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SUMMARY

Since the discovery of Josephson effect there has been a continuously growing interest in
the fundamental physics and the applications of this effect. A variety of circuit designs has
been developed for application ranging from medical sensors to quantum computing. The
fundamental characteristics of Josephson junctions are generally encoded in the discrete
spectrum of Andreev Bound States (ABS). These states lie in the energy gap of the spectrum
of the bulk superconducting electrodes. While they are localized at the junction they can
extend to the electrodes as well. This thesis deals with ABS in different configurations,
set-ups of interest and specifically designed structures.

In Chapter 2 and 3, we examine a recently proposed three-terminal setup that encompasses
two single-channel junctions that are formed by connecting three superconducting leads
with a semi-conducting nanowire, a material combination that has been extensively used in
a quest to reveal topologically protected Majorana states in superconducting nanostructures.

In Chapter 2, we concentrate on a situation where two single ABS have close energies
which enables them to hybridize and form a superposition, the so-called Andreev molecule.
The overlap between these two happens in the middle lead and the energy splitting must
cease exponentially under the condition that the length of the lead is much bigger then the
superconducting correlation length. We discovered that it is an interference phenomenon
related to mesoscopic conductance fluctuations. Such fluctuations develop in the lead on the
scale of ABS overlap that encompasses a large number of quantum channels. We quantify
the energy splitting δE at the degeneracy point of two ABS which is substantially smaller
than the superconducting gap, ∆. This, in turn, makes this energy splitting fine at the ∆
scale, enabling interesting quantum manipulation protocols.

In Chapter 3 we examine the setup under more general conditions, so that the assumption
of quick electron transfer from the nanowire to the lead is relaxed. The electrons can stay
in the nanowire long enough to propagate through the junctions without escaping to the
lead, if the contact between the nanowire and the superconducting lead is not perfect. The
ABS may overlap in the nanowire rather than in the lead, in this situation the hybridization
is substantially stronger. We investigate and analyze a number of regimes where either
one-dimensional or three-dimensional propagation dominates, or they compete with each
other. We present the spectra for different lengths, detailing the transition from a single-
ABS in the regime of strong 1D hybridization to two almost independent ABS hybridized
at the degeneracy points, in the regime of weak 1D hybridization. We present the details
of merging the upper ABS with the continuous spectrum upon decreasing L. We study in
detail the effect of quantum interference due to the phase accumulated during the electron
passage between the junctions. We develop a perturbation theory for analytical treatment
of hybridization. We address an interesting separate case of fully transparent junctions. We
derive and exemplify a perturbation theory suitable for the competition regime demonstrating
the interference of 1D and two 3D transmission amplitudes.

In Chapter 4, we turn to a different setup that still includes a nanowire yet involves only

ix



x SUMMARY

two superconducting electrodes. Motivated by experimental observations, we formulate
a model that combines the electron propagation in a quantum channel with an arbitrary
transmission, and that through a localized state. The energy of the localized state is affected
by the gate voltage and we expect a drastic modification of transport properties of the
junction in a narrow interval of the gate voltages of the order of the energy broadening
of the localized state and the superconducting energy gap. In normal state, we find that the
model may describe both peak and dip in the transmission at resonant gate voltage. Spin
splitting splits the positions of these peculiarities. Fano interference of the transmission
amplitudes results in an asymmetric shape of the peaks/dips. In superconducting state,
the spin splitting results in a complex dependence of the superconducting current on the
superconducting phase. In several cases, this is manifested as a pair of 0−π transitions in
the narrow interval of gate voltages.

In contrast to previous chapters, where we concentrate on concrete setups, we consider
in Chapter 5 a general multi-terminal semiclassical nanostructure. Recently, such structures
have been predicted to host topological singularities – Weyl Points – in the spectrum of
ABS. We address the gapless continuos spectrum at the finer level of discrete states to
reveal the abundance of zero-energy Weyl points. We investigate their average density
and their parametric correlations relating them to the universal parameter lc governing
the correlations in Random matrix ensemble. Next, we show how to compute the density
and the correlations for any setups that can be treated with Quantum Circuit Theory. The
problem required an creative combination of numerical and analytical methods.



SAMENVATTING

Sinds de ontdekking van het Josephson-effect is er een voortdurend groeiende belangstelling
voor de fundamentele fysica en de toepassingen van dit effect. Er is een verscheidenheid
aan circuitontwerpen ontwikkeld voor toepassingen, variërend van medische sensoren tot
kwantumcomputers. De fundamentele kenmerken van Josephson-knooppunten zijn over
het algemeen gecodeerd in het discrete spectrum van Andreev Bound States (ABS). Deze
toestanden liggen in de energiekloof van het spectrum van de bulk supergeleidende elektroden.
Hoewel ze op de kruising zijn gelokaliseerd, kunnen ze zich ook naar de elektroden uitstrekken.

Dit proefschrift behandelt ABS in verschillende configuraties, interessante opstellingen
en specifiek ontworpen structuren.

In Hoofdstuk 2 en 3 onderzoeken we een recentelijk voorgestelde opstelling met drie
terminals die twee enkelkanaals juncties omvat die worden gevormd door drie supergeleidende
draden te verbinden met een halfgeleidende nanodraad, een materiaalcombinatie die op
grote schaal is gebruikt in een zoektocht om te onthullen topologisch beschermde Majorana-
staten in supergeleidende nanostructuren.

In hoofdstuk 2 concentreren we ons op een situatie waarin twee enkelvoudige ABS’s
nauwe energieën hebben die hen in staat stellen te hybridiseren en een superpositie te
vormen, het zogenaamde Andreev-molecuul. De overlap tussen deze twee vindt plaats in
de middelste leiding en de energiesplitsing moet exponentieel stoppen onder de voorwaarde
dat de lengte van de leiding veel groter is dan de supergeleidende correlatielengte. We
ontdekten dat het een interferentieverschijnsel is dat verband houdt met mesoscopische
geleidingsfluctuaties. Dergelijke fluctuaties ontwikkelen zich in de hoofdrol op de schaal
van ABS-overlap die een groot aantal kwantumkanalen omvat. We kwantificeren de
energiesplitsing δE op het degeneratiepunt van twee ABS, dat aanzienlijk kleiner is dan
de supergeleidende kloof, ∆. Dit zorgt er op zijn beurt voor dat deze energiesplitsing prima
is op de ∆-schaal, wat interessante kwantummanipulatieprotocollen mogelijk maakt.

In Hoofdstuk 3 onderzoeken we de opstelling onder meer algemene omstandigheden,
zodat de aanname van snelle elektronenoverdracht van de nanodraad naar de leiding versoepeld
wordt. De elektronen kunnen lang genoeg in de nanodraad blijven om zich door de juncties
voort te planten zonder naar de lead te ontsnappen, als het contact tussen de nanodraad
en de supergeleidende lead niet perfect is. Het ABS kan in deze situatie overlappen in de
nanodraad in plaats van de leiding, de hybridisatie is aanzienlijk sterker. We onderzoeken en
analyseren een aantal regimes waar ofwel eendimensionale ofwel driedimensionale
verspreiding domineert, of ze met elkaar concurreren. We presenteren de spectra voor
verschillende lengtes en beschrijven de overgang van een enkel-ABS in het regime van
sterke 1D-hybridisatie naar twee bijna onafhankelijke ABS gehybridiseerd op de
degeneratiepunten, in het regime van zwakke 1D-hybridisatie. We presenteren de details
van het samenvoegen van het bovenste ABS met het continue spectrum bij het verlagen
van L. We bestuderen in detail het effect van kwantuminterferentie als gevolg van de fase
die wordt geaccumuleerd tijdens de elektronenpassage tussen de juncties. We ontwikkelen
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een storingstheorie voor de analytische behandeling van hybridisatie. We behandelen een
interessant afzonderlijk geval van volledig transparante kruispunten. We leiden en illustreren
een verstoringstheorie die geschikt is voor het concurrentieregime en die de interferentie
van 1D- en twee 3D-transmissie-amplitudes aantoont.

In Hoofdstuk 4 gaan we naar een andere opstelling die nog steeds een nanodraad bevat
maar slechts twee supergeleidende elektroden omvat. Gemotiveerd door experimentele
waarnemingen formuleren we een model dat de elektronenvoortplanting in een
kwantumkanaal combineert met een willekeurige transmissie, en dat via een gelokaliseerde
toestand. De energie van de gelokaliseerde toestand wordt beïnvloed door de poortspanning
en we verwachten een drastische wijziging van de transporteigenschappen van de junctie
in een smal interval van de poortspanningen in de orde van de energieverbreding van de
gelokaliseerde toestand en de supergeleidende energiekloof. In normale toestand vinden
we dat het model zowel piek als dip in de transmissie bij resonantiepoortspanning kan
beschrijven. Spinsplitsing splitst de posities van deze eigenaardigheden. Fano-interferentie
van de transmissieamplitudes resulteert in een asymmetrische vorm van de pieken/dips. In
supergeleidende toestand resulteert de spinsplitsing in een complexe afhankelijkheid van de
supergeleidende stroom op de supergeleidende fase. In verschillende gevallen manifesteert
dit zich als een paar 0−π overgangen in het smalle interval van poortspanningen.

In tegenstelling tot voorgaande hoofdstukken, waar we ons concentreren op concrete
opstellingen, beschouwen we in Hoofdstuk 5 een algemene multi-terminale semiklassieke
nanostructuur. Onlangs is voorspeld dat dergelijke structuren topologische singulariteiten
- Weyl-punten - in het spectrum van ABS bevatten. We behandelen het gapless continuos-
spectrum op het fijnere niveau van discrete toestanden om de overvloed aan nul-energie
Weyl-punten te onthullen. We onderzoeken hun gemiddelde dichtheid en hun parametrische
correlaties die deze relateren aan de universele parameter lc die de correlaties in het Random
matrix ensemble bepaalt. Vervolgens laten we zien hoe we de dichtheid en de correlaties
kunnen berekenen voor alle opstellingen die kunnen worden behandeld met Quantum Circuit
Theory. Het probleem vereiste een creatieve combinatie van numerieke en analytische
methoden.



1
INTRODUCTION

An abnormal reaction to an abnormal situation is normal behaviour.

Victor Frankl, Man’s Search for Meaning

1
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2 1. INTRODUCTION

1.1. PREFACE
This Section represents a recollection of memories of the candidate and how I became
interested in the subjects of this thesis. When I look back on my scientific journey, it has
become evident how I ended up interested in the subjects of this thesis. My first real life
experience with research started with an internship on experimental techniques of Nuclear-
Magnetic Resonance (NMR) of high temperature and nematic order superconductors. I
admit knowing a few of those words but none of the concepts at that time. Nevertheless,
I was immediately fascinated by two observations. The first being, the discrepancy in size
of the apparat used, compared to the investigated sample. The magnets together with the
cryogenic set-up were as big as a normal room, while the sample was at most the size of a
small human nail. Second, superconductivity seemed to be the bridge between touchable
classical objects and fantasy quantum mechanical phenomena. During my internship, I
got into first contact with a variety of condensed matter physics topics such as simple
calculation of 1/2 spin precession, concepts of statistical physics, superconducting magnetic
coils in cryogenic set-ups, resonant circuit and high-frequency measurements.

But first and foremost were the concepts of superfluidity and superconductivity, both
discovered by the Dutch scientist Heike Kamerlingh Onnes. First in 1908 liquefying helium
with a boiling temperature at 4.2 K and thereby pioneering low temperature research. In
1911, when performing resistance measurements on mercury, he observed that the resistance
disappears at around 4. K [13]. The first microscopic theory was provided John Bardeen,
Leon Cooper, and John Robert Schrieffer (BCS) [6, 7] and it was described as a phonon
mediated interaction that led to a formation of cooper pairs. Huge progress has been made
since and although the theory provided some explanation, satisfactory theories are still
missing for high temperature [37], nematic order [15] and topological [28] superconductors.

Expulsion of magnetic fields and indefinitely persistent currents have led to a plethora
of technological applications such as Maglev trains that levitate using superconducting
electromagnets. In addition, high-energy particle accelerator laboratories (CERN), single
particle (photon) superconducting detectors and fast digital circuits (quantum candidates for
quantum computers). An intriguing proposition was made by Brian Josephson in 1962 [19],
who predicted theoretically that pairs of electrons could tunnel through a non-superconducting
barrier, sandwiched between two superconductors. In the considered case, there exists a
discrete bound state, called Andreev Bound State (ABS), that is formed in the junction
whose energy depends on the 2π-periodic phase difference between the two superconductors.

This last decade has seen an unprecedented interest in topological concepts applied
to condensed matter systems. This spanned the whole field of topological band theory of
solids and gave rise to a plethora of examples of topological realizations such as topological
superconductors, topological insulators and topological semi-metals. Although from a
theoretical point of view these were fascinating, their experimental realization is notoriously
difficult. Furthermore solids are limited to the 3 dimensional space while topological non-
Abelian quantities are of higher dimension (d ≥ 5). The latter ones excite the scientific
community as a possible candidates for non-abelian topological quantum computing. An
analogy between the band structure of solids and Andreev bound states was established
which opened up the possibility to model and simulate higher dimensional band structures
using conventional materials in multi-terminal superconducting nanostructures.

In the remainder of this chapter, we outline the general framework of this thesis by
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providing concise exposition of the used concepts. We start by reminding BCS theory of
superconductivity and scattering formalism in order to set up the ground for superconducting
heterostructures and describe the discrete ABS spectrum. Finally, we dwell into Random
Matrix Theory and Quantum Circuit Theory with the goal to describe statistics of singularities
in nanostructures containing multiple channels.

1.2. SUPERCONDUCTIVITY
Superconductivity is an ordered electronic state caused by an indirect electron-electron
interaction. Its origin is due to a direct electron-phonon interaction described by

Hel-ph =
∑
kq

Dkq c†
k+q ck (aq −a†

−q ), (1.1)

where c†, c are electron creation, annihilation operators and a†, a are phonon creation and
annihilation operators, with k being the electron momenta and q the momenta of phonons
[22]. The phonon induced interaction is attractive in an energy shell of the order of Debye
energy ħωD around the Fermi level. An electron polarizes the lattice while another one
interacts with the polarization.

It has been derived by Cooper, that this interaction will lead to the formation of bound
electron pairs, today called Cooper pairs [12]. His model provided the hint that the Fermi
sea (the free electron gas) is unstable whenever small interactive interaction is present
among electrons. In the language of second quantization, Cooper pairs can be represented
by a creation operator Z †

k = c†
k↑c†

−k,↓ with total spin equal to zero and total momentum
equal to zero, where c† and c are fermionic creation and annihilation operators with spin
and momenta.

In 1957, John Bardeen, Leon Cooper, and John Robert Schrieffer proposed a microscopic
theory of superconductivity which is known as BCS [6, 7]. The BCS Hamiltonian is

HBCS =∑
k
ϵk

(
c†

k↑ck↑+ c†
−k↑c−k↑

)
+∑

kk ′
Ukk ′ Z †

k Zk ′ , (1.2)

where ϵk = Ek −µ= (ħ2k2/2m)−µ is the single particle energy measured from Fermi level
[17]. They proposed a variational ansatz for the superconducting ground state

|ΨBC S〉 =
∏
k

(uk + vk Z †
k ) |0〉 (1.3)

with the normalization condition u2
k+v2

k = 1, |0〉 being the vacuum state and vk , uk represents
the probability amplitude that a state is occupied/ unoccupied. In order to determine uk and
vk , one minimizes WS = 〈ΨBCS|HBCS |ΨBCS〉 with respect to uk and vk which results into
the variational condition

2ϵk uk vk −∆k (u2
k − v2

k ) = 0 (1.4)

with the gap parameters being ∆k =−∑
k ′ Ukk ′uk ′vk ′ . Combining self-consistency together

with the normalization condition, one finds
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u2
k = 1

2

[
1+ ϵk√

ϵ2
k +∆2

k

]
v2

k = 1

2

[
1− ϵk√

ϵ2
k +∆2

k

]
. (1.5)

Ultimately, the variational condition leads to a self consistency equation

∆k =−1

2

∑
k ′

Ukk ′
∆k ′√
ϵ2

k ′ +∆2
k ′

(1.6)

Assuming that Ukk ′ = −U0/V for |ϵk |, |ϵk ′ | < ħωD and positive U0 ,it follows also that
∆k =∆0 if |ϵk | < ħωD . V is the normalization volume the usual discrete sum can be replace
with integration which lead to

1 = 1

2
U0n0

∫ ħΩD

−ħΩD

dϵ√
ϵ2 +∆2

0

(1.7)

In the weak coupling limit, U0n0 ≪ 1, ∆0 = 2ħωD exp(−1/U0n0), n0 is the density of
states at the Fermi level. The difficulty of the BCS Hamiltonian comes from the product
of four operators, therefore we would like to simplify it in line with mean field theory.
We rewrite Cooper pair operators Zk = c−k↓ck↑ as Zk = ak + (Zk −ak ), where ak = 〈Zk〉 is
the average value of the fluctuation operator. In the mean field theory doctrine, neglecting
presumably small fluctuations of second order, we end up with the mean field hamiltonian

HMF =∑
kσ
ϵk c†

kσckσ−
∑
k

[
∆k c†

k↑c†
−k↓+∆∗

k c−k↓ck↑
]

. (1.8)

Up until now we have been describing the ground state of superconductors, for a description
of the excitations Bogoliobov proposed a canonical transformation of operators that diagonalizes
the BCS hamiltonian [9](

γk↑
γ†
−k↓

)
=

(
uk −vk

vk uk

)(
ck↑

c†
−k↓

)
,

(
γ†

k↑
γ−k↓

)
=

(
uk −vk

vk uk

)(
c†

k↑
c−k↓

)
, (1.9)

in such a way the hamiltonian becomes

HB =∑
k
ωk [γ†

k↑γk↑+γ†
−k↓γ−k↓]+WS (1.10)

with ωk =
√
ϵ2

k +∆2
k . The original mean field hamiltonian can be expressed as

HMF = 1

2

(
c† c

)( h ∆

−∆∗ −hT

)(
c
c†

)
, (1.11)

where (c†,c) is a vector of operators. The matrix elements have the following properties
hαβ = h∗

β,α, ∆αβ = −∆βα. This form will be of great importance and convenience in next
section where we discuss transport in superconducting heterostructures.
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1.3. QUANTUM TRANSPORT
Quantum transport, both in normal and superconducting structures, can be conveniently
described in terms of scattering formalism. In this section we are going to give a brief
reminder of the method and apply it to a two terminal Josephson junction.

