years? Supporting sub-question 1.1: How can sus-
tainability technology clusters be identified on a global scale? Supporting sub-question 1.2:
Where are the largest sustainability technology clusters located during different periods? Sup-
porting sub-question 1.3: Where are growing and shrinking sustainability technology clusters
located?
Aside from differences in spatial distribution, sectors can also have distinct agglomeration and
knowledge network patterns (Iammarino and McCann 2006; Alkemade et al. 2015). These patterns
include the degree of spatial concentration within clusters (Ter Wal and Boschma 2011) and the
density and reach of knowledge networks (Alkemade et al. 2015). However, knowledge about
these characteristics in specific industry sectors such as health technology and sustainable energy
is limited and is therefore addressed with the second research sub-question and supporting sub-
questions:
Research Sub-question 2: What are the agglomeration and knowledge network characteristics
of sustainability technology clusters and how have they changed in recent years? Supporting
sub-question 2.1: What are the clustering rates and average cluster size? Supporting sub-
question 2.2: What is the density and reach of knowledge network links?
A deeper understanding of the spatial distribution and cluster characteristics of the sustainability
technology sectors lays the foundation for analyzing the association between these characteris-
tics and cluster innovation performance. Research sub-questions 3-6 explore the agglomeration,
national innovation system, global knowledge network and path dependence characteristics of
clusters.
Agglomeration characteristics appear to have a complex association with innovation performance.
Clusters can experience economies of scale, but diseconomies can also arise, especially if clusters
are located in large cities (Martin and Sunley 2003; Giuliano, Kang, and Yuan 2019). Large
clusters located in relatively small cities (regional specialization) also experience certain advantages
and disadvantages (Marshall 1920; Jacobs 1969; Tödtling and Trippl 2005). Although there is
agreement in the literature that a minimum amount of agglomeration (absorptive capacity) of
local firms and R&D capabilities is beneficial (Cooke 2007; Martin and Sunley 2011; Trippl et
al. 2015), the scale and type of agglomeration, its importance to cluster innovation performance
and sectoral differences are not well understood. These knowledge gaps are the focus of research
sub-question 3 and its supporting sub-questions:
Research Sub-question 3: To what extent can the agglomeration characteristics of a technology
cluster be associated with its innovation performance? Supporting sub-question 3.1: To what
extent can agglomeration economies be associated with cluster innovation performance? Sup-
porting sub-question 3.2: To what extent can regional specialization be associated with cluster
innovation performance? Supporting sub-question 3.3: To what extent can corporate research
(as a proxy for absorptive capacity) be associated with cluster innovation performance?
From a spatial perspective the national innovation system is also considered to be an important fa-
cilitator of cluster innovation performance because national innovation policies, actors, regulations,
and shared cultural practices can influence innovation performance (Lundvall 1992; Nelson and
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Rosenberg 1993). In Europe, China and Taiwan, among other places, there is a trend of national
innovation policy programs at the regional cluster level, sometimes referred to as “smart special-
ization” (Su and Hung 2009; European Commission 2014a; Berger and Lester 2015). Recently, the
influence of the national innovation system has been questioned and is seen to be declining due to
rapid economic and technological globalization (Strange 1996; Locke and Wellhausen 2014). In the
fourth research sub-question, the relevance of the national innovation system for cluster innovation
performance is explored:
Research Sub-question 4: To what extent does the quality of the national innovation system
influence cluster innovation performance?
Some of the advantages and disadvantages of agglomeration (“spatial proximity”) noted earlier
also appear to exist in the external knowledge networks of clusters. This notion gives rise to the
concept of “relational proximity”: a kind of non-spatial agglomeration effect. Relational proximity
describes how innovation actors are connected to partners outside the cluster in relationships that
involve the transfer and co-creation of knowledge and which span a range of different institutional
contexts, goals and power relations (Breschi and Lissoni 2001; Bathelt, Malmberg, and Maskell
2004; Asheim and Gertler 2005; Boschma 2005; Ponds, Oort, and Frenken 2009; Torre 2014). As is
the case with agglomeration, the influence of relational proximity can also seem contradictory. In
some instances international research collaboration has been found to weaken local research activity
and interaction (Leydesdorff and Sun 2009; Kwon et al. 2012; Van Geenhuizen and Nijkamp 2012;
Ye, Yu, and Leydesdorff 2013) and this has lowered the overall innovation performance of clusters
(De Propris and Driffield 2005; Chang, Chen, and McAleer 2013). Therefore both economies and
diseconomies of relational proximity exist.
Especially if power imbalances exist in the relationships between research actors, there is a greater
likelihood of potentially negative outcomes. For example, if a multinational organization estab-
lishes or acquires remote research labs in a cluster, this can generate a “reverse” knowledge flow
from the cluster whereby the benefits of knowledge spillovers and research collaboration accrue
primarily to the multinational organizations’ headquarters (Frost and Zhou 2005; Ambos, Am-
bos, and Schlegelmilch 2006). Although “reverse” knowledge flows are a concern, the presence
of multinational organizations itself often signals the success of a cluster, which attracts multina-
tional organizations in the first place (De Propris and Driffield 2005; Liu and Buck 2007). Because
multinationals account for a large share of R&D expenditure in most countries (National Center
for Science and Engineering Statistics 2014), their activities can have a major influence on national
and cluster innovation performance. However, the extent to which patterns of inter-cluster research
collaboration and knowledge flows influence cluster innovation performance is not fully understood
and is explored further with the fifth research sub-question and supporting sub-questions:
Research Sub-question 5: To what extent can knowledge networks be associated with enhanced
cluster innovation performance and what is the nature (positive or negative) of this association?
Supporting sub-question 5.1: To what extent can inter-cluster research collaboration networks
be associated with cluster innovation performance? Supporting sub-question 5.2: To what
extent can inbound and outbound knowledge flows be associated with cluster innovation perfor-
mance?
Agglomeration and knowledge networks tend to develop over long periods of time. As Crescenzi
and Jaax (2017) and others have demonstrated empirically, past innovation performance is an
important factor in explaining current innovation performance (path dependence). However, path
dependence varies depending on the sector’s development phase and strengthens over time as ac-
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cumulated experience, skill, relationships, and reputation confer a competitive advantage (Martin
and Simmie 2008). This is an area that has not been investigated previously for sustainability
technology clusters and is therefore addressed in the sixth research sub-question:

Research Sub-question 6: To what extent can the path dependence characteristics of a tech-
nology cluster be associated with its innovation performance?

After exploring the association between cluster innovation performance and various cluster char-
acteristics in research sub-questions 3-6, sectoral differences are the focus of research sub-question
7 and 8. Pavitt (1984), Asheim and Coenen (2005) and others have argued that the way in which
innovation takes place in different sectors is influenced by a sector’s knowledge base and market
structure and its industry life cycle phase (Malerba and Orsenigo 1997; Ter Wal and Boschma 2011;
Binz and Truffer 2017). Therefore, cluster characteristics that are important in a particular sector
or development phase may not be significant in other sectors or development phases. Analyzing
these spatial, network and innovation performance differences provides additional quantitative
insights into the innovation process of these sectors which complement existing qualitative knowl-
edge. Sectoral differences relating to the descriptive analysis of technology clusters and knowledge
networks are addressed with research sub-question 7, which builds on research sub-question 1 and
2. A comparison of the cluster characteristics associated with cluster innovation performance in
different sectors is the focus of research sub-question 8, which builds on research sub-questions 3-6.

Research Sub-question 7: What are the differences between the health technology and sustain-
able energy technology sectors against the background of other high technology sectors, in terms
of their spatial distribution, agglomeration and knowledge network characteristics? Supporting
sub-question 7.1: To what extent can sectoral differences be attributed to the sectoral knowledge
base? Supporting sub-question 7.2: To what extent can sectoral differences be attributed to
the sectoral development phase? Supporting sub-question 7.3: To what extent can sectoral
differences be attributed to socio-technological transitions?

Research Sub-question 8: What are the differences between the health technology, sustain-
able energy and other high technology sectors in terms of cluster characteristics (agglomeration,
knowledge network, national innovation system, and path dependence) and cluster innovation
performance? Supporting sub-question 8.1: To what extent can differences in association
be attributed to the sectoral knowledge base? Supporting sub-question 8.2: To what ex-
tent can differences in association be attributed to the sectoral development phase? Supporting
sub-question 8.3: To what extent can sectoral differences be attributed to socio-technological
transitions?

An overview of the chapters in which the respective research sub-questions are addressed is provided
in section 1.5.

1.4 Relevance

The contributions of this dissertation are primarily in the scientific and methodological domains.
The methodological contributions lie in demonstrating the usefulness of a “heat map” spatial clus-
ter identification method, which provides novel empirical insights into the spatial distribution,
agglomeration and knowledge networks of technology clusters (subsection 1.4.1). The main scien-
tific contributions of the study lie in (i) showing that agglomeration influences cluster innovation
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performance differently depending on the spatial scale involved, and (ii) identifying the likely role
of socio-technological transitions in explaining differences in spatial, agglomeration, knowledge
network, path dependence and innovation performance patterns in the sustainable energy tech-
nology sector (subsection1.4.2). A secondary contribution of the study is in the policy domain:
the methodology to identify clusters can also be used to monitor and analyze technology clusters,
which could support innovation policy making (subsection 1.4.3).

1.4.1 Methodological Contributions

This main dissertation makes two methodological contributions: the first and most important, is
the identification of clusters using a novel “heat map” cluster delineation method. The second
is the use of indicators derived from cluster patent data to estimate a new type of knowledge
production function: the cluster innovation performance model. The novelty of both approaches
lies in their unique application and combination of multiple methods, combining insights from
spatial analysis, network analysis and scientometric analysis.

The “heat map”-approach, also known as Kernel Density Estimation (Rosenblatt 1956; Parzen
1962), has been widely used in other disciplines such as epidemiology, archaeology and traffic
safety (Bithell 1990; Baxter, Beardah, and Wright 1997; Anderson 2009). However the method
does not appear to have been used with patent data, although it should be noted that Bergquist,
Fink, and Raffo (2017) apply another kind of interpolation technique in their research, which is
also based on the spatial analysis of patent data (Bergquist, Fink, and Raffo 2017). In addition
to the interpolation technique, the cluster delineation method used in this study also uses a single
patent database, which ensures that the patent evaluation criteria are standardized (Laurens et al.
2015; Toivanen and Suominen 2015). A correction factor is also applied in this study to adjust for
the home-bias effect that arises by using a national patent database (Bacchiocchi and Montobbio
2010).

The current method has four main advantages: (i) technology clusters can be identified based
on real innovation data (patents) rather than using pre-existing geographic boundaries, (ii) the
method can be used to identify technology clusters from broad or niche industry sectors, as long
as sufficient patent data are available, (iii) a constant standard for patent evaluation across all
countries is used and (iv) the criteria for identifying patents can be adjusted to correct for known
biases such as home bias effects. The methodology also appears to be more precise: the “heat
map” cluster identification method has a higher success rate (59-66%) in successfully identifying
cluster patents when compared to pre-determined geographic boundaries (48%). The criterion for
successfully identifying a cluster occurs when patents more than 64 km apart (40 mi) are assigned
to different clusters (Alcácer and Zhao 2016).

In addition to a novel way of identifying clusters, the dependent variable (citations per inventor)
in the cluster innovation performance model is also novel. Citations have been used in previous
research to measure the quality of knowledge output (Hall, Jaffe, and Trajtenberg 2005; Waltman
et al. 2012), but they have not been used in knowledge production-type functions, in which patent
count data have typically been used. The use of citations provides insight into the quantity and
value of knowledge produced in the cluster and it is an improvement compared to patent counts.
The use of patent counts is problematic because most patents are rarely or never cited, while
the most highly-cited patents describe critically important innovations in their respective industry
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sectors (Yang, Qian-nan, and Ze-yuan 2008). In this regard, patent citations are a more suitable
measure of innovation performance.

1.4.2 Scientific Contributions

This study makes notable scientific contributions in two areas: first, the study shows that there
are differences in the association (positive or negative) between cluster innovation performance
and agglomeration at different spatial scales. The second scientific contribution is clear evidence
of sectoral differences which can be attributed to a sector’s role in socio-technological transitions
(Geels et al. 2011; Ter Wal and Boschma 2011; Geels 2012; Frenken, Cefis, and Stam 2015). The
findings are based on the statistical analysis of a global dataset of sustainability technology clusters
whose implications are briefly discussed here.

Overall, the research results show both positive and negative associations between innovation
performance and certain cluster characteristics. Agglomeration indicators (cluster size, regional
specialization, and corporate research), knowledge inflow and outflow, and past innovation per-
formance are positively associated with cluster innovation performance. The national innovation
system is also positively associated with cluster innovation performance, but this association is
only statistically significant in the sustainable energy sector. A negative association is observed
for adjacency and the relative size of the research collaboration network. These negative associ-
ations are found in mature sectors and they are in line with relatively recent research showing
that agglomeration and knowledge networks can act as barriers to innovation performance, only
contribute positively under specific circumstances, or only benefit specific firms (Suire and Vicente
2009; Potter and Watts 2010; Lee 2018; Capone, Lazzeretti, and Innocenti 2019; Tomás-Miquel,
Molina-Morales, and Expósito-Langa 2019). In particular, the results show that agglomeration
economies exist within the local cluster, but that diseconomies of scale exist in mature sectors at
a regional level (distance of up to 200 km from the cluster). In a similar way knowledge inflow
and outflow appear to be positive, but clusters with large research collaboration networks relative
to their size, appear to be less able to benefit from these knowledge flows.

There is also a significant difference between the spatial distribution, agglomeration, and knowledge
network characteristics of the sustainable energy sector compared to other high technology sectors.
The sustainable energy sector is growing rapidly both in total innovation output and the number
of clusters, and the sector typically has smaller clusters and a less dense knowledge network.
As a result, the sector shows no evidence of agglomeration diseconomies or a saturation of its
knowledge network acting as barriers to innovation performance. These observations fit with
the classification of the sustainable energy sector as an emerging sector in which agglomeration
and knowledge networks are less developed (Ter Wal and Boschma 2011; Frenken, Cefis, and
Stam 2015). The sustainable energy sector also shows weaker model estimation results for path
dependence compared to other sectors. This outcome could be related to the sector’s involvement
in a socio-technological transition. The weakness of path dependence in the sustainable energy
sector suggests that the socio-technological transformations in which the sector is involved are of
a greater magnitude than those of the health technology sector, where path dependence has a
stronger influence on cluster innovation performance. Geels et al. (2011), Geels (2012) and others
have noted the importance of subsidies, the local regulatory environment and the presence of early
adopters as key factors in the development of sustainable energy technology clusters. However,
these factors are not explicitly incorporated into the innovation performance model used in this
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study.

1.4.3 Policy Relevance

The policy relevance of this study are related to the application of the cluster identification method-
ology, and the descriptive and explanatory analysis based on it. The results concerning policy
relevance are of an exploratory nature.
The cluster identification methodology can be used to map and monitor the development of technol-
ogy clusters worldwide. From a practical perspective this information can be used for forecasting,
seeking new research collaboration partners or identifying sources and destinations of R&D invest-
ment. An important advantage of the cluster identification methodology is that it can be updated
regularly with new patent data and can be applied to a wide range of sectors. At a more funda-
mental level, because the identification of clusters is based on real innovation activity (measured
through patents), the perception of clusters in terms of their size and governance, can be changed.
A cluster identified from real innovation activity may “fit” within the administrative boundaries
of a city, or it may be located in multiple cities, regions or even multiple countries. Especially in
the case of trans-boundary clusters new collaborative approaches to cluster governance may yield
positive results (Park 2014). Identifying clusters in a new way may therefore changes the local and
regional perception of clusters among policy makers and cluster stakeholders.
Furthermore, the descriptive analysis in this study is relevant for cluster policies aimed at growth,
while the explanatory analysis applies to policies aimed at raising cluster innovation performance
(Njøs and Jakobsen 2016). The policy suggestions focus mainly on the regional level and are made
from an evolutionary innovation perspective because of the theoretical framing of the research.
Alongside this regional focus, national policies appear to play an important role in the growth of
technology clusters in countries such as China, South Korea, and Taiwan. The research results can
be used to analyze policies that promote local agglomeration, knowledge network creation, and
private sector R&D investment and could support the development of national and pan-European
innovation policies such as Horizon 2020 and smart regional specialization strategies.

1.5 Research Approach and Dissertation Outline

The research in this dissertation consists of two main parts: a methodological part and an empirical
part. The methodological part involves identifying technology clusters and sectors, defining cluster
innovation indicators, and developing the cluster innovation performance model (elaborated in
chapter 3 and 4). Although the methodology builds on earlier research, its application and the
combination of different steps is new. Important choices about the use of data and methodological
nuances are carefully evaluated. The weaknesses of using scientometric data are discussed and
mitigated as much as possible, for example by the introduction of home bias correction factors.
Calibrations are carried out to optimize both the cluster identification methodology and the cluster
innovation performance model. In this way a complete methodology is described that converts raw
patent data into a global database of sectoral technology clusters and innovation indicators, which
fills an important knowledge gap (objective 1). An overview of the chapter outline is shown in
figure 1.1. The first three chapters of the dissertation cover the introduction (this chapter), an
overview of key concepts and relevant theory (chapter 2), an overview of the data and methodology
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(chapter 3). Chapter 4 addresses the cluster identification methodology in more detail, including
data, methodological choices and calibration.
Based on a solid methodological foundation laid in chapters 3 and 4, chapters 5 and 6 provide an in-
depth analysis of the spatial distribution, knowledge networks and cluster innovation performance
of health technology and sustainable energy technology clusters. This analysis touches upon global
shifts in innovation activity (Dicken 2007), the roles of various kinds of spatial and relational
proximity (Boschma 2005), and their association with cluster innovation performance and the
sectors’ path dependence (Martin and Simmie 2008). Research sub-questions 1-6 are answered in
these chapters for each particular sector.
Chapter 7 provides a comparison of the health technology and sustainable energy technology
sectors, which is benchmarked against aggregate data of other high technology sectors. This
comparison seeks to understand the differences between the sustainability technology sectors and
other high technology sectors, including the sectors’ development phase and knowledge base (Ter
Wal and Boschma 2011; Binz and Truffer 2017). Research sub-questions 7 and 8 are answered in
this chapter.
The combination of a novel methodology, diverse theoretical perspectives, and the empirical re-
sults for two important sustainability technology sectors provide a strong basis for discussion and
reflection in the final chapters of the dissertation. Chapter 8 serves to combine and reconcile the
different findings of the earlier chapters and provides a review of existing theory, which is assessed
against the new methodology and empirical insights gained from the research. Chapter 9 concludes
with some reflections, a list of key findings and recommendations for future research.

Figure 1.1: Chapter outline, research sub-questions addressed in each chapter are indicated in
circles.
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Chapter 2

Concepts and Theoretical Perspectives

2.1 Introduction

This chapter provides an overview of the main concepts, theories and hypotheses related to the
study questions raised in this dissertation. The chapter begins with a discussion of three core
concepts: innovation performance, technology clusters, and socio-technological transitions (sec-
tion 2.2), which lay a foundation for the discussion of the theory and the formulation of related
hypotheses. The theory is discussed in two parts. First, the spatial distribution and knowledge
network patterns of technology clusters are discussed (section 2.3, related to research questions
1, 2 and 7). Next, the conditions associated with cluster innovation performance are addressed,
including the role of agglomeration, national innovation systems, knowledge networks, and path
dependence (section 2.4, related to research questions 3-6 and 8). The chapter concludes with a
summary and discussion of the main theoretical ambiguities uncovered during the literature review
(section 2.5). For reference purposes a list of selected terminology is also included at the end of
the chapter (section 2.6).

2.2 Core Concepts

The three core concepts presented here form the building blocks for understanding the theoretical
perspectives presented in this study. The concepts are: innovation performance (subsection 2.2.1),
technology clusters (subsection 2.2.2), and socio-technological transitions (subsection 2.2.3). Inno-
vation performance is important because innovation brings economic, societal and sustainability
benefits (Schumpeter 1934; Tidd, Bessant, and Pavitt 2005; Rauter et al. 2019). Technology
clusters are an important spatial unit in which innovation activity and important actor interac-
tions take place which influence innovation performance (Marshall 1920; Nooteboom 2006; Porter
1998). Finally, socio-technological transitions are seen as a defining feature of the sustainable
energy technology sector (Geels et al. 2017) and to a lesser extent, the health technology sector
(Ohta 2019). As a theoretical concept socio-technological transitions are relatively new, yet they
are seen as having a deep influence on many different aspects of innovation performance. Other
concepts and terminology are briefly defined at the end of this chapter, in section 2.6.
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2.2.1 Innovation Performance

In this subsection the concept of innovation performance is defined, followed by a brief discussion
of the main challenges to achieving high innovation performance. As noted in the first chapter,
innovation performance can be concisely defined as the ability to generate new knowledge and
apply it in an economically useful way (Acs, Anselin, and Varga 2002; Tidd, Bessant, and Pavitt
2005). As the American inventor Thomas Alva Edison once said: “innovation is more than simply
coming up with good ideas; it is the process of growing them into practical use” (Tidd, Bessant, and
Pavitt 2005, 66). “The real challenge in innovation [is] not invention - coming up with good ideas
- but in making them work technically and commercially” (Tidd, Bessant, and Pavitt 2005, 65).
This view is shared by Schumpeter (1934), Drucker (1985) and others who note that innovation
includes both the generation of new knowledge (invention) and its application in ways that deliver
economic and societal benefits (Tidd, Bessant, and Pavitt 2005; Hirshleifer 1971). Rauter et al.
(2019) have also noted the sustainability benefits of innovation.
Innovation, like invention, can be undertaken by an individual, but is usually undertaken by groups
of people, who may be affiliated to different organizations. Hence innovation is often viewed as
a social process, and as a result, inter-organizational collaboration, the functioning of teams,
and inter-personal and inter-organizational relationships are emphasized in the research (Nonaka
1991; Dodgson 1994; Tidd, Bessant, and Pavitt 2005; Chesbrough 2006). From an economic
perspective, firms, and national governments tend to be dominant organizations in the innovation
process, because they account for most R&D expenditure (approximately 63-69% by business
and 25-30% by government in the United States, according to National Center for Science and
Engineering Statistics (2014)). The financial control of innovation by business and government
ensures that these actors play an important role in deciding the direction of innovation strategies
(Teece, Pisano, and Shuen 1997; Porter 1998; Brenner and Schlump 2011; Casper 2013), although
research collaborations between industry, universities, and governments are also seen as important
(Nelson and Rosenberg 1993; Etzkowitz and Leydesdorff 2000; Etzkowitz and Zhou 2019).
Managing innovation is challenging for a variety of reasons, of which the following three are seen
as most prominent. First, the complexity of advanced technology requires collaboration between
researchers with different expertise and who may work for different organizations, creating po-
tential cognitive, inter-organizational, and inter-personal challenges (Dodgson 1994; Chesbrough
2006). Second, the tacit nature of knowledge creation requires collaboration and trust between
researchers, but also openness to new ideas, characteristics that can be difficult to balance within
a research team (Nonaka 1991; Barjak and Robinson 2008; Nooteboom 2013). Third, persons and
organizations involved in innovation need to overcome both technological and market uncertain-
ties: they cannot know beforehand if a new technology will work and they are also unsure about
its market acceptance and commercial viability (Hirshleifer 1971; Tidd, Bessant, and Pavitt 2005).
Innovation is a delicate process that only succeeds if multiple conditions align favorably.
The challenges of managing innovation can be even greater in sectors such as the medical life sci-
ences which are structurally high-risk (and high-reward). Booth (2016) notes that the medical life
sciences innovation is especially high-risk because of a dependence on cutting-edge basic research
(new technologies) and the importance of medical trials prior to the commercialization of a new
product (uncertain market entry). A different kind of innovation risk exists when innovations
involve changes in socio-technological systems because they bring about (or require) disruptions of
existing markets, technologies, and business models (Tidd, Bessant, and Pavitt 2005; Geels et al.
2011; Geels 2012). Spatial and relational proximity, among other factors, can help mitigate some
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of these risks and lower barriers for knowledge transfers. Spatially concentrated technology clusters
with a dense network between different actors can therefore enable high innovation performance
(Porter 1998; Nooteboom 2006; Feldman and Kogler 2010; Panetti et al. 2020).

2.2.2 Technology Clusters

Technology clusters are an important spatial phenomenon in the innovation literature (Feldman
and Kogler 2010) even though controversy remains about their precise role and influence on inno-
vation performance (Martin and Sunley 2003; Crescenzi et al. 2019; Vaan, Frenken, and Boschma
2019). In this study a technology cluster is defined as a spatial concentration of R&D and inno-
vation activity related to a particular industry sector (Feser and Luger 2003; Lange 2016). The
technology cluster concept is defined by comparing it to the older and more established concept of
an industry cluster in the next paragraph (Porter 1998; Feser and Luger 2003; Nooteboom 2006).
More than a century ago Marshall (1920) defined industrial districts (clusters) as “concentration
of specialized industries in particular localities” (p. 25), which offer a number of specialization
advantages to firms located there. Nooteboom (2006) offers a more precise definition of industry
clusters as “geographically proximate firms in vertical and horizontal relationships involving a
localized enterprise support infrastructure with shared developmental vision for business growth,
based on competition and cooperation in a specific market field” (p. 156), and notes the tendency
for competitive and collaborative behavior between firms within a cluster. In addition to spatial
proximity and interactions between firms, another feature of clusters is the presence of different
types of organizations which are also seen as a part of the cluster. According to Porter (1998):

many clusters include governmental and other institutions - such as universities,
standards-setting agencies, think tanks, vocational training providers, and trade
associations - that provide specialized training, education, information, research, and
technical support. (p. 3)

A technology cluster is seen as a special type of industry cluster which contains R&D and innovation
activities. These R&D and innovation activities are often located together with other industry
functions such as manufacturing, testing, packaging, distribution, marketing, etc. in a broad-
based industry cluster, however this is not always the case. Innovation can also be spatially
distant from other industry activities such as manufacturing, which is the case in the hard disk
drives (McKendrick, Doner, and Haggard 2000) and wind turbines industries (Awate, Larsen, and
Mudambi 2012). In the case of the hard disk drive industry, in the 1980s and 1990s McKendrick,
Doner, and Haggard (2000) note that technology clusters (with R&D) were located primarily in
Japan and the United States, while manufacturing clusters (with no or limited R&D) were found
mainly in Thailand, Malaysia and Singapore. The spatial patterns of R&D and production are
dynamic, and more recently there has been a trend of “offshoring” certain R&D activities to
emerging economies, notably China and India (Bruche 2009).
As noted earlier, the spatial proximity of innovation actors within technology clusters can facilitate
social interactions and inter-organizational relationships (Porter 2000; Malmberg and Maskell 2002;
Gertler and Levitte 2005; Nooteboom 2006). These interactions include research collaboration and
learning (Porter 1998), and stimulating competitive drive between firms and researchers (Porter
2000; Malmberg and Maskell 2002). However, spatial proximity alone does not bring about social
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interactions and inter-organizational relationships, and therefore the precise role of technology
clusters is frequently questioned (Frenken, Cefis, and Stam 2015; Moretti 2019; Kemeny and
Storper 2020).

2.2.3 Socio-Technological Transitions

Innovation can be influenced by societal, economic, technological, and policy factors, making it
a central part of broader socio-technological (or sustainability) transitions (Geels et al. 2017;
Ohta 2019). Understanding the influence of socio-technological transitions on cluster innovation
performance in the health technology and sustainable energy technology sectors is one of the
main research gaps addressed in this dissertation. The concept of socio-technological transitions is
explored by comparing how innovation during socio-technological transitions differs from “normal”
innovation, which is primarily technological in nature.
While “normal” innovation research often focuses on the role of firms and the market, innovation
in the context of socio-technological transitions tends to involve many different actors, such as civil
society groups, media, regulators, and policy makers (Geels et al. 2011; Geels 2012). A promi-
nent example of a current socio-technological transition is the shift towards low-carbon energy and
transportation systems, which is a matter of great social and political urgency (Intergovernmental
Panel on Climate Change 2015; Geels et al. 2017). Geels et al. (2017) observe that the successful
adoption of low-carbon technologies depends on the power of civil society, media, government
(at various levels), regulatory bodies, financial investors, political parties, and advisory bodies,
in addition to the actions of consumers and firms. All actors who may, or may not, have vested
interests. The involvement of multiple actors means that transition-supporting innovations also
need to meet multiple objectives and face multiple barriers and constraints. Competing objectives
can include cost-effectiveness, fairness, social and political acceptance, and consumer preferences.
This complex innovation environment not only requires competent internal innovation manage-
ment but also resilience in the face of occasional set-backs or shifts in support, and flexibility in
establishing partnerships and accommodating multiple goals (Geels et al. 2017).
The growth of technology clusters that are part of a socio-technological transition can be enabled
by specific social, economic, and political conditions (Coenen, Benneworth, and Truffer 2012).
Conditions include supportive government policies, community receptiveness to new technologies
and lifestyles, and the presence of early adopters (Coenen, Benneworth, and Truffer 2012; Geels
2012; Van Geenhuizen and Holbrook 2018; Van Geenhuizen and Ye 2018). In addition, a protected
niche for experimentation can help new technologies overcome initial barriers by protecting them
against competition by incumbent technologies (Sengers and Raven 2015; Raven et al. 2016; Steen
and Hansen 2018; Langhelle, Meadowcroft, and Rosenbloom 2019). Technology clusters involved
in socio-technological transitions are therefore likely to emerge in cities or countries that provide
these conditions (Truffer, Murphy, and Raven 2015; Vaan, Frenken, and Boschma 2019).
Although the concept of socio-technological transitions is often applied to sustainable energy tech-
nology sectors (Geels et al. 2017; Langhelle, Meadowcroft, and Rosenbloom 2019), healthcare
sectors are also seen as undergoing sustainability transitions. Healthcare innovation involves a
diverse stakeholder landscape of firms, patients, (academic) hospitals, regulators, healthcare and
insurance providers, community and family members and research institutions, who all have differ-
ent, and at times competing, priorities and limitations (Gelijns and Thier 2002; OECD 2017; Lopes
et al. 2019). Major changes to the healthcare system are a response to a demographic transition
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(ageing population) and to the social wishes of keeping healthcare affordable and inclusive. They
can all be seen as part of a socio-technological transition that poses innovation and governance
challenges (Ohta 2019).

2.3 Global Spatial Distribution of Technology Clusters and
Knowledge Networks

In this section the theory related to the global spatial distribution of technology clusters and their
knowledge networks are discussed, which relate to research question 1, 2, and 7. Research question
1 concerns the global spatial distribution of health technology and sustainable energy technology
clusters and the likely locations of growing and declining clusters. It is addressed in subsection
2.3.1. Research question 2 is concerned with spatial concentration (agglomeration) and knowledge
network structure (such as the network density) of technology clusters, and research question
7 explores sectoral differences in spatial distribution, agglomeration, and knowledge networks.
Research questions 2 and 7 are addressed in subsection 2.3.2. All three research questions are
descriptive in their focus. For this reason the theory presented here covers general patterns and
influences while also noting the possible effects of socio-technological transitions on technology
clusters.

2.3.1 Dynamic Spatial Distribution of Technology Clusters

Innovation activity has two important spatial features, which at first can seem contradictory: inno-
vation activity is globally distributed but also spatially concentrated in a relatively small number
of locations worldwide (Feldman and Florida 1994; Storper 1997; Malecki 2014; Crescenzi et al.
2019). These locations are connected through knowledge networks (Fischer and Varga 2003; Ó
hUallacháin and Lee 2014). Viewed from the perspective of globalization, innovation activity can
be footloose and globally mobile, constantly seeking the best ideas and talent at the lowest cost
(Strange 1996; Locke and Wellhausen 2014), giving rise to global knowledge networks (Fischer and
Varga 2003; Ó hUallacháin and Lee 2014). Viewed from the perspective of agglomeration, the
spatial concentration of innovation activity in technology clusters suggests that territorial advan-
tages, including physical proximity, also influence the creation and growth of clusters (Bathelt,
Malmberg, and Maskell 2004; Gertler and Wolfe 2006; Binz and Truffer 2017).
The spatial dynamics of technology clusters can be divided into two types of movement: shifts
occurring in established sectors and the rapid growth of technology clusters from newly emerging
sectors. One of the most significant spatial shifts that has occurred in recent decades is the global
shift of innovation activity from certain parts of North America, Western Europe, and Japan
towards certain countries in Asia (Hobday 1995; Koh and Wong 2005; Dicken 2007; Miao et al.
2018). This global shift is ongoing and is driven by several interrelated factors. An important “pull”
factor are investments in R&D, education, and other knowledge infrastructure in (mainly) Asian
countries (Amsden 2001; Dicken 2007). These in turn have encouraged multinational corporations
to transfer high value-added activities, including R&D, to countries such as India and China, in
order to access a large, lower cost, and highly educated talent pool, a process often referred to as
“offshoring” (Kojima 2000; Dicken 2007; Bruche 2009; Nieto and Rodrı́guez 2011; Crescenzi and
Rodrı́guez-Pose 2017). In addition to multinational corporation-driven transfers, a number of Asian
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countries such as Singapore, South Korea, Taiwan, and China have also successfully implemented
national R&D strategies to develop their domestic high technology industry (Hobday 1995; Lee
and Lim 2001; Koh and Wong 2005; Dicken 2007; Lee, Tee, and Kim 2009; Joo, Oh, and Lee 2016;
Miao et al. 2018). To illustrate the magnitude of the global shift in innovation activity to Asia
note that the relative share of global R&D performed in the European Union has declined from
26% in 2001 to 22% in 2011 and the share of the United States has declined from 37% 2001 to 30%
in 2011 (National Center for Science and Engineering Statistics 2014). China has seen an average
annual increase in R&D activity of 18% from 2001-2011, making the United States, China, and
Japan the world’s three largest R&D-performing countries in 2011 (National Center for Science
and Engineering Statistics 2014).1

Changes in global innovation activity are driven by a number of different factors, including at the
cluster-level. The creation of new clusters, whether from established or newly emerging sectors,
is frequently linked to policy interventions. This is a key finding in studies of late-industrializing
countries in East Asia such South Korea or China which have successfully developed high tech-
nology industries (Lee and Lim 2001; Naughton 2007; Su and Hung 2009). It is also suggested
in case studies of newly emerging sectors, such as sustainable energy technology clusters, in ad-
vanced industrialized countries in Europe and North America (Holbrook, Arthurs, and Cassidy
2010; Steen and Hansen 2018; Van Geenhuizen and Holbrook 2018; Van Geenhuizen and Ye 2018).
In sustainable energy technology clusters government policies at different spatial levels can cre-
ate the necessary support, or a protected niche, for experimentation and further development of a
technology to take place (Sengers and Raven 2015; Raven et al. 2016; Langhelle, Meadowcroft, and
Rosenbloom 2019). Although the technological and business context of high technology catching-
up and the creation of new-to-world sustainable energy technology clusters is very different, policy
interventions seem to play an important role in both situations (Lee and Lim 2001; Coenen, Ben-
neworth, and Truffer 2012; Truffer, Murphy, and Raven 2015; Miao et al. 2018). New technology
clusters, whether from catching-up of emerging sectors, benefit from measures such as public co-
investment in R&D, the presence of supportive local launch customers, favorable regulations, and
tax incentives which help firms, or groups of related firms, overcome initial development barriers
(Kim and Lee 2008; Su and Hung 2009; Holbrook, Arthurs, and Cassidy 2010; Steen and Hansen
2018).

In addition to policy interventions, new clusters can also be created due to chance, a series of
unplanned but fortunate events that led to positive outcomes, which give rise to a new technology
cluster. Specific triggers such as layoffs of researchers, or the reverse, the appointment of a key
professor at a university or the winning of a competitive research grant, often play a crucial
role in a technology cluster’s establishment and early growth (Feldman, Francis, and Bercovitz
2005; Isaksen 2016; Crescenzi et al. 2019). These events may not always occur as part of a
concerted policy effort to develop a cluster, but they can nevertheless play a very important role.
Although it must be noted that the identification of such events is often much easier with the
benefit of hindsight (Isaksen 2016). Furthermore, the occurrence of such an event, which may lead
to the early development of an industry in a particular location, does not guarantee its long-term
development and growth (West 2014).

Because the global shift of R&D towards Asia is ongoing, often accompanied by government poli-
cies promoting R&D investment, it is likely that new and fast-growing health technology and
sustainable energy technology clusters are found in this part of the world. However, it must be

1The empirical research presented in this study also covers the 2000-2011 period.
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noted that the increase in R&D expenditure has not been shared equally across countries in Asia.
The majority of R&D expenditure takes place in China, India, Japan, Malaysia, Singapore, South
Korea, and Taiwan, which together accounted for 34% of global R&D output in 2011 (National
Center for Science and Engineering Statistics 2014). For this reason new and fast-growing technol-
ogy clusters are likely to be found more often in these Asian countries, as summarized in hypothesis
1.

Hypothesis 1: New and fast-growing sustainability technology clusters are more frequently lo-
cated in Asia.

2.3.2 Sectoral Differences in Agglomeration and Global Knowledge
Networks

In addition to where technology clusters are located, their size, and global knowledge network
characteristics also vary considerably. Sectoral differences in technology cluster agglomeration and
global knowledge network patterns are typically explained from two perspectives: the knowledge
base of the sector and ease of knowledge transfer (Carlsson 2013; Battistella, De Toni, and Pillon
2016; Jeannerat and Kebir 2016; Fabiano, Marcellusi, and Favato 2020), and its development phase
(Ter Wal and Boschma 2011; Frenken, Cefis, and Stam 2015). Both perspectives are considered
here.

The knowledge base of a sector is seen to exist on a spectrum between two extremes: a scien-
tific knowledge base and an engineering and design knowledge base. In sectors with a scientific
knowledge base innovation primarily takes place through the application of new scientific discov-
eries. The ease with which scientific knowledge can be codified enables collaborations over longer
distances (Stankiewicz 2002; Carlsson 2013). Sectors such as biotechnology, chemicals, pharma-
ceuticals, and micro electronics are typically seen as having a more scientific knowledge base (Tidd
2001). Sectors with an engineering and design knowledge base, such as automobiles and machinery,
innovate based on interactions with customers and suppliers, and through “learning by doing,” en-
abling the accumulation of experience and specialized skills (Jeannerat and Kebir 2016). In these
sectors the importance of tacit knowledge and inter-personal interaction is typically emphasized
(Nonaka 1991; Stankiewicz 2002; Gertler 2003) and therefore these sectors should benefit more
from spatial proximity which can enable more frequent personal interactions (Stankiewicz 2002;
Asheim and Coenen 2005; Carlsson 2013).

These characteristics can be extrapolated towards differences in agglomeration and knowledge
networks between sectors. The codified knowledge of sectors with a scientific knowledge base
could lead to more frequent global knowledge network linkages, something which has been noted
in the literature, specifically for healthcare sectors (Alkemade et al. 2015). If codified knowledge
is related to more frequent global network linkages, it could be argued that the tacit knowledge
of sectors with an engineering and design knowledge base generates fewer global linkages. Instead
these sectors may have more local linkages, which increases the importance and scale of spatial
agglomeration in these sectors.

In reality such a binary explanation could be an oversimplification. For example, interpersonal
interaction needed for tacit knowledge transfers can also be facilitated at a distance through con-
ferences, frequent visits and teleconferencing, especially if participants share a common culture
and goals, such as being members of the same multinational corporation (Gertler 2003; Maskell,

21



Bathelt, and Malmberg 2006; Henn and Bathelt 2015; Comunian 2017). Furthermore, cluster
formation in sectors with a scientific knowledge base can occur for reasons other than facilitating
interpersonal interactions, such as the local availability of talent and access to research at uni-
versities (Anselin, Varga, and Acs 1997; Florida 1999; Casper 2013). This makes it very difficult
to predict the agglomeration or knowledge network characteristics of technology clusters based on
their sectoral knowledge base, and a developmental perspective may be more valuable.

Viewed from the developmental perspective of technology clusters and sectors, spatial concentra-
tion increases over time because growth in R&D activity tends to occur in existing clusters, thus
increasing the spatial concentration of the sector as it matures (Crescenzi and Rodrı́guez-Pose
2011; Ter Wal and Boschma 2011; Frenken, Cefis, and Stam 2015). A cluster’s global knowledge
network also tends to become denser as a sector matures (Su and Hung 2009; Ter Wal and Boschma
2011). For this reason a sector in an early development phase is likely to have smaller clusters
and a less dense knowledge network as compared to a more mature sector, although its clusters
and knowledge networks may be growing rapidly (Klepper 1997; Ter Wal and Boschma 2011).
If the health technology sector is seen as a mature sector and the sustainable energy technology
sector is seen as an emerging sector, then it is likely that health technology clusters have a denser
knowledge network and a higher rate of spatial concentration than sustainable energy technology
clusters. Hypothesis 2 is therefore as follows:

Hypothesis 2: The health technology sector has a denser knowledge network and a higher rate
of agglomeration than the sustainable energy technology sector.

2.4 Cluster Innovation Performance Conditions

In this section the theory related to cluster innovation performance and its associated cluster
characteristics is addressed, covering research questions 3-6 and 8. The cluster characteristics as-
sociated with cluster innovation performance can be divided into four groups: agglomeration, the
national innovation system, knowledge networks, and path dependence. These cluster character-
istics are consistently cited in the literature, although the terminology and theoretical background
varies, and debate exists about the direction (positive or negative) and importance of certain clus-
ter characteristics. In fact, each of the four groups mentioned has at least one point of notable
theoretical ambiguity. To briefly summarize: (i) agglomeration is often positively associated with
cluster innovation performance, however in very large clusters diseconomies of scale can arise due
to competition, congestion, and higher costs (Martin and Sunley 2003). (ii) The extent to which
the national innovation system influences cluster innovation performance is unclear (Strange 1996;
Dicken 2007; Binz and Truffer 2017). (iii) Global knowledge networks are seen to enhance a clus-
ter’s access to knowledge, but they may also lead to knowledge outflow (Frost and Zhou 2005;
Ó hUallacháin and Lee 2014). (iv) Path dependence can lead to contradictory outcomes: on one
hand, the accumulation of skills, knowledge, and experience can lead technology clusters to per-
sistent high innovation performance over long periods of time, but it can also trap clusters into
an out-dated technological development path that leads to their long-term decline (Martin and
Simmie 2008; Crescenzi and Rodrı́guez-Pose 2011; Østergaard and Park 2015; Trippl et al. 2015).
Each of these points is discussed in detail in the subsections that follow (2.4.1-2.4.4). These dis-
cussions addresses research questions 3-6 (agglomeration, national innovation system, knowledge
networks, and path dependence).
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Research question 8 specifically addresses the notion that sectoral differences are a moderating
factor between cluster characteristics and cluster innovation performance. As the discussion about
sectoral differences in cluster characteristics in subsection 2.3.2 showed earlier, there is only a
very limited theoretical basis in this area. For this reason sectoral differences are only addressed
in subsection 2.4.4 alongside path dependence. Strong path dependence is typically seen as a
characteristic of a mature sector, whereas emerging sectors have weaker path dependence (Martin
and Simmie 2008).

2.4.1 Agglomeration

Theories of agglomeration can broadly be divided into two groups: a quantitative scale-based
perspective (Marshall 1920) and a qualitative perspective which includes, for example, the diversity
of local actors (Jacobs 1969), local knowledge spillovers and learning (Cooke 2007; Capello 2009),
local absorptive capacity (Fu 2008; Lau and Lo 2015), and social capital and trust (Nooteboom
2013; Vaan, Frenken, and Boschma 2019).
Scale-based agglomeration theories focus on the close spatial proximity of innovation actors within
a cluster, the location of clusters within major cities, and clusters being located near to each other.
These spatial characteristics create a number of scale-related advantages as well as potential disad-
vantages, which occur at larger scales. Close spatial proximity leads to a number of agglomeration
effects brought about by local specialization in a particular industry sector (Marshall 1920; Spencer
et al. 2010). In this subsection these scale-based agglomeration advantages are discussed from three
main dimensions: facilitating transactions and collaboration between actors, raising productivity
and providing an environment with shared values, beliefs and trust (Morgan 2004; Capello 2009;
Leamer and Storper 2014). This is followed by an overview of the disadvantages of scale-based
agglomeration.
The first dimension of these scale-based agglomeration advantages relates to being spatially close
in larger clusters which leads to potentially lower transport and transmission costs, proximity to
final markets (for firms) or test/launching markets (for innovations), a larger chance for meeting
of two agents, eventually leading to serendipity, and easier exchange of creative ideas (Morgan
2004). Spatial proximity also facilitates collaborative vertical interaction with local customers
and producers in which learning-through-interacting generates benefits for both parties by co-
creating new products and services with users (Gertler and Levitte 2005; Priem, Li, and Carr
2012; Von Hippel 1986). These interactions facilitate local knowledge spillovers between innovation
actors, including through labor mobility, and enhance their overall creativity and innovativeness
(Fischer and Varga 2003; Grillitsch and Nilsson 2017; Kemeny and Storper 2020). Highly creative
individuals are seen as being more productive when surrounded by other high-performing peers
(Moretti 2019).
The second dimension emphasizes productivity increases due to cost reductions (scale effect) and
localized accumulation of production skills (Capello 2009). Spatial proximity of firms also en-
courages competition, and the innovative drive arising from it, stimulating firms to learn from
one another through observation and monitoring, and to raise their productivity (Porter 2000;
Malmberg and Maskell 2002).
A third dimension draws attention to synergy and refers to the rise of a set of common values
and beliefs, which acts as the rationale for the reduction of transaction costs (Williamson 1981).
The spatial proximity also facilitates risk-sharing investments, which require a large degree of
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trust, something that is more likely to be found inside a cluster where common conventions and
norms and readily available knowledge about the reliability and trustworthiness of individual actors
supports the flow of knowledge (Keeble et al. 1999; Cooke, Heidenreich, and Braczyk 2004; Storper
and Venables 2004; Leamer and Storper 2014). Or, approached from the perspective of conflict
avoidance: spatial proximity facilitates collaboration by being instrumental in attenuating conflicts
that may arise from institutional distance (Ponds, Oort, and Frenken 2009; D’Este and Iammarino
2010).

Many scale-based agglomeration effects also apply more generally to urban areas: in major cities
being spatially close can lower transport and transmission costs, provide proximity to markets,
a larger chance for meeting of two agents and easier exchange of creative ideas (especially for
interdisciplinary projects). This, in addition to available economies of scale, specialized business
services, and a greater ability to attract talent, etc. (Florida 1999; Morgan 2004; Capello 2009).
These benefits may be absent in smaller cities or less urbanized areas. On the other hand, major
urban areas may suffer from a higher cost of living and lower quality of life due to congestion,
diseconomies of scale and competition for resources (Richardson 1989; Zheng 2001; Martin and
Sunley 2003). Large cities typically suffer from higher housing and land prices, long commuting
times, higher infrastructure costs, and a low environmental quality of life (Richardson 1989; Zheng
2001).

Doubt can also be expressed over whether scale-based agglomeration has tangible benefits in terms
of raising firms’ innovation performance, as many of the above benefits may exist, but they are
relatively insignificant compared to other conditions (Beaudry and Breschi 2003; Frenken, Cefis,
and Stam 2015; Fitjar and Rodrı́guez-Pose 2017), or only occur once a particular scale is reached
(Beaudry and Breschi 2003; Van Geenhuizen and Reyes-Gonzalez 2007). The co-location of knowl-
edge producers is no guarantee that any local knowledge spillovers are taking place, or synergies are
being realized as institutional barriers, cultural differences, or competitive strategies can prevent
knowledge spillovers and research collaborations, a perspective further emphasized by the “rela-
tional” geography of innovation perspective (Boschma 2005; Cooke 2007; D’Este and Iammarino
2010; Karlsson 2010). Additionally, the over-embeddedness of firms within a cluster may cause
problems, as connections within the cluster may isolate firms from emerging new knowledge outside
the cluster (Tödtling and Trippl 2005; Masciarelli, Laursen, and Prencipe 2010).

In addition to the potential effects of being located in a large cluster or urban area, a neighborhood
effect is frequently found in spatial economic studies because investment, markets and collaborative
ties are easier to establish with adjacent or nearby clusters and regions (Giarratani, Hewings,
and McCann 2013; Clark and Wójcik 2018). Prior studies specific to innovation performance
have also shown that high performing neighboring regions have a positive influence on innovation
performance (Ó hUallacháin and Leslie 2007; Charlot, Crescenzi, and Musolesi 2014), and that
the positive effect of knowledge spillovers extend significantly beyond the boundaries of the cluster
itself at scales of 80 km or more (Acs, Anselin, and Varga 2002). Ambiguity about the nature of
the association between scale-based agglomeration and cluster innovation performance, including
at different spatial scales, leads to the formulation of hypothesis 3. Agglomeration in hypothesis
3 refers to scale-based agglomeration of clusters (cluster size) and nearby clusters (adjacency
effects). Note that the hypotheses are formulated with the term “association” and not “influence”
because reverse causality between innovation performance and agglomeration is also possible: high-
performing clusters may experience faster growth and hence, increased agglomeration.

Hypothesis 3: Agglomeration has a positive association with cluster innovation performance.
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In addition to the scale effects of agglomeration, the qualitative agglomeration aspects of clusters
are frequently noted in the literature. Diversity of knowledge, actors, and sectors is seen as an
important source of innovation because it facilitates the cross-fertilization of ideas between different
knowledge domains (Jacobs 1969; Camagni and Capello 2002; Capello 2009). Technology clusters
located in larger urban centers with a diversified industrial and technological base are more likely
to be able to benefit from this diversity.
On the other hand, clusters located in major urban centers, as noted earlier, may face higher
operating costs, more congestion, lower quality of life, and greater competition for resources from
other sectors within the regional innovation system (Zheng 2001; Martin and Sunley 2003; Tabuchi
and Thisse 2006; Frenken, Cefis, and Stam 2015). So high regional specialization, which means a
cluster is relatively large as compared to the regional innovation system, could raise or lower cluster
innovation performance depending on the importance of, on the one hand diversity benefits, and
on the other hand, higher operating costs and increased competition. This ambiguity is further
explored in hypothesis 4, with the working assumption that the benefits from regional specialization
outweigh the potential loss of opportunity from inter-sector knowledge spillovers.
Hypothesis 4: Regional specialization has a positive association with cluster innovation perfor-
mance.
Aside from regional specialization and access to diverse local knowledge, the quality of institutions
within the cluster, such as the presence of high quality university research, can positively contribute
to cluster innovation performance. Spillover effects and institutionalized knowledge transfers be-
tween university-based scientific research to industry-based R&D is well known in this theoretical
thinking (Henderson, Jaffe, and Trajtenberg 1998; Ponds, Oort, and Frenken 2009; Casper 2013;
Qiu, Liu, and Gao 2017). The contribution of local scientific research may also be more indirect:
Florida (1999) suggests that universities attract outside research talent and that this is their main
contribution to a region, rather than locally generated knowledge. Outside talent contributes to a
cluster’s labor force, knowledge stock, and brings with them a personal network of contacts.
However, empirical evidence suggests that the presence of university and government research alone
does not guarantee high cluster innovation performance (Ó hUallacháin and Leslie 2007). Regions
without a significant industrial base with adequate R&D capabilities are often unable to benefit
from knowledge spillovers from universities (Casper 2013; Qiu, Liu, and Gao 2017; Tomás-Miquel,
Molina-Morales, and Expósito-Langa 2019). Entrepreneurial activity (Audretsch and Lehmann
2005; Feldman, Francis, and Bercovitz 2005; Acs et al. 2009; Frenken, Cefis, and Stam 2015) and
private-sector research expenditure (Dosi, Llerena, and Labini 2011) were identified as important
conditions for high innovation performance at a regional level. Therefore, private sector corporate
research, rather than university or government research, tends to be positively associated with the
innovation performance of the cluster.
Hypothesis 5: Corporate research activity has a positive association with cluster innovation
performance.

2.4.2 National Innovation System

The national innovation system concept is closely related to the concept of the regional innova-
tion system (Cooke 2007), which was discussed as part of agglomeration theory in the previous
subsection (2.4.1). However, the national innovation system covers the national rather than a
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sub-national regional scale. The national innovation system was originally conceived as a con-
stellation of three groups of actors: universities, industry, and government, each of which has
specific functions (Lundvall 1992; Etzkowitz and Leydesdorff 2000). The role of universities is
basic research and teaching, thus contributing to the system’s knowledge base and stock of human
capital. Part of this output forms part of the inputs for industry research, which is aimed at
product and process improvements, and the commercialization of new technologies, contributing
to firms’ profitability and growth, and thus the growth of the economy (Lundvall 1992). The
government acts as a regulator and invests in universities and research that it deems to be in the
public interest, such as research related to national defense, public health or space exploration
(Nelson and Rosenberg 1993; Fabrizio, Poczter, and Zelner 2017). There is a consensus that more
balanced national innovation systems, i.e. those in which universities, government, and industry
all play their part, deliver the highest innovation performance (Nelson and Rosenberg 1993; Dosi,
Llerena, and Labini 2011; Khedhaouria and Thurik 2017). In addition to universities, government
and industry, other factors, such as the type of regulation, and entrepreneurship and risk-taking in
national culture, are also seen to influence national innovation performance (De Rassenfosse and
Potterie 2009; Autio et al. 2014; Fabrizio, Poczter, and Zelner 2017).
Technology clusters exist within the context of national innovation systems, but they are also
part of global sectoral innovation systems (Binz and Truffer 2017). As a result, both national
and international changes in markets, policies, and technologies can influence cluster innovation
performance. In recent decades the relative power of national governments and institutions has
declined as a result of rapid economic and technological globalization, often supported by the poli-
cies of Western governments and institutions (Strange 1996; Dicken 2007; Locke and Wellhausen
2014). Dicken (2007) argues that a power shift in favor of multinational corporations has changed
the relationship between national governments and multinational corporations, but that both are
still very influential. The following hypothesis is proposed to address this ambiguity.
Hypothesis 6: The quality of the national innovation system has a positive influence on cluster
innovation performance.

2.4.3 Inter-Cluster Knowledge Networks

Like agglomeration (“spatial proximity”), the conditions of global inter-cluster knowledge networks
(“relational proximity”) are seen as an important feature of technology clusters (Boschma 2005).
The global distribution of R&D is characterized by patterns of spatial concentration, which are
coupled to global inter-cluster knowledge networks (Fujita, Krugman, and Venables 2001; Gertler
and Levitte 2005; Gertler and Wolfe 2006; Feldman and Kogler 2010; Malecki 2014). This subsec-
tion provides a discussion of the literature and hypotheses in two parts: the first part related to
knowledge flows into and out of technology clusters, and the second part focusing on inter-cluster
research collaboration networks.
Knowledge networks typically consist of some kind of collaborative relationship involving the trans-
fer and co-creation of knowledge (Bukvova 2010). These relationships can span a range of different
institutional contexts, goals and power relations (Breschi and Lissoni 2001; Bathelt, Malmberg,
and Maskell 2004; Asheim and Gertler 2005; Boschma 2005; Ponds, Oort, and Frenken 2009; Fitjar
and Rodrı́guez-Pose 2014; Comunian 2017; Capone, Lazzeretti, and Innocenti 2019). For example,
research relationships can be motivated by shared academic interest (Bukvova 2010), but they may
also be shaped by commercial and technological dependence, leading to different outcomes for the
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actors involved (Van Geenhuizen and Nijkamp 2012; Lazonick and Mazzucato 2013). International
and inter-cluster research collaboration is especially prevalent in knowledge intensive sectors such
as biotechnology and pharmaceuticals (Gertler and Levitte 2005; Leydesdorff and Persson 2010;
Ó hUallacháin and Lee 2014; Alkemade et al. 2015). Clusters which are highly connected in
global knowledge networks appear to benefit in similar ways to how agglomeration facilitates col-
laboration and knowledge spillovers in clusters (Boschma 2005). This “relational proximity,” like
spatial proximity (agglomeration), can be an enabling factor or a barrier to innovation performance
(Boschma 2005).

In the context of global knowledge networks, multinational corporations are important for two
main reasons: first, they account for a large share of worldwide research investment, and second,
they have an ability to connect clusters around the world through their internal global networks. In
the United States foreign multinational corporations account for 14-15% of business R&D expendi-
ture, which is around 9% of total R&D expenditure (National Center for Science and Engineering
Statistics 2014). Such cross-border research investment is growing (Castellani, Jimenez, and Zanfei
2013; Audretsch, Lehmann, and Wright 2014; Locke and Wellhausen 2014; National Center for
Science and Engineering Statistics 2014), including between developed and developing countries
(Bruche 2009; Awate, Larsen, and Mudambi 2015). Multinational corporations are uniquely posi-
tioned because of their internal global knowledge networks. They tend to have a high level of trust
and mutual understanding internally due to the internal mobility of staff, shared goals set out
by management, and a common corporate culture, which together facilitate research collaboration
between different clusters (Gertler and Wolfe 2006; Nooteboom 2006). This means multinational
corporations can form a connecting “pipeline” through which new knowledge can flow between
clusters (Bathelt, Malmberg, and Maskell 2004; Morrison, Rabellotti, and Zirulia 2013). The het-
erogeneity of such knowledge flows can in turn lead to cluster renewal (Njøs, Orre, and Fløysand
2017).

However, there is also evidence that the presence of multinational corporations in a cluster can
have a negative effect, because “reverse knowledge flow” can take place. This is especially a concern
when an important and highly innovative local firm is acquired (Dunning 2000; Frost 2001; Frost
and Zhou 2005; Ambos, Ambos, and Schlegelmilch 2006). Reverse knowledge flow occurs when
previously local knowledge spillovers are diverted out of the cluster by a multinational corpora-
tion, benefiting their headquarters but not the local cluster. More generally, power imbalances in
research collaborations were shown to adversely affect the weaker party (Lazonick and Mazzucato
2013).

While reverse knowledge flows are an area of concern, the potentially negative association be-
tween knowledge outflow and cluster innovation performance should be qualified for two reasons.
First, multinationals tend to invest in already thriving clusters (De Propris and Driffield 2005; Liu
and Buck 2007; Østergaard and Park 2015). The presence of multinationals and the associated
knowledge outflow may therefore signal the success of a cluster, rather than any issues concern-
ing reverse knowledge flows. Second, within a multinational corporation, large labs in prominent
clusters tend to have significant autonomy over how and what kind of research they conduct (Mu-
dambi and Navarra 2015), which likely mitigates the risks of knowledge outflow to a multinational
organization’s headquarters. Therefore, reverse knowledge flows, which lower cluster innovation
performance, might occur only under specific conditions (Van Geenhuizen and Nijkamp 2012).

Although clusters with remote labs of multinationals might experience knowledge outflow, clusters
that host the headquarters of a multinational corporation may benefit from knowledge inflow from
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branch laboratories in other clusters (Bathelt, Malmberg, and Maskell 2004; Morrison, Rabellotti,
and Zirulia 2013; Njøs, Orre, and Fløysand 2017). These clusters might also benefit from their
proximity to strategic decision-makers who may favor the multinational corporation’s home cluster
when making decisions about R&D investment (Sassen and others 2002; Sassen 2008; Belderbos,
Leten, and Suzuki 2013; Castellani, Jimenez, and Zanfei 2013). Based on the above considerations,
the hypotheses related to knowledge flows are formulated as being positive: a negative effect for
knowledge outflow is only expected in rare situations. Like agglomeration, the hypotheses use the
term “association,” because reverse causalities between knowledge flow and innovation performance
are possible: high innovation performance could lead to an increase in knowledge flow, just as
knowledge flow can influence innovation performance.

Hypothesis 7: Knowledge inflow has a positive association with cluster innovation performance.

Hypothesis 8: Knowledge outflow has a positive association with cluster innovation performance.

Multinational corporations are just one conduit for the transfer of knowledge over long distances.
Other organizations that fulfill this role include universities and local knowledge-intensive firms
involved in research collaborations with distant partners (Bathelt, Malmberg, and Maskell 2004;
Gertler and Levitte 2005). A prerequisite for research collaboration, whether it is local or taking
place over long distances, is relational or cognitive proximity: the extent to which different actors
trust each other and share a common set of values (socio/cultural proximity), i.e. the extent to
which they “speak the same language.” Although social proximity is facilitated by geographical
proximity it is not automatic (researchers within the same location may not interact socially).
Social proximity can also persist over long geographical distances, for instance between researchers
with a similar cultural, educational or career background (Gertler 2003; Ertur and Koch 2011;
Fazio and Lavecchia 2013; Nooteboom 2013). Relational proximity is also a concept found in
inter-organizational learning theory, which attaches importance to the development of interpersonal
relationships, institutional support, and the creation of mutual trust as a prerequisite for successful
research collaboration (Dodgson 1992). More broadly, relational proximity can be defined as the
capability of clusters (and their organizations and firms) to learn through collaboration with other
clusters located at a distance (Camagni and Capello 2002; Cohendet and Amin 2006). Especially
diversity in research collaboration relationships at the cluster-level and firm-level are seen as a
positive influence on innovation performance (Tödtling and Trippl 2005; Van Beers and Zand
2014). Clusters and organizations that act as brokers between different sub-networks (high degree
centrality) appear to benefit greatly from the unique diversity of knowledge available to them
(Wasserman and Faust 1994; Beaudry and Breschi 2003; Salman and Saives 2005; Gilsing et al.
2008; Kauffeld-Monz and Fritsch 2013).

Until relatively recently, research collaboration was viewed as purely positive in enhancing inno-
vation in clusters. Particularly in high-tech sectors, research collaboration through long-distance
networks has been regarded as crucial for corporate innovation performance, this includes sectors
such as biotechnology (Gertler and Levitte 2005; Cooke 2007), automotive technology (Lorentzen
and Gastrow 2012), electronics (Ernst 2009), and aerospace (Frenken 2000). However, several
newer theoretical perspectives have qualified this positive view on research collaboration. No-
table are concerns over the potential for external/international collaborations to divert resources
away from internal/domestic collaborations, and that specific positions within the collaboration
network structure are more favorable than others. Empirical evidence shows that in some cases
international/external research collaboration has been found to weaken local research activity and
interaction (Leydesdorff and Sun 2009; Kwon et al. 2012; Van Geenhuizen and Nijkamp 2012; Ye,
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Yu, and Leydesdorff 2013). While this re-orientation from national to international collaboration
relationships is not necessarily harmful, high rates of international network participation, for in-
stance through R&D investment by multinational corporations in clusters that lack the capacity to
absorb its benefit, may lower the overall innovation performance of clusters and the organizations
located within them (De Propris and Driffield 2005; Fu 2008; Chang, Chen, and McAleer 2013;
Ebersberger and Herstad 2013; Hottenrott and Lopes-Bento 2014).
Similar to agglomeration and knowledge flows, inter-cluster collaboration networks can have both
a positive and negative association with cluster innovation performance. Network reach (simple
degree centrality) is generally perceived to be positive because network reach increases a cluster’s
access to new sources of knowledge. However, maintaining a relatively large network (high network
density; weighted degree centrality) requires clusters of sufficient size and absorptive capacity
in order to benefit from the knowledge spillovers and learning that can arise from long-distance
research collaborations (Boschma 2005; Fu 2008; Lau and Lo 2015; Tomás-Miquel, Molina-Morales,
and Expósito-Langa 2019). Hypothesis 9 and 10 both assume a positive association between the
reach and density of the knowledge network and cluster innovation performance, although a lack
of association is possible in situations where technology clusters lack sufficient absorptive capacity.
Hypothesis 9: The reach of the inter-cluster collaboration network has a positive association
with cluster innovation performance.
Hypothesis 10: The density of the inter-cluster collaboration network has a positive association
with cluster innovation performance.

2.4.4 Path Dependence

Path dependence occurs when the current status, or future development of a firm, industry sec-
tor, technology cluster, or city region depends on factors (knowledge, experience, institutions,
resources, networks, etc.) that were acquired or accumulated in the past (Simmie and Strambach
2006; Martin and Simmie 2008). Path dependence can be seen as the intermediate development
phase between the path creation and path breaking phases (Martin and Simmie 2008). Path
dependence mirrors the stages of the industry sector life cycle, which consist of growth (path cre-
ating), mature (path dependent), and decline phases (path breaking) (Martin and Sunley 2011;
Neffke et al. 2011). During the emerging phase an industry sector or cluster produces radically
new products and technologies. During the mature phase, the industry sector or cluster produces
more optimization-focused innovations (Audretsch and Feldman 1996a; Martin and Sunley 2003;
Tidd, Bessant, and Pavitt 2005). During this phase the local accumulation of skills, knowledge,
and innovation capabilities can create a virtuous cycle of innovation that gives the cluster a sus-
tainable competitive advantage which enables a technology cluster to thrive and experience strong
innovation performance for an extended period of time (Porter 1998, 2000).
However, path dependence need not always be positive: negative path dependence is also possi-
ble, a situation in which a cluster becomes locked into old industry sectors, fails to invest in new
technologies, and this results in a gradual or sometimes rapid decline in the available innovation
capacity of the cluster (Elbaum and Lazonick 1984; Tödtling and Trippl 2005; Maskell and Malm-
berg 2007; Martin and Simmie 2008; Vaan, Frenken, and Boschma 2019). Such a trajectory may
be part of a technological or economic shift, causing path breaking, but may also be due to, or
be accelerated by, the departure of key firms or institutions from a cluster (Martin and Simmie
2008; Suire and Vicente 2009; Østergaard and Park 2015). However, a strong technology cluster
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can persist even as technologies change, and successful clusters transition from old technologies to
newly emerging ones (Crescenzi and Rodrı́guez-Pose 2011; Martin and Sunley 2011; Crescenzi and
Jaax 2017). Such a transition is not automatic, because existing institutional configurations and
networks may need to be reformed (Vaan, Frenken, and Boschma 2019). New technology path
creation often requires coordination of multiple actors within a cluster and not just a shift by a
single firm (Steen and Hansen 2018). Therefore, the following hypothesis applies to growing or
mature industries, where the accumulation of skills and experience confer benefits to the cluster.
Hypothesis 11: Past cluster innovation performance has a positive influence on current cluster
innovation performance.
The sustainable energy technology sector is seen as an emerging sector and can therefore be
characterized as a path creating sector (Steen and Hansen 2018), especially due to its role in socio-
technological transitions (Geels et al. 2017). For this reason the influence of path dependence in
the sustainable energy technology sector is likely to be weaker than in other sectors. Although the
health technology sector is also part of socio-technological transitions, it is seen as a more mature
and established high technology sector. This difference is formulated in hypothesis 12.
Hypothesis 12: The health technology sector has stronger path dependence compared to the
sustainable energy technology sector.

2.5 Summary

The 12 hypotheses formulated in this chapter address the three main knowledge gaps highlighted in
the introduction chapter: (i) the global spatial distribution of sustainability technology clusters and
their knowledge networks, (ii) the association between cluster innovation performance and cluster
characteristics, and (iii) sectoral differences, specifically concerning the role of socio-technological
transitions. These knowledge gaps have arisen because of a lack of research and innovation-related
data about the sustainability technology sectors that is global in scope, yet at the spatial scale of
technology clusters.
With regard to the first knowledge gap, two hypotheses are formulated (hypotheses 1 and 2).
Hypothesis 1 posits a shift to Asia in terms of the creation and growth of sustainability technology
clusters. Hypothesis 2 suggests that the emerging sustainable energy technology sector has a less
dense knowledge network and less agglomeration. No other hypotheses are formulated due to a
lack of theory.
The second knowledge gap, innovation performance, is addressed by ten hypotheses, which are
grouped based on four types of cluster conditions: agglomeration (hypotheses 3-5), national in-
novation system (hypothesis 6), knowledge network (hypothesis 7-10), and path dependence (hy-
potheses 11 and 12). The larger number of hypotheses is reflective of the rich literature on inno-
vation performance, but it also highlights the extent of the theoretical ambiguity that still exists
(Crescenzi et al. 2019).
The third knowledge gap, sectoral differences, is addressed by two hypotheses (hypotheses 2 and
12). Research about the influence of sectoral differences on the spatial distribution and innovation
performance of technology clusters is mainly explorative in nature. While it is obvious that sectors
are different (Binz et al. 2017), and their development phase and knowledge base are important
points of difference (Ter Wal and Boschma 2011; Carlsson 2013), there is limited theory to guide
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expectations of how sectoral differences influence cluster innovation performance, especially when
considering the role of socio-technological transitions.

Hypotheses 1 and 3-11 are evaluated separately for the health technology and sustainable energy
technology sectors in chapter 5 and 6. Chapter 7 addresses all hypotheses in a broad sectoral
comparison of health technology and sustainable energy technology within the context of other high
technology sectors. The next two chapters (chapter 3 and 4) describe the data and methodology
used to empirically evaluate the hypotheses proposed here.

2.6 Selected Terminology

Some of the terminology used in this dissertation may differ from uses in other research, hence the
need for a list of selected terminology. The list serves as a reference for readers who do not have
the time to read this chapter and chapters 3 and 4 in detail, but who are reading later chapters of
the dissertation.

Agglomeration The spatial concentration of similar or related economic activity and actors in a
particular location (Kobayashi 2019)

Sectoral innovation system A set of products or services and related actors connected through
market and non-market interactions aimed at the creation, production, and sale of the prod-
ucts or services (Breschi and Malerba 1997).

Innovation performance The generation of new knowledge, or combination of existing knowl-
edge in new ways, and its application in an economically useful way (Schumpeter 1934;
Drucker 1985; Acs, Anselin, and Varga 2002; Tidd, Bessant, and Pavitt 2005).

Knowledge base (sectoral) The type of knowledge which technological innovation in a par-
ticular sector is based on, for example: basic scientific research or engineering and design
(Stankiewicz 2002; Carlsson 2013).

Knowledge network A set of relationships between individuals and/or organizations through
which knowledge is exchanged and/or co-created, which can exist within close spatial prox-
imity but also at (very large) distances (Boschma 2005; Bukvova 2010).

Knowledge network density The frequency with which an entity (for example, an individual,
organization or cluster) maintains knowledge-based relationships with other such entities;
also referred to as the weighted degree centrality in social network analysis theory (Wasser-
man and Faust 1994).

Knowledge network reach The number of other entities (for example, individuals, organiza-
tions or clusters) that a particular entity is connected to through a knowledge-based relation-
ship; also referred to as simple degree centrality in social network analysis theory (Wasserman
and Faust 1994).

National innovation system The flow of technology and information among people, enter-
prises, universities and government research institutions, as well as the entrepreneurial cul-
ture, and laws and regulations of a country related to innovation, which together determine
its national innovation performance (Lundvall 1992; Nelson and Rosenberg 1993; De Rassen-
fosse and Potterie 2009; Autio et al. 2014).

Path dependence (of innovation performance) A situation whereby future innovation per-
formance is shaped by past innovation performance, which also caused the accumulation of
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skills, knowledge resources, experience, reputation, relationships, etc. (Martin and Simmie
2008)

Patent assignee The person or organization which is assigned ownership of the patent (Breitz-
man and Mogee 2002).

Patent citation A mention or reference to a patent in another patent document which describes
similar technological content, made by a patent inventor or patent examiner (Breitzman and
Mogee 2002).

Patent inventor The author of the knowledge disclosed in a patent and who is designated as an
inventor in the patent application documents (Breitzman and Mogee 2002).

Regional innovation system The flow of technology and information among people, enter-
prises, universities, and government research institutions in a region related to innovation,
which together determine regional innovation performance (Cooke, Heidenreich, and Braczyk
2004; Cooke 2007).

Regional specialization The level of agglomeration of a particular industry or technology sector
in a region, relative to the total economic output (or innovation output) of that region
(Tabuchi and Thisse 2006).

Technology Cluster A spatial concentration of innovation activity related to a particular indus-
try or technology sector (Nooteboom 2006; Casper 2013).
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Chapter 3

Data and Methodology

3.1 Introduction

This chapter provides a detailed description of the cluster innovation performance model and a
brief overview of the data and methodology used for cluster identification. The cluster identifica-
tion methodology builds on earlier research (Catini et al. 2015; Alcácer and Zhao 2016). Likewise,
the innovation performance model is based on earlier knowledge production functions (Ó hUal-
lacháin and Leslie 2007; Charlot, Crescenzi, and Musolesi 2014). Both incorporate some notable
improvements. The new cluster identification methodology uses a “heat map” spatial interpo-
lation technique (kernel density estimation, see Rosenblatt (1956) and Parzen (1962)), which is
widely used in other fields, but had not previously been applied in technology cluster studies. The
new methodology not only identifies clusters but also measures their size, knowledge networks,
innovation performance, and other cluster characteristics. This requires the careful selection and
correction of data. For this reason a single source of patent data is used in this study (namely the
patent grant database of the United States Patent and Trademark Office) and a home bias correc-
tion factor is applied (Bacchiocchi and Montobbio 2010). More precise identification of technology
clusters enables more precise measurement of cluster indicators and the construction of a unique
global database of technology cluster metrics.
The technology cluster indicators are subsequently used in the cluster innovation performance
model, which differs considerably from other knowledge production functions (Charlot, Crescenzi,
and Musolesi 2014; Crescenzi and Jaax 2017). Knowledge production functions were used to
analyze the relationship between knowledge inputs (e.g. researchers) and knowledge outputs
(e.g. patents). The new cluster innovation performance model takes a different approach, viewing
knowledge output relative to knowledge input, and thus defining innovation performance as a
productivity measure. The model measures the innovation out-performance of a cluster relative
to the available knowledge inputs. By removing knowledge inputs as an independent variable,
the correlations of other variables becomes more visible (e.g. knowledge networks). The model
also uses patent citations instead of patent counts. Patent citations are proxies for the quantity
and value of innovation (Hall, Jaffe, and Trajtenberg 2005). The combination of a new cluster
identification methodology with a new cluster innovation performance model provides a fresh
empirical perspective on technology clusters worldwide, including in sustainability technology
sectors.
This chapter is the first of two methodology-related chapters. This chapter begins with a short
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review of notable scientometric studies, highlighting different types of scientometric data and rele-
vant research applications (section 3.2). The review is followed by a concise explanation of the data
and cluster identification methodology (section 3.3). An in-depth discussion of the methodology is
presented in the next chapter (chapter 4). The identification of high technology sectors, including
health technology and sustainable energy technology, are discussed in section 3.4. Section 3.5 pro-
vides an overview of the cluster indicators, which measure innovation performance, and different
aspects of cluster agglomeration and knowledge networks. This is followed by a description of the
cluster innovation performance model in section 3.6, which includes the model development pro-
cess, implementation, and the selection of time periods. The chapter concludes with a summary
and discussion of the new cluster innovation performance model (section 3.7).

3.2 Scientometric Data and Selected Applications

Scientometric data are the “paper trail” of innovation activity (Jaffe, Trajtenberg, and Henderson
1993, 3) and they has been widely applied in innovation studies since the 1990s. This section
provides a survey of the main sources of scientometric data and lists some of applications relevant
for the cluster innovation performance model indicators which are described in section 3.5. Table
3.1 lists seven applications of scientometric data together with relevant references to scientific
articles published in respected journals such as Research Policy, Journal of Economic Geography,
and Scientometrics. The references are not exhaustive but include at least one early example of
an application and one relatively recent example of an application. The scientometric methods
discussed are patent counts and growth rates, citation rates, authorship and co-authorship analysis,
trans-national corporate R&D networks, and cluster identification.
The use of patent counts as a proxy for inventive activity is one of the simplest applications of
scientometric data and they are widely used in innovation studies (Acs, Anselin, and Varga 2002; Ó
hUallacháin and Leslie 2007; De Rassenfosse and Potterie 2009; Charlot, Crescenzi, and Musolesi
2014; Crescenzi and Jaax 2017). Despite their popularity there are concerns about using patent
counts because of the large variations in patenting propensity, which can cause distortions. Arundel
and Kabla (1998) and others have noted large differences in patenting propensity between industry
sectors (Kleinknecht, Van Montfort, and Brouwer 2002; Hall, Jaffe, and Trajtenberg 2005). Yang
and Kuo (2008) and others have also noted significant differences in patenting propensity between
countries due to economic and governance factors (De Rassenfosse and Potterie 2009; Bacchiocchi
and Montobbio 2010). These concerns are addressed by exercising caution when making inter-
sectoral or inter-country comparisons. They are also less of a concern when trying to observe
trends, such as the growth of patent output in a particular sector or country Boeing, Mueller, and
Sandner (2016).
Although patent counts are used as a measure of quantity, the quality of scientific output is often
measured using citation frequencies. Citation frequencies provide insight into the value and impor-
tance of patents and scientific publications (Nagaoka, Motohashi, and Goto 2010; Bukvova 2011;
Waltman et al. 2012), andthey were used to measure the innovation or scientific performance of
different types of organizations. Joo, Oh, and Lee (2016) use patent citations to show changes in
the innovation performance of emerging firms compared to technology leaders in high technology
industries. Waltman et al. (2012) use citation frequencies as a measure of the quality of uni-
versities. However, as with patent counts, citation propensities also vary by sector and country
(Bacchiocchi and Montobbio 2010).
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Patents and scientific publications also contain authorship (inventor) information, which may
include affiliated organization (universities, industry, government) and geographic location of au-
thors, providing insight into the organizations and places where innovation is taking place. These
insights also allow co-authorship to be explored, including between individuals, organizations,
organization types (e.g. between university and industry), andlocations (e.g. international or inter-
regional collaboration). Co-authorship is generally considered to be a proxy for research collabora-
tion (Wasserman and Faust 1994; Bukvova 2010), although some co-authorship awards are made
for honorary or organizational-political reasons and do not represent the real intellectual contri-
bution of a co-author (Bukvova 2010). The situation is different in the case of patent ownership
(‘assignment’) where real economic interests are at stake because owners are entitled to royalties
from the exploitation of a patent. The patent owner is often the funder of the research, which
may have taken place at another organization, such as a university. Depending on the intellectual
property policies in place, a patent invented at a university could be assigned to the university, to
individual researchers, to a funding organization such as a high technology company or to a combi-
nation of co-assignees (Gautam, Kodama, and Enomoto 2014). Despite the potential inaccuracies
of using co-authorship or co-assignee data as a proxy for research collaboration, co-authorship
and co-assignee data are widely used in scientometric studies, especially when exploring research
collaborations at larger aggregate scales, such as between cities or countries (Ó hUallacháin and
Lee 2014; Alkemade et al. 2015), where the measurement uncertainties of co-authorship are less
likely to influence the results (Wagner and Leydesdorff 2005; Leydesdorff et al. 2013).
The geographic information from scientometric publications can also be used to identify spatial
concentrations of knowledge output, i.e. to identify clusters in patent-rich sectors such as semicon-
ductors, photovoltaics, and biomedical technology (Duranton and Overman 2005; Leydesdorff et
al. 2014; Catini et al. 2015; Alcácer and Zhao 2016) or to identify top innovation cities worldwide
(Bergquist, Fink, and Raffo 2017). Some exploratory studies have combined the identification of
clusters with the study of inter-cluster knowledge networks (Leydesdorff et al. 2014; Ó hUallacháin
and Lee 2014) and cluster size (Bergquist, Fink, and Raffo 2017), although these studies do not ad-
dress the aforementioned measurement issues related to patenting propensities and co-authorship.
The literature related to cluster identification is addressed in more detail in chapter 4.
This brief survey of scientometric studies (table 3.1) shows that the most common sources of
scientometric data are (i) patent databases such as those maintained by the United States Patent
and Trademark Office and European Patent Office, and (ii) scientific publication abstract databases
such as Scopus and Web of Science, which are owned and maintained by publishing companies.
For national studies it is not uncommon for other national patent databases to be used, such as the
Japan Patent Office database (Gautam, Kodama, and Enomoto 2014) or China’s State Intellectual
Property Office database (Boeing, Mueller, and Sandner 2016).
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Table 3.1: Overview of scientometric data applications
and selected literature relevant to this dissertation.

Data Application Selected References
Patent Patent count as proxy

for innovation activity
Acs, Audretsch, and Feldman (1994), Acs, Anselin,
and Varga (2002), Ó hUallacháin and Leslie (2007)
De Rassenfosse and Potterie (2009), Charlot,
Crescenzi, and Musolesi (2014)

Patent Growth rate as proxy for
innovation performance

Crescenzi, Rodriguez-Pose, and Storper (2007),
Boeing, Mueller, and Sandner (2016)

Patent and
Scientific
Publication

Citation rate as proxy
for innovation
performance

Mancusi (2008), Waltman et al. (2012), Joo, Oh,
and Lee (2016), Kwon, Lee, and Lee (2017)

Patent Identifying actors
involved in innovation

Meyer, Siniläinen, and Utecht (2003),
Bhattacharya (2004), Park, Hong, and Leydesdorff
(2005)

Patent and
Scientific
Publication

Research collaboration
networks

Kwon et al. (2012), Leydesdorff et al. (2014),
Zheng and Kammen (2014)

Patent Trans-national corporate
R&D investment

Bhattacharya (2004), Belderbos, Leten, and
Suzuki (2013)

Patent High-technology cluster
identification method

Duranton and Overman (2005), Leydesdorff et al.
(2014), Catini et al. (2015), Alcácer and Zhao
(2016), Bergquist, Fink, and Raffo (2017)

3.3 Technology Cluster Identification Method

This section provides a brief summary of the 4-step “heat map” technology cluster identification
method used in this study. A detailed description of the relevant literature, design criteria and
comparisons with earlier studies are provided in chapter 4. The aim of the new “heat map” method
is (i) to identify technology clusters on a global scale based on real inventive activity, following the
so-called “organic” cluster approach put forward by Duranton and Overman (2005) and Alcácer
and Zhao (2016), (ii) to take advantage of the Kernel Density Estimation (KDE) or “heat map”
approach to identifying high concentrations of inventive activity, because although KDE is a com-
mon spatial analysis tool in various disciplines (Bithell 1990; Baxter, Beardah, and Wright 1997;
Anderson 2009), it appears to not have been previously applied to innovation activity or patents,
(iii) to improve on the performance, in terms of accuracy, of cluster identification compared to
pre-existing boundary or organic boundary cluster identification methods, as measured using the
benchmarking criteria proposed by Alcácer and Zhao (2016).
The cluster identification method applied in this study consists of 4 main steps, each of which
is briefly described in the relevant subsection. Table 3.2 provides an overview of the steps and
notable challenges and decisions to be made. The method begins with data selection (step 1) and
geocoding (step 2). This is followed by a weighting calculation and home bias correction (step 3)
and clustering algorithm parameter calibration (step 4).
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Table 3.2: Steps and challenges of the technology cluster
identification method (this study).

Step Description and Challenges
1 Data Selection: Choice of USPTO patent database.
2 Geocoding: Process to optimize accuracy and efficiency of converting

addresses to coordinates.
3 Weighting and Home Bias Correction: Calculating a correction factor to

compensate for the United States-bias caused by using USPTO patents.
4 Clustering Parameters: Calibration to identifying suitable parameters that

meet cluster identification goals.

Step 1: Data Selection

Step 1 involves choosing the patent database to be used. Patent databases contain patents from
different countries, provide a significant level of detail about the technologies involved, cover long
time series, and contain information about the inventors and patent owners (Schmoch 1999; Acs,
Anselin, and Varga 2002). This means that patents can provide a large amount of information
about research and innovation at a temporal and spatial scale unmatched by other data sources.
Patent data can also be used for a range of useful applications, as shown earlier in table 3.1. How-
ever, challenges arise when deciding which patent database to choose (or whether to use multiple
patent databases) and how to address the home bias effect (Yang and Kuo 2008; Bacchiocchi and
Montobbio 2010).
In this study patent data are obtained from the PatentsView database which is published by
the Office of Chief Economist in the United States Patent and Trademark Office (USPTO) and
contains data on 6,647,699 patent grants from the USPTO (May 2018 edition). Because of the delay
between patent application and grant, the most recent year for which full patent grant data are
available is 2011 (as at time of writing). As the United States are a large and open economy, many
foreign entities also apply for patent protection at the USPTO, and therefore the PatentsView
database provides the most extensive global coverage of patents among national patent databases
and the European Patent Office (Kim and Lee 2015). The choice of a single patent database means
that some form of home bias adjustment needs to be made. On the other hand, the advantage
of using a single source of patents means that all patents are granted in accordance to a single
standard, improving the validity of making international comparisons (Toivanen and Suominen
2015). Patent data selection is discussed in detail in section 4.4.1 of chapter 4.

Step 2: Geocoding

Step 2 pertains to using the address information of patents to locate where the innovation activity
leading to the patent actually took place. Patent inventor location is used to identify R&D activity
because it reflects the most likely “true” location of where the R&D was carried out. To identify
areas of high R&D activity, inventor address information is converted into coordinates through
a geocoding process. For example, the address “Delft, The Netherlands” is converted into the
coordinates 51.9995142, 4.2938295. The PatentsView database provides coordinates for patent
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addresses, but some of these are inaccurate, requiring the re-geocoding of certain addresses. The
re-geocoding process is described in detail in section 4.4.2 of chapter 4.

Step 3: Weighting and Home Bias Correction

Step 3 concerns the calculation of a location weighting and home bias correction factor. After
geolocating inventor addresses, each identified location receives a weighting to reflect the number
of inventions produced there. This weighting is calculated by summing the number of patent
inventors with an address in a location, with some adjustment made for the number of inventors
per patent (fractional counting).
A home bias correction is also carried out. As mentioned earlier, the home bias effect manifests
itself in national patenting frequencies (relative to R&D activity) and a citation bias, whereby local
patents are cited more frequently (De Rassenfosse and Potterie 2009; Bacchiocchi and Montobbio
2010). In addition to these biases, the patenting frequency of an inventing country at a foreign
country’s patent office can also be influenced by economic and technological factors such as the
volume of its R&D activity, the sectoral composition of its economy, export dependence, its primary
export markets and its level of technological advancement (Yang and Kuo 2008). To quantify a
home bias effect, with a view of performing some kind of correction, the home economy’s patenting
and citation frequencies need to be compared with a “similar” economy. The USPTO is the national
patent office of the United States, a highly advanced economy with innovation taking place at the
technological frontier. In this context Japan is a logical comparison country because its qualitative
patenting profile is the most similar to the United States compared to other countries, and this
has been the case for an extended period of time (Mancusi 2008; Toivanen and Suominen 2015).
The calculations of the weightings and the home bias correction factor based on comparing the
United States and Japan, are described in detail in section 4.4.3 of chapter 4.

Step 4: Clustering Parameters for Heat Map Algorithm

Step 4 encompasses the implementation of a heat map algorithm to calculate the density of patent
output. Areas of high patent concentration are subsequently identified as clusters. The heat map
method offers some potential advantages over the “organic” cluster identification methods used in
earlier studies. Alcácer and Zhao (2016) assigned patent addresses to particular cities and then
combined cities in close proximity (less than 40 mi or 64.4 km) into the same cluster. The KDE
method however skips the need to assign an address to a city as the weightings of nearby locations
are combined. This means that addresses of neighborhoods, neighboring cities, adjacent villages or
a university campus are automatically interpolated into one “hot spot” (cluster). The KDE method
is also less rigid than a fixed 64.4 km boundary as an interpolation method is used instead. The
cluster identification technique used by Bergquist, Fink, and Raffo (2017), density-based spatial
clustering of applications with noise (DBSCAN), is similar to KDE in the sense that it is a density-
based algorithm.1 Catini et al. (2015) identifies clusters based on networks of institutions. This
network-based cluster identification approach probably works better for scientific publications in
the medical sciences in which co-authorship between multiple organizations is highly prevalent,
compared to other sectors.

1It is interesting to note that DBSCAN is also implemented in QGIS, the software used for KDE in this study.
A comparison between DBSCAN and KDE could be performed in future.
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When applying KDE to identify clusters, decisions must be made about two important variables:
the interpolation range (𝑅) at which patent inventors are likely to be part of the same cluster, and
the concentration threshold (𝑇 ), for recognizing an area as being of “high concentration” and thus
part of a technology cluster. The interpolation range can be decided based on several criteria, for
example Van Egeraat et al. (2018) uses commuting distance while Alcácer and Zhao (2016) uses
20 mi (32 km, without any justification given). Acs, Anselin, and Varga (2002) notes that within a
50 mi (80.5 km) distance from the boundaries of a metropolitan statistical area, there is still some
positive innovation effect. The distance cited by Acs, Anselin, and Varga (2002) is about four
times the largest average daily commuting distance of a US city (Atlanta, GA, average commuting
distance of 20.6 km) (Kneebone and Holmes 2015). This diversity in approaches gives no clear
guidance about the “correct” interpolation range. A sensitivity analysis is therefore undertaken to
identify an optimum interpolation distance between 15 and 50 km. There is also no guidance in
the literature about which concentration threshold: the concentration of patenting activity should
be among the upper percentiles of global R&D activity, however determining where to set this
threshold is subjective. Should it be at the 90th, 95th or 97.5th or at an even higher percentile
threshold? Sensitivity analysis is also used to determine a suitable concentration threshold.

The optimum values of the interpolation distance (𝑅) and threshold concentration (𝑇 ) are subject
to three conditions or goals: a maximum cluster size (𝐴𝑚𝑎𝑥), the ability of the algorithm to
correctly identify patents within the same cluster (𝐷𝑠𝑎𝑚𝑒) or a different cluster (𝐷𝑑𝑖𝑓), and the
number of clusters (𝑛). The maximum cluster size is imposed to avoid identifying unrealistically
large clusters which likely lack internal coherence. Correctly identifying clusters as belonging to,
or not belonging to, a cluster is used as a measure of the clustering algorithm’s performance.
Identifying a large number of clusters shows that the algorithm is able to identify relatively small
clusters. Based on these conditions, the calibrated heat map algorithm, which is applied in this
study, has an interpolation range value of 𝑅 = 25 km and a concentration threshold value of
𝑇 = 97.5%. Based on the cluster identification performance measure proposed by Alcácer and
Zhao (2016), the heat map method used in this study appears to out-perform pre-set boundary
cluster identification methodologies and the best-performing organic clustering method. For the
calibrated heat map algorithm 𝐷𝑠𝑎𝑚𝑒 = 99% and 𝐷𝑑𝑖𝑓 = 66%. For the organic clustering method
by Alcácer and Zhao (2016) 𝐷𝑠𝑎𝑚𝑒 = 100% and 𝐷𝑑𝑖𝑓 = 59%. However, it must be noted that
the datasets for the present study and Alcácer and Zhao (2016) differ. A detailed description of
the parameter calibration exercise and a more detailed comparison between different sectors is
presented in section 4.5 of chapter 4.

3.4 Sector Selection

The two sustainability technology sectors, health technology and sustainable energy technology,
are the focus of this dissertation. The sectors are part of a socio-technological transition towards a
more sustainable healthcare and energy system, which makes the sustainability technology sectors
different from “normal” high technology sectors. Sustainability transitions involve not just techno-
logical innovations but also social, economic, and regulatory change (Geels 2012). This difference
is especially pronounced in emerging and highly innovative sectors rather than in more mature
health and sustainable energy technologies such as hydroelectric power or traditional pharmaceu-
ticals (PwC Health Research Institute 2013; OECD 2017). An overview of the sustainability and
reference high technology sectors, and their sub-sectors, is given in table 3.3.
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Medical life sciences and medical devices are seen as the main sources of health technology inno-
vation (PwC Health Research Institute 2013; OECD 2017), and hence these two sub-sectors are
included under the health technology sector. The knowledge base of the medical life sciences sector
can be characterized as science-based, while medical devices can be characterized as an engineer-
ing and design-based sector, which suggests that there are notable differences in their innovation
process (Stankiewicz 2002; Asheim and Coenen 2005; Binz and Truffer 2017). Although the two
sectors are considered to be highly innovative, they are relatively mature sectors, with the medical
life sciences industry having gained prominence in the United States since the 1980s (Booth 2016).
Although the sub-sectors are different from a technological perspective, innovation in both sectors
is expected to contribute towards a sustainability transition in the healthcare sector (OECD 2017).
By comparison the sustainable energy sector is in a relatively early development stage and multiple
technologies are seen as being highly innovative (CPC Implementation Group 2017; International
Energy Agency (IEA) 2019d).In the area of electricity generation, photovoltaics, and wind tur-
bines only reached cost competitiveness with competing energy generation technologies in the late
2010s (International Energy Agency (IEA) 2019d). These technologies no account for about 80%
of newly installed renewable energy capacity globally (International Energy Agency 2016; Interna-
tional Energy Agency (IEA) 2019d). Other highly innovative sustainable energy technologies are
mainly related to sustainable mobility solutions and include advanced biofuels, electric vehicles,
electricity storage (batteries), fuel cells, and hydrogen technology (CPC Implementation Group
2017; International Energy Agency (IEA) 2019d). Among these sectors electric vehicles and wind
turbines are seen as engineering and design-based sectors, while the other sectors have a scientific
knowledge base (Tidd 2001; Binz and Truffer 2017). The larget number of sustainable energy
technology sub-sectors is indicative of the sector’s technological diversity. Although it is possible
to aggregate sustainable electricity generation and mobility technologies, the professional litera-
ture clearly distinguishes between different sub-sectors due to the differences in the technologies
involved (International Energy Agency 2016; International Energy Agency (IEA) 2019d). At the
same time, these sectors are all seen to be playing a part in a broad-based sustainability transition
towards a low or zero-carbon energy system (International Energy Agency (IEA) 2019d)
The reference high technology sectors are selected to provide an aggregate picture of “normal”
high technology sectors to provide a benchmark (or reference point) against which to compare
the sustainability technology sectors. The reference high technology sectors include eight mature
R&D intensive sectors defined by the OECD (Galindo-Rueda and Verger 2016) and two advanced
but generic technology sectors, biotechnology and nanotechnology, which are widely application
across different industries (OECD 2013). Like the sustainability technology sectors the reference
high technology sector has a diverse knowledge base. Aerospace, defense, electrical equipment,
machinery and equipment, and motor vehicles are considered to be sectors with an engineering
and design knowledge base while the other sectors can be characterized as science-based (Tidd
2001; Binz and Truffer 2017).
In practical terms patents belonging to a particular sub-sector are identified based on the Co-
operative Patent Classification system (CPC Implementation Group 2017) and the International
Standard Industry Classification (Lybbert and Zolas 2014). This process, and the related classifi-
cation codes, are described in detail in section 4.4.4 of chapter 4.
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Table 3.3: Sectors and sub-sectors of this study.

Health Technology Sustainable Energy Reference High Technology
Medical devices* Biofuels Aerospace*
Medical life sciences Electric vehicles* Biotechnology

Electricity storage Chemicals
Fuel cells Electronics
Hydrogen technology Defense*
Photovoltaics Electrical equipment*
Wind Turbines* Machinery and equipment*

Motor vehicles*
Nanotechnology
Pharmaceuticals

Note: * marks sectors with an engineering and design knowledge base

3.5 Operationalization and Measurement of Cluster Char-
acteristics

In this section cluster indicators are defined and operationalized. The cluster indicators are proxies
of the cluster characteristics used in the descriptive analysis and the cluster innovation performance
model. The descriptive analysis involves the spatial distribution of clusters, cluster size, and
inter-cluster knowledge networks (hypotheses 1 and 2, subsection 3.5.2 and 3.5.4). The cluster
innovation performance model uses an innovation performance indicator as its dependent variable
(subsection 3.5.1). The independent variables of the model describe the agglomeration (hypotheses
3-5 , subsection 3.5.2), national innovation system (hypothesis 6, subsection 3.5.3), inter-cluster
knowledge network (hypotheses 7-10, subsection 3.5.4), and path dependence characteristics of
technology clusters (hypotheses 11 and 12, subsection 3.5.5).
Each subsection describes a different indicator type and begins with some background information
about the indicator(s) in question. This is followed by a summary table listing the name, unit,
and measurement definition of the indicators for each subsection. Note that a robustness analysis
of all the cluster indicators is carried out to determine the appropriate minimum cluster size (see
appendix C.1, tables C.1 and C.2). The robustness check shows that a minimum cluster size of
ten inventors is appropriate because the smaller cluster size has a negligible influence on averaged
indicator values.

3.5.1 Cluster Innovation Performance (Dependent Variable)

The dependent variable of the cluster innovation performance model differs from the dependent
variables of earlier knowledge production function studies in two important ways: it uses patent
citations instead of patent counts to measure innovation performance and it is a productivity
indicator instead of an output indicator (Ó hUallacháin and Leslie 2007; De Rassenfosse and
Potterie 2009; Charlot, Crescenzi, and Musolesi 2014). Patent citations are primarily seen as an
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indicator of patent value and quality (Hagedoorn and Cloodt 2003; Lanjouw and Schankerman
2004; Squicciarini, Dernis, and Criscuolo 2013). Patent citations are generated when another
patent refers to a prior patent, an act that can have commercial consequences because the holder
of the cited patent may be entitled to certain rights or licensing fees when the citing patent is
used (Hall, Jaffe, and Trajtenberg 2005). Whereas the majority of patents are never cited and
have negligible economic value, the most economically valuable patents are also among the most
frequently cited patents (Hall, Jaffe, and Trajtenberg 2005; Yang, Qian-nan, and Ze-yuan 2008).
Patent citations can therefore be seen as a suitable proxy for innovation output because they
signal a patent’s economic value, which is central to the definition of innovation: the application
of knowledge in an economically useful way (Acs, Anselin, and Varga 2002; Tidd, Bessant, and
Pavitt 2005).
Formulating innovation performance as a productivity indicator instead of an output indicator
has another important advantage: it more clearly reveals the association between cluster innova-
tion performance and different cluster characteristics such as agglomeration, knowledge networks,
and path dependence. When knowledge output is used as the dependent variable (as measured
by patents or patent citations) there is usually a high correlation knowledge inputs (such as re-
searchers) which are often the dominant independent variable in a knowledge production func-
tions (Hagedoorn and Cloodt 2003; Charlot, Crescenzi, and Musolesi 2014). The step of dividing
innovation output by input, and thus creating a productivity indicator isolates the innovation
out-performance of a technology cluster relative to the available inputs, allowing the influence of
cluster characteristics on innovation performance to be analyzed more precisely.
The innovation performance of a technology cluster (𝐼𝑉 𝑃 , table 3.4) is measured by dividing the
number of patent citations (𝐶𝐼𝑇 , proxy for innovation output) by the number of inventors (𝐼𝑁𝑉 ,
proxy for innovation input). The number of inventors (𝐼𝑁𝑉 ) is calculated based on a count of
unique inventor names (first name and last name) with addresses in the cluster. A single inventor
can produce multiple patents and therefore the number of inventors serves as a proxy for the
number of researchers in the cluster. The number of researchers is a frequently used input variable
in knowledge production functions (Hagedoorn and Cloodt 2003; Ó hUallacháin and Leslie 2007).
A further advantage of using patent citations in the dependent variable is that it makes the innova-
tion performance indicator less sensitive towards quantitative patenting strategies and litigation-
focused patenting. When pursuing a quantity-based patenting strategy an inventor might disclose
knowledge in a large number of lower quality patents (which receive few citations) instead of filing
a small number of high quality patents (which receive many citations). Quantitative patenting
targets are used in China and other countries where institutions receive funding based on the
number of patents filed (Boeing, Mueller, and Sandner 2016). Another concern is that patents
are filed for the sake of blocking innovations or for potential future litigation (Meurer 2016). This
means that patent counts can be inflated in ways that do not reflect the underlying innovation
activity. Patent citations measure patent value and therefore they are less influenced by a quanti-
tative patenting strategy or by the filing of “frivolous” (and low-quality) patents for the purposes
of future litigation.
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Table 3.4: Cluster innovation performance indicator.

Dependent Variable Unit Measurement Definition
Innovation Performance, 𝐼𝑉 𝑃 Citations

per
Inventor

𝐼𝑉 𝑃 = 𝐶𝐼𝑇 /𝐼𝑁𝑉 , where 𝐶𝐼𝑇 is the number of
citations received by cluster patents (inventor
weighted) and 𝐼𝑁𝑉 is the number of unique
inventor names with addresses inside the
cluster.2

3.5.2 Cluster Agglomeration Characteristics

The agglomeration characteristics of clusters appear to have a close association with cluster in-
novation performance. As noted in chapter 2, agglomeration is typically approached from two
theoretical perspectives: a quantitative scale-based perspective (Marshall 1920) and a qualitative
perspective, whereby agglomeration depends on the presence of different types of innovation ac-
tors (universities, firms, public research institutions, venture capital, etc.), and the relationships
between them (Jacobs 1969; Acs, Audretsch, and Feldman 1994; McCann 2008). Agglomeration
effects can occur on different spatial scales, from a very local level (distance of a few km) to a
broader regional level (distance of around 50-200 km) (Anselin, Florax, and Rey 2013). Four
agglomeration indicators are included in the cluster innovation performance model and they mea-
sure the underlying concepts that are part of hypotheses 3-5. The indicators are cluster size and
adjacency, both scale-based agglomeration indicators (hypothesis 3), regional specialization (hy-
pothesis 4), and corporate research (hypothesis 5). An overview of the indicators, their units and
measurement definition is provided in table 3.5.
Cluster size (𝑃𝐴𝑇 ) is a scale-based agglomeration indicator based on the number of patents
invented in a cluster. A patent correction factor (𝐶𝑂𝑅𝑃𝐴𝑇 ) is applied to compensate for the
home bias effect. Patents with multiple inventors in different clusters are allocated proportionally
to each cluster.
Adjacency (𝐴𝐷𝐽) is a proximity indicator (Anselin, Florax, and Rey 2013) which measures the
influence of other nearby clusters. The indicator is a proxy for the neighborhood effect and is
calculated by adding the total number of patents from all other clusters located within 200 km
from the center of the cluster.3 The choice of 200 km as a maximum distance from the center of
the cluster is based on a sensitivity analysis which show that 400 km or 800 km distances lack
a statistically significant influence on the dependent variable. Sensitivity analysis is a commonly
used and accepted method to identify the cut-off distance for linear proximity indicator (Anselin,
Florax, and Rey 2013).
Regional specialization (𝑆𝑃 𝐸) is a measure of the relative size of the sectoral technology cluster
compared to the local region (all sectors). A high value of 𝑆𝑃𝐸 indicates that a particular sectoral
cluster accounts for a large share of local research output. A low value suggests that many other
sectors are also present in the local region. Low values are more likely to occur in urban areas

3The choice of 200 km from the center of the cluster fits with the observation by Acs, Anselin, and Varga (2002)
who observe research spillovers at 80.5 km (50 mi) beyond the borders of a metropolitan statistical area but not at
120.7 km (75 mi). If it is assumed that a metropolitan statistical border is located approximately 100 km from its
center, then the two observations validate each other.
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which have a large and diversified innovation landscape with multiple high technology industry
sectors (Capello 2009).
Corporate research (𝐶𝑅𝑃 ) is a qualitative agglomeration indicator that measures of the share
of cluster patents owned by private-sector actors (as opposed to patents held by universities and
government actors). The indicator serves as a proxy of a cluster’s absorptive capacity because
an actively innovating private sector suggests that firms located in the cluster have the capacity
to absorb and benefit from local knowledge spillovers (Capello 2009; Chang, Chen, and McAleer
2013; Qiu, Liu, and Gao 2017).

Table 3.5: Cluster agglomeration indicators.

Agglomeration Indicators Unit Measurement Definition
Cluster size, 𝑃𝐴𝑇 Patents Number of patents invented in the sectoral

cluster (inventor weighted). For non-US clusters,
𝑃𝐴𝑇 is multiplied by the patent correction
factor (𝐶𝑂𝑅𝑃𝐴𝑇 ).

Adjacency, 𝐴𝐷𝐽 Patents 𝐴𝐷𝐽 = ∑250
𝑟=0 𝑃𝐴𝑇𝑗 where 𝑃𝐴𝑇𝑗 is the total

number of same-sector cluster-based patents
within a 250 km radius (𝑟) of the
centroid/geographic center of the cluster. For
non-US clusters, 𝑃𝐴𝑇 is multiplied by the
patent correction factor (𝐶𝑂𝑅𝑃𝐴𝑇 ).

Regional specialization, 𝑆𝑃𝐸 Percentage
(share of
regional
patents)

𝑆𝑃𝐸 = 𝑃𝐴𝑇 /𝑇 𝑃𝑇 , where 𝑇 𝑃𝑇 is the number
of patents invented within the borders of the
cluster from all sectors. A high value of 𝑆𝑃𝐸
suggests that a particular sectoral cluster is
relatively large as compared to other sectoral
clusters located in the region.

Corporate research, 𝐶𝑅𝑃 Percentage
(share of
sectoral
cluster
patents)

𝐶𝑅𝑃 = 𝑃𝐴𝑇 −𝑃𝐴𝑇𝑈𝑁𝐼−𝑃𝐴𝑇𝐺𝑂𝑉
𝑃𝐴𝑇 where 𝑃𝐴𝑇𝑈𝑁𝐼

and 𝑃𝐴𝑇𝐺𝑂𝑉 are the number of university- and
government-held patents, respectively.
Government and university-held patents are
identified using a word list and the USPTO’s
assignee classification system (see appendix A.1).

3.5.3 National Innovation System

In addition to local and regional spatial agglomeration, national factors, such as the quality of the
national innovation system (hypothesis 6), also influence cluster innovation performance (Nelson
and Rosenberg 1993; Palmer et al. 2018). A number of national innovation indexes with inter-
national coverage have become available in recent years. In this study the quality of the national
innovation system is measured using data from the Global Competitiveness Index, one of the old-
est annually updated innovation indexes, which has been published by the Geneva-based World
Economic Forum since 2005 (Schwab and Sala-i-Martin 2015). Rather than using the aggregate
competitiveness index values, the twelfth pillar (innovation) is used, which is a composite scalar
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indicator (1-5) that combines equally weighted scores of national private and public sector re-
search investment, the quality of the higher education system, university-industry collaborations,
and protection of intellectual property for almost every country in the world (Porter et al. 2008;
Schwab and Sala-i-Martin 2015). In this study data from the 2011 Global Competitiveness Report
is used, which overlaps with the study period (see section 3.6.4).

Table 3.6: National innovation system indicators.

National Indicator Unit Measurement Definition
National Innovation System
Quality, 𝑁𝑆𝑄

None
(composite
indicator)

National measure of private and public sector
research investment, quality of higher education
system, university-industry collaborations, and
protection of intellectual property.

3.5.4 Inter-Cluster Knowledge Networks

The position of a technology cluster in global inter-cluster knowledge networks is seen as an
important factor associated with cluster innovation performance. Hypotheses 7-10 explore inter-
cluster knowledge flows and the reach and density of a cluster’s knowledge network (Asheim and
Gertler 2005; Boschma 2005; Malecki 2014). An overview of the four network indicators is shown
in table 3.7.
The first two network indicators explore the “import” and “export” of knowledge from clusters.
Knowledge inflow (𝑀𝑁𝐶, the “import” of knowledge) occurs when cluster-based organizations
acquire knowledge from outside the cluster. Such a situation arises when a multinational corpora-
tion headquartered in one cluster operates a remote lab in another cluster. Although remote labs
in foreign countries are a common feature of multinational corporations (Castellani, Jimenez, and
Zanfei 2013), public agencies and some universities also have research activities and permanent
facilities in multiple countries (Moulin 1992; Healey 2014). Conversely, knowledge outflow (𝐿𝐴𝐵,
the “export” of knowledge) occurs when knowledge developed inside the cluster is acquired by an
outside organization. Knowledge flows can be identified when the owners of a patent (assignees)
and the inventors are located in different clusters. The cluster where the patent was invented
“exports” knowledge to the cluster which owns the patent (the “importer”). Restating the afore-
mentioned using the terminology of social network analysis: 𝑀𝑁𝐶 is the weighted inbound degree
centrality of the inter-cluster inventor-assignee network and 𝐿𝐴𝐵 is the weighted outbound degree
centrality of the inter-cluster inventor-assignee network. To account for differences in cluster size,
both indicators are divided by the number if inventors (𝐼𝑁𝑉 ) in the cluster (Wasserman and Faust
1994).
The third and fourth network indicators measure the position of a technology cluster within the
inter-cluster co-invention network. The co-invention network is derived from patents with inventors
located in two or more different clusters. Network reach (𝑁𝐸𝑇𝑆), or simple degree centrality, is a
count of the number of different clusters that a cluster is connected to. Network density (𝑁𝐸𝑇𝑊 ),
or the weighted degree centrality, is a measure of the total number of knowledge network links per
inventor. While having a diverse network can help a cluster access diverse sources of knowledge,
a network too diverse and too dense may also act as a barrier to cluster innovation performance
(Boschma 2005)
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Table 3.7: Inter-cluster knowledge network indicators.

Network Indicators Unit Measurement Definition
Knowledge inflow, 𝑀𝑁𝐶 Network

links
Weighted inbound degree centrality of the
inventor-assignee network divided by the
inventors (𝐼𝑁𝑉 ) (Wasserman and Faust 1994).
Indicator is calculated using the iGraph package
in R (Csardi and Nepusz 2006)

Knowledge outflow, 𝐿𝐴𝐵 Network
links per
inventor

Weighted outbound degree centrality of the
inventor-assignee network divided by the
inventors (𝐼𝑁𝑉 ) (Wasserman and Faust 1994).
Indicator is calculated using the iGraph package
in R (Csardi and Nepusz 2006)

Network reach 𝑁𝐸𝑇𝑆 Network
links

Inter-cluster co-invention network simple degree
centrality (Wasserman and Faust 1994), or
rephrased: the number of unique co-invention
relationships a cluster has with other clusters .
Indicator is calculated using the iGraph package
in R (Csardi and Nepusz 2006)

Network density 𝑁𝐸𝑇𝑊 Network
links per
inventor

Inter-cluster co-invention network weighted
degree centrality divided by inventors (𝐼𝑁𝑉 )
(Wasserman and Faust 1994), or rephrased: the
total number of co-invention relationships a
cluster has with other clusters relative to the
number of inventors (𝐼𝑁𝑉 ) based in the cluster.
Indicator is calculated using the iGraph package
in R (Csardi and Nepusz 2006)

3.5.5 Path Dependence

Path dependence is thought to be an important determinant of the spatial distribution of inno-
vation activity: locations that have developed the institutions, human resources and social net-
works that support innovation tend to maintain their innovation advantages for long periods of
time because experience, skills, resources, relationships, and reputation accumulate (Crescenzi and
Rodrı́guez-Pose 2011; Frenken, Cefis, and Stam 2015). Path dependence is also addressed in hy-
pothesis 11 and 12. The measurement of path dependence is relatively simple: previous innovation
performance (𝐼𝑉 𝑃𝑃 ) is the value of the dependent variable during an earlier time period. A high
correlation between past and present innovation performance suggests strong path dependence.
The calculation of inventive performance is explained above in subsection 3.5.1.
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Table 3.8: Path dependence indicator.

Path Dependence
Indicator

Unit Measurement Definition

Previous innovation
performance, 𝐼𝑉 𝑃𝑃

Citations
per inventor

𝐼𝑉 𝑃𝑃 = 𝐶𝐼𝑇𝑃 /𝐼𝑁𝑉𝑃 , where subscript-𝑃
signifies the indicator values (citations, 𝐶𝐼𝑇𝑃
and inventors 𝐼𝑁𝑉𝑃 ) during the directly
preceding period.

3.6 Operationalization of Cluster Innovation Performance
Model

This section describes the operationalization of the cluster innovation performance model, starting
from a conceptual model. The cluster innovation performance model is composed of indicators
defined in the previous section (section 3.5) and is used to analyze the relationship between cluster
characteristics and cluster innovation performance. The section begins with a conceptual model
which describes how cluster characteristics relate to cluster innovation performance based on the
hypotheses formulated in chapter 2 (subsection 3.6.1). This is followed by a description of how
the model is operationalized, a process that includes a number of empirical tests to identify the
optimum model composition (subsection 3.6.2). The section concludes with a presentation of the
final implementation of the model, including model equations (subsection 3.6.3) and the selection
of the study periods (subsection 3.6.4).

3.6.1 Conceptual Model

Many of the hypotheses outlined in chapter 2 (hypotheses 3-12) explore the relationship between
cluster characteristics and cluster innovation performance. These relationships are illustrated
in the conceptual model shown in figure 3.1. The conceptual model has three dimensions: a
spatial dimension, a sector dimension and a time dimension, which form the external environment
that shapes the cluster and cluster innovation performance. The spatial dimension concerns the
agglomeration and national innovation system. The sector dimension concerns developments taking
place within the sector, including in other clusters, which are connected through global inter-
cluster knowledge networks. The time dimension concerns the accumulation of knowledge, skills,
experience, relationships, and other factors that create cluster path dependence. All of these
factors are seen to influence cluster innovation performance.
Relationships between different cluster characteristics and cluster innovation performance are
shown together with the relevant hypotheses, e.g. hypothesis 6 is marked as H6 in the model
diagram. The relationship between cluster innovation performance and agglomeration is the focus
of hypotheses 3, 4, and 5. Mutual (two-way) causality with agglomeration is assumed and is repre-
sented with a bi-directional arrow. Mutual causality in agglomeration may exist because economies
of scale are seen to influence cluster innovation performance, and in the reverse, high innovation
performance can attract new firms and researchers to a cluster, thus increasing agglomeration.
The relationship between cluster innovation performance and the national innovation system is
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addressed in hypothesis 6. It is seen as a one-directional influence because of the much larger size
of the national innovation system as compared to that of a technology cluster. In a similar way
path dependence (hypothesis 11 and 12) is seen as a one-directional influence because of the time-
factor involved: the past influences the present. The relationship with global knowledge networks,
which is addressed by hypotheses 7, 8, 9, and 10 is also seen as having mutual causality because
networks can raise innovation performance, and in the reverse, high innovation performance can
attract research collaborations or interest from multinational corporations.

Figure 3.1: Research model.

The combination of many different cluster characteristics in a single model is novel, however the
cluster characteristics included in this study were included in some form in earlier knowledge pro-
duction functions. For example, Charlot, Crescenzi, and Musolesi (2014) included agglomeration,
De Rassenfosse and Potterie (2009) national innovation system quality, Ponds, Oort, and Frenken
(2009) long-distance knowledge networks, and Crescenzi and Jaax (2017) path dependence as fac-
tors in knowledge production functions. To address these diverse cluster characteristics, several
partial models are also included in the model estimations. Aside from the diversity of the cluster
characteristics, the cluster innovation performance model used in this study also has a different
dependent variable: innovation performance. Innovation performance is operationalized in a way
that measures the innovation out-performance of a technology cluster relative to the available
knowledge inputs (inventors). This approach allows differences in the strength of association be-
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tween cluster characteristics and cluster innovation performance to be analyzed more clearly, the
importance of which is also elaborated upon in section 3.5.1.

3.6.2 Model Operationalization and Testing

Aside from deciding which indicators should be included in the cluster innovation performance
model, a number of other modeling decisions must also be made. These decisions are partly guided
by previous research and partly depend on empirical model testing using the cluster indicators
described in the previous section (section 3.5). Four main model operationalization challenges are
addressed in this section: the use of a dummy variables for the knowledge base of the sector, log
transformations of indicators, non-linear relationships, and interaction effects.
Dummy variables can be included in the model to account for differences between sectors with
a scientific or an engineering and design knowledge base. The large difference in patenting and
citation frequencies (Kleinknecht, Van Montfort, and Brouwer 2002; Hall, Jaffe, and Trajtenberg
2005; Kwon, Lee, and Lee 2017) makes it important to explore whether these differences have a
statistically significant influence on the innovation performance indicator. The model estimation
results in table B.1 (appendix B.1) show that the knowledge base accounts for a relatively small
share of the variation in cluster innovation performance. For the health technology and reference
high technology sectors is negligible, with adjusted 𝑅2 = 0.004 and 0.016 respectively. For the
sustainable energy technology sector is slightly higher (adjusted 𝑅2 = 0.091). Although the in-
fluence of the knowledge base on cluster innovation performance is relatively small, the dummy
variable is statistically significant in the sustainable energy and reference high technology models.
Therefore, it is included in the final model estimations (see subsection 3.6.3).
The second issue relates to the carrying out of natural logarithmic (log) transformations on indi-
cators. These transformations are also undertaken in other studies in which knowledge production
functions are estimated (Acs, Anselin, and Varga 2002; Ó hUallacháin and Leslie 2007; De Rassen-
fosse and Potterie 2009; Charlot, Crescenzi, and Musolesi 2014). A log-log regression whereby the
dependent variable and independent variables are log transformed compares percentage changes
in the independent variables to percentages changes in the dependent variable (Changyong et al.
2014). A comparison between a linear regressions and a log-log regression shows a better model
fit for the log-log regression, both for the health technology and for the sustainable energy sectors.
The adjusted Δ𝑅2 of the sustainable energy agglomeration and knowledge network model rises
from -0.010 to 0.205. See also tables B.2 to B.5 (appendix B.1) for detailed results.
The third model development issue concerns the assumption of non-linear associations between
the agglomeration and knowledge network indicators, and cluster innovation performance. From
a theoretical perspective agglomeration and knowledge networks can show scale effects (Morgan
2004; Boschma 2005; Capello 2009; Leamer and Storper 2014). To empirically assess the signifi-
cance of a non-linear relationship, log-quadratic model estimations can be undertaken whereby the
independent variables are log transformed and then squared; the dependent variable is only log
transformed. The log-quadratic model estimation results suggest that some non-linear relation-
ships may exist. For health technology agglomeration the log-quadratic model provides a negligible
improvement in model fit when compared to the log-log model (adjusted Δ𝑅2 = 0.093 as compared
to 0.091). In other instances the log-log model has a better model fit than the log-quadratic model.
The results are therefore inconclusive and the simpler log-log model is used for the final model
estimations. It is notable that the log-quadratic model show some negative coefficients, suggesting
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that saturation or declining returns to scale occur. See tables B.2 to B.5 (appendix B.1) for further
details.
The fourth and final model estimation issue is the possible existence of interaction effects. The
literature suggests that in small clusters very large networks may have an adverse effect on cluster
innovation performance (De Propris and Driffield 2005; Fu 2008; Chang, Chen, and McAleer 2013;
Ebersberger and Herstad 2013; Hottenrott and Lopes-Bento 2014). Network density and cluster
size are therefore compared in a log-log model and in a log-log interaction model, which contains
a cluster size-network density interaction term (both log transformed, see tables B.6 and B.7 in
appendix B.1). The interaction term is statistically significant for both sectors but does not raise
the model explanatory power. The interaction term is therefore not included in the final model
estimations.
The model operationalization steps described in this section lead to the inclusion of a dummy
variable for the knowledge base of the cluster and a log-log transformation because these yield a
noticeable improvement in model fit. The addition of an interaction coefficient and a log-quadratic
transformation, which are based on theoretical insights and which produce statistically significant
results, do not yield a noticeable improvement in model fit. They are therefore excluded from the
final model application, which is described in the next section.

3.6.3 Model Implementation

This subsection describes the cluster innovation performance model as it is implemented in chapters
5, 6, and 7, and includes the list of model indicators, the model formulae, and a discussion of the
model diagnostics test results. A summary of the model indicators described in section 3.5 is
described in table 3.9, All indicators are log transformed (see discussion in subsection 3.6.2).
The model uses summed 2008-2011 data with two exceptions: (i) for national innovation system
quality (𝑁𝑆𝑄) data from the 2011 edition is used and (ii) for previous innovation performance
(path dependence, 𝐼𝑉 𝑃𝑃 ) aggregate 2004-2007 data are used (the previous period). The selection
of model periods is discussed in subsection 3.6.4, below.
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Table 3.9: Cluster innovation performance model indica-
tors with transformations.

Indicator Description Variable Type Transformation
𝐼𝑉 𝑃 Innovation Performance Dependent Log
𝐷𝐾𝐵 Sectoral knowledge base dummy Control None
𝑃𝐴𝑇 Cluster size Independent 10-5 Log
𝐴𝐷𝐽 Adjacency Independent 10-5 Log
𝑆𝑃𝐸 Regional specialization Independent Log
𝐶𝑅𝑃 Corporate research Independent Log
𝑁𝑆𝑄 National innovation system quality Independent Log
𝑀𝑁𝐶 Knowledge inflow Independent Log
𝐿𝐴𝐵 Knowledge outflow Independent Log
𝑁𝐸𝑇𝑆 Network reach Independent 10-1 Log
𝑁𝐸𝑇𝑊 Network density Independent Log
𝐼𝑉 𝑃𝑃 Past innovation performance Independent Log

The cluster innovation performance model is estimated in five parts. For the first model estimation
only agglomeration indicators are included in the model. See equation (3.1) where 𝑖 is the cluster,
𝜖𝑖 is the error term and 𝛼 and 𝛽 are the model coefficients to be estimated.

𝐼𝑉 𝑃 = 𝛼 + 𝛽1𝐷𝐾𝐵 + 𝛽2𝑃𝐴𝑇 + 𝛽3𝐴𝐷𝐽 + 𝛽4𝑆𝑃𝐸 + 𝛽5𝐶𝑅𝑃 + 𝜖𝑖 (3.1)

In the second model estimation only the national innovation system indicator is included in
the model. See equation (3.2).

𝐼𝑉 𝑃 = 𝛼 + 𝛽1𝐷𝐾𝐵 + 𝛽2𝑁𝑆𝑄 + 𝜖𝑖 (3.2)

In the third model estimation only the knowledge network indicators are included in the model.
See equation (3.3).