The number of types of nanostructures produced has expanded tremendously. There is
huge variety of fabrication techniques that combine and shape different materials, such as
superconductors, semi-conductors and metals, into a plethora of complicated heterostructures
[16]. Although, by design all structures of a batch are made the same and fabrication
precision has improved tremendously, no two are identical due to random disorder (impurities).
Under the condition that there are no inelastic processes (low temperatures and low voltages),
scattering approach allows one to simplify the problem by absorbing all the complexity of
the scatterer into a small set of free parameters, all wrapped in a scattering matrix.

SCATTERING FORMALISM
A nanostrcuture is part of a controllable electric circuit, and as such is often connected
via waveguides to macroscopic pads called reservoirs. They are the source of thermalized
electrons at fixed voltage (chemical potential). Waveguides represent confined electrons in
a tube, where the transverse motion is quantized while the longitudinal is that of a plane
wave. They are also called quantum channels, where electron’s motion is one dimensional.
A scattering matrix S linearly relates the incoming c inc

βm to the outgoing cout
αn wave amplitudes

cout
αn = ∑

βm
Sαn,βmc i nc

βm , (1.12)

where α, β label different terminals and m,n label transport channels. The matrix can be
easily understood with a simple picture where electrons enter from one terminal are either
reflected back to the same reservoir (possibly changing the transport channel) Sαα or are
transmitted to any of the other terminals from terminal β to terminal α. The total number of
particles being conserved in the system, it follows that S is unitary and the total probability
sums to 1. If time-reversal symmetry is present the scattering matrix is symmetric ST = S.
For long nanostructures the scattering matrix is energy dependent while for short ones the
energy dependence can be neglected.

LANDAUER FORMULA
Transport properties are described by a set of transmission eigenvalues derived from this
scattering matrix. In a multi-terminal set-up, the current that flows in terminal α has two
contributions, the first one being the particles that are originating from the terminal itself
and are reflected back which are distributed according Fermi-Dirac distribution at zero
temperature fα(E) and the second one being the particles that are transmitted through the
scattering region coming from all the rest β channels, with distribution fβ(E). The current
in terminal α is thus

Iα = 2s e
∫

dE

2π
Pαβ(E)( fβ(E)− fα(E)). (1.13)

with Pαβ being the probability to transition from terminal α to terminal β. This is
Landauer formula in scattering formalism [24]. Assuming energy independent transmission



1

6 1. INTRODUCTION

Pαβ(E) = Pαβ and small applied voltages, the current simplifies to

Iα = 2s e
∑
β

Pαβe(Vβ−Vα) =GQ Pαβ(Vβ−Vα) (1.14)

where 2s incorporates spin and the conductance quantum is GQ = e2/π. Due to the
unitarity of the scattering matrix S, the current of all terminals sums up to zero.

ANDREEV BOUND STATES
In the next subsection, we are going to look at the formation of a discrete level called
Andreev Bound State in a short nanostructure sandwiched between two superconducting
terminals with the same gap parameter ∆ but different superconducting phases φL and
φR . As we have already discussed short junctions are described by energy-independent
scattering matrices, thus it is irrelevant whether the middle structure is a metal or an insulator
as scattering is described with a scattering matrix in the normal state. Let us consider
the scattering processes for a single channel in the normal region. The amplitudes of the
incoming and the outgoing waves are related via:(

cout
e

cout
h

)
=

(
s 0
0 s∗

)(
c i nc

e
c i nc

h

)
, (1.15)

where the two components of the amplitude vectors correspond to the left and right side of
the nanostructure, respectively, The nanostructure does not convert holes into electrons and
vice versa, that is why it is block-diagonal. In more details the amplitudes of ingoing/outgoing
hole/electron has additional structure corresponding to left and right lead

cout
e =

(
cout

Le
cout

Re

)
cout

h =
(
cout

Lh
cout

Rh

)
c i nc

e =
(
c i nc

Le
c i nc

Re

)
c i nc

h =
(
c i nc

Lh
c i nc

Rh

)
. (1.16)

In order to describe what happens at the interface between the nanostructure and the
superconductor one needs a more involved treatment, because the scattering matrix between
normal and superconducting interface is energy-dependent. From the previous section (give
reference to formula) we know that the excitations have the corresponding energy

E =
√
ϵ2 +∆2 ϵ=ħvF (k −kF ) (1.17)

,where the spectrum has been linearized close to the Fermi surface. For energies above
the gap E >∆, quasiparticles propagate freely in the form of plane waves, while for energies
below the gap E < ∆ quasiparticles decay exponentially away from the interface with the
form of an evanescent wave function. In the normal part of the structure, electrons and holes
are decoupled. Whenever an electron in the sub-gap mode tries to enter the superconductor,
it will be reflected as a hole and acquires a phase shift r A

r A = eχ = e−iφ
(E

∆
− i

p
∆2 −E 2

∆

)
. (1.18)

Electrons in the gap are Andreev reflected [4] back as holes at one interface and the holes
are then reflected back as electrons on the other interface. Those consecutive processes
do not allow electrons and holes to escape the nanostructure and lead to a finite motion,
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thus giving rise to a bound state of quasiparticles, called Andreev Bound States. Andreev
relfection leads to complementary relation between incoming and outgoing waves(

c i nc
e

c i nc
h

)
=

(
0 seh

she 0

)(
cout

e
cout

h

)
(1.19)

with

seh =
(

e iχ+L 0

0 e iχ+R

)
, she =

(
e iχ−L 0

0 e iχ−R

)
, (1.20)

where χ±L,R =±φL,R−arccos(E/∆) and φL,R being the left and right superconducting phases.
Combining Eq.1.15 and Eq.1.19, we obtain the energy of the bound state

E =∆
√

1−T sin2(φ/2) (1.21)

with φ being the phase difference and T the transmission.

JOSEPHSON JUNCTION
Often Josephson junctions host multiple channels thus the energy will be the sum over every

channel E(φ) =−∑
p Ep (φ) =∆∑

p

√
1−Tp sin2(φ/2). The power dissipated is proportional

to the product of current times the voltage but can also be evaluated as dE/d t = ∂E
∂φ

dφ
d t and

knowing that the phase derivative is φ̇= 2eV /ħ, we deduce that the current in the junction
is given by

I (φ) =−2e

ħ
∑
p

∂Ep

∂φ
= e∆

2ħ
∑
p

Tp sin
(
φ

)√
1−Tp sin

(
φ/2

) . (1.22)

Until now we have considered a simplified case where the scattering matrix is energy-
independent and the microscopic details of the scattering matrix have not been fully illustrated.
In Chapters 2 and 3, we discuss a microscopic way of determining the reflection and
transmission coefficients in a more complicated structure by finding the explicit wave functions
in each region and performing wave-matching on the different interfaces.

Furthermore, all designs and concrete configurations are encoded in the transmission
eigenvalues distributions. If transmission or equivalently the scattering matrix depends on
energy, then the total energy is not only the sum of Andreev state energies but has additional
contribution from the continuous spectrum in the leads and has to be be computed most
thoroughly which we have done in Chapter 4.

1.4. TOPOLOGY
In this section we discuss a simple illustrative model Hamiltonian and relate it to a newly
proposed system for non-trivial topological realizations. In the last decade, topological
concepts have played a prominent role in the development and deeper understanding of
condensed matter physics [25].

The field gave rise to a plethora of examples of realizations of otherwise abstract topological
concepts such as topological insulators and topological superconductors [26] and topological



1

8 1. INTRODUCTION

semi-metals [36, 5]. The interest towards topological matter originates from the feature of
topological protection. Topologically protected quantities are robust under external non-
symmetry-breaking perturbations of the system. As an example, topological insulators are
characterized with nonconducting bulk but with conducting edges on the surface where the
bands cross. Those edge states are also protected against localization [20].

The pinnacle of this research axis was the classification of gapped topological phases
(characteristic classes) which allowed to put every material in a class according to three
characteristics: (i) the symmetry: time-reversal, superconducting, inversion (ii) the dimension
of the parameter space (base space) and (iii) the dimension of the vector bundle [21].

WEYL HAMILTONIAN
We turn our attention to the illustrative example of the Weyl Hamiltonian[32] that has
special properties of the spectrum [18]. It hosts a topologically protected point-like band
crossings, present in a 3d parameter space. Crossings can occur in any three dimensional
parametric space and such a situation arises in the 3d 2π - periodic band structures of
crystalline solids. Such solids have been named Weyl semimetals and were experimentally
realized in tantalum arsenide (TaAs)[34].

The most generic two band crossing in 3d with linear dispersion without any symmetry
can be modelled with the following Hamiltonian that is valid in the vicinity of a singularity
point at d⃗0

HWeyl = d⃗ · σ⃗, (1.23)

where d⃗ are linear deviations from the singularity point and σ⃗ is a vector of Pauli matrices
in the space of the two crossing bands. It is important to note that the matrix is not only
Hermitian but it is also proportional to an unitary matrix H 2 = |d |2I , resulting into the
eigenvalues E± = ±|d |. Topological protection is usually characterized by a topological
invariant that labels different configurations. One usually defines a parameter space gauge
potential, called the Berry connection [30]

A⃗n = i 〈n|∇d⃗ |n〉 , (1.24)

where |n〉 is the wavefunction of the n’th band. Here we restrict the discussion to the
Abelian case, where there is no band degeneracy except at the singularity point. The non-
Abelian case of the connection is considered in [33] and the outstanding illustration of the
relations between Abelian, non-Abelian, first and second Chern numbers, Weyl and Yong
monopoles is provided in [14] . There is also and Abelian gauge field associated with this
gauge potential that is known as the Berry curvature [30]

B⃗n(d⃗) =∇d⃗ ××× A⃗n . (1.25)

In the vicinity of a Weyl point the Berry curvature emulates the magnetic field generated
by a magnetic monopole B⃗n(d⃗) =± 1

2
d⃗

d 3 . Thus Weyl points can be viewed as the sources or
drains for the Berry curvature. We can characterize the Weyl singularity with a topological
index called the first Chern number



1.4. TOPOLOGY

1

9

N1 =
∮

S
B⃗n(d⃗) · d⃗ 2S, (1.26)

where S is a closed surface enclosing the singularity. N1 can be +1 or −1 depending on the
chirality of the charge (each one corresponding to the two bands). For the crossing of two
bands these charges are opposite.

Another perspective on the subjects is as follows: outside of the degeneracy d⃗ ̸= 0⃗, one
can restrict the Hamiltonian to a 2d smooth subspace of the 3d parameter space, where the
Hamiltonian is gapped. Consequently, one obtains locally well-defined functions that may
have nontrivial Chern number. Thus, this gapless phase can be described as the transition
between two gapped phases-two families of hamiltonians that are topologically different.
In the next subsection we are going to apply those concepts to a newly proposed system for
topological realizations, namely to a multi-terminal superconducting nanostructure.

TOPOLOGY IN SUPERCONDUCTING HETEROSTRUCTURES

The essential characterization of topological materials starts with the properties of the band
structure. Multiterminal superconducting heterostructures have 2π periodic parameters,
which are the number of independent phase differences. In an n terminal case, there are
n − 1 controllable and independent phase differences. The equivalency between the BZ
in solids and superconducting phase differences leads to the possibility to simulate band
structures with the aid of multi-terminal heterostrcutres, with the Andreev states being the
discrete levels equivalent of bands.

The advantage of this system is that the dimensionality is only fixed by the number
of terminals, while in solids it is 3 or less. On top, topological materials are notoriously
difficult to synthesize chemically while heterostructures do no require any topological
components. Thus there are two ways to realize topological materials. First by experimentally
manufacturing compounds [11, 35] where topological properties emerge due to a nontrivial
bandstructure or, second make nanostructures, where the interplay between different materials
gives rise to topological properties [27]. The latter opens up the possibility to simulate
gapless and gapped topological materials of superconducting classes (C and D [21, 2]) with
mulit-terminal heterostructures.

In Ref.[27], the authors present an example of a 4 terminal structure that hosts Weyl
singularities. Four superconducting terminals are connected to a short normal scattering
region, described by an energy independent scattering matrix, containing scattering matrices
for electrons se and holes sh . Andreev bound states are obtained from det

(
e2iχ− A

) = 0,
with χ = arccos(E/∆) and A = s∗e e iφse e−iφ, with e−iφ being the matrix of phases for the
terminals. Two levels can cross at zero energy at a given φ0, corresponding to an eigenvalue
−1 of A. Near the crossing, one can write an effective low-energy Hamiltonian Eq. 1.23
that is linearly proportional to the deviations from the singularity The topological charge
of the singularity is conveniently evaluated from sign(det

(
hi

j

)
), with the matrix elements

given by



1

10 1. INTRODUCTION

hi
x = i

2
(
〈
Ψ+

0

∣∣Vi
∣∣Ψ−

0

〉+〈
Ψ−

0

∣∣Vi
∣∣Ψ+

0

〉
) (1.27)

hi
y =

1

2
(
〈
Ψ+

0

∣∣Vi
∣∣Ψ−

0

〉−〈
Ψ−

0

∣∣Vi
∣∣Ψ+

0

〉
) (1.28)

hi
z =

i

2
(
〈
Ψ+

0

∣∣Vi
∣∣Ψ+

0

〉−〈
Ψ−

0

∣∣Vi
∣∣Ψ−

0

〉
), (1.29)

where Ψ±
0 correspond to the wavefunctions of the levels and the anti-Hermitiatn operator

Vi = ∂φi A(φ). The control over the phases allows to move a surface in parameter space
of phases, whenever the phases cross the singularity, the Chern number jumps and this is
observed in the average current

Iα =GαβVβ with Gαβ =
−2e2

πħ Cαβ. (1.30)

1.5. RANDOM MATRIX THEORY
A convenient description of chaotic and disordered systems can be achieved using Random
Matrix Theory (RMT). As the name suggests, the theory deals with matrices whose entries
are randomly distributed variables. The limit of interest is that of large matrix dimension
N ≫ 1. In quantum transport, two types of matrices are of significance. The first type is
a Hermitian matrix which may represent a physical Hamiltonian, the matrix eigenvalues
corresponding to energy levels. The second type is a unitary matrix that may represent a
scattering matrix of a nanostructure.

Let us start with Hermitian matrices, for which it is natural to assume that the elements
are independently distributed random variables with the same variance. The statistics are
usually considered for matrices of certain symmetry ensemble. The ensemble are labelled
with integer β. The matrix is diagonalizable by an unitary transformation U of a certain
class, depending on the symmetry of the matrix: (i) if time-reversal and spin-rotation
symmetries are present, then the matrix is real and U is orthogonal (β = 1), (ii) if time-
reversibility is absent, then the matrix is general Hermitian and U is unitary (β= 2), (iii) if
time-reversibility is present but spin-rotation is absent then the matrix is a real quaternion
and U is symplectic (β = 4). The ensembles are named after the unitary transformations
accordingly: (i) Gaussian Orthogonal Ensemble GOE, (ii) Gaussian Unitary Ensemble
GUE, (iii) Gaussian Symplectic Ensemble GSE.

The probability density of a matrix H is given by

P (H) ∝ exp

(
− β

2λ2 tr H 2
)
, (1.31)

where λ2 is the variance of a matrix element. The average density of eigenvalues < ν(E) >=<∑
n δ(En −E) > in the limit of N ≫ 1 reads:

< ν(E) >=
p

N

πλ

√
1−

( E

2
p

Nλ

)2
(1.32)
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provided |E | < 2
p

Nλ and is zero otherwise. The eigenvalues are thus concentrated within
an interval |E | < 2

p
Nλ. It is convenient to concentrate on the range of eigenvalues close to

the centre of this band E ≪ 2
p

Nλwhere the average density of eigenvalues is approximately
constant. The mean level spacing at the centre of the band is thus δs =πλ/

p
N .

The most spectacular result of RMT is the joint distribution of eigenvalues P ({En}) [23]

P ({En}) ∝ exp

(
−βN

∑
n

(En

λ

)2 + β

2

∑
m>n

ln

(
Em −En

λ

)2)
. (1.33)

We do not give the derivation here but instead provide short description of it. One needs
to transform the distribution of matrix elements P (H) to the distribution of eigenvalues
and eigenvectors P ({En}, {vn}). The transformation from P (H) to P ({En}, {vn}) is associated
with a Jacobian, and after integrating out the eigenvectors distribution one finds that the
Jacobian depends only on the eigenvalues J (En) = ∏

i< j |Ei −E j |β, and in this sense the
repulsion of the eigenvalues is seen as a geometrical.

We come back now to the physical analogy of Eq.1.33, where we can identify {En} as the
positions of classical charges in one dimension. These charges repel each other according
to logarithmic law (like Coulomb interaction in two dimensions) and are constrained by a
quadratic potential. This is called a Coulomb gas. The index β plays the role of inverse
temperature: the higher the temperature, the easier it is for the charges to overcome the
level repulsion. In the limit of β→∞ the spectrum is completely ordered, the charges are
separated by the same spacing, that is a slow function of energy. Finite β permit fluctuations
yet the spectrum possess a property called rigidity: the variance of number of levels in a
wide interval does not depend on the number of levels in the interval and is of the order of
1/β.

Whenever there is an external applied perturbation to the system H(x) = H0 + X H1,
eigenergies wiggle in parametric space and this phenomena can be quantified with random
level-uncorrelated velocities vi = ∂X Ei (X ). The variance of velocity of the same level is
v2 =< (∂x Ei (X ))2 > and does not depend on the level. The levels propagate with these
random velocities along X till they began to feel each other repulsion. This will happen
when the change of the distance between the levels becomes of the order of the mean level
spacing δs . This sets a scale in the parametric space xc = δs /v that defines correlation length
of these fluctuations. An important result of RMT is that the statistics of level positions and
their velocities are universal [29] after rescaling.

FOKKER-PLANCK EQUATION
We describe the level motion under external perturbation X following the particles analogy
we can look at parametric statistics of system of electric charges representing the eigenvalues,
with a parabolic confining potential, logarithmic repulsion, and the effective temperature
β−1. We introduce the fictitious time τ and look at the evolution of the positions of all
charges. The fictitious time is related to the perturbation parameter as τ= X 2 [8].

Since they are at finite temperature, they now perform random Brownian motion. The
joint distribution function of the positions of all the charges (the distribution function of all
eigenvalues), P ({En},τ), obeys the Fokker–Planck equation:



1

12 1. INTRODUCTION

∂

∂τ
P =∑

i

∂

∂Ei

βv2

2

(
P
∂W

∂Ei
+β−1 ∂P

∂Ei

)
, (1.34)

where the potential is W =−∑
i< j log

(
Ei −E j

)+∑
i Ei . On the right-hand side, the first term

(second derivative) represents “diffusion,” whereas the other two are responsible for the
“drift” in the effective potential – external parabolic confinement and logarithmic interaction
potential created by all eigenvalues.

Due to the logarithmic repulsion, the eigenvalues cannot come close to each other; then
we have a situation of avoided crossing. Thus the levels never cross in one dimension. As
we will see the situation is different in three-dimensional parameter space considered in
Chapter 5.

SUPERCONDUCTING CLASSES
We conclude this section with the discussion of superconducting matrix classes. As we
have already discussed the symmetries of the Hamiltonians strongly indicate the way the
distribution of eigenvalues will be determined. The interest of this thesis lies in superconducting
heterostructures, we present the classes of random matrices that are of interest. Hamiltonians
which are BdG symmetric have mirrored spectrum H = diag(ω,−ω), ω= (ω1, ....ωN ). The
distribution is given by:

P ({ω}) = ∏
i< j

|ω2
i −ω2

j |β
∏
k
|ωk |αe−ω

2
k /v2

. (1.35)

We observe that there are two coefficients α and β. We do not discuss the details but
only mention that there is the possibility of repulsion not only between different eigenvalues
but there is also repulsion from the zeroth eigenvalue. For more information, please see [2].

SCATTERING MATRICES
If we would like to describe transport properties, we need to deal with scattering matrices.
As we already mentioned, scattering matrices are unitary and they can belong to the following
classes: (i) they are either symmetric (circular orthogonal), not symmetric (circular unitary)
or quternionic (circular symplectic). We assume that these random matrices are distributed
uniformly: the probability of finding a matrix is always the same. These ensembles are
similar to the corresponding Gaussian ensembles GOE, GUE, and GSE; in particular, they
are characterized by the same “inverse temperature” β= 1,2,4.

The same repulsion occurs for unitary matrice of a greater size 2N × 2N which has
eigenvalues exp

(
iφ1

)
, ...,exp

(
iφ2N

)
. The joint distribution function of these eigenvalues

has the form, up to a normalizing constant factor, given by

P ({φn}) ∝ ∏
n<m

|exp
(
iφn

)−exp
(
iφm

)|β (1.36)

with the phase shifts{φn} being real numbers. Similarly to Gaussian ensembles, the expression
has an interpretation in terms of classical charges on a ring of unit radius. Their positions
are characterized by the polar angles φm . These charges repel logarithmically the effective
temperature is β−1.
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A member of this circular ensemble eventually gives the scattering matrix of a quantum
chaotic cavity [8] where electrons are transmitted ballistically. We connect the cavity to
two leads. If there are N1 channels going to the right lead and N2 channels going to the left
lead the total dimension of the scattering matrix is N1+N2. One can obtain the distribution
for a set of transmission eigenvalues Tn – the eigenvalues of the matrix t †t , where t is a
transmission block of the scattering matrix with size N1 ×N2:

P ({Tn}) = ∏
i< j

|Ti −T j |β
∏
k

T −1+β/2+(β/2)|N1−N2|
k . (1.37)

One can make analogy of with the distribution of eigenvalues given by Eq. 1.33. The
first product corresponds to the repulsion of all the eigenvalues while the second product
corresponds to a confinement potential that restricts the transmissions to the interval [0,1].

However such a quantum cavity is only a single design of a variety of possible nanostructure
designs that can involve ballistic, diffusive and tunnelling transmissions. The description of
a given design can be achieved by combining RMT with Quantum Circuit Theory (QCT)
in the next section.

1.6. QUANTUM CIRCUIT THEORY
The theoretical predictions of weak localization [1] and universal conductance fluctuations
[3] along with experimental discoveries in this direction [31] have laid a basis of modern
understanding of quantum transport and have stimulated a considerable interest to the
topic. The quantum conductance GQ = e2/π is the universal value that sets an important
division between classical conductors (G ≫ GQ ) where interference effects are small and
quantum ones (G ≃ GQ ) where the transport is essentially quantum. One can describe
nanostructures in the framework of a simple finite-element approach usually termed ”circuit
theory”. Quantum circuit theory is a semi-classical method, this means that it is assumed
that the conductance of the structure is much bigger than the quantum conductance 1 ≪
G/GQ ∝ Nch .

In this framework, a nanostructure is subdivided into connectors and nodes. This is
similar to the finite element presentation of a classical conducting medium. There the
structure is subdivided into nodes where voltage is constant and connectors where voltage
drops. There are terminals with fixed voltage connected to the structure. Kirchoff laws are
equivalent to current conservation in the nodes and determine voltages in every node and
currents in each connector in terms of the terminal voltages.

Quantum circuit theory has a similar structure. Matrix voltage G is introduced in every
node and terminal. The matrix G is related to electron Green’s functions and satisfies G2 = 1
and Tr(G) = 0. In distinction from classical circuits, connectors can be of very different
types: tunnel junction, ballistic contact and diffusive wire and are generally characterized
by a set of transmission coefficients Tp . To make connection to RMT described in the
previous section, each node can be presented as random unitary matrix of a respective
ensemble and each connector can be presented as a block diagonal scattering matrix, where
blocks correspond to quantum channels with transmission coefficients Tp .

Like in classical circuits, one is generally interested in the matrix voltage in the nodes
as a function of the matrix voltages in the reservoirs. The goal is to find the corresponding
matrix currents flowing in each connector as function of the fixed matrix voltages in the
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terminals. For that the equivalent of Kirchoffs law can be applied
∑

I = 0, where the sum
is over all connectors. This translates to conservation of matrix currents in each node.
The matrix current will be expressed via two matrix voltages at the end of a connector
I = F (G1,G2) (see Eq.1.40). The voltages at the nodes are determined from the current
conservation in each node and they determine the currents to and from the terminals.

One can formulate a variational principle introducing an action for the whole circuit,
that depends on matrix voltages in all nodes and reservoirs. The actual G in the nodes are
obtained from the minimization of this action. and which can be represented by the sum of
all connectors

S =∑
c

Sc (Gc1,Gc2), (1.38)

where the summation is over connectors and c1 c2 denote the ends of a connector which can
be a node or a terminal. The equations for actual matrix voltages of the nodes are obtained
from the condition that this action has a minimum δS = 0 with respect to variations of G in
the nodes. This sum also includes the connectors representing leakage currents. Leakage
currents describe the effect of the finite volume of the nodes and are of significance for
long nanostructures. They cannot be modelled by real parts in the nanostructures but are
rather due to fictitious reservoirs and fictitious nodes and connectors which lead to loss
of coherence. However, the practical advantage is overwhelming, since currents from the
fictitious terminals enter the current balance in precisely the same fashion as from the real
ones and can be treated in the same manner. See [24]

A connector positioned between the terminals/nodes i , j can be described with an action
Si , j that is a function of Gi and G j

Sc = 1

2

∑
p

Tr

(
log

(
1+ Tp

4
(G1G2 +G2G1 −2)

))
, (1.39)

where Tp is the transmission eigenvalue of that connector. The current through a connector
c which connects nodes c1 and c2

Ic =GQ
∑
p

Tp (G1G2 −G2G1)

2+ (Tp /2)(G1G2 +G2G1 +2)
. (1.40)

Various choices of matrices G give various quantum circuit theories [24]. In a theory
describing superconducting heterostructure, terminals and nodes are represented with energy
dependent Green’s functions Gi (ϵ) that are 2×2 matrices in Nambu space. In imaginary time
technique these matrices can be represented with real unit vectors. In the superconducting
leads these vectors are gi = (ϵ,∆sin

(
φ

)
,∆cos

(
φ

)
)/
p
ϵ2 +∆2, where∆ is the superconducting

gap and φ is the corresponding superconducting phase.
The action for each connector can also be written as a function of a parameter φ, which

is the angle between two vectors at the ends of the connector that is arccos
(
gi .g j

)
. The

actions for some simple type of connectors are:

S =−GT

2
sin2(φ/2) (1.41)

for tunnelling junction,
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S = GD

8
φ2, (1.42)

for diffusive junction and
S =−GB lncos

(
φ/2

)
, (1.43)

for ballistic junction, where GB ,GD ,GT are conductances in units of GQ . The quantum
circuit theory we have outlined so far is valid in the limit G ≫GQ .

For a common conductor this corresponds to a classical Ohm’s law expression. The
quantum effects are manifested as GQ corrections: weak-localization and universal conductance
fluctuations [1, 3] that are deviations of the order of GQ ≪G . It turns out that the quantum
circuit theory can be used to compute GQ corrections as well. This is described in [10]
which treats GQ corrections to multi-component Green’s functions of arbitrary matrix structure.
The action describing GQ corrections takes a form of a log of determinant of a matrix. This
matrix is made from the response functions: the derivatives of matrix voltages in the nodes
with respect to matrix self-energy parts also defined in the nodes. The determinant is just
that of a finite matrix, this facilitates the computation of GQ corrections for nanostructures
of arbitrary design.

We use this GQ correction extension in Chapter 5, where we quantify the universal
parametric correlations in the space of the superconducting phases characterising the terminals
in a multi-terminal superconducting nanostructure. To describe the parametric correlations
between two points B and W in this space, the Green’s functions will be of a double
dimension corresponding to these two points GB and GW . The relevant response functions
correspond to non-diagonal entries δGBW ∝ GB GW . One computes the GQ correction
action SGQ that depends on parameter sets W and B . The quantities of interest are obtained
by differentiating this action with respect to the parameters in the limit B →W .

1.7. STRUCTURE OF THIS THESIS
CHAPTER 2
In this Chapter, we evaluate the energy splitting of degenerate Andreev bound states, that
overlap in a superconducting lead, and find that the splitting is reduced in comparison with
their energy by a small factor

√
RGQ , RGQ being the dimensionless resistance of the overlap

region in the normal state. This permits quantum manipulation of the quasiparticles in these
states. We provide a simple scheme of such manipulation. This analysis was inspired by
the recent proposals of experiments with single Andreev bound states that make relevant a
detailed analysis of these states in multi-terminal superconducting nanostructures.

CHAPTER 3
In this Chapter, we study the Andreev Bound State (ABS) in a device consisting of a
semiconducting nanowire covered with three superconducting leads. The ABS are formed
at two junctions where the wire is not covered. They overlap in the wire where the electron
propagation is 1D, and in one of the leads where the propagation is 3D. We identify a
number of regimes where these two overlaps either dominate or compete, depending on the
junction separation L as compared to the correlation lengths ξw, ξs in the wire and in the
lead, respectively. We utilize a simple model of 1D electron spectrum in the nanowire and
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take into account the quality of the contact between the nanowire and the superconducting
lead.

CHAPTER 4
In this Chapter, we formulate and investigate a model of a superconducting junction that
combines the electron propagation in a quantum channel with an arbitrary transmission, and
that through a localized state. Interesting situation occurs if the energy of the localized state
is close to Fermi level, that is, the state is in resonant tunnelling regime. Since this energy
is affected by the gate voltage, we expect a drastic modification of transport properties of
the junction in a narrow interval of the gate voltages where the energy distance to Fermi
level is of the order of Γ,∆, Γ being the energy broadening of the localized state, ∆ being
the superconducting energy gap.

We consider the model neglecting the interaction in the localized state, as well as
accounting for the interaction in a simplistic mean-field approach where it manifests itself
as a spin-splitting. This spin splitting is also contributed by external magnetic field. We also
take into account the spin-orbit interaction that can be significant in realistic experimental
circumstances.

CHAPTER 5
In this Chapter, we show that the quasi-continuous gapless spectrum of Andreev bound
states in multi-terminal semi-classical superconducting nanostructures exhibits a big number
of topological singularities. We concentrate on Weyl points in a 4-terminal nanostructure,
compute their density and correlations in 3D parameter space for a universal RMT model
as well as for the concrete nanostructures described by the quantum circuit theory. We
mention the opportunities for experimental observation of the effect in a quasi-continuous
spectrum.
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FINE ENERGY SPLITTING OF

OVERLAPPING ANDREEV BOUND
STATES IN MULTITERMINAL

SUPERCONDUCTING
NANOSTRUCTURES

It is better to be a warrior in a garden
than a gardener in war.

Chinese proverb

This chapter has been published as Fine energy splitting of overlapping Andreev bound
states in multiterminal superconducting nanostructures [25] and the data is available on
https://zenodo.org/record/4073382#.YfuORy8w1Zh.
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2. FINE ENERGY SPLITTING OF OVERLAPPING ANDREEV BOUND STATES IN

MULTITERMINAL SUPERCONDUCTING NANOSTRUCTURES

The superconducting nanodevices are in focus of modern experimental research, in
particular because they are a promising platform for various qubit realizations, e.g. Josephson-
based qubits of several kinds [31, 20, 44, 28, 9] or Majorana bound states [24, 27, 33,
3, 30]. These structures, containing superconductor-semiconductor or superconductor-
insulator junctions, host Andreev bound states (ABS), which can also be used as a qubit
[15, 23]. Andreev reflection between normal metal and superconductor was first discussed
in Ref. [1], and has been a subject of intense theoretical and experimental research [10, 39,
40, 8, 17, 14, 26, 11, 12, 43] that spans far beyond quantum information topics. The variety
of ABS in various nanostructures is so rich as to mimic almost any quantum state known in
physics.

It is known and commonly used that the ABS forming in nanostructures are defined by
the properties of the nanostructure, not depending on the details of electron scattering in the
adjacent superconducting leads, which is a consequence of Anderson’s theorem [5]. For
short nanostructures between two leads, each transport channel with transmission T gives

an ABS at the energy [7] E = ±∆
√

1−T sin2
[
(φ1 −φ2)/2

]
, ∆ being the superconducting

gap in the leads, φ1,2 being the superconducting phases of the leads. ABS extend to
the leads at distances of the order of the correlation length ξ0, this is much larger than
the nanostructure size. ABS can be realized in semiconducting-nanowire-superconducting
structures, the technology of those has advanced strongly owing to the applications in the
field of Majorana bound states [30, 2, 46, 19, 21], and can be characterized experimentally
[46, 19]. There is much recent progress in multi-terminal devices [36, 34, 18] that has been
partially inspired by theoretical predictions of Weyl points and quantized transconductance
[37].

Very recent experimental and theoretical developments concern so-called Andreev
molecules in various layouts [41, 35, 38, 29]. The term "molecule" refers to the situation
where two single ABS have close energies, this enables their hybridization and formation
of the superpositions. Refs. [41, 38] discuss ABS in quantum dots, where ABS overlap
through the tunnel barrier separating the dots. Ref. [29] considers the hybridization of
two Andreev quasi-states at two superconductor/ferromagnet interfaces that overlap in the
superconductor. An interesting alternative has been put forward in Ref. [35]. The proposed
three-terminal setup encompasses two single-channel junctions that connect three
superconducting leads, see Fig. 2.1 (a). Two single ABS may overlap and hybridize in the
middle lead. The overlap and the corresponding energy splitting must cease exponentially
as exp{(−L/ξ0)}, provided the separation of the junctions L ≫ ξ0. The authors of Ref. [35]
indicate that Andreev molecules have potential applications in quantum information,
metrology, sensing, and molecular simulation.

In this Chapter we have evaluated the energy splitting of overlapping ABS. We have
found that it is an interference effect similar to mesoscopic fluctuations of conductance
[13]. Such fluctuations develop in the lead on the scale of ABS overlap that encompasses a
large number of quantum channels. Importantly, this makes this energy splitting fine at the
scale of ∆.

We have estimated the typical energy splitting δD ∼ ∆/
p

N , N being the number of
channels, that can be estimated as the inverse of the normal dimensionless resistance of
the overlap region, N ≈ (RGQ )−1, GQ ≡ e2/(πħ) being conductance quantum. Therefore
δD remains fine at the energy scale of ∆. This big difference in energy scales is known to
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Figure 2.1: (a) The "Andreev molecule" setup. Two ABS are formed in the two single-channel junctions, A and B,
that are separated by L and connect three superconducting leads S1,2,3 with the same ∆. The ABS wave functions
spread over the scale of ξ0, overlapping in S3. (b) The energy spectrum of ABSs versus ϕ3 (ϕ1 = π, ϕ2 = 3π/2,
the junction transmission coefficients being TA = 0.95, TB = 0.98), manifests avoided crossings at the degeneracy
points. We show that the energy splitting at the crossings is fine even for a significant overlap, δD ∝ ∆

√
RGQ ,

where R being normal resistance of the overlap region.

facilitate various quantum manipulation schemes, simplest example of which we provide.
We have derived concrete expressions for 〈|δD |2〉, relating it to semiclassical propagation
of an electron between the junctions, and employed it for an experimentally relevant setup.
Observation of energy splitting gives an interesting and unusual way to see and explore
mesoscopic fluctuations.