𝐼𝑉 𝑃 = 𝛼 + 𝛽1𝐷𝐾𝐵 + 𝛽2𝑀𝑁𝐶 + 𝛽3𝐿𝐴𝐵 + 𝛽4𝑁𝐸𝑇𝑆 + 𝛽5𝑁𝐸𝑇𝑊 + 𝜖𝑖 (3.3)

In the fourth model estimation only the path dependence indicator is included as path depen-
dence tends to have a high correlation with the dependent variable (𝐼𝑉 𝑃𝑃 , 𝐼𝑉 𝑃 , 𝑅2 ~0.80). See
equation (3.4).

𝐼𝑉 𝑃 = 𝛼 + 𝛽1𝐷𝐾𝐵 + 𝛽2𝐼𝑉 𝑃𝑃 + 𝜖𝑖 (3.4)

In the fifth model estimation combines the agglomeration and knowledge network indicators
with the national innovation system indicator. Due to the often high correlation between network
reach and cluster size (𝑁𝐸𝑇𝑆, 𝑃𝐴𝑇 , 𝑅2 ~ 0.80), network reach is removed from the model. See
equation (3.5) (see also correlation matrices in tables B.8, B.12 and B.16, appendix B).
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𝐼𝑉 𝑃 = 𝛼+𝛽1𝐷𝐾𝐵+𝛽2𝑃𝐴𝑇 +𝛽3𝐴𝐷𝐽+𝛽4𝑆𝑃𝐸+𝛽5𝐶𝑅𝑃+𝛽6𝑁𝑆𝑄+𝛽7𝑀𝑁𝐶+𝛽8𝐿𝐴𝐵+𝛽9𝑁𝐸𝑇𝑊 +𝜖𝑖
(3.5)

The models are estimated using Ordinary Least Squares (OLS) regression. OLS regression is
considered a “standard” regression technique widely applied in different areas of science, ranging
from political science (Krueger and Lewis-Beck 2008) to bio-statistics (Harrell 2015). The validity
of OLS regression estimations are subject to a number of assumptions, including the absence of
multicollinearity among variables and normally distributed residuals (Harrell 2015). If the OLS
assumptions are violated, alternative regression techniques such as Quantile Regression (QR) or
Maximum Likelihood (ML) can be used (Harrell 2015). If there are endogeneity issues, Generalized
Method of Moments (GMM) model estimation techniques can also be applied (Hall 2005).

To confirm the validity of the OLS assumptions, model diagnostics for the health technology,
sustainable energy and reference high technology regression models are available in tables B.11,
B.15 and B.20 (appendix B). The model estimation results are within the accepted boundaries
for multicollinearity (Variance Inflation Factor < 2) and normally distributed residuals (Shapiro-
Wilk test 𝑝 < 0.10). Heteroscedasticity is not within the accepted boundaries for most model
estimations (Breusch-Pagan 𝑝 < 0.10) except for the health technology sector. Heteroscedasticity
issues mean that the values of the coefficients may be biased, although this does not appear
to influence the statistical significance of correlation in a meaningful way (Lumley et al. 2002;
Meuleman, Loosveldt, and Emonds 2015). Therefore, the basic assumptions of OLS regression are
being met, and the correlations in the model results are robust.

When applying OLS, robust standard errors are often used. Robust standard errors are suitable for
studies that consist of a relatively small sample of a much larger normally distributed population.
In this study the complete worldwide population of clusters is studied, and some of the cluster
indicators do not appear to be normally distributed, hence the “original” OLS standard errors are
used in this study (Wooldridge 2009, 268).

Statistical summaries of the model indicators and full model estimation results (including standard
errors) are discussed in their respective chapters for the health technology (chapter 5), sustainable
energy (chapter 6), and reference high technology sectors (chapter 7), and supplementary model
estimations are presented in appendix B.

3.6.4 Period Selection

The selection of the study periods is an important modeling decision because of the dynamic nature
of the sectors being studied and the desire to make cross-sectoral comparisons. In this study three
four-year periods are used. The latest period covers patents which were filed during 2008-2011 and
which were eventually granted.

A four-year period is chosen because patent output data often shows considerable variation from
year to year, mainly because patents are often applied for in groups near the end of a project or
research phase (Gautam, Kodama, and Enomoto 2014). This makes it useful to take an average
over a longer period of time. To compare, Alcácer and Zhao (2016) also use a four-year period
and Ó hUallacháin and Leslie (2007) use three years. Charlot, Crescenzi, and Musolesi (2014)
use 10 years, which would be too long for this study, which also aims to show temporal changes.
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The selection of specific time periods that match important sectoral events is complicated by the
fact that the research concerns multiple sectors and sub-sectors. For this reason the most recently
available four-year period is selected (2008-2011), and then earlier four-year periods are chosen
(e.g. 2004-2007, 2000-2003, etc.). During these periods some notable economic crises occurred,
including the 2000 “dot-com” crash and the 2008 mortgage crash, which both started in the
United States but had worldwide repercussions.

Describing 2008-2011 as “most recent” (while writing this dissertation in 2018) should be under-
stood within the context of the use of patent grants as the main data source. There can be a
delay of several years between patent application and patent grant. To ensure a complete data set
whereby an estimated 90% or more of patents are granted for a particular year, 2011 is considered
to be the most recent year at the time of writing. A related concern is the year of the patent
application and its meaning: is it equivalent to the year during which the innovation activity took
place? Prior research on this subject suggests that a patent is applied for between 1 to 3 years
after the actual research has taken place, with shorter patent submission times in high technol-
ogy sectors and in advanced economies (Hall, Griliches, and Hausman 1984; Greif 1985; Kondo
1999; Igor 2005; Gurmu and Pérez-Sebastián 2008). Therefore, each period (e.g. 2008-2011) may
describe a slightly earlier period of research and innovation activity.

3.7 Summary and Discussion

Both the cluster identification method and cluster innovation performance model described in this
chapter offer a number of improvements compared to earlier methodologies. This section will
focus on the cluster innovation performance model; the cluster identification method is discussed
in detail in the next chapter (chapter 4). The cluster innovation performance model differs from
earlier knowledge production functions in three main ways: the development and application of a
unique global database of technology cluster metrics based on patent data, the use of certain novel
indicators that describe cluster characteristic, and the use of a novel dependent variable that mea-
sures cluster innovation out-performance, changing how innovation performance is conceptualized
and measured.

The database of technology cluster metrics developed as part of this study is unique in a number of
ways. First, it provides information at the spatial scale of clusters and is global in scope. Second, it
provides information about technology clusters in niche sectors such as wind turbines or biofuels, as
well as broader technology clusters such as pharmaceuticals or electronics. Third, the indicators
capture many different cluster characteristics, including cluster size, cluster knowledge network
relations, innovation performance, and cluster composition in terms of innovation actor types
(corporations, universities, etc.). Fourth, the information can be gathered for multiple periods, in
the case of this study three four-year periods from 2000-2011. The scale, scope, sectoral specificity,
diverse cluster characteristics, and extended time periods make the database of technology cluster
metrics a unique resource. The database can be used for descriptive analysis, monitoring cluster
developments, and quantitative analysis, such as for example in a regression models of cluster
innovation performance.

Five novel indicators are introduced in this study: adjacency, regional specialization, corporate
research, knowledge inflow, and knowledge outflow. The indicators describe cluster character-
istics that have not previously been applied in knowledge production functions, or which were
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operationalized in different ways. Adjacency is a familiar concept in spatial analysis, however it
is operationalized differently in this study. Rather than measuring the “spillover” of innovation
performance from neighboring regions (Ó hUallacháin and Leslie 2007; Charlot, Crescenzi, and
Musolesi 2014), adjacency is operationalized as an additional scale-based agglomeration indicator
that measures the size of nearby same-sector clusters. This different approach is needed because
of the different way in which clusters are identified in this study, and it provides insight into
broader “regional” agglomeration beyond the boundaries of the cluster. Regional specialization,
another familiar concept, had not previously been incorporated in knowledge production func-
tions because these functions were typically applied to the region as a whole (all sectors) and not
to sector-specific clusters. Regional specialization is a measure of the relative size of the sector
compared to all sectors in a region. Corporate research was included as an indicator to represent
the inverse of government and university-based research output, which Ó hUallacháin and Leslie
(2007) concluded has a negative influence on cluster innovation performance. From a theoretical
perspective corporate research is seen as a measure of a cluster’s absorptive capacity (Fu 2008;
Lau and Lo 2015). Knowledge inflow and outflow were incorporated to capture the influence
of “reverse” knowledge flows (Frost and Zhou 2005), and were not previously incorporated into
knowledge production functions.
The sixth novel indicator, the dependent variable of the cluster innovation performance model,
is unique in its measurement approach and in its conceptualization of innovation performance.
In this study cluster innovation performance is measured based on patent citations instead of
patent counts. Citations represent the value of the innovations that were patented (Hall, Jaffe, and
Trajtenberg 2005). The number of patent citations is divided by the number of inventors, a measure
of the available knowledge inputs in the cluster. The innovation performance model therefore
predicts the innovation out-performance of a cluster based on its cluster characteristics. The ability
of the model to predict innovation out-performance varies depending on the sector being analyzed.
The model’s predictive power is understandably lower than that of knowledge production functions,
which predict knowledge production based on the available knowledge inputs (typically the number
of researchers/inventors), which are known to be highly correlated (Hagedoorn and Cloodt 2003).
Innovation performance, on the other hand, is a more precise dependent variable because the very
high correlation between knowledge inputs and knowledge production is eliminated from the model,
revealing the role of other cluster characteristics in explaining differences in cluster innovation
performance. The combination of a novel database of cluster metrics, novel indicators and a novel
approach to modeling cluster innovation performance provides a fresh empirical perspective, which
is applied in chapters 5-7 to the health technology, sustainable energy technology, and general high
technology sectors.
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Chapter 4

Cluster Identification

Note: An earlier version of the methodology described in this chapter was published in Sciento-
metrics (Stek 2021).

4.1 Introduction

This chapter provides a detailed description of the cluster identification methodology designed as
part of the current Ph.D. research. It expands on the brief overview of the cluster identification
methodology presented in chapter 3. As noted earlier, the innovation literature attaches great im-
portance to the sub-national regional scale, as well as global connections, and competition between
clusters, as factors that determine or coincide with high cluster innovation performance (Porter
2000; Fujita, Krugman, and Venables 2001; Simmie 2004; Gertler and Wolfe 2006). However,
global datasets at the sub-national or clusters scale are typically lacking. Even if they do exist,
the use of sub-national administrative divisions may show a poor overlap with actual innovation
activity (Alcácer and Zhao 2016; Van Egeraat et al. 2018). Furthermore, the spatial scale of na-
tional sub-divisions can vary greatly from country to country, making international sub-national
comparisons difficult. This creates a significant knowledge gap for researchers aiming to study
cluster-based phenomena on a global scale.
A potential solution for the identification of clusters on a global scale is the use of patent data, which
contains micro-spatial information. First, patenting plays an important role in the innovation
process because patents grant monopoly rights to inventors over a particular idea or design for a
fixed period of time. As a result, patent output is closely correlated to other measures of innovation
performance such as R&D expenditure or the number of active researchers (Hagedoorn and Cloodt
2003; Lanjouw and Schankerman 2004; Squicciarini, Dernis, and Criscuolo 2013). Alcácer and
Zhao (2016) therefore conclude that the spatial concentration of patenting is a clear indicator
of a technology cluster’s existence. Second, the micro-spatial information contained in patent
documents, such as addresses of inventors, enables the geo-location of patents at a sub-national
spatial level, typically at the level of a town or city, allowing spatial concentrations of patents
to be identified. Alcácer and Zhao (2016) describe the identification of clusters from patents
as an “organic” cluster identification methodology. The methodology described in this chapter
builds on that approach by using heat maps (kernel density estimation) to identify “hot spots” of
innovation activity, which are identified as clusters once a particular spatial concentration threshold
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is exceeded. Heat maps are widely used in spatial analysis in fields as diverse as epidemiology,
archaeology, and transportation safety (Bithell 1990; Baxter, Beardah, and Wright 1997; Anderson
2009), but they appear to be absent from scientific studies of innovation activity. This chapter
demonstrates that using heat maps is an effective way of identifying technology clusters and that
the methodology’s performance in terms of “correctly” identifying clusters matches or exceeds the
performance of alternative approaches.
The chapter begins with a review of earlier studies in which patent data are used to identify
technology clusters (section 4.2). Based on this review a set of design criteria is formulated for a
new cluster identification methodology (section 4.3). The main steps of the methodology, including
data selection, and the process of geocoding patents is discussed next (section 4.4). Thereafter
a sensitivity analysis is carried out to find suitable parameter values for the cluster identification
algorithm (section 4.5). The chapter ends with a discussion in which the new methodology is
evaluated against the design criteria outlined earlier in the chapter (section 4.6).

4.2 Overview of Cluster Identification Methodologies and
Current Limitations

Researchers of technology and innovation seeking to understand the spatial dynamics of innovation
activity at the cluster level often face data-related challenges. This section provides an overview
and limitation of the data sources available for cluster identification and analysis. The two types of
data sources are regional statistical data and clusters identified from scientometric data (including
patents). There are two main approaches to identifying clusters: relative spatial concentration
within pre-defined boundaries and the “organic” cluster identification method based on real spatial
concentration (Alcácer and Zhao 2016).
The Organisation of Economic Cooperation and Development (OECD) and European Union (EU)
publish sub-national regional statistical data that covers aspects of research and innovation in
multiple countries. However, these datasets typically exclude emerging sectors such as renewable
energy technologies and fast-developing non-OECD countries in Asia and elsewhere. Furthermore,
detailed statistics on technology and innovation tend to be available only at the national level.
Alternatives statistical databases such as those from the World Bank and United Nations Edu-
cation, Scientific and Cultural Organisation (UNESCO) Institute for Statistics tend to cover a
greater number of countries, but they do not provide sub-national data and often have more lim-
ited statistics on technology and innovation. This data deficit makes it difficult, if not impossible,
to explore a sector’s true global spatial distribution using statistical databases.
Patents are frequently used as a proxy for innovation output, including at the sub-national level
of regions or cities (Bergquist, Fink, and Raffo 2017; Crescenzi and Jaax 2017). The use of patent
data can overcome some of the limitations of statistical data: patent data are global in scale and
patents often contain geographical information such as an inventor address, which allows for the
identification of a city or other sub-national spatial unit (Alcácer and Zhao 2016; Bergquist, Fink,
and Raffo 2017). Patents are the “paper trail” of innovation activity (Jaffe, Trajtenberg, and
Henderson 1993) and patent data has been widely used in spatial studies of innovation since the
1990s, whereby patent counts typically serve as a proxy for innovation activity in a particular area
or region Charlot, Crescenzi, and Musolesi (2014). This makes patents a very promising source of
data to monitor global innovation activity at a sub-national scale.

56



Despite its potential, the use of patent data also raises methodological concerns. Patent count data
are sensitive to differences in patenting propensity between industry sectors, which means that a
gross patent count is not necessarily an accurate reflection of innovation activity (Arundel and
Kabla 1998; Kleinknecht, Van Montfort, and Brouwer 2002; Hall, Jaffe, and Trajtenberg 2005).
Another concern is that there are significant differences in patenting propensity between countries
due to economic and governance factors (Yang and Kuo 2008; De Rassenfosse and Potterie 2009).
There is also a home bias effect, whereby the number of patents and patent citations from the
home country are inflated in the home country’s patent database because local inventors will
usually patent their inventions locally first. Local patents are also cited more frequently, both
by local inventors and by local patent examiners (Potterie and De Rassenfosse 2008; Bacchiocchi
and Montobbio 2010). Using patent data from multiple countries also has drawbacks because it
introduces variations in patent evaluation standards: different countries maintain different criteria
for granting patents. This difference in standards inflates the number of granted patents in some
countries, such as China, Japan, and South Korea, when compared to the United States or the
European Patent Office, which maintain more stringent criteria (Laurens et al. 2015; Toivanen
and Suominen 2015). Especially if patent data are used in the measurement of various cluster
characteristics, such concerns must be addressed.

There are two approaches in the economic geography literature for the identification of technology
clusters: (i) by measuring relative concentration within predefined spatial boundaries, and (ii)
using the actual spatial concentration of specific points within a data set (e.g. plant locations,
inventor locations, etc.) to define new boundaries of high spatial concentration (Clark and Wójcik
2018). This last methodology is also described as “organic” cluster identification (Alcácer and
Zhao 2016).

The first approach involves identifying clusters using pre-existing statistical boundaries such as:
states, Metropolitan Statistical Areas (MSA, United States), Nomenclature of Territorial Units for
Statistics (NUTS, European Union), statistical divisions and subdivisions (Australia), prefectures
(Japan), departments (France), etc. The use of pre-existing boundaries has advantages and disad-
vantages. The advantage of pre-existing boundaries is that scientometric data can be coupled to
other statistical data such as R&D expenditure, labor market information, income levels, etc. For
that reason Ó hUallacháin and Leslie (2007), Spencer et al. (2010) and Charlot, Crescenzi, and
Musolesi (2014) all utilize pre-existing regional boundaries as cluster boundaries.

The disadvantage of using pre-existing boundaries is that the scales of the statistical boundaries
can vary significantly, especially when international comparisons are attempted (a “province” in
China is many times larger than a “province” in the Netherlands or South Korea). Furthermore,
a concentration of R&D activity may spill over into multiple pre-existing boundaries by being
located in multiple provinces/states, thus diluting it. R&D activity can also occur in a small
part of a province/state, which can then dilute the concentration of innovation activity for that
province/state. An average value for a particular area may hide large differences between different
locations within it.

An alternative to using pre-existing statistical or administrative boundaries is to identify cluster
boundaries based on the actual concentration of patenting. This “organic” clustering approach
(Alcácer and Zhao 2016) is especially advantageous in international research because it overcomes
the challenge of using differing statistical boundary sizes for different countries. The approach also
avoids potential dilution or distortions due to the use of inappropriate boundaries (Alcácer and
Zhao 2016; Bergquist, Fink, and Raffo 2017; Van Egeraat et al. 2018).
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However, there are some potential pitfalls from the use of patents for cluster identification. Stek
(2019) shows that it can lead to the identification of (very) large clusters, because R&D activity
tends to follow patterns of urbanization, which can yield very large cluster-corridors, such as
from Boston to Philadelphia via New York (United States), Tokyo-Nagoya (Japan), and even
Cologne-Frankfurt-Zurich (Europe), which stretch the definition of “spatial proximity” and thus
what constitutes a cluster. This requires the careful calibration of a clustering algorithm to ensure
that the identified clusters are accurate, something that can be achieved by imposing a maximum
cluster size, a technique used in identifying spatial clusters of infectious diseases (Han et al. 2016;
Ma et al. 2016).
Another problem is the choice of data source. Bergquist, Fink, and Raffo (2017), in a study
published by the World Intellectual Property Organization (WIPO), use the WIPO Patent Coop-
eration Treaty (PCT) database, which appears to inflate the patent output of clusters in countries
such as China, Japan, and South Korea (Laurens et al. 2015), and excludes Taiwan, presumably
for political reasons.
To assess the quality of their organic clustering algorithm, Alcácer and Zhao (2016) propose a
benchmark based on collaboration distance to see if a higher number of collaborators located in
close proximity to each other are also found within the same cluster. Alcácer and Zhao (2016)
calculate which percentage of co-inventors located within 10-20 mi (16-32 km) from each other
are classified as being within the same cluster, and which percentage of co-inventors located more
than 20 mi (32 km) apart are located in different clusters. While the 16 and 32 km distance
is somewhat arbitrary, it does provide a uniform benchmark for comparing the performance of
different clustering methodologies. Alcácer and Zhao (2016) use this approach to show that organic
cluster identification methodologies perform better than pre-defined cluster boundaries.

4.3 Design Criteria

The overview presented in the previous section shows some clear advantages of using an organic
cluster identification methodology, but it also highlights a number of limitations that a new and
improved methodology should address. These limitations are: (i) accurately linking cluster patents
to innovation performance without incorporating home biases and other measurement errors (ii)
ensuring that the identified cluster boundaries are reasonable in their spatial scale, and (iii) ver-
ifying that the identified cluster pattern is an accurate reflection of real spatial interactions at
the cluster scale. These three limitations are translated to design criteria for the new clustering
methodology, along with a desire to ensure the methodology can be widely used by policy makers
and other interested parties.

1. Use a single source of patent data to ensure a uniform standard of patent evaluation (Laurens
et al. 2015; Toivanen and Suominen 2015), but apply some kind of correction to address the
problem of the home bias effect (Bacchiocchi and Montobbio 2010).

2. Analyze single industries or sectors to address the problem of varying patenting propensities
(Kleinknecht, Van Montfort, and Brouwer 2002; Hall, Jaffe, and Trajtenberg 2005).

3. Optimize the clustering algorithm parameters to identify realistic clusters, such as imposing
a maximum cluster size (Han et al. 2016; Ma et al. 2016).
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4. Performance of the new clustering algorithm is similar or better than those of existing
methodologies (fewer errors), especially when compared to using predefined cluster bound-
aries.

5. The clustering algorithm is automated and underlying data are publicly available so that it
can be used for the mapping and observation of technology clusters by policy makers and
other stakeholders.

The data processing methodology presented below (section 4.4), and the calibration and sensitiv-
ity analysis that follows (section 4.5), are guided by these design criteria. The methodology is
evaluated against the design criteria in the discussion (section 4.6).

4.4 Data and Data Processing

This section describes the steps taken to prepare the patent data before the clustering “heat map”
algorithm is applied. First the source of patent data is discussed (subsection 4.4.1), followed by the
patent geocoding process (subsection 4.4.2), the home bias correction process (subsection 4.4.3),
and the sectoral delineation of patent data. The calibration and sensitivity analysis of the “heat
map” algorithm itself is described in section 4.5

With regard to the clustering algorithm, all data processing, calculations, and spatial analysis
in this chapter and in later chapters are performed using a combination of R statistical software
(R Core Team 2019), MySQL database software (Widenius, Axmark, and Arno 2002) and QGIS
spatial analysis software (QGIS Development Team 2019). The MySQL database is used to store
and analyze the patent data. R is used to extract and organize this data and to transform it into
spatial data which can then be processed and analyzed in QGIS. The heat map interpolation and
cluster identification is carried out in QGIS. Spatial cluster data are re-imported into R for further
analysis.

4.4.1 Patent Data

Patent databases contain patents from different countries, provide a significant level of detail
about the technologies involved, cover long time series during which evaluation criteria used by
patent examiners have remained essentially unchanged and patents contain information about the
inventors and patent owners (Schmoch 1999; Acs, Anselin, and Varga 2002). This means that
patents can provide a large amount of information at a temporal and spatial scale unmatched by
other data sources and be used as raw data for a range of useful applications, as shown earlier in
table 3.1. However, challenges arise when deciding which patent database to choose (or whether
to use multiple patent databases) and how to address the home bias effect (Yang and Kuo 2008;
Bacchiocchi and Montobbio 2010).

The most important patent databases are those of the USPTO, EPO and the Japan Patent Office
(JPO) because these countries are important markets for, and important generators of, high-
technology inventions (Frietsch and Schmoch 2009; Kim and Lee 2015). Choosing a single patent
database introduces a particular country’s home bias, but the advantage is that a single patent
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evaluation standard is followed, which improves the validity of making international comparisons
(Criscuolo 2006; Toivanen and Suominen 2015).

An alternative to using a single database are the database of “triadic patents.” Triadic patents
appear in the databases of the USPTO, EPO and JPO. This approach appears to eliminate any
home bias effect, but the number of triadic patents is very small, as only the most valuable patents
are filed at all three patent offices (Criscuolo 2006). Therefore, significant patenting activity can
go undetected, especially innovation activity from emerging countries where patent quality is often
lower (Frietsch and Schmoch 2009). As an example, an emerging economy such as India had 2,669
patent grants at the USPTO (2016) but only 359 triadic patents (13%) in the same year (source:
OECD, 2016).

Previous technology cluster identification studies have used a variety of scientometric databases.
Alcácer and Zhao (2016) and Bergquist, Fink, and Raffo (2017) use two global patent databases,
the Derwent World Patents IndexTM and Patent Cooperation Treaty (PCT) database. Global
databases carry a degree of bias, notably the very high presence of South Korean, Japanese and
Chinese patents due to different rules for patent approval in those countries (Laurens et al. 2015;
Boeing, Mueller, and Sandner 2016). This is problematic for the purposes of identifying and
quantifying clusters, because it overstates the cluster size in these countries. Bergquist, Fink, and
Raffo (2017), using WIPO’s PCT database, estimates that of the 10 largest clusters, 6 are in Japan,
China and/or South Korea. The present study places only 3 of the 10 largest clusters in these three
countries and also includes Taipei, Taiwan as a top 10 cluster. The data used by Bergquist, Fink,
and Raffo (2017) seems to exclude Taiwan, which is not a signatory to the PCT and is therefore
excluded from the database. Catini et al. (2015) uses the PubMed scientific publications database,
which has as a limitation in that it is only relevant for the medical sciences.

This study uses a national patent database because of the consistency in standards (Toivanen and
Suominen 2015) which is important when making quantitative comparisons between countries.
However, national databases suffer from a home bias effect (Potterie and De Rassenfosse 2008;
Bacchiocchi and Montobbio 2010), an issue addressed in subsection 3.3.3. Among the three major
national patent databases (EPO, JPO, USPTO) the USPTO has the greatest international cov-
erage (Kim and Lee 2015) and it is therefore selected in this study. Specifically the PatentsView
database is used, which is published by the Office of Chief Economist in the USPTO and contains
data on 6,647,699 patent grants from the USPTO (May 2018 edition).1 The delay between patent
application and grant means that the most recent year for which full patent grant data are available
is 2011 (as at time of writing of this dissertation).

The PatentsView database contains basic bibliographic information of patent documents such
as patent identification numbers, application dates, inventors and assignees, the city, state and
country of inventors and assignees, and patent citations, along with technological classifications.
The citations a patent receives are from other granted patents and can serve as an indicator of
patent value (Hall, Jaffe, and Trajtenberg 2005). In this study patent citations are used as part
of the dependent variable. Patent inventor and assignee addresses and technological classifications
are essential for the cluster identification process. The technological classifications link a patent
to a particular industry based on a concordance table. The address enables the identification of a
geographic location of where the innovation activity took place that led to the patent application.

1The PatentsView database tables can be downloaded at: http://www.patentsview.org/download/ (accessed 24
March 2019)
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4.4.2 Patent Geocoding

Patent geocoding is the process of assigning spatial coordinates to an address listed on a patent
document. In deciding which address to use to identify clusters, there is a non-trivial reason
for using the addresses of inventors (individuals who carried out the R&D) rather than assignees
(typically firms that financed the R&D). Inventors’ location provides information about where the
R&D took place whereas the assignee location provides information about who owns the inventions.
Given the globalization of R&D activity, assignees and inventors are frequently found in different
countries. Assignees may also be located in tax havens such as the British Virgin Islands or Cayman
Islands, which have very small economic and R&D activity. Accordingly, inventor location is used
to identify R&D activity because it reflects the most likely “true” location of where the R&D was
carried out.
To identify areas of high R&D activity, inventor address information is converted into coordinates
through a geocoding process. For example, the address “Delft, The Netherlands” is converted into
the coordinates 51.9995142, 4.2938295. Although the PatentsView database does provide coordi-
nates for patent addresses, upon closer examination a number of these appear to be inaccurate.
There are cases of patent coordinates being in a different country than the country listed in the
address. There are also instances where coordinates are based on incomplete address information
and therefore based on a country or state level, and not at that of a town or city. For example,
a patent with an address of only “California” or “Canada” is geolocated in the geographic center
of the state or country concerned, distorting the data. By screening the PatentsView database for
these errors, it appears that approximately 6.5% of PatentsView addresses worldwide have such
an issue. They are geocoded once again in this study. The re-geocoding process is elaborated
upon in table 4.1. Re-geocoding raises the number of addresses that can be accurately geolocated
from 93% to 96% of the PatentView database. Inventors or assignees whose address cannot be
accurately geolocated are removed from the database, a measure which affects fewer than 1% of
patents.

Table 4.1: Patent address geocoding method used in this
study.

Step Geocoding process
1 Addresses in countries or territories which are less than 20,000 km2 in size are

automatically assigned a single coordinate location. The largest entity among this
group is New Caledonia (18,575 km2), also included are entities such as Kuwait,
Montenegro, Qatar, Cyprus, Puerto Rico, Luxembourg, Hong Kong and Singapore.

2 Coordinates are checked based on (i) whether they are located in the same country as
the country stated in the original address and (ii) whether they are based on a
country-level or state-level location, rather than a city-level location. Any mis-coded
or uncoded addresses (lacking coordinates) are then subject to (re)geocoding in step
3.
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Step Geocoding process
3 Addresses are geocoded using the open-source TwoFishes geocoding application

(using index files updated on 2015-03-05).2 TwoFishes is a course spatial geocoder
and is used and maintained by FourSquare Labs Inc., a company that operates a
popular local search-and-discovery service mobile application. An important
advantage of TwoFishes is that it is open source and therefore its geocoding results
are reproducible. Twofishes has scientific credibility and has been used in published
and peer-reviewed scientific papers (Sessions et al. 2016; Hamstead et al. 2018) and
it is listed in The SAGE Handbook of Social Media Research Methods (Sloan and
Quan-Haase 2017).

4 As an added screening, clusters identified in areas with no significant population
center are subject to additional scrutiny and often lead to the identification of
miscoded locations (false positives). This problem seems to occur primarily in South
Korea and Japan where 11 miscoded locations are identified, including Daejeon,
Yokkaichi, Kurashiki, Nara, Sendai, Kanagawa and Tochigi. Catini et al. (2015) also
noted challenges in geocoding Japanese and Korean addresses. These miscoded
locations are manually corrected in the geolocation database by changing the
coordinates of the 11 locations.

4.4.3 Location Weighting and Home Bias Correction

After geolocating inventor addresses, a location weighting and home bias correction are carried
out, for patents and citations. The location weighting is calculated through the fractional counting
of patents and represents the magnitude of the innovation activity in a particular location. The
home bias correction factor adjusts the number of patents and citations counted outside the United
States to enable a comparison between American and other clusters.
The fractional counting of patents for the location weighting works as follows. Each identified
location 𝑖 has a weighting (𝑃𝑇 𝑊𝑖) based on the number of inventors with an address in a location
(𝐼𝑁𝑉𝑖𝑗) divided by the total number of inventors of the patent (𝐼𝑁𝑉 𝑇𝑗). Thus if all the patent’s
inventors are in the same location, 𝑃𝑇 𝑊𝑖 = 1. This amount is then summed for all patents 𝑘 for
each location location 𝑖, as described in (4.1). An example calculation: a patent with 3 inventors,
2 of whom have an address in “Delft, The Netherlands” would add a weighting of 2/3 = 0.67 to
the location of “Delft, Netherlands” (51.9995142, 4.2938295).

𝑃𝑇 𝑊𝑖 = ∑
𝑘=0

𝐼𝑁𝑉𝑖𝑗/𝐼𝑁𝑉 𝑇𝑗 (4.1)

Once the location weighting is calculated, a home bias correction can be performed. The home bias
of the USPTO data used in this study means that patents with inventors located in the United
States are over represented in terms of the number of patents appearing in the database and the
number of citations per patent (Potterie and De Rassenfosse 2008; Bacchiocchi and Montobbio
2010). The home bias is compensated for by correcting the patenting frequency and citations
frequency of non-United States invented patents.
The correction factors (patents and citations) are calculated by comparing United States-invented
patents to Japan-invented patents in the USPTO database. Japan is chosen because its qualita-

62



tive patenting profile is most similar to that of the United States (Mancusi 2008; Toivanen and
Suominen 2015). Therefore, differences between Japan and United States-invented patents can
be attributed primarily to the home bias effect, rather than to other technological or economic
factors. The correction factors are calculated based on national averages to increase robustness
and avoid potential sectoral distortions: while both countries have a similar patenting profile at
the aggregate level, notable sectoral differences likely exist, and therefore a correction factor based
on sectoral data are likely less robust.
The patent output correction factor (𝐶𝑂𝑅𝑃𝐴𝑇 ) is based on a comparison of the ratio of researchers
to patent output for Japan and the United States. If there is no home bias effect, advanced
economies with a comparable patenting profile should have a very similar ratio of patent output
to researchers, because the same inputs (researchers) should lead to similar outputs (patents).
𝐶𝑂𝑅𝑃𝐴𝑇 is calculated using equation (4.2), whereby 𝑃𝐴𝑇𝑈𝑆 is total number of United States-
invented patents, 𝑅𝐸𝑆𝑈𝑆 is the total number of researchers in the United States, 𝑃𝐴𝑇𝐽𝑎𝑝𝑎𝑛 is the
total number of Japan-invented patents and 𝑅𝐸𝑆𝐽𝑎𝑝𝑎𝑛 is the total number of researchers in Japan.
The number of researchers and USPTO patent count data (by inventor residence) are obtained
from the UNESCO Institute of Statistics3 and the USPTO PatentView database, respectively.

𝐶𝑂𝑅𝑃𝐴𝑇 = (𝑃𝐴𝑇𝑈𝑆/𝑅𝐸𝑆𝑈𝑆)/(𝑃𝐴𝑇𝐽𝑎𝑝𝑎𝑛/𝑅𝐸𝑆𝐽𝑎𝑝𝑎𝑛) (4.2)

The citations per patent correction factor (𝐶𝑂𝑅𝐶𝐼𝑇 ) is based on comparing citations and patents in
the United States and Japan. Advanced economies with a comparable patenting profile should have
a very similar average patent quality and patent citation ratio at the same patent office. Therefore,
differences in the patenting citation ratio using USPTO data can be attributed to home bias.
𝐶𝑂𝑅𝐶𝐼𝑇 is calculated using equation (4.3), whereby 𝐶𝐼𝑇𝑈𝑆 is total number of citations received
by United States-invented patents, 𝑃𝐴𝑇𝑈𝑆 is the total number of United States-invented patents,
𝐶𝐼𝑇𝐽𝑎𝑝𝑎𝑛 is the total number of citations received by Japan-invented patents and 𝑃𝐴𝑇𝐽𝑎𝑝𝑎𝑛 is
total number of Japan-invented patents. The variables are calculated using 1996-2011 data from
the PatentView USPTO database.

𝐶𝑂𝑅𝐶𝐼𝑇 = (𝐶𝐼𝑇𝑈𝑆/𝑃𝐴𝑇𝑈𝑆)/(𝐶𝐼𝑇𝐽𝑎𝑝𝑎𝑛/𝑃𝐴𝑇𝐽𝑎𝑝𝑎𝑛) (4.3)

Correction factors are calculated for four periods, as shown in table 4.2 below. The values show
a discernible trend of falling home bias in the patent output correction factor (𝐶𝑂𝑅𝑃𝐴𝑇 ) and
rising home bias in the citations per patent correction factor (𝐶𝑂𝑅𝐶𝐼𝑇 ). This trend is also visible
when the coefficients are calculated on an annual basis, or when using data for other countries
(Germany, South Korea, Taiwan) and therefore these changes appear to be systematic, although
their cause is unknown. Because of this trend, different correction factor values are used for each
period. The correction is made by multiplying non-United States patent or citation counts by
the relevant correction factor. The correction factors are selectively applied throughout the study
whenever patent or citation counts are used.

3Database titled ‘Science,technology and innovation: Gross domestic expenditure on R&D (GERD), GERD as
a percentage of GDP, GERD per capita and GERD per researcher’ is available from: http://data.uis.unesco.org/
(last accessed 1 October 2019)
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Table 4.2: Correction factors for four periods (own cal-
culations).

Period 𝐶𝑂𝑅𝑃𝐴𝑇 𝐶𝑂𝑅𝐶𝐼𝑇

1996-1999 1.93 1.89
2000-2003 1.60 2.05
2004-2007 1.45 2.14
2008-2011 1.29 2.47

In case of the earlier example for Delft, Netherlands, (51.9995142, 4.2938295) in the main text, the
corrected patent weight (𝑃 𝑇 𝑊 ′𝑖) would be calculated as shown in equation (4.4), Whereby 𝑘 is
the total number of patents 𝑗 in a location 𝑖 with a particular share of inventors (𝐼𝑁𝑉 ) relative to
the total number of inventors of the patent (𝐼𝑁𝑉 𝑇𝑗) and 𝐶𝑂𝑅𝑃𝐴𝑇 is the patent correction factor
as shown in table 4.2.

𝑃𝑇 𝑊 ′
𝑖 = ∑

𝑘=0
𝐼𝑁𝑉𝑖𝑗/𝐼𝑁𝑉 𝑇𝑗 × 𝐶𝑂𝑅𝑃𝐴𝑇 (4.4)

4.4.4 Sectoral Delineation

An important advantage of using patent data is the ability to identify patents related to specific
industries or technologies. The PatentsView database, used in this study, contains various techno-
logical classifications. In addition to national classifications, the International Patent Classification
(IPC) and Collaborative Patent Classification (CPC) are also available. The IPC system is main-
tained and regularly updated by the World Intellectual Property Organization (WIPO) in Geneva,
of which most national patent offices are a member. The CPC is a joint initiative of the USPTO
and EPO and involves the creation of new technology classes for renewable energy technologies
and other green house gas reducing inventions (Y-classes). Technological classes are assigned by
patent examiners at the respective patent office at which the patent is filed.

To link patent technology classifications to specific industry sectors requires a concordance table.
Using a probabilistic methodology based on text mining, Lybbert and Zolas (2014) have devel-
oped technology-industry concordance tables that incorporate all levels of industry classifications,
including for the International Standard Industry Classification (ISIC). ISIC is a classification
maintained by the United Nations Department of Economic and Social Affairs Statistics Division
(UNSD) in New York and is used by countries to classify economic activity. The ISIC system
consists of a range of groups and (sub)divisions. Because the ISIC system is applied to the entire
economy and used by national and international government agencies, it is only updated every
few years. Therefore, ISIC lacks coverage of niche or emerging sectors. This void can be filled by
the identifying such niche sectors using specific patent classes. Some examples follow which are
relevant for this study. The Organization for Economic Co-Operation and Development (OECD)
identifies patents related to emerging high technology industry sectors, including Nanotechnology
and Biotechnology (OECD 2013). The CPC has the aforementioned Y-classes related to Photo-
voltaics, Wind Turbines, and other emerging green house gas-reducing technologies (Leydesdorff et
al. 2014). The Australian patent office, IP Australia in Canberra, identifies a number of niche sec-
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tors related to the growth of the Australian medical devices and pharmaceuticals sectors, including
the medical life sciences in some of its research reports (IP Australia 2014, 2015).

Emerging health technology and sustainable energy technology sectors are the focus of this study.
Two emerging healthcare sectors are identified: medical devices and the medical life sciences. The
medical devices sector is defined by ISIC group 266 (manufacture of irradiation, electromedical and
electrotherapeutic equipment) and group 325 (manufacture of medical and dental instruments and
supplies). The medical life sciences sector is identified based on the CPC classifications proposed by
IP Australia (2015), which partially overlaps with the CPC codes linked to biotechnology (OECD
2013) and pharmaceuticals (Lybbert and Zolas 2014). Seven sustainable energy technology sectors
are also included in the study: biofuels, electric vehicles, energy storage, fuel cells, hydrogen
technology, photovoltaics and wind turbines. All sustainable energy sectors are identified based on
the CPC Y-class codes. All sectors with 600 or more patent grants between 2008-2011 are included
in the study. This minimum threshold is set to ensure sufficient data are available to carry out
spatial and network analysis. Table 4.3 provides an overview of the ISIC or CPC classes for the
sustainability technology sectors

In addition to the aforementioned sustainability technology sectors ten reference sectors are also
included in the study. They are used as a benchmark in chapter 7. Among these benchmark sectors
there are eight high-technology and R&D intensive ISIC sectors (Galindo-Rueda and Verger 2016)
and Biotechnology and Nanotechnology, which are generic advanced technologies that have a wide
application across different industries (OECD 2013). The high technology ISIC sectors include the
defense sector, which is a special case due to its close government links and national security role.
The defense industry has also been an important driver of technological advancement, including
in communications technology and aviation (Chakrabarti and Dror 1994). The defense sector
combines ISIC groups 252 (Manufacture of weapons and ammunition) and 304 (Manufacture of
military fighting vehicles). ISIC sector-related patents are identified based on the concordance
tables of Lybbert and Zolas (2014). Table A.1 (appendix A.2) shows a summary of the ISIC or
CPC identification classes for the reference sectors. Note that there is some overlap in patents
between the Medical Life Sciences and Biotechnology sectors: the majority of Medical Life Science
patents are also included in the more broadly defined Biotechnology sector.

Table 4.3: Sustainability technology sectors with their
respective ISIC or CPC identification classes.

Sector Name Identification classes
Medical Devices ISIC group 266 and 325
Medical Life Sciences CPC classes C07K, C07H 21, C12N, A61K 35, 38, 39 and 3171.
Biofuels CPC class Y02E 50/10
Electric vehicles CPC class Y02T 10/64, 10/70 and 10/72
Energy storage CPC class Y02E 60/10
Fuel cells CPC class Y02E 60/50
Hydrogen technology CPC class Y02E 60/30
Photovoltaics CPC class Y02E 10/50
Wind turbines CPC class Y02E 10/70
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4.5 Cluster Identification Methodology Parameter Cali-
bration

The “heat map” cluster identification algorithm used in this study requires the calibration of
an interpolation range (𝑅) and concentration threshold (𝑇 ) parameter, a process described in
subsection 4.5.1. These parameters, which are calibrated using a complete patent data set (all
sectors), are subsequently applied to the respective sectors in order to evaluate their performance
(subsection 4.5.2) . The calibration exercise is based on three criteria: maximum cluster size,
performance of the clustering algorithm and the number of clusters (ensuring small clusters are
also detected). The sensitivity analysis is carried out by varying the interpolation range and
concentration threshold using values that seem reasonable based on the literature, and which
clearly show an optimum (at least one value lower and one value higher). A total of four different
values is explored for each parameter, leading to 16 possible combinations, of which one is optimal
(interpolation range 𝑅 = 25 km, concentration threshold 𝑇 = 97.5%).

4.5.1 Calibration and Sensitivity Analysis

The “heat map” approach is formally known as the Kernel Density Estimation (KDE) method
(Rosenblatt 1956; Parzen 1962; Davies, Marshall, and Hazelton 2018), a spatial interpolation
technique frequently used to spatially compile data about phenomena such as crime levels, traffic
accidents, property values as well as temperature, from which the “heat map”-terminology origi-
nates. Areas with frequent occurrences, high prices or high temperatures are assigned high values
on the heat map, and can be identified as “hot spots.” Areas with a high patent density (“hot
spots”) are identified as clusters. In this study the heat map KDE is carried out on a raster with
squares of 5 km by 5 km covering the entire world.
When applying the KDE method to identify clusters, decisions must be made about two impor-
tant variables: the interpolation range (𝑅) and the concentration threshold (𝑇 ). The interpolation
range describes the distance at which different inventors are still part of the same cluster. The
interpolation range can be decided based on several criteria, for example Van Egeraat et al. (2018)
uses commuting distance while Alcácer and Zhao (2016) uses 20 mi (32 km, without any justifi-
cation given). Acs, Anselin, and Varga (2002) notes that within a 50 mi (80.5 km) distance from
the boundaries of a metropolitan statistical area, there is still some positive innovation effect. The
distance cited by Acs, Anselin, and Varga (2002) is about four times the largest average daily
commuting distance of a US city (Atlanta, GA, average commuting distance of 20.6 km) (Knee-
bone and Holmes 2015). Due to this variation, the cluster interpolation range is calibrated using
sensitivity analysis (see table 4.6). In a similar way there is also no strong theoretical bases for
establishing the concentration threshold (𝑇 ) and therefore a sensitivity analysis is also applied to
calibrate this parameter.
In this study the parameter calibration (sensitivity analysis) is subject to three conditions/goals:

(i) the maximum cluster size (𝐴𝑚𝑎𝑥) should not exceed the size of a major urban area. Very
large clusters suggest that the interpolation distance is too great or the threshold value is
too low “sticking” multiple urban areas together. This situation can occur in urbanized and
R&D intensive parts of the world such as Western Europe, New England, South Korea and
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Japan where giant “clusters” that encompass whole or even multiple countries can appear.
To gain an idea of a “reasonable” metropolitan area size, see the areas of selected large
metropolitan areas in table 4.4.

(ii) to measure the performance (quality) of the cluster identification algorithm, patent co-
inventors close together should be identified as being in the same cluster whereas those
located further apart should be identified as being in different clusters. In their paper on
identifying clusters from patent data, Alcácer and Zhao (2016) calculate the share of patents
with co-inventors located 16-32 km apart within the same cluster (𝐷𝑠𝑎𝑚𝑒) and the share of
patents with co-inventors located more than 32 km and located in different clusters (𝐷𝑑𝑖𝑓).
A high value for both indicators suggests the cluster spatial distribution in question is of
high quality. The values for 𝐷𝑠𝑎𝑚𝑒 and 𝐷𝑑𝑖𝑓 calculated by Alcácer and Zhao (2016) are
listed in table 4.5. The table includes values for two types of “organic” clustering algorithms
developed by Alcácer and Zhao (2016).

(iii) the number of clusters (𝑛) identified is an important criterion to evaluate the cluster spatial
distribution because a method that identifies only a small number of clusters is likely blind
to many smaller and emerging clusters.

The parameter calibration is carried out using patent data for all sectors for the 2008-2011 period
with the patent output correction factor (𝐶𝑂𝑅𝑃𝐴𝑇 ) applied to all inventor locations outside the
United States. Different parameter values produce 16 different cluster identification results, which
can be evaluated based on the criteria stated above. To provide references for their evaluation,
examples of maximum cluster area size (𝐴𝑚𝑎𝑥) are shown in table 4.4. These maximum cluster
areas are based on the largest metropolitan areas of several countries. They include the Île-de-
France and South East England regions surrounding Paris and London, the New York-Newark-
Jersey City metropolitan statistical area (MSA), Greater Tokyo and the Pearl River Delta. These
regions are all identified as the largest metropolitan areas by their respective national governments.
Bergquist, Fink, and Raffo (2017) also views the Pearl River Delta, which includes Guangzhou,
Shenzhen and Hong Kong, as a single cluster, although the United Nations Population Division
lists these three cities as separate urban agglomerations (United Nations Population Division 2018).
Benchmark values for the quality of the cluster identification results are shown in table 4.5. The
benchmark values include both pre-determined cluster boundaries and cluster boundaries from
organic clustering algorithms developed by Alcácer and Zhao (2016). The complete results of the
cluster identification sensitivity analysis are shown in table 4.6.

Table 4.4: Selected examples of large metropolitan areas
(source: national government statistics).

Country Metropolitan Area Main City Size (km2)
France Île-de-France Paris 12,012
Japan Greater Tokyo Area Tokyo 14,034
UK South East England London 19,096
USA New York-Newark-Jersey City, NY-NJ-PA New York 37,303
China Pearl River Delta Guangzhou 39,380
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Table 4.5: Performance of different cluster identification
methods based on percentage same (𝐷𝑠𝑎𝑚𝑒) or different
cluster co-inventors at 32 km (𝐷𝑑𝑖𝑓).

Boundaries Type 𝐷𝑠𝑎𝑚𝑒 𝐷𝑑𝑖𝑓

US State Pre-determined 98% 47%
US Economic Area Pre-determined 100% 48%
US Metropolitan Statistical Area Pre-determined 97% 46%
US County Pre-determined 74% 90%
Country (excl. US) Pre-determined 100% 22%
Organic Clustering (world) Organic 100% 59%
Hierarchical Clustering (world) Organic 100% 50%

Note: From Alcácer and Zhao (2016).

Table 4.6: Cluster identification sensitivity analysis
based on interpolation distance (𝑅) and concentration
threshold (𝑇 ).

Distance /
Threshold

𝑇 = 90% 𝑇 = 95% 𝑇 = 97.5% 𝑇 = 99%

𝑅 = 15 km 𝐴𝑚𝑎𝑥 = 65,389 𝐴𝑚𝑎𝑥 = 33,953 𝐴𝑚𝑎𝑥 = 17,914 𝐴𝑚𝑎𝑥 = 6,070
𝐷𝑠𝑎𝑚𝑒 = 97% 𝐷𝑠𝑎𝑚𝑒 = 94% 𝐷𝑠𝑎𝑚𝑒 = 92% 𝐷𝑠𝑎𝑚𝑒 = 82%
𝐷𝑑𝑖𝑓 = 67% 𝐷𝑑𝑖𝑓 = 70% 𝐷𝑑𝑖𝑓 = 73% 𝐷𝑑𝑖𝑓 = 77%
𝑛 = 1,410 𝑛 = 841 𝑛 = 492 𝑛 = 252

𝑅 = 25 km 𝐴𝑚𝑎𝑥 = 162,334 𝐴𝑚𝑎𝑥 = 59,408 𝐴𝑚𝑎𝑥 = 32,972 𝐴𝑚𝑎𝑥 = 9,505
𝐷𝑠𝑎𝑚𝑒 = 100% 𝐷𝑠𝑎𝑚𝑒 = 99% 𝐷𝑠𝑎𝑚𝑒 = 99% 𝐷𝑠𝑎𝑚𝑒 = 99%
𝐷𝑑𝑖𝑓 = 56% 𝐷𝑑𝑖𝑓 = 62% 𝐷𝑑𝑖𝑓 = 66% 𝐷𝑑𝑖𝑓 = 67%
𝑛 = 949 𝑛 = 489 𝑛 = 355 𝑛 = 169

𝑅 = 32 km 𝐴𝑚𝑎𝑥 = 451,689 𝐴𝑚𝑎𝑥 = 144,415 𝐴𝑚𝑎𝑥 = 51,345 𝐴𝑚𝑎𝑥 = 23,479
𝐷𝑠𝑎𝑚𝑒 = 100% 𝐷𝑠𝑎𝑚𝑒 = 100% 𝐷𝑠𝑎𝑚𝑒 = 100% 𝐷𝑠𝑎𝑚𝑒 = 100%
𝐷𝑑𝑖𝑓 = 50% 𝐷𝑑𝑖𝑓 = 54% 𝐷𝑑𝑖𝑓 = 56% 𝐷𝑑𝑖𝑓 = 59%
𝑛 = 508 𝑛 = 334 𝑛 = 206 𝑛 = 108

𝑅 = 50 km 𝐴𝑚𝑎𝑥 = 623,172 𝐴𝑚𝑎𝑥 = 319,188 𝐴𝑚𝑎𝑥 = 100,697 𝐴𝑚𝑎𝑥 = 45,413
𝐷𝑠𝑎𝑚𝑒 = 100% 𝐷𝑠𝑎𝑚𝑒 = 100% 𝐷𝑠𝑎𝑚𝑒 = 100% 𝐷𝑠𝑎𝑚𝑒 = 100%
𝐷𝑑𝑖𝑓 = 46% 𝐷𝑑𝑖𝑓 = 48% 𝐷𝑑𝑖𝑓 = 51% 𝐷𝑑𝑖𝑓 = 49%
𝑛 = 371 𝑛 = 251 𝑛 = 157 𝑛 = 87

The sensitivity analysis results (table 4.6) are now assessed based on the aforementioned three cri-
teria: maximum cluster size, cluster algorithm performance and the number of clusters. Assessing
the sensitivity analysis results based on the largest cluster area (𝐴𝑚𝑎𝑥), shows that when 𝑇 = 90%
or 𝑅 = 50 km very large cluster areas are identified which exceed the size of typical major urban
areas (table 4.4). The smallest value for 𝐴𝑚𝑎𝑥 = 45,413 km2 (𝑅 = 50 km, 𝑇 = 99%) is larger than
the urban areas centered on New York and Guangzhou. Other distance-threshold combinations
also show 𝐴𝑚𝑎𝑥 values that seem excessively large, including 𝑅 = 25 km with 𝑇 = 95%, and
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𝑅 = 32 km and 𝑇 = 97.5%. At these combinations of interpolation distance and concentration
thresholds unrealistically large technology clusters are identified.
Assessing the results based on the second criterion, the performance of the cluster identification
algorithm, reveals an interesting trend: results where 𝑅 = 25 or 15 km have a less than 100%
value for 𝐷𝑠𝑎𝑚𝑒, suggesting that some of the identified clusters are “too small” as inventors located
nearby fall outside the cluster boundaries. The combinations with the highest cumulative cluster
performance value (𝐷𝑠𝑎𝑚𝑒 + 𝐷𝑑𝑖𝑓) and a 𝐷𝑠𝑎𝑚𝑒 value of at least 99% are 𝑅 = 25 km and 𝑇 =
97.5% or 99%, with a cumulative cluster performance value of 165% and 166%, respectively.
Based on the third criterion, in the two aforementioned cluster distributions, 𝑇 = 97.5% yields a
significantly larger number of clusters (𝑛 = 355) than the 𝑇 = 99% alternative (𝑛 = 169). If more
clusters are identified more smaller clusters are included. Therefore, the former (𝑅 = 25 km, 𝑇
= 97.5%) is considered as the optimum heat map cluster identification algorithm based on global
data for the 2008-2011 period. The smallest technology clusters identified using the optimum heat
map algorithm are 50 km2 in size. The largest clusters are centered on New York City (32,972
km2), Tokyo (15,941 km2), Los Angeles (12,723 km2) and San Francisco (11,733 km2).
A more detailed discussion of the cluster identification results, including a sample “heat map”
image of patent concentrations is presented in appendix A.3.

4.5.2 Evaluation of Parameters for Multiple Sectors

Having calibrated the heat map cluster identification method with the most suitable interpolation
range (𝑅) and threshold concentration (𝑇 ), the same methodology (with the same parameters) is
now applied to different sectors to evaluate the suitability of its use. Because the cluster identifi-
cation method is largely automated, it becomes possible to quickly identify sectoral clusters, and
to do so on a global scale. An overview of the key cluster indicators for each sector are provided
in table 4.7. In addition to the maximum cluster area (𝐴𝑚𝑎𝑥), the share of co-inventors located
16-32 km apart within the same cluster (𝐷𝑠𝑎𝑚𝑒) and the share of patents with co-inventors located
more than 32 km and located in different clusters (𝐷𝑑𝑖𝑓), the total number of patents from the
sector (𝑃𝑡𝑜𝑡𝑎𝑙) and the share of patents located in clusters (𝑃𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) are also shown.
The cluster identification performance results (table 4.7) show notable variations between sectors,
which follow a relatively consistent pattern. To interpret the results, it should be noted that a
lower same-cluster 𝐷𝑠𝑎𝑚𝑒 value suggests that the clusters of that sector are less dense (lower spatial
concentration), because inventors who are relatively close to each other are not identified as being
in the same cluster. A lower different-cluster 𝐷𝑑𝑖𝑓 value suggests that clusters can be very large,
because inventors who are relatively far apart are still found in the same cluster. A higher 𝐷𝑑𝑖𝑓
value suggests that clusters are relatively small, because inventors who are far apart are almost
always in different clusters.
Most sectors broadly follow the clustering performance measures obtained during the calibration,
especially for the same-cluster 𝐷𝑠𝑎𝑚𝑒 value. The lowest same-cluster 𝐷𝑠𝑎𝑚𝑒 values are found in
Defense (90%) and Biotechnology (89%). These sectors also have a low clustering rate (Defense
34%, Biotechnology 25%), however not all sectors with low clustering rates have low same-cluster
𝐷𝑠𝑎𝑚𝑒 values. The sectors with very high different-cluster 𝐷𝑑𝑖𝑓 values tend to have small clusters.
This is evident from Wind turbines (𝐴𝑚𝑎𝑥 = 2,014 km2, 𝐷𝑑𝑖𝑓 = 98%), Hydrogen technology (𝐴𝑚𝑎𝑥
= 2,570 km2, 𝐷𝑑𝑖𝑓 = 86%) and Biotechnology (𝐴𝑚𝑎𝑥 = 3,542 km2, 𝐷𝑑𝑖𝑓 = 90%). However, not all
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sectors with a small maximum cluster size have high different-cluster 𝐷𝑑𝑖𝑓 values, as is evident from
Defense, Medical devices and Energy storage. The sectors that closely follow the average in terms of
same-cluster 𝐷𝑠𝑎𝑚𝑒 and different-cluster 𝐷𝑑𝑖𝑓 values are the large reference high technology sectors
such as Chemicals, Computers and Electrical equipment, which can have very large clusters and
typically have a high share of patents located inside clusters. In addition to table 4.7, an overview
of clustering indicators for all sectors included in this study is also shown in table A.2 of appendix
A.4.

Table 4.7: Clustering indicators for selected sectors.

Sector 𝐴𝑚𝑎𝑥 𝐷𝑠𝑎𝑚𝑒 𝐷𝑑𝑖𝑓 𝑛 𝑃𝑡𝑜𝑡𝑎𝑙 𝑃𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

Chemicals 26,539 km2 100% 61% 168 140,255 75%
Computer and electronics 19,964 km2 100% 63% 154 527,516 85%
Defense 3,542 km2 90% 65% 55 4,790 34%
Electrical equipment 16,074 km2 99% 63% 143 92,310 73%
Biotechnology 3,542 km2 89% 90% 57 26,981 25%
Medical devices 3,542 km2 100% 60% 71 39,948 25%
Energy storage 3,917 km2 99% 51% 17 2,847 26%
Hydrogen technology 2,570 km2 98% 86% 14 954 25%
Wind turbines 2,014 km2 96% 98% 24 2,775 31%

Rather than suggesting that the cluster identification methodology is inaccurate for certain sec-
tors, the results suggests that there are notable differences in the spatial distribution of different
sectors, including the share of patents found in clusters and the maximum cluster size. These
differences suggest that the patenting patterns of these sectors, and thus the spatial dimension
of their innovation process, show notable differences. Some of the possible causes of these sec-
toral differences are further addressed in later chapters. Having noted these sectoral differences,
an alternative approach could be to calibrate the clustering algorithm parameters separately for
different sectors. However, this approach might complicate sectoral comparisons because in terms
of how clusters are identified would differ. Hence a uniform approach appears most suitable given
the research goals of this study.

4.6 Summary and Discussion

The cluster identification methodology presented in this chapter is based on the design criteria
formulated in section 4.3. These design criteria include: the use of a single source of patent data,
analyzing single industries or sectors, identifying realistic clusters (imposing a maximum cluster
size), the performance (low errors) of the clustering algorithm and its ease of use for policy makers
and stakeholders. The cluster identification methodology satisfies these criteria, and they are
discussed in this section with occasional references to other cluster identification methodologies.
The use of a single source of patent data ensures a uniform standard of patent evaluation worldwide
and removes the biases caused by different patent offices maintaining different evaluation standards
(Laurens et al. 2015; Toivanen and Suominen 2015). In this study the United States Patent and
Trademark Office (USPTO) database is used as a single patent source and a home bias correction is

70



carried out. The home bias correction is based on the assumption that Japan is most similar to the
United States in terms of its technological profile (Mancusi 2008; Toivanen and Suominen 2015).
A correction factor is calculated based on the differences in patenting and citation frequencies
between Japanese and American inventors at the USPTO. The advantage of this approach is
its simplicity and transparency. Its drawback is that other factors, such as economic and trade
relations, are also seen to influence patenting at foreign patent offices (Yang and Kuo 2008),
something not taken into account in this study. Furthermore, instead of choosing a single country
(Japan), a group of advanced economies could have been used as reference countries. While these
are valid considerations, it must be noted that the use of the correction factor is limited in the
study to specific indicators. It is applied when making comparisons between the size of clusters
(patent counts) and calculating innovation performance (citation counts), but not when studying
knowledge networks or the actor composition of a cluster (see section 3.5). Therefore, a significant
part of the study results are not influenced by the correction factor, while the simplicity of the
correction factor makes it easy to understand its influence when interpreting the other results.

A related concern about different patenting frequencies and citations are sectoral differences
(Kleinknecht, Van Montfort, and Brouwer 2002; Hall, Jaffe, and Trajtenberg 2005). In this study
clusters are identified for each sector, although the calibration of clustering algorithm parameters
is done using all patents (covering all sectors). This approach provides a uniform criterion for
identifying clusters while ensuring that sectors with low patenting frequencies are not submerged
by sectors with high patenting propensities.

If patents from multiple patent offices had been used, and all sectors had been combined, one
would expect an inflation of patent counts for: (i) clusters located in countries such as China,
South Korea and Japan, where the threshold for granting patents tends to be lower, see: Laurens
et al. (2015), and (ii) clusters with a strong focus on pharmaceuticals, life sciences and electronics,
which are known to produce many patents relative to R&D expenditure. This is precisely the result
obtained by Bergquist, Fink, and Raffo (2017), who identify clusters using the Patent Cooperation
Treaty (PCT) database of the World Intellectual Property Organization (WIPO). Among the 10
largest clusters, 6 are found in Asia and 8 have electronics or pharmaceuticals as their top area of
invention. In the Netherlands the electronics cluster of Eindhoven (#18) ranks far higher than the
more machinery- and chemicals-focused clusters of Rotterdam-The Hague (#45) and Amsterdam
(#91). These results show that the decision to use a single patent source and to carefully consider
the role of sectors, is non-trivial.