Let us first describe the setup under consideration (Fig. 2.1) in general terms specifying
the details later. The setup consists of three superconducting leads, connected by two
single-channel junctions, and there is an ABS formed in each junction. If one neglects

their hybridization, their energies are E A(B) = ∆
√

1−TA(B) sin2
[
(φ1(2) −φ3)/2

]
. We plot

the energies in Fig. 2.1 (b) for φ1 −φ2 = π/2 and TA = 0.95, TB = 0.98; the degeneracy at
E A = EB is avoided. The separation between the junctions is L ≫ λF , λF being the Fermi
wave length. This implies that the electron transport in the region covered by the ABS
wave functions, occurs in a big number of transport channels. The exact number depends
on the geometry of the device, material and morphology of the leads, and the detailed
characteristics of electron transport, that can be ballistic, diffusive, or intermediate between
the two. At the level of an estimate, all these details can be incorporated into the effective
resistance R of the region spanned by the ABS wave functions, so that N ∼ (RGQ )−1. The
wave functions of the ABS overlap as shown in Fig. 2.1 (a) and hybridize. The hybridization
is big near each avoided crossing and can be described with an off-diagonal matrix element
δD , which is a complex number.
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2. FINE ENERGY SPLITTING OF OVERLAPPING ANDREEV BOUND STATES IN

MULTITERMINAL SUPERCONDUCTING NANOSTRUCTURES

Let us estimate the energy splitting 2|δD | near an avoided crossing. The energies of
the states are E A,B ∼ ∆. These states are formed by electrons coming in and out of a
junction to/from the adjacent leads and returning as holes to the same junction. The electron
wave function is distributed among N transport channels involved. The contributions of
different channels to Andreev scattering amplitude come with the same sign and phase, this
is precisely the reason for the energy of ABS not to depend on the details of the scattering
in the leads. This implies that the contribution of each channel to the ABS energy can be
estimated as ∆/N . As to δD , it is determined by the electron and hole propagation from the
junction A to the junction B . Since these points are distinct and separated by L ≫ λF one
expects the contributions of different channels to come with the different and generally
random complex amplitudes. These random amplitudes may be related to mesoscopic
fluctuations of electron propagation between the junctions A and B. Averaging over these
random amplitudes leads to vanishing 〈δD〉 = 0. The average 〈|δD |2〉 is contributed by
independent contributions of N channels and therefore the energy splitting can be estimated
as |δD | ∼∆/

p
N ∼∆√

RGQ .
The junctions between the superconducting leads may have various characteristics, such

as disorder, shape, material. It is known however [6] that the only characteristic relevant for
ABS is the transmission of these junctions. Therefore we are free to choose any microscopic
model so we opt for a convenient resonant impurity model [16, 47], that involves a localized
state of energy Eimp with the tunnel couplings t and t ′ to the leads. We label with A and
B these characteristics in the corresponding junctions, see Fig. 2.1 (a). The width of the
resonant level is given by Γ= 2πν(|t |2 +|t ′|2), ν being the density of states assumed equal
in all leads. To model weak energy dependence of the scattering we set Γ≫ ∆, so the
transmission coefficient of the junction A is

TA = 4π2ν2|tA |2|t ′A |2
(ΓA/2)2 +E 2

imp,A

, (2.1)

and similar for the junction B .
To find the ABS energies we derive a Dyson equation for the Green’s function Gi j (E)

defined at the resonant impurities i , j = {A,B}: G(E) = ([G0]−1 −Σ)−1, where the blocks are
the matrices in the Nambu space G0

A A,BB = (E −Eimp,A,Bσz )−1, and the self-energy part Σ
describes the tunneling. The diagonal blocks are ΣA A =T ′

AG(r ′
A ,r ′

A)T ′∗
A +TAG(r A ,r A)T ∗

A ,
where T j = (t∗j (σz +σ0) + t j (σz −σ0))/2, j = {A,B}, and G(r ,r ′) is a superconducting
Green’s function in the corresponding leads upon neglecting the tunneling, ΣBB is similar.
The Green’s function in close points does not depend on the details of the scattering in
the lead, this is a consequence of Anderson’s theorem [5]. The non-diagonal blocks ΣAB

and ΣB A are ΣAB = TAG(r A ,rB )T ∗
B and ΣB A = TB G(rB ,r A)T ∗

A . We see that the diagonal
blocks contain Green’s functions in coinciding points, while non-diagonal ones contain
Green’s functions in two points separated by L ≫λF . Since Green’s functions are associated
with propagation amplitudes G(r A ,rB ) ≪G(r A ,r A),G(rB ,rB ). Thus ΣAB ,ΣB A ≪ΣA A ,ΣBB ,
and can be handled by means of the degenerate perturbation theory. This already implies
|δD |≪∆.

The energies of ABS correspond to the poles of G(E) [4], so we need to find zero
eigenvalues of G−1(E). We find zero eigenvalues in each diagonal block and project G−1(E)
onto the corresponding eigenvectors |A〉 and |B〉. We work near the crossing point E0
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L/⇠(E0)
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Figure 2.2: (a) The concrete setup under consideration comprises three superconducting leads covering a single-
channel semiconducting nanowire. Two hybridizing ABSs are forming at the junctions A, B . The gates (yellow)
affect the potential in the wire and might be used to tune the transmission of the junctions. The middle lead is a
film of thickness d and width L and is characterized by the resistance per square R□. The ABS wave functions
overlap strongly provided L ≲ ξ0. (b) Dependence of the energy splitting |δD |/δD (L = 0) on L. The splitting
vanishes exponentially upon increasing L.

where the unperturbed ABS energies are almost degenerate E A ≈ EB ≈ E0. Expanding up to
linear order near the crossing point and transforming G−1(E) we find that ABS energies are

obtained from the effective Hamiltonian describing the level repulsion, Heff =
(

E A δD

δ∗D EB

)
,

where

δD =−
〈A|ΣAB |B〉

√
∆2 −E 2

0p
ΓAΓB

∝G(r A ,rB ). (2.2)

The Green’s function G(r A ,rB ) changes much on a scale of λF upon changing the position
of rB . This is the origin of mesoscopic fluctuations in electron transport [32]. The components
of G(r A ,rB ) can be regarded as random values with zero averages. The informative quantities
are the products of these components averaged over rB at the scale exceeding λF . These
averaged products can be expressed with a normal-state quasiclassical propagator [22]
P (r A ,rB , t ), that gives the probability to find an electron at rB at the time moment t
provided it was at r A at t = 0 (Greek letters denote Nambu indices):

〈G(r A ,rB )αγ∗G(r A ,rB )βν〉 =
= πν

2(∆2 −E 2)

∫
d tP (r A ,rB , t )e−2

p
∆2−E 2|t |

×[δαγδβνδαβ(2∆2 −E 2)

+∆E((1−δαγ)δβνe−iϵαγϕ3 −δαγ(1−δβν)e iϵβνϕ3 )

+∆2(δαβδγν(1−δαγ)−δαγδβν(1−δαβ)

+δανδγβ(1−δαγ)e−i 2ϵαγϕ3 )]. (2.3)

(Here we have corrected an unfortunate mistake in the coefficient in Eq. 3 of Ref. [25])
Let us reproduce the main estimation of this Chapter, |δD | ∝ 1/

√
RGQ , with this method.

Combining Eqs. 2.2 and 2.3 we estimate (|δD |/∆)2 ∝ ν−1
∫

d tP (t )e−∆|t |. In the course
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of its propagation, an electron covers the region whose spatial dimensions are defined by
the dwell time tdw ≃ ∆−1. The P (tdw) is estimated as inverse volume V of the region.
With this we can estimate (|δD |/∆)2 ∼ tdwδs , δs = (νV )−1. If we now compare this with
the Thouless estimation [42] of the conductance of such region, GTh ≃ GQ (δs tdw)−1, we
reproduce (|δD |/∆)2 ∝ RThGQ .

Let us specify the concrete setup. It comprises the semiconducting nanowire covered
by three superconducting leads, see Fig. 2.2 (a); such devices have been recently fabricated
[35]. The middle lead is a film of thickness d and width L. If L ≲ ξ0, the ABS wave
functions overlap strongly. We assume diffusive transport in the lead, which is characterized
by the resistance per square R□. We also assume that the interface between the nanowire
and the metal is sufficiently transparent, so that the electrons escape the nanowire to metal
at the distances ≪ ξ0.

The semiclassical propagator in the film obeys diffusion equation(
∂

∂t
−D∇2

)
P (r , t ) = 1

d
δ(t )δ(r − r A). (2.4)

This diffusion equation is subject to boundary conditions of zero probability flow across
all boundaries. One satisfies these boundary conditions introducing infinite number of
imaginary sources, spaced with 2L. The propagator we obtain is

P (r A ,rB , t ) = 1

dL

√
1

πD|t |
∞∑

n=−∞
(−1)ne−D π2

L2 n2|t |. (2.5)

With this we compute |δD |2 using Eqs. 2.2 and 2.3 to obtain

|δD |2
∆2 = π

2
MGQ ReffF

(
L

ξ(E0)

)
, Reff = R□

ξ(E0)

2πL
, (2.6)

with Reff being the effective resistance of the part of the lead covered by ABS wave functions,
the dimensionless F (z) = 4z/π

∑∞
n=0 K0((2n+1)z), K0 being modified Bessel function of the

second kind, F (0) = 1, incorporates information of the decay of ABS wave functions at the
scale of ξ(E) = ξ0(1 − E 2/∆2)−1/4, that is the energy-dependent correlation length. The
prefactor M ≃ 1 incorporates information about transmissions of the junctions

M =2|tA |2|tB |2[2cos
(
χA −χB

)
E 2 + (2+cos

(
χA +χB

)−cos
(
χA −χB

)
)∆2 (2.7)

−2E∆(cosχA +cosχB )]/[∆2(|tA |2 +|t ′A |2)(|tB |2 +|t ′B |2)] (2.8)

, where χA and χB are the phases of the eigenvectors |A〉 and |B〉, respectively, with e iχA =
[|t ′A |2e iϕ1 +|tA |2]∆/(E [|tA |2+|t ′A |2]) and analogously for χB . Here, ϕ1 and ϕ2 denote phase
differences with respect to ϕ3 and we set Eimp,A,B = 0. M → 1, in the limit E0 → 0, this
requires TA,B → 1. Thus in the limiting cases we have

|δD |2
∆2 =

{π
2 MGQ Reff, L → 0,

MGQ Reff

√
2πL
ξ(E0) e

− L
ξ(E0) , L →∞,

(2.9)

We plot the normalized energy splitting |δD |/δD (L = 0) versus L in Fig. 2.2 (b), δD (L = 0) =
∆

√
πMGQ Reff/2.
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For the experimentally relevant parameters ∆= 200 µeV, ξ0 = 96 nm [46], R□ = 1.43 Ω
[45], L = 50 nm, TA = TB = 1, we find the crossing point at ϕ2 = 2.36, ϕ1 = 3.93, and
E0 = 76.54 µeV, and obtain the splitting 2|δD | = 1.79 µeV. The value for |δD | ≃∆/250 even
though R□GQ ≈ 10−4, which seems to be small.

The separation of scales between δD and ∆ permits interesting quantum manipulation
schemes for involved states. Let us describe the simplest one: quasiparticle swap between
A and B . Let us take a point in parametric space of ϕ1,2,3, where the ABS energies are well-
split (for instance, ϕ3 = 0 in Fig. 2.1 (b)) and put a quasiparticle to the state A. We pass
the avoided crossing slowly to avoid Landau-Zener tunneling in this point (for instance,
changing ϕ3 from 0 to π/2), this brings the quasiparticle to B . If we get back to the
initial point very quickly, the quasiparticle will remain in B , this completes the manipulation
protocol. The same swap occurs if the quasiparticle is in B initially.

There is an interesting case, when both junctions have almost ideal transmission TA,B =
1−RA,B , RA,B ≪ 1, and ϕ1,2 = π+δϕ1,2, δϕ1,2 ≪ 1. In this case the crossing occurs at
E0 ≪ ∆, which can also be comparable with |δD |. The perturbation theory does not work
here, but we can describe the situation with the following 4×4 effective Hamiltonian:

Heff =∆


0 hA g f

h∗
A 0 f −g

g f 0 hB

f −g h∗
B 0

 , (2.10)

where hA,B = √
RA,B + iδϕ1,2. The terms f and g come from ΣAB ,B A , 〈 f 2〉 = 〈g 2〉 =

16π3ν2|tA |2|tB |2GQ ReffF (L/ξ(E0)). In the limit RA,B = 0 the ABS energies are given by

E =

√√√√
δ̃2 + (δϕ)2

4
+ Φ

2

4
±Φ

√[
δ̃2 + (δϕ)2

4

]
, (2.11)

where δ̃=
√

f 2 + g 2, δϕ1,2 =Φ/2±δϕ/2. Interestingly, if |Φ| < 2δ̃ the energies never cross
zero, while there are two symmetric zero-energy crossings if |Φ| > 2δ̃, Fig. 2.3 (a), (b). In
this approximation two ABS energies are precisely degenerate at Φ= 0, this degeneracy is
lifted upon increasing energy. At finite RA,B the zero-energy crossings are avoided, Fig. 2.3
(c), (d).

Before we conclude let us mention that the fact that the energy splitting is fine makes
relevant a set of topics to research that we list here. For semiconducting nanowires the
electron escape length can be ≳ L, this confines the overlap region to the nanowire and
greatly enhance δD . The spin-orbit splitting [48] of ABS that is usually negligible can
become relevant for small δD . Many-body effects shall provide small energy differences
for doublet and singlet quasiparticle states in ABS [43]. Interestingly, the hybridization
of degenerate singlet states in the setup under investigation can also occur without direct
overlap of ABS wave functions, that is at L ≫ ξ0. It would be also interesting to consider
with our method the ABS in superconductor/ferromagnetic structures [29].

We have investigated the energy splitting in an Andreev molecule, where in distinction
from the common molecules the quantum superpositions are formed at macroscopic level
and can be engineered changing the superconducting phases. Such molecules may become
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Figure 2.3: Spectra of the system for E ∼ 0 for f /δ̃=p
3/5, g /δ̃=p

2/5, and (a) Φ/δ̃= 4, RA = RB = 0; (b) Φ/δ̃=
1.5, RA = RB = 0; (c) Φ/δ̃ = 4 and

√
RA /δ̃ = 0.1,

√
RB /δ̃ = 0.4; (d) Φ/δ̃ = 1.5 and

√
RA /δ̃ = 0.1,

√
RB /δ̃ = 0.4.

The dashed line shows the case of f = g = 0 and for other parameters as described. The asymmetry in (c) and (d)
comes from RA ̸= RB .

a playground for interesting few-body quantum interactions. We establish that the energy
splitting is fine even in the case of strong overlap. This is in contrast to common molecules
either natural or artificially made in nanostructures. We relate the splitting to mesoscopic
fluctuations, so that the splitting manifests the intrinsic randomness of the setup and provides
the means of its experimental observation. The smallness of the splitting opens up possibilities
for quantum manipulation and application as mentioned in Ref. [35].
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To a man with a hammer
everything seems like a nail
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This chapter has been published as Overlapping Andreev states in semiconducting nanowires:
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3. OVERLAPPING ANDREEV STATES IN SEMICONDUCTING NANOWIRES:

COMPETITION OF ONE-DIMENSIONAL AND THREE-DIMENSIONAL PROPAGATION

3.1. INTRODUCTION
The nanostructures made of semiconducting nanowires in contact with bulk superconducting
leads or with superconducting shell are often used in the research aimed to achieve the
Majorana-based qubits[19, 24, 21, 1]. This boosted the fabrication technology of such
nanostructures that has progressed significantly over the last decade[11, 6, 35, 34, 5, 7, 28,
17, 3, 31, 36, 8, 15, 16, 10]. The improved technology makes it possible to realize more
sophisticated and multi-functional setups that involve multiple superconducting terminals
and gate electrodes. As one of the first steps in this direction, a setup of an "Andreev
molecule" has been recently proposed in Ref. [26]. In this setup, a nanowire is covered
with three superconducting electrodes (Fig. 3.1). The pieces of the nanowire not covered
by electrodes form two Josephson junctions. Each junction can host an Andreev bound state
(ABS) emerging from the Andreev scattering in the nanowire covered by a superconductor.
If the separation L between the junctions is not too big, these states overlap and hybridize.This
reminds a simple model of a diatomic molecule where two atomic states are hybridized,
this analogy justifies the term. Different setups concerning Andreev molecules have been
considered in Refs. [33, 30, 20]. In such simple artificial molecules, in distinction from
atomic and molecular physics, the quantum states can be engineered and tuned by changing
the parameters. Thus they can be a testbed for more complicated few-body systems, perhaps
even actual molecules. The presence of tunable discrete levels and the peculiarities of the
spectrum can be utilized in resonant and quantum computing devices.

We have considered the Andreev molecule setup suggested in Ref. [26] in our recent
work[13]. We have shown that the energy splitting δE at the degeneracy point of two ABS is
much smaller than the superconducting gap, ∆. The small parameter involved is an effective
resistance of the lead where the ABS overlap, R, and δE ≃ √

RGQ∆, GQ ≡ e2/(πħ) being
the conductance quantum. For the present setup, the resistance R by order of the value
is the resistance of the lead between the junctions, assuming the lead is in normal state.
More precise definition is elaborated in Sec. 3.11. However, this conclusion is based on the
assumption of quick electron transfer from the nanowire to the lead. This does not have to
be a general case. If the contact between the nanowire and the superconducting lead is not
very good[2, 12, 9], the electrons can stay in a nanowire for a sufficient time to propagate
between the junctions without escaping to the lead. In this case, the ABS mainly overlap in
the nanowire rather than in the lead, this results in much stronger hybridization[26, 36]. The
1D propagation in the wire brings about quite different and various physics, so the present
manuscript is not an extension of Ref.[13].

In this work, we consider and analyse a number of regimes where 1D or 3D propagation
dominate, or the two compete with each other. To characterize the contact between the
lead and the nanowire, we use τ, the time a normal electron spends in the nanowire before
escaping to the lead (Similar model has been considered in Refs. [29, 32], in their notations,
τ= γ−1). This gives a correlation length ξw = vwτ, vw being a typical electron velocity in
the wire, that defines a spread of ABS wavefunction in the wire. The condition L ≪ ξw

defines the regime of strong 1D hybridization (see Fig. 3.2). The opposite condition defines
the regime of weak 1D hybridization, where the ABS are almost independent except the
degeneracy points where they split with δE ≃∆exp(−L/ξw). However, this does not exhaust
the regimes. If exp(−L/ξw) ≃ √

RGQ, the overlaps in the wire and in the lead become
comparable, and we expect the regime of the competition of 1D and 3D propagation. At
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Figure 3.1: The Andreev molecule setup [26] consists of a semiconducting nanowire covered by three
superconducting leads with the phases ϕ1, ϕ2, and ϕ3. Two junctions A and B are formed in the nanowire.
Their transmissions can be tuned by the nearby gates. The ABS at these junctions can be hybridized depending on
the separation L.

L

strong 1D
hybridization

weak 1D
hybridization

weak 3D
hybridization

exp. small
hybridization

competition

Figure 3.2: The hybridization regimes depending on the junction separation L and the correlation lengths ξw,ξs
in the nanowire and in the lead, respectively. We distinguish strong 1D hybridization, weak 1D hybridization,
competition of 1D and 3D hybridization, weak 3D hybridization. The ABS become independent at L ≫ ξs. The
3D case has been considered in Ref. kornich:prr19. In this work, we concentrate on the first three regimes.

further increase of L/ξw, the 3D propagation dominates, this being the case described in
Ref. [13], see Fig. 3.2. This sequence of regimes implies ξw < ξs, ξs being the correlation
length in the superconducting lead. The propagation in the lead is naturally diffusive and
is characterized by the scattering time τs, ξs ≃ vs

p
τs/∆, vs being the electron velocity

in the superconducting material. If the velocities in the superconducting metal and the
superconducting wire were the same, the diffusive propagation would have been slower
implying ξw ≪ ξs. However, the velocity in the semiconductor is typically two orders
of magnitude slower. The condition ξw < ξs then implies τ∆ < (vs/vw)

p
τs∆. For good

contacts between the wire and the superconductor, τ ≃ 0.2∆ [18] and the condition holds
even for rather dirty superconductors τs∆≪ 10−4.