In addition to avoiding measurement biases, the cluster identification methodology has also been
optimized by aiming to identify as many clusters as possible (ensuring the detection of smaller
clusters), and by imposing a maximum cluster size, to ensure realistic clusters are identified (Han
et al. 2016; Ma et al. 2016). These conditions have ensured a clustering algorithm that performs
significantly better than methodologies using predefined cluster boundaries, while reaching, or in
some respects slightly exceeding, the performance of the organic clustering algorithm developed
by Alcácer and Zhao (2016).

A further point to emphasize is that the cluster identification method used in this study is au-
tomated and standardized. For example, no adjustments are made for commuting distances in
densely populated areas (Van Egeraat et al. 2018), nor are significant manual interventions un-
dertaken to locate patents (Alcácer and Zhao 2016). Instead a single patent frequency correction
factor is calculated to address the home bias effect and the generation of heat maps and calculation
of concentration thresholds is standardized. While there may be some inaccuracies due to automa-
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tion, the benefit of automation is that multiple sectors and time periods can be analyzed quickly,
and the method is therefore also very suitable for comparative studies, longitudinal studies or “real
time” monitoring of innovation performance, for example by policy makers. To illustrate the dif-
ference in scale between two studies: Alcácer and Zhao (2016) used 23,675 unique patents, whereas
the present study used 1,216,004 unique patents to identify clusters, 51 times more. A simpler
but reasonably accurate cluster identification tool such as the one developed in this study can
support policy making and decision-making by other stakeholders. This makes the methodology
suitable for the monitoring of cluster development, for example by countries wishing to evaluate
their cluster policy and innovation performance, or by the European Commission, which as part
of its Horizon 2020 goals includes smart and inclusive innovation of regions.
A final question concerning the performance of the clustering algorithm is its level of uncertainty,
which is of great importance when interpreting results based on the identified clusters. Uncertainty
is difficult to calculate in this case because there is no “true” global data set of clusters with which
the heatmap results can be compared. For this reason the focus of the analysis in later chapters is
on identifying trends, regression analysis and statistical analysis of differences (e.g. student t-test),
which should be robust to the uncertainty that comes with identifying technology clusters from
patent data.
In conclusion, the methodology has met the design criteria set out at the beginning of this chapter.
Its high level of automation suggests that it can be widely applied, both in research and in the
real-time monitoring of spatial innovation patterns worldwide and across multiple sectors.
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Chapter 5

Health Technology Clusters

5.1 Introduction

The health technology sector plays an important role in addressing the challenges of ageing pop-
ulations and the related increased demand for medical care (partly due to an increase in chronic
diseases) and the need to reduce the cost of healthcare (European Commission 2010, 2014b, 2018;
World Health Organization 2019). In this study, the health technology sector is defined based on
two technological sub-sectors: medical devices and medical life sciences. This chapter provides a
descriptive analysis of the spatial distribution, agglomeration, and knowledge networks of health
technology clusters, and an explanatory analysis of their innovation performance.
The chapter begins with a profile of the health technology sector and its two sub-sectors (section
5.2). This profile includes a characterization of the sector’s growth trajectory, knowledge base,
innovation actors, and technological and market trends. These factors, among others, influence the
sector’s spatial distribution and shifts therein, and agglomeration and knowledge network structure
and change, which are described in section 5.3. The description covers a 12-year period, from 2000
to 2011, allowing changes (if any) to be observed, including changes in the location and growth of
clusters in the context of “global shifts” (Dicken 2007). The spatial analysis is further extended by
exploring the largest, newly emerged and fast-growing health technology clusters during the 2000-
2011 study period, providing insight into spatial changes at the level of individual clusters. Next,
the characteristics associated with cluster innovation performance are analyzed using a regression
model (section 5.4). The model is used to evaluate the statistical significance of the association
between cluster innovation performance and agglomeration, national innovation system, knowledge
networks, and path dependence. The model and model indicators are described in detail in chapter
3 (Data and Methodology). Section 5.5 covers the evaluation of the hypotheses, a discussion of
the knowledge gaps and the chapter’s empirical results. The conclusion of the chapter (section
5.6) gives an overview of the main research findings, together with their theoretical and policy
implications, and remaining research questions.

5.2 Sector Profile

The sector profile gives an overview of the two health technology sub-sectors: medical devices and
medical life sciences. The sector profile includes the growth trajectories of the sub-sectors patent
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output during the 2000-2011 period (subsection 5.2.1), an overview of the sub-sectors’ knowledge
base and recent technological trends (subsection 5.2.2), and a discussion of the main innovation
actors and the relative size of the sub-sectors (subsection 5.2.3). The knowledge base and the
institutional landscape are seen as important factors that influence sector and cluster innovation
activity (Breschi and Malerba 1997; Iammarino and McCann 2006). The analysis confirms the
characterization of the health technology sector as a mature sector and shows clear differences
between the two sub-sectors, which can be attributed to their knowledge base.

5.2.1 Sector Growth

The aggregate health technology sector has experienced strong growth in recent decades, although
this growth has not been constant, and there are important differences in growth trajectories
between the medical life sciences and medical devices sub-sectors. Globally, demand for healthcare
is rising as people live longer and incomes gradually rise, both in the developed and developing
world (Deloitte 2016; OECD 2017). Rising incomes are leading not just to more consumer spending
but also to rising medical insurance, both through public and private schemes, which also raise
healthcare expenditure (Deloitte 2016). A second trend is the demographic shift towards ageing
populations as taking place in advanced economies such as Europe and Japan, but also in emerging
economies such as Argentina, Thailand, and China. Ageing leads to an increasing prevalence of
chronic diseases which increase demand for medical care (Deloitte 2016; OECD 2017). While
demand is rising, there is also pressure to innovate, because innovation is expected to contribute to
the provision of better healthcare at lower cost, for example through digitization. This is important
to ensure the affordability and accessibility of healthcare, especially in ageing societies whose
demand for healthcare is increasing while economic growth tends to decline due to a shrinking
working age population (OECD 2017; World Health Organisation 2017).
Investment in healthcare research and innovation is also affected by increasing regulatory approval
requirements and government scrutiny, which is increasing the cost of bringing innovations to
market (Hall and Wood 2008; McNamee and Ledley 2012; OECD 2017). Insurance companies
and governments also play an economic regulatory role, as they make decisions about insurance
coverage for new treatments, and sometimes negotiate pricing and supply directly with producers
(PwC Health Research Institute 2013).
The health technology sector has strong drivers for growth and innovation as explained above,
however the two sub-sectors show very different growth and innovation patterns. The medical life
sciences sector is a high-risk and high-reward sector, making it an attractive investment target for
venture capital. As venture capital is a major source of medical life sciences research funding, its
volatility influences the innovation activity of the sector (Booth 2016). The volatility is evident
from the number of medical life science patents, which after 2001 faces a steep decline following
the so-called “dot com” internet bubble (see Booth (2016) and figure 5.1, below), only recovering
after 2005. This is in contrast to the medical devices sector which is generally seen as a more
stable sector, which delivers consistent and relatively high growth (MedTech Europe 2016). This
stable growth trajectory is also evident from its patent output, see figure 5.1.
During the 2000-2011 study period, the number of medical life sciences patents experienced sig-
nificant fluctuations, with a high of 7,064 in 2000 and a low of 5,015 in 2005, before rising back to
6,865 in 2011. The number of medical device patents rose from 7,353 to 10,928 during the same
period, an increase of 49% over 12 years. Being among the most prolific of all technology sectors in
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terms of patent output, the knowledge output of the medical devices sector appears to be relatively
large (European Patent Office 2014). In reality, the estimated R&D expenditure at the end of the
study period was US$270 billion per year for medical life sciences (government and private sector),
far more than the US$15 billion per year in medical devices R&D expenditure (private sector only)
(Ernst & Young 2012; Chakma et al. 2014). The relatively modest or negative growth rate of the
health technology sub-sectors suggests that both sub-sectors were in a mature and path dependent
development phase, with the medical devices sector recording stable growth, while the medical life
sciences sector experienced a boom-and-bust cycle (Martin and Simmie 2008; Booth 2016).

Despite its moderate growth levels, health technology is viewed as an attractive industry sector and
is promoted by countries and cities because it creates high income employment. Countries such
as Australia, China, Japan, Russia, Singapore, and South Africa have all introduced legislation
to attract medical research by offering tax incentives, facilitating international clinical trials, and
making foreign research projects eligible for public research grants. Switzerland and the United
Kingdom are the two leading countries in attracting international medical research funds (Deloitte
2016).
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Figure 5.1: Annual health technology patent grants by sub-sectors based on application year
(source: USPTO).
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5.2.2 Sectoral Knowledge Base and Technological Trends

The sectoral knowledge base and technological trends are important influences in the innovation
process of every sector, making them important background conditions for an analysis of different
(sub)sectors. The knowledge base is important because it influences which institutions participate
in cluster innovation activity and the extent to which collaboration with universities and public
research institutions is likely to take place. (Asheim and Coenen 2005; Tidd, Bessant, and Pavitt
2005; Carlsson 2013) In sectors with a scientific knowledge base, basic (fundamental) research is an
important source of innovation. As a result, collaboration by industry with universities and public
research institutions tends to occur more frequently. Knowledge also tends to be more codified,
facilitating collaboration over long distances (Asheim and Coenen 2005; Carlsson 2013). Sectors
with an engineering and design knowledge base innovate based on close interactions with customers
and suppliers, and through “learning by doing,” enabling the local accumulation of experience and
specialized skills (Jeannerat and Kebir 2016).
When distinguishing between the medical life sciences and medical devices, the first sub-sector
is seen as having a more scientific knowledge base, whereas medical devices appears to have an
engineering and design knowledge base (Tidd 2001; Gilsing et al. 2011; Binz and Truffer 2017).
Medical life sciences involves the study of living organisms with medical and pharmaceutical ap-
plications, sometimes referred to as “biologics” in the pharmaceutical industry. Within the scope
of biologics are peptides, antibodies and antigens, nucleic acid based therapeutics and enzymes
(IP Australia 2015). Another growing area of medical life sciences research is genetic engineering,
including gene therapies (Mentesana et al. 2017). Medical life sciences research is closely con-
nected to the scientific research taking place at universities and public research institutions, and
medical life sciences firms frequently collaborate, or fund contract research, at universities and
public research institutions (Blumenthal et al. 1996; Owen-Smith et al. 2002).
The medical devices sector includes the production of radiotherapeutic and electrotherapeutic
equipment, which is closely connected to the electronics industry, and the production of medical
(including surgical) and dental instruments (United Nations Statistical Division 2008). Products
that fall within the scope of the medical devices industry include CT scanners, PET scanners, mag-
netic resonance imaging (MRI) equipment, medical ultrasound equipment, electrocardiographs,
electromedical endoscopic equipment, medical laser equipment, pacemakers and hearing aids, and
also bone and tooth implants and reconstruction cements, ultrasonic cleaning machinery, steril-
izers, medical laboratory equipment, bone plates, screws, syringes, needles, catheters, orthope-
dic devices, prosthetic devices and ophthalmic goods (eye glasses and related) (United Nations
Statistical Division 2008). Medical device innovation activity is seen as being multidisciplinary,
integrating advances in basic research from physics, material sciences, mathematics and engineer-
ing (Gelijns and Thier 2002). Innovations are often pioneered in collaboration between firms and
academic hospitals (Gelijns and Thier 2002). Tidd (2001) classifies medical instruments as a spe-
cialized supplier sector, which is grouped as a kind of engineering-based sector. Based on these
descriptions from the professional and academic literature, medical devices can be seen as being a
more engineering-based sector than the medical life sciences.
The scientific knowledge base of the medical life science sector means that innovation trends closely
follow scientific discoveries in the field (Blumenthal et al. 1996; Gelijns and Thier 2002; Owen-
Smith et al. 2002). On the other hand the medical devices sector or “medtech” (PwC Health
Research Institute 2013; MedTech Europe 2016) is influenced by multiple and broad-based tech-
nological and scientific trends. These trends include miniaturization, the falling cost of electrical
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components and the creation of new materials. These trends are part of a broader trend of inter-
disciplinary high technology research, so-called “technological convergence,” is also taking place
in other areas of science (Chen 2009). Miniaturization, which is reaching nano-scales, enables the
integration of multiple functions into a single device. The falling cost of many electrical compo-
nents enables the expanded connectivity of devices, enabling better and automated monitoring of
patients and drug delivery. The integration of new biomaterials in medical devices promises to
improve biology-machine interactions, opening up novel applications such as bioimplants (Chen
2009; Deloitte 2016; Mentesana et al. 2017). Finally, two technology trends in clinical surgery
need to be mentioned, namely, minimal invasive surgery and robotic-assisted surgery, calling for
new surgical equipment, steering equipment, and digitization (algorithms).
The trend of technological convergence also affects the medical life sciences, and the falling cost
of genome sequencing is especially significant. Affordable sequencing of an individual’s genome
enables the personalization of medicine, which can increase the effectiveness of medical treatment
while reducing costs by avoiding ineffective or unnecessary treatments (Mentesana et al. 2017).
Aside from personalization, a deeper understanding of genetics in general has made possible the
discovery of new medical life science drugs (‘biologics’) which tend to be more targeted, more
effective and have fewer side-effects than conventional treatments. A deeper understanding of
genetics also makes it possible to better predict the behavior of treatments in real-world condi-
tions (Škalko-Basnet 2014; Lybecker 2016; Mentesana et al. 2017). The advance of biologics has
a profound impact on the pharmaceuticals industry as “broad” conventional medicines are being
replaced with “niche” biologics, changing the drug development and sales process (Škalko-Basnet
2014; Lybecker 2016). Biologics also present challenges in terms of drug delivery systems and
production processes, both of which are extremely sensitive and require higher levels of monitor-
ing and quality control, creating an important avenue for future research (Škalko-Basnet 2014;
Lybecker 2016).

5.2.3 Innovation Actors

The differences in the sectoral knowledge base of the health technology sub-sectors is also evident
from an analysis of the main innovation actors. The classification of medical life sciences as a sector
with a scientific knowledge base and medical devices as a sector with an engineering and design
knowledge base, appears to be supported by a greater participation of public research institutions,
and especially universities, in the medical life sciences sector. In the medical life sciences sector
universities account for 21% of innovation activity (measured by patents) and government for 2%.
In the medical devices sector these shares are lower at 5% and 1% respectively (see table D.1,
appendix D.1).
The greater role of universities and government in medical life sciences is also seen in the list of
top 10 innovation actors worldwide (measured by patents). The University of California and the
U.S. Department of Health and Human Services take second and fifth place, respectively (see table
D.1, appendix D.1).
The notable difference in sub-sector size should be taken into account when interpreting the ag-
gregate health technology results of this study. In the descriptive spatial analysis (section 5.3) the
aggregate number of health technology patents is used, and approximately 31% of patents are from
the medical life sciences sub-sector and 69% are from the medical devices sub-sector, suggesting
skewed results towards the latter (2008-2011, see also table D.2, appendix D.1). However, for parts
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of the spatial, agglomeration and knowledge network analysis and for the cluster innovation per-
formance model the aggregate number of health technology clusters is used. Medical life sciences
clusters (146 or 67%) are larger in number than medical devices clusters (73 or 33%, 2008-2011 see
also table D.2, appendix D.1). Since most of the analysis takes place at the cluster level and the
medical life sciences sub-sector has a larger number of clusters, the analysis of the health technol-
ogy sector is mostly skewed towards the medical life sciences sub-sector. A stronger presence of
the medical life sciences in the analysis coincides with the larger amount of R&D expenditure in
the sub-sector (Chakma et al. 2014). Therefore, this unbalanced situation is considered acceptable
and no adjustments to sub-sector weightings are made.

5.3 Cluster Characteristics and Spatial Distribution

This section provides insight into the spatial distribution, agglomeration and knowledge network
characteristics of health technology clusters. The section is divided into two parts. The first
part describes clusters, agglomeration (subsection 5.3.1), and knowledge networks (subsection
5.3.2) using descriptive statistics. The second part describes the spatial distribution of the largest
technology clusters, and identifies fastest-growing, fastest-declining, and newly emerging health
technology clusters (subsection 5.3.3).

5.3.1 Clusters and Agglomeration

Spatial concentration brings about agglomeration economies favorable for R&D and other types
of learning. Spatial concentration lowers transport and communication costs, can increase the
quality of services and labor market supply, and can facilitate knowledge spillovers. However,
there seems to be an inflection point of city- or cluster-size at which agglomeration economies turn
into diseconomies.
Table 5.1 provides statistics for three four-year periods from 2000-2011 for the aggregate health
technology sector. The statistics are subdivided by the Clusters and Agglomeration and Knowl-
edge Networks headings. The Cluster and Agglomeration indicators are derived from patent counts.
Patent counts are a measure of innovation activity and the location of patent inventors and their
institutional affiliation provides an indication of where innovation activity takes place and by
which institutions (Hagedoorn and Cloodt 2003; Lanjouw and Schankerman 2004; Squicciarini,
Dernis, and Criscuolo 2013). Health technology patents are identified using a set of Interna-
tional/Cooperative Patent Classification (CPC/IPC) codes which were also used in earlier biblio-
metric research on the medical life sciences and medical devices (IP Australia 2014, 2015). Patent
counts are corrected for the home bias effect (for details, see chapter 4).
The total number of health technology patents shows some small fluctuations during the 2000-2011
period, with a low of 65,519 in 2004-2007 and a high of 72,051 in 2008-2011.1 The distribution
of patent output across continents is generally stable. Europe’s share has declined slightly from
24% to 22% during the 2000-2011 period while Asia’s share has increased slightly from 19% to
22%. The share of North America and the Rest of the World has stayed constant at 53-54% and

1Note that the number of patents reported in table 5.1 and section 5.2 is slightly different. This is because the
numbers in table 5.1 were corrected for the home bias effect, which increases the weighting of non-United States
patents (see chapter 4 for details).
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2% respectively. Although there is a small increase in Asia’s share of health technology innovation
activity, it does not appear to be a large shift (hypothesis 1).
Along with the fluctuation in the number of patents, the number of health technology clusters
has also varied slightly during the study period, from a low of 214 (2004-2007) to a high of 219
(2008-2011). The global distribution of clusters has remained almost constant. North America
accounts for 60-61%, Europe for 21-22%, Asia for 15% the Rest of the World 3%.
Also relatively unchanged are the 133.2-149.8 patents per cluster and the cluster size Gini coefficient
is 0.66-0.67, suggesting there are no big changes in agglomeration in the health technology sector.
There is a decline in the share of clustered patents from 47% to 42%, which is presumably related
to the growth of the medical devices sub-sector, which has a lower clustering rate (see table C.3,
appendix C.2). The medical devices sub-sector has a clustering rate of just 24%. The clustering
rate of the medical life sciences sub-sector is 72%. Such a large difference in clustering rates between
the sub-sectors is unexpected because both are in a mature development phase, which is typically
associated with a higher degree of clustering (Crescenzi and Rodrı́guez-Pose 2011; Frenken, Cefis,
and Stam 2015). A possible explanation for this phenomenon, at least in Europe, is that the
medical devices sub-sector partially developed in smaller cities several decades ago. For example,
in Nuernberg and Erlangen (Germany) the precursor of Siemens Healthcare was established, and
Siemens’ headquarters have remained there. In addition, the concentration of firms in small towns
like in the Alsace and Franche-Comte regions (France), originated from traditional fine-mechanics
and watchmaking industries here. By contrast, Galway (Ireland) can be seen as a late-coming
cluster created as a result of a policy of investment promotion since the early 1970s. It first
attracted manufacturing activities through foreign direct investment, but later it moved up in the
value chain towards high level R&D (Klein, Banga, and Martelli 2015).
In addition, the application of multiple and sometimes more broad-based technologies in medical
device innovations (Chen 2009) could mean that collaboration with organizations from other sectors
(e.g. micro-electronics, imaging, etc.) is more frequent, reducing the importance of large “pure”
medical device clusters. Medical life science research on the other hand may be more spatially
concentrated because it is anchored around universities due to the importance of basic scientific
research (Casper 2013).
The role of universities and public research institutions varies significantly between the sectors. The
medical devices sub-sector has a notably higher corporate patenting share (88.3%) as compared to
the medical life sciences sub-sector (65.9%). A lower corporate patenting share suggests a greater
role in healthcare R&D by universities and public research institutions.
In addition to the aforementioned sub-sector differences, there are also two notable differences
in the continental distribution of patent output and clusters. First, the medical devices sector
is concentrated in North America (53% of patent output), followed by Asia (25%), and Europe
(21%). However, the medical life sciences sector is concentrated in North America (61%), followed
by Europe (25%), and then Asia (17%). Asia thus has a higher share of medical device patents
compared to medical life sciences, while Europe is stronger in medical life sciences, with North
America accounting for the largest share in both sub-sectors. The second difference are continent-
level variations between patent output and the number of clusters. This difference is especially
pronounced in the medical devices sector: North America has 53% of medical devices patents but
a much larger 84% of clusters, whereas Europe’s 21% patent share is linked to just 3 clusters (4%),
and Asia’s 25% patent share is linked to only 9 clusters (12%). Asia has a number of large medical
device clusters such as Tokyo, Seoul, Tel Aviv, and Taipei (see also table C.4, appendix C.2), and
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therefore Asia appears to have a more spatially concentrated medical devices sector. Europe on
the other hand, has no top-10 medical device clusters and therefore appears to have a greater
share of medical device innovation taking place outside clusters, as was noted earlier. Similar
patent share-cluster share differences between continents do not appear to manifest themselves
in the medical life sciences sector. In Europe the opposite pattern is found: Europe has 30% of
medical life science clusters and only 25% of patent output, suggesting a proliferation of smaller
clusters. These differences in the spatial distribution of clusters point towards different historical
development paths of the health technology sub-sectors.

5.3.2 Knowledge Networks

Doubt about the effectiveness of physical proximity, has moved theoretical attention to “relational”
proximity. Accordingly, it is assumed that physical proximity only benefits innovation if the local
actors see opportunities in collaboration, and that relational proximity can also work over large
distances.

In this study knowledge networks are measured through ratios of the number of network links
per cluster or inventor. These network links are derived from co-invention or inventor-assignee
relationships. Ratios are used because the size of networks is often dependent on the size of the
clusters (nodes) and the network itself (Wasserman and Faust 1994). Most knowledge network
indicators of the sector appear to be stable, showing similar values for all three periods, although
the knowledge networks are growing and clusters are therefore becoming more interconnected.
Network reach increased slightly from 32.8 to 35.2 links to other clusters (average). Network density
also increased somewhat, from 90.5 to 109.2 inter-cluster links in total per cluster (average). The
amount of knowledge inflow and knowledge outflow per inventor has remained mostly constant
at 0.54-0.62 to 0.63-0.64 respectively, suggesting that the presence of multinational corporations
in clusters has remained stable. Stable agglomeration, cluster spatial distribution, and stable or
slow-growing knowledge networks confirm the view that the health technology sector is in a mature
development stage (Ter Wal and Boschma 2011; Frenken, Cefis, and Stam 2015). No meaningful
spatial shifts and no substitution of agglomeration advantages by networks is observed.

There are two notable differences between the co-invention knowledge networks of the sub-sectors
(see table C.3, appendix C.2). First, the medical devices sector has a much lower number of co-
invention links per inventor (0.35), compared to medical life sciences (0.59). More frequent inter-
cluster research collaborations in the medical life sciences fits with the understanding that science-
based sectors, because of their more codified knowledge base, have a greater prevalence of long-
distance research collaboration (Stankiewicz 2002; Gertler and Levitte 2005). Despite the higher
number of co-invention links per inventor in the medical life sciences sector, the network reach and
network density of both sub-sectors is similar, in fact the network density of the medical devices
sector (124.3 total links per cluster) is higher than that of the medical life sciences sector (101.7
links). A second difference are higher knowledge inflow and outflow from and to multinational
corporations headquartered outside the cluster. The medical devices sector has 0.66 inbound and
0.79 outbound links per inventor, higher than the medical life sciences sector with 0.55 inbound and
0.57 outbound links. The higher value for medical devices suggests that multinational corporations’
research activity plays a greater role in the medical devices sub-sector when compared to the
medical life-sciences sub-sector (Gertler and Levitte 2005). The medical life-sciences sub-sector is
well known for its distinct innovation and investment pattern of start-ups, which are later acquired
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by large multinational pharmaceutical companies (Booth 2016).

Table 5.1: Health technology cluster, agglomeration and
knowledge network characteristics 2000-2011.

Indicators 2000-2003 2004-2007 2008-2011
Clusters and Agglomeration
Total patents 68,303 65,519 72,051
- Patents in North America 37,176 (54%) 34,995 (53%) 38,405 (53%)
- Patents in Europe 16,722 (24%) 14,776 (23%) 16,062 (22%)
- Patents in Asia 12,979 (19%) 14,388 (22%) 16,176 (22%)
- Patents in Rest of World 1,427 (2%) 1,360 (2%) 1,408 (2%)
Total Clusters 215 214 219
- Clusters in North America 129 (60%) 129 (60%) 133 (61%)
- Clusters in Europe 47 (22%) 47 (22%) 47 (21%)
- Clusters in Asia 32 (15%) 32 (15%) 32 (15%)
- Clusters in Rest of World 7 (3%) 6 (3%) 7 (3%)
Clustered patents 32,197 (47%) 28,497 (43%) 30,332 (42%)
Patents per cluster, average 149.8 133.2 138.5
Cluster size Gini coefficient 0.67 0.67 0.67
Corporate patenting share 75.4% 74.9% 73.4%
Knowledge Networks (cluster average)
Co-invention links per inventor 0.47 0.51 0.51
Network reach (unique links per cluster) 32.8 33.2 35.2
Network density (total links per cluster) 90.5 97.3 109.2
Knowledge inflow (links per inventor) 0.54 0.62 0.59
Knowledge outflow (links per inventor) 0.63 0.64 0.64
Median co-invention distance (km) 48 51 50

5.3.3 Cluster Spatial Distribution

To understand shifts in the spatial distribution of health technology more deeply, the 10 largest
clusters (by patents), newly emerged clusters, fastest-growing clusters, and fastest-declining clus-
ters during the 2000-2011 period, are analyzed in this sub-section. Table 5.2 provides an overview
of the cities containing the ten largest health technology clusters during three four-year periods,
from 2000 to 2011. The cut-off of 10 largest clusters is chosen because for smaller clusters the
share of global innovation output already falls to 1% or less. Due to measurement uncertainties
associated with using patent data, analysis of clusters with a 1% share or less may be based on
data within the margin of error. Clusters are studied over a longer time period to reveal shifts
in innovation activity between cities and countries. The analysis focuses on the location of the
clusters and on changes in rank position and relative size, which provide a clear indicator of local
and global cluster spatial dynamics.
The aggregate health technology sector has a relatively stable top-10, with eight clusters maintain-
ing their position in the top-10 with approximately the same share of global patent output. Among
the top-10 clusters, San Francisco is the only cluster experiencing a changing trajectory, moving
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from from first place, and a 4% share in 2000-2003 to fourth place, and a 2% share in 2008-2011.
The ninth or tenth placed cluster varies, with Osaka taking tenth place in 2000-2003, Tel Aviv
ninth place in 2004-2007, and Seoul tenth place in 2008-2011. Of the 10 largest clusters, eight are
in the United States, up to two are in Japan, and at times one is in Israel (2004-2007), and one is
in South Korea (2008-2011). Among the eight American clusters, four are found in a single state,
California (San Francisco, Los Angeles, San Diego, and San Jose), which indicates a significant
amount of spatial concentration. The relative stability of the cluster ranking reinforces the view
that the health technology sector is relatively mature (Ter Wal and Boschma 2011; Frenken, Cefis,
and Stam 2015). The decline of San Francisco shows that cluster development trajectories can be
distinct and in a different direction as compared to other clusters in the same country or state. In
the United States, a trend of life sciences research shifting from larger to smaller cities was noted
recently (JLL 2012; Giuliano, Kang, and Yuan 2019).
The top-10 health technology clusters are similar to the largest biomedical (medical life sciences)
clusters identified by Catini et al. (2015). Catini et al. (2015) use the PubMed database, which
contains scientific medical research, and they identify Boston, Tokyo, New York, Washington,
Seattle, Los Angeles, and San Francisco, among other cities, as being among the world’s largest
biomedical clusters. Based on the 10 largest clusters alone, there is no clear evidence of a global
shift in innovation activity towards Asia (hypothesis 1, Dicken (2007)). However, a top-10 coun-
try ranking (see table C.4, appendix C.2) reveals a consistently rising rank and share of global
health technology patents for South Korea, and Taiwan, and consistent declines in global share for
Germany, the United Kingdom, Canada, and Sweden.

Table 5.2: Cities with 10 largest health technology
clusters 2000-2011 (share of world health technology
patents).

Rank 2000-2003 2004-2007 2008-2011
1 San Francisco, US (4%) Tokyo, JP (4%) Tokyo, JP (4%)
2 Tokyo, JP (4%) New York, US (3%) New York, US (3%)
3 New York, US (3%) Boston, US (3%) Boston, US (3%)
4 Boston, US (3%) San Francisco, US (3%) San Francisco, US (2%)
5 Los Angeles, US (2%) Los Angeles, US (3%) Los Angeles, US (2%)
6 Washington, US (2%) San Diego, US (2%) San Diego, US (2%)
7 San Diego, US (2%) Washington, US (2%) Washington, US (1%)
8 Seattle, US (1%) San Jose, US (1%) San Jose, US (1%)
9 San Jose, US (1%) Tel Aviv-Yafo, IL (1%) Seattle, US (1%)
10 Osaka, JP (1%) Seattle, US (1%) Seoul, KR (1%)

As noted earlier, aggregate health technology clusters are a combination of their sub-sectors (see
table C.5, appendix C.2). Six of the cities host both top-10 medical device and top-10 medical
life sciences clusters: Boston, Los Angeles, New York, San Diego, Seoul, and Tokyo, which are
all large “global” cities (Taylor 2004; Ichikawa, Yamato, and Dustan 2017). The high frequency
with which cities host top-10 clusters of both sub-sectors (60%) supports the decision to combine
medical device and medical life science clusters in the analysis.
Newly emerged aggregate health technology clusters are those that did not meet the minimum
cluster threshold during the 2000-2003 period but are identified during the 2008-2011 period.
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The new clusters are Aarhus (Denmark), Bern (Switzerland), Springfield (United States), and
Tsu (Japan). Aarhus and Bern are both small European cities (population below 300,000) and are
home to relatively large research universities carrying the names of both cities (student populations
of 18,000-38,000). Springfield refers to the Springfield-Hartford corridor in Massachusetts and
Connecticut, which is home to a number of universities, including the University of Connecticut
and the University of Massachusetts at Amherst. Tsu is a small Japanese city (population 280,000)
and is the capital of Mie prefecture. Tsu is located roughly half-way between Osaka and Nagoya.
Mie University is its most prominent institution of higher learning in the city (7,500 students).
A common feature of all new clusters is the presence of a local university. In the case of Bern,
the seeds for a life sciences cluster were planted here around 1949 with the foundation of Central
Laboratory Blood Donation Service in Bern, under the umbrella of the Swiss Red Cross. In 1951,
the laboratory was empowered by the government to manufacture products from donated blood
plasma. In the years that followed, the organization transformed itself into a highly innovative
and globally active R&D firm, now named CLS Behring, with a focus on blood-related drugs,
including the use of monoclonal-antibody technology. Local and regional research collaboration
was undertaken both with the University of Bern and ETH Zurich, and later on worldwide through
subsidiaries located abroad.
The aggregate growth of clusters is calculated by comparing the 2000-2003 and 2008-2011 periods.
The 10 fastest-growing clusters (by patents) and the 10 fastest-shrinking clusters (by patents) are
shown in table 5.3 and 5.4. Among the fastest-growing clusters, six are located in Asia (Israel
included), with Seoul and Tokyo growing by more than 400 patents. Among these clusters Beijing
has the highest growth rate (+224%), followed by Seoul (+193%) and Daejeon (+166%). Four
clusters from the United States are also included, of which the fastest-growing is Denver. The
presence of large and fast-growing health technology clusters in Asia supports the view that a
global shift of healthcare innovation activity towards Asia is taking place (hypothesis 1, Dicken
(2007)), although it appears to be concentrated in specific clusters and countries.

Table 5.3: Cities with the fastest-growing health tech-
nology clusters 2000-2011 (absolute growth and growth
rate).

Rank City Δ Patents Rate
1 Seoul, KR 451 193%
2 Tokyo, JP 407 26%
3 Tel Aviv-Yafo, IL 196 43%
4 Taipei, TW 151 71%
5 Daejeon, KR 133 166%
6 Denver, US 123 42%
7 San Jose, US 97 12%
8 Beijing, CN 68 224%
9 Boston, US 59 3%
10 Seattle, US 59 7%

The top-10 shrinking clusters (see table 5.4) are all found in North America and include both
major cities like Montreal, New York, Washington, and San Francisco, as well as smaller cities,
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many of which appear to be university towns. These include: Indio (University of California at
Riverside), Birmingham (University of Alabama at Birmingham), New Haven (Yale University),
and Pasadena (California Institute of Technology). The clusters experiencing the greatest relative
decline are New London, which is about 75 km from New Haven, and Boise, Idaho (both -77%
growth). The clusters experiencing the largest absolute decline are Washington DC (-496) and
San Francisco (-777).

The presence of clusters in the United States among both the top-10 growing and top-10 declining
clusters suggest considerable spatial dynamics within the country, with some clusters shrinking and
others growing during the same time period. This reflects changes in the health technology sector
that go beyond the broader trends described earlier, such as a shift of innovation activity from
one country to another. As noted earlier, within the United States there is a trend of healthcare
innovation activity shifting from large to smaller cities (JLL 2012). However, the scale of the
decline of United States clusters appears to be greater than the amount of patent growth: the four
fastest-shrinking clusters “lose” 1,549 patents (Boise, New York, Washington, and San Francisco)
whereas the four fastest-growing clusters in the United States “gain” just 338 patents (Denver, San
Jose, Boston, and Seattle). Large gains instead occur in clusters in South Korea, Japan, Israel,
and Taiwan, thus providing support for hypothesis 1, which proposes a global shift towards Asia.

Table 5.4: Cities with the slowest-growing (fastest-
shrinking) health technology clusters 2000-2011 (absolute
growth).

Rank City Δ Patents Rate
138 Birmingham, US -45 -65%
139 Indio, US -49 -46%
140 New London, US -52 -77%
141 New Haven, US -54 -36%
142 Montreal, CA -55 -37%
143 Pasadena, US -70 -36%
144 Boise, US -107 -77%
145 New York, US -169 -7%
146 Washington, US -496 -33%
147 San Francisco, US -777 -30%

5.4 Cluster Innovation Performance

The cluster innovation performance model is intended to provide insight into the factors that
influence, or are associated with, cluster innovation performance in the health technology sector.
The model is relatively simple by only assuming direct relations (see figure 3.1, chapter 3). A
brief discussion of the model factors (indicators) is followed by an analysis of the model estimation
results. The model contains two different kinds of factors: factors related to the national innovation
system and path dependence are seen as “influences” (causality is one-way, towards innovation
performance). Factors related to agglomeration and networks are viewed as “associated” with
innovation performance, because reverse causalities likely exist (see chapter 3 for a discussion of
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the research model). An overview of the factors and their indicator values is presented in table
5.5.
Aside from the logarithmic transformation of all model indicators, the cluster size, and adjacency
indicators have also undergone a 10-5 transformation to ensure that their estimated model co-
efficients are in a similar range of the other indicators. For this reason the indicator range for
cluster size and adjacency appear to be relatively small. The national innovation system indicator
tends towards higher values because a large number of clusters is located in high-quality inno-
vation systems such as the United States, Switzerland, and Japan, and only a small number of
clusters is found in lower-quality innovation systems such as Italy, Spain, and China (Schwab and
Sala-i-Martin 2015). The national innovation system indicator is a composite indicator based on
research investment, the quality of the higher education system, university-industry collaborations
and protection of intellectual property.
The knowledge base of the two sub-sectors is accounted for in the model using a dummy vari-
able, which indicates whether a cluster has an engineering and design knowledge base (medical
device clusters). The implementation and testing of the model is described in detail in section
3.6.2 and 3.6.3 (chapter 3). The model estimation results are within the accepted boundaries for
multicollinearity (Variance Inflation Factor < 2) and normally distributed residuals (Shapiro-Wilk
test 𝑝 < 0.10). Heteroscedasticity is within the accepted boundaries (Breusch-Pagan 𝑝 < 0.10).
Therefore, the basic assumptions of Ordinary Least Squares (OLS) regression are being met and
the correlations in the model results are robust. An OLS regression is used for an initial exploration
of the correlation and associations between various indicators.
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Table 5.5: Statistical summary of health technology
model indicators (log-transformed, 𝑛 = 219).

Indicator Measurement Minimum Mean Maximum
Innovation performance, 𝐼𝑉 𝑃 Patent citations -2.30 -0.0632 3.25

Cluster size, 𝑃𝐴𝑇 Patent count -2.30 -2.29 -2.14
Adjacency, 𝐴𝐷𝐽 Patent count -2.30 -2.19 -0.334

Regional specialization, 𝑆𝑃𝐸 Patent count -2.25 -1.80 0.0218
Corporate research, 𝐶𝑅𝑃 Patent assignees -2.30 -0.289 0.0953

National innovation system, 𝑁𝑆𝑄 Composite indicator* 1.18 1.66 1.73
Knowledge inflow, 𝑀𝑁𝐶 Patent inventor-assignee network -2.30 -0.617 1.41
Knowledge outflow, 𝐿𝐴𝐵 Patent inventor-assignee network -1.40 -0.395 0.879
Network reach, 𝑁𝐸𝑇𝑆 Patent co-invention network -1.20 1.03 2.86

Network density, 𝑁𝐸𝑇𝑊 Patent co-invention network -2.11 -0.615 0.663
Past innovation performance, 𝐼𝑉 𝑃𝑃 Patent citations (previous period) -2.30 0.756 3.55

* Composite indicator of national private and public sector research investment, quality of higher education system, university-industry
collaborations and protection of intellectual property.
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The health technology model estimation results in table 5.6 are now discussed. Results are both
given for partial models and their set of individual indicators. For each partial model, adjusted
Δ𝑅2 is provided to assess the improvement of the outcomes compared to the control model.

The agglomeration model consists of two scale-based agglomeration indicators (cluster size
𝑃𝐴𝑇 and adjacency 𝐴𝐷𝐽), a specialization-based agglomeration indicator (regional specialization
𝑆𝑃𝐸), and a qualitative indicator which describes the presence of corporate research (𝐶𝑅𝑃 ). The
results in table 5.6 show that the partial models’ predictive power (adjusted Δ𝑅2) is 0.087. The
scale-based indicators measure the number of sub-sector patents produced inside the cluster, and
the number of patents produced in other clusters of the same sub-sector located within 200 km of
the cluster (adjacency).2 Cluster size has a positive and statistically significant association with
the dependent variable, suggesting that positive scale effects exist in health technology clusters:
spatial proximity facilitates transactions and collaboration between actors, raising productivity,
and provides an environment with shared values, beliefs, and trust (Morgan 2004; Capello 2009;
Leamer and Storper 2014). The negative association with adjacency suggests that at distances of
~200 km spatial proximity increases competition for resources and talent, and causes other nega-
tive scale effects (Martin and Sunley 2003), a somewhat unexpected outcome given the generally
positive view of the neighborhood effect (Ó hUallacháin and Leslie 2007; Charlot, Crescenzi, and
Musolesi 2014).

Regional specialization is a measure of sectoral cluster patenting relative to patenting from all
other sectors taking place within the cluster’s geographic boundaries. This indicator is statisti-
cally significant and positively associated with cluster innovation performance. The benefits of
specialization in a cluster can be attributed to a better match with specific needs for high-quality
labor, services, and specialized learning (Giuliano, Kang, and Yuan 2019). Further, corporate
research measures the share of cluster patents owned by private sector corporations. This indica-
tor also has a positive and statistically significant association with the dependent variable. This
suggests that a cluster’s local corporate strategy and absorptive capacity enhance innovation per-
formance more than public strategy and absorptive capacity at local university (Fu 2008; Qiu, Liu,
and Gao 2017). To summarize, the agglomeration model estimation results provide partial support
for hypothesis 3 (economies of scale), and support for hypothesis 4 (regional specialization) and
hypothesis 5 (corporate share).

The national innovation system model is estimated using one indicator: national innova-
tion system quality (𝑁𝑆𝑄). National innovation system quality is a composite measure that
incorporates private and public sector research investment, quality of higher education system,
university-industry collaborations and protection of intellectual property at the national level.
The indicator is not statistically significant and the partial model’s explanatory power is zero, or
to be precise: adjusted Δ𝑅2 is -0.005. The quality of the national innovation system therefore
does not appear to influence cluster innovation performance in any way, and as a result hypothesis
6 (national innovation system) is rejected. The lack of significance may be due to the lack of di-
versity among national innovation systems, as indicated above: mainly highly developed national
innovation systems are engaged in the sector.

The knowledge network model encompasses two indicators related to knowledge inflow (𝑀𝑁𝐶)
and knowledge outflow (𝐿𝐴𝐵), and two indicators related to the cluster’s position (degree cen-

2For illustration purposes, 200 km is equivalent to approximately 2 hours of non-stop highway driving. It is
approximately equal to the distance from Amsterdam to Brussels, Shanghai to Huangzhou, or Los Angeles to San
Diego. Approximately 80% of clusters are located within 200 km of another health technology cluster.
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trality) in the inter-cluster knowledge co-invention network (𝑁𝐸𝑇𝑆 and 𝑁𝐸𝑇𝑊 ). The knowledge
flow indicators are derived from the inter-cluster inventor-assignee network, with an outbound
inventor-assignee link indicating knowledge outflow and an inbound link indicating inflow. Both
knowledge flow indicators and the weighted degree centrality indicator are divided by the number
of inventors. The partial models’ predictive power is an adjusted Δ𝑅2 of 0.139, which is larger than
the predictive power of the agglomeration model described before. The relatively high explanatory
power of the agglomeration and knowledge network models can be interpreted as an indicator that
both agglomeration and knowledge networks play an important role in health technology clusters.
Two indicators, knowledge outflow and co-invention network reach, are statistically significant and
positively associated with cluster innovation performance. These results suggest that network
connectedness, including through the presence of multinational corporations’ remote labs within
a cluster, contributes positively to a cluster’s innovation performance. This result aligns well with
the observed higher frequency of long-distance research collaborations in healthcare related sectors,
such as pharmaceuticals (Alkemade et al. 2015). The knowledge network model estimation results
provide support for hypothesis 8a (outbound knowledge flow) and hypothesis 9 (network reach).
Next, the path dependence model is estimated using only one indicator: past innovation per-
formance (𝐼𝑉 𝑃𝑃 ). Past innovation performance is calculated from patent data of the preceding
2004-2007 period. It appears that past innovation performance has a high correlation with the
dependent variable (𝑅2 = 0.87, see the correlation matrix table B.8, appendix B.2). Therefore, it
is not surprising that past innovation performance has a positive and statistically significant asso-
ciation with cluster innovation performance during the more recent period. The model’s predictive
power is indicated by an adjusted Δ𝑅2 of 0.486, which is the highest increase in explanatory power
of all partial models compared to the control model.
It is also notable that the knowledge base dummy variable is statistically significant in the path
dependence model estimation, suggesting that there may be some differences in path dependence
between the medical life sciences, and medical devices sub-sectors. The path dependence model
result provides clear support for hypothesis 11. Hypothesis 11 suggests a positive influence of
past innovation performance on current innovation performance as path dependence is seen as
accumulating over time. During a stable and mature development phase, clusters (and organiza-
tions) that have performed well in the past tend to continue to do well due to the accumulation of
knowledge, experience, skills, trust, reputation, etc. (Boschma and Frenken 2006; Crescenzi and
Rodrı́guez-Pose 2011; Vergne and Durand 2011; Trippl et al. 2015; Crescenzi and Jaax 2017). The
relatively strong influence of path dependence supports the view that the health technology sector
is relatively mature (Martin and Simmie 2008; Ter Wal and Boschma 2011).
The final partial model, the combined agglomeration and network model includes indicators
which were included in the partial agglomeration, national innovation system, and knowledge
network models described earlier. To avoid issues of multicollinearity the network reach indicator
is excluded from the model estimations (see also table B.8, appendix B.2). The model estimation
results of the agglomeration and knowledge network model are similar to those of the earlier
partial models, except that regional specialization falls just below the 90% statistical significance
threshold. The model’s predictive power (adjusted Δ𝑅2 of 0.117) is higher than that of the
agglomeration model, a fact that can be explained by the addition of some relevant knowledge
network variables. However, the combined model’s predictive power is lower than that of the
knowledge network model. This is likely because one knowledge network factor was excluded from
the combined model estimation.
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Table 5.6: Health technology cluster innovation performance model
estimation results 2008-2011.

Indicators Control Agglomeration National Knowledge Networks Path Dependence Agglomeration and Network

Cluster size 5.2 (1.3)*** 6.1 (1.5)***
Adjacency -0.25 (0.13)* -0.28 (0.15)*
Regional specialization 0.31 (0.15)** 0.24 (0.16)
Corporate research 0.29 (0.079)*** 0.23 (0.084)***
National innovation system -0.48 (0.47) -0.40 (0.51)
Knowledge inflow 0.059 (0.093) 0.15 (0.093)
Knowledge outflow 0.43 (0.14)*** 0.39 (0.14)***
Network reach 0.36 (0.067)***
Network density -0.17 (0.13) -0.065 (0.14)
Past innovation performance 0.69 (0.073)***
Knowledge base (dummy) -0.39 (0.38) -0.053 (0.11) -0.12 (0.11) 0.083 (0.13) 0.20 (0.066)*** 0.037 (0.15)
Constant 1.5 (0.37)*** 12. (3.0)*** 0.81 (0.80) -0.38 (0.16)** -0.71 (0.077)*** 15. (3.7)***
Adjusted 𝑅2 0.004 0.089 -0.001 0.143 0.490 0.120
Adjusted Δ𝑅2 0.085 -0.005 0.139 0.486 0.116
Clusters (𝑛) 219 219 219 219 219 219

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance at the 90%, 95% and 99%-level, respectively.
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Agglomeration and knowledge networks develop and accumulate over time, and therefore they
can also be seen as part of a cluster’s path dependence. As a rough estimate of their impact,
the predictive power of the agglomeration and knowledge network models can be compared to
that of the path dependence model. In the health technology sector the knowledge network and
agglomeration factors together appear to account for approximately 47%3 of the predictive power
of the path dependence model. Other factors such as knowledge, skills, reputation, experience, and
specialized resources that were acquired or accumulated over time (Simmie and Strambach 2006;
Martin and Simmie 2008) likely account for the remainder of the path dependence correlation.

When comparing the aggregate health technology model results discussed above to those of the
medical life sciences and medical devices sub-sectors, there are some small but interesting differ-
ences (see appendix C.2). Compared to the aggregate health technology sector, agglomeration
factors, and path dependence appear stronger in the medical devices sector. The predictive power
of the medical devices agglomeration model (adjusted 𝑅2 of 0.250) is greater than that of the
medical devices knowledge networks model (adjusted 𝑅2 of 0.142), whereas the opposite is true
in the health technology model that includes both sub-sectors. The stronger agglomeration factor
in the medical devices sector can be viewed from the perspective of its engineering and design
knowledge base. In sectors with an engineering and design knowledge base the importance of
tacit knowledge and inter-personal interaction is typically emphasized, and therefore these sectors
should benefit more from agglomeration which enables frequent personal interactions (Asheim and
Coenen 2005; Carlsson 2013). The predictive power of the medical devices path dependence model
is also relatively high (adjusted 𝑅2 of 0.773, see appendix C.2) when compared to the aggregate
health technology model (adjusted 𝑅2 of 0.490). The greater path dependence of medical device
clusters can be connected to the sub-sector’s stable growth trajectory as compared to the medical
life sciences sector (see figure 5.1). The medical life sciences sector is known to undergo boom-
and-bust cycles, whereby there are periods of very high private investment, followed by periods of
low private investment, which make its innovation output more volatile (Booth 2016).

5.5 Discussion

This section provides an analysis of the results presented in this chapter. The section begins with
an evaluation of the relevant hypotheses and is followed by a further discussion of some additional
observations. A total of 10 hypotheses are evaluated (see table 5.7), with a mix of not rejected,
rejected, and partially rejected evaluation outcomes.

Hypothesis 1 addresses the spatial distribution of medical health technology clusters and posits
that new and fast-growing clusters are mainly located in Asia. This outcome is partially rejected
by the analysis: while only a few new clusters are created during the study period and they are
located not just in Asia (1 new cluster) but also in Europe (2 new clusters) and North America (1
new cluster), the fastest-growing clusters are located predominantly in Asia (see section 5.3). The
lack of new cluster-formation in Asia could be due to the relatively mature development phase
of the health technology sector, which is also confirmed by the stability of the sector’s knowledge
network structure (Ter Wal and Boschma 2011). The mature development phase could make
it more difficult for new clusters (e.g. from Asia) to enter and grow because the accumulated

3calculated by adding the adjusted Δ𝑅2 values of the agglomeration and knowledge network models and dividing
by the path dependence model.

90



knowledge and skills of incumbents acts as a barrier (Lee and Lim 2001). Evidence for a high level
of knowledge and skills accumulation is supported by the strong influence of path dependence on
cluster innovation performance (see section 5.4).
Agglomeration is addressed by way of hypotheses 3-5. Hypothesis 3 covers scale-based agglomer-
ation and it receives partial support: cluster size is positively associated with cluster innovation
performance, but adjacency has a negative association, suggesting positive agglomeration at a
smaller spatial scale and negative agglomeration effects at a larger spatial scale. This outcome can
be understood when considering the advantages and disadvantages of agglomeration. At a smaller
spatial scale the advantages of spatial proximity, such as increased opportunities for collaboration
and knowledge spillovers (Morgan 2004; Capello 2009), appear to outweigh the disadvantages of
increased competition for resources, congestion, higher cost, and a lower quality of life often found
in major urban areas (Richardson 1989; Zheng 2001; Martin and Sunley 2003). Clusters with a
large adjacency value are found near other clusters, which are usually located within large urban
corridors or conurbations (for illustration, see figure A.1, chapter 4). In this sense there is a limit
to agglomeration economies when sectoral clusters are located within very large urban corridors.
Hypothesis 4 posits that regional specialization has a positive effect and the results support this
view. High regional specialization in the health technology sector implies that other sectors within
the same region are smaller. Therefore, the benefits of lower congestion, competition for resources,
and costs likely out-weigh the potential benefits if inter-sectoral collaborations and knowledge
spillovers, which might be found in larger regions (Jacobs 1969; Camagni and Capello 2002; Capello
2009). This effect is most clearly visible in the medical devices sector (see table B.10, appendix
C.2).
Hypothesis 5 posits a positive relationship between corporate research activity and cluster inno-
vation performance: this relationship is confirmed. Hypothesis 6 which suggests that the national
innovation system has a strong influence on cluster innovation performance is rejected by the em-
pirical results. It appears that national institutions and policies do not influence healthcare cluster
innovation performance in a significant way (Strange 1996; Binz and Truffer 2017). Hypotheses
7-10 are about knowledge networks. Hypotheses 7 and 8 cover knowledge inflow and outflow.
Hypothesis 8, which claims a positive association of knowledge outflow with cluster innovation
performance, is not rejected. This result fits with the view that multinational corporations, which
are seen as the main facilitators of inter-cluster knowledge flows, tend to re-enforce already thriving
clusters (De Propris and Driffield 2005; Liu and Buck 2007; Østergaard and Park 2015).
Hypothesis 9 and 10 address the knowledge network structure and the empirical results show
a positive relationship between network reach and cluster agglomeration (hypothesis 9). The
association between network density and cluster innovation performance is rejected (hypothesis
10). The knowledge network hypotheses suggest that “conventional wisdom” with regards to
knowledge networks seems to apply to the health technology sector. This is to say that negative
or reverse knowledge flows (Frost and Zhou 2005; Ambos, Ambos, and Schlegelmilch 2006) are
not observed from the empirical results. Hypothesis 11 proposes that path dependence positively
influences cluster innovation performance, and this view is not rejected by the empirical results.
Path-dependence appears especially strong in the medical devices sector (see table B.10, appendix
C.2).
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Table 5.7: Evaluation of hypotheses for the health tech-
nology sector.

Hypotheses Evaluation
Hypothesis 1: New and fast-growing sustainability technology clusters are
more frequently located in Asia.

Partially Rejected

Hypothesis 3: Agglomeration has a positive association with cluster
innovation performance.

Not Rejected

Hypothesis 4: Regional specialization has a positive association with
cluster innovation performance.

Not Rejected

Hypothesis 5: Corporate research activity has a positive association with
cluster innovation performance.

Not Rejected

Hypothesis 6: The quality of the national innovation system has a
positive influence on cluster innovation performance.

Rejected

Hypothesis 7: Knowledge inflow has a positive association with cluster
innovation performance.

Rejected

Hypothesis 8: Knowledge outflow has a positive association with cluster
innovation performance.

Not Rejected

Hypothesis 9: The reach of the inter-cluster collaboration network has a
positive association with cluster innovation performance.

Not Rejected

Hypothesis 10: The density of the inter-cluster collaboration network has
a positive association with cluster innovation performance.

Rejected

Hypothesis 11: Past cluster innovation performance has a positive
influence on current cluster innovation performance.

Not Rejected

In addition to discussing the results based on the hypotheses, some further observations should be
made related to the healthcare sector’s development stage, the global spatial distribution of health
technology clusters, the role of multinational corporations and differences between the medical
devices and medical life sciences sub-sectors. The characterization of the health technology sector
as being in a mature development phase is supported by the empirical results, as the spatial
distribution and knowledge networks of the clusters appears to be mostly stable during the study
period (table 5.1 and 5.2). However, the results also show some important dynamic patterns. First
is the decline and subsequent recovery of medical life sciences patent output (figure 5.1). Second
is the rapid growth of (+166 to +224%) of certain clusters in Asia, including Seoul, Daejeon,
and Beijing. At the same time some large clusters in the United States are declining, including
Washington and San Francisco (-33 and -30%, see table 5.3 and 5.4). These observations provide a
nuanced perspective on a sector that has reached a mature development phase but is also involved
in certain socio-technological transformations (Ohta 2019).

Also noteworthy is the large role of knowledge outflow, which can be facilitated by the remote
labs of multinational corporations. The frequency at which a patent invented in a cluster is owned
by an entity from outside the cluster (knowledge outflow) is more than three times larger than
the number of co-invention links per inventor (0.64 compared to 0.18, see table 5.1), confirming
the perspective that multinational corporations create important global knowledge “pipelines”
between technology clusters (Bathelt, Malmberg, and Maskell 2004; Morrison, Rabellotti, and
Zirulia 2013). In addition to this the knowledge outflow indicator is also positively associated with
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cluster innovation performance (hypothesis 8a). Finally the medical devices sub-sectors shows an
important deviation from the medical life sciences sector in terms of its spatial pattern: just 24%
of medical device patents are found in clusters, as compared to 72% for the medical life sciences.
This is a notable difference because it could be interpreted as medical device clusters holding
limited agglomeration advantages, which might reduce clustering. It could also be interpreted as
clusters not being the main source of growth for the medical devices sector, with new innovations
taking place more frequently outside clusters (Ter Wal and Boschma 2011; Frenken, Cefis, and
Stam 2015).

5.6 Conclusion

This chapter has provided an overview of the spatial distribution, knowledge networks, and the
characteristics associated with cluster innovation performance in the health technology sector.
Overall the sector follows a relatively stable development trajectory, with no or limited changes in
patent output, clusters, and cluster characteristics. The analysis does reveal a notable knowledge
gap, concerning the spatial concentration of the medical devices sub-sector. The sub-sector has a
very low clustering rate compared to medical life sciences, which appears to be due to its specific
evolutionary growth path, at least with regards to Europe (Klein, Banga, and Martelli 2015). The
observation raises questions about the relevance of clusters in the medical devices sub-sector, as
only 24% of its patents are produced in clusters. The observation also creates some ambiguity
with regard to the view that the medical devices sector has an engineering and design knowledge
base, whose innovation process involves frequent inter-personal interactions, which are presumably
facilitated by agglomeration in clusters (Stankiewicz 2002; Asheim and Coenen 2005).
Another notable result is evidence of a “global shift” of health technology innovation activity to-
wards Asia. The growth of some large Asian clusters and the decline of some large North American
clusters fits within a broader narrative of “global shifts” towards Asia (Dicken 2007; Malecki 2014).
Yet the situation of individual clusters seems more nuanced, as some North American clusters, such
as Denver, are also among the world’s fastest-growing, which is presumably due to internal shifts
taking place in the United States, of healthcare innovation moving from large to smaller cities
(JLL 2012; Giuliano, Kang, and Yuan 2019). Also notable is the lack of statistically significant
results for the national innovation system, knowledge inflow, and network density, with regards to
cluster innovation performance. The concentration of health technology clusters in countries with
advanced national innovation systems may explain the factor’s lack of statistical significance. In
a similar way knowledge inflow and network density may be important, but not serve as distin-
guishing factors in explaining innovation performance, possibly due to the fact that the sector has
a relatively stable and mature knowledge network.
In the next chapter (chapter 6) a similar analytical framework is applied to the sustainable energy
technology sector. The results of this chapter and the next chapter are compared in detail and
benchmarked against reference high technology sectors in chapter 7.
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Chapter 6

Sustainable Energy Technology Clusters

6.1 Introduction

The sustainable energy technology sector is defined based on seven technological sub-sectors: bio-
fuels, electric vehicles, electricity storage, fuel cells, hydrogen technology, photovoltaics, and wind
turbines, which play an important role in addressing the global challenge of climate change and
the development of zero or low carbon emitting energy technologies (European Commission 2013,
2019; Intergovernmental Panel on Climate Change 2015, 2018; United Nations 2015). This chapter
provides a descriptive analysis of the spatial distribution, agglomeration, and knowledge networks
of sustainable energy technology clusters, and an explanatory analysis of their innovation perfor-
mance.
The chapter begins with a profile of the sustainable energy technology sector and its sub-sectors
(section 6.2), which includes a description of the sector’s growth trajectory, knowledge base, inno-
vation actors, and technological and market trends. There is considerable heterogeneity across the
seven sustainable energy technology sub-sector, which is addressed in the following way: in the first
instance the sustainable energy technology sector is treated as a single sector, because the research
focus is on socio-technological transformations. Heterogeneity among the sub-sectors is addressed
in the second instance, whenever there are clear divergences from the average. Section 6.3 provides
a description of the spatial distribution of patents, and of agglomeration and knowledge network
characteristics. The observations made over a 12-year period from 2000 to 2011 allow changes in
patenting locations and patterns to be observed within the context of “global shifts” (Dicken 2007)
and the sector’s development trajectory (Ter Wal and Boschma 2011). The association between
sustainable energy technology cluster characteristics and innovation performance is analyzed us-
ing a regression model in section 6.4. Section 6.5 covers the evaluation of the hypotheses and a
discussion of the empirical results. The chapter concludes with an overview of the main research
findings and their implications (section 6.6).

6.2 Sector Profile

The sector profile provides an overview of the sustainable energy technology sub-sectors: biofuels,
electric vehicles, electricity storage, fuel cells, hydrogen technology, photovoltaics, and wind tur-
bines. The sector profile includes the growth trajectories of the sub-sectors during the 2000-2011
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period (subsection 6.2.1), an overview of the sub-sectors’ knowledge base and recent technolog-
ical trends (subsection 6.2.2), and a discussion of the main innovation actors and the size of
the sub-sectors (subsection 6.2.3). The knowledge base and the institutional landscape are seen
as important factors that influence cluster innovation performance (Breschi and Malerba 1997;
Iammarino and McCann 2006).

6.2.1 Sector Growth

The sustainable energy technology sector is being driven by a growing demand for low-carbon
technologies. R&D is focused on further improving technological features so that zero-carbon
technologies can become competitive with existing carbon-based energy and transportation alter-
natives. As part of a broad policy to address the issue of climate change, sustainable energy is
expected to play an important role in reducing the consumption of conventional carbon-based
fuels, thus reducing the emission of greenhouse gases and other air pollutants (Algieri, Aquino,
and Succurro 2011; REN21 2017). Sustainable energy technologies play a key role in achieving
the goals of the Kyoto Agreement and Protocol, the last entering in force in 2005, and the Paris
Agreement, which was signed by 197 countries and entered into force on November 4, 2016. As
described in the United Nations Framework Convention on Climate Change: “The Paris Agree-
ment’s central aim is to strengthen the global response to the threat of climate change by keeping a
global temperature rise this century well below 2 degrees Celsius above pre-industrial levels and to
pursue efforts to limit the temperature increase even further to 1.5 degrees Celsius” (Fan 2019b),
a goal whose achievement requires a very rapid and global transition towards sustainable energy
use (Schleussner et al. 2016).

In addition to climate change goals, a move away from coal and other polluting energy sources also
benefits air quality, an issue that has gained considerable political concern in densely populated
parts of Mainland China, Hong Kong, and South Korea (Kostka and Zhang 2018; Shapiro 2018;
Gross, Buchanan, and Sané 2019), among other places. Another politically salient benefit of
renewable energy is their potential for reducing dependence on energy imports, in cases where
domestically generated renewable energy can replace imported fossil fuels. This gives sustainable
energy technology a security-strategic role in large energy-importing countries such as South Korea,
China, Thailand, and Japan (Algieri, Aquino, and Succurro 2011; Vasseur, Kamp, and Negro
2013; Kim 2016; International Energy Agency (IEA) 2019d). Renewable energy technologies and
industries can also raise economic growth and international competitiveness and can offer new
economic and employment opportunities (Algieri, Aquino, and Succurro 2011), an idea explicitly
formulated in South Korea during the Lee Myung Bak administration as its “Green Growth” policy
(Kim 2016).

The increased demand for sustainable energy is reflected in rising patent output of the various sus-
tainable energy technology sub-sectors (see figure 6.1). The fastest-growing sectors from 2000-2011
in relative terms are Biofuels (+1,408%), Wind Turbines (+1,361%), and Fuel Cells (+850%). In
absolute terms Photovoltaics (+4,763), Electric Vehicles (+4,266), and Electricity Storage (+3,287)
are the fastest-growing sub-sectors. The slowest-growing sustainable energy technology sub-sector
is Hydrogen Technology (+394 patents, +123%), which is still has double the growth rate of the
medical devices (+49%) and medical life sciences sub-sectors (+6.7%) over 12 years. Therefore,
especially when compared to the health technology sector, the sustainable energy technology sec-
tor in 2000-2011 should be seen as an emerging sector that is likely path creating, due to its high

96



growth rates (Martin and Simmie 2008).
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Figure 6.1: Annual sustainable energy technology patent grants by sub-sectors based on application
year (source: USPTO).

6.2.2 Sectoral Knowledge Base and Technological Trends

The knowledge base and technological trends are important influences in the innovation process of
every sector and they are therefore important background conditions for a sectoral analysis. The
knowledge base influences how R&D innovation takes place: the institutions involved, patenting
propensity, and the extent to which collaboration between firms, universities, and public research
institutions is likely to be established and maintained (Asheim and Coenen 2005; Tidd, Bessant,
and Pavitt 2005; Carlsson 2013). A distinction is often made between science- and engineering
and design-based sectors. In sectors with a scientific knowledge base, basic (fundamental) research
is an important source of innovation and therefore collaboration by industry with universities and
public research institutions tends to occur more frequently. Knowledge also tends to be more
codified, facilitating collaboration over long distances (Asheim and Coenen 2005; Carlsson 2013).
A sector with an engineering and design knowledge base innovate based on close interactions with
customers and suppliers, and through “learning by doing” enabling the accumulation of experience
and specialized skills (Jeannerat and Kebir 2016).
Most of the sustainable energy technology sub-sectors can be considered as having a scientific
knowledge base due to their focus on the development of new materials, which is closely connected
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to advances in fundamental research (Tidd 2001; International Energy Agency 2016; Binz and
Truffer 2017; International Energy Agency (IEA) 2019d). Especially research in electricity storage
(rechargeable batteries), fuel cells, and hydrogen technology is focused on the identification and
production of novel materials with improved properties, as well as methods for up-scaling the
production and extending the life-cycle of these materials and related devices for the conversion
and storage of sustainable energy (REN21 2017; International Energy Agency (IEA) 2019d). A
significant part of photovoltaics research also involves investigating new materials for the conversion
of solar radiation into electricity, with research addressing the challenges of raising the conversion
efficiency, and scaling up production (Masson 2017). Biofuels research is closely related to advances
in bio and bioprocessing technology, which is also considered a science-based sector (Binz and
Truffer 2017).

Two of the sectors can be considered as engineering-based sectors: electric vehicles and wind tur-
bines (Binz and Truffer 2017). Electric vehicle technology is closely related to the automotive
industry, and involves technology related to electric motors and related parts (Li et al. 2016).
Wind turbine research is primarily focused on optimizing windmill and turbine designs for max-
imum energy conversion efficiency, as well as efforts to lower installation and maintenance costs
(International Energy Agency 2016).

Despite some similarities between sub-sectors in terms of their knowledge base, all sub-sectors
cover distinct technologies. Biofuels are fuels derived from biomass, and are primarily used in
transportation, and they are produced from wood and various agricultural commodities such as
corn, sugar cane, palm oil, etc. Their adoption is partly policy-driven, with countries mandating
a certain percentage of fuel to come from biological sources (International Energy Agency (IEA)
2019d). Therefore, innovation in biofuels is primarily directed at developing technologies for the
more efficient large-scale production of biofuels, but also towards creating more high-value (co)-
products such as aviation fuels, fuels with greater similarity to conventional diesel and petrol
(allowing higher blend ratios and use in older unmodified engines), and fuels that have lower
aromatic content, which lowers air pollution in terms of toxic hydrocarbons, nitrous oxides, and
fine particulate matter (International Energy Agency (IEA) 2019d).

With reference to sustainable transportation, electric vehicles, and electricity storage are closely
related from a system perspective. Electricity storage technology (batteries) forms the main tech-
nological challenge for making electric vehicles competitive with fossil fuel vehicles in terms of cost
and performance, including maximum driving range, and battery charging time (International
Energy Agency (IEA) 2019a). Electricity storage innovation is primarily focused on reducing the
size, weight, and cost of batteries, relative to their capacity to store energy and to use more
environmental-friendly battery materials. This is achieved by the use of new materials and the
scaling up of battery manufacturing capacity (International Energy Agency (IEA) 2019a). The
large scale production and lower cost of batteries also has the potential to reduce the cost of storing
grid and off-grid electricity (i.e. not for transmission), and this can help to address the variability
in the production of sustainable energy from sources such as photovoltaics and wind turbines,
which depend on the weather and time of day.

An additional energy source for transportation are fuel cells, of which hydrogen fuel cells are the
most important sub-group. Fuel cell innovation takes place on a number of different fronts. With
respect to the fuel cells themselves, R&D is focused on reducing the cost while increasing the
performance and durability of the cells (International Energy Agency (IEA) 2019b). Regarding
the production of the energy carrier hydrogen, the majority of hydrogen is currently produced
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using fossil fuels (also leading to large amount of carbon dioxide emissions) and applied in the
chemical and steel industries. However, electrolysis - the process of producing hydrogen from
solar/wind electricity and water - is a process that enables hydrogen production with zero carbon
emissions. This offers solutions for climate-friendly energy storage, fueling vehicles, decentralized
heating (eventually using existing natural gas grids), making synthetic fuels, and using cleaner
hydrogen inputs in industrial processes (International Energy Agency (IEA) 2019b). Research on
these applications took place during the 2001-2011 study period of this analysis.

The most widely adopted sustainable electricity generation technologies are photovoltaics and wind
turbines. Innovation in photovoltaics is primarily focused on the development of new photovoltaic
materials and the scaling up of their production. Innovations in solar cell and module production
are less rapid (De La Tour, Glachant, and Ménière 2011). There are also innovations of a more
practical nature, including for example: solar cells shaped like roof-tiles, facades of buildings,
and lamp-post covering. Governments are a dominant actor in terms of stimulating demand for
photovoltaic cells through feed-in tariffs, the imposition of solar energy quotas or targets, tax
breaks, and other subsidies (De La Tour, Glachant, and Ménière 2011; Grau, Huo, and Neuhoff
2012; Vasseur, Kamp, and Negro 2013). Governments are also stimulating R&D and photovoltaic
manufacturing, notably in China (Van Geenhuizen and Ye 2018). The initial policy enthusiasm
for photovoltaics has more recently been extended to the private sector, as a dramatic decline in
cost per megawatt for photovoltaic systems has led to increased private sector investment which
has raised installed capacity, manufacturing output and R&D expenditure (Masson 2017; REN21
2017).

The innovation trajectory of wind turbines has been towards finding ways to lower operating costs.
This is mainly achieved by building fewer but larger turbines, which have higher energy conversion
rates, and lower installation and maintenance costs, as compared to a larger number of smaller
turbines. Currently the largest installed wind turbine diameter is 160 meter. The 160 meter-
diameter wind turbine has a generating capacity of 8-10 MW. Larger diameter wind turbines, in
the range of 250 meter, are likely to come to market in the coming years. By contrast in 1987 the
largest diameter wind turbine was just 15 meters. Small wind turbines are currently used mainly
for off-grid applications, such as in remote rural areas. In addition, research has been devoted to
gearless solutions, improved fixation of turbines on the bottom of seas, as well as floating wind
turbines. (Kamp, Smits, and Andriesse 2004; International Energy Agency 2016).

More generally, there is an important research challenge concerning the optimization of renewable
energy generation systems to ensure that the amount of energy supplied is more stable and aligns
better with peak consumption periods. For photovoltaics and wind turbines this means trying to
achieve more constant power generation throughout the day, and higher power generation during
periods of peak demand, whenever possible. Energy storage, whether using batteries or electrolysis
(energy carrier hydrogen), is another part of the solution to match variable supply and demand
(International Energy Agency 2016).

A transition to sustainable energy has profound technological, social, economic, and political
implications and requires intervention from a large number of different actors (Geels et al. 2011;
Geels 2012). The successful adoption of low-carbon technologies depends on the relative power,
interests, and policy goals of civil society, media, government (at various levels), political parties,
and advisory bodies, in addition to the actions of firm and consumers (Geels et al. 2017). As
a result of this complex stakeholder situation, sustainable energy innovation may have a spatial
distribution, knowledge network structure, and innovation performance conditions substantially
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different from those of other high technology sectors.
With regard to location of emergence of some subsectors, one condition specific for sustainable
energy is that several types, such as wind energy, sea-based energy (current, tides), solar energy, and
biofuels, are often fixed to certain places for optimal production, like windy coasts and mountain
ridges, empty desert land, and vast woodlands. These locations are often at a distance from large
population centers. The importance of localized natural assets can make smaller towns located
nearby attractive locations for R&D and innovation (Van Geenhuizen and Holbrook 2018).

6.2.3 Innovation Actors and Sub-Sector Size

The differences in the sectoral knowledge base of the sustainable energy technology sub-sectors is
also evident from an analysis of the main innovation actors. The classification of electric vehicles
and wind turbines as sub-sectors with a design and engineering knowledge base appears to be
reflected in the lower participation of universities and public research institutions in these sub-
sectors (see table D.3, appendix D.2). For electric vehicles and wind turbines 98% of innovation
activity (measured by patents) originates from industry and just 2% of innovation activity is
from universities. In the other sub-sectors, which are seen as having a scientific knowledge base,
there is a more significant presence of university and government research. Universities account
for 10% or more of innovation activity in the biofuels, fuel cells, and hydrogen technology sub-
sectors, and more than 4% in the electricity storage and photovoltaics sub-sectors, shares between
two- and five-times higher than in other sub-sectors. This confirms the existence of closer links
to basic scientific research. The results also show that major automotive and automotive parts
companies (Toyota, Nissan, Honda, Hyundai, Ford, General Motors, Audi, Robert Bosch) not only
appear among the 10 largest patent owners (assignees) for electric vehicles, but also for three other
sectors. Electricity storage, fuel cells, and hydrogen technology research all appear to be linked
to the automotive industry. In contrast, biofuels, photovoltaics, and wind turbines each appear to
have their own distinct group of top innovation actors (see table D.3, appendix D.2).
The differences in size of the sub-sectors should be taken into account when interpreting aggregate
sustainable energy technology results. In the descriptive spatial analysis (section 6.3) the aggregate
number of sustainable energy patents is used. Approximately 38% of patents are from the electric
vehicle and wind turbine sub-sectors, which have a design and engineering knowledge base. The
other 62% of patents are from the other scientific knowledge base sub-sectors (2008-2011, see also
table D.4, appendix D.2). For parts of the spatial, agglomeration, and knowledge network analysis,
and for the cluster innovation performance model, the aggregate number of sustainable energy
technology clusters is used. Electric vehicle and wind turbine clusters have a total of 62 clusters
(37%) as compared to 105 (63%) for the other sectors (2008-2011, see also table D.4, appendix
D.2). The number of clusters is proportional to patent output, and therefore the interpretation of
all aggregate sustainable energy technology sector results should take into account the larger share
of technology clusters and patents with a scientific knowledge base.

6.3 Cluster Characteristics and Spatial Distribution

This section provides a discussion of the spatial distribution, agglomeration, and knowledge net-
work characteristics of sustainable energy technology clusters. The section is divided into two
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parts. The first part describes clusters, agglomeration (subsection 6.3.1) and knowledge networks
using descriptive statistics (subsection 6.3.2). The second part describes the spatial distribution
of the largest, fastest-growing, and newly emerging clusters (subsection 6.3.3).
The results confirm the observation that the sustainable energy technology sector is growing rapidly
(see figure 6.1), but they also show that growth is concentrated in specific countries and clusters,
with others experiencing a decline in relative terms. Concerning changes at the individual clus-
ter level, San Francisco, Seoul, and Daejeon are rapidly increasing their global share and rank.
New cluster formation takes place primarily in the United States followed at a large distance by
Germany, Spain, and other countries. While many Asian clusters are growing rapidly, the total
number of clusters located in Asia is increasing more gradually.

6.3.1 Clusters and Agglomeration

Spatial concentration brings about agglomeration economies favorable for innovation activity, low-
ering costs, increasing the quality of services and labor market supply, and facilitating knowledge
spillovers. Table 6.1 provides an overview of sustainable energy technology cluster statistics for
three four-year periods from 2000-2011. The statistics are subdivided by the Clusters and Agglom-
eration and Knowledge Networks headings. The Cluster and Agglomeration indicators are derived
from patent counts, which are a measure of innovation activity. The location of patent inventors
or their institutional affiliation provides an indication of where innovation activity takes place and
which institutions are involved (Hagedoorn and Cloodt 2003; Lanjouw and Schankerman 2004;
Squicciarini, Dernis, and Criscuolo 2013). Sustainable energy patents are identified using Y-codes
assigned as part of the Cooperative Patent Classification (CPC), a classification jointly developed
by the EPO and USPTO (CPC Implementation Group 2017).
The number of sustainable energy patents shows an accelerating trend, with a rise of 3,511 between
2000-2003 and 2004-2007 (+42%) and by 12,375 between 2004-2007 and 2008-2011 (+105%, see
also table 6.1). As the sustainable energy technology sector is sensitive to socio-economic changes
and policy shifts, such as consumer demand and fiscal incentives favoring the sector, these factors
may have influenced the acceleration of sustainable energy patenting activity (Geels 2012; Geels
et al. 2017). Despite the rapid increase in patent output, the global distribution of patents across
continents remains relatively stable, with 42-43% in Asia, 34-38% in North America 20-21%, in
Europe and 1% elsewhere. From the perspective of a “shift to Asia” (hypothesis 1, Dicken (2007)),
these results suggest that Asia is the largest producer of sustainable energy technology patents,
but that no large shift is taking place.
It is noteworthy that the spatial distribution of patent output from different sub-sectors shows
considerable variation: 62% of biofuel patents are from North America, 41% of wind turbine patents
are from Europe, and 56% of electric vehicle patents are from Asia, in each case a significantly
higher share than the average of the sustainable energy technology sector as a whole (see table
C.6, appendix C.3). The total number of sustainable energy technology clusters has also rapidly
increased during the study period, rising form 67 in 2000-2003, to 103 in 2004-2007 (+54%), and to
167 in 2008-2011 (+62%). Although all world regions have experienced an increase in sustainable
energy technology clusters, the most rapid increase has taken place in Europe, with 6 clusters in
2000-2003, rising to 29 clusters in 2008-2011.
As the number of clusters has increased, so has the share of clustered patents: rising from 36%
(2000-2003) to 47% (2008-2011), and showing that most sustainable energy patent output growth
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is taking place in clusters. This is a trend often observed in sectors that have transitioned from an
initial development stage into a high-growth phase (Ter Wal and Boschma 2011; Frenken, Cefis,
and Stam 2015). Along with the increasing number of clusters, the average size of clusters is also
growing, rising from 44.2 patents per cluster (2000-2003) to 67.4 patents per cluster (2008-2011,
+52%). There is also variation in the clustering rate and average cluster size among the sub-sectors:
in 2008-2011 the clustering rate varied from 27% (electricity storage) to 72% (electric vehicles).
Average cluster size ranged from 21.6 patents per cluster (biofuels) to 133.6 (photovoltaics, see table
C.6, appendix C.3). The high rate of clustering for electric vehicles fits with its characterization as a
sector with an engineering and design knowledge base, in which spatial proximity and interpersonal
interaction are seen as playing an important role (Stankiewicz 2002; Asheim and Coenen 2005).

Based on the rising Gini coefficient from 0.66 (2000-2003) to 0.69 (2008-2011), which measures
the inequality of cluster sizes, there appears to be a small increase in cluster size inequality. This
is likely related to the increasing number of new small clusters at a time when large clusters also
experience high growth. The sectors with the greatest concentration (highest Gini coefficient) are
electric vehicles (0.74) and photovoltaics (0.64, see table C.6, appendix C.3). Hydrogen technol-
ogy and wind turbines have the lowest concentration, their Gini coefficients for cluster size are
0.43 and 0.47 respectively. The lower spatial concentration for wind turbines could be related
to the importance of localized natural assets, which can make smaller towns attractive locations
for wind turbine R&D (Van Geenhuizen and Holbrook 2018) During the same period, corporate
patenting has fallen from 93.6% (2000-2003) to 85.8% (2008-2011), which implies that the share
of government and university patenting has increased from 6.4% to 14.2% (+122% change). This
is a substantial increase in government and university patenting activity, which is understandable
given the importance of public policy in the sustainable energy technology sector (Geels 2012; Geels
et al. 2017). Corporate patenting is highest in sectors with an engineering and design knowledge
base: 95-99.3% for electric vehicles and wind turbines. The sub-sector with the lowest corporate
patenting share is hydrogen technology (70.5%).

6.3.2 Knowledge Networks

Doubt about the effectiveness of physical proximity, has moved theoretical attention to “relational”
proximity and the importance of knowledge networks, which can involve research collaborations
over large distances. Knowledge networks are primarily measured through ratios of the number
of network links per cluster or inventor. These network links are derived from co-invention or
inventor-assignee relationships. Ratios are used because the size of networks is often dependent on
the size and number of network nodes (clusters) (Wasserman and Faust 1994). The rapid growth of
clusters and patents during the 2000-2011 period has coincided with the rapid growth of knowledge
networks. The growth in the knowledge network appears to be related to the increase in clusters
and cluster size, and to more frequent research collaborations between inventors or organizations.

Co-invention links per inventor increased from 0.24 (2000-2003) to 0.32 (2008-2011, +33%), which
is a similar trend compared to the increases in the reach and density of network links per cluster.
The reach of cluster networks has increased from being linked to just 4.2 different clusters (2000-
2003) to 7 different clusters (2008-2011, +67%) on average. The total number of inter-cluster
links per cluster (network density) has risen from 7.4 links to 15 links (+103%). The growth of
the network and increasing network density is an often observed trend in rapidly growing sectors
(Martin and Simmie 2008; Ter Wal and Boschma 2011). Knowledge inflow per inventor (0.58-
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0.67), and knowledge outflow per inventor (0.42-0.52) have remained largely stable during the
study period.
There is considerable variation in the number of co-invention links per patent in different sub-
sectors. This measure varies from 0.18 links per inventor in fuel cells to 0.54 in wind turbines
and 0.43 in biofuels (see table C.6, appendix C.3). If knowledge inflow and outflow are seen
as a proxy for the level of multinational corporations’ research activity in a sector, then wind
turbines appears to have the highest penetration (0.87 inflow links per inventor and 0.72 outflow).
Low involvement is found in hydrogen technology (0.26 inflow and 0.41 outflow). Relatively large
differences in knowledge network indicators in different sectors were noted previously, and partly
reflect differences in the innovation process of the sector (Alkemade et al. 2015). The wind turbine
sector is also distinct because of its high median co-invention distance at 92 km, more than double
the median collaboration distance in the electric vehicle sector (38 km). This difference could be
due to the sometimes remote location of wind turbine clusters (Kamp, Smits, and Andriesse 2004;
Van Geenhuizen and Holbrook 2018).
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Table 6.1: Sustainable energy technology cluster, ag-
glomeration and knowledge network characteristics 2000-
2011.

Indicators 2000-2003 2004-2007 2008-2011
Clusters and Agglomeration
Total patents 8,285 11,796 24,171
- Patents in North America 2,822 (34%) 4,153 (35%) 9,086 (38%)
- Patents in Europe 1,768 (21%) 2,361 (20%) 4,742 (20%)
- Patents in Asia 3,575 (43%) 5,131 (43%) 10,083 (42%)
- Patents in Rest of World 119 (1%) 151 (1%) 260 (1%)
Total Clusters 67 103 167
- Clusters in North America 30 (45%) 49 (48%) 74 (44%)
- Clusters in Europe 6 (9%) 11 (11%) 29 (17%)
- Clusters in Asia 31 (46%) 43 (42%) 62 (37%)
- Clusters in Rest of World 0 (0%) 0 (0%) 2 (1%)
Clustered patents 2,962 (36%) 4,797 (41%) 11,248 (47%)
Patents per cluster, average 44.2 46.6 67.4
Cluster size Gini coefficient 0.67 0.68 0.7
Corporate patenting share 93.6% 89.4% 85.8%
Knowledge Networks (cluster average)
Co-invention links per inventor 0.24 0.31 0.32
Network reach (unique links per cluster) 4.2 5.4 7
Network density (total links per cluster) 7.4 10.2 15
Knowledge inflow (links per inventor) 0.67 0.58 0.6
Knowledge outflow (links per inventor) 0.42 0.46 0.52
Median co-invention distance (km) 43 45 47

6.3.3 Cluster Spatial Distribution

To increase understanding of the spatial distribution of sustainable energy research, the 10 largest
clusters (by patents), newly emerged clusters, and the fastest-growing clusters during the 2000-
2011 period are analyzed in this sub-section. Table 6.2 provides an overview of the cities containing
the 10 largest clusters during three four-year periods from 2000-2011. The cut-off of 10 clusters is
chosen because the share of global innovation output per cluster quickly falls to 1% for the sixth
or seventh-largest cluster. Due to the possible measurement uncertainties associated with using
patent data, analysis of individual clusters with a 1% share or less, may be based on data that
falls within the margin of measurement error.
There are notable shifts among the top-10 clusters during the study period with some fast-rising
and some fast-declining clusters. Tokyo and Osaka, in first and second place in 2000-2003 are
among the decliners. Although Tokyo maintains first place, its global share of sustainable energy
patents declines from 19% to 9% by 2008-2011. Osaka’s position falls from second with a 7% share
to fifth with a 3% share. Moving upward are San Francisco, Seoul, Daejeon, and Boston. San
Francisco rises from fifth position (1% share) to third position (5% share). Seoul rises from seventh
position (1% share) to fourth position (4% share). Daejeon and Boston are not among the top-10
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clusters in 2000-2003 but appear in seventh and eighth place (1% share) in 2008-2011. These
changes suggest that Japan’s leading position in sustainable energy research is declining in relative
terms, while sustainable energy research in South Korea and the United States are accelerating.
During the 2000-2003 period six of the top-10 clusters are located in Japanese cities, two are in
the United States, and one each is located in South Korea and Germany. By 2008-2011 there are
four in Japan, three in the United States, one in South Korea and one in Germany. As California,
Germany, Japan, and South Korea have seen a history of policy support for sustainable energy
initiatives (Vasseur, Kamp, and Negro 2013; Kim 2016; Meckling, Sterner, and Wagner 2017;
International Energy Agency (IEA) 2019d), this may explain why many of the largest sustainable
energy technology clusters are located there. In many top-10 cities there appears to be a strong
presence of electric vehicle patents: most of the top-10 cities also have the headquarters of major
automotive companies, including Tokyo (Honda, Nissan), Nagoya (Toyota), Detroit (Chrysler,
Ford, General Motors), Seoul (Hyundai Motor), and Stuttgart (Mercedes-Benz, Porsche). Data
in table D.3 (appendix D.2) further confirms that many of these firms are also among the largest
owners of electric vehicle patents.
The results provide a more nuanced perspective on the observed shift in innovation activity towards
Asia noted by Dicken (2007) (hypothesis 1). While the growth of sustainable energy research
in Japan appears to be slowing, South Korea and parts of the United States are seeing a rise
in sustainable energy research activity. Therefore, there are both intra-Asian shifts in research
activity (e.g. from Japan towards South Korea) as well as growth in selected regions outside Asia.
This observation is also supported at the country level (see table C.7, appendix C.3), where between
2000-2003 and 2008-2011 the rank and global share of Japan, Germany, Canada, and the United
Kingdom is declining, while the United States, South Korea, France, Taiwan, Denmark, and China
are rising.

Table 6.2: Cities with 10 largest sustainable energy tech-
nology clusters 2000-2011 (share of world sustainable en-
ergy patents).

Rank 2000-2003 2004-2007 2008-2011
1 Tokyo, JP (13%) Tokyo, JP (10%) Tokyo, JP (9%)
2 Osaka, JP (5%) Nagoya, JP (7%) Nagoya, JP (7%)
3 Nagoya, JP (5%) Osaka, JP (4%) San Francisco, US (5%)
4 Detroit, US (2%) Seoul, KR (3%) Seoul, KR (4%)
5 San Francisco, US (1%) San Francisco, US (2%) Osaka, JP (3%)
6 Mito, JP (1%) Detroit, US (2%) Detroit, US (2%)
7 Seoul, KR (1%) Daejeon, KR (1%) Daejeon, KR (1%)
8 Shizuoka, JP (1%) Mito, JP (1%) Boston, US (1%)
9 Utsunomiya, JP (1%) Munich, DE (1%) Mito, JP (1%)
10 Stuttgart, DE (1%) Boston, US (1%) Stuttgart, DE (1%)

While there is variation in the locations of the largest sub-sector clusters, top-10 sustainable energy
technology clusters from different sub-sectors are frequently located in the same cities (see table
C.9, appendix C.3). For example Tokyo appears to have top-10 clusters from all sub-sectors,
although for biofuels Tokyo is ranked eighth. Osaka (when including nearby Kyoto), Nagoya,
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Seoul, and Daejeon have clusters from all sustainable transportation related sub-sectors (electric
vehicles, electricity storage, fuel cells and hydrogen technology). Osaka and Seoul also have top-
10 photovoltaics clusters. However, the biofuels and wind turbine sub-sectors have a different
geographical profile, with some top-10 clusters located in smaller cities such as Wilmington in North
Carolina, Aurora in Colorado (both biofuel), Aarhus in Denmark, and Greenville in South Carolina
(wind turbines). Most of the smaller cities in the sustainable transportation and photovoltaics
sub-sectors can be viewed as part of a larger city-region, as they are located near major cities.
Examples include Mito, Chiba, and Utsunomiya (near Tokyo), Fremont (near San Francisco),
Hsinchu (near Taipei), Princeton and Hartford (near New York, see table C.9, appendix C.3). In
this sense the clusters identified in table 6.2 are representative of a broad cross-section of sustainable
energy innovation activity, with only biofuels and wind turbines having a notably different spatial
distribution. Also noteworthy is that two of the top-10 photovoltaics clusters are in Taiwan,
a relatively large number for a comparatively small country, and presumably in part the result
of public policy encouraging the development of the sector and the strong local semiconductor
industry (Lo, Wang, and Huang 2013).
Newly emerged aggregate sustainable energy clusters are those that did not meet the minimum
cluster threshold during the 2000-2003 period, but are identified during the 2008-2011 period. A
total of 57 new cities worldwide have newly emerged sustainable energy technology clusters. This
includes 32 cities in the United States, seven in Germany, three in Spain, two each in China,
Italy and Japan, and one each in Canada, Denmark, Finland, India, Israel, The Netherlands, New
Zealand, Singapore, and Taiwan. From the perspective of new cluster formation, it is notable
that only eight cities in Asia have newly emerging sustainable energy technology clusters, which
suggests that the sustainable energy technology sector has remained more spatially concentrated in
this part of the world. This is an observation that confirms earlier research, which noted the high
spatial concentration of knowledge resources in large Asian cities, including research universities,
public research institutions, and talent (Crescenzi and Rodrı́guez-Pose 2017). In Europe, Japan,
and North America there is generally a greater spatial distribution of innovation activity and
resources.
The aggregate growth of clusters is calculated by comparing the 2000-2003 and 2008-2011 periods.
The 10 fastest-growing clusters (by patents) are shown in table 6.3. Among them, five are located
in Asia, with Tokyo and Nagoya growing by more than 1,000 patents. Among these clusters Seoul
has the highest growth rate (+1,409%), followed by Daejeon (+1,151%). Four clusters from the
United States are also included, of which the fastest-growing are New York and San Francisco.
Berlin is the only top-10 fastest-growing cluster from Europe, and is in sixth place. Rapid growth
in sustainable energy research therefore appears to take place not just in Asia, but in a number
of cities around the world. Among the slowest growing clusters, only one cluster is experiencing
zero growth. Relatively slow-growing clusters are found in Asia (four), North America (five), and
Europe (one, see table C.8, appendix C.3).
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Table 6.3: Cities with the fastest-growing sustainable en-
ergy technology clusters 2000-2011 (absolute growth).

Rank City Δ Patents Rate
1 New York, US 2623 184%
2 Tokyo, JP 1039 160%
3 Nagoya, JP 1025 402%
4 San Francisco, US 1023 1056%
5 Seoul, KR 729 1409%
6 Berlin, DE 486 200%
7 Detroit, US 323 185%
8 Boston, US 220 408%
9 Daejeon, KR 197 1151%
10 Fukuoka, JP 173 66%

6.4 Cluster Innovation Performance

The cluster innovation performance model provides insight into the factors that influence, or are
associated with, cluster innovation performance in the sustainable energy technology sector. A
brief discussion of the model factors (indicators) is followed by an analysis of the model estimation
results. The model contains two different kinds of factors: factors related to the national innovation
system and path dependence are seen as “influences” (causality is one-way, towards innovation
performance). Factors related to agglomeration and networks are viewed as “associated” with
innovation performance, because reverse causalities likely exist (see chapter 3 for a discussion of
the research model). An overview of the factors and their indicator values is presented in table
6.4.
Aside from the logarithmic transformation of all model indicators, the cluster size and adjacency
indicators have also undergone a 10-5 transformation to ensure that their estimated model coeffi-
cients are in a similar range compared to the other indicators. As a result, the indicator range for
cluster size and adjacency appear to be relatively small. The national innovation system indicator
tends towards higher values. This is because a large number of clusters is located in high-quality
innovation systems such as the United States, Switzerland, and Japan (Schwab and Sala-i-Martin
2015). The national innovation system indicator is a composite indicator based on research invest-
ment, the quality of the higher education system, university-industry collaborations and protection
of intellectual property.
The knowledge base of the two sub-sectors is accounted for in the model using a dummy variable,
which indicates whether a cluster has an engineering and design knowledge base (photovolatics
and wind turbines). The implementation and testing of the model is described in detail in section
3.6.2 and 3.6.3 (chapter 3). The model estimation results are within the accepted boundaries
for multicollinearity (Variance Inflation Factor < 2) and normally distributed residuals (Shapiro-
Wilk test 𝑝 < 0.10). However, heteroscedasticity is not within the accepted boundaries for most
model estimations (Breusch-Pagan 𝑝 < 0.10). Heteroscedasticity issues mean that the values of the
coefficients may be biased, although this does not appear to influence the statistical significance
of correlation in a meaningful way (Lumley et al. 2002; Meuleman, Loosveldt, and Emonds 2015).
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Therefore, the basic assumptions of Ordinary Least Squares (OLS) regression are being met and
the correlations in the model results are robust. As is the case for the health technology sector, an
OLS regression is also used for an initial exploration of the correlation and associations between
various indicators in the sustainable energy technology sector.

108



Table 6.4: Statistical summary of sustainable energy
technology model indicators (log-transformed, 𝑛 = 167).

Indicator Measurement Minimum Mean Maximum
Innovation performance, 𝐼𝑉 𝑃 Patent citations -2.30 0.398 3.61

Cluster size, 𝑃𝐴𝑇 Patent count -2.30 -2.30 -2.19
Adjacency, 𝐴𝐷𝐽 Patent count -2.30 -2.28 -2.06

Regional specialization, 𝑆𝑃𝐸 Patent count -2.30 -2.11 -0.152
Corporate research, 𝐶𝑅𝑃 Patent assignees -2.30 -0.133 0.0953

National innovation system, 𝑁𝑆𝑄 Composite indicator* 1.22 1.66 1.73
Knowledge inflow, 𝑀𝑁𝐶 Patent inventor-assignee network -2.30 -0.875 1.92
Knowledge outflow, 𝐿𝐴𝐵 Patent inventor-assignee network -2.30 -0.718 0.936
Network reach, 𝑁𝐸𝑇𝑆 Patent co-invention network -1.61 -0.429 1.34

Network density, 𝑁𝐸𝑇𝑊 Patent co-invention network -2.06 -1.06 0.910
Past innovation performance, 𝐼𝑉 𝑃𝑃 Patent citations (previous period) -2.30 1.45 3.96

* Composite indicator of national private and public sector research investment, quality of higher education system, university-industry
collaborations and protection of intellectual property.
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The model estimation results in table 6.4 are discussed below. The agglomeration model consists
of two scale-based agglomeration indicators (cluster size 𝑃𝐴𝑇 and adjacency 𝐴𝐷𝐽), a diversity-
based agglomeration indicator (specialization 𝑆𝑃𝐸), and a qualitative agglomeration indicators
which describe the presence of corporate research (𝐶𝑅𝑃 ). The partial models’ predictive power is
expressed by an adjusted Δ𝑅2 of 0.159.
The scale-based indicators measure the number of patents produced inside the cluster (cluster size)
and the number of patents produced within other clusters of the same sub-sector located within 200
km of the cluster (adjacency). Cluster size has a positive and statistically significant association
with cluster innovation performance, but there is no statistically significant association with adja-
cency. Regional specialization is a measure of sectoral cluster patenting relative to patenting from
all other sectors within the cluster’s geographic boundaries. Regional specialization is statistically
significant and is positively associated with cluster innovation performance in sustainable energy
technology clusters. The benefits of specialization can be attributed to a better match with specific
needs for high-quality labor, services, and specialized learning (Giuliano, Kang, and Yuan 2019).
Corporate research measures the share of cluster patents owned by private sector corporations.
Corporate research has no statistically significant association with the dependent variable. The
agglomeration model estimation results provide support for hypothesis 3 (economies of scale) and
hypothesis 4 (specialization).
The national innovation system model has one independent variable: national innovation sys-
tem quality (𝑁𝑆𝑄). National innovation system quality is a composite measure that incorporates
private and public sector research investment, quality of higher education system, university-
industry collaborations and protection of intellectual property at the national level. National
innovation system quality has a positive and statistically significant influence on cluster innova-
tion performance. The predictive power (adjusted Δ𝑅2 of 0.164) is comparable to that of the
agglomeration model. The quality of the national innovation system therefore appears to posi-
tively influence cluster innovation performance, and as a result hypothesis 6 (national innovation
system) is not rejected.
The knowledge network model encompasses two indicators related to knowledge inflow (𝑀𝑁𝐶)
and knowledge outflow (𝐿𝐴𝐵), and two indicators related to the cluster’s position (degree cen-
trality) in the inter-cluster knowledge co-invention network (𝑁𝐸𝑇𝑆 and 𝑁𝐸𝑇𝑊 ). The knowledge
flow indicators are derived from the inter-cluster inventor-assignee network, with an outbound
inventor-assignee link indicating knowledge outflow and an inbound link indicating inflow. Both
knowledge flow indicators and the weighted degree centrality indicator are divided by the number
of inventors.
The partial models’ predictive power is an adjusted Δ𝑅2 of 0.205, which is slightly more than the
predictive power of the agglomeration and national innovation system models described before.
Only one knowledge network indicator is statistically significant: network reach. Network reach has
a positive association with cluster innovation performance, enabling the cluster to access a greater
diversity of specialist knowledge (Bathelt, Malmberg, and Maskell 2004). Knowledge inflow and
network density also appear to have a positive association with cluster innovation performance,
but their statistical significance falls just below the 90%-threshold. The positive association of
network reach provides support for hypothesis 9 (network reach).
Next, the path dependence model is estimated using only one indicator: past innovation per-
formance (𝐼𝑉 𝑃𝑃 ). Past innovation performance is calculated from patent data of the preceding
2004-2007 period. In the sustainable energy technology sector past innovation performance has a
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relatively low correlation with the dependent variable (𝑅2 of 0.28, see the correlation matrix, table
B.12, appendix B.3). In the model estimation past innovation performance has a positive and
statistically significant association with cluster innovation performance. The model’s predictive
power is an adjusted Δ𝑅2 of 0.243 which is the highest explanatory power of all partial models.
The path dependence model result provides support for hypothesis 11. Hypothesis 11 suggests
a positive influence of past innovation performance on current innovation performance. Clusters
(and organizations) that have performed well in the past tend to continue to do well due to the
accumulation of knowledge, experience, skills, trust, reputation, etc. (Boschma and Frenken 2006;
Crescenzi and Rodrı́guez-Pose 2011; Vergne and Durand 2011; Trippl et al. 2015; Crescenzi and
Jaax 2017).
The final partial model includes indicators of two previously discussed partial models, namely,
agglomeration and knowledge network models, as well as the national innovation system model
described earlier. To avoid issues of multicolinearity the network reach indicator is excluded
from the model estimation (see also table B.12, appendix B.3). The model estimation results of
the agglomeration and network model are similar to those of the earlier partial models, except
that regional specialization falls just below the 90% statistical significance threshold, while the
statistical significance of the network density indicator rises to 95%. The network density indicator
is positive, suggesting that a dense knowledge network supports higher innovation performance,
or if the causality is reversed, that clusters with high innovation performance are able to establish
dense knowledge network. The model’s predictive power is an adjusted Δ𝑅2 of 0.200, which
is higher than that of the agglomeration model, but slightly lower than the knowledge network
model. This difference can be explained by the exclusion of network reach from the combined
model estimation.
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Table 6.5: Sustainable energy technology cluster innovation per-
formance model estimation results 2008-2011.

Indicators Control Agglomeration National Knowledge Networks Path Dependence Agglomeration and Network

Cluster size 7.0 (2.9)** 8.9 (3.5)**
Adjacency -1.7 (1.2) -1.7 (1.2)
Regional specialization 0.36 (0.20)* 0.32 (0.20)
Corporate research 0.048 (0.15) 0.00097 (0.15)
National innovation system 1.1 (0.46)** 0.88 (0.49)*
Knowledge inflow 0.11 (0.072) 0.12 (0.075)
Knowledge outflow -0.098 (0.14) -0.11 (0.13)
Network reach 0.27 (0.12)**
Network density 0.17 (0.12) 0.29 (0.13)**
Past innovation performance 0.31 (0.077)***
Knowledge base (dummy) -2.3 (0.66)*** -0.96 (0.15)*** -1.1 (0.13)*** -1.0 (0.13)*** -0.71 (0.15)*** -0.99 (0.15)***
Constant 3.9 (0.63)*** 14. (7.3)* -0.78 (0.73) 1.4 (0.16)*** 0.43 (0.19)** 17. (8.9)*
Adjusted 𝑅2 0.091 0.250 0.254 0.296 0.334 0.292
Adjusted Δ𝑅2 0.159 0.164 0.205 0.243 0.201
Clusters (𝑛) 167 167 167 167 167 167

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance at the 90%, 95% and 99%-level, respectively.
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From an evolutionary perspective, agglomeration, and knowledge networks develop and accumulate
over time, for this reason they can also be seen as part of a cluster’s path dependence. As a rough
estimate of their impact, the predictive power of the agglomeration and knowledge network models
can be compared to that of the path dependence model. In the sustainable energy technology
sector the knowledge network and agglomeration factors appear to account for between 65% and
84%1 of the predictive power of the path dependence model. Other factors such as knowledge,
skills, reputation, experience, and specialized resources likely account for the remainder of the
path dependence model’s predictive power, along with agglomeration and network effects not
measured by the indicators used in this study (Simmie and Strambach 2006; Martin and Simmie
2008). Because the sustainable energy technology sector is in an early development stage and
experiencing exponential growth, the importance of non-network and non-agglomeration factors
appears smaller (possibly as low as 16%) when compared to the more mature health technology
sector, where non-network and non-agglomeration factors account for as much as 53% of path
dependence (see chapter 5).

When the aggregate sustainable energy technology model estimation results are compared to those
of the science-based sub-sectors (see table B.13, appendix B.3) and the engineering and design-
based electric vehicle and wind turbine sub-sectors (see table B.14, appendix B.3) there are some
notable differences. In sub-sectors with a scientific knowledge base, knowledge networks appear to
have a stronger and positive association with cluster innovation performance. On the other hand,
in sub-sectors with an engineering and design knowledge base, the national innovation system has
a relatively strong and positive influence, while knowledge networks appear to have a negative
association with cluster innovation performance. This suggests a strong and positive national
influence in these sectors, relative to the stronger global-network influence in science-based sectors.
These patterns fit with the understanding that knowledge in design and engineering-based sectors
is more tacit and relies more on interpersonal interactions, which are facilitated by close spatial
proximity. This, in contrast to science-based sectors, where more codified knowledge facilitates
knowledge transfers and collaboration over long distances (Stankiewicz 2002; Asheim and Coenen
2005).

6.5 Discussion

This section provides an analysis of the results from this chapter and their theoretical implications.
The section begins with an evaluation of the relevant hypotheses and is followed by a further
discussion of some additional observations. A total of 10 hypotheses are evaluated based on the
empirical results of this chapter (see table 6.6).

Hypothesis 1 addresses the spatial distribution of sustainable energy technology clusters and posits
that new and fast-growing clusters are mainly located in Asia. Such a pattern is rejected by the
analysis for a number of reasons. First, Asia already has a strong position in sustainable energy
R&D, accounting for 42% of global patent output since the beginning of the 2000-2011 study
period. Second, while new clusters and fast-growing clusters are found in Asian countries such
as Japan and South Korea, new and fast-growing clusters are also found in a number of other
countries such as the United States and Germany. In this sense any “shift” to Asia has already

1calculated by adding the adjusted Δ𝑅2 values of the agglomeration and knowledge network models and dividing
by the path dependence model.
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occurred and is not unique to Asian countries. Both countries in Asia and elsewhere see a decline
in relative terms (including Japan, Germany, and the United Kingdom) while others are rising
(including the United States, South Korea, and France).
Agglomeration is addressed by way of hypotheses 3-5. Hypothesis 3 covers scale-based agglom-
eration. Hypothesis 3 is not rejected because cluster size is positively associated with cluster
innovation performance. This suggests that there are advantages of spatial proximity, such as
increased opportunities for collaboration and knowledge spillovers (Morgan 2004; Capello 2009).
Note that there is no statistically significant adjacency effect. Hypothesis 4 posits that regional
specialization has a positive effect, and this is not rejected by the results. The results suggest
that local inter-sectoral knowledge spillovers may be of limited importance in the sustainable en-
ergy technology sector, and that sustainable energy technology clusters can develop successfully
in smaller cities (Camagni and Capello 2002; Capello 2009; Giuliano, Kang, and Yuan 2019).
Hypothesis 5 claims a positive relationship between corporate research activity and cluster in-
novation performance: this relationship is rejected. This outcome fits with the observed decline
of the corporate research share of sustainable energy research and the increase in university and
public sector research (see table 6.1. This increase is likely related to the sector’s role in socio-
technological transitions, which are an important policy focus (Geels 2012; Geels et al. 2017).
Hypothesis 6, which suggests that the national innovation system has a strong influence on cluster
innovation performance, is not rejected by the empirical results.
Hypotheses 7-10 are concerned with knowledge networks. Hypotheses 7 and 8 cover knowledge
inflow and knowledge outflow and they are rejected. Hypothesis 9 and 10 address the knowledge
network structure. The empirical results show a positive relationship between network reach and
cluster innovation performance (hypothesis 9). The positive influence of network density in cluster
innovation performance appears not rejected in the agglomeration and knowledge network model
(hypothesis 10), a model where network reach is excluded. Taken together, the results highlight
the positive role of knowledge networks (research collaboration) in sustainable energy technology
clusters.
Hypothesis 11 proposes that path dependence positively influences cluster innovation performance,
and this view is not rejected by the empirical results. The result fits with the theoretical ex-
pectations that cluster innovation capabilities accumulate over time, whereby relatively young
clusters (and organizations) that have done well historically, tend to continue to do well due to
the accumulation of resources and other advantages (Boschma and Frenken 2006; Crescenzi and
Rodrı́guez-Pose 2011; Vergne and Durand 2011; Trippl et al. 2015).
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Table 6.6: Evaluation of hypotheses for the sustainable
energy technology sector.

Hypotheses Evaluation
Hypothesis 1: New and fast-growing sustainability technology clusters are
more frequently located in Asia.

Rejected

Hypothesis 3: Agglomeration has a positive association with cluster
innovation performance.

Not Rejected

Hypothesis 4: Regional specialization has a positive association with
cluster innovation performance.

Not Rejected

Hypothesis 5: Corporate research activity has a positive association with
cluster innovation performance.

Rejected

Hypothesis 6: The quality of the national innovation system has a
positive influence on cluster innovation performance.

Not Rejected

Hypothesis 7: Knowledge inflow has a positive association with cluster
innovation performance.

Rejected

Hypothesis 8: Knowledge outflow has a positive association with cluster
innovation performance.

Rejected

Hypothesis 9: The reach of the inter-cluster collaboration network has a
positive association with cluster innovation performance.

Not Rejected

Hypothesis 10: The density of the inter-cluster collaboration network has
a positive association with cluster innovation performance.

Not Rejected

Hypothesis 11: Past cluster innovation performance has a positive
influence on current cluster innovation performance.

Not Rejected

The empirical results presented above support the view that the sustainable energy technology
sector is in a path creating phase and this path creating process is further influenced by the role of
the sector in the socio-technological transformation towards a low-carbon energy system (Ter Wal
and Boschma 2011; Martin and Simmie 2008; Geels et al. 2011; Geels 2012).
From a spatial perspective, the creation of new sustainable energy technology clusters during the
study period in locations around the world is a clear indicator of spatial path creation (Ter Wal and
Boschma 2011). From an innovation cluster performance perspective the predictive power of the
sustainable energy technology path dependence model is also relatively low (Δ𝑅2 of 0.243) when
compared to the stable health technology sector which is in a mature development (Δ𝑅2 of 0.486),
thus the path dependence of innovation performance in the sustainable energy technology sector
seems notably weaker. The increased presence of university and government actors in sustainable
energy research is also more characteristic of a sector in an early development stage (Ter Wal
and Boschma 2011; Isaksen 2016). As sectors develop the share of corporate research tends to
increase, although the opposite trend is visible in the sustainable energy technology sector during
the 2000-2011 study period.
During a sector’s path creation stage there is a great deal of uncertainty concerning the techno-
logical path to be chosen and their social and political acceptance. High innovation performance,
as measured by the number of patent citations per inventor, can be significantly influenced by
economic and policy choices, rather than by the “pure” innovation performance of researchers, as
would be the case in other sectors. In sectors with a stable technological trajectory agglomeration,
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knowledge networks and path dependence are likely to play a more prominent role (Martin and
Simmie 2008; Ter Wal and Boschma 2011). Amid this evidence of path creation, there is also strong
spatial path dependence as cities in Japan and South Korea, as well as San Francisco, have top-10
clusters from 5 or more sustainable energy technology sub-sectors. While the results do not sug-
gest that the concentration of multiple sustainable energy technology sub-sectors within one city
is associated with higher innovation performance, it is nevertheless a notable spatial phenomenon.

6.6 Conclusion

This chapter has provided an overview of the spatial distribution, knowledge networks, and the
characteristics associated with cluster innovation performance in the sustainable energy technol-
ogy sector. The analysis has revealed a number of knowledge gaps related to the changing spatial
distribution of sustainable energy technology innovation and the lack of support for a number of hy-
potheses. Both could be related to the sector’s path creating development phase and the influence
of public policy in view of the sector’s role in a broader socio-technological energy sustainability
transition (Ter Wal and Boschma 2011; Geels 2012). With regard to its spatial distribution, there
appears to be a complex growth pattern as almost all sustainable energy technology clusters are
growing, and many new sustainable energy technology clusters are being created in multiple coun-
tries. These countries range from innovation leaders such as the United States, to countries with
more modest innovation capabilities such as Spain and India (Schwab and Sala-i-Martin 2015).
However, the growth and formation of new sustainable energy technology clusters is unbalanced,
with clusters within the same country, or countries within the same region, showing both relatively
high, and relatively low growth. A likely explanation for this mixed spatial picture is the path
creation phase of the sector and government policies which support sustainable energy technology
development. As a technological path is still being created, governments may target certain cities
and technologies to support, but there is also great uncertainty in the eventual technological and
economic outcomes (Martin and Simmie 2008). For example, the growth of Denmark in sustain-
able energy research is likely related to the rapid growth of the wind turbine sub-sector (Nielsen
2017). The city of Daejeon in South Korea is targeted for sustainable energy research by the
national government (Wu 2014; Jeong 2017). This technological and policy complexity appears to
be reflected in the spatial distribution patterns of the sector’s growth.
With regard to the higher number of hypotheses rejected in the sustainable energy technology sector
compared to the health technology sector, this can also be attributed to the sector’s developmental
and socio-technological context. The role of corporate research and knowledge flows, which are
typically facilitated by multinational corporations, are not statistically significant, while there is
a statistically significant relationship with the national innovation system. This suggests that
the role of the corporate sector and multinational corporations may be smaller, while the role of
government is greater, further emphasizing the role of policy makers and other actors in socio-
technological transitions.
In the next chapter (chapter 7) the results of this chapter and the previous chapter are compared
and benchmarked against reference high technology sectors. This is done to identify which patterns
and cluster characteristics are specific to each sustainability technology sector, and which factors
influence all high technology clusters.
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Chapter 7

Comparative Analysis of Sustainability
Technology Sectors and Policy Relevance

7.1 Introduction

This chapter offers a comparison of the sustainability technology sectors against a benchmark of
other high technology sectors and a discussion of the policy implications of the research. The
chapter begins with a sectoral comparison aimed at better understanding how the sustainability
technology sectors’ knowledge base, development phase and involvement in socio-technological
transitions influences the spatial distribution, knowledge networks, agglomeration patterns and
the factors associated with cluster innovation performance (Ter Wal and Boschma 2011; Binz and
Truffer 2017; Geels et al. 2017; Steen and Hansen 2018). Certain cluster characteristics and
spatial patterns occur, or are important, only in a specific sector or development phase. As a
result, these differences can provide new insights into the sector and its underlying innovation
process. The reference high technology sector, with which the sustainability technology sectors
are compared, combines the aerospace, biotechnology, chemicals, electronics, defense, electrical
equipment, machinery and equipment, motor vehicles and pharmaceuticals technology clusters.
The spatial patterns and cluster characteristics of these sectors represent an aggregate benchmark
of the high technology sector (OECD 2013; Galindo-Rueda and Verger 2016).

The second part of the chapter describes a preliminary framework of cluster innovation strategies
and provides a discussion of how these strategies relate to the cluster innovation performance
research results, which are summarized and analyzed in the first part of the chapter. The framework
is based on a regional policy and evolutionary perspective (Njøs and Jakobsen 2016) and includes
notable counter-examples of strategies for technological catch-up that were observed in certain
Asian countries (Lee 2016).

The changing global spatial distribution, agglomeration and knowledge network structure of the
sectors is compared first (section 7.2). This is followed by a comparison of the factors that influence,
or are associated with, cluster innovation performance (section 7.3). These results, together with
the relevant hypotheses are evaluated in section 7.4. The policy relevance of the research findings
are discussed next (section 7.5), and a brief conclusion of the chapter is presented at the end
(section 7.6).
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7.2 Changes in Cluster Characteristics and Spatial Distri-
bution

The cluster characteristics of a sector tend to reflect different aspects of its innovation processes.
For example, Carlsson (2013) observes that in sectors where tacit knowledge and inter-personal
interactions are important in innovation processes, innovation actors can benefit from close spatial
proximity (agglomeration). Ter Wal and Boschma (2011) note that agglomeration and the density
of knowledge networks increase as clusters mature. The comparative quantitative analysis of cluster
characteristics in this chapter allows sectoral differences to be examined more closely, including
differences in the clustering rate and global spatial shifts in technology clusters and patent output.
The cluster characteristics presented in table 7.1 cover the sectors’ size (in terms of patents and
clusters) and other indicators that help to differentiate between the sectors. These indicators are
selected based on differences in their average value or changes in their value (growth, decline)
between 2000-2003 and 2008-2011. The sustainability technology sectors are compared with each
other and with the high technology reference sector1.
As discussed in earlier chapters, the sustainable energy technology sector is growing rapidly. Its
patent output increased by 192% and the number of clusters by 149% between 2000-2003 and
2008-2011. This is very different from the 2-5% growth over the same period for health technology.
The rapid growth of sustainable energy technology also affects other cluster indicators: there is
a 31% increase in the number of clustered patents and a 5% increase in the cluster size Gini
coefficient, which shows increasing agglomeration. To be specific, a rising Gini coefficient indicates
increasing inequality in cluster size (large clusters are growing faster than smaller clusters). A
33% rise in co-invention links per inventor shows that the sector’s knowledge network is becoming
denser. These observations fit the spatial pattern of a sector transitioning from an emerging to a
mature development phase (Ter Wal and Boschma 2011; Frenken, Cefis, and Stam 2015).
Despite the rapid growth of the sustainable energy technology sector, during 2008-2011 many of
its cluster characteristics appear to be similar to those of the reference high technology sector. The
sector’s corporate research share at 85.8% is similar to the reference of 88.6% (Welch t-test 𝑝 > 0.19,
see Delacre, Lakens, and Leys (2017)). The sectors 0.32 co-invention links per inventor is almost the
same as the reference value of 0.36 (Welch t-test 𝑝 > 0.11). Eventhough these indicators suggest
some similarity between the sustainable energy technology sector and the reference high technology
sectors, Persoon, Bekkers, and Alkemade (2020) conclude that sustainable energy technology builds
more on recent and diverse scientific research than traditional (fossil fuel) energy technologies.
When observing the same cluster indicators for the health technology sector, they deviate from
the reference values in a significant way, with corporate research share at 73.4% and co-invention
links at 0.41 (for both Welch t-test 𝑝 < 0.001). A lower share of corporate research and more
frequent inter-cluster knowledge links fits with the sector’s characterization as being more science-
based. Science-based sectors are known to have higher participation by university and government
actors and relatively frequent long-distance research collaboration because knowledge is more easily
codified and transmitted (Owen-Smith et al. 2002; Alkemade et al. 2015; Binz and Truffer 2017).
The sustainable energy technology and health technology sectors have very similar clustering rates
(42-47%) and Gini coefficients (0.67-0.69), which are both lower than the reference values. Given
the stability of the health technology sector, it appears that a lower clustering rate and more

1The selection of the reference high technology sectors is discussed in section 3.4 of chapter 3.
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equal distribution of cluster size are a constant feature. However, the increasing trend for both
indicators in sustainable energy technology suggests that the sector could become more similar to
the reference high technology sector in future. Both sectors also show a falling share of corporate
research (-3% to -8%), which suggests a corresponding increase in university and government R&D.
It is conceivable that this increase is being driven by growth in public R&D expenditure within the
context of the sectors’ role in socio-technological transitions. Within the context of the sustainable
energy sector, public policies and R&D expenditure are enhanced by the Kyoto protocol (adopted
in 1997) and its later enforcement. The default expectation is that a sectors corporate research
expenditure gradually increases as a new technology becomes economically viable due to customer
acceptance (Ter Wal and Boschma 2011; Mohr, Sengupta, and Slater 2013).

In sum, the results do not provide strong support for hypothesis 2, which posits that the health
technology sector has a denser knowledge network and is more clustered than the sustainable
energy sector. Eventhough the health technology sector clearly has a much denser knowledge
network, its clustering rate (agglomeration) at 42%, is somewhat lower than the 47% clustering
rate of the sustainable energy sector. The lower clustering rate of health technology appears to be
mainly due to the very low clustering rate of medical devices (see chapter 5).

Table 7.1: Technology sector comparison of selected clus-
ter statistics during the 2008-2011 period.

Indicators Healthcare Sustainable Energy Reference
Total patents 72,051 (+5%) 24,171 (+192%) 743,466
Total clusters 219 (+2%) 167 (+149%) 1,192
Clustered patents 42% (-11%) 47% (+31%) 72%
Cluster size Gini coefficient 0.67 (no change) 0.69 (+5%) 0.84
Corporate research share 73.4% (-3%) 85.8% (-8%) 88.6%
Co-invention links per inventor 0.41 (+8%) 0.32 (+33%) 0.36

Note: Change (%) between 2000-2003 and 2008-2011 in parentheses.

When comparing the cities with the 10 largest clusters of each sector, there is a high degree of
overlap between the health technology and aggregate high technology sectors (eight cities). By
contrast only five of the 10 largest sustainable energy technology clusters are located in the same
cities as the largest reference high technology clusters (see also table C.12, appendix C.4). This
difference suggests that specific factors influence the creation and growth of large sustainable
energy technology clusters. For example, and as discussed earlier in chapter 6, some of the largest
sustainable energy technology clusters are located in cities with a large automotive industry, such
as Nagoya, Detroit and Stuttgart. This co-location phenomenon makes sense given the strong
links between the automotive industry and research into electric vehicles and electricity storage.
Therefore, large sustainable energy technology clusters appear to have been created in these specific
cities because of investment by the automotive industry based there. There is also an emergence
of smaller clusters outside large metropolitan areas, derived from traditional manufacturing and
(fine-mechanical) skills like in the production of medical devices, or derived from the availability of
natural assets in remote areas (different sources of non-fossil energy) (Klein, Banga, and Martelli
2015; Van Geenhuizen and Holbrook 2018).
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7.3 Cluster Innovation Performance

Comparing cluster innovation performance and the associated cluster characteristics across dif-
ferent sectors provides insight into the relative importance of these characteristics in explaining
differences in innovation performance. The comparative analysis takes the reference high technol-
ogy sector as a starting point, with which the health technology and sustainable energy technology
sectors are compared. The analysis below is divided into four parts, which follow the four main
partial models: agglomeration, national innovation system, knowledge networks and path depen-
dence. A summary of the model estimation results, on which the comparative analysis is based,
is presented in table 7.2 and table 7.3 below. Full model estimation results for the reference high
technology sector are presented in appendix B.4.

In the reference sector and the health technology sector, cluster size, regional specialization and
corporate research are positively associated with cluster innovation performance, and adjacency
of clusters negatively; all factors are statistically significant (hypothesis 3 is partially rejected;
hypotheses 4 and 5 are not rejected). However, in the sustainable energy technology sector the as-
sociations of adjacency (negative) and corporate research (positive) are not statistically significant.
The negative association of adjacency can be seen as part of negative economies of scale, which
appear to act on a regional scale (< 200 km) but not within the local cluster. Negative economies
of scale might arise due to competition for talent, customers and resources from other same-sector
clusters located nearby (Martin and Sunley 2003), but such competition does not appear to play
a significant role in core sustainable energy technology clusters. On the other hand, a positive
association of corporate research suggests that a cluster needs a sufficient number of capable lo-
cal firms that absorb the benefits of knowledge spillovers from universities and publicly-funded
research and translate these into strong innovation strategies and R&D (Teece, Pisano, and Shuen
1997; Capello 2009; Qiu, Liu, and Gao 2017), but the model estimation results suggest that this is
not a significant factor in explaining the innovation performance of sustainable energy technology
clusters. An explanation for the absence of an adjacency effect could be the emerging development
phase of the sector, due to which negative economies of scale have not yet taken hold, leading
back to some of the cluster emergence outside large metropolitan area. An explanation for the
apparently smaller importance of corporate research could be related to the role that other actors
play (government, civic organizations, etc.) in socio-technological transitions in the energy sector
(Geels 2012; Geels et al. 2017).