We investigate the resulting ABS spectrum in all these regimes. Starting from a simple
model of 1D semiconducting spectrum augmented with self-energy describing superconducting
proximity effect, we derive scattering matrix formalism that permits to compute and understand
the ABS energies in 1D regimes. We extend this formalism to include 3D propagation
amplitudes to describe the competition regime. We present the spectra for different L,
illustrating the transition from a strong 1D hybridization regime for L/ξw ≪ 1 to the regime
with two energy levels with a sizeable splitting at L/ξw ∼ 1, and further to almost independent
ABS hybridized at the degeneracy points, for L/ξw ≫ 1. We present the details on how the
upper energy level disappears merging with the continuous quasiparticle spectrum upon
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decreasing L. We study the effect of quantum interference on the spectrum in various
regimes, that is, the oscillatory dependence on the phase accumulated during the electron
passage between the junctions. We demonstrate that the energies can be significantly
affected by the interference for L/ξw ≪ 1 in the whole range of the phases, while for
larger L/ξw the interference is pronounced only in the vicinity of the degeneracy points.
We provide analytical formulas for this case. We ly address an interesting case of ballistic
junctions and discuss its peculiarities with respect to other results. We derive and analyse
analytical formulas for the competition regime demonstrating the interference of 1D and
two 3D transmission amplitudes. We show that the variances of 3D amplitudes are the same
and scale as ∼ GQR. As the 1D transmission amplitudes scale as e−L/ξw , the competition
regime occurs, when these two scales are of the same order. We derive an analytical formula
for the energy splitting due to 3D propagation and compare it to the results of Ref. [13].

Let us explain in detail our motivation to study ABS in this setup in different regimes, as
well as outline the significance of the results obtained for interesting device operations. The
device provides two discrete ABS, their energies depending on two external parameters -
two superconducting phases, and, in addition, on a gate voltage that controls the interference.
As such, it can be used as a quantum computation unit, or, more generally, as an element
coupled to a microwave field with the frequency matching the energy difference between a
pair of quantum states. Such resonant conditions enable high-precision measurement of the
energy dependence on the parameters involved. This opens up a variety of applications in
quantum sensing and in implementation of feedback schemes.

The setup can be used as a quantum unit utilizing resonant quantum manipulation.
Various qubit realizations are possible in the device under consideration. Here we do
not speculate which one would be more practical, but just count all of them. A single
junction with a single spin-degenerate ABS provides 4 quantum states that differ in fermion
occupation numbers nσ = 0,1, σ labelling the spin projection. For each parity of quasiparticle
number, we have two states. Thus, there are two ways to make a qubit out of this: either
Andreev singlet qubit for even parity [38, 11] or an Andreev spin qubit [4, 11] for odd parity.
The double-junction setup under consideration typically encompasses 2 spin-degenerate
ABS levels, this provides 4x4 = 16 quantum states, 8 for each parity. For a single qubit
realization, one chooses two states out of 8: this gives 28 possible realizations for each
parity. If one of the qubit states is the ground state, which is convenient in some quantum
applications, there are 7 possible realizations. There are enough states for a double-qubit
realization. Four basis states should be chosen. This gives 70 possible realizations. If one
of the basis states is the ground state, 35 realizations are available. The basis states differ
in fermion occupation numbers ni ,σ, i and σ labelling the level and the spin, respectively.
Their energies are given by:

E =∑
i ,σ

Ei (ni ,σ−1/2). (3.1)

The peculiar features of our results permit various interesting quantum manipulation
applications. Without making a complete list, let us shortly mention the most evident
ones. In the weak coupling regime, one can realize two singlet qubits corresponding to
two junctions. These qubits are conveniently uncoupled in the most of the parameter space.
Bringing then to the degeneracy lines makes it possible to arrange two-qubit gates. The
pronounced interference effect at the anticrossing makes it possible to operate this gate by a
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voltage gate. Another example of an interesting quantum manipulation in the weak coupling
regime has been outlined in Ref.[13]. This manipulation makes a swap of a quasiparticle
between the junctions. The protocol is to sweep the phases slowly through an avoided level
crossing, this prevents Landau-Zener tunnelling, and to get back rapidly. The merging of an
ABS state with a continuum upon changing a parameter (one of the phases) is interesting
for a realization of a non-unitary quantum gate. It provides a wave function collapse and
can be used as a quantum measurement. To see this, let us consider phase setting when there
are two ABS, and a quasiparticle that is in the superposition: it is delocalized between the
upper and lower level. Changing the setting to the region where only lower level is present
makes the wave function to collapse: we have either no quasiparticle or a quasiparticle
localized in the lower level. Similar non-unitary operations can be realized for other qubit
realizations. The manipulations are performed changing the gate voltages of the gates
adjacent to the nanowire and fluxes controlling the superconducting phases. To describe
this quantitatively, one needs, in addition to the ABS energies, to compute the off-diagonal
elements of the Hamiltonian describing the manipulation. This, as well as a specification
of a concrete quantum manipulation scheme, is beyond the scope of this work.

The paper is organized as follows. In Sec. 3.2 we present the details of the setup and the
model in use. We consider the wave functions and the spectrum edge for the infinite uniform
nanowire and discuss the dependence on the parameter τ∆ in Sec. 3.3. The scattering matrix
approach is derived and outlined in Sec. 3.4. We summarize and discuss the main results in
Sec. 3.5. In Sec. 3.6 we consider the strong 1D hybridization. We develop a perturbation
theory suitable in the opposite limit, in Sec. 3.7. The detailed discussion of the interference
effect is presented in Sec. 3.8. The transfer between single-band and two-band regimes is
detailed in Sec. 3.9. The Sec. 3.10 focuses on the case of the fully transparent junctions.
The competition regime is considered in Sec. 3.11. We conclude in Sec. 3.12.

3.2. THE SETUP AND MODEL
Let us detail the Andreev molecule setup (Fig. 3.1). Electrically, this is a three-terminal
circuit with two junctions. We assume same superconducting material for all electrodes,
so that the superconducting gap is the same for all of them. The spectrum of the bound
states will depend on three superconducting phases of the electrodes, ϕ1, ϕ2, and ϕ3. In
fact, by virtue of gauge invariance, it depends only on two phase differences ϕ̃1 =ϕ1 −ϕ3,
ϕ̃2 =ϕ1 −ϕ3. If the junctions can be regarded as independent, two independent ABS with
energies E1,2(ϕ̃1,2) are formed. If the ABS are hybridized, each energy depends on both
phase differences. We assume that the wire is sufficiently long in comparison with the
electron wavelength, kFL ≫ 1.

We describe the electron spectrum in the nanowire with a minimal model. We have to
stress that this is not a toy model: it is essentially more elaborated and directly related to the
actual nanowires, so we expect the results to be immediately relevant for the experiments.

We assume that the nanowire has a single propagation mode, disregard the spin splitting
and concentrate on the states close to the Fermi surface. Since the energies of the ABS are
of the order of the proximity-induced gap ∆̃, this implies sufficiently big Fermi energy
EF ≫ ∆̃. The Hamiltonian with the linearized spectrum is naturally written as a matrix in
the basis of right- and left-moving electrons, whose field operators are envelope functions of
exp(±i kFx),Ψσ(x) = exp(i kFx)ΨR,σ(x)+exp(−i kFx)ΨL,σ(x), x being an effective coordinate
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along the nanowire, σ being spin index. It reads:

Hnw =
∫

d x ′d x
∑

α,β=R,L;σ
Ψ†
α,σ(x ′)H nw

αβ (x, x ′)Ψβ,σ(x), (3.2)

Ĥ nw = −i vw
∂

∂x
τz + V̂A(x)+ V̂B (x) (3.3)

Here, vw is the Fermi velocity, τz is a diagonal matrix with τRR
z = −τLL

z = 1. We assume
that the wire is ballistic under the electrodes while the electrons are scattered in the junction
regions, V̂A(x) and V̂B (x) are the matrix potentials responsible for this scattering. In principle,
there is no much work to generalize Hnw and to include parabolic dispersion, spin-orbit
splitting and spin magnetic field [35, 19, 24]. However, in this Chapter, we would like to
focus on the phenomenon of hybridization that does not necessarily involve spin, so we keep
it simple. The Fermi energy, vw and kF in the nanowire can be changed by the applying
voltage to an underlying gate [21]. Importantly, even small changes of this gate voltage can
cause significant change of the phase kFL accumulated by an electron moving between the
junctions.

The Hamiltonian describing the j th superconducting lead, where j = {1,2,3}, is convenient
to write not specifying the orbital electron states present in a disordered superconductor.
We label these states with q , and assume a homogeneous superconducting order parameter
∆e iϕ j . In terms of the corresponding creation/annihilation operators d †

q,σ and dq,σ the
Hamiltonian reads as follows:

H j =
∑
q
ξnd †

q,σdq,σ+∆e−iϕ j dq,↑dq,↓+∆e iϕ j d †
q,↑d †

q,↓. (3.4)

ξn being the energies of the orbital states counted from the Fermi energy.
The contact between the nanowire and a lead is of tunneling nature and is described

with a tunneling Hamiltonian

HT = ∑
k,q

tk,q a†
k,σdq,σ+ t∗k,q d †

q,σak,σ, (3.5)

k labeling the normal-electron states in the nanowire, a†
k and ak being the creation/annihilation

operators in these states. The tunnel coupling tk,q depends on the electron states in both the
nanowire and the leads. In the absence of superconductivity, the escape rate from the state
k to the lead, 1/τk is given by the Fermi Golden Rule

1

τk
= 2π

ħ
∑
q
|tk,q |2δ(Ek −ξq ). (3.6)

It is convenient and realistic to assume that this escape rate does not depend on the state, so
the quality of the contact between the nanowire and the leads is characterized by a single
escape time τ.

Under these circumstances, the tunneling into a lead can be conveniently incorporated
into a local self-energy [29, 32] Σ j , which is a matrix in the basis of right- and left-moving
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electrons and holes (Ψe,R ,Ψh,L ,Ψe,L ,Ψh,R )

Σ j = 1

τ
p
∆2 −E 2


−E ∆e iϕ j 0 0

∆e−iϕ j −E 0 0
0 0 −E ∆e iϕ j

0 0 ∆e−iϕ j −E

 , (3.7)

so the resulting equation for the Green’s function in the nanowire reads:

(E −H )G(x, x ′) =−δ(x −x ′) (3.8)

H =−i vwη
∂

∂x
+WA(x)+WB (x)+Σ(x), (3.9)

with

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , (3.10)

WA =


V RR

A 0 V RL
A 0

0 −V LL
A 0 −V RL

A
V LR

A 0 V LL
A 0

0 −V LR
A 0 −V RR

A

 , (3.11)

WB having the same structure.

3.3. UNIFORM NANOWIRE
In this Section, we will consider the spectrum and the wavefunctions in an infinite and
uniform semiconducting nanowire with the proximity-induced gap ∆̃ < ∆. There are no
states at energies below ∆̃ in a uniform nanowire, there are modes confined in the nanowire
at ∆̃ < E < ∆, and there are extended states in the wire and leads at E > ∆. For a uniform
wire, we can regard det(E −H ) as an equation for the wave vector for a given energy.
Correspondingly, the wave vector is imaginary at 0 < E < ∆̃, is real in the interval ∆̃< E <∆,
and complex otherwise.

Since we will later concentrate on ABS, we concentrate at E < ∆̃. The imaginary part
of the wave vector gives an energy-dependent inverse localization length ξ−1

w :

vwτξ
−1
w =

√
1−E 2τ2 − 2E 2τp

∆2 −E 2
. (3.12)

The condition ξ−1
w (E) = 0 eventually defines the gap ∆̃. It is given by an implicit relation

τ∆= ∆
∆̃

√
∆− ∆̃
∆+ ∆̃ . (3.13)

and is plotted in Fig. 3.3 (a) as a function of (τ∆)−1. Short τ implies a good contact, so
∆̃ ≈ ∆ at τ∆≪ 1. In the opposite limit, ∆̃ ≈ 1/τ≪ ∆. In Fig. 3.3 (b) we plot the inverse
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correlation length versus energy normalized by the proximity gap ∆̃, for various τ∆. We
see that for any value of this parameter the correlation length is close to the escape length
vwτ. For a bad contact, vwτξ

−1
w =

√
1− (E/∆̃)2, for a good contact ξw = vwτ for all energies

except the vicinity of the gap edge.
There are four eigenfunctions at each energy, corresponding to right- or left-moving

electrons and the exponent decreasing either to the left or to the right,(
Ψe,R

Ψh,L

)
=

(
1

e i (∓χ−ϕ)

)
e∓x/ξw , (3.14)(

Ψe,L

Ψh,R

)
=

(
1

e i (±χ−ϕ)

)
e∓x/ξw . (3.15)

Here, we introduce an important phase χ associated with the phase of Andreev reflection
from a corresponding piece of the nanowire,

χ= arcsin

√√√√1−
[

E(1+τ
p
∆2 −E 2)

∆

]2

(3.16)

in the interval 0 < E < ∆̃. As we will see, the ABS energies are determined from the energy
dependence of χ. At any value of τ∆, χ(0) = π/2, χ(∆̃) = 0. It is interesting to note that
χ(E/∆̃) exhibits very little dependence on τ∆. This is seen in Fig. 3.3 (c) where all the
curves corresponding to different τ∆ collapse into one. This is why the ABS spectrum is
hardly sensitive to τ∆, and we do not have to explore its dependence on this parameter.

3.4. SCATTERING APPROACH
To avoid describing the details of the junctions and the corresponding potentials in their
vicinity, we implement the scattering approach for the problem under consideration. The
scattering approach to the setup was first implemented in Refs. [26, 25] at lesser detail
level, and recently elaborated in Ref. [27]. Their results are qualitatively the same. A
scattering matrix, by definition, is a matrix that relates the outgoing wave amplitudes to
incoming ones. In the setup under consideration, there are two junctions, A and B (see
Fig. 3.1). We assume that the junction region is shorter than ξw, this assumption permits
to neglect possible Andreev scattering in the junctions as well as the energy dependence of
the scattering amplitudes at the energy scale ≃ ∆̃. If we regard the junction A as a scattering
region, the incoming electron wave amplitudes are {Φe,R

1 ,Φe,L
3 } and the outgoing ones are

{Φe,L
1 ,Φe,R

3 }, where 1,3 refer to the leads adjacent to the junction A, and the amplitudes
correspond to the wave functions on the side of a lead. The electron scattering matrix for
the junction A in this basis is

Se
A =

 r Ae−iθA
1 tAe−i

θA
1 +θA

3
2

tAe−i
θA

1 +θA
3

2 −r Ae−iθA
3

 . (3.17)

Here, real r A and tA , r 2
A + t 2

A = 1, denote reflection and transmission amplitudes, θA
1,3 are

the corresponding reflection phases. The electron scattering matrix for junction B , Se
B , is
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Figure 3.3: (a) The relative proximity gap ∆̃/∆ versus the parameter (τ∆)−1 characterizing the quality of the tunnel
contact between the nanowire and the superconducting lead. For a good contact, τ→ 0, ∆̃→ ∆. (b) The inverse
correlation length ξw(E) versus energy for different values of τ∆. (c) The Andreev reflection phase χ versus energy.
In both plots, the values of the parameter for different curves correspond to ∆̃/∆= {0,0.1,0.2,0.3, ...,0.9,0.98,1}.
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defined in a similar basis: the incoming amplitudes are {Φe,R
4 ,Φe,L

2 } and outgoing ones are
{Φe,L

4 ,Φe,R
2 }, where 4 referes to the wave functions in the lead 3 close to the junction B . The

matrix reads:

Se
B =

 rB e−iθB
3 tB e−i

θB
3 +θB

2
2

tB e−i
θB

3 +θB
2

2 −rB e−iθB
2

 . (3.18)

The scattering matrix for holes is obtained from the electron one via complex conjugation.
Thus, the total scattering matrix describing the scattering from the junctions, SNS, relates
the incoming amplitudes Φ+ = {Φe,R

1 ,Φe,L
3 ,Φh,R

1 ,Φh,L
3 ,Φe,R

4 ,Φe,L
2 ,Φh,R

4 ,Φh,L
2 } to the outgoing

ones Φ− = {Φe,L
1 ,Φe,R

3 ,Φh,L
1 ,Φh,R

3 ,Φe,L
4 ,Φe,R

2 ,Φh,L
4 ,Φh,R

2 }, and has a block-diagonal form

SNS =


Se

A 0 0 0
0 Sh

A 0 0
0 0 Se

B 0
0 0 0 Sh

B

 . (3.19)

The subscript "NS" here stands for "normal scattering". Since the junctions are short,
no Andreev scattering mixing electrons and holes occur there. The matrix therefore s in
blocks, for electrons and holes. Andreev scattering occurs in the wire regions covered by
superconducting leads and is described by Andreev scattering matrix SAS. The outgoing
wave amplitudes for SNS are incoming wave amplitudes for SAS and vice versa. This gives
Φ− = SASΦ+, and the matrix SAS is derived from the matching of the wavefunctions (3.14).
It reads:

SAS =



0 0 r eh
1 0 0 0 0 0

0 0 0 r eh
3 t e

R 0 0 0
r he

1 0 0 0 0 0 0 0
0 r he

3 0 0 0 0 t h
R 0

0 t e
L 0 0 0 0 r eh

4 0
0 0 0 0 0 0 0 r eh

2
0 0 0 t h

L r he
4 0 0 0

0 0 0 0 0 r he
2 0 0


, (3.20)

with

r eh,he
1,2 = e i (±ϕ1,2+χ), (3.21)

r eh,he
3 = r eh,he

4 = e i (±ϕ3+χ)r3, (3.22)

r3 = 1−e−2L/ξw

1−e2iχe−2L/ξw
, (3.23)

t e,h
R = t e,h

L = e±i kFL t , (3.24)

t = (1−e2iχ)e−L/ξw

1−e2iχe−2L/ξw
, (3.25)

|t |2 +|r3|2 = 1. (3.26)



3.5. OVERVIEW OF THE ABS SPECTRUM

3

43

The notations eh and he imply the electron conversion into a hole and vice versa. The
transmission amplitudes t e,h

R,L do not involve a conversion and correspond to electron or
hole propagation through the part of the nanowire under the third lead. The phases ±kFL
acquired in the course of propagation are manifested in the quantum interference effect, as
we will show later. For a small separation between the junctions, L/ξw ≪ 1, r3 → 0 and
|t | → 1. This implies that the electrons or holes do not exhibit Andreev reflection directly
passing to another junction. In the opposite limit, L/ξw ≫ 1, |r3| = 1, and |t | = 0. The
scattering matrix is separated into blocks indicating the separation of ABS formed at the
two junctions are completely separate from each other.