The national innovation system (hypothesis 6) only has a statistically significant influence in the
sustainable energy technology sector, suggesting that this sector is more sensitive to national poli-
cies promoting renewable energy research and adoption (Langhelle, Meadowcroft, and Rosenbloom
2019). This is particularly important since the adoption of the Kyoto Protocol (1997) and its en-
forcement, and the design of national and regional policies that followed. In the other sectors the
influence of national policies appear to be weaker or less direct, presumably due to the stronger
influence of globalization (Strange 1996; Binz and Truffer 2017).

Further, knowledge inflow and outflow, often facilitated by multinational corporations, are pos-
itively associated with cluster innovation performance in the reference sector (hypotheses 7 and
8 not rejected). The positive association can be seen as a result of multinational corporations
establishing remote labs in already successful clusters (De Propris and Driffield 2005; Østergaard
and Park 2015). However, this phenomenon is notably absent in the sustainable energy technology
sector, which signals a modest role of multinational corporations in the sector, a phenomenon that
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could be related to the sector’s emerging development phase, during which dominant multinational
corporations have not yet established themselves (Ter Wal and Boschma 2011; Awate, Larsen, and
Mudambi 2015; Binz et al. 2017). Returning to the reference sector, there is a negative associ-
ation with the other two knowledge network indicators, network reach and density (hypothesis
10 rejected). With regards to network density, this result can be seen as a saturation effect: be-
yond a certain number of linkages, the cost of maintaining external network linkages may divert
resources from the internal network linkages in the cluster or exceed the cluster’s own absorptive
capacity (Ye, Yu, and Leydesdorff 2013; Lau and Lo 2015; Tomás-Miquel, Molina-Morales, and
Expósito-Langa 2019), however this is not (yet) the case in the sustainability technology sectors.
Network reach is generally considered to be positive (hypothesis 9), which is the case in both the
sustainability technology sectors and also for science-based part of the reference high technology
sector (table B.18, appendix B.4), but not for the reference high technology sector as a whole
(table B.17, appendix B.4).

Table 7.2: Technology sector comparison of cluster innovation
performance factors and direction.

Factor Healthcare Sustainable Energy Reference

Cluster size +*** +** +***
Adjacency -*** - -***
Regional specialization +** +* +***
Corporate research +*** + +***
National innovation system - +*** +
Knowledge inflow + + +***
Knowledge outflow +*** - +***
Network reach +*** +** -***
Network density - + -***
Past innovation performance (path dependence) +*** +*** +***

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance
at the 90%, 95% and 99%-level, respectively.

Past cluster innovation performance (path dependence), like including effects from cluster size and
regional specialization, has a positive and statistically significant influence on cluster innovation
performance in all three sectors. This suggests that all three sectors are in a path dependent
development phase, in which cluster capabilities are accumulated over time (Martin and Simmie
2008), although the strength of path dependence varies. Table 7.3 shows that the explanatory
power of the path dependence model is notably stronger for the reference and healthcare sectors
(𝑅2 of 0.560 and 0.490) than in the sustainable energy technology sector (𝑅2 of 0.334, hypothesis
12 is not rejected). In all other model estimations except path dependence, the model explanatory
of the sustainable energy technology sector exceeds that of the other two sectors. This observation
fits with the findings of Ter Wal and Boschma (2011), who note based on an extensive literature
review, that agglomeration and knowledge networks play a (more) important role in the emerging
development phase of a sector. If the agglomeration and knowledge networks model is taken as
an example, sustainable energy technology’s explanatory power (𝑅2 of 0.291) exceeds that of the
healthcare and reference sectors by a wide margin (𝑅2 of 0.121 and 0.187).
Aside from the different circumstances of the sustainable energy technology, which the model
explanatory power clearly illustrates, it is notable that in the health technology sector knowledge
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networks have a relatively high explanatory power. However, in the reference high technology
sector agglomeration is stronger than knowledge networks. This difference can be attributed to
the low clustering share (low agglomeration) and high number of co-invention links per inventors
(large network) in the health technology sector when compared to the reference values (see table
7.1 earlier). Yet dense networks and a high rate of agglomeration, as shown by the sustainable
energy technology sector, do not automatically mean that these factors are the most important to
cluster innovation performance.

The picture that emerges from the comparative analysis of cluster innovation performance is two-
fold. On the one hand the sustainable energy technology sector closely follows the agglomeration
and knowledge network patterns of an emerging sector. The health technology sector is more
mature, and more similar to the reference sector. On the other hand the health technology sector
shows some notable differences from the reference sector, which seem related to its knowledge base.

Table 7.3: Technology sector comparison of cluster innovation
performance partial-models explanatory power (𝑅2).

Factor Health Technology Sustainable Energy Reference

Agglomeration 0.091 0.249 0.176
National innovation system -0.001 0.254 -0.001
Knowledge networks 0.143 0.296 0.040
Path dependence 0.490 0.334 0.560
Agglomeration and knowledge networks 0.121 0.291 0.187

7.4 Comparison of Sustainability Technology Sectors

Whereas the preceding analysis has focused on comparing the sustainability technology sectors to
the reference sector, this section compares the sustainability technology sectors with each other.
The comparison is made from the perspective of socio-technological transitions. These transitions
are geographically bounded, requiring a supportive local environment to succeed (Truffer, Mur-
phy, and Raven 2015). The transitions are also influenced by many different actors: aside from
knowledge producers, firms and consumers, civil society, media, government, regulators, investors,
political parties and advisory bodies often play an important role (Geels et al. 2017). A compari-
son between the sustainability technology sectors is made based on the hypotheses about cluster
innovation performance (table 7.4) and sectoral differences (table 7.5).

Concerning agglomeration, hypotheses 3 is partially rejected. Local agglomeration is associated
with innovation performance, while regional agglomeration (through adjacent clusters) has a neg-
ative association, or is not significant, as is the case for sustainable energy technology clusters.
The negative association with regional agglomeration signal the presence of diseconomies of scale,
whereby at a regional level (up to 200 km) there appears to be greater competition or higher cost
for talent and other knowledge resources if a cluster is located near another large cluster from the
same sub-sector. In the case of sustainable energy technology clusters such diseconomies of scale
may be less relevant because they depend more on local support from their own cluster (such as
subsidies, innovation projects or university research), possibly making interactions with nearby
sustainable energy technology clusters less important. On the other hand, the health technology
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sector does show diseconomies of scale caused by nearby health technology clusters. This situation
could be due to the health technology sector’s strong path dependence (hypothesis 12), which may
make its technological innovation more competition-driven, as researchers innovate within a more
clearly established technological development trajectory (Martin and Simmie 2008).

Hypothesis 3 (agglomeration), along with hypotheses 4 (regional specialization) and 11 (path
dependence) are accepted for all sectors, which implies that these factors are not sector-specific.
However, it must be noted that the strength of agglomeration and path dependence varies as
shown in table 7.3 and discussed in section 7.3. With regard to regional specialization, it is known
that some prominent sustainable energy technology and health technology clusters are located
in smaller towns or cities (Ó hUallacháin and Lee 2014; Van Geenhuizen and Holbrook 2018;
Van Geenhuizen and Ye 2018), a situation that leads to a high degree of regional specialization.
The model estimation results suggest that in all sectors such regional specialization is associated
with high cluster innovation performance. Within the European Union this development can be
seen as a precursor of a “smart specialization strategy” in regional innovation policy, in which the
focus is strongly on specific regional assets, including natural assets, or advantages originating from
previous industrial paths, like skills in fine-mechanics and metal work (McCann and Ortega-Argilés
2015; Morgan 2017; Steen, Faller, and Fyhn Ullern 2019).

The share of corporate research (hypothesis 5) is seen as a proxy for a cluster’s absorptive capacity
and ability to transform knowledge into competitive strategies, but is not statistically signifi-
cant in the sustainable energy technology sector. A smaller role of corporate research fits from
the perspective of socio-technological transitions because many different actor types influence the
socio-technological innovation and transformation process (Geels et al. 2017). Corporate research
is statistically significant in the health technology sector even though the share of corporate re-
search in health technology clusters is significantly lower than in other sectors. This situation can
be attributed to the scientific knowledge base of the health technology sector and the close links
to research at universities and (academic) hospitals (Gelijns and Thier 2002). In this sense the re-
lationship between corporate research, socio-technological transitions and innovation performance
appears more complex.

In contrast to corporate research, the national innovation system (hypothesis 6) is a statistically
significant factor in sustainable energy technology clusters. This suggests that clusters located in
highly innovative countries such as the United States, Finland or Japan, out-perform their peers
elsewhere. The underlying reasons for this do not seem surprising, as innovative cluster firms
can get support from national research institutions and policies on talent and funding. However,
in the other sectors the role of national factors appears diminished, presumably due to ongoing
globalization (Locke and Wellhausen 2014; Binz and Truffer 2017). In this sense sustainable energy
technology can be viewed as part of specific national socio-technological transitions, dependent
on national policies, while health technology is part of a “global” transition in which national
policies play a lesser role. Yet it is important to note that in this study the national dimension is
operationalized as the quality of the national innovation system, rather than policies supportive
of the sustainability technology sectors, or other relevant national factors. It would therefore be
premature to conclude that sustainable energy technology is directly influenced by specific national
policies.

Cluster knowledge network characteristics show more similarities between the sustainability tech-
nology sectors. Both sectors lack an association with knowledge inflow (hypothesis 7) or network
density (hypothesis 10) while both have a positive association with network reach (hypothesis 9):
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greater network reach can provide clusters with access to new ideas and technologies (Bathelt,
Malmberg, and Maskell 2004). In the reference sector, both network reach and network density
show a negative association with cluster innovation performance, which suggests that a degree of
knowledge network saturation was reached, beyond which additional network linkages do not raise
innovation performance (Boschma 2005; Abbasi and Altmann 2011). The positive significance of
knowledge outflow essentially indicates cluster success, because multinational corporations usually
establish remote research labs in already-thriving clusters (Awate, Larsen, and Mudambi 2015;
Østergaard and Park 2015). A significant association is not observed in sustainable energy tech-
nology clusters, although the existence of remote labs is not uncommon in the sector (Awate,
Larsen, and Mudambi 2012, 2015). The association between knowledge outflow and innovation
performance appears to be negative and falls just below the statistical significance threshold in the
sustainable energy sector. A negative result suggests that reverse knowledge flow is taking place
due to the presence of remote labs in the cluster. “Reverse” knowledge flow occurs because remote
labs are often less connected to the local cluster and more connected to multinational corporations,
removing or diverting local knowledge spillovers and knowledge flows away from the local cluster
(Dunning 2000; Frost 2001; Frost and Zhou 2005; Ambos, Ambos, and Schlegelmilch 2006).

Table 7.4: Evaluation of cluster innovation performance
hypotheses and sectors in which they are rejected.

Hypotheses Evaluation
Hypothesis 3: Agglomeration has a positive
association with cluster innovation performance.

Not rejected in all sectors (cluster size,
local agglomeration); Rejected in health
technology and reference sector
(adjacency, regional agglomeration)

Hypothesis 4: Regional specialization has a
positive association with cluster innovation
performance.

Not Rejected (all sectors)

Hypothesis 5: Corporate research activity has a
positive association with cluster innovation
performance.

Rejected in sustainable energy

Hypothesis 6: The quality of the national
innovation system has a positive influence on cluster
innovation performance.

Rejected in health technology and
reference sector

Hypothesis 7: Knowledge inflow has a positive
association with cluster innovation performance.

Rejected in health technology and
sustainable energy

Hypothesis 8: Knowledge outflow has a positive
association with cluster innovation performance.

Rejected in sustainable energy

Hypothesis 9: The reach of the inter-cluster
collaboration network has a positive association with
cluster innovation performance.

Rejected in health technology and
reference sector (engineering-based)

Hypothesis 10: The density of the inter-cluster
collaboration network has a positive association with
cluster innovation performance.

Rejected (all sectors)
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Hypotheses Evaluation
Hypothesis 11: Past cluster innovation
performance has a positive influence on current
cluster innovation performance.

Not Rejected (all sectors)

Although sectoral differences have already been explored, they are explicitly addressed in hypothe-
ses 2 and 12 (see table 7.5). Hypothesis 2 is partially rejected by the results: although the health
technology sector does appear to have a denser knowledge network, it has a lower clustering rate
(see section 7.2). The low clustering rate seems specific to the medical devices sector, in which
only 24% of patents are found in clusters. Hypothesis 12 is not rejected because of the higher
model predictive power of the health technology path dependence model (see table 7.3), which fits
with its characterization as a sector in mature development phase.

Table 7.5: Evaluation of sectoral difference hypotheses.

Hypotheses Evaluation
Hypothesis 2: The health technology sector has a
denser knowledge network and a higher rate of
agglomeration than the sustainable energy
technology sector.

Partially rejected, no higher rates of
agglomeration

Hypothesis 12: The health technology sector has
stronger path dependence compared to the
sustainable energy technology sector.

Not Rejected

7.5 Policy Relevance

The policy relevance of the research has so far remained largely unaddressed in this thesis. However,
a basis for discussing policy relevance is now provided by the comparative analysis of sustainability
technology sectors presented in this chapter, as well as the findings from earlier chapters. Although
the results on policy relevance presented here are merely exploratory, they provide a direction for
future in-depth research.
The suitability of the research results for policy applications are assessed in two parts. First, the
cluster delineation strategy used in this study is evaluated. Second, a preliminary framework of
components required in regional cluster policy is presented (Brenner and Schlump 2011; Uyarra
and Ramlogan 2012; Njøs and Jakobsen 2016) and compared to the research findings.
The suitability of the cluster identification process has already been partially addressed earlier in
this study, namely from a more technical-methodological perspective. The use of a single source of
patent data, the application of a home bias correction factor, and the calibration of the clustering
algorithm are described in detail in 4.3 of chapter 4. In this section the cluster identification results
are viewed from a policy perspective: how useful are they for policy-making? (subsection 7.5.1).
Second, a simple preliminary policy framework for technology cluster development is presented.
This framework focuses on regional policy from an evolutionary perspective, with some insights
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into national economic-technological policy, and follows the broader theoretical perspective of the
study. An evaluation of the research findings based on this simple framework provides insight
into the extent that regional cluster policies can be adequately informed by the descriptive and
explanatory results of this study, including the cluster innovation performance model (subsection
7.5.2).

7.5.1 Policy Application of Cluster Identification

In this study organic cluster identification is used to identify the “real” boundaries of technology
clusters, an alternative for using administrative boundaries, which do not always align with the
actual spatial concentration of innovation activity. Organic cluster identification provides greater
insight into the spatial distribution of innovation activity in terms of both scale and density com-
pared to using pre-existing administrative boundaries. While some technology clusters encompass
a single town or city, many clusters encompass multiple cities, and sometimes a cluster extends
across state/provincial or even national boundaries. Such a situation also has policy implications:
while cluster policy could involve a single local/regional authority or city (Van Geenhuizen and Ne-
jabat 2021), it could also combine multiple spatial-administrative units at different levels through
a collaborative framework involving more than one city, region or even country (Park 2014). Es-
pecially if a cluster covers multiple spatial-administrative units, there is the challenge of sufficient
collaboration and co-ordination to guarantee a good alignment of policy-making and implementa-
tion. In this sense, an organic technology cluster identification methodology helps identify which
local/regional authorities are most relevant to a cluster and subsequently, which authorities should
be included in a collaborative cluster policy-making.
Aside from potentially shaping regional cluster policy-making by providing a new spatial perspec-
tive on technology clusters, organic cluster identification strategies can also be used to monitor
technology clusters and to provide more detailed insight into the spatial structure of clusters,
e.g. the identification of smaller “mini” clusters within a larger “macro” cluster.
The cluster identification methodology presented in chapter 4 can be used to regularly update the
spatial distribution of clusters based on new patent data, allowing decision-makers to monitor the
growth of their own clusters, and that of other clusters. The patent data used to identify clusters
can also be used to monitor other features of the cluster, such as its innovation performance, its
global knowledge network, the type of actors conducting R&D in the cluster, etc. Due to the
time-lag between R&D and patent application, the picture provided by current patent application
data are likely several months or a year old. While not “real time,” this may still make the patent
data more recent than official statistics or innovation surveys, and therefore a very useful cluster
monitoring tool. The fact that patent data are usually freely accessible means that the monitoring
of clusters is relatively inexpensive.
As already discussed in chapter 4, the identification of clusters requires some judgement to be made
about what constitutes a cluster. Are a handfull of smaller medical devices clusters located between
Mannheim and Stuttgart in Germany all part of a larger “macro” cluster? Is the photovoltaics
cluster in Hsinchu in Taiwan a separate cluster, or is it part of the Taipei cluster, located 60
km away? These questions do not have simple answers and they show the spatial complexity
of technology clusters. This complexity is also illustrated by the heatmaps of cluster innovation
activity displayed in appendix A.3. From a policy perspective the heatmaps of cluster innovation
activity can also show which locations contribute most to a cluster. For example, the London
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cluster often incorporates nearby Cambridge and Oxford, which are notable technology clusters
in their own right due to the presence of large research-intensive universities located there. A
London cluster is in actual fact a London-Cambridge-Oxford cluster. The ability to “zoom in” on
certain sub-areas of a cluster depends on the available patent address data. For the USPTO patent
database, patent address data are typically aggregated at the city level, which makes it impossible
to identify sub-clusters within a city. For example, all patents invented in Seoul, South Korea
are identified as being from “Seoul.” However, the Korean Intellectual Property Office (KIPO)
patent database contains detailed address information at the neighborhood-level (dong). KIPO
data could thus be used for the methodology presented in chapter 4 to generate a more detailed
innovation heatmap of a large Korean city such as Seoul.

7.5.2 Policy Framework for Cluster Development Stages

In this section a cluster policy framework is presented that offers multiple strategies for cluster
development depending on the technology cluster’s development stage. Two groups of policies are
identified, namely policies to enhance innovation performance of existing technology clusters, and
policies to create and grow new technology clusters. Njøs and Jakobsen (2016) present a stylized
summary of policies for enhancing cluster innovation performance which can be differentiated
or merged depending on the cluster’s development circumstances. The authors identify three
main strategies: “monocropping,” “hubbing,” and “blending.” Monocropping involves increasing
local/regional specialization, a strategy for path extension of emerging clusters, including “smart
specialization” (McCann and Ortega-Argilés 2015; Morgan 2017). Hubbing involves increasing
global knowledge networks within the same sector for path extension and renewal. Blending
involves encouraging local inter-disciplinary research collaboration for path renewal. In addition
to these three core strategies, review studies of cluster policy by Brenner and Schlump (2011) and
Uyarra and Ramlogan (2012) also highlight the following additional observation: it is beneficial
to involve the private sector in early stages of the cluster life-cycle, by encouraging start-ups
and providing a support-network. In addition, there is the assumption that the emergence of new
technology clusters cannot be triggered in the mature phase of a sector’s life-cycle. Concerning this
point, there is also counter-evidence from the technological catch-up strategies of Asian countries
(Lee 2016), whereby national-level policies support regional cluster policies aimed at enhancing
path creating, path following or technological “stage-skipping” development paths. In this sense
the potential of cluster policies can be enhanced through targeted and regionally aligned national
policy support. These additional observations are incorporated into the cluster policy framework
as “supporting” strategies that complement the three aforementioned “core” strategies.
The preliminary cluster innovation policy framework and its three core and two supporting strate-
gies, together with the broad suitability of the descriptive and model estimation results, are shown
in table 7.6. The supporting strategies are seen as often overlapping with one of the chosen core
strategies. When interpreting the results, it is important to note that the sustainable energy
technology sector is an example of a fast-growing emerging sector, whereas the health technology
and reference high technology sectors are in a more stable and mature development stage. The
“monocropping” strategy is seen as more relevant in emerging sectors, whereas “blending” is more
relevant for sectors in a mature development stage (Njøs and Jakobsen 2016).
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Table 7.6: Preliminary framework of cluster innovation
strategies and suitability of cluster innovation perfor-
mance results.

Policy Strategies Suitability of Research Results
Monocropping (Core Strategy):
deepening sectoral agglomeration
(‘smart specialization’)

Supported by results for all sectors: cluster size and regional
specialization are positively associated with cluster
innovation performance.

Hubbing (Core Strategy):
expanding inter-cluster links with
other clusters from the same
sector

Supported by explanatory analysis for the sustainable
energy technology and health technology sectors (network
reach), but not in reference high technology sectors.
Descriptive analysis shows that inter-cluster knowledge
networks grow over time.

Blending (Core Strategy):
expanding local inter-sectoral
R&D collaboration

Inconclusive from explanatory analysis (regional
specialization is positive, suggesting no advantage from
being located in major urban areas with a more diverse
technological base), but supported by the descriptive
analysis, as clusters of newly emerging sectors are often
created in major urban areas.

Promoting private sector R&D
(Supporting Strategy)

Supported by explanatory results for Healthcare Technology
and Reference High Technology (not statistically significant
for Sustainable Energy Technology) and supported by the
descriptive analysis as corporate research accounts for the
majority of cluster innovation output.

Developing strong national
policies (Supporting Strategy)

Based on descriptive analysis, China, South Korea, and
Taiwan are clearly growing their global share, including in
mature industries, suggesting a national policy dimension

The cluster innovation performance results tend to support “monocropping” (local/regional spe-
cialization) and “hubbing” policy strategies (enhancing global knowledge networks within the same
sector), but tend to be inconclusive with regard to the “blending” strategy. A blending strategy is
a growth path whereby different existing local sectors combine into a new sector, something more
likely to happen in a major urban area with a diverse technological base. The innovation results do
not show that being located in a major urban area raises cluster innovation performance. Instead,
regional specialization, whereby certain sectors play a relatively large role within a particular re-
gion or city (i.e. low diversification), appears to be positively associated with cluster innovation
performance.
The descriptive analysis does provide support for a “blending” strategy. It can be observed that
the clusters of several sustainable energy technology sub-sectors have developed in cities with large
established industries, such as automotives. In that sense the development of hydrogen technology
and energy storage clusters can be seen as a form of “blending” which is extending the path of
the automotive cluster into new technological domains. The descriptive analysis also allows for
the monitoring of private sector R&D in clusters, although in the sustainable energy technology
sector, which is involved in socio-technological transitions, support from other actors beyond the
private sector is also important (Geels et al. 2017). In contrast, bringing the technology to market
by corporate or university spin-off firms, cannot easily be measured based on patent data.
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The descriptive analysis further shows the rapid growth of clusters in China, Taiwan, and South
Korea, including in the more mature health technology sector. The growth of clusters in these
specific “late industrializing” countries suggests that strong national policies are also in place (Lee
2016). As cluster growth and cluster innovation performance are among the main concerns of
cluster policy makers, the cluster methodology provides useful tools for gaining insights in these
areas. In future, the model results could be further enhanced by incorporating the development of
important organizations (e.g. promising start-ups) and knowledge network linkages (e.g. to other
highly innovative clusters and organizations).

Based on the descriptive and explanatory cluster innovation performance analysis, the most ob-
vious insight is that “monocropping” and “hubbing” appear to be suitable cluster development
strategies, although “hubbing” in more mature sectors may involve inward and outward invest-
ment by multinational corporations, rather than inter-organizational research collaboration. A
“blending” strategy may be more relevant to cluster growth than to cluster innovation perfor-
mance. Furthermore, local/regional cluster policies may be insufficient if attempting to break into
mature sectors. In such cases national policy support is also needed, possibly with additional
help from European Union policies. Accordingly, in addition to local cluster policies, national
and European Union-policies may also be needed to raise the innovation performance and growth
of European technology clusters, especially in sectors where Asian or North American innovation
activity is very dominant. At the same time, the European Union may also be able to leverage its
strengths in areas like citizen science, as an important resource for innovation (Haklay 2015).

In spite of the previous points, the explanatory power of the innovation performance model is also
limited in several ways. This is the reason why concerns remain about other conditions that are at
stake, but have remained unobserved in the current study due to use of mainly patent-related in-
dicators and a simplified model. What can be mentioned are cultural conditions like differences in
risk-taking culture and open creativity (Nooteboom 2013; Autio et al. 2014), actual financial sup-
port schemes at the national level (Grau, Huo, and Neuhoff 2012; Palmer et al. 2018), the kind of
policy making processes (consensus seeking, authoritative) (Casper 2013; Langhelle, Meadowcroft,
and Rosenbloom 2019), and the facilities provided in cities to enhance experimentation and the
adoption of new technology (Van Geenhuizen and Holbrook 2018; Van Geenhuizen and Nejabat
2021). In addition, conditions beyond policy control need to be mentioned, like fluctuation of the
economy (crisis) and occurrence of natural disasters (climate and health-related), that may work
as a trigger in path renewal.

7.6 Conclusion

The sectoral comparison presented in this chapter reveals noteworthy differences in cluster char-
acteristics and their influence on innovation performance, which may also have some policy im-
plications. Some of these differences can be attributed to the development phase and knowledge
base of the sectors, while the influence of socio-technological transitions on cluster characteristics
appears to be more complex, as each sustainability technology sector appears to be involved in a
different type of socio-technological transition. In addition, there is also a link with new regional
policy (smart specialization) emphasizing specific regional (natural) assets.

The rapid growth of the sustainable energy technology sector is reflected in its cluster characteris-
tics, including the creation of new clusters, rising agglomeration and growing knowledge networks.
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In terms of innovation performance, its clusters lack the diseconomies of scale and network satu-
ration effects found in other sectors, and show lower path dependence. The knowledge base of the
health technology sector is evident from its lower corporate research share and dense inter-cluster
knowledge network, as compared to other sectors. Network reach is positively associated with
innovation performance in both sustainability technology sectors.
Viewing the sustainability technology sectors from the perspective of socio-technological tran-
sitions raises complex questions about regional agglomeration (adjacency), corporate research,
multinational corporations, and the national innovation system. The negative association with
adjacency is absent in the sustainable energy technology sector, raising questions as to why this is
the case. Corporate research and the presence of multinational corporations are also not significant
in sustainable energy technology clusters, suggesting their diminished role, as compared to other
innovation actors, such as the public sector. Evidence for a relatively large role of public and non-
profit actors in the sustainable energy technology sector can also be taken from the significance of
the national innovation system. Yet there are no hypotheses that explore the relationship between
policy (whether local or national) and cluster innovation performance. It is also noteworthy that
in all of these aspects, the health technology sector differs and appears to be more similar to the
reference high technology sectors, which are not involved in socio-technological transitions.
Sectoral differences are also noted when comparing cluster development strategies to the em-
pirical results. Although “monocropping” (regional specialization) and “hubbing” (global net-
working) strategies appear to be supported by the results, “hubbing” in more mature sectors
appears to involve inward and outward investment by multinational corporations, rather than
inter-organizational research collaboration. The role of the private sector also appears to be differ-
ent in relation to cluster innovation performance: in newly emerging sustainable energy technology
sectors it appears related to cluster growth, but not to innovation performance.
In the next chapter (chapter 8) a broad summary and discussion of the empirical results from the
past three chapters is presented, including their theoretical and policy implications. Chapter 9
provides further reflection on the results, theory, and research methodology.
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Chapter 8

Summary and Discussion

8.1 Introduction

The sustainability technology sectors play a critical role in addressing the large global problems
of ageing populations and climate change, specifically the rising demand for medical care and the
need to reduce the cost of healthcare (European Commission 2018; World Health Organization
2019), as well as the need to reduce the emission of greenhouse gasses (Intergovernmental Panel
on Climate Change 2018; European Commission 2019). While these problems cannot be solved by
technological solutions alone, technology plays an important part in addressing them (World Health
Organization 2004; International Energy Agency 2016; REN21 2017). Addressing the challenges
of innovation, climate change, public health and the need for sustainable industrialization and
economic growth are also key parts of the United Nations’ Sustainable Development Goals (United
Nations 2017).

Viewed spatially, technological innovation tends to follow a pattern of being globally distributed
but spatially concentrated in technology clusters, which are connected through a global network of
knowledge relationships (Malecki 2014; Ó hUallacháin and Lee 2014; Crescenzi et al. 2019). Cluster
agglomeration and knowledge networks are among the factors seen as being closely associated
with cluster innovation performance (Feldman and Kogler 2010). However there is a knowledge
gap concerning the specifics of these patterns and associations for the sustainability technology
sectors. This knowledge gap is summarized by the main research question of this dissertation:
What are the dynamic spatial distribution and innovation performance patterns of sustainability
technology clusters and how are they influenced by cluster characteristics, such as agglomeration
and knowledge networks, and sectoral differences?

The global spatial distribution of sustainability technology clusters is discussed in section 8.2
(research question 1), and the agglomeration characteristics and inter-cluster knowledge networks
are addressed in section 8.3 (research questions 2 and 7). In section 8.4 different aspects of
the relationship between cluster innovation performance and cluster agglomeration, the national
innovation system, knowledge networks and path dependence in the sustainability technology
sectors are explored (research questions 3-6 and 8). Section 8.5 offers a summary and discussion
of the research contributions from a methodological, empirical, theoretical and policy standpoint.
A brief conclusion completes the chapter (section 8.6).
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8.2 Spatial Distribution

This section provides a discussion of the theory, research questions, and empirical results related
to the spatial distribution and dynamics of health technology and sustainable energy technology
clusters. The location of sustainability technology clusters, including their creation, growth, or
decline, are matters of great importance from the perspective of regional and national innovation
performance. Because innovation is an important driver of economic development, and in the
case of the sustainability technology sectors also of socio-economic changes and socio-technological
transitions (Geels et al. 2011; Geels 2012), the location of technology clusters is of major con-
cern to policy makers at local, regional, national and international levels (Dicken 2007; European
Commission 2010, 2013).

Concisely defined, innovation is the ability to generate new knowledge and apply it in an econom-
ically useful way (Acs, Anselin, and Varga 2002; Tidd, Bessant, and Pavitt 2005). As is the case
with many other kinds of economic activity such as finance, corporate headquarter governance,
air transportation and telecommunication, innovation activity is concentrated in a relatively small
number of locations distributed around the globe, which form well-connected global networks
(Malecki 2014; Belderbos, Du, and Goerzen 2017). These “world” or “global” cities tend to be
hubs within the global networks of professional services, finance, telecommunications, and air
transportation (Taylor 2004; Ichikawa, Yamato, and Dustan 2017), and they often contain large
concentrations of innovation activity (Bergquist, Fink, and Raffo 2017; Florida, Adler, and Mel-
lander 2017). However, not all large metropolitan areas have reached such an advanced state of
development.

It is important to note that large clusters are not necessarily located in “world” or “global” cities;
the geographic locations of clusters varies depending on the sector. Life sciences clusters are often
found in smaller cities and are often anchored around universities (Ó hUallacháin and Lee 2014).
Some sustainable energy technology clusters are found in more remote locations in order to take
advantage of local natural assets (Van Geenhuizen and Holbrook 2018). The location of clusters
is also dynamic: in young and fast-growing sectors there is significant cluster creation (Ter Wal
and Boschma 2011), whereas in more mature sectors growth tends to take place within existing
clusters (Frenken, Cefis, and Stam 2015). Especially in sectors involved in socio-technological
transformations, R&D clusters are likely to grow and benefit in places that, aside from R&D
facilities, also offer policy and other support, creating space for experimentation and opportunities
for new technologies to find early adopters, like niches and living labs (Smith and Raven 2012;
Steen and Hansen 2018; Van Geenhuizen and Ye 2018).

The global spatial distribution of sustainability technology clusters, and the changes therein, have
not been previously explored in the scientific literature, thus leading to Research Sub-question
1: What is the global spatial distribution of sustainability technology clusters and how has it
changed in recent years? Supporting sub-question 1.1: How can sustainability technology
clusters be identified on a global scale? Supporting sub-question 1.2: Where are the largest
sustainability technology clusters located during different periods? Supporting sub-question
1.3: Where are growing and shrinking sustainability technology clusters located? The answers to
these questions are discussed below, addressing the global spatial distribution and spatial dynamics
of sustainability technology clusters.

With regard to identification and spatial delineation of clusters, sustainability technology clusters
are identified from patent data, using a “heat map” organic cluster identification methodology.
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This exercise provides a global overview of technology clusters from the various sustainability
technology sectors and sub-sectors for different time periods, allowing sectoral differences and
dynamics to be observed (see also chapter 4).

In terms of their global spatial distribution, the 10 largest health technology clusters are all found
in large “global” cities such as San Francisco, Tokyo, New York, Los Angeles, Seoul, and Taipei
(Taylor 2004; Ichikawa, Yamato, and Dustan 2017). This is also the case for the reference high
technology clusters. This pattern aligns with assumptions that in large cities, R&D organizations
of companies and universities can lower transportation and transmission costs, provide proximity
to markets, increase the chance of two agents meeting (eventually, serendipity) and encourage
the exchange of creative ideas (especially for interdisciplinary projects). Large cities also create
economies of scale, attracting specialized business services and talent (Morgan 2004; Capello 2009;
Florida, Adler, and Mellander 2017). Further agglomeration-like advantages are found in cities
through “relational proximity,” providing the opportunity to learn through collaboration with other
regions or clusters located further away (Camagni and Capello 2002; Boschma 2005; Cohendet and
Amin 2006; Morrison, Rabellotti, and Zirulia 2013).

The spatial pattern of sustainable energy technology clusters is very different from the health
technology clusters: around half of the 10 largest sustainable energy technology clusters are found
in cities such as Daejeon, Detroit, Nagoya, and Stuttgart, which are in the lower tiers, or not
included, in global city lists such as the World City Network (Taylor 2004; Taylor and Derudder
2015) or the Global Power City Index (Ichikawa, Yamato, and Dustan 2017). When observing
the sustainable energy technology sub-sectors included in this study, a number of large clusters
are found in small cities. This pattern is especially strong in the biofuels and wind turbines
sectors where the top-10 clusters are found in cities like Aarhus (Denmark), Aurora (Colorado,
United States), and Pamplona (Spain). The presence of sustainable energy technology clusters in
specific small cities is typically linked to policy decisions, or is part of an evolutionary development.
Daejeon in South Korea is targeted for sustainable energy research by the national government
(Wu 2014; Jeong 2017) whereas Detroit, Nagoya, and Stuttgart are home to large automotive
industries (General Motors, Toyota, Mercedes-Benz, etc.), which have expanded their electric
vehicle R&D (International Energy Agency (IEA) 2019a). These empirical results confirm earlier
research which suggests that sustainable energy technology clusters tend to form in locations with
specific location-dependent resources (such as natural assets), institutions, or policy interventions
(Coenen, Benneworth, and Truffer 2012; Van Geenhuizen and Holbrook 2018; Steen and Hansen
2018). The pattern in particular aligns with specific prior policies on “smart specialization” and
avoiding lock-in (McCann and Ortega-Argilés 2015; Morgan 2017).

With regard to the global distribution of clusters and innovation activity, health technology is
more concentrated in North America whereas sustainable energy innovation is more concentrated
in Asia. Europe is lagging in both sectors, although it plays a prominent role in some sub-sectors
such as wind turbines. Electric vehicles and related sub-sectors (electricity storage and fuel cells)
are mainly concentrated in Asia (56%, Japan and South Korea in particular), while biofuels R&D
is mainly found in North America (62%).

The sustainable energy technology sector shows particularly strong spatial dynamics. The sector
grew rapidly during the period, with a 192% increase in patent output and a 149% increase in
the number of clusters between 2000-2004 and 2008-2011. In contrast, the number of clusters and
patents for the health technology sector was generally stable (+/- 5%) over the same period. The
sustainable energy technology sector increased by 100 clusters, raising its cluster population to

133



176 clusters. In addition, most new clusters were created in North America (+44 clusters, +147%
increase). In relative terms, most clusters were created in Europe (+383% based on 23 clusters).
Asia experienced the smallest cluster increase in absolute and relative terms (+31 clusters, +100%
increase), but maintained the largest share of sustainable energy patent output (42-43% of world
output).

Amid these spatial dynamics, there is no clear evidence of a shift in sustainable energy innovation
towards Asia (Dicken 2007). Instead, it appears that Asian countries, with Japan and South Korea
as the main contributors, were already positioned ahead of Europe and North America in sustain-
able energy technology at start of the study’s observation period in 2000. The strong position of
South Korea and Japan has been built up since the oil crisis in the late 1970s, when both countries,
which are major hydrocarbon importers, implemented policies promoting the adoption of renew-
able energy. In addition, specific parts of sustainable energy research are often connected to other
advanced and export-oriented manufacturing industries, such as semiconductors (photovoltaics),
automobiles (electric vehicles), and offshore structures and shipbuilding (wind turbines) (Haslam,
Jupesta, and Parayil 2012; Chen, Kim, and Yamaguchi 2014). In Japan and South Korea, sustain-
able energy industries have developed through a combination of public and private investment, nd
with a strong focus on export demand. Chen, Kim, and Yamaguchi (2014) note that, after an initial
energy-efficiency drive to respond to the 1970’s oil crisis, domestic sustainable energy targets have
often remained quite low compared to other advanced economies as a way to maintain domestic
economic competitiveness. This may be a noteworthy difference in economic policy compared to
North America and Europe, where policies to promote sustainable energy technology innovation
are focused on local adoption and use of these technologies (Grau, Huo, and Neuhoff 2012; Nielsen
2017), instead of export promotion. Rather than showing an inter-continental shift, the pattern
of global shifts in sustainable energy technology is multi-directional, with some countries growing
their share of global sustainable energy research (including China, Denmark, France, South Korea,
Taiwan and the United States) and others declining in relative terms (including Canada, Germany,
Japan and the United Kingdom). The leading position of countries like Japan, as well as South
Korea, Taiwan and soon China in sustainable energy technology R&D, fits with a broader trend
of Asian countries leading technological development in key sectors (Joo, Oh, and Lee 2016; Ahn
2017; Miao et al. 2018).

The health technology sector is notably different in terms of its spatial dynamics, which is at-
tributable to its mature and path dependent development phase. This will likely preserve or
strengthen existing cluster hierarchies (including rankings) and knowledge networks (Martin and
Simmie 2008; Crescenzi and Rodrı́guez-Pose 2011). Nevertheless, there are countries and cities
that are increasing their relative share of global healthcare patent output. Notable examples in-
clude South Korea and Taiwan and the cities of Seoul, Daejeon and Beijing. These countries
have significantly increased public health technology research expenditure in recent decades, and
have aggressively supported the development of local firms (Lee, Tee, and Kim 2009; Chakma et
al. 2014; Lee and Yoon 2018). Cities like Seoul, Daejeon and Beijing are also home to highly-
ranked research universities (Seoul National University, Korea Advanced Institute of Science &
Technology, Beijing University, Tsinghua University, etc.) which can support these developments
(Waltman et al. 2012). While investment, policy support and high quality university research are
also available in other cities, they appear to be developing rapidly in specific Asian countries and
cities.
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8.3 Agglomeration and Inter-Cluster Knowledge Networks

This section contains a brief description of the theory, research questions, and empirical results
related to the agglomeration characteristics and global inter-cluster knowledge networks of the
sustainability technology clusters, including an analysis of the main sectoral differences. Ag-
glomeration and knowledge networks are both seen as important features of technology clusters.
Agglomeration (spatial proximity) facilitates social interactions, inter-organizational relationships,
and can provide multifaceted cost advantages due to economies of scale (Porter 2000; Malmberg
and Maskell 2002; Gertler and Levitte 2005; Nooteboom 2006). Interactions within a technology
cluster include research collaborations between different actors (Porter 1998; Kerr and Robert-
Nicoud, n.d.), learning, and stimulating competitive drive between firms and researchers operating
in the same cluster (Porter 2000; Malmberg and Maskell 2002).

Clusters are often highly connected to global knowledge networks (relational proximity) and appear
to benefit in ways that are similar to how agglomeration facilitates collaboration and knowledge
spillovers within clusters (Boschma 2005). Knowledge networks typically consist of a collaborative
relationship involving the transfer and co-creation of knowledge, which can span a range of dif-
ferent institutional contexts, goals and power relations (Bukvova 2010; Fitjar and Rodrı́guez-Pose
2014; Comunian 2017; Capone, Lazzeretti, and Innocenti 2019). International and inter-cluster
research collaboration is especially prevalent in knowledge-intensive sectors such as biotechnology
and pharmaceuticals (Ó hUallacháin and Lee 2014; Alkemade et al. 2015; Persoon, Bekkers, and
Alkemade 2020).

While the aforementioned theoretical perspectives provide a basic framework for understanding
cluster agglomeration and knowledge network patterns, little is known about the specific circum-
stances of the sustainability technology sectors. This knowledge gap leads to Research Sub-
question 2: What are the agglomeration and knowledge network characteristics of sustainability
technology clusters and how have they changed in recent years? Supporting sub-question 2.1:
What are the clustering rates and average cluster size? Supporting sub-question 2.2: What is
the density and reach of knowledge network links?

A further knowledge gap exists concerning the sectoral variations in agglomeration and knowledge
networks, which depend on a sector’s development phase, knowledge base, and market structure
(Ter Wal and Boschma 2011; Binz and Truffer 2017). The agglomeration and density of knowledge
networks tends to increase over time as sectors mature, and growth takes place mostly in existing
clusters (Ter Wal and Boschma 2011; Frenken, Cefis, and Stam 2015). In sectors with a scientific
knowledge base, knowledge tends to be more codified, facilitating collaboration over long distances
(Carlsson 2013; Persoon, Bekkers, and Alkemade 2020). Sectors with an engineering and design
knowledge base innovate through close interactions with customers and suppliers, and through
“learning by doing,” enabling the accumulation of experience and specialized skills (Jeannerat
and Kebir 2016). Market structure and regulation of sectors are also points of differentiation.
Some sectors experience relatively free competition, while in a sector such as healthcare there are
regulators, insurers, hospitals, and physicians who play an important role in mediating between
producers and end-users (Binz and Truffer 2017; OECD 2017; Lopes et al. 2019). Addressing
these sectoral differences is Research Sub-question 7: What are the differences between the
health technology and sustainable energy technology sectors against the background of other high
technology sectors, in terms of their spatial distribution, agglomeration and knowledge network
characteristics? Supporting sub-question 7.1: To what extent can sectoral differences be
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attributed to the sectoral knowledge base? Supporting sub-question 7.2: To what extent can
sectoral differences be attributed to the sectoral development phase? Supporting sub-question
7.3: To what extent can sectoral differences be attributed to socio-technological transitions? The
answers to these research questions are discussed below, with a description of the agglomeration
and the inter-cluster knowledge networks of the sustainability technology sectors, and an analysis
of the differences between them. The issue of sectoral aggregation is also addressed.

With regard to agglomeration, both sustainability technology sectors have a similar share of clus-
tered patents (42-47%) and a similar Gini coefficient of cluster size (0.67-0.69), although the
health technology sector has a larger number of patents per cluster (133.2-149.8) as compared to
the sustainable energy technology sector (44.2-67.4). The sustainable energy technology sector is
undergoing rapid growth, coinciding with an increase in agglomeration, seen both in the share of
clustered patents (+31%) and in the Gini coefficient of cluster size (+5%). Increasing agglomer-
ation is typical of emerging sectors transitioning towards a mature development phase (Ter Wal
and Boschma 2011; Frenken, Cefis, and Stam 2015). Qualitative agglomeration indicators such as
corporate research, show a divergence between the two sustainability technology sectors. Corpo-
rate research accounts for 85.8% of the sustainable energy technology sector, compared to 73.4%
for the health technology sector.

Regarding knowledge networks, the number of co-invention links per inventor is 0.32 for sustainable
energy, and 0.41 for healthcare. Both differences are statistically significant. These differences fit
with the health technology sector’s characterization as having a scientific knowledge base. Science-
based sectors typically have higher participation by university and government actors and relatively
frequent long-distance research collaboration (Owen-Smith et al. 2002; Alkemade et al. 2015; Binz
and Truffer 2017).

In the context of comparing results between the two sustainability technology sectors, it is im-
portant to mention several basic aggregation issues, as both sectors are aggregates of different
sub-sectors. First, some sub-sectors within the same aggregate sector have a scientific knowledge
base, while others are seen as having a design and engineering knowledge base. Second, there are
also large differences in terms of the clustering rates of sub-sectors: in the health technology sector
the clustering rate is 72% for medical life sciences but only 24% for medical devices. In the sus-
tainable energy technology sector, the clustering rate is between 72% for electric vehicles and only
27% for electricity storage (fuel cells; batteries) and 33% for wind turbines. Notable differences can
also be found in other cluster characteristics. The high level of sub-sector heterogeneity suggests
that caution is needed when generalizing aggregate sector results to individual sub-sectors.

8.4 Innovation Performance of Technology Clusters

The innovation literature identifies a number of conditions that are seen to influence, or are as-
sociated with, cluster innovation performance. The current study has focused on the following
conditions: agglomeration, the national innovation system, knowledge networks, and path depen-
dence, which are seen in the literature as the most important factors influencing cluster innovation
performance. Understanding which conditions affect cluster innovation performance, and to what
extent, is highly relevant for decision makers in the private and public sector who seek to raise the
innovation performance of technology clusters. Yet, debate exists about the direction (positive or
negative) and relative importance of these conditions. Agglomeration can be both positive and
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negative, with negative influence arising due to diseconomies of scale in very large cities, eventu-
ally causing competition for scarce urban assets, and emergence of congestion and higher labor
and living costs (Martin and Sunley 2003). There is also discussion about the extent to which
the national innovation system influences cluster innovation performance, as there may be lit-
tle variation between countries that host prominently innovative clusters (Dicken 2007; Binz and
Truffer 2017). Additionally, global knowledge networks can enhance a cluster’s access to knowl-
edge, but in certain situations they can also lead to knowledge outflow (Frost and Zhou 2005; Ó
hUallacháin and Lee 2014). Also, while path dependence can lead technology clusters to persistent
high innovation performance over long periods of time, it can also trap them in old technological
development paths, preventing the forging of new paths (Martin and Simmie 2008; Crescenzi and
Rodrı́guez-Pose 2011; Østergaard and Park 2015; Trippl et al. 2015).

This section consists of four subsections, which address the research questions and empirical results
related to agglomeration (research question 3, subsection 8.4.1), the national innovation system
(research question 4, subsection 8.4.2), knowledge networks (research question 5, subsection 8.4.3)
and path dependence (research question 6, subsection 8.4.4). In addition the sectoral differences
in cluster innovation performance are also discussed: Research Sub-question 8: What are the
differences between the health technology, sustainable energy, and other high technology sectors
in terms of cluster characteristics (agglomeration, knowledge network, national innovation system,
and path dependence) and cluster innovation performance? Supporting sub-question 8.1: To
what extent can differences in association be attributed to the sectoral knowledge base? Support-
ing sub-question 8.2: To what extent can differences in association be attributed to the sectoral
development phase? Supporting sub-question 8.3: To what extent can sectoral differences
be attributed to socio-technological transitions? Sectoral differences are addressed in each of the
following subsections (8.4.1 to 8.4.4).

Overall, the empirical results show a positive association between cluster innovation performance
and certain kinds of agglomeration and knowledge network relations, specifically: cluster size,
regional specialization, corporate research, knowledge out-flows and network reach. However, a
negative association is observed for other factors, including adjacency. These findings complement
relatively recent research, which shows that agglomeration and knowledge networks can also act
as barriers to innovation performance, or only contribute under specific circumstances, or are
beneficial only for some firms (Suire and Vicente 2009; Potter and Watts 2010; Lee 2018; Capone,
Lazzeretti, and Innocenti 2019; Tomás-Miquel, Molina-Morales, and Expósito-Langa 2019). The
following sub-sections provide a discussion of the empirical findings related to the innovation
performance of technology clusters.

8.4.1 Agglomeration Conditions

Agglomeration is a multidimensional concept, acting at different spatial scales, and consisting
of qualitative and quantitative components. From this broad perspective, the following research
questions are formulated: Research Sub-question 3: To what extent can the agglomeration
characteristics of a technology cluster be associated with its innovation performance? Support-
ing sub-question 3.1: To what extent can agglomeration economies be associated with cluster
innovation performance? Supporting sub-question 3.2: To what extent can regional special-
ization be associated with cluster innovation performance? Supporting sub-question 3.3: To
what extent can corporate research (as a proxy for absorptive capacity) be associated with cluster
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innovation performance?
From a first glance at the empirical results of this study, the association between agglomeration
and cluster innovation performance appears relatively simple: cluster size and corporate research
are both positively associated with cluster innovation performance, although in the sustainable en-
ergy technology sector the association with corporate research is not statistically significant. The
results follow existing theory about local agglomeration economies, including a larger local market
of specialized suppliers, customers, collaborators and skilled labor, greater opportunities for knowl-
edge spillovers and performance-enhancing competition (Porter 1998; Morgan 2004; Capello 2009;
Feldman and Kogler 2010; Fazio and Lavecchia 2013; Giuliano, Kang, and Yuan 2019; Kemeny and
Storper 2020). The importance of corporate research is linked to the cluster’s absorptive capacity
and strategy formulation: the local presence of firms with adequate research and innovation capa-
bilities is essential for the cluster to benefit from local knowledge spillovers from universities and
other firms (Fu 2008; Qiu, Liu, and Gao 2017). A large presence of only university and government
research, and a lack of corporate research, signals a lack of local absorptive capacity and is seen as
a barrier to cluster innovation performance (Ó hUallacháin and Leslie 2007; Casper 2013).
The empirical results become more complex when noting that negative agglomeration economies
exist if a cluster is located within relatively close proximity to other large clusters of the same
sector (< 200 km, adjacency effect). This suggests that collaboration and competition patterns
differ depending on the distance at which they occur. In practice, clusters are usually found
within close proximity if they are part of the same conurbation. For instance, the Utsunomiya,
Mito and Chiba clusters are all located within 200 km of Tokyo, and can hence be considered to
be part of “Greater Tokyo.” While being part of Greater Tokyo might provide some agglomeration
benefits, by increasing access to specialized services, suppliers, customers, labor, etc., the costs of
increased competition appear to outweigh these benefits, causing a negative agglomeration effect
to be observed in this study (Richardson 1989, 1995; Zheng 2001; Martin and Sunley 2003).
With regard to the aforementioned observations, it must be noted that neither adjacency nor
corporate research appear to have a statistically significant association with innovation performance
of sustainable energy technology clusters. The association is only statistically significant in the
health technology sector and in the reference high technology sectors. Viewed from the perspective
of the sector’s development phase, it is possible that negative agglomeration effects have not
been reached yet due to the rapid growth of sustainable energy clusters and still low levels of
agglomeration (Frenken, Cefis, and Stam 2015). Viewed from the perspective of socio-technological
transitions, it is possible that competition within the sector and the role of corporate research differ
because of a relatively stronger involvement of government, civil society, and other stakeholders in
influencing sustainable energy innovation (Geels et al. 2017).

8.4.2 National Innovation System

The role of the national innovation systems appears to be in decline, as individual technology
clusters and global supply chains are seen to play a more powerful role than national policies and
institutions (Porter 2000; Gertler and Wolfe 2006; Binz and Truffer 2017). Yet, national gov-
ernments continue to play an important role in developing national innovation capacity through
investments in education, encouraging entrepreneurship, and policies that support R&D and in-
novation (Dicken 2007; Palmer et al. 2018). In Europe, this happens among other areas in the
framework of large European Union research programs. However, strong participation by many
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member countries in such programs may also contribute to similarity of national innovation sys-
tems. Accordingly, the influence of the national innovation system on sustainability technology
clusters is not well understood, leading to Research Sub-question 4: To what extent does the
quality of the national innovation system influence cluster innovation performance?
Based on this study, the national innovation system is only statistically significant in the sustain-
able energy technology sector. This result suggests that national institutions or policies influence
sustainable energy innovation performance to a greater extent than in other sectors.
A strong national innovation system may be more capable of stimulating the early market adop-
tion of energy innovations, which often face resistance from users due to higher costs, less user
convenience and changes to existing distribution and business models. Overcoming such obstacles
may require national-level policies, and there is evidence that specific national policy interventions
have encouraged the development of a particular sustainable energy technologies (Boeckle et al.
2010; Grau, Huo, and Neuhoff 2012). Because of the need to change socio-technological systems
and business models, sustainable energy innovation has a diverse landscape of actors including
civil society, media, government (at various levels), regulatory bodies, financial investors, political
parties and advisory bodies, in addition to consumers and firms, which may or may not have
vested interests (Geels et al. 2017; Langhelle, Meadowcroft, and Rosenbloom 2019). This creates
a different innovation context as compared to other high technology sectors.

8.4.3 Inter-Cluster Knowledge Networks

Some of the advantages and disadvantages of agglomeration (spatial proximity) noted earlier show
parallels to phenomena observed in knowledge networks external to the cluster. This “relational
proximity” can be seen as a non-spatial agglomeration effect, whereby innovation actors are con-
nected to partners outside of the cluster, in relationships that involve the transfer and co-creation
of knowledge (Boschma 2005; Asheim and Gertler 2005; Ponds, Oort, and Frenken 2009). There
is, however, some ambiguity concerning the influence of relational proximity on cluster innovation
performance. While generally viewed as positive, in some instances international research collab-
oration has been found to weaken local research activity and interaction (Kwon et al. 2012; Van
Geenhuizen and Nijkamp 2012; Ye, Yu, and Leydesdorff 2013). Furthermore, network relation-
ships that involve knowledge being acquired by parties located outside a cluster can also have a
negative effect. Such a situation can develop when multinational organizations set up or acquire
remote research labs in a cluster causing a “reverse” knowledge outflow (Ambos, Ambos, and
Schlegelmilch 2006; Frost and Zhou 2005). However, multinationals have a tendency to invest in
already-thriving clusters (De Propris and Driffield 2005; Liu and Buck 2007) and their presence
can also signal a cluster’s high innovation performance. These considerations lead to Research
Sub-question 5: To what extent can knowledge networks be associated with enhanced cluster
innovation performance and what is the nature (positive or negative) of this association? Sup-
porting sub-question 5.1: To what extent can inter-cluster research collaboration networks be
associated with cluster innovation performance? Supporting sub-question 5.2: To what extent
can inbound and outbound knowledge flows be associated with cluster innovation performance?
The empirical results show a positive association between a cluster’s global knowledge network
position and its innovation performance. Access to a large number of different clusters (network
reach) is positively associated with cluster innovation performance in the sustainability technology
sectors. This supports the view that access to diverse knowledge can positively contribute to
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cluster innovation performance (Bathelt, Malmberg, and Maskell 2004; Gertler and Levitte 2005;
Ebersberger and Herstad 2013; Hottenrott and Lopes-Bento 2014). The ratio of network links
relative to the size of the cluster does not show a significant association in the sustainability
technology sectors.
Inbound and outbound knowledge flows, as facilitated by multinational corporations, do not appear
to have a significant association in sustainable energy technology clusters, although there is a
negative association for knowledge outflow, which is just below the 90% statistical significance
threshold. This result suggests that eventually there may be an issue with “reverse” knowledge
flows in sustainable energy technology clusters (Frost and Zhou 2005). However knowledge outflow
is positively associated with cluster innovation performance in the health technology clusters. It
is plausible that young and relatively small clusters, which may be more frequently found in an
emerging sector like sustainable energy technology, are more sensitive to “reverse” knowledge flows.
Promising innovations originally developed in a small cluster may be transferred to a large cluster
by relocating some key researchers, something that can have a big impact on the small cluster
where the innovation originated.

8.4.4 Path Dependence

Path dependence is often seen as positively associated with cluster innovation performance be-
cause knowledge, relationships, experience, skills, trust, reputation, and other conditions which
can enhance cluster innovation performance, accumulate over time (Vergne and Durand 2011;
Trippl et al. 2015; Crescenzi and Jaax 2017). Conceptually, path dependence cuts across the
aforementioned agglomeration and knowledge network concepts because clusters and knowledge
networks also develop over time and are therefore part of a cluster’s development path (Ter Wal
and Boschma 2011; Crescenzi and Jaax 2017). However, path dependence can also prevent the
development or adoption of new technologies because of a reluctance or inability to abandon exist-
ing skills, expertise and knowledge (Vaan, Frenken, and Boschma 2019). Emerging sectors, such
as sustainable energy technology, are seen as having weak path dependence because they are in a
path creating development phase (Martin and Simmie 2008; Essletzbichler 2012). This ambiguity
leads to: Research Sub-question 6: To what extent can the path dependence characteristics of
a technology cluster be associated with its innovation performance?
In both sustainability technology sectors in this study, path dependence has a significant and
positive influence on cluster innovation performance. In the health technology sector, path de-
pendence has a stronger association with cluster innovation performance than in the sustainable
energy technology sector. This is an observation that fits with the characterization of sustainable
energy technology as an emerging sector that is in a path creating development phase.

8.5 Research Contributions

The study makes contributions that apply to four different areas: the cluster identification process
and the design and testing of the innovation performance model (methodological contribution,
subsection 8.5.1), novel empirical results (empirical contribution, subsection 8.5.2), new theoret-
ical insights and the identification of new knowledge gaps (theoretical contribution 8.5.3), and
new insights that may support cluster innovation policy-making (policy contributions, subsection
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8.5.4). The theoretical contribution includes the observation of opposing agglomeration effects
at different spatial scales (local and regional) and an understanding of the influence of social-
technological transitions on cluster spatial dynamics and cluster innovation performance. The
policy contributions lie in identifying and monitoring clusters, and a better understanding of bar-
riers and supporting factors for cluster innovation performance, which can be addressed in regional,
national, and European-level cluster policies.

8.5.1 Methodology: Cluster Identification Methodology and Innova-
tion Performance Model

The methodological contribution of this study lies in both the cluster identification process and
the operationalization of the cluster innovation performance model using patents as the basis of
measurement. The identification of clusters based on the real locations of innovation activity
from patents or other scientometric data has previously been undertaken by a few researchers, but
mainly as a demonstration of the potential of the methodology. Catini et al. (2015) and Alcácer
and Zhao (2016) used a similar methodology to identify sectoral clusters, while Bergquist, Fink, and
Raffo (2017) produced an international ranking of technology clusters.1 Alcácer and Zhao (2016)
demonstrated in detail the advantage of using an “organic” cluster identification methodology
instead of using preset administrative boundaries. Especially in an international context the use of
sub-national administrative boundaries is complicated because of the large variations in the size of
administrative units. The advantage of using an organic cluster identification methodology is that
the real spatial scale of the cluster is revealed, which may cover a single city, an urban corridor, or
even parts of several bordering countries. These observations provide insight into the true location
of clusters, which ideally should be taken into account when conducting cluster research or cluster
policy-making and coordination.

The cluster identification methodology developed in this study is improved by the use of a single
patent data source, a home bias correction factor, the careful calibration of clustering parameters,
and a comparison of the method’s performance across multiple sectors. The use of a single patent
data source, in this case from the United States Patent and Trademark Office (USPTO), ensures
that all patents are evaluated against a uniform standard (Toivanen and Suominen 2015). This is
important when making international comparisons, and when using patent data to measure various
cluster characteristics. A drawback to using a national patent database is the need for a home bias
correction, as the home country, the United States in the case of the USPTO, is over-represented
in the database compared to foreign countries (Bacchiocchi and Montobbio 2010). The home
bias correction factor used in this study is calculated in a relatively simple and transparent way
and is used for certain patent and citation-based cluster indicators.2 The calibration of cluster

1As noted in chapter 4, Bergquist, Fink, and Raffo (2017) estimates that of the 10 largest clusters, 6 are in Japan,
China and South Korea which are also the three countries whose patents are considered to be over-represented in
the WIPO database (Laurens et al. 2015). The present study places only 3 of the 10 largest clusters in these three
countries and also includes Taipei, Taiwan as a top 10 cluster (see table C.12, appendix C.4). Stek (2019) uses a
mix of patent data and national research expenditure and places 4 of the 10 largest clusters in Japan, China and
South Korea (2007-2011) and also includes Taipei. Taiwan does not appear in the research by Bergquist, Fink, and
Raffo (2017).