Since Φ− = SASΦ+ and Φ+ = SNSΦ− an ABS is formed provided SNSSAS has a unit
eigenvalue. This gives an equation that is satisfied at an energy corresponding to an ABS
energy,

det{(1−SNSSAS)} = 0. (3.27)

In this work, we solve this equation numerically and analytically for various cases.

3.5. OVERVIEW OF THE ABS SPECTRUM
In this Section, we discuss the propagation processes in the setup, relate those to the features
of the spectrum, and give an overview of the concrete results. To start with, we shall note
that the hybridization of ABS states formed at two junctions requires either electron or hole
propagation between the junctions. This is evident from the scattering approach where the
scattering matrix is separated into the blocks for each junction unless there are non-zero
transmission amplitudes t e,h

R,L . This propagation may naturally take place in 1D wire, or
involve an escape to the 3D lead with a subsequent return to the wire.

In the strong 1D hybridization regime L ≪ ξw the propagation between the junctions
is unobstructed by anything, even by Andreev reflection, since the propagation time is
too short for a particle to feel the induced gap in the nanowire. As the result, the third
electrode has no effect on the ABS, and we have a compound junction between A and B that
supports a single ABS. We show this explicitly and analytically in Sec. 3.6. In the opposite
limit L ≫ ξw of the weak 1D hybridization the direct propagation is strongly reduced by
Andreev reflection in the wire: an electon/hole is turned back as a hole/electron. There
are two independent ABS and hybridization is only important in the vicinity of degeneracy
points where two energies cross. We develop a perturbation theory valid for a small direct
transmission amplitude (Sec. 3.7) that provides an analytical expression for this splitting
for general scattering matrices.

The crossover between the regimes is not trivial since the number of ABS in two limits
are different. We illustrate the crossover by numerical calculations presented in Fig. 3.4.
In the Figure, we plot the ABS spectrum versus the phase of the third lead, ϕ3, at various
separations between the junctions and for representative choice of the junction scattering
matrices. In Fig. 3.4 (a) that corresponds to a small separation and strong 1D hybridization
regime, we observe a single ABS with no ϕ3 dependence. The second ABS emerges from
continuous spectrum at larger separations (Fig. 3.4 (b)), and the energies get closer to each
other upon increasing L (Fig. 3.4 (c)). Deep in the weak 1D hybridization regime, the ABS
energies correspond to independent junction states with virtually invisible anticrossings
(Fig. 3.4 (d)). The emergence of the second ABS from the continuum is of interest and is
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investigated in Sec. 3.9.
A clear idealized case is where the propagation in the junctions is ballistic like in the

covered sections of the nanowire. In principle, this can be realized in sufficiently pure
nanowires. This case is characterized by the absence of quantum interference involving
the phase kFL since the electrons or holes are never reflected, and zero-energy crossings of
ABS. It is detailed in Sec. 3.10.

In general, the junctions are not transparent, that is, tA,B ̸= 1, the electrons and holes
propagaring between the junctions may reflect from those and bounce in the piece of the
nanowire covered by the third lead. The bounces result in the quantum interference pattern
involving the phase kFL. This pattern can be observed experimentally by changing kF

slightly with a back gate. We discuss and illustrate the interference in Sec. 3.8. It is clearly
visible in both 1D regimes.

If the 1D propagation ampitudes become sufficiently small, ≃ GQR, we enter the
competition regime (Fig. 3.2). To describe this, we extend the perturbation theory of
Sec. 3.7 to include the 3D propagation amplitudes next to the 1D propagation amplitudes.
This analysis is rather involved since 3D propagation also encompasses the electron-hole
and hole-electron conversion, and is detailed in Sec. 3.11. We will show that the result
can be regarded as interference of 2 independent 3D amplitudes affected by mesoscopic
fluctuations in the lead and a single 1D amplitude affected by the phase kFL. To describe the
3D amplitudes, we refine the semiclassical approach suggested in Ref. [13] and eventually
correct an error in that reference.

3.6. STRONG 1D HYBRIDIZATION
In this Section, we consider the limit L ≪ vwτ,ξw, when electrons do not exhibit Andreev
reflection in the piece of the nanowire covered by the third lead. For the scattering amplitudes
defined in Eqs. (3.21)-(3.25) this implies r3 → 0, t → 1. Solving the Eq. (3.27) in this limit,
we obtain an equation for the ABS energy,

sin2χ= Ts sin2
[ϕ1 −ϕ2

2

]
. (3.28)

Here, Ts is in fact the transmission coefficient of the normal scattering in a compound
junction obtained by putting the junctions A and B in series. It is given by the usual
expression (see, e.g. Ref. [22])

Ts =
t 2

A t 2
B

1+ r 2
Ar 2

B +2r ArB cosθ
, (3.29)

where θ ≡ θA
3 + θB

3 − 2kFL. As a rather trivial interference effect, it involves the phase
accumulated in the course of round trip between the junctions.

As mentioned in the Section 3.3, the dependence of χ on the parameter τ∆ is insignificant
if normalized on the proximity gap ∆̃. So we can approximate sinχ ≈

√
1− (E/∆̃)2. This

reproduces a standard relation for an ABS in a one-channel junction between two leads
[22]:

EABS = ∆̃
√

1−Ts sin2
[ϕ1 −ϕ2

2

]
. (3.30)
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Figure 3.4: The overview of the ABS spectrum. The ABS energies are plotted versus the phase of the third lead
ϕ3 for different separations L. For all plots, tA = 0.85, tB = 0.95, θA

1 = θB
3 = 0, and θA

3 = θB
2 = −π, τ∆ = 0.2,

ϕ1 = π, ϕ2 = π/4. (a) L/(vwτ) = 0.1. The strong 1D hybridization regime: a single ABS in both junctions hardly
depending on ϕ3. (b) L/(vwτ) = 1. The crossover between the regimes. The second ABS emerges from the
continuous spectrum. It remains close to the band edge. (c) L/(vwτ) = 2. The system tends towards the formation
of two independent ABS. The energy splitting at anticrossings is still comparable with ∆̃. (d) L/(vwτ) = 6. The
weak 1D hybridization regime. Two ABS are almost independent, the energy splitting near degeneracy points is
almost invisible.



3

46
3. OVERLAPPING ANDREEV STATES IN SEMICONDUCTING NANOWIRES:

COMPETITION OF ONE-DIMENSIONAL AND THREE-DIMENSIONAL PROPAGATION

3.7. WEAK 1D HYBRIDIZATION: PERTURBATION THEORY
Let us turn to the opposite limit L/ξw ≫ 1. In this weak 1D hybridization regime, the
transmission amplitude t is small, eventually, exponentially small, t = (1−e2iχ)e−L/ξw . We
will develop a perturbation theory for the ABS energies in terms of t . We restrict ourselves
to the most important situation of the vicinity of the degeneracy points, where the energies
of two ABS formed at the junctions A and B , almost coincide. The perturbation lifts the
degeneracy resulting in the anticrossing of two energy levels. The energy splitting at the
anticrossing δE is much smaller than ∆̃, δE ≃ |t |∆̃.

The derivation is as follows. In the limit t = 0 the scattering matrix SNSSAS is separated
into two independent 4× 4 blocks corresponding to the junctions A and B . We examine
the eigenvectors of the blocks and pick up one corresponding to the eigenvalue 1 at certain
energy, that is, to the ABS energy. The perturbation enters an off-diagonal 4×4 block. We
project this block on the eigenvectors |A〉 and |B〉 found for the A and B blocks. We take
the derivative of the diagonal blocks A and B with respect to energy. With this, we obtain
an effective 2×2 Hamiltonian to describe the anticrossing region,

Heff = E0 +
(
δE A M

M∗ δEB

)
, (3.31)

where E0 is the energy at the degeneracy point, δE A,B are small deviations from the degeneracy
in zeroth order in |t |, and M ∝ t is the non-diagonal matrix element representing the
perturbation. This element contains the expressions for the 4-eigenvectors that are rather
clumsy. In the most compact form, it can be expressed using the notations

p
2u±

A,B =

√√√√√1± sgnϕ̃1,2

√√√√1−
r 2

A,B

cos2χ0
, (3.32)

(u+
A,B )2 + (u−

A,B )2 = 1, u± are related to electron and hole amplitudes in the third lead. The
matrix element is defined upon an arbitrary phase factor and reads

M = e−L/ξw sinχ0

χ′(E0)

[
u−

B u+
Ae−iθ/2 −u−

Au+
B e iθ/2

]
, (3.33)

where χ′(E0) = ∂χ/∂E |E=E0 , χ0 =χ(E0).
The matrix element is thus contributed by two amplitudes corresponding to the right-

and left-moving electrons. If the junctions are ballistic, only one of these amplitudes
survives depending on the sgnϕ̃1 (sgnϕ̃2 =−sgnϕ̃1 in the anticrossing). This case is further
detailed in Sec. 3.10.

The energy splitting then assumes the form

δE 2 = 4|M |2 =C ((u+
Au−

B )2 + (u−
Au+

B )2 − (3.34)
−2u−

Au+
Au−

B u+
B cosθ)),

where

C = 4e−2L/ξw sin2χ0

(χ′(E0))2 . (3.35)
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If we implement the heuristic approximation we made for χ(E), C = 4(∆̃−E 2/∆̃)2e−2L/ξw .
The Eq. (3.34) makes explicit the interference pattern that is periodic in θ. Moreover,

both amplitudes become equal in modulus and the energy splitting vanishes at θ = 0 provided
the junctions have the same transmission coefficients and sgnϕ̃1 = sgnϕ̃2.

3.8. INTERFERENCE AT L ≃ ξw
In both regimes of strong and weak 1D hybridization, we have seen a significant interference
effect, Eqs. (3.29), (3.34). However, in the strong hybridization regime the effect was
confined to the ABS energies not depending on the phase of the third lead, while in the
weak hybridization regime it was visible in the vicinity of the degeneracy points only. This
motivates us to explore the effect at the intermediate values of L ≃ ξw. The numerical results
obtained are presented in Fig. 3.5. The subplots are computed at increasing values of L. In
each subplot, the different curves correspond to different values of the phase kFL.

As we see, the significant interference effect is compatible with ϕ3-dependence of the
curves, that is, with significant probability of Andreev reflection between the junctions.
However, the magnitude of interference gradually reduces upon increasing L and becomes
confined to anticrossing regions at L ≃ 3vwτ.

In Fig. 3.6 we present the zoom on the vicinity of the degeneracy point, this makes
the strong interference effect evident. For this parameter choice, the spectrum in the zoom
window is described by the perturbation Hamiltonian (3.31) with the accuracy of 3 significant
digits.

3.9. UPPER ABS MERGING WITH THE CONTINUUM
Generally, an upper ABS that persist in a multi-terminal system at certain phase settings,
may disappear merging with the continuous spectrum. In a general context, this situation
has been thoroughly investigated in Ref. [37]. For our three-terminal setup with no appreciable
spin-orbit interaction, this consideration predicts the gap edge touching (GET) curves in the
two-dimensional space of the phases ϕ̃1, ϕ̃2. The merging occurs at these curves.

Our setup provides a natural cause for such merging since we expect a single ABS in
the strong 1D hybridization regime and two ABS in the weak 1D hybridization regime.
The upper band should therefore go to the continuum upon decreasing the separation L. We
investigate this in detail in this Section.

It turns out that the upper ABS is present in the structure at any settings of L and junction
scattering matrices. The region in the space (ϕ̃1,ϕ̃2) where both states are present, fills
almost the entire space in the weak hybridization regime and shrinks to a line in the strong
hybridization regime. Thus the upper state in the strong hybridization regime is present
only on this line.

This is illustrated in Fig. 3.7(a) where we plot the GET curves for various L in an
elementary cell (0,0), (2π,2π) (The overall spectrum is periodic in both phases with the
period 2π). The curves are symmetric with respect to ϕ̃1 = ϕ̃2 line. At vanishing L, the
curves converge to the line. It is easy to understand why. Since the third lead is irrelevant,
there is a zero phase difference at this line for the resulting 2-terminal junction. It is known
to be a GET point for a two-terminal junctions [22]. Upon increasing L, the curves move
apart bounding a region where the upper ABS is present. Already at L/(vwτ) = 1, this
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Figure 3.5: The overview of the interference effect. The ABS energies at different settings of the phase kFL
versus the phase of the third lead ϕ3. The values of the separation for the subplots are: L/(vwτ) = (a) 0.25, (b)
0.50, (c) 1.00, (d) 2.00, (e) 3.00, (f) 5.00. In each subplot, the accumulated phase takes the value kFL mod π =
{0,1,2,3,4}π/8, and the curves move upwards upon increasing the phase. For all the plots tA = 0.6, tB = 0.7,
θA

1 = θB
3 = 0, θA

3 = θB
2 = −π, τ∆ = 0.2, ϕ1 = π, ϕ2 = π/4. (a) The strong 1D hybridization regime. A single

ABS persists in the system. Its energy is related to the transmission coefficient of the effective junction, the
transmission coefficient depends on interference. (b) The second ABS appears, the interference effect is still
strong over the whole range of ϕ3. (c)-(e) The effect is gradually confined to the anticrossing regions. (f) The
weak 1D hybridization regime, the energy splitting near degeneracy points is not visible although is still affected
by the interference.
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Figure 3.6: A zoom of an anticrossing region in Fig. 3.5 (e). The energies are computed numerically and coincide
with the perturbation theory results of Sec. 3.7 in three significant digits.
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Figure 3.7: Gap edge touching by the upper ABS. (a) The GET curves in the plane (ϕ̃1,ϕ̃2) for different separations
L/(vwτ) given in the labels. The fixed parametes are: tA = 0.85, tB = 0.95, τ∆ = 0.2, vF /(L∆) = 1, ϕ3 = 0,
θA

1 = θB
3 = 0, θA

3 = θB
2 =−π, and kFL = π/4. (b)-(e) The ABS energies at ϕ̃2 = π/4 (dashed line in (a)) illustrate

the merging of the upper ABS with the continuous spectrum. The values of the separation go through L/(vwτ) =
{0.001,0.1,0.25,0.5} from (b) to (e). For all plots, the vertical axis is E/∆̃ ranging from 0.7 to 1, the horizontal axis
is ϕ̃1 ranging from 0 to 2π.

region fills the elementary cell almost entirely. Upon further increase, the GET curves are
pressed to the boundaries of the elementary cell where either ϕ̃1 = 0 or ϕ̃2 = 0. Indeed, in
this limit we have two independent two-terminal junctions, and this defines the positions of
their GET points.

It is interesting and instructive to look at the spectrum of both ABS. It is plotted in Figs.
3.7 (b)-(e) along the line ϕ̃1 = π/2. The subfigures correspond to different settings of L.
The Fig. 3.7 (b) corresponding to the smallest L represents the lowermost ABS and seems
to touch the edge at ϕ̃1 = ϕ̃2. However, it only seems. In fact, there is a tiny region near
this point where the upper ABS is present, and it is separated in energy from the lowermost
one. This structure becomes apparent upon increase of L (see Figs. 3.7 (c)-(e)).

3.10. BALLISTIC JUNCTIONS

In this Section we concentrate on the special case of ballistic junctions, implying no normal
reflection in the regions A,B : r A = rB = 0. The spectrum separates into two parts: for right-
moving electrons and left-moving holes, and for left-moving electrons and right-moving
holes, that are obtained from each other by exchange of the electrons and holes. An energy
level at E in one part corresponds to the energy level at −E in another part by virture of
Bogoliubov-de Gennes symmetry. Correspondingly, the Eq. (3.27) splits into two parts.
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The part for right-moving electrons and left-moving holes reads[
e−i (2χ−ϕ̃1) −κ(e i ϕ̃1 −1)−1

]
× (3.36)[

e−i (2χ+ϕ̃2) −κ(e−i ϕ̃2 −1)−1
]

=−4κsin2χ.

Here, κ ≡ exp(−2L/ξw) This equation is to be solved for χ and then energy for any given
ϕ̃1,2.

To understand the qualitative characteristics of the spectrum, let us consider the weak
hybridization regime κ → 0. In zeroth order approximation, two first brackets give rise
to two solutions χ = ϕ̃1/2 and χ = π− ϕ̃2/2. Under heuristic approximation discussed,
this gives rise to two ABS energies E = ∆̃cos

(
ϕ̃1/2

)
and E = −∆̃cos

(
ϕ̃2/2

)
for the states

localized at the junctions A and B , respectively. The energies of the states cross zero at
ϕ̃1,2 = π, which is a known peculiarity of the completely ballistic two-terminal junction
[22]. The small κ is relevant at the degeneracy line ϕ̃1 + ϕ̃2 = 2π and especially near the
point ϕ̃1 = ϕ̃2 =π where the degeneracy occurs at zero energy. We expand all the phases in
the vicinity of this point, χ=π/2+Eχ′(0), ϕ̃1,2 =π+δϕ1,2. With this, the equation reduces
to

(2Eχ′(0)−δϕ1)(2Eχ′(0)+δϕ2) = 4κ. (3.37)

In the limit L →∞ this equation decouples into two brackets, each corresponding to junctions
A and B . Assuming, L is large, but finite, we obtain

Eχ′(0) = 1

4

[
δϕ1 −δϕ2 ±

√
(δϕ1 +δϕ2)2 +16κ

]
. (3.38)

We see that the finite hybridization removes the degeneracy at δϕ2 =−δϕ1. However, it
does not remove the zero energy crossings. Those are just shifted to a hyperbola δϕ1δϕ2 +
4κ= 0.

To get an overview of the spectrum for the whole range of L, we plot the energies of
ABS along the symmetry line ϕ̃1 = ϕ̃2 (Fig. 3.8, left column) and in the perpendicular
direction ϕ̃1 = −ϕ̃2. Along both lines, there is a convenient opportunity to make implicit
plots expressing the phases through the energy.

At the symmetry line, the ABS is double-degenerate: the states for right- and left-
moving electrons have the same energy. In the weak 1D hybridization regime (Fig. 3.8(a)),
the phase dependence approaches that of independent junctions. However, in accordance
with Eq. (3.38), the zero-energy crossing is shifted from the symmetry line even for small
κ. Upon decreasing L, (Figs. 3.8(b)-(d)), the energy raises approaching the gap egde, this
is in accordance with the limit of a single compound junction.

For the plots in the perpendicular direction, the curves of blue (red) color correspond to
right- (left-)moving electrons. We see the energy crossings that is a hallmark of the ballistic
junction case. The positions of the crossing gradually shift from ±π at big separations to
±π/2 at small separations in accordance with the limits of independent junctions and a
single compound junction.
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We remind that there is no interference effect on ABS since there is no normal scattering
at the junctions. The plots along the lines ϕ̃1 =±ϕ̃2 do not visually resemble those in Fig.
3.4 which may lead to the idea that the spectra are very different. To prevent this, we replot
the ABS for ballistic case in Fig. 3.9 for the same parameters except setting r A = rB = 0.
The resulting plots do resemble those in Fig. 3.4, zero-energy crossings being the only
qualitative difference.

3.11. COMPETITION BETWEEN 1D AND 3D PROPAGATION
In this Section, we consider the competition of 1D and 3D electron propagation as seen
in the hybridization of the ABS in the Andreev molecule setup under consideration. As
we have seen, the 1D propagation amplitudes t e,h

R,L between the junctions formally become
exponentially small. However, this should not immediatedy imply the exponentially small
hybridization. As estimated in Ref. kornich:prr19, the 3D propagation amplitudes are of the
order of

√
RGQ, R being a resistance characterizing the lead, and thus are not exponentially

small provided the separation L ≲ ξs.
A full and simultaneous account for 1D and 3D propagation seems a formidable task.

In principle, it can be achieved by a non-local extension of the self-energy in Eq. (3.7):
Σ(x) → Σ(x, x ′). However, such self-energy cannot be conveniently averaged over the
disorder in the superconducting lead without cancelling the effect, which makes it hardly
computable. A solution could be brute-force numerical computation of the Green’s function
for an atomic-level lattice model. However, such numerical exercises are seldom conclusive
in practice, in view of long computation times and arbitrary modelling.

We proceed with a different method which may seem heuristic, but, in fact, is completely
adequate to the problem in hand. To explain it, let us formulate a problem in terms of
scattering matrix for the junctions. Whatever the propagation, it can be incorporated into
(electron and hole) transmission amplitudes between the junctions. Let us note that the
competition occurs for small amplitudes where a perturbation theory is applicable. In
this case, the amplitudes can be regarded as the sums over possible electron trajectories
connecting the junctions. There is a direct 1D trajectory that connects the junctions through
the nanowire. It accounts for the amplitudes t e,h

R,L considered above. In addition, there
are trajectories where an electron starts at the junction, escapes to the lead at rather short
distances vwτ≪ L, travels in the lead, and returns to the nanowire close to the opposite
junction. In distinction from the 1D amplitude, the 3D amplitude represented by the sum
over these trajectories is a random quantity: it depends on the disorder configuration in
the superconducting lead and vanishes upon the averaging over disorder. Importantly,
the variance of this amplitude can be averaged over disorder and is determined by the
properties of the superconducting lead at the space scale L rather than the details of the
escape. Technically, it is computed as the average of electron Green’s function G(r,r′), r, r′
being close to the opposite junctions. Besides, there are trajectories that enter and escape
the nanowire several times. Since the wire is separated from the lead by a tunnel barrier,
and the wire cross-section is small compared to that of the lead, the contribution of such
trajectories can be safely neglected. In conclusion, the relevant transmission amplitude in
the competition regime is a sum of the 1D amplitude specified above, and a random 3D
amplitude. Let us compute the hybridization.

First of all, we need to extend the perturbation theory developed in Sec. 3.7 onto
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(a)
<latexit sha1_base64="RgLsK9V1l0qmcEZNP4PdxAMbJRE=">AAACpXicrVFNawIxFIzbL7v90vbYS6gI9iJrKbS9SXvpqVhw1aKLZONbDSa7S5IVZPHcH9Br+8P6bxp1D1qLpz4IDDNvyPDGjzlT2nG+c9bO7t7+Qf7QPjo+OT0rFM9bKkokBZdGPJIdnyjgLARXM82hE0sgwufQ9sdPc709AalYFDb1NAZPkGHIAkaJNtRb2pMCV8j1rF8oOVVnMXgT1DJQQtk0+sXce28Q0URAqCknSnVrTqy9lEjNKIeZ3UsUxISOyRC6BoZEgPLSReIZLhtmgINImhdqvGDt8oolJUKpqfDNqiB6pDbEOfun2E10cO+lLIwTDSFd/hUkHOsIzy+AB0wC1XxqAKGSmbiYjogkVJs72dsybIuwqo2AT0Cvn2DJeakKFjb7/xKb6mq/i9oE7k31oeq83pbqj1mHeXSJrlAF1dAdqqNn1EAuokigD/SJvqyK9WI1rdZy1cplngu0Nlb/B9Gu050=</latexit><latexit sha1_base64="RgLsK9V1l0qmcEZNP4PdxAMbJRE=">AAACpXicrVFNawIxFIzbL7v90vbYS6gI9iJrKbS9SXvpqVhw1aKLZONbDSa7S5IVZPHcH9Br+8P6bxp1D1qLpz4IDDNvyPDGjzlT2nG+c9bO7t7+Qf7QPjo+OT0rFM9bKkokBZdGPJIdnyjgLARXM82hE0sgwufQ9sdPc709AalYFDb1NAZPkGHIAkaJNtRb2pMCV8j1rF8oOVVnMXgT1DJQQtk0+sXce28Q0URAqCknSnVrTqy9lEjNKIeZ3UsUxISOyRC6BoZEgPLSReIZLhtmgINImhdqvGDt8oolJUKpqfDNqiB6pDbEOfun2E10cO+lLIwTDSFd/hUkHOsIzy+AB0wC1XxqAKGSmbiYjogkVJs72dsybIuwqo2AT0Cvn2DJeakKFjb7/xKb6mq/i9oE7k31oeq83pbqj1mHeXSJrlAF1dAdqqNn1EAuokigD/SJvqyK9WI1rdZy1cplngu0Nlb/B9Gu050=</latexit><latexit sha1_base64="RgLsK9V1l0qmcEZNP4PdxAMbJRE=">AAACpXicrVFNawIxFIzbL7v90vbYS6gI9iJrKbS9SXvpqVhw1aKLZONbDSa7S5IVZPHcH9Br+8P6bxp1D1qLpz4IDDNvyPDGjzlT2nG+c9bO7t7+Qf7QPjo+OT0rFM9bKkokBZdGPJIdnyjgLARXM82hE0sgwufQ9sdPc709AalYFDb1NAZPkGHIAkaJNtRb2pMCV8j1rF8oOVVnMXgT1DJQQtk0+sXce28Q0URAqCknSnVrTqy9lEjNKIeZ3UsUxISOyRC6BoZEgPLSReIZLhtmgINImhdqvGDt8oolJUKpqfDNqiB6pDbEOfun2E10cO+lLIwTDSFd/hUkHOsIzy+AB0wC1XxqAKGSmbiYjogkVJs72dsybIuwqo2AT0Cvn2DJeakKFjb7/xKb6mq/i9oE7k31oeq83pbqj1mHeXSJrlAF1dAdqqNn1EAuokigD/SJvqyK9WI1rdZy1cplngu0Nlb/B9Gu050=</latexit>

(b)
<latexit sha1_base64="qDHVEeTI+PMO85dxDK/XFtMZ/uY=">AAACpXicrVFNawIxFIzbL7v90vbYS6gI9iJrKbS9SXvpqVhw1aKLZONbDSa7S5IVZPHcH9Br+8P6bxp1D1qLpz4IDDNvyPDGjzlT2nG+c9bO7t7+Qf7QPjo+OT0rFM9bKkokBZdGPJIdnyjgLARXM82hE0sgwufQ9sdPc709AalYFDb1NAZPkGHIAkaJNtRb2pMCV/zrWb9QcqrOYvAmqGWghLJp9Iu5994goomAUFNOlOrWnFh7KZGaUQ4zu5coiAkdkyF0DQyJAOWli8QzXDbMAAeRNC/UeMHa5RVLSoRSU+GbVUH0SG2Ic/ZPsZvo4N5LWRgnGkK6/CtIONYRnl8AD5gEqvnUAEIlM3ExHRFJqDZ3srdl2BZhVRsBn4BeP8GS81IVLGz2/yU21dV+F7UJ3JvqQ9V5vS3VH7MO8+gSXaEKqqE7VEfPqIFcRJFAH+gTfVkV68VqWq3lqpXLPBdobaz+D9Pp054=</latexit><latexit sha1_base64="qDHVEeTI+PMO85dxDK/XFtMZ/uY=">AAACpXicrVFNawIxFIzbL7v90vbYS6gI9iJrKbS9SXvpqVhw1aKLZONbDSa7S5IVZPHcH9Br+8P6bxp1D1qLpz4IDDNvyPDGjzlT2nG+c9bO7t7+Qf7QPjo+OT0rFM9bKkokBZdGPJIdnyjgLARXM82hE0sgwufQ9sdPc709AalYFDb1NAZPkGHIAkaJNtRb2pMCV/zrWb9QcqrOYvAmqGWghLJp9Iu5994goomAUFNOlOrWnFh7KZGaUQ4zu5coiAkdkyF0DQyJAOWli8QzXDbMAAeRNC/UeMHa5RVLSoRSU+GbVUH0SG2Ic/ZPsZvo4N5LWRgnGkK6/CtIONYRnl8AD5gEqvnUAEIlM3ExHRFJqDZ3srdl2BZhVRsBn4BeP8GS81IVLGz2/yU21dV+F7UJ3JvqQ9V5vS3VH7MO8+gSXaEKqqE7VEfPqIFcRJFAH+gTfVkV68VqWq3lqpXLPBdobaz+D9Pp054=</latexit><latexit sha1_base64="qDHVEeTI+PMO85dxDK/XFtMZ/uY=">AAACpXicrVFNawIxFIzbL7v90vbYS6gI9iJrKbS9SXvpqVhw1aKLZONbDSa7S5IVZPHcH9Br+8P6bxp1D1qLpz4IDDNvyPDGjzlT2nG+c9bO7t7+Qf7QPjo+OT0rFM9bKkokBZdGPJIdnyjgLARXM82hE0sgwufQ9sdPc709AalYFDb1NAZPkGHIAkaJNtRb2pMCV/zrWb9QcqrOYvAmqGWghLJp9Iu5994goomAUFNOlOrWnFh7KZGaUQ4zu5coiAkdkyF0DQyJAOWli8QzXDbMAAeRNC/UeMHa5RVLSoRSU+GbVUH0SG2Ic/ZPsZvo4N5LWRgnGkK6/CtIONYRnl8AD5gEqvnUAEIlM3ExHRFJqDZ3srdl2BZhVRsBn4BeP8GS81IVLGz2/yU21dV+F7UJ3JvqQ9V5vS3VH7MO8+gSXaEKqqE7VEfPqIFcRJFAH+gTfVkV68VqWq3lqpXLPBdobaz+D9Pp054=</latexit>

(c)
<latexit sha1_base64="NQvyS+X5NsljVl17kyuKMkbCuzU=">AAACpXicrVFNawIxFIzbL7v90vbYS6gI9iJrKbS9SXvpqVhw1aKLZONbDSa7S5IVZPHcH9Br+8P6bxp1D1qLpz4IDDNvyPDGjzlT2nG+c9bO7t7+Qf7QPjo+OT0rFM9bKkokBZdGPJIdnyjgLARXM82hE0sgwufQ9sdPc709AalYFDb1NAZPkGHIAkaJNtRb2pMCV+j1rF8oOVVnMXgT1DJQQtk0+sXce28Q0URAqCknSnVrTqy9lEjNKIeZ3UsUxISOyRC6BoZEgPLSReIZLhtmgINImhdqvGDt8oolJUKpqfDNqiB6pDbEOfun2E10cO+lLIwTDSFd/hUkHOsIzy+AB0wC1XxqAKGSmbiYjogkVJs72dsybIuwqo2AT0Cvn2DJeakKFjb7/xKb6mq/i9oE7k31oeq83pbqj1mHeXSJrlAF1dAdqqNn1EAuokigD/SJvqyK9WI1rdZy1cplngu0Nlb/B9Yk058=</latexit><latexit sha1_base64="NQvyS+X5NsljVl17kyuKMkbCuzU=">AAACpXicrVFNawIxFIzbL7v90vbYS6gI9iJrKbS9SXvpqVhw1aKLZONbDSa7S5IVZPHcH9Br+8P6bxp1D1qLpz4IDDNvyPDGjzlT2nG+c9bO7t7+Qf7QPjo+OT0rFM9bKkokBZdGPJIdnyjgLARXM82hE0sgwufQ9sdPc709AalYFDb1NAZPkGHIAkaJNtRb2pMCV+j1rF8oOVVnMXgT1DJQQtk0+sXce28Q0URAqCknSnVrTqy9lEjNKIeZ3UsUxISOyRC6BoZEgPLSReIZLhtmgINImhdqvGDt8oolJUKpqfDNqiB6pDbEOfun2E10cO+lLIwTDSFd/hUkHOsIzy+AB0wC1XxqAKGSmbiYjogkVJs72dsybIuwqo2AT0Cvn2DJeakKFjb7/xKb6mq/i9oE7k31oeq83pbqj1mHeXSJrlAF1dAdqqNn1EAuokigD/SJvqyK9WI1rdZy1cplngu0Nlb/B9Yk058=</latexit><latexit sha1_base64="NQvyS+X5NsljVl17kyuKMkbCuzU=">AAACpXicrVFNawIxFIzbL7v90vbYS6gI9iJrKbS9SXvpqVhw1aKLZONbDSa7S5IVZPHcH9Br+8P6bxp1D1qLpz4IDDNvyPDGjzlT2nG+c9bO7t7+Qf7QPjo+OT0rFM9bKkokBZdGPJIdnyjgLARXM82hE0sgwufQ9sdPc709AalYFDb1NAZPkGHIAkaJNtRb2pMCV+j1rF8oOVVnMXgT1DJQQtk0+sXce28Q0URAqCknSnVrTqy9lEjNKIeZ3UsUxISOyRC6BoZEgPLSReIZLhtmgINImhdqvGDt8oolJUKpqfDNqiB6pDbEOfun2E10cO+lLIwTDSFd/hUkHOsIzy+AB0wC1XxqAKGSmbiYjogkVJs72dsybIuwqo2AT0Cvn2DJeakKFjb7/xKb6mq/i9oE7k31oeq83pbqj1mHeXSJrlAF1dAdqqNn1EAuokigD/SJvqyK9WI1rdZy1cplngu0Nlb/B9Yk058=</latexit>

(d)
<latexit sha1_base64="lsqspqb66pWA1aeXsNM2NahXpSk=">AAACpXicrVHLSgMxFE3HVx1frS7dBEuhbspUBHVXdONKKvQl7VAymTttaDIzJJlCGbr2A9zqh/k3ptMuWitdeSFwOOcecrjHizlT2nG+c9bO7t7+Qf7QPjo+OT0rFM/bKkokhRaNeCS7HlHAWQgtzTSHbiyBCI9Dxxs/zfXOBKRiUdjU0xhcQYYhCxgl2lBvaV8KXPGvZ4NCyak62eBNUFuCElpOY1DMvff9iCYCQk05UapXc2LtpkRqRjnM7H6iICZ0TIbQMzAkApSbZolnuGwYHweRNC/UOGPt8oolJUKpqfDMqiB6pDbEOfun2Et0cO+mLIwTDSFd/BUkHOsIzy+AfSaBaj41gFDJTFxMR0QSqs2d7G0ZtkVY1UbAJ6DXT7Dg3FQFmc3+v8SmutrvojZB66b6UHVeb0v1x2WHeXSJrlAF1dAdqqNn1EAtRJFAH+gTfVkV68VqWu3FqpVbei7Q2liDH9hf06A=</latexit><latexit sha1_base64="lsqspqb66pWA1aeXsNM2NahXpSk=">AAACpXicrVHLSgMxFE3HVx1frS7dBEuhbspUBHVXdONKKvQl7VAymTttaDIzJJlCGbr2A9zqh/k3ptMuWitdeSFwOOcecrjHizlT2nG+c9bO7t7+Qf7QPjo+OT0rFM/bKkokhRaNeCS7HlHAWQgtzTSHbiyBCI9Dxxs/zfXOBKRiUdjU0xhcQYYhCxgl2lBvaV8KXPGvZ4NCyak62eBNUFuCElpOY1DMvff9iCYCQk05UapXc2LtpkRqRjnM7H6iICZ0TIbQMzAkApSbZolnuGwYHweRNC/UOGPt8oolJUKpqfDMqiB6pDbEOfun2Et0cO+mLIwTDSFd/BUkHOsIzy+AfSaBaj41gFDJTFxMR0QSqs2d7G0ZtkVY1UbAJ6DXT7Dg3FQFmc3+v8SmutrvojZB66b6UHVeb0v1x2WHeXSJrlAF1dAdqqNn1EAtRJFAH+gTfVkV68VqWu3FqpVbei7Q2liDH9hf06A=</latexit><latexit sha1_base64="lsqspqb66pWA1aeXsNM2NahXpSk=">AAACpXicrVHLSgMxFE3HVx1frS7dBEuhbspUBHVXdONKKvQl7VAymTttaDIzJJlCGbr2A9zqh/k3ptMuWitdeSFwOOcecrjHizlT2nG+c9bO7t7+Qf7QPjo+OT0rFM/bKkokhRaNeCS7HlHAWQgtzTSHbiyBCI9Dxxs/zfXOBKRiUdjU0xhcQYYhCxgl2lBvaV8KXPGvZ4NCyak62eBNUFuCElpOY1DMvff9iCYCQk05UapXc2LtpkRqRjnM7H6iICZ0TIbQMzAkApSbZolnuGwYHweRNC/UOGPt8oolJUKpqfDMqiB6pDbEOfun2Et0cO+mLIwTDSFd/BUkHOsIzy+AfSaBaj41gFDJTFxMR0QSqs2d7G0ZtkVY1UbAJ6DXT7Dg3FQFmc3+v8SmutrvojZB66b6UHVeb0v1x2WHeXSJrlAF1dAdqqNn1EAtRJFAH+gTfVkV68VqWu3FqpVbei7Q2liDH9hf06A=</latexit>
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'
<latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit>