2The influence of the home bias correction can also be tested by introducing a dummy variable for the home
country in the model estimations (United States). If this dummy variable lacks statistical significance, the home
bias correction can be seen as reasonable (which is the case in this study).
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identification parameters delivers a robust methodology that performs well across 19 different high
technology sectors, and which can presumably be used for other sectors as well.
The second part of the methodological contribution is the operationalization of the cluster inno-
vation performance model, and the extraction of 10 cluster indicators from cluster patent data,
a significant leap compared to earlier organic cluster identification studies (Bergquist, Fink, and
Raffo 2017; Stek 2019). Of these 10 indicators, six are novel, in the sense that they have not
previously been applied in knowledge production-type functions, or have been operationalized in
different ways. The novel indicators are innovation performance, adjacency, regional specialization,
corporate research, knowledge inflow, and knowledge outflow.
The cluster innovation performance model itself is relatively simple and straightforward with-
out indirect relations, as adapted from earlier knowledge production functions (Ponds, Oort, and
Frenken 2009; Charlot, Crescenzi, and Musolesi 2014; Crescenzi and Jaax 2017). The most sig-
nificant change is the use of innovation performance (relative citation counts) as the dependent
variable, instead of patent counts. The simplified character of the innovation performance model
is also motivated by being a first step covering two sectors and many subsectors, thereby preparing
the ground for more sophisticated analysis of sustainability-related technology clusters in future
research.
Innovation performance is measured based on patent citations per inventor. The reason is that
citations represent the value of the innovations that have been patented (Hall, Jaffe, and Trajten-
berg 2005), and are therefore considered to be a better measure of innovation performance than
patent counts, as most patents are never cited and do not contain important or valuable innova-
tions. The model is used to analyze the innovation performance of a cluster based on its cluster
characteristics in a more precise way because the dominant independent variable in knowledge
production functions, knowledge inputs, is removed.
More generally, the methodology presented in this study facilitates research about innovation and
R&D in ways that were practically impossible in the past due to a lack of sectoral, historical,
or global data. At least 10 patent-based indicators are used in this study, providing insight into
many different cluster characteristics, including cluster innovation performance. The patenting
frequency in a particular sector appears to be the only significant limitation, as very low patenting
frequencies would limit the analysis.

8.5.2 Empirical: Spatial Distribution and Cluster Characteristics

The novel methodology used, particularly with respect to cluster identification, ensures that the
study produces important new empirical results concerning the changing spatial distribution,
knowledge networks and sectoral differences of sustainability technology clusters, an aspect of
the sustainability technology sectors that was largely unexplored. The present study identifies
sustainability technology clusters, cluster creation and changes in agglomeration and inter-cluster
knowledge network patterns, providing a unique global database of sustainability technology clus-
ters at the level of sub-sectors such as medical devices or photovoltaics. The breadth of the results
facilitate sectoral and international comparisons.
The results provide a more detailed perspective on “global shifts” of innovation activity between
continents, showing different countries and cities experiencing relative growth and decline. This
includes some declining clusters in Asia, notably Japan, and many rising clusters in Europe and
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North America. Within Asia, clusters in China, South Korea, and Taiwan tend to experience
high patent growth. In the United States, some very large city clusters, like New York and San
Francisco, have tended to stop growing in favor of smaller large cities such as Denver.

By relating various cluster conditions to cluster innovation performance, the study enables a quan-
titative analysis of the influence (or strength of association) between these conditions and inno-
vation performance, which is new. The empirical results are also novel in terms of their broad
scope. Earlier knowledge production studies at the sub-national level have been limited in their
geographic reach to a single country or a group of countries (European Union) and have focused on
aggregate innovation activity and not on specific sectors (Ó hUallacháin and Leslie 2007; Ponds,
Oort, and Frenken 2009; Charlot, Crescenzi, and Musolesi 2014; Crescenzi and Jaax 2017).

8.5.3 Theory: Cluster Characteristics and Innovation Performance

To frame the theoretical contributions of this study, the sectoral differences and socio-technological
transitions of the sustainability technology sectors can be approached from five main theoretical
perspectives: (i) broad spatial trends: shifts of economic activity (including innovation) towards
Asia, changing locational advantages and an evolutionary view of knowledge network and agglom-
eration (Kojima 2000; Dicken 2007; Ter Wal and Boschma 2011), (ii) the association between
cluster innovation performance and agglomeration, including economies of scale, knowledge diver-
sity, knowledge spillovers and social capital (Nooteboom 2006; Fazio and Lavecchia 2013), (iii)
influence of the national innovation system, which includes national institutions, regulation, poli-
cies, markets and entrepreneurial culture (Palmer et al. 2018), (iv) knowledge networks that create
relational proximity and knowledge pipelines, facilitating global knowledge flows (Bathelt, Malm-
berg, and Maskell 2004; Boschma 2005) and (v) the path dependence and spatial evolutionary
perspectives on innovation performance (Martin and Simmie 2008). A summary of these theoreti-
cal perspectives is provided in table 8.1 along with the ways in which the empirical findings differ
from or comply with the theoretical perspectives. This is followed by a brief discussion of the
model estimation methodology and results, and whether they can be generalized to other sectors
not included in the study.

Starting with theoretical perspective 1a (hypothesis 1), the growth of the two sectors is concen-
trated not just in Asian cities (specifically cities in China, South Korea and Taiwan), but also in
cities in North America and to a lesser extent Europe: no European city is among the 10 fastest-
growing cities in the health technology sector, while only Berlin is among the fastest growing cities
in the sustainable energy sector. North America has seen the largest increase in new sustainable
energy technology cluster creation during the study period. Therefore it appears that both local
factors and global trends play an important role in cluster creation and growth (Dicken 2007;
Van Geenhuizen and Holbrook 2018). Other broad spatial trends in theoretical perspective 1b
(hypothesis 2) can be explained from the evolutionary perspective of increasing agglomeration and
denser spatial networks over time, a trend that is confirmed in the fast-growing sustainable energy
technology sector, whose clustering rate and knowledge network density increase over time (Ter
Wal and Boschma 2011). However the mature medical devices sector has a very low clustering
rate, suggesting that other factors such as a sector’s knowledge base can be a more significant
influence (Carlsson 2013). In the case of medical devices in Europe, the sector often developed
in smaller cities, taking advantage of existing skills and knowledge in related fields, such as fine
mechanics (Klein, Banga, and Martelli 2015).
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Theoretical perspectives on agglomeration economies are supported and extended (theoretical per-
spectives 2a & 2b, hypotheses 3-5): both advantages and disadvantages of agglomeration are
identified in the study. Agglomeration advantages appear to act at the local level of the cluster.
Agglomeration disadvantages are found at the wider regional level (up to 200 km) from the cluster.
These findings shed new light on the concepts of adjacency and neighborhood effects, which are
often seen as a positive influence on innovation performance (Giarratani, Hewings, and McCann
2013; Clark and Wójcik 2018). Corporate research is found to be positively associated with cluster
innovation performance (Ó hUallacháin and Leslie 2007).
The importance of the national innovation system (theoretical perspective 3, hypothesis 6) has
been questioned in the literature (Binz and Truffer 2017). The empirical findings show that the
national innovation system is statistically significant in the sustainable energy technology sector,
but this is not the case in other sectors. This situation could be due to a lack of strong differences,
as most technology clusters are in countries with a high-performing national innovation system.
With regard to knowledge networks (theoretical perspectives 4a & 4b, hypotheses 7-10), knowledge
flows mediated by multinational corporations are seen as positively associated with cluster inno-
vation performance (Awate, Larsen, and Mudambi 2015; Østergaard and Park 2015). This view
is confirmed in the health technology sector. In terms of the importance of knowledge networks
to innovation performance, the diversity of global inter-cluster knowledge networks is positively
associated with cluster innovation performance (Boschma 2005).
The positive influence of path dependence on cluster innovation performance (theoretical perspec-
tive 5, hypotheses 11 & 12) is also observed (Crescenzi and Jaax 2017), however the results provide
weak support for the assumption that more mature sectors like health technology have stronger
path dependence (Martin and Simmie 2008). In the emerging and fast-growing sustainable en-
ergy technology sector past innovation performance is also statistically significant, accounting for
around 33% of model explanatory power. This is less than the 49% explanatory power in the more
mature health technology sector, but the difference is not very large.

Table 8.1: Theoretical perspectives (hypotheses) and em-
pirical findings.

Theoretical Perspectives (with Hypotheses) Empirical Findings
1a. Growth of technology clusters mainly in
Asia (global shift) (H1)

Growth has taken place in Asia and also in
other continents. Global shift to South Korea
and Taiwan occurred before 2000s but has
extended to China.

1b. A mature sector (e.g. health technology)
has more agglomeration and a denser global
knowledge network as compared to an emerging
sector (e.g. sustainable energy technology, H2)

Partially supported, however the medical
devices sub-sector is facing (very) low
agglomeration

2a. Agglomeration economies offer advantages
to cluster innovation performance (H3 & H4)

Supported, advantages are found at the local
scale of the cluster. However disadvantages are
found at the regional level (in large
metropolitan areas)

2b. Corporate research is associated with high
cluster innovation performance (H5)

Supported
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Theoretical Perspectives (with Hypotheses) Empirical Findings
3. Cluster innovation performance is influenced
by the national innovation system (H6)

Supported, but only in the sustainable energy
technology sector

4a. Knowledge inflows and outflow as mediated
by MNCs are positively associated with cluster
innovation performance (H7 & H8)

Supported (health technology outflow)

4b. The diversity and density of global
knowledge networks enhances cluster
innovation performance (H9 & H10)

Diversity is supported, however density is not

5. Path dependence has a positive association
with cluster innovation performance, especially
in more mature sectors (e.g. health technology,
H11 & H12)

Path dependence is supported, but weak
evidence of stronger path dependence in health
technology

The theoretical contribution of the study, as summarized in table 8.1 is based on the estimation
results of an innovation performance model developed as part of this study. The model differs from
knowledge production functions, especially in terms of its dependent variable, which is a produc-
tivity indicator consisting of: knowledge output (patent citations) divided by input (inventors).
Because of this procedure, the model fit of the innovation performance model appears weaker when
compared to many knowledge production functions. However, this is because the greatest source
of variation, input, has been removed from the model.

In the cluster innovation performance model up to 60% of variation is accounted for by past cluster
innovation performance (path dependence). Path dependence includes all conditions which develop
or accumulate over time, including the national innovation system, agglomeration and knowledge
networks. The other 40% that is unaccounted for by the cluster innovation performance model
may be due to the inherent uncertainties of innovation outcomes as well as methodological lim-
itations, such as the exclusion of local cultural or policy factors from the model, for example,
risk-taking or local policy initiatives. With regard to innovation uncertainty, the number of ci-
tations a patent receives and the long-term value of a patent or technology cannot be known
beforehand because research outcomes and future technological paths are uncertain. Therefore
R&D that seems promising at one point in time may not produce the expected innovation out-
comes and corresponding patent citations (Popp et al. 2013; Cohen 2021). Methodological and
measurement issues are addressed in more detail in section 9.3, but it is important to note that
bibliometric indicators are ultimately proxies for the innovation activities they describe, and thus
some degree of measurement uncertainty will always exist.

The research results also differ between the chosen sectors and study periods. Because the health
technology sector is mostly similar to the reference high technology sector in terms of its spatial
distribution, knowledge networks and the factors associated with cluster innovation performance
(see also chapter 7), the research results may also be applicable to other high technology sectors.
However even within the health technology sector there are notable differences between the medical
life sciences and medical devices sub-sectors (e.g. clustering rates), suggesting that significant
sectoral variations do exist, even in mature high technology sectors in the same industry group.
Therefore generalizations should only be made with great caution.
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8.5.4 Policy: Cluster Benchmarking and Application of Innovation
Performance Model

The policy relevance of the research can be divided into two parts: first, the relevance of the
research methodology for data collection for policy monitoring is described. Second, the analysis
based on a preliminary framework of cluster development strategies is briefly addressed. The
results on policy relevance are exploratory, as the main contribution of the research lies in the
empirical domain.

With regard to monitoring, the data and methodology used to identify technology clusters provides
insight into the spatial scale and density of innovation activity. Sometimes a technology cluster
covers a single city, but frequently a cluster covers multiple cities and occasionally it crosses state
or national boundaries. This situation suggests that the spatial scale at which cluster policy
should be carried out also varies: cluster policy could involve a local authority of a single city (Van
Geenhuizen and Nejabat 2021) or a regional authority, but it could also combine multi-level spatial
administrative units through a collaborative framework involving multiple cities, regions or even
countries (Park 2014). Especially if a cluster covers multiple spatial administrative units, there is
the challenge of sufficient collaboration and coordination to guarantee a good alignment of policy-
making. In this sense, the first contribution of the study (methodology) to cluster policy-making,
is support in identification of the spatial boundaries of a technology cluster, and the policy makers
that operate within them. It is also possible to “zoom in” on certain areas of a larger cluster,
although a lack of detailed patent address data can limit the scale at which this is possible.

In addition to identifying a cluster, the methodology offers a useful tool for measuring and tracking
the creation and growth of technology clusters, their knowledge networks and key innovation actors,
all on a worldwide scale using patent data. The cluster identification methodology appears to be
sufficiently reliable and its underlying principles have been accepted in the academic literature
(Alcácer and Zhao 2016; Stek 2019, 2021). Also, the information about clusters obtained from
patent data can help policy-makers benchmark cluster innovation performance and growth, such
as that of technology clusters in the same sector or sub-sector in European Union and in smaller
groups of collaborating countries, like Scandinavia. This information can also be part of public
or public-private location decisions for new research facilities and infrastructure construction. For
example: the development and testing of new types of sustainable energy, such as hydrogen, fuel
cells and related product applications may be promoted in a particular cluster. Of course, cluster
patent data need to be supplemented with statistical studies, and surveys among decision-makers,
firms and citizens in the region.

With regards to the components required in cluster policy, a simple framework for cluster develop-
ment strategies is compared with the research findings of the study (Brenner and Schlump 2011;
Uyarra and Ramlogan 2012; Njøs and Jakobsen 2016). In line with the theoretical perspective of
the study, policy relevance is explored from a regional policy and evolutionary perspective with
some insights into national economic-technological policy.

The empirical findings of the study support the view that “monocropping” (regional agglomeration)
and “hubbing” (growing global knowledge networks) can support cluster development, although
“hubbing” in more mature sectors may involve inward and outward investment by multinational
corporations, rather than inter-organizational research collaboration. A “blending” strategy, which
involves developing linkages with other technology sectors in the same region, appears to be more
relevant to cluster growth than to cluster innovation performance.
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It also appears that local/regional cluster policies alone are often insufficient if attempting to
break into mature sectors. In such cases, national policy support is also needed, possibly with
additional help of European Union policy. The private sector always plays an important role in
cluster development, a view that is confirmed by the empirical findings of this study.
It is important to note that the policy analysis presented in this study does have notable limitations
because certain cluster conditions, such as the influence of culture or local and national policy
schemes, are unobserved. This is due to the use of patent-based indicators and a simplified research
model.

8.6 Conclusion

This chapter has presented a summary of the most important research findings of this disserta-
tion as well as their broader methodological, empirical, theoretical, and policy contributions. The
organic cluster identification methodology demonstrates a new approach to analyzing technology
clusters, enabling them to be characterized in terms of spatial distribution, size and size distribu-
tion, cluster actors, knowledge network links, and cluster innovation performance on a global scale.
This approach also enables the estimation of a novel cluster innovation performance model using
indicators derived from patent information.
The empirical results from this new methodological approach provide novel quantitative insights
into global and sectoral differences. The descriptive analysis reveals the dynamic spatial distri-
bution of the fast-growing sustainable energy technology sector and its inter-cluster knowledge
networks. The explanatory analysis provides a more detailed perspective on agglomeration advan-
tages and disadvantages, revealing that they act at different spatial scales (local and within 200 km
range). It also reveals several noteworthy differences between the sustainable energy technology
sector and the health technology and reference sectors in terms of the association between cluster
innovation performance and adjacency, corporate research, the national innovation system, and
knowledge outflow. These differences can be attributed to the different growth trajectories and to
a lesser extent, the involvement in socio-technological transitions of the sustainable energy tech-
nology sector. The differences between sustainable energy technology and the more mature health
technology and reference sectors could be representative of general differences between emerging
and mature high technology sectors.
From a policy perspective, the new methodology offers a suitable tool for the identification and
monitoring of technology clusters. The empirical results offer support for “monocropping” and
“hubbing” cluster development strategies with limited support for a “blending” strategy (Njøs and
Jakobsen 2016). The results also emphasize the importance of private sector involvement and the
need for national (or European) innovation strategies, to enable clusters to establish themselves in
new technology sectors. However, as the innovation performance model tends to provide limited
explanation, conditions beyond the model and beyond the sector and economic system also need
to be taken into account.
In the next chapter (chapter 9) the limitations of the research are discussed, and a reflection on
the research results is offered, along with specific suggestions for future research.
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Chapter 9

Reflection and Future Research

9.1 Introduction

The research in this dissertation has sought to address knowledge gaps on sustainability tech-
nology sectors concerning spatial distribution and network patterns, dynamics over time, and
spatial differences in innovation performance. A novel methodological approach has yielded novel
empirical results, which reinforce or further clarify existing theories about agglomeration and socio-
technological transitions, and provide practical descriptive insights into the health technology and
sustainable energy sectors. However, the results also raise questions about the precise nature of
socio-technological transitions in both sectors, the ability to model cluster innovation performance,
and the causes of spatial dynamics.
This concluding chapter presents a reflection on the research results (section 9.2), a discussion of
the research limitations (section 9.3), recommendations for future research (section 9.4), and a
conclusion of the overall research (section 9.5).

9.2 Reflection

The research findings raise important themes in three conceptual areas which deserve further
reflection. The first theme concerns the concept of innovation performance, which, depending
on how it is defined, leads to different interpretations of the research findings (subsection 9.2.1).
The second theme concerns the underlying causes of global shifts and the spatial distribution of
innovation performance, which may be caused by factors that have generally remained beyond the
scope of this study (subsection 9.2.2). The third theme concerns the nature of emerging sectors,
including those involved in socio-technological transitions, and the extent to which they differ
from mature and other emerging sectors that are not involved in socio-technological transitions
(subsection 9.2.3).

9.2.1 Innovation Performance as a Concept

As mentioned in the introduction of this dissertation, innovation performance can be concisely
defined as the ability to generate new knowledge and apply it in an economically useful way
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(Acs, Anselin, and Varga 2002; Tidd, Bessant, and Pavitt 2005; Binz and Truffer 2017; Crescenzi
and Rodrı́guez-Pose 2017). In this study innovation performance has been further defined as an
efficiency parameter, which measures the value of innovations generated in the cluster relative to
the number of researchers from the cluster, i.e. the productivity of researchers. This is a different
approach to measuring and operationalizing innovation performance compared to other innovation
studies that use patent count data (Ponds, Oort, and Frenken 2009; Crescenzi and Jaax 2017) and
has important implications for the research. These implications can be summarized as follows: the
focus of this study is on measuring the value that innovation activity creates, as measured by the
number of patent citations received (a proxy for the scientific and market value of a patent), and
on modeling differences in innovation efficiency.

The modelling of innovation performance in this study reveals statistically significant relation-
ships between cluster innovation performance and agglomeration, knowledge networks and path
dependence. In the case of sustainable energy technology, there is also correlation between clus-
ter innovation performance and the national innovation system. In the mature health technology
sector path dependence has the largest explanatory power (adj. 𝑅2 of 0.490, other factors adj. 𝑅2

of -0.001 to 0.143), which is also the case in the reference high technology sectors. In contrast the
explanatory power of all four factors, including path dependence, are relatively close to each other
in the emerging sustainable energy technology sector (adj. 𝑅2 of 0.249 to 0.334). These results
raise two important questions: (i) why is a significant part of cluster innovation performance vari-
ation unexplained? and (ii) what causes the significant differences in model explanatory power?
Some possible answers are discussed below.

Besides the possible absence of certain model indicators (see discussion in section 9.3), there could
be an additional and more fundamental reason for the lack of model explanatory power. Based
on an extensive literature review, Ter Wal and Boschma (2011) conclude that agglomeration and
knowledge network conditions play an especially important role during the early stages of a sector
or cluster’s development, but that their influence declines over time. The conclusion fits with the
observation that in the sustainable energy technology sector, which is in an early development
stage, agglomeration and knowledge networks both play a relatively important role. In the mature
health technology sector, their association with innovation performance seems much weaker.

If the role of agglomeration and knowledge networks in mature sectors is smaller, then what else
could explain variation in cluster innovation performance? One possibility is that these differences
are caused by the dominant technological specialization or specializations of the cluster, which
Popp et al. (2013) notes heavily influence patenting success. During periods of stable technological
development, the success of a particular technological specialization, may persist over long periods
of time and technological expertise may accumulate. This explains the strong influence of path
dependence in mature high technology sectors. From this perspective, the (in)ability to enter the
“right” technological specialization(s) at the right time may be the most important condition in
explaining a cluster’s long-term innovation performance. For example, Popp et al. (2013) observe
that from the 1971 to 1991 fuel cells saw an increase in patent citations and patent output, whereas
nuclear energy patenting and citations were stagnant, and wind patents and citations vary strongly
over time, peaking in 1971 and 1991. Viewed from the perspective of hindsight, it is highly likely
that a fuel cell technology cluster would have performed far better over the long term than a
nuclear energy technology cluster.

It can thus be argued that the influence of agglomeration and knowledge networks on innovation
performance is smaller than expected, both in mature and emerging sectors. Instead, innovation
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performance may become more sensitive to other factors, such as policy decisions, the cluster
organizations’ technological strategy and the direction of technological change (Deloitte 2016;
Isaksen 2016; Langhelle, Meadowcroft, and Rosenbloom 2019), all conditions that were outside of
the relatively simple cluster innovation performance model used in this study.

9.2.2 Global Shift or Local Shift?

The study’s research findings are ambiguous concerning the extent to which a “global shift” in
innovation activity is taking place towards Asia (Dicken 2007; Miao et al. 2018). Although many
fast-growing clusters are found in Asia, some are also found in the United States and to a lesser
extent, in Europe. The United States and Europe see a greater formation of new clusters, especially
in the sustainable energy technology sector, while Asia sees growth in a smaller number of large
and very large clusters. The global shift of economic activity towards Asia, including innovation,
is seen as a the result of ‘push’ and ‘pull’ factors (Dicken 2007). Globalization is driving increasing
competition and enables international investment in R&D (Audretsch, Lehmann, and Wright 2014;
Locke and Wellhausen 2014). On the other hand, heavy domestic investment by Asian countries in
higher education, research infrastructure, R&D incentives to attract foreign investment (notably
in Singapore), and domestic policies to stimulate innovation by local firms (notably in Taiwan and
South Korea), have supported rapid growth in innovation activity (Dicken 2007; Ahn 2017; Miao
et al. 2018).

Especially in the emerging sustainable energy technology sector, “pull” factors seem to exist at
the level of individual clusters, whereby local policies and incentives cause a “local shift” to a
particular location, which creates or supports the growth of a local technology cluster (Steen and
Hansen 2018; Van Geenhuizen and Holbrook 2018; Van Geenhuizen and Ye 2018). This process
is not restricted to Asia: it is found in Europe and North America as well, although it appears to
be weaker in more mature sectors. In the United States a weak trend of medical research shifting
to smaller cities has been observed in recent years (JLL 2012; Giuliano, Kang, and Yuan 2019).
In Europe, during the early phases of the medical devices sector’s development, there has been
a tendency for new clusters to emerge in small cities with existing capabilities in related fields,
such as fine mechanical manufacturing (Klein, Banga, and Martelli 2015). Sustainable energy
technology clusters, such as wind turbine clusters, have established themselves in relatively remote
locations to take advantage of specific natural resources, such as windy weather (Kamp, Smits,
and Andriesse 2004; Van Geenhuizen and Holbrook 2018).

From a broader policy perspective, these observations suggest that the early development phase of
a sector is a critical time during which cities or regions can and do position themselves to attract
certain industries and related innovation activity. As a sector becomes mature, opportunities to
bring about a “local shift” appear to diminish unless they are part of a broader national technology
policy (Lee 2016).

Although they occur in the context of broad global trends, the creation and growth of clusters
is ultimately the result of local characteristics, such as the availability of research institutions,
relevant knowledge and expertise, talent, cost, quality of life, policy incentives, etc. In this sense,
“global shifts” signify broad trends, which become “local shifts” at the level of individual technology
clusters.
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9.2.3 Socio-Technological Transitions and Emerging Sectors

Although both viewed as part of a socio-technological transition, the two sustainability technol-
ogy sectors are in different development stages and appear to be experiencing socio-technological
transitions of a different nature (Geels 2012; Geels et al. 2017; Ohta 2019). The sustainable en-
ergy technology transition involves a shift in the energy and transportation system towards low or
zero-carbon alternatives to address the challenge of climate change (Geels 2012; Geels et al. 2017).
In the healthcare sector socio-technological changes aim to enhance affordability and effectiveness
and to improve access to all people (Chen 2009; Škalko-Basnet 2014; Deloitte 2016; Lybecker 2016;
Mentesana et al. 2017). As a result of ageing societies socio-technological changes are also needed
in how healthcare is organized, financed, and delivered (World Health Organization 2004; Ohta
2019).
The changes taking place within the sustainable energy sector can be seen as being more disrup-
tive than those in the healthcare sector because sustainable energy technologies have the potential
to make carbon-based energy sources obsolete, threatening large parts of the fossil fuel industry.
A photovoltaics installation or wind turbine facility does not require a fuel input, and electric
or hydrogen-powered vehicles require a completely different refueling infrastructure and related
technologies (Tidd, Bessant, and Pavitt 2005; Holbrook, Arthurs, and Cassidy 2010; International
Energy Agency (IEA) 2019d). Profound changes in market structure are set to take place: house-
holds may transition from being energy consumers in a centralized system to energy producers and
consumers in a decentralized smart grid energy system (IEA PVPS 2016; Geels et al. 2017). In
this sense, the sustainable energy technology sector is clearly path creating, leading to potential
path breaking for carbon-based energy sectors (Martin and Simmie 2008).
While groundbreaking technological changes are taking place in the health technology sector, such
as the discovery of new biologic drugs, which are coupled to new diagnostics tools such as genome
analysis (Škalko-Basnet 2014; Lybecker 2016; Mentesana et al. 2017), they do not fundamentally
change the business model of pharmaceutical firms or medical device producers (Johansen and
Van den Bosch 2017; Mentesana et al. 2017; Ohta 2019). Instead, the business models for
the organization and financing of medical care and living arrangements for the elderly are the
areas where sustainability and other transitions are taking place (Johansen and Van den Bosch
2017; Ohta 2019). This is different from the socio-technological transitions in sustainable energy
technology, whereby changes in technology will often require changes in the business model, the
behavior of consumers, government policies and power between different market participants (Geels
2012; Geels et al. 2017). It thus appears that the sustainable energy technology sector is facing a
true socio-technological transition, causing a fundamental shift in business models and technology.
The health technology sector seems to be undergoing two separate transitions: a social transition
due to ageing and the need for social inclusion, and a technological transition due to advancement
in science. But the two trends appear less connected than in the sustainable energy sector, and
seem to have less impact on existing healthcare business models.

9.3 Research Limitations

The model design, data, and methodology used and the selection of sectors and time periods
impose some noteworthy research limitations. The model design is based on using patent data,
which provides global coverage, but this modeling approach also excludes the use of data sources
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that are only available locally or nationally (subsection 9.3.1). The use of patent data also imposes
some methodological challenges in terms of how patents are counted and clusters are identified
(subsection 9.3.2), and the limitations arising from the chosen sectors and time periods (subsection
9.3.2).

9.3.1 Model Design

The most important limitation of the model design is that cluster conditions are measured using
patent data, which is a simplification of reality and means that some concepts are only measured
indirectly or cannot be measured at all. This limitation influences the kinds of conditions that
are incorporated in the model design and the way in which they are measured. For example, the
importance of social capital and entrepreneurship have been noted in the literature (Fazio and
Lavecchia 2013; Lange 2016; Vaan, Frenken, and Boschma 2019; Malerba and McKelvey 2019) but
are addressed within the study as part of agglomeration economies and path dependence (social
capital) and corporate research (entrepreneurship). Also excluded from the model are internal
cluster linkages, such as research collaborations between universities and firms within the cluster.
This decision was taken due to the lack of patent data, as university-industry co-applications for
patents are rare in most sectors (health technology being a notable exception). In this sense the
use of patent data imposes certain model limitations, which must be weighed against the benefit
of data at the cluster scale that is global in its scope, and which can be frequently updated with
new patent data.

9.3.2 Patent Data

Although the use of patent data has many benefits, including its availability over long periods of
time and the ability to identify specific technological sectors, its use also carries with it a number
of potential pitfalls and limitations (Pavitt 1985; Kleinknecht, Van Montfort, and Brouwer 2002;
Lanjouw and Schankerman 2004; Boeing, Mueller, and Sandner 2016). The cluster identification
methodology, including the choice of the original patent data source and the method of optimizing
cluster identification parameters, has been carefully discussed in the methodology chapters (chap-
ters 3 and 4). Below is a discussion of the limitations of the chosen home bias correction factor
and the challenges of comparing sectors with different patenting propensities.
The cluster identification method used in this study is based on a single patent database: that of
the United States Trademark and Patent Office (USPTO). A correction for the home bias effect is
therefore needed and has been carried out by analyzing the differences in patenting and citation
frequencies between the United States and Japan. Here, Japan represents the world outside the
United States because Japan, like the United States, is a highly technologically advanced country
and shows a high degree of technological similarity with the United States (Toivanen and Suominen
2015). While this approach seems reasonable, patenting frequencies are also influenced by political
and economic conditions such as trade and investment flows, technological collaboration and in-
tellectual property right protection regimes (Yang and Kuo 2008). The correction factor therefore
also incorporates the close economic and political relationship that exist between Japan and the
United States (Yang and Kuo 2008). This could mean that patenting in advanced economies which
have an adversarial or very minimal relationship with the United States, is underestimated by a
correction factor based on Japan.
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In practical terms, the current technological rivalry between the United States and China means
that political factors may influence the patenting frequency of Chinese inventors and organizations
in the United States. However during the 2000-2011 study period China was still well behind
the United States in terms of its technological capabilities (Toivanen and Suominen 2015; Boeing,
Mueller, and Sandner 2016). The number of Chinese technology clusters in the study sample is
also low, typically at around 5% or less, depending on the sector. This means that the influence of
Chinese technology clusters on the overall study results is relatively small. A similar argument can
be made for Russia, which is behind China in terms of total innovation output in most technological
fields. Although a political bias could influence the spatial distribution and agglomeration analysis
of the study and parts of the cluster innovation performance model (dependent variable based on
patent citations), this situation does not appear to influence the current study. Furthermore,
network indicators, the clustering rate, and path dependence would also be less affected, because
these indicators are typically less size-dependent.
A second limitation of the use of patent data is that patenting frequencies between sectors can
vary by 10 or 20 times based on the different patenting propensities of the sectors (Kleinknecht,
Van Montfort, and Brouwer 2002; Tidd, Bessant, and Pavitt 2005). This means that in sectors
with few patents relative to their research activity, patents provide less information about ongoing
research activity: each organization or collaboration may produce only a few patents or none at
all. The impact of this difference on the present study seems limited, because although the health
technology sector had about three times more patents than the sustainable energy technology
sector in 2008-2011, the explanatory power of healthcare innovation performance models was not
consistently higher than that of sustainable energy technology.

9.3.3 Sector and Time Period Selection

The time period selected in this study is based on the most recent 12-year period for which complete
patent grant data were available when the study was undertaken (2018). This selection is not based
on the period when certain sectors first emerged or reached a state of maturity. Because of the
importance of a sector’s development stage on its innovation process, a different selection of time
periods could have provided additional insights into the different emerging stages of the two sectors
(Martin and Simmie 2008; Ter Wal and Boschma 2011; Frenken, Cefis, and Stam 2015).
If the health technology sector had been analyzed starting from an earlier period when it was
undergoing rapid growth (e.g. 1980s and 1990s), this phase could have been compared to the rapid
growth phase of the sustainable energy technology sector during 2000-2011. A comparison of the
rapid growth phases could have provided further insight into the unique position of the sustainable
energy technology sector and its role in the socio-technological transition towards a low-carbon
energy system (Geels et al. 2017). The sector comparison in the present study is limited by the fact
that both sectors appear to be in different growth phases. However, the advantage of selecting the
same time period is that there are no differences in the world economic situation and development
level of other technologies, such as the trend of digitization, level of economic globalization, etc.
Such differences could have influenced a sectoral growth phase comparison that is 10 or more years
apart.
A second limitation is the time period itself (2000-2011). Since 2011, there has been further
growth in R&D output in East Asia, and China in particular (Miao et al. 2018). Some sustainable
energy technologies, such as photovoltaics, have become cost-competitive when compared to con-
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ventional carbon-based energy generation technology such as coal (International Energy Agency
(IEA) 2019c). This suggests that the volume of sustainable energy patenting has also increased
and that the sector is entering a mature development phase. The current COVID-19 pandemic
has also likely increased R&D output in the medical life sciences.
One way of studying more recent time periods is to use patent application data instead of patent
grant data, although this comes with a trade-off. First, not all patent applications are eventually
granted and so the patent application data set may contain more lower quality inventions. Second,
because patent applications are new, insufficient time has passed for them to be cited by other
patents and the innovation performance indicator cannot be calculated. However, other cluster
indicators which describe knowledge networks and agglomeration can be derived from patent appli-
cations. In that sense, patent applications may be useful for the purpose of monitoring technology
cluster development, but less useful for analyzing cluster innovation performance.

9.4 Recommendations for Further Research

The main limitations identified in this study center on the model design, the use of patent data
and the time period selection. Based on these limitations and the reflections noted above, the
following areas of research should be explored in future:

1. Further research into the global spatial distribution, knowledge network and cluster inno-
vation performance dynamics after 2011. this study could capture trends such as the rise
of China and the growth of other emerging economies like Brazil and India, whether R&D
growth remains concentrated in large cities, or whether smaller cities develop further, and
whether the pervasiveness of internet-related technologies since the COVID-19 pandemic
influences the spatial and knowledge network patterns of technological innovation.

2. The model design is limited by the incorporated cluster characteristics because it had to rely
on patent data to provide a global overview of technology clusters. Through this simplified
design important factors related to the innovation actors of the clusters (such as individual
inventors or institutions), local networks, entrepreneurship culture, and government policies
and incentives are excluded or only partially addressed. These factors could be included in
future research through selected cluster case studies that provide additional depth and local
context to the global research results obtained from bibliometric and non-bibliometric data
sources.

3. The sustainability technology sectors analyzed in this study contain a diverse set of sub-
sectors which in turn consist of many different sub-specializations. A more detailed study
of these sub-sectors and sub-specializations may provide a better understanding of emerging
and declining technological specializations, and their influence on the broader innovation
performance and development pattern of the sustainability technology sectors included in
this study. This may also include studies at the lowest level, namely of principal inventors
at multinational corporations or universities, and follow the spatial development (which
cities/countries) of where their knowledge (patents) is brought to market.

4. The impact of socio-technological transitions, which disrupt existing business models as
compared to other emerging sectors, could be explored further by applying the research
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methodology to different study periods and sectors, such as internet-related technologies,
the emergence of more energy-efficient steel mills, energy-efficient lighting, or 3D-printing
technologies, which are disrupting manufacturing. This could provide further insight into
the influence of socio-technological transitions on technology sectors and the emergence of
sectors in general.

5. From a methodological perspective, the foreign patenting patterns of different countries could
be further explored. While Yang and Kuo (2008) show the influence of trade and regulatory
factors on foreign patenting activity, and Toivanen and Suominen (2015) show differences in
countries’ technological sophistication (which is also seen as influencing foreign patenting),
it is not clear how large these influences are. Furthermore, technological distance and trade
relationships are evolving, especially between Asian countries such as China and South Korea,
in their relationships with each other and with the United States and Europe. Observing
such changes could lead to an improved patent and citation correction factor, but changes in
foreign patenting and the factors that cause them would also provide new insights into the
technological-economic relationships between countries.

6. From a policy perspective, the current research largely excludes the role of policy in cluster
innovation performance. However in certain sectors or parts of the world, in which strong
cluster policy networks exist, it may be feasible to collect internationally comparable data
about cluster policies. This data can then be incorporated into a cluster innovation perfor-
mance model. This approach would enable quantitative research into the effects of different
cluster policies on innovation performance, and could provide insights into how innovation
policies should be formulated to achieve their intended outcomes. At a more practical level,
there may also be value in studying how policy makers and other cluster stakeholders perceive
the cluster (heat) maps and cluster indicators presented in this study and how these tools
can enhance policy making and policy coordination in real life. A solid empirical foundation
and analysis for the actual implementation of the research results in practical policy-making,
are also required.

9.5 Conclusion

Despite some limitations, important conclusions can be drawn on the basis of the research presented
in this dissertation. Technology clusters are conceived as the main spatial units at which innovation
activity takes place and are closely connected to other clusters via global knowledge networks, and
this is also the case in sustainability technology sectors, although to varying degrees. In this
context, the “organic” cluster identification approach enables a more accurate identification of
technology clusters and inter-cluster knowledge networks, for multiple sectors, and on a global
scale. This approach not only provides a global map of sustainability technology sector innovation
performance for several time periods, but also an extensive database of cluster characteristics for
multiple sectors.

A descriptive analysis of cluster spatial distribution provides a detailed perspective on “global
shifts” in innovation performance, which are increasingly towards China, South Korea and Taiwan,
and also towards some clusters outside these countries, including in Europe. In addition, there
appear to be trends of “local shifts” within countries or regions.
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A quantitative exploratory analysis of cluster innovation performance provides a more detailed
perspective on the relationship between innovation performance and agglomeration, knowledge
networks, and path dependence. In addition to demonstrating an association between these fac-
tors, the strength of association is also shown. Noteworthy differences between the sustainability
technology sectors, in terms of their spatial dynamics and the conditions associated with cluster
innovation performance, suggest that the sustainability transitions they are involved in are also of
a different type or magnitude. The sustainable energy technology sector is involved in a transition
that requires fundamental changes in energy and transport business and distribution models.
The similarities and differences between the sustainability technology sectors also suggest that
different policies should be adopted for these sectors. The rapid cluster creation in the sustainable
energy technology sector, or the lack of clustering in the medical devices sector, show that a deep
understanding of sectors, and tailored policy responses, are needed.
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Appendix A

Cluster Indicators and Cluster
Identification

A.1 Assignee Classification

Identifying government assignees is facilitated by the USPTO’s classification of assignees, which
distinguishes between (US and Foreign) Corporation, Individual and Government.
However universities are classified as both company and government and therefore there is some
overlap between privately-owned patents and university-owned patents. To identify university
patents a word list is used which is developed from the ECOOM-EUROSTAT-EPO PATSTAT
Person Augmented Table (EEE-PPAT) which does classify university assignees (Du Plessis et al.
2009) (see also: https://www.ecoom.be/en/EEE-PPAT).
The word list below is tested on a data sample from the EEE-PPATT table and this yields a success
rate of 96% in identifying universities, with 4.7% false positives (non-universities identified as
universities) and 3.8% false negatives (universities not identified as universities). Patents classified
as a university are added to the total number of university patents (𝑃𝐴𝑇𝑈𝑁𝐼).
The following words and phrases are used to identify an assignee as a university: ecole, polytechn,
universit, hochschule, universid, institute of technology, school, college, georgia tech, academ, penn
state, k.u. leuven, politec, higher education, univ., rwth aachen, eth z, kitasato, institute of medical,
k.u.leuven, cornell, purdue, institute for cancer, institute of cancer, acadaem, univerz, karlsruher
institut, technion, cancer institut, des sciences appliq, alumni, educational fund, hoger onderwijs,
postech, politechn, institute of science, virginia tech, eth-z, yeda research, hadasit, board of regents,
instituto cientifico, ntnu technology, tudomanyegyetem, uceni technick, universt, alumini, suny,
ucla, yliopisto, doshisha, insitute of technology, univsers, kaist, szkola, egyetem, univerc, skola,
korkeakoulu, unversit, instituto superior.
The word list includes parts of words that denote a university and some common spelling errors
(e.g. ‘univsers,’ ‘insitute of tehcnology’), names of specific institutions that patent frequently but
which lack the name university (e.g. ‘UCLA,’ ‘KAIST’), names of foundations affiliated with certain
universities (e.g. ‘Yeda Research’) and parts of words that denote a university.
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A.2 Sector Identification (Reference High Technology Sec-
tors)

Table A.1: High-technology reference sectors with their
respective ISIC or CPC identification classes.

Sector Name Identification Classes
Aerospace ISIC group 303
Biotechnology CPC class A01H1/00, A01H4/00, A61K38/00, A61K39/00, A61K48/00,

C02F3/34, C07G11/00, 13/00, 15/00, C07K4/00, 14/00, 16/00, 17/00,
19/00, C12M, C12N, C12P, C12Q, C12S, G01N27/327, G01N 33/53,
33/54, 33/55, 33/57, 33/68, 33/74, 33/76, 33/78, 33/88 and 33/92

Chemicals and
chemical products

ISIC division 20

Computer, electronic
and optical products

ISIC division 26

Defense ISIC group 252 & 304
Electrical equipment ISIC division 27
Machinery and
equipment

ISIC division 28

Motor vehicles ISIC division 29
Nanotechnology CPC class B82B & B82Y
Pharmaceuticals ISIC division 21
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A.3 Cluster Identification ‘Heatmap’

The following notes expand on the observations and analysis presented in section 4.5.1 of chapter
4.
Compared to the pre-determined cluster boundaries and the organic clustering algorithms by
Alcácer and Zhao (2016), the heatmap algorithm developed in this study performs well. The share
of co-inventors located 16-32 km from each other and found within the same cluster (𝐷𝑑𝑖𝑓) is
66% for the heatmap algorithm (this study) compared to 𝐷𝑑𝑖𝑓 = 59% for the organic clustering
algorithm by Alcácer and Zhao (2016) (see also table 4.5). This suggests that a heatmap approach
is preferable to the approach taken by Alcácer and Zhao (2016), which involved assigning patents
to specific cities and merging cities located in close proximity into a single cluster.
A heatmap of Western Europe that illustrates the results of the cluster identification method used
in this study is shown in figure A.1. Dark points are areas with high concentrations of patent
output. The map shows a number of urban corridors of high innovation activity, including in
Southeast England (London), the Western Netherlands (Amsterdam), the Belgian city triangle of
Brussels, Ghent and Leuven, and an almost continuous pattern of ‘dark spots’ stretching from
Frankfurt south towards Zurich and then southwest towards Lyon. These patterns show some of
the the challenges in identifying clusters that exist in close proximity: are they part of a single
macro-cluster or should they be seen as separate clusters? Heatmaps are also available for the
Eastern United States (figure A.2), showing the urban corridor stretching out around New York,
and Northeast Asia (figure A.3), with an urban corridor centered on Tokyo and extending westward
towards Osaka.

Figure A.1: Patent output heatmap, Western Europe.
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Figure A.2: Patent output heatmap, Eastern United States.

Figure A.3: Patent output heatmap, Northeast Asia.

188



A.4 Clustering Indicators by Sector

Table A.2: Clustering indicators for all sectors in this
study.

Sector 𝐴𝑚𝑎𝑥 𝐷𝑠𝑎𝑚𝑒 𝐷𝑑𝑖𝑓 𝑛 𝑃𝑡𝑜𝑡𝑎𝑙 𝑃𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

Aerospace 8,351 km2 99% 62% 118 16,095 64%
Chemicals 26,539 km2 100% 61% 168 140,255 75%
Computer and electronics 19,964 km2 100% 63% 154 527,516 85%
Defense 3,542 km2 90% 65% 55 4,790 34%
Electrical equipment 16,074 km2 99% 63% 143 92,310 73%
Machinery and eq. 28,189 km2 100% 59% 167 102,793 67%
Motor vehicles 20,147 km2 100% 45% 108 31,908 64%
Pharmaceuticals 22,377 km2 100% 63% 149 83,805 72%
Biotechnology 3,542 km2 89% 90% 57 26,981 25%
Nanotechnology 6,193 km2 100% 71% 57 10,022 61%
Medical life sciences 15,890 km2 99% 72% 146 24,124 73%
Medical devices 3,542 km2 100% 60% 71 39,948 25%
Electric vehicles 6,204 km2 100% 57% 35 5,096 71%
Energy storage 3,917 km2 99% 51% 17 2,847 26%
Fuel cells 5,650 km2 100% 61% 17 1,716 50%
Hydrogen technology 2,570 km2 98% 86% 14 954 25%
Photovoltaics 5,363 km2 97% 46% 21 5,521 44%
Wind turbines 2,014 km2 96% 98% 24 2,775 31%
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Appendix B

Cluster Innovation Performance Model

B.1 Model Development

Model estimations to further develop the cluster innovation performance model are presented in
the tables below. For description and intepretation, see section 3.6.2.

Table B.1: Influence of sectoral knowledge base on innova-
tion performance using dummy variable (scientific knowledge
base). Dependent variable: innovation performance (log).

Indicators Health Technology Sustainable Energy Reference High Technology

Knowledge Base (dummy) -0.39 (0.38) -2.3 (0.66)*** 0.33 (0.17)**
Constant 1.5 (0.37)*** 3.9 (0.63)*** 1.8 (0.088)***
Adjusted 𝑅2 0.004 0.091 0.003
Clusters (𝑛) 219 167 1180

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance
at the 90%, 95% and 99%-level, respectively.
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Table B.2: Agglomeration models for health technology.

Indicators Linear Model Log-Log Model Log-Quadratic Model

Cluster size 45. (19.)**
Adjacency -2.0 (0.95)**
Regional specialization 2.7 (1.5)*
Corporate research 0.59 (0.27)**
Cluster size (log) 5.2 (1.3)***
Adjacency (log) -0.25 (0.13)*
Specialization (log) 0.31 (0.15)**
Corporate research (log) 0.29 (0.079)***
Cluster size (log2) -1.2 (0.28)***
Adjacency (log2) 0.062 (0.052)
Specialization (log2) -0.10 (0.050)**
Corporate research (log2) -0.17 (0.037)***
Knowledge base (dummy) -0.41 (0.42) -0.053 (0.11) -0.082 (0.11)
Constant 0.83 (0.31)*** 12. (3.0)*** 6.2 (1.5)***
Adjusted 𝑅2 0.015 0.089 0.091
Adjusted /𝐷𝑒𝑙𝑡𝑎𝑅2 0.011 0.085 0.087
Clusters (𝑛) 219 219 219

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance
at the 90%, 95% and 99%-level, respectively.
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Table B.3: Agglomeration models for sustainable energy.

Indicators Linear Model Log-Log Model Log-Quadratic Model

Cluster size 100. (84.)
Adjacency -51. (29.)*
Regional specialization 5.1 (3.9)
Corporate research -0.25 (0.97)
Cluster size (log) 7.0 (2.9)**
Adjacency (log) -1.7 (1.2)
Specialization (log) 0.36 (0.20)*
Corporate research (log) 0.048 (0.15)
Cluster size (log2) -1.5 (0.64)**
Adjacency (log2) 0.42 (0.28)
Specialization (log2) -0.12 (0.063)*
Corporate research (log2) -0.048 (0.070)
Knowledge base (dummy) -2.1 (0.84)** -0.96 (0.15)*** -0.95 (0.14)***
Constant 3.8 (1.5)** 14. (7.3)* 7.3 (3.7)**
Adjusted 𝑅2 0.088 0.250 0.252
Adjusted /𝐷𝑒𝑙𝑡𝑎𝑅2 -0.003 0.159 0.161
Clusters (𝑛) 167 167 167

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance
at the 90%, 95% and 99%-level, respectively.
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Table B.4: Knowledge network models for health technology.

Indicators Linear Model Log-Log Model Log-Quadratic Model

Knowledge inflow 0.50 (0.57)
Knowledge outflow 0.46 (0.24)*
Network reach 0.072 (0.024)***
Network density -0.37 (0.34)
Knowledge inflow (log) 0.059 (0.093)
Knowledge outflow (log) 0.43 (0.14)***
Network reach (log) 0.36 (0.067)***
Network density (log) -0.17 (0.13)
Knowledge inflow (log2) -0.081 (0.050)
Knowledge outflow (log2) -0.24 (0.14)*
Network reach (log2) 0.12 (0.026)***
Network density (log2) -0.034 (0.067)
Knowledge base (dummy) -0.16 (0.33) 0.083 (0.13) -0.091 (0.13)
Constant 0.68 (0.26)*** -0.38 (0.16)** -0.025 (0.13)
Adjusted 𝑅2 0.020 0.143 0.102
Adjusted /𝐷𝑒𝑙𝑡𝑎𝑅2 0.016 0.139 0.098
Clusters (𝑛) 219 219 219

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance
at the 90%, 95% and 99%-level, respectively.
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Table B.5: Knowledge network models for sustainable energy.

Indicators Linear Model Log-Log Model Log-Quadratic Model

Knowledge inflow 0.077 (0.14)
Knowledge outflow -0.29 (0.66)
Network reach 0.60 (0.33)*
Network density 0.34 (0.72)
Knowledge inflow (log) 0.11 (0.072)
Knowledge outflow (log) -0.098 (0.14)
Network reach (log) 0.27 (0.12)**
Network density (log) 0.17 (0.12)
Knowledge inflow (log2) -0.075 (0.042)*
Knowledge outflow (log2) 0.089 (0.054)
Network reach (log2) 0.016 (0.14)
Network density (log2) -0.16 (0.048)***
Knowledge base (dummy) -2.3 (0.71)*** -1.0 (0.13)*** -1.1 (0.13)***
Constant 3.4 (0.92)*** 1.4 (0.16)*** 1.3 (0.17)***
Adjusted 𝑅2 0.081 0.296 0.279
Adjusted /𝐷𝑒𝑙𝑡𝑎𝑅2 -0.010 0.205 0.188
Clusters (𝑛) 167 167 167

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance
at the 90%, 95% and 99%-level, respectively.

Table B.6: Interaction model for health technology.

Indicators Linear Model Interaction Model

Cluster size (log) 7.6 (1.5)***
Network density (log) 0.22 (0.11)**
Size /𝑐𝑑𝑜𝑡 density -0.027 (0.046)
Knowledge base (dummy) -0.17 (0.12) -0.11 (0.12)
Constant 17. (3.4)*** 0.048 (0.14)
Adjusted 𝑅2 0.048 -0.005
Adjusted /𝐷𝑒𝑙𝑡𝑎𝑅2 0.044 -0.009
Clusters (𝑛) 219 219

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance
at the 90%, 95% and 99%-level, respectively.
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Table B.7: Interaction model for sustainable energy.

Indicators Log-Log Model Interaction Model

Cluster size (log) 12. (3.6)***
Network density (log) 0.33 (0.12)***
Size /𝑐𝑑𝑜𝑡 density -0.10 (0.045)**
Knowledge base (dummy) -1.0 (0.13)*** -1.0 (0.13)***
Constant 29. (8.2)*** 1.3 (0.13)***
Adjusted 𝑅2 0.274 0.256
Adjusted /𝐷𝑒𝑙𝑡𝑎𝑅2 0.183 0.166
Clusters (𝑛) 167 167

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance
at the 90%, 95% and 99%-level, respectively.
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B.2 Health Technology Clusters

Table B.8: Health technology cluster indicator correlation
matrix (𝑛 = 219).

𝐼𝑉 𝑃 𝑃 𝐴𝑇 𝐴𝐷𝐽 𝑆𝑃𝐸 𝐶𝑅𝑃 𝑁𝑆𝑄 𝑀𝑁𝐶 𝐿𝐴𝐵 𝑁𝐸𝑇𝑆 𝑁𝐸𝑇𝑊 𝐼𝑉 𝑃𝑃

𝐼𝑉 𝑃 0.07 -0.05 0.10 0.12* -0.01 0.15** 0.04 0.12* -0.03 0.87***
𝑃𝐴𝑇 0.07 -0.07 -0.05 0.12* 0.11 0.09 -0.22*** 0.80*** -0.29*** 0.11*
𝐴𝐷𝐽 -0.05 -0.07 -0.09 0.13** 0.10 -0.08 0.19*** -0.12* -0.04 -0.04
𝑆𝑃 𝐸 0.10 -0.05 -0.09 -0.02 -0.29*** 0.04 -0.04 -0.03 0.04 0.10
𝐶𝑅𝑃 0.12* 0.12* 0.13** -0.02 -0.14** 0.06 0.21*** 0.12* -0.07 0.17**
𝑁𝑆𝑄 -0.01 0.11 0.10 -0.29*** -0.14** 0.15** 0.16** 0.11* 0.02 0.05
𝑀𝑁𝐶 0.15** 0.09 -0.08 0.04 0.06 0.15** -0.02 0.16** 0.13* 0.16**
𝐿𝐴𝐵 0.04 -0.22*** 0.19*** -0.04 0.21*** 0.16** -0.02 -0.17** 0.47*** 0.06
𝑁𝐸𝑇𝑆 0.12* 0.80*** -0.12* -0.03 0.12* 0.11* 0.16** -0.17** -0.15** 0.16**
𝑁𝐸𝑇𝑊 -0.03 -0.29*** -0.04 0.04 -0.07 0.02 0.13* 0.47*** -0.15** -0.09
𝐼𝑉 𝑃𝑃 0.87*** 0.11* -0.04 0.10 0.17** 0.05 0.16** 0.06 0.16** -0.09197



Table B.9: Medical life sciences innovation performance
model estimation results 2008-2011.

Indicators Agglomeration National Knowledge Networks Path Dependence Agglomeration & Network

Cluster size 4.8 (1.2)*** 6.0 (1.5)***
Adjacency 0.38 (0.56) 0.18 (0.65)
Regional specialization 0.083 (0.16) 0.045 (0.17)
Corporate research 0.30 (0.090)*** 0.25 (0.098)**
National innovation system -0.43 (0.51) -0.37 (0.56)
Knowledge inflow 0.065 (0.12) 0.12 (0.14)
Knowledge outflow 0.51 (0.21)** 0.36 (0.20)*
Network reach 0.37 (0.084)***
Network density -0.26 (0.19) -0.075 (0.22)
Past innovation performance 0.59 (0.084)***
Constant 12. (3.1)*** 0.62 (0.85) -0.32 (0.14)** -0.45 (0.072)*** 15. (4.0)***
Adjusted 𝑅2 0.078 -0.001 0.123 0.366 0.084
Clusters (𝑛) 146 146 146 146 146

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance at the 90%, 95% and 99%-level,
respectively.
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Table B.10: Medical devices innovation performance model
estimation results 2008-2011.

Indicators Agglomeration National Knowledge Networks Path Dependence Agglomeration & Network

Cluster size 5.3 (3.0)* 6.2 (3.3)*
Adjacency -0.16 (0.11) -0.20 (0.15)
Regional specialization 1.8 (0.57)*** 1.7 (0.59)***
Corporate research 0.24 (0.14)* 0.16 (0.16)
National innovation system -0.81 (0.90) -1.9 (0.93)**
Knowledge inflow 0.081 (0.17) 0.091 (0.14)
Knowledge outflow 0.37 (0.19)* 0.39 (0.19)**
Network reach 0.34 (0.12)***
Network density -0.066 (0.19) -0.027 (0.19)
Past innovation performance 0.90 (0.099)***
Constant 15. (6.9)** 1.4 (1.5) -0.27 (0.27) -0.93 (0.11)*** 20. (7.8)**
Adjusted 𝑅2 0.250 -0.008 0.142 0.773 0.268
Clusters (𝑛) 73 73 73 73 73

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance at the 90%, 95% and 99%-level,
respectively.

Table B.11: Health technology cluster innovation perfor-
mance model diagnostics (𝑛 = 219).

Model VIF Shapiro-Wilk 𝑊 Shapiro-Wilk 𝑝 Breusch-Pagan 𝐵𝑃 Breusch-Pagan 𝑝
Threshold values < 2 < 0.10 < 0.10
Control 0 0.38 0 2.51 0.11
Agglomeration 1.1 0.97 0 3.48 0.63
National 0 0.98 0 0.87 0.65
Knowledge networks 1.76 0.95 0 1.37 0.93
Path dependence 0 0.95 0 4.68 0.1
Agglomeration & networks 1.61 0.96 0 5.03 0.83
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B.3 Sustainable Energy Clusters

Table B.12: Sustainable energy cluster indicator correlation
matrix (𝑛 = 167).

𝐼𝑉 𝑃 𝑃 𝐴𝑇 𝐴𝐷𝐽 𝑆𝑃𝐸 𝐶𝑅𝑃 𝑁𝑆𝑄 𝑀𝑁𝐶 𝐿𝐴𝐵 𝑁𝐸𝑇𝑆 𝑁𝐸𝑇𝑊 𝐼𝑉 𝑃𝑃

𝐼𝑉 𝑃 0.06 -0.08 0.20** 0.08 0.09 0.07 0.01 0.14* 0.08 0.28***
𝑃𝐴𝑇 0.06 0.06 0.00 0.14* 0.09 -0.01 -0.19** 0.55*** -0.22*** 0.03
𝐴𝐷𝐽 -0.08 0.06 -0.02 0.16** 0.14* 0.09 0.02 -0.03 -0.06 -0.05
𝑆𝑃 𝐸 0.20** 0.00 -0.02 0.13 -0.16** 0.04 0.29*** 0.07 0.30*** 0.07
𝐶𝑅𝑃 0.08 0.14* 0.16** 0.13 0.06 0.12 0.02 0.11 -0.04 0.13
𝑁𝑆𝑄 0.09 0.09 0.14* -0.16** 0.06 0.07 0.02 0.12 -0.02 -0.03
𝑀𝑁𝐶 0.07 -0.01 0.09 0.04 0.12 0.07 -0.19** 0.22*** 0.13* 0.27***
𝐿𝐴𝐵 0.01 -0.19** 0.02 0.29*** 0.02 0.02 -0.19** 0.03 0.55*** 0.14*
𝑁𝐸𝑇𝑆 0.14* 0.55*** -0.03 0.07 0.11 0.12 0.22*** 0.03 0.27*** 0.16**
𝑁𝐸𝑇𝑊 0.08 -0.22*** -0.06 0.30*** -0.04 -0.02 0.13* 0.55*** 0.27*** 0.26***
𝐼𝑉 𝑃𝑃 0.28*** 0.03 -0.05 0.07 0.13 -0.03 0.27*** 0.14* 0.16** 0.26***200



Table B.13: Sustainable energy (scientific knowledge base)
innovation performance model estimation results 2008-2011.

Indicators Agglomeration National Knowledge Networks Path Dependence Agglomeration & Network

Cluster size 12. (6.4)* 17. (6.4)***
Adjacency -1.7 (1.6) -1.8 (1.5)
Regional specialization 0.82 (0.54) 0.79 (0.49)
Corporate research 0.040 (0.16) -0.035 (0.17)
National innovation system 0.83 (0.86) -0.37 (0.84)
Knowledge inflow 0.30 (0.098)*** 0.36 (0.10)***
Knowledge outflow -0.034 (0.19) -0.017 (0.18)
Network reach 0.35 (0.18)*
Network density 0.12 (0.16) 0.30 (0.19)
Past innovation performance 0.37 (0.095)***
Constant 26. (16.) -1.4 (1.4) 0.52 (0.19)*** -0.35 (0.14)** 38. (16.)**
Adjusted 𝑅2 -0.006 -0.004 0.119 0.178 0.093
Clusters (𝑛) 105 105 105 105 105

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance at the 90%, 95% and 99%-level,
respectively.
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Table B.14: Electric vehicle & wind turbine innovation per-
formance model estimation results 2008-2011.

Indicators Agglomeration National Knowledge Networks Path Dependence Agglomeration & Network

Cluster size 4.5 (2.5)* 4.8 (2.9)*
Adjacency -1.8 (1.7) -1.2 (2.0)
Regional specialization 0.32 (0.21) 0.43 (0.18)**
Corporate research -0.31 (1.4) -0.41 (1.2)
National innovation system 1.4 (0.47)*** 1.9 (0.59)***
Knowledge inflow -0.13 (0.080) -0.19 (0.094)**
Knowledge outflow -0.26 (0.17) -0.39 (0.15)**
Network reach 0.19 (0.14)
Network density 0.27 (0.15)* 0.40 (0.14)***
Past innovation performance 0.16 (0.10)
Constant 8.0 (6.6) -1.2 (0.74) 1.1 (0.18)*** 0.72 (0.23)*** 7.0 (9.0)
Adjusted 𝑅2 -0.003 0.056 0.020 0.034 0.141
Clusters (𝑛) 62 62 62 62 62

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance at the 90%, 95% and 99%-level,
respectively.

Table B.15: Sustainable energy cluster innovation perfor-
mance model diagnostics (𝑛 = 167).

Model VIF Shapiro-Wilk 𝑊 Shapiro-Wilk 𝑝 Breusch-Pagan 𝐵𝑃 Breusch-Pagan 𝑝
Threshold values < 2 < 0.10 < 0.10
Control 0 0.52 0 2.09 0.15
Agglomeration 1.1 0.98 0.01 8.15 0.15
National 0 0.98 0.02 6.81 0.03
Knowledge networks 1.43 0.97 0 10.52 0.06
Path dependence 0 0.98 0.06 3.69 0.16
Agglomeration & networks 1.36 0.97 0 11.92 0.22
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B.4 Reference High Technology Clusters

Table B.16: Reference high technology cluster indicator cor-
relation matrix (𝑛 = 1190).

𝐼𝑉 𝑃 𝑃 𝐴𝑇 𝐴𝐷𝐽 𝑆𝑃𝐸 𝐶𝑅𝑃 𝑁𝑆𝑄 𝑀𝑁𝐶 𝐿𝐴𝐵 𝑁𝐸𝑇𝑆 𝑁𝐸𝑇𝑊 𝐼𝑉 𝑃𝑃

𝐼𝑉 𝑃 0.11*** -0.04 0.38*** 0.13*** -0.03 0.05* 0.09*** -0.03 0.00 0.75***
𝑃𝐴𝑇 0.11*** 0.04 0.23*** 0.06** 0.05* 0.00 -0.10*** 0.40*** -0.16*** 0.08***
𝐴𝐷𝐽 -0.04 0.04 0.14*** 0.06** 0.08*** 0.06** 0.20*** 0.10*** 0.06** -0.07**
𝑆𝑃 𝐸 0.38*** 0.23*** 0.14*** 0.09*** -0.21*** 0.00 0.24*** 0.21*** 0.09*** 0.26***
𝐶𝑅𝑃 0.13*** 0.06** 0.06** 0.09*** -0.06** 0.09*** 0.06** 0.05* -0.09*** 0.09***
𝑁𝑆𝑄 -0.03 0.05* 0.08*** -0.21*** -0.06** 0.14*** 0.02 0.08*** 0.01 0.00
𝑀𝑁𝐶 0.05* 0.00 0.06** 0.00 0.09*** 0.14*** -0.18*** 0.13*** 0.16*** 0.05*
𝐿𝐴𝐵 0.09*** -0.10*** 0.20*** 0.24*** 0.06** 0.02 -0.18*** -0.11*** 0.48*** 0.06**
𝑁𝐸𝑇𝑆 -0.03 0.40*** 0.10*** 0.21*** 0.05* 0.08*** 0.13*** -0.11*** -0.03 -0.12***
𝑁𝐸𝑇𝑊 0.00 -0.16*** 0.06** 0.09*** -0.09*** 0.01 0.16*** 0.48*** -0.03 0.03
𝐼𝑉 𝑃𝑃 0.75*** 0.08*** -0.07** 0.26*** 0.09*** 0.00 0.05* 0.06** -0.12*** 0.03203



Table B.17: High technology aggregate cluster innovation perfor-
mance model estimation results 2008-2011.

Indicators Control Agglomeration National Knowledge Networks Path Dependence Agglomeration & Network

Cluster size 0.65 (0.10)*** 0.62 (0.12)***
Adjacency -0.28 (0.052)*** -0.35 (0.053)***
Regional specialization 0.43 (0.038)*** 0.43 (0.040)***
Corporate research 0.37 (0.079)*** 0.38 (0.081)***
National innovation system 0.074 (0.18) 0.56 (0.16)***
Knowledge inflow 0.11 (0.037)*** 0.014 (0.035)
Knowledge outflow 0.39 (0.073)*** 0.17 (0.079)**
Network reach -0.11 (0.029)***
Network density -0.26 (0.063)*** -0.062 (0.064)
Past innovation performance 0.70 (0.022)***
Knowledge base (dummy) 0.33 (0.17)** -0.12 (0.048)** 0.035 (0.046) 0.13 (0.049)*** -0.031 (0.031) -0.11 (0.049)**
Constant 1.8 (0.088)*** 1.9 (0.26)*** 0.19 (0.29) 0.39 (0.072)*** -0.12 (0.024)*** 0.77 (0.43)*
Adjusted 𝑅2 0.003 0.183 -0.001 0.040 0.560 0.196
Adjusted /𝐷𝑒𝑙𝑡𝑎𝑅2 0.180 -0.004 0.038 0.558 0.194
Clusters (𝑛) 1180 1180 1180 1180 1180 1180

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance at the 90%, 95% and 99%-level, respectively.
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Table B.18: High technology scientific knowledge base cluster in-
novation performance model estimation results 2008-2011.

Indicators Control Agglomeration National Knowledge Networks Path Dependence Agglomeration & Network

Cluster size 0.64 (0.12)*** 0.67 (0.14)***
Adjacency -0.24 (0.063)*** -0.32 (0.063)***
Regional specialization 0.56 (0.049)*** 0.55 (0.053)***
Corporate research 0.29 (0.089)*** 0.28 (0.092)***
National innovation system -0.25 (0.26) 0.40 (0.24)*
Knowledge inflow 0.11 (0.062)* 0.049 (0.053)
Knowledge outflow 0.62 (0.10)*** 0.28 (0.11)**
Network reach 0.11 (0.047)**
Network density -0.33 (0.090)*** -0.048 (0.097)
Past innovation performance 0.78 (0.026)***
Constant 9.3 (1.5)*** 1.9 (0.29)*** 0.76 (0.43)* 0.20 (0.12)* -0.22 (0.023)*** 1.3 (0.55)**
Adjusted 𝑅2 0.035 0.319 0.000 0.077 0.674 0.334
Clusters (𝑛) 586 586 586 586 586 586

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance at the 90%, 95% and 99%-level, respectively.205



Table B.19: High technology engineering & design knowledge base
cluster innovation performance model estimation results 2008-2011.

Indicators Control Agglomeration National Knowledge Networks Path Dependence Agglomeration & Network

Cluster size 0.12 (0.17) -0.042 (0.22)
Adjacency -0.33 (0.080)*** -0.37 (0.084)***
Regional specialization 0.20 (0.052)*** 0.22 (0.055)***
Corporate research 0.47 (0.20)** 0.48 (0.20)**
National innovation system 0.47 (0.22)** 0.72 (0.22)***
Knowledge inflow 0.094 (0.041)** -0.012 (0.044)
Knowledge outflow 0.13 (0.093) 0.090 (0.11)
Network reach -0.25 (0.032)***
Network density -0.068 (0.082) -0.10 (0.088)
Past innovation performance 0.59 (0.034)***
Constant -0.29 (1.0) 0.19 (0.42) -0.46 (0.35) 0.62 (0.081)*** -0.053 (0.027)** -1.5 (0.72)**
Adjusted 𝑅2 0.000 0.036 0.006 0.127 0.423 0.050
Clusters (𝑛) 594 594 594 594 594 594

Note: Beta-coefficient values and standard error in parentheses. *, ** and *** marks statistical significance at the 90%, 95% and 99%-level, respectively.

Table B.20: High technology aggregate model diagnostics (𝑛
= 1180).

Model VIF Shapiro-Wilk 𝑊 Shapiro-Wilk 𝑝 Breusch-Pagan 𝐵𝑃 Breusch-Pagan 𝑝
Threshold values < 2 < 0.10 < 0.10
Control 0 0.48 0 2.22 0.14
Agglomeration 1.21 0.98 0 15.21 0.01
National 0 0.98 0 18.95 0
Knowledge networks 1.43 0.98 0 60.28 0
Path dependence 0 0.98 0 39.01 0
Agglomeration & networks 1.47 0.97 0 21.64 0.01
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Appendix C

Cluster Spatial Distribution,
Agglomeration and Knowledge Networks

C.1 Robustness Analysis for Minimum Cluster Size

Descriptive statistics of the technology cluster spatial distribution, agglomeration and knowledge
network patterns are partly influenced by the setting of a minimum cluster size. A ten inventor
minimum is used in this study, however the effects of a higher 20 inventor limit are also explored.
Because the two limits produce similar results, the ten inventor limit is used in the study in order
to maximize the total number of clusters (𝑛) available for inclusion in the analysis. See table C.1
and table C.2.
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Table C.1: Robustness check of health technology cluster
inventor minimum (10 and 20 inventors) with cluster, ag-
glomeration and knowledge network statistics 2008-2011.

Indicators 10-Inventor Cluster 20-Inventor Cluster
Clusters & Agglomeration
Total patents 72,051 72051
- Patents in North America 38,405 (53%) 38,405 (53%)
- Patents in Europe 16,062 (22%) 16,062 (22%)
- Patents in Asia 16,176 (22%) 16,176 (22%)
- Patents in Rest of World 1,408 (2%) 1,408 (2%)
Total Clusters 219 211
- Clusters in North America 133 (61%) 128 (61%)
- Clusters in Europe 47 (21%) 44 (21%)
- Clusters in Asia 32 (15%) 32 (15%)
- Clusters in Rest of World 7 (3%) 7 (3%)
Clustered patents 30,332 (42%) 30,277 (42%)
Patents per cluster, average 138.5 143.5
Cluster size Gini coefficient 0.67 0.67
Corporate patenting share 73.4 73
Knowledge Networks (cluster average)
Co-invention links per inventor 0.51 0.5
Network reach per cluster 35.2 36.2
Network density per cluster 109.2 112.9
Knowledge inflow per inventor 0.59 0.6
Knowledge outflow per inventor 0.64 0.62
Median co-invention distance (km) 50 50
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Table C.2: Robustness check of sustainable energy cluster
inventor minimum (10 and 20 inventors) with cluster, ag-
glomeration and knowledge network statistics 2008-2011.

Indicators 10-Inventor Cluster 20-Inventor Cluster
Clusters & Agglomeration
Total patents 24,171 24171
- Patents in North America 9,086 (38%) 9,086 (38%)
- Patents in Europe 4,742 (20%) 4,742 (20%)
- Patents in Asia 10,083 (42%) 10,083 (42%)
- Patents in Rest of World 260 (1%) 260 (1%)
Total Clusters 167 120
- Clusters in North America 74 (44%) 46 (38%)
- Clusters in Europe 29 (17%) 20 (17%)
- Clusters in Asia 62 (37%) 52 (43%)
- Clusters in Rest of World 2 (1%) 2 (2%)
Clustered patents 11,248 (47%) 10,770 (45%)
Patents per cluster, average 67.4 89.7
Cluster size Gini coefficient 0.7 0.66
Corporate patenting share 85.8 87.2
Knowledge Networks (cluster average)
Co-invention links per inventor 0.32 0.29
Network reach per cluster 7 8.3
Network density per cluster 15 18.8
Knowledge inflow per inventor 0.6 0.65
Knowledge outflow per inventor 0.52 0.49
Median co-invention distance (km) 47 47
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C.2 Health Technology Clusters

Table C.3: Health technology cluster, agglomeration and
knowledge network statistics by sub-sector 2008-2011.

Indicators Medical Life Sciences Medical Devices
Clusters & Agglomeration
Total patents 27,080 44,971
- Patents in North America 14,776 (55%) 23,629 (53%)
- Patents in Europe 6,675 (25%) 9,387 (21%)
- Patents in Asia 4,837 (18%) 11,339 (25%)
- Patents in Rest of World 792 (3%) 617 (1%)
Total Clusters 146 73
- Clusters in North America 72 (49%) 61 (84%)
- Clusters in Europe 44 (30%) 3 (4%)
- Clusters in Asia 23 (16%) 9 (12%)
- Clusters in Rest of World 7 (5%) 0 (0%)
Clustered patents 19,408 (72%) 10,923 (24%)
Patents per cluster, average 132.9 149.6
Cluster size Gini coefficient 0.67 0.68
Corporate patenting share 65.9% 88.3%
Knowledge Networks (cluster average)
Co-invention links per inventor 0.59 0.35
Network reach (unique links per cluster) 35.6 34.4
Network density (total links per cluster) 101.7 124.3
Knowledge inflow (links per inventor) 0.55 0.66
Knowledge outflow (links per inventor) 0.57 0.79
Median co-invention distance (km) 52 48
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Table C.4: Countries with 10 largest health technol-
ogy sectors 2000-2011 (share of world health technology
patents).

Rank 2000-2003 2004-2007 2008-2011
1 United States (51.2%) United States (50.6%) United States (50.7%)
2 Japan (13.2%) Japan (14.2%) Japan (12.9%)
3 Germany (7.6%) Germany (7.7%) Germany (7.1%)
4 United Kingdom (3.6%) United Kingdom (2.8%) France (2.8%)
5 France (3.4%) Canada (2.8%) United Kingdom (2.7%)
6 Canada (3.2%) France (2.7%) South Korea (2.7%)
7 Israel (2.1%) Israel (2.4%) Canada (2.5%)
8 Switzerland (1.6%) South Korea (2.1%) Israel (2.2%)
9 South Korea (1.4%) Switzerland (1.7%) Taiwan (1.9%)
10 Sweden (1.4%) Taiwan (1.4%) Switzerland (1.7%)

Table C.5: Cities with 10 largest health technology clus-
ters by sub-sector 2008-2011 (share of world health tech-
nology patents).

Rank Medical Life Sciences Medical Devices
1 San Francisco, US (7%) Tokyo, JP (3%)
2 New York, US (6%) Los Angeles, US (2%)
3 Boston, US (5%) San Jose, US (2%)
4 Tokyo, JP (4%) Boston, US (2%)
5 San Diego, US (4%) Seattle, US (1%)
6 Washington, US (3%) New York, US (1%)
7 Los Angeles, US (2%) Seoul, KR (1%)
8 Osaka, JP (2%) Tel Aviv-Yafo, IL (1%)
9 Kobenhavn, DK (2%) San Diego, US (1%)
10 Seoul, KR (2%) Taipei, TW (1%)

C.3 Sustainable Energy Clusters
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Table C.6: Sustainable energy cluster, agglomeration and knowledge network statistics by sub-sector 2008-2011.

Indicator Biofuels Electric Vehicles* Electricity Storage Fuel Cells Hydrogen Technology Photovoltaics Wind Turbines*
Clusters & Agglomeration
Total patents 1,953 6,070 3,391 2,041 1,103 6,360 3,253
- Patents in North America 1,215 (62%) 1,783 (29%) 1,020 (30%) 655 (32%) 491 (45%) 2,716 (43%) 1,206 (37%)
- Patents in Europe 449 (23%) 834 (14%) 473 (14%) 325 (16%) 253 (23%) 1,080 (17%) 1,329 (41%)
- Patents in Asia 218 (11%) 3,425 (56%) 1,865 (55%) 1,045 (51%) 341 (31%) 2,514 (40%) 675 (21%)
- Patents in Rest of World 71 (4%) 27 (0%) 34 (1%) 16 (1%) 18 (2%) 51 (1%) 43 (1%)
Total Clusters 33 35 17 18 16 21 27
- Clusters in North America 23 (70%) 14 (40%) 8 (47%) 7 (39%) 7 (44%) 9 (43%) 6 (22%)
- Clusters in Europe 3 (9%) 7 (20%) 2 (12%) 2 (11%) 1 (6%) 2 (10%) 12 (44%)
- Clusters in Asia 6 (18%) 14 (40%) 7 (41%) 9 (50%) 8 (50%) 10 (48%) 8 (30%)
- Clusters in Rest of World 1 (3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (4%)
Clustered patents 711 (36%) 4,361 (72%) 905 (27%) 1,064 (52%) 312 (28%) 2,805 (44%) 1,090 (33%)
Patents per cluster, average 21.6 124.6 53.2 59.1 19.5 133.6 40.4
Cluster size Gini coefficient 0.51 0.76 0.61 0.63 0.45 0.67 0.49
Corporate patenting share 71.9% 95% 83.2% 82.1% 70.5% 91.6% 99.3%
Knowledge Networks (cluster average)
Co-invention links per inventor 0.43 0.24 0.22 0.18 0.19 0.26 0.54
Network reach (unique links per cluster) 7.4 7.3 5.5 5.2 3.6 9.1 8.4
Network density (total links per cluster) 14.7 16.1 9.5 9.1 5.5 24.5 19.7
Knowledge inflow (links per inventor) 0.55 0.54 0.91 0.32 0.26 0.65 0.87
Knowledge outflow (links per inventor) 0.43 0.48 0.51 0.53 0.41 0.54 0.72
Median co-invention distance (km) 72 38 52 51 73 50 92
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Table C.7: Countries with 10 largest sustainable en-
ergy sectors 2000-2011 (share of world sustainable energy
patents).

Rank 2000-2003 2004-2007 2008-2011
1 Japan (38.3%) Japan (34.1%) United States (35.8%)
2 United States (31%) United States (32.4%) Japan (28.5%)
3 Germany (10%) Germany (8.7%) Germany (7.7%)
4 Canada (3.1%) South Korea (5.6%) South Korea (6.9%)
5 South Korea (2.2%) Canada (2.8%) France (2.6%)
6 United Kingdom (2.1%) France (2.4%) Taiwan (2.4%)
7 France (2.1%) United Kingdom (2.1%) Denmark (2.2%)
8 Taiwan (1.5%) Taiwan (2%) China (2%)
9 Denmark (1.2%) Denmark (1.4%) United Kingdom (1.9%)
10 Australia (1.1%) Italy (1%) Canada (1.7%)

Table C.8: Cities with the slowest-growing sustainable
energy clusters 2000-2011 (absolute growth).

Rank City /𝐷𝑒𝑙𝑡𝑎 Patents Rate
27 Hartford, US 30 263%
28 Fremont, US 28 119%
29 Munich, DE 23 34%
30 Taichung, TW 23 125%
31 Vancouver, CA 19 100%
32 Utsunomiya, JP 17 45%
33 Chiba, JP 11 34%
34 Erie, US 4 25%
35 Shizuoka, JP 1 2%
36 Carmel, US 0 -2%
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Table C.9: Cities with the 10 largest sustainable energy
innovation clusters by sub-sector 2008-2011 (part 1).

Rank Biofuels Electric Vehicles* Electricity Storage Fuel Cells
1 San Francisco, US (6%) Nagoya, JP (20%) Tokyo, JP (7%) Tokyo, JP (13%)
2 Wilmington, US (4%) Tokyo, JP (14%) Nagoya, JP (5%) Seoul, KR (9%)
3 Boston, US (3%) Detroit, US (8%) San Francisco, US (4%) Nagoya, JP (8%)
4 Kobenhavn, DK (3%) Osaka, JP (5%) Daejeon, KR (3%) Osaka, JP (6%)
5 Aurora, US (2%) Seoul, KR (4%) Seoul, KR (2%) Rochester, US (3%)
6 Pasadena, US (2%) Mito, JP (3%) Kyoto, JP (2%) Fremont, US (2%)
7 San Diego, US (2%) San Francisco, US (3%) Beijing, CN (1%) Hartford, US (2%)
8 Tokyo, JP (1%) Stuttgart, DE (2%) Boston, US (1%) Vancouver, CA (1%)
9 The Hague, NL (1%) Los Angeles, US (2%) San Diego, US (1%) Daejeon, KR (1%)
10 Sioux Falls, US (1%) Daejeon, KR (1%) Chiba, JP (1%) Utsunomiya, JP (1%)

Table C.10: Cities with the 10 largest sustainable energy
innovation clusters by sub-sector 2008-2011 (part 2).

Rank Hydrogen Technology Photovoltaics Wind Turbines*
1 Tokyo, JP (5%) San Francisco, US (11%) Tokyo, JP (5%)
2 Nagoya, JP (5%) Tokyo, JP (9%) Aarhus, DK (4%)
3 Osaka, JP (3%) Seoul, KR (7%) Greenville, US (3%)
4 Seoul, KR (3%) Osaka, JP (5%) Albany, US (3%)
5 Grenoble, FR (2%) Taipei, TW (2%) Nagasaki, JP (2%)
6 Princeton, US (1%) Boston, US (2%) Singapore, SG (2%)
7 Ann Arbor, US (1%) Hsinchu, TW (2%) Vejle, DK (2%)
8 Utsunomiya, JP (1%) Daejeon, KR (1%) Munich, DE (2%)
9 Vancouver, CA (1%) Ossining, US (1%) Pamplona, ES (1%)
10 Hsinchu, TW (1%) Indio, US (1%) Berlin, DE (1%)

214



C.4 Reference High Technology Clusters

Table C.11: Comparison of all cluster, agglomeration and
knowledge network statistics, 2008-2011 period.

Indicators Health Technology Sustainable Energy High Technology
Total patents 72,051 24,171 743,466
- Patents in North America 38,405 (53%) 9,086 (38%) 337,869 (45%)
- Patents in Europe 16,062 (22%) 4,742 (20%) 132,658 (18%)
- Patents in Asia 16,176 (22%) 10,083 (42%) 263,192 (35%)
- Patents in Rest of World 1,408 (2%) 260 (1%) 9,747 (1%)
Total Clusters 219 167 1,192
- Clusters in North America 133 (61%) 74 (44%) 615 (52%)
- Clusters in Europe 47 (21%) 29 (17%) 304 (26%)
- Clusters in Asia 32 (15%) 62 (37%) 223 (19%)
- Clusters in Rest of World 7 (3%) 2 (1%) 50 (4%)
Clustered patents 30,332 (42%) 11,248 (47%) 533,184 (72%)
Patents per cluster, average 138.5 67.4 447.3
Cluster size Gini coefficient 0.67 0.7 0.84
Corporate patenting share 73.4% 85.8% 88.6%
Co-invention links per inventor 0.51 0.32 0.36
Network reach (unique links per cluster) 35.2 7 57.2
Network density (total links per cluster) 109.2 15 274.8
Knowledge inflow (links per inventor) 0.59 0.6 0.64
Knowledge outflow (links per inventor) 0.64 0.52 0.69
Median co-invention distance (km) 50 47 49
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Table C.12: Cities with 10 largest clusters from different
sectors (share of world patent output), 2008-2011 period.

Rank Health Technology Sustainable Energy High Technology
1 Tokyo, JP (4%) Tokyo, JP (9%) Tokyo, JP (13%)
2 New York, US (3%) Nagoya, JP (7%) San Francisco, US (6%)
3 Boston, US (3%) San Francisco, US (5%) Seoul, KR (5%)
4 San Francisco, US (2%) Seoul, KR (4%) New York, US (3%)
5 Los Angeles, US (2%) Osaka, JP (3%) Osaka, JP (3%)
6 San Diego, US (2%) Detroit, US (2%) Taipei, TW (2%)
7 Washington, US (1%) Daejeon, KR (1%) Boston, US (2%)
8 San Jose, US (1%) Boston, US (1%) Los Angeles, US (2%)
9 Seattle, US (1%) Mito, JP (1%) Seattle, US (2%)
10 Seoul, KR (1%) Stuttgart, DE (1%) San Diego, US (2%)
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Appendix D

Innovation Actors

D.1 Health Technology Clusters

The top 10 innovation actors are shown in table D.1 and are derived from raw patent assignee
information. Raw assignee information lacks corrections for differences in spelling, subsidiaries
from the same corporate entity or changes in assignee names. Because the focus of this analysis
is on technology clusters and not on assignees, the assignee information presented here is for
illustrative purposes only.
The innovation actors are presented together with a two-letter country code of the country where
the actors are registered. Two-letter ISO 3166-1 alpha-2 country codes are used, which are part of
the ISO 3166 standard published by the International Organization for Standardization (ISO), to
represent countries and dependent territories. These are the most widely used of the country codes
published by ISO (the others being alpha-3 and numeric) and are widely used by international
organizations, including the United Nations.
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Table D.1: Health technology innovation actors by sub-
sector, 2008-2011.

Description Medical Life Sciences Medical Devices
Universities (%) 21 5
Industry (%) 76 94

Government (%) 2 1
Top 10 Assignees Genentech, Inc. (US), The

Regents of the University of
California (US), Monsanto

Technology LLC (US), Pioneer
Hi-Bred International, Inc. (US),
The United States of America as
represented by the Department of
Health and Human Services (US),

Merck & Co., Inc. (US), ISIS
Pharmaceuticals, Inc. (US), Eli
Lilly and Company (US), Human

Genome Sciences, Inc. (US),
Amgen Inc. (US)

Covidien LP (US), Siemens
Aktiengesellschaft (DE),
GENERAL ELECTRIC

COMPANY (US), Ethicon
Endo-Surgery, Inc. (US), TYCO

Healthcare Group LP (US),
Koninklijke Philips N.V. (NL),

Boston Scientific Scimed,
Inc. (US), Canon Kabushiki

Kaisha (JP), Olympus Medical
Systems Corp. (JP), FUJIFILM

Corporation (JP)

Table D.2: Health technology patents, clusters and share
by sub-sector, 2008-2011.

Description Medical Life Sciences Medical Devices
Patents in clusters (count) 17,561 10,110
Patents per sector (%) 63 37
Clusters (count) 146 73
Clusters per sector (%) 67 33

D.2 Sustainable Energy Clusters

The top 10 innovation actors are shown in table D.3 and are derived from raw patent assignee
information (see appendix D.2 for further details).
Note: in table D.3 * indicates sub-sector with engineering knowledge base.
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Table D.3: Sustainable energy innovation actors by sub-sector, 2008-2011.

Sector Universities
(%)

Industry
(%)

Government
(%)

Top 10 Assignees

Biofuels 12 87 1 Novozymes A/S (DK), Danisco US Inc. (US), Heliae Development, LLC (US), Coskata,
Inc. (US), E I du Pont de Nemours and Company (US), Butamax(TM) Advanced Biofuels
LLC (US), Poet Research, Inc. (US), Butamax Advanced Biofuels LLC (US), The Regents
of the University of California (US), Novozymes, Inc. (US)

Electric
Vehicles*

2 98 0 TOYOTA JIDOSHA KABUSHIKI KAISHA (JP), Ford Global Technologies, LLC (US),
GM Global Technology Operations LLC (US), Honda Motor Co., Ltd. (JP), Nissan Motor
Co., Ltd. (JP), General Electric Company (US), ROBERT BOSCH GMBH (DE), DENSO
CORPORATION (JP), Hitachi, Ltd. (JP), Honda Giken Kogyo Kabushiki Kaisha (JP)

Electricity
Storage

6 93 1 Samsung SDI Co., Ltd. (KR), Toyota Jidosha Kabushiki Kaisha (JP), Sony Corporation
(JP), LG Chem, Ltd. (KR), Robert Bosch GmbH (DE), Panasonic Corporation (JP), GM
Global Technology Operations LLC (US), Sanyo Electric Co., Ltd. (JP), Semiconductor
Energy Laboratory Co., Ltd. (JP), Corning Incorporated (US)

Fuel Cells 10 89 2 Toyota Jidosha Kabushiki Kaisha (JP), GM Global Technology Operations LLC (US),
Samsung SDI Co., Ltd. (KR), Honda Motor Co., Ltd. (JP), Sony Corporation (JP),
Bloom Energy Corporation (US), Hyundai Motor Company (KR), PANASONIC
CORPORATION (JP), Kabushiki Kaisha Toshiba (JP), Audi AG (DE)

Hydrogen
Technology

12 85 3 Honda Motor Co., Ltd. (JP), GM Global Technology Operations LLC (US), Toyota
Jidosha Kabushiki Kaisha (JP), Societe BIC (FR), Samsung Electro-Mechanics Co., Ltd.
(KR), The Trustees of Princeton University (US), Honeywell International Inc. (US),
Panasonic Corporation (JP), Young Green Energy Co. (TW), Toyota Motor Engineering
& Manufacturing North America, Inc. (US)

Photovoltaics 5 95 1 International Business Machines Corporation (US), LG Electronics Inc. (KR), E I Du
Pont de Nemours and Company (US), Sharp Kabushiki Kaisha (JP), Applied Materials,
Inc. (US), Mitsubishi Electric Corporation (JP), Sanyo Electric Co., Ltd. (JP), SunPower
Corporation (US), Industrial Technology Research Institute (TW), The Boeing Company
(US)

Wind
Turbines*

2 98 0 General Electric Company (US), Vestas Wind Systems A/S (DK), SIEMENS
AKTIENGESELLSCHAFT (DE), Mitsubishi Heavy Industries, Ltd. (JP), Gamesa
Innovation & Technology, S.L. (ES), Nordex Energy GmbH (DE), SENVION SE (DE),
LM Glasfiber A/S (DK), Hitachi, Ltd. (JP), (US)
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Table D.4: Sustainable energy patents, clusters and share
by sub-sector, 2008-2011.

Sector Patents (count) Patents per sector (%) Clusters (count) Clusters per sector (%)
Biofuels 668 9 33 20
Electric Vehicles* 3,599 25 35 21
Electricity Storage 750 14 17 10
Fuel Cells 868 8 18 11
Hydrogen Technology 255 5 16 10
Photovoltaics 2,411 27 21 13
Wind Turbines* 910 13 27 16

Note: * indicates sub-sector with engineering knowledge base.
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Summary

Motivation

The sustainability technology sectors, encompassing health and sustainable energy technology,
play a critically important role in addressing global challenges such as climate change and ageing
populations, which require a transition to a low or zero-carbon energy system, and sustainable
and affordable healthcare. While these problems cannot be resolved by technological solutions
alone, technology plays an important part in addressing them. Innovation, climate change, public
health and the need for sustainable industrialization and economic growth are also part of the
Sustainable Development Goals of the United Nations, further highlighting their global importance.
Another motivation for the study, specifically from a European perspective, is a concern over the
long-term economic competitiveness of Europe, which appears to be lagging behind the United
States and certain Asian countries. This concern is a driver of the European Union’s current
science and technology policy, including its multi-billion euro Horizon Europe initiative and Smart
Specialization strategies for European regions.

Research Question and Knowledge Gaps

The main research question addressed in this dissertation is: How are the dynamic spatial dis-
tribution and innovation performance patterns of sustainability technology clusters influenced by
cluster characteristics, such as agglomeration and knowledge networks, and sectoral differences?
Although there is an extensive literature on evolutionary economic geography, innovation sys-
tems, and global innovation diffusion, these theories often lack specificity with regard to particular
technology sectors. Relatively little is known about the spatial distribution, cluster characteris-
tics, and cluster innovation performance in the sustainability technology sectors. There are three
main knowledge gaps: (i) the global spatial distribution and knowledge networks of technology
clusters and their changes over time, (ii) the association between cluster innovation performance
and various cluster characteristics, and (iii) the extent to which the aforementioned factors are
influenced by socio-technological transitions and other sectoral differences. These knowledge gaps
are addressed with a novel empirical approach to cluster identification, the measurement of cluster
characteristics and the modeling of innovation performance.

Concepts and Theory

Innovation performance is one of the core concepts defined in chapter 2. Concisely defined, in-
novation performance is the ability of an organization to generate new knowledge and apply it
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in an economically useful way. Innovation performance is influenced by both internal and ex-
ternal factors, which act at multiple spatial scales. Among these, technology clusters are one of
the most important spatial scales, with important interactions between organizations (such as be-
tween firms and universities) taking place there. At a higher spatial scale, the national innovation
system, which includes regulations, funding, and national institutions and policies, also influences
innovation performance, although increasing globalization has reduced the influence of national
governments to a certain extent. At a global scale, inter-cluster knowledge networks facilitate
learning, collaboration, and other knowledge relationships between different clusters, although
these relationships are sometimes unequal, resulting in “reverse” knowledge flows. Also notable is
path dependence: because knowledge, experience, skills and relationships accumulate over time,
already successful technology clusters tend to maintain high innovation performance.
There is considerable sectoral variation in cluster characteristics, including in the strength and
direction of association (positive or negative) between cluster characteristics and innovation per-
formance. These differences can be attributed to the sectoral knowledge base and development
phase: in sectors with an engineering and design knowledge base, spatial proximity is seen as
more important because it facilitates the exchange of tacit knowledge. In sectors with a scientific
knowledge base, knowledge transfers over long distances appear to be facilitated by the prevalence
of codified knowledge. Sectors in an emerging phase tend to have lower path dependence, sparser
knowledge networks, and high levels of new cluster creation. Over time, as a sector and technology
clusters mature, agglomeration and the size of knowledge networks expand. National policies can
play a role in supporting the creation and growth of technology clusters. To gain a clearer un-
derstanding of the cluster characteristics and innovation performance of sustainability technology
clusters, 12 hypotheses are proposed, which can be divided into six groups: (i) Changes in the
global spatial distribution of technology clusters (hypothesis 1), (ii) sectoral differences (hypotheses
2 & 12), (iii) different aspects of agglomeration at the cluster and regional scale (hypotheses 3-5),
(iv) national innovation system (hypothesis 6), (v) inter-cluster knowledge flows and knowledge
networks (hypotheses 7-10) and (vi) path dependence (hypotheses 11 and 12).

Data and Methodology
A novel cluster innovation performance model, including model indicators, and cluster identifica-
tion methodology are the focus of chapters 3 and 4. The cluster innovation performance model is
an adaptation of earlier knowledge production functions, in which the association between cluster
characteristics and innovation performance is explored. In the present study, the dependent vari-
able is a composite indicator of patent citations divided by the number of inventors. Citations are
a measure of patent quantity and quality (Hall, Jaffe, and Trajtenberg 2005) and the inventors are
a proxy for knowledge inputs. This approach successfully models the cluster characteristics associ-
ated with cluster innovation outperformance across diverse high technology sectors, including the
sustainability technology sectors. The independent variables of the model describe agglomeration,
the national innovation system, inter-cluster knowledge networks, and path dependence.
Technology clusters are identified using a novel patent “heat map” methodology which identifies
clusters based on the real location of innovation activity and provides a more accurate picture of
the spatial distribution and characteristics of clusters as compared to using pre-defined adminis-
trative boundaries. The methodology differs from earlier “organic” cluster studies (Catini et al.
2015; Alcácer and Zhao 2016; Bergquist, Fink, and Raffo 2017) in three main aspects: (i) it uses
a single data source, namely the patent grant database of the United States Patent & Trade-
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mark Office, USPTO, to ensure a uniform standard of patent evaluation, (ii) it uses a home bias
correction to compensate for differences in patenting and citation frequency between the United
States and other countries, and (iii) it uses a Kernel Density Estimation method (Rosenblatt 1956;
Parzen 1962) to calculate a patent “heat map” from which technology clusters are identified. Pa-
rameters are optimized to detect small clusters and avoid detecting unrealistically large clusters.
The methodology enables a more precise identification of technology clusters and measurement of
cluster indicators, and the construction of a unique global database of technology cluster metrics.

Results: Global Spatial Distribution & Patterns
The health technology sector is analyzed in chapter 5 and consists of two technological sub-sectors:
medical devices and medical life sciences. The sustainable energy technology sector is analyzed
in chapter 6 and consists of seven technological sub-sectors: biofuels, electric vehicles, electricity
storage, fuel cells, hydrogen technology, photovoltaics and wind turbines. The sub-sectors are
among the most innovative within their respective sectors and include both sub-sectors with an
engineering and design knowledge base (medical devices, electric vehicles and wind turbines) and
with a scientific knowledge base (medical life sciences, hydrogen technology, photovoltaics and
others). Chapters 5 and 6 provide a descriptive analysis of the spatial distribution, agglomeration,
and knowledge networks of the sectors, and a quantitative analysis of the association between
innovation performance and cluster characteristics. A comparative perspective is presented in
chapter 7, together with a discussion of relevant policy applications.
The largest technology clusters (by patent output) are usually located in large “global” cities such
as San Francisco, Tokyo, New York, and Los Angeles, although the spatial pattern of sustain-
able energy technology is different, as around half of the 10 largest clusters are found in smaller
lower-tier cities such as Daejeon, Detroit, Nagoya, and Stuttgart. In sub-sectors such as biofuels
and wind turbines, the largest technology clusters are found in small cities, such as Aarhus (Den-
mark), Aurora (Colorado, United States), and Pamplona (Spain). This confirms prior observations
that niche high technology clusters can develop in relatively peripheral locations. Viewed glob-
ally, health technology innovation is concentrated in North America, whereas sustainable energy
technology is concentrated in Asia (Japan, South Korea, and Taiwan). Europe is lagging behind,
although it plays a leading role in some sub-sectors such as wind turbines.
The sustainable energy technology sector is growing rapidly, with 100 new clusters emerging during
the study periods. New clusters are being created in many different countries, including in innova-
tion leaders such as the United States and in countries with modest innovation capabilities, such
as Spain and India. In absolute terms, most clusters have been created in North America. During
the study period the average cluster size, the share of patents found in clusters (clustering rate)
and inter-cluster knowledge network density all increased. In contrast, the number of health tech-
nology clusters, and their agglomeration and knowledge network characteristics, remained mostly
unchanged.
Viewed from a national perspective, sustainable energy research is increasing in China, Denmark,
France, South Korea, Taiwan, and the United States, but declining in Canada, Germany, Japan,
and the United Kingdom (in relative terms). Health technology research shows a different pattern,
with growth in China, South Korea, and Taiwan, while the share of the United States and Japan is
stable, and European countries’ share is declining (in relative terms). This suggests that a “global
shift” is taking place from Europe to Asia in the health technology sector, while the direction of
“global shifts” is more complex for sustainable energy technology.
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Results: Cluster Innovation Performance
The cluster innovation performance model results provide insights into the cluster characteristics
associated with innovation performance, specifically agglomeration, the national innovation system,
knowledge networks, and path dependence. With regards to agglomeration, the results confirms
a positive association between economies of scale (cluster size) and cluster absorptive capacity
(corporate research). However, agglomeration effects differ when a cluster is located relatively
close to other large clusters (< 200 km, adjacency effect), a situation that usually occurs if a
cluster is part of a larger conurbation. For instance, the Utsunomiya, Mito and Chiba sustainable
energy clusters are all located within 200 km of Tokyo, and can be considered to be part of
“Greater Tokyo.” While spatial proximity can have benefits, such as access to a deeper talent
pool and specialized service providers, increased competition for talent and resources appear to
outweigh these benefits at the scale of large conurbations. It should be noted that the negative
association with adjacency is not found in sustainable energy technology clusters, presumably due
to their smaller size and emerging development phase. The sustainable energy technology sector is
also unique in the sense that the national innovation system has a statistically significant influence
on cluster innovation performance, which is not the case in other sectors.
Access to a large number of different clusters (network reach) and outbound knowledge flows
are positively associated with cluster innovation performance in the health technology sector.
Knowledge outflow is facilitated by multinational corporations, and their positive relationship with
innovation performance supports the observation that multinational corporations often establish
themselves in already-successful clusters (Awate, Larsen, and Mudambi 2015; Østergaard and
Park 2015). Knowledge outflow is not statistically significant in the emerging sustainable energy
technology sector. Path dependence positively influences cluster innovation performance in all
sectors, although its association is weaker in the emerging sustainable energy sector. The empirical
findings show clear differences between the sustainable energy technology and health technology
sectors.

Research Contributions
The research contributions are described in chapter 8 and apply to four main areas: methodology,
novel empirical results, theory, and policy. The methodological contribution involves the identi-
fication of technology clusters from patent data and the characterization of these clusters using
novel indicators, providing a comprehensive global overview of a sector’s technology clusters and
inter-cluster knowledge networks. Such data has previously been difficult to obtain and is also the
main empirical contribution of this study. The theoretical contributions of the study center on
showing the differences between the health technology and sustainable energy technology sectors,
differences which cannot be attributed only to their development phase. Although the lower path
dependence and lack of negative agglomeration effects of the emerging sustainable energy tech-
nology sector are expected, the sector also has a lower influence from corporate research and is
influenced more strongly by national institutions and policies (national innovation system). This
difference is likely due to the socio-technological transition taking place in the energy system,
which involves significant influence from non-corporate actors. The absence of these influences
in the health technology sector suggests that socio-technological transitions in healthcare differ
markedly from those in sustainable energy technology, which involve profound shifts, not only in
technology, but also the business model of the sector. The research findings also suggest that

224



relatively large sustainability technology clusters located in smaller cities enable high innovation
performance. Such a situation appears to take advantage of local agglomeration economies while
mitigating the diseconomies of scale that occur when clusters are located in large conurbations
(adjacency), and could apply to other emerging high technology sectors as well (Steen and Hansen
2018). From a policy perspective, the methodology offers a useful tool for monitoring the creation
and growth of technology clusters, their networks, and key innovation actors, on a worldwide scale.
The study also shows significant differences between sectors, especially with regards to sustain-
able energy technology. Policies supporting technology cluster development should therefore be
customized depending on the sector’s knowledge base, development phase, and socio-technological
context.

Conclusion
Research limitations, reflections, and the conclusion are found in chapter 9. The main limitations
include the time period selection and the model design which, because of limitations imposed by
the patent data, could not measure theoretical concepts related to cluster innovation performance
such as entrepreneurship, social capital, or policy incentives. These limitations could be addressed
in future research by performing detailed cluster case studies which focus on these areas. Despite
these limitations, the research findings shed light on the concept of cluster innovation performance,
the nature of global shifts in innovation and differences in socio-technological transitions. In this
study innovation performance has been operationalized as an efficiency indicator. However, only
around 30-60% of cluster innovation performance can be explained by the model, and it is mainly
accounted for by path dependence. Possible reasons for this is that cluster innovation performance
depends largely on the performance of specific technological niches, and that the growth of clusters
is often driven by other factors such as the strategic business and technological decisions by firms,
and various other incentives. Global shifts in the spatial distribution of cluster creation and
growth appear closely related to local factors, such as the availability of knowledge resources,
investment and supportive policies. Although countries such as China, South Korea, and Taiwan
have successfully supported the development and growth of technology clusters, similar policies
are also undertaken in other parts of the world, although on a smaller scale and for specific sectors
such as sustainable energy.
There also appears to be a large difference between the type of socio-technological transitions
taking place in the energy and healthcare system. In the energy sector, the adoption of new
sustainable energy technologies requires fundamental changes in the business models of energy
generation and distribution. However, in the health technology sector, business models appears
to be mostly unchanged. These differences are especially evident from the significance, or lack
thereof, of corporate research and the national innovation system. These differences could be
further explored by studying other emerging high technology sectors and time periods.
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Samenvatting

Motivatie
De duurzaamheidstechnologiesectoren, waaronder gezondheidstechnologie en duurzame energi-
etechnologie, spelen een cruciale rol bij de aanpak van mondiale uitdagingen zoals klimaatveran-
dering en vergrijzing. Hoewel deze problemen niet met technologie alléén kunnen worden opgelost,
speelt technologie hier een belangrijke rol bij. Innovatie, klimaatverandering, volksgezondheid
en de noodzaak van duurzame industrialisering en economische groei maken ook deel uit van de
Sustainable Development Goals van de Verenigde Naties, iets wat hun wereldwijde belang be-
nadrukt. Een andere motivatie voor het onderzoek, vanuit Europees perspectief, is bezorgdheid
over het economische concurrentievermogen van Europa. Het continent lijkt achter te blijven bij
de Verenigde Staten en bepaalde Aziatische landen, en deze zorg is een drijvende kracht achter
het huidige wetenschaps- en technologiebeleid van de Europese Unie, inclusief het miljarden euro
kostende Horizon Europe-initiatief en het Smart Specialisation strategieën voor Europese regio’s.

Onderzoeksvraag en kennislancunes
De belangrijkste onderzoeksvraag die in dit proefschrift aan de orde komt is: Hoe worden de dy-
namische ruimtelijke spreidings- en innovatieprestatiepatronen van duurzaamheidstechnologieclus-
ters beïnvloed door clusterkenmerken zoals agglomeratie en kennisnetwerken, en sectorale ver-
schillen? Hoewel er een uitgebreide literatuur bestaat over evolutionaire economische geografie,
innovatiesystemen en wereldwijde innovatiediffusie, ontbreekt het vaak aan specificiteit met be-
trekking tot individuele technologiesectoren. Er is relatief weinig bekend over de ruimtelijke sprei-
ding, clusterkenmerken en clusterinnovatieprestaties in de duurzaamheidstechnologiesectoren. Er
zijn in feite drie belangrijke kennislancunes: (i) de wereldwijde ruimtelijke distributie en ken-
nisnetwerken van technologieclusters en hun veranderingen in de tijd, (ii) het verband tussen
clusterinnovatieprestaties en bepaalde clusterkenmerken, en (iii) de mate waarin deze verbanden
worden beïnvloed door sociaal-technologische transities en andere sectorale verschillen. Deze ken-
nislacunes worden benaderd met een nieuwe methode voor clusteridentificatie, het meten van
clusterkenmerken en het modelleren van innovatieprestaties.

Concepten en theorie
Innovatieprestatie (innovation performance) is één van de kernbegrippen die in hoofdstuk 2 worden
gedefiniëerd. Innovatieprestatie is het vermogen van een organisatie om nieuwe kennis te creëren en
op een economisch winstgevende manier toe te passen. Innovatieprestaties worden beïnvloed door
zowel interne als externe factoren, die op meerdere ruimtelijke schalen werken. Technologieclusters
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zijn één van de belangrijkste ruimtelijke schalen waarop interacties tussen organisaties plaatsvinden
(zoals tussen bedrijven en universiteiten). Op een hoger ruimtelijke schaalniveau beïnvloedt het
nationale innovatiesysteem, dat regelgeving, financiering, nationale instellingen en beleid omvat,
ook de innovatieprestaties. Echter, de toenemende globalisering heeft de invloed van nationale
overheden sterk verminderd. Op mondiale schaal faciliteren interclusterkennisnetwerken leer-,
samenwerkings- en andere kennisrelaties tussen clusters, hoewel deze relaties soms ongelijk zijn,
wat kan leiden tot “omgekeerde” kennisstromen (“reverse” knowledge flows). Ook belangrijk is
padafhankelijkheid: omdat kennis, ervaring, vaardigheden en relaties zich in de loop van de tijd
opstapelen, kunnen reeds succesvolle technologieclusters goede innovatieprestaties vaak lange tijd
voortzetten.
Er is aanzienlijke sectorale variatie in clusterkenmerken, ook in de sterkte en richting van het ver-
band tussen clusterkenmerken en innovatieprestaties (positief of negatief). Deze verschillen zijn
toe te schrijven aan de sectorale kennisbasis en ontwikkelingsfase: in sectoren met een technische-
en ontwerpkennisbasis wordt ruimtelijke nabijheid belangrijk geacht omdat het de uitwisseling van
stilzwijgende kennis (tacit knowledge) faciliteert. In sectoren met een wetenschappelijke kennisbasis
lijkt kennisoverdracht over lange afstanden te worden vergemakkelijkt door het gebruik van meer
gecodificeerde kennis. Sectoren in een opkomende fase hebben doorgaans een lagere padafhanke-
lijkheid, schaarsere kennisnetwerken en een meer nieuwe clustervorming. Naarmate een sector en
technologieclusters volwassener worden, nemen de agglomeratie en de omvang van kennisnetwerken
toe. Ook nationaal beleid kan een rol spelen bij het ondersteunen van de creatie en groei van tech-
nologieclusters. Om een beter begrip te krijgen van de clusterkenmerken en innovatieprestaties
van duurzaamheidstechnologieclusters, worden 12 hypotheses opgesteld, die in zes groepen kunnen
worden verdeeld: (i) veranderingen in de wereldwijde ruimtelijke spreiding van technologieclusters
(hypothese 1), (ii) sectorale verschillen (hypotheses 2 & 12), (iii) diverse aspecten van agglomeratie
op cluster- en regionale schaal (hypotheses 3-5), (iv) nationaal innovatiesysteem (hypothese 6), (v)
kennisstromen en kennisnetwerken (hypotheses 7-10) en (vi) padafhankelijkheid (hypotheses 11 en
12).

Data en methodologie
Een nieuw clusterinnovatieprestatiemodel, inclusief modelindicatoren en een nieuwe clusteridenti-
ficatiemethodologie, staan centraal in de hoofdstukken 3 en 4. Het clusterinnovatieprestatiemodel
is een aanpassing van eerdere kennisproductiefuncties, waarin het verband tussen clusterken-
merken en innovatieprestaties wordt onderzocht. In dit onderzoek is de afhankelijke variabele een
samengestelde indicator van octrooicitaten gedeeld door het aantal uitvinders. Citaten zijn een
maatstaf voor de kwaliteit van octrooien (Hall, Jaffe, and Trajtenberg 2005) en de uitvinders zijn
een maatstaf voor de aanwezige kennisbronnen. Deze aanpak modelleert met succes de clusterken-
merken die samenhangen met clusterinnovatieprestaties in diverse hightechsectoren, waaronder
de duurzaamheidstechnologiesectoren. De onafhankelijke variabelen van het model beschrijven
agglomeratie, het nationale innovatiesysteem, interclusterkennisnetwerken en padafhankelijkheid.
Technologieclusters worden geïdentificeerd met behulp van een nieuwe “warmtekaart”-
methodologie die clusters identificeert op basis van octrooien. Deze aanpak geeft de werkelijke
locatie van innovatieactiviteit weer en geeft een nauwkeuriger beeld van de ruimtelijke spreiding
en clusterkenmerken dan het gebruik van bestuurlijke grenzen. De methodiek wijkt af van eerdere
“organische” clusteronderzoeken (Catini et al. 2015; Alcácer and Zhao 2016; Bergquist, Fink,
and Raffo 2017) op drie belangrijke punten: (i) er words één gegevensbron gebruikt, namelijk de
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octrooiverleningsdatabase van het United States Patent & Trademark Office, USPTO, om zo één
standaard voor octrooibeoordeling te waarborgen (ii) een home bias correctie wordt toegepast om
te compenseren voor verschillen in octrooi- en citatiefrequentie tussen de Verenigde Staten en
andere landen en (iii) een Kernel Density Estimation-methode (Rosenblatt 1956; Parzen 1962)
wordt gebruikt om een “warmtekaart” van ooctrooien te berekenen waaruit technologieclusters
worden geïdentificeerd. Parameters zijn geoptimaliseerd om kleine clusters te detecteren en te
voorkomen dat onrealistisch grote clusters worden gedetecteerd. De methodologie maakt het mo-
gelijk om een unieke en nauwkeurige wereldwijde gegevensbank van technologieclusterstatistieken
aan te leggen.

Resultaten: wereldwijde ruimtelijke verdelingspatronen
De sector gezondheidstechnologie wordt geanalyseerd in hoofdstuk 5 en bestaat uit twee technolo-
gische subsectoren: medische apparaten en medische levenswetenschappen. De sector duurzame en-
ergietechnologie wordt geanalyseerd in hoofdstuk 6 en bestaat uit zeven technologische subsectoren:
biobrandstoffen, elektrische voertuigen, elektriciteitsopslag, brandstofcellen, waterstoftechnologie,
zonne-energie en windturbines. De subsectoren behoren tot de meest innovatieve binnen hun re-
spectievelijke sectoren en omvatten zowel subsectoren met een technische- en ontwerpkennisbasis
(medische apparaten, elektrische voertuigen en windturbines) als een wetenschappelijke kennisba-
sis (medische levenswetenschappen, waterstoftechnologie, zonne-energie, enz.). Hoofdstukken 5 en
6 geven een beschrijvende analyse van de ruimtelijke spreiding, agglomeratie en kennisnetwerken
van de sectoren, en een kwantitatieve analyse van het verband tussen innovatieprestaties en clus-
terkenmerken. Een vergelijkend perspectief tussen de sectoren wordt gepresenteerd in hoofdstuk
7, samen met een overzicht van mogelijke beleidstoepassingen.
De grootste technologieclusters (naar octrooiproductie) bevinden zich meestal in grote “wereld”
steden zoals San Francisco, Tokio, New York en Los Angeles, hoewel het ruimtelijke patroon van
duurzame energietechnologie anders is, aangezien ongeveer de helft van de 10 grootste clusters zijn
te vinden in kleinere steden zoals Daejeon, Detroit, Nagoya en Stuttgart. In subsectoren zoals
biobrandstoffen en windturbines zijn de grootste technologieclusters te vinden in kleine steden
zoals Aarhus (Denemarken), Aurora (Colorado, Verenigde Staten) en Pamplona (Spanje). Dit
bevestigt eerdere waarnemingen dat niche high-tech clusters zich kunnen ontwikkelen in relatief
afgelegen locaties. Wereldwijd gezien is innovatie op het gebied van zorgtechnologie geconcentreerd
in Noord-Amerika, terwijl duurzame energietechnologie geconcentreerd is in Azië (Japan, Zuid-
Korea en Taiwan). Europa blijft achter, hoewel het in sommige deelsectoren, zoals windturbines,
een leidende rol speelt.
De sector duurzame energietechnologie groeit snel, met 100 nieuwe clusters die tijdens de studiepe-
riode zijn ontstaan. Nieuwe clusters onstaan in verschillende typen landen, zowel in innovatielei-
ders, zoals de Verenigde Staten, en in landen met een beperkter innovatievermogen, zoals Spanje
en India. In absolute termen zijn de meeste clusters ontstaan in Noord-Amerika. Gedurende
de onderzoeksperiode zijn de gemiddelde clustergrootte, het aandeel octrooien in clusters (clus-
tering rate) en de intercluster kennisnetwerkdichtheid toegenomen in de duurzame energietech-
nologiesector. Daarentegen is het aantal gezondheidstechnologieclusters en hun agglomeratie- en
kennisnetwerkkenmerken grotendeels onveranderd gebleven.
Onderzoek op het gebied van duurzame energietechnologie groeit in China, Denemarken, Frankrijk,
Zuid-Korea, Taiwan en de Verenigde Staten, maar het neemt af (relatief gezien) in Canada, Duit-
sland, Japan en het Verenigd Koninkrijk. Onderzoek naar gezondheidstechnologie laat een ander
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patroon zien, met groei in China, Zuid-Korea en Taiwan, terwijl het aandeel van de Verenigde
Staten en Japan stabiel is en het aandeel van Europese landen afneemt (relatief gezien). Dit
suggereert dat er een “mondiale verschuiving” plaatsvindt van Europa naar Azië in de gezondhei-
dstechnologiesector, terwijl de richting van mondiale verschuivingen complexer is voor duurzame
energietechnologie.

Resultaten: Clusterinnovatieprestaties
De resultaten van het clusterinnovatieprestatiemodel geven nieuwe inzicht in de clusterkenmerken
die samenhangen met innovatieprestaties, met name agglomeratie, het nationale innovatiesysteem,
kennisnetwerken en padafhankelijkheid. Met betrekking tot agglomeratie bevestigen de resultaten
een positief verband tussen schaalvoordelen (clustergrootte) en clusterabsorptievermogen (bedrijf-
sonderzoek). Agglomeratie-effecten verschillen echter wanneer een cluster relatief dicht bij andere
grote clusters ligt (< 200 km, aangrenzend effect, adjacency), een situatie die zich meestal vo-
ordoet als een cluster deel uitmaakt van een grotere agglomeratie. De duurzame energieclusters
Utsunomiya, Mito en Chiba bevinden zich bijvoorbeeld allemaal binnen 200 km van Tokio en kun-
nen worden beschouwd als onderdeel van “Groot Tokio.” Hoewel ruimtelijke nabijheid voordelen
kan hebben, zoals toegang tot een diepere talentenpool en gespecialiseerde dienstverleners, lijkt
de toegenomen concurrentie om talent en middelen deze voordelen te overtreffen op de schaal van
grotere agglomeraties. Ook moet worden opgemerkt dat de negatieve associatie met het aangren-
zend effect niet wordt gevonden in clusters van duurzame energietechnologie, vermoedelijk vanwege
hun kleinere omvang en opkomende ontwikkelingsfase. De sector duurzame energietechnologie is
ook uniek, omdat het nationale innovatiesysteem een statistisch significante invloed heeft op de
innovatieprestaties van clusters in deze sector.
Toegang tot een groot aantal verschillende clusters (netwerkbereik) en uitgaande kennisstromen
hangen positief samen met de clusterinnovatieprestaties in de gezondheidstechnologiesector. De
uitstroom van kennis wordt gefaciliteerd door multinationale ondernemingen, en hun positieve re-
latie met innovatieprestaties ondersteunt de waarneming dat multinationale ondernemingen zich
vaak vestigen in reeds succesvolle clusters (Awate, Larsen, and Mudambi 2015; Østergaard and
Park 2015). De uitstroom van kennis is echter niet statistisch significant in de duurzame energi-
etechnologiesector. Padafhankelijkheid heeft een positieve invloed op de prestaties van clusterinno-
vatie in alle sectoren, hoewel het verband zwakker is in de duurzame energiesector. De empirische
resultaten laten duidelijke verschillen zien tussen de sector duurzame energietechnologie en gezond-
heidstechnologie.

Onderzoeksbijdragen
De onderzoeksbijdragen worden beschreven in hoofdstuk 8 en zijn van toepassing op vier hoofdge-
bieden: methodologie, nieuwe empirische resultaten, theorie en beleid. De methodologische bij-
drage omvat de identificatie van technologieclusters uit octrooigegevens en de karakterisering van
deze clusters met behulp van nieuwe indicatoren, waardoor een uitgebreid wereldwijd overzicht
wordt verkregen van de technologieclusters en interclusterkennisnetwerken van een sector. Dergeli-
jke informatie was voorheen moeilijk te verkrijgen en vormen daarom ook de belangrijkste em-
pirische bijdrage van dit onderzoek. De theoretische bijdragen van het onderzoek is toegespitst
op het aantonen van verschillen tussen gezondheidstechnologie en duurzame energietechnologie,
verschillen die niet alleen aan hun ontwikkelingsfase kunnen worden toegeschreven. Hoewel de
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lagere padafhankelijkheid en het ontbreken van negatieve agglomeratie-effecten van de duurzame
energietechnologiesector niet onverwacht zijn, heeft de sector ook een lagere invloed van bedrijf-
sonderzoek en wordt de sector sterker beïnvloed door nationale instellingen en beleid (nationaal
innovatiesysteem). Dit verschil is waarschijnlijk te wijten aan de sociaal-technologische transitie
die plaatsvindt in het energiesysteem, waarbij aanzienlijke invloed van maatschappelijke actoren
plaatsvindt. Het ontbreken van deze invloeden in de gezondheidstechnologiesector suggereert dat
de sociaal-technologische transities in de zorg sterk verschillen van die in de duurzame energie.
De onderzoeksresultaten tonen ook dat relatief grote duurzaamheidstechnologieclusters in kleinere
steden hoge innovatieprestaties mogelijk maken. Een dergelijke situatie lijkt profijt te hebben van
lokale agglomeratie-economieën en voorkomt tegelijkertijd de schaalnadelen die optreden wanneer
clusters zich in grote stedelijke agglomeraties bevinden. Dit resultaat zou ook van toepassing
kunnen zijn op andere opkomende hoogtechnologische sectoren (Steen and Hansen 2018). Vanuit
beleidsperspectief biedt de methodologie een nuttig instrument voor het monitoren van de opkomst
en groei van technologieclusters, hun netwerken en belangrijke innovatieactoren, op wereldwijde
schaal. Het onderzoek laat ook grote verschillen zien tussen sectoren, vooral op het gebied van du-
urzame energietechnologie. Beleid ter ondersteuning van de ontwikkeling van technologieclusters
moet daarom worden aangepast aan de sector, inclusief de sociaal-technologische context.

Conclusie
Onderzoeksbeperkingen, reflecties en de conclusie worden aangereikt in hoofdstuk 9. De belangri-
jkste beperkingen zijn de selectie van de tijdsperiode en het modelontwerp dat, vanwege het gebruik
van octrooigegevens, bepaalde theoretische concepten niet (goed) kan meten, maar die wèl ver-
band houden met clusterinnovatieprestaties. Voorbeelden zijn ondernemerschap, sociaal kapitaal
en beleidsprikkels. Deze beperkingen zouden in toekomstig onderzoek kunnen worden uitgediept
door gedetailleerde clustercasestudy’s uit te voeren. Ondanks deze beperkingen werpen de onder-
zoeksresultaten licht op het concept van clusterinnovatieprestaties, de aard van wereldwijde ver-
schuivingen in innovatieactiviteit en verschillen in sociaal-technologische transities. In deze studie
zijn innovatieprestaties geoperationaliseerd als een efficiëntie-indicator, maar slechts 30-60% van
de clusterinnovatieprestaties kan door het model worden verklaard, en wordt voornamelijk verk-
laard door padafhankelijkheid. Mogelijke redenen hiervoor zijn dat de clusterinnovatieprestaties
grotendeels afhankelijk zijn van de prestaties van specifieke technologische niches, en dat de groei
van clusters vaak wordt gedreven door andere factoren, zoals de strategische commerciële en tech-
nologische beslissingen die buiten het model vallen. Wereldwijde verschuivingen in de ruimtelijke
verdeling van clustervorming en -groei lijken nauw verband te houden met lokale factoren zoals
de aanwezigheid van kennisinstellingen, investeringen en ondersteunend beleid. Hoewel landen als
China, Zuid-Korea en Taiwan de ontwikkeling en groei van technologieclusters met succes hebben
ondersteund, wordt vergelijkbaar beleid ook in andere delen van de wereld gevoerd, zij het op
kleinere schaal en voor specifieke sectoren zoals duurzame energie.
Ook blijkt er een groot verschil te zijn tussen het soort sociaal-technologische transities die
plaatsvinden in het energie- en zorgsysteem. In de energiesector vereist de invoering van nieuwe
duurzame energietechnologieën fundamentele veranderingen in de bedrijfsmodellen van energieop-
wekking en -distributie. Maar in de gezondheidstechnologiesector lijken de bedrijfsmodellen
grotendeels onveranderd. Deze verschillen blijken vooral uit het verband, of het gebrek daaraan,
met bedrijfsonderzoek en het nationale innovatiesysteem, en zouden verder kunnen worden
onderzocht door andere opkomende sectoren en tijdsperioden te bestuderen.
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