'
<latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit>

'
<latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit>

'
<latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit>

E
/�̃

<latexit sha1_base64="i1oyLICpZw5v/K78hdZvBqIZiZY=">AAACrnicrVHLSsNAFJ3GV42vVJdugqXgqiYiqLviA1xWsLbQhjKZ3rSDkwczN4USuvYn3Oo/+TdO0yxaK115YeBwzj3M4R4/EVyh43yXjI3Nre2d8q65t39weGRVjl9VnEoGLRaLWHZ8qkDwCFrIUUAnkUBDX0Dbf7uf6e0xSMXj6AUnCXghHUY84IyipvqW9XjRQy4GkPUeQCCd9q2qU3fysVeBW4AqKabZr5Tee4OYpSFEyARVqus6CXoZlciZgKnZSxUklL3RIXQ1jGgIysvy6FO7ppmBHcRSvwjtnDVrC5aMhkpNQl+vhhRHakWcsX+K3RSDGy/jUZIiRGz+V5AKG2N7dgp7wCUwFBMNKJNcx7XZiErKUB/MXJdhXYRFbQRiDLh8gjnnZSrIbeb/JdbVub+LWgWty/pt3Xm+qjbuig7L5JSckXPikmvSIE+kSVqEkTH5IJ/ky3CNtuEZ/fmqUSo8J2RpjNEPbM7XLw==</latexit><latexit sha1_base64="i1oyLICpZw5v/K78hdZvBqIZiZY=">AAACrnicrVHLSsNAFJ3GV42vVJdugqXgqiYiqLviA1xWsLbQhjKZ3rSDkwczN4USuvYn3Oo/+TdO0yxaK115YeBwzj3M4R4/EVyh43yXjI3Nre2d8q65t39weGRVjl9VnEoGLRaLWHZ8qkDwCFrIUUAnkUBDX0Dbf7uf6e0xSMXj6AUnCXghHUY84IyipvqW9XjRQy4GkPUeQCCd9q2qU3fysVeBW4AqKabZr5Tee4OYpSFEyARVqus6CXoZlciZgKnZSxUklL3RIXQ1jGgIysvy6FO7ppmBHcRSvwjtnDVrC5aMhkpNQl+vhhRHakWcsX+K3RSDGy/jUZIiRGz+V5AKG2N7dgp7wCUwFBMNKJNcx7XZiErKUB/MXJdhXYRFbQRiDLh8gjnnZSrIbeb/JdbVub+LWgWty/pt3Xm+qjbuig7L5JSckXPikmvSIE+kSVqEkTH5IJ/ky3CNtuEZ/fmqUSo8J2RpjNEPbM7XLw==</latexit><latexit sha1_base64="i1oyLICpZw5v/K78hdZvBqIZiZY=">AAACrnicrVHLSsNAFJ3GV42vVJdugqXgqiYiqLviA1xWsLbQhjKZ3rSDkwczN4USuvYn3Oo/+TdO0yxaK115YeBwzj3M4R4/EVyh43yXjI3Nre2d8q65t39weGRVjl9VnEoGLRaLWHZ8qkDwCFrIUUAnkUBDX0Dbf7uf6e0xSMXj6AUnCXghHUY84IyipvqW9XjRQy4GkPUeQCCd9q2qU3fysVeBW4AqKabZr5Tee4OYpSFEyARVqus6CXoZlciZgKnZSxUklL3RIXQ1jGgIysvy6FO7ppmBHcRSvwjtnDVrC5aMhkpNQl+vhhRHakWcsX+K3RSDGy/jUZIiRGz+V5AKG2N7dgp7wCUwFBMNKJNcx7XZiErKUB/MXJdhXYRFbQRiDLh8gjnnZSrIbeb/JdbVub+LWgWty/pt3Xm+qjbuig7L5JSckXPikmvSIE+kSVqEkTH5IJ/ky3CNtuEZ/fmqUSo8J2RpjNEPbM7XLw==</latexit>

'
<latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit>

'
<latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit><latexit sha1_base64="mIYfKFsblYLvbP1e0cDl7p8jQ0E=">AAACo3icrVFNT8JAEF3qF9Yv0KOXjQTjibTGRL0RvXjwgIYKCTRku0zphu1HdrckpOHs2av+Mv+NS+kBxHBykk1e3pvJvJ3nJZxJZVnfJWNre2d3r7xvHhweHZ9UqqdvMk4FBYfGPBZdj0jgLAJHMcWhmwggoceh440f53pnAkKyOGqraQJuSEYR8xklSlOd/oSIJGCDSs1qWHnhdWAXoIaKag2qpff+MKZpCJGinEjZs61EuRkRilEOM7OfSkgIHZMR9DSMSAjSzXK/M1zXzBD7sdAvUjhnzfrSSEZCKaehp1tDogK5Js7ZP8Veqvw7N2NRkiqI6GKXn3KsYjz/Px4yAVTxqQaECqbtYhoQQajSVzI3edhkYVkLgE9ArZ5gwbmZ9PMx8/8c6+js30GtA+e6cd+wXm5qzYciwzI6RxfoCtnoFjXRE2ohB1E0Rh/oE30Zl8az8Wq0F61GqZg5QytluD89B9Nq</latexit>

E
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<latexit sha1_base64="i1oyLICpZw5v/K78hdZvBqIZiZY=">AAACrnicrVHLSsNAFJ3GV42vVJdugqXgqiYiqLviA1xWsLbQhjKZ3rSDkwczN4USuvYn3Oo/+TdO0yxaK115YeBwzj3M4R4/EVyh43yXjI3Nre2d8q65t39weGRVjl9VnEoGLRaLWHZ8qkDwCFrIUUAnkUBDX0Dbf7uf6e0xSMXj6AUnCXghHUY84IyipvqW9XjRQy4GkPUeQCCd9q2qU3fysVeBW4AqKabZr5Tee4OYpSFEyARVqus6CXoZlciZgKnZSxUklL3RIXQ1jGgIysvy6FO7ppmBHcRSvwjtnDVrC5aMhkpNQl+vhhRHakWcsX+K3RSDGy/jUZIiRGz+V5AKG2N7dgp7wCUwFBMNKJNcx7XZiErKUB/MXJdhXYRFbQRiDLh8gjnnZSrIbeb/JdbVub+LWgWty/pt3Xm+qjbuig7L5JSckXPikmvSIE+kSVqEkTH5IJ/ky3CNtuEZ/fmqUSo8J2RpjNEPbM7XLw==</latexit><latexit sha1_base64="i1oyLICpZw5v/K78hdZvBqIZiZY=">AAACrnicrVHLSsNAFJ3GV42vVJdugqXgqiYiqLviA1xWsLbQhjKZ3rSDkwczN4USuvYn3Oo/+TdO0yxaK115YeBwzj3M4R4/EVyh43yXjI3Nre2d8q65t39weGRVjl9VnEoGLRaLWHZ8qkDwCFrIUUAnkUBDX0Dbf7uf6e0xSMXj6AUnCXghHUY84IyipvqW9XjRQy4GkPUeQCCd9q2qU3fysVeBW4AqKabZr5Tee4OYpSFEyARVqus6CXoZlciZgKnZSxUklL3RIXQ1jGgIysvy6FO7ppmBHcRSvwjtnDVrC5aMhkpNQl+vhhRHakWcsX+K3RSDGy/jUZIiRGz+V5AKG2N7dgp7wCUwFBMNKJNcx7XZiErKUB/MXJdhXYRFbQRiDLh8gjnnZSrIbeb/JdbVub+LWgWty/pt3Xm+qjbuig7L5JSckXPikmvSIE+kSVqEkTH5IJ/ky3CNtuEZ/fmqUSo8J2RpjNEPbM7XLw==</latexit><latexit sha1_base64="i1oyLICpZw5v/K78hdZvBqIZiZY=">AAACrnicrVHLSsNAFJ3GV42vVJdugqXgqiYiqLviA1xWsLbQhjKZ3rSDkwczN4USuvYn3Oo/+TdO0yxaK115YeBwzj3M4R4/EVyh43yXjI3Nre2d8q65t39weGRVjl9VnEoGLRaLWHZ8qkDwCFrIUUAnkUBDX0Dbf7uf6e0xSMXj6AUnCXghHUY84IyipvqW9XjRQy4GkPUeQCCd9q2qU3fysVeBW4AqKabZr5Tee4OYpSFEyARVqus6CXoZlciZgKnZSxUklL3RIXQ1jGgIysvy6FO7ppmBHcRSvwjtnDVrC5aMhkpNQl+vhhRHakWcsX+K3RSDGy/jUZIiRGz+V5AKG2N7dgp7wCUwFBMNKJNcx7XZiErKUB/MXJdhXYRFbQRiDLh8gjnnZSrIbeb/JdbVub+LWgWty/pt3Xm+qjbuig7L5JSckXPikmvSIE+kSVqEkTH5IJ/ky3CNtuEZ/fmqUSo8J2RpjNEPbM7XLw==</latexit>

E
/�̃

<latexit sha1_base64="i1oyLICpZw5v/K78hdZvBqIZiZY=">AAACrnicrVHLSsNAFJ3GV42vVJdugqXgqiYiqLviA1xWsLbQhjKZ3rSDkwczN4USuvYn3Oo/+TdO0yxaK115YeBwzj3M4R4/EVyh43yXjI3Nre2d8q65t39weGRVjl9VnEoGLRaLWHZ8qkDwCFrIUUAnkUBDX0Dbf7uf6e0xSMXj6AUnCXghHUY84IyipvqW9XjRQy4GkPUeQCCd9q2qU3fysVeBW4AqKabZr5Tee4OYpSFEyARVqus6CXoZlciZgKnZSxUklL3RIXQ1jGgIysvy6FO7ppmBHcRSvwjtnDVrC5aMhkpNQl+vhhRHakWcsX+K3RSDGy/jUZIiRGz+V5AKG2N7dgp7wCUwFBMNKJNcx7XZiErKUB/MXJdhXYRFbQRiDLh8gjnnZSrIbeb/JdbVub+LWgWty/pt3Xm+qjbuig7L5JSckXPikmvSIE+kSVqEkTH5IJ/ky3CNtuEZ/fmqUSo8J2RpjNEPbM7XLw==</latexit><latexit sha1_base64="i1oyLICpZw5v/K78hdZvBqIZiZY=">AAACrnicrVHLSsNAFJ3GV42vVJdugqXgqiYiqLviA1xWsLbQhjKZ3rSDkwczN4USuvYn3Oo/+TdO0yxaK115YeBwzj3M4R4/EVyh43yXjI3Nre2d8q65t39weGRVjl9VnEoGLRaLWHZ8qkDwCFrIUUAnkUBDX0Dbf7uf6e0xSMXj6AUnCXghHUY84IyipvqW9XjRQy4GkPUeQCCd9q2qU3fysVeBW4AqKabZr5Tee4OYpSFEyARVqus6CXoZlciZgKnZSxUklL3RIXQ1jGgIysvy6FO7ppmBHcRSvwjtnDVrC5aMhkpNQl+vhhRHakWcsX+K3RSDGy/jUZIiRGz+V5AKG2N7dgp7wCUwFBMNKJNcx7XZiErKUB/MXJdhXYRFbQRiDLh8gjnnZSrIbeb/JdbVub+LWgWty/pt3Xm+qjbuig7L5JSckXPikmvSIE+kSVqEkTH5IJ/ky3CNtuEZ/fmqUSo8J2RpjNEPbM7XLw==</latexit><latexit sha1_base64="i1oyLICpZw5v/K78hdZvBqIZiZY=">AAACrnicrVHLSsNAFJ3GV42vVJdugqXgqiYiqLviA1xWsLbQhjKZ3rSDkwczN4USuvYn3Oo/+TdO0yxaK115YeBwzj3M4R4/EVyh43yXjI3Nre2d8q65t39weGRVjl9VnEoGLRaLWHZ8qkDwCFrIUUAnkUBDX0Dbf7uf6e0xSMXj6AUnCXghHUY84IyipvqW9XjRQy4GkPUeQCCd9q2qU3fysVeBW4AqKabZr5Tee4OYpSFEyARVqus6CXoZlciZgKnZSxUklL3RIXQ1jGgIysvy6FO7ppmBHcRSvwjtnDVrC5aMhkpNQl+vhhRHakWcsX+K3RSDGy/jUZIiRGz+V5AKG2N7dgp7wCUwFBMNKJNcx7XZiErKUB/MXJdhXYRFbQRiDLh8gjnnZSrIbeb/JdbVub+LWgWty/pt3Xm+qjbuig7L5JSckXPikmvSIE+kSVqEkTH5IJ/ky3CNtuEZ/fmqUSo8J2RpjNEPbM7XLw==</latexit>
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Figure 3.8: The ABS energies for purely ballistic junctions. We plot along the lines ϕ̃1 = ϕ̃2 =ϕ (left column) and
ϕ̃2 = −ϕ̃1 = ϕ (right column). The energies are doubly degenerate in the left column plots. In the right column,
the blue (red) color corresponds to right-(left-)moving electrons. The values of L/(vwτ) for the rows are: (a) 2.30,
(b) 0.8, (c) 0.35 (d) 0.05. We have taken the limit τ∆→ 0 disregarding the energy dependence of ξw. The zero
energy crossings visible in the right column is the main peculiarity of the purely ballistic case.
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3. OVERLAPPING ANDREEV STATES IN SEMICONDUCTING NANOWIRES:

COMPETITION OF ONE-DIMENSIONAL AND THREE-DIMENSIONAL PROPAGATION
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Figure 3.9: The ABS for the setup with purely ballistic junctions (r A = rB = 0) versus the phase of the third lead
ϕ3 for a set of different separations L. All parameters except tA,B are the same as for the plots in Fig. 3.4.



3.11. COMPETITION BETWEEN 1D AND 3D PROPAGATION
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arbitrary set of transmission amplitudes connecting the junctions A, B . The non-diagonal
matrix element M can be presented in the following form (cf. Eq. (3.33))

M = 1

2χ′(E0)
× (3.39)

×[e−i
θA

3 −θB
3

2 e iϕ3 the u+
Au+

B +e−i
θA

3 +θB
3

2 thhu+
Au−

B +

+e i
θA

3 +θB
3

2 tee u−
Au+

B +e i
θA

3 −θB
3

2 e−iϕ3 tehu−
Au−

B ].

The Eq. (3.33) is reproduced if we leave here only the direct 1D propagation amplitudes
substituting t eh = t he = 0, t ee = t e

L , t hh = t h
R , with t e

L ,t h
R taken from Eq. (3.24).

We need to add the 3D amplitudes. We choose two points in the lead r A and rB , that are
close to the corresponding junctions. The matrix of four transmission amplitudes is related
to the Green’s function describing the propagation between the points as follows[23]:

tAB = i

2πν
G3(r A ,rB ), (3.40)

ν being the density of states in the lead per one spin direction. Owing to the assumption of
the uniform order parameter, the Green’s function G3(r A ,rB ) can be related to the quantum
propagator P (r A ,rB ,ξ) defined in terms of the exact electron wavefunctions Ψn(r ) in the
normal state,

P (r A ,rB ,ξ) =∑
n
Ψ∗

n(r A)Ψn(rB )δ(ξ−ξn), (3.41)

and thus expressed in terms of the electron propagation in the normal state,

G3(r A ,rB ) = (3.42)

=
∫

dξP (r A ,rB ,ξ)
1

ξ2 +∆2 −E 2

(
E +ξ ∆e iϕ3

∆e−iϕ3 E −ξ
)

,

Using Eq. (3.40), we define two 3D amplitudes Ae and Ao for the diffusive case as

Ae =
∫

dξ

2πν

p
∆2 −E 2

ξ2 +∆2 −E 2 P (r A ,rB ,ξ), (3.43)

Ao =
∫

dξ

2πν

ξ

ξ2 +∆2 −E 2 P (r A ,rB ,ξ). (3.44)

Those are real in the subgap region |E | < ∆ provided we assume time reversibility in
the normal state. For the energies above the gap, Ae becomes imaginary and these two
amplitudes can be related to real and imaginary parts of an electron wave at rB , that is
emitted from a source at rA . With this, the transmission amplitudes are represented as the
sum of the 1D propagation amplitudes and two random 3D amplitudes Ae,o taken with
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proper coefficients,

tee = i Ep
∆2 −E 2

Ae + i Ao +e i kF L(1−e2iχ)e−L/ξw , (3.45)

teh = i∆e iϕ3

p
∆2 −E 2

Ae, (3.46)

the = i∆e−iϕ3

p
∆2 −E 2

Ae, (3.47)

thh = i Ep
∆2 −E 2

Ae − i Ao +e−i kF L(1−e2iχ)e−L/ξw . (3.48)

To obtain the variances of the random Ae,o we implement the relation between the
product of two quantum propagators and the semiclassical propagator P (r A ,rB , t ), that
gives the probability for a particle to be at the point rB at the time moment t , provided it is
at r A in the time moment 0. This relation was implemented in Ref. [13] and reads

ν

2π

∫
d tP (r A ,rB , t )e i (ξ−ξ′)t = P (rB ,r A ,ξ)P (r A ,rB ,ξ′). (3.49)

With this, the variances are given by

〈A2
e〉 = 〈A2

o〉 =
1

8πν

∫
P (r A ,rB , t )e−2

p
∆2−E 2|t |d t , (3.50)

〈Ae Ao〉 = 0. (3.51)

Simply enough, Ae and Ao are independent variables with equal variations.
There is a remarkably simple and general expression for the variances valid in the

limit L ≪ ξs, that is, for the separations much smaller than the correlation length in the
superconductor. In this case, we can replace the factor e−2

p
∆2−E 2|t | with 1. Let us regard

the lead in the normal state as a distributed conducting media earthed far from the points
rA,B . Let us inject the current I A in the point rA and measure the voltage VB at the point rB .
This defines a three-point resistance R ≡ VB /I A . Considering kinetics of the semiclassical
electron motion, we can express R in terms of the semiclassical propagator,

R = 1

2e2ν

∫ ∞

0
P (r A ,rB , t )d t . (3.52)

The variances are expressed in terms of this resistance,

〈A2
e〉 = 〈A2

o〉 =
GQR

2
. (3.53)

This expression does not depend on the geometry and resistivity distribution in the lead.
To give a simple formula that describes the competition regime, let us assume E ≪ ∆,

ballistic junctions, and sgnϕ̃1 =−sgnϕ̃2. Under these assumptions,

M = ∆̃
[
−i Ao +2e−i kF Le−L/ξw

]
, (3.54)
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and the energy splitting is given by

(δE)2 = 4∆̃2
[

4e−2L/ξw + A2
o +4Ao sin(kF L)e−L/ξw

]
. (3.55)

Let us note the presence of interference effect that was absent for 1D consideration of
ballistic junctions. It arises due to the absence of momentum conservation in the course
of 3D propagation. The 1D and 3D propagation provides in average the same contribution
into the energy splitting provided e−L/ξw =√

GQR/8.
In Ref. kornich:prr19 we have addressed the situation L ≃ ξs assuming a concrete model

of a quasi-2D lead of width L, thickness d ≪ L, and resistance per square R□, rA ,rB being
at the corners of the lead. The classical propagator in this case reads:

P (r A ,rB , t ) = 1

dL

√
1

πD|t |
∞∑

n=−∞
(−1)ne−D π2

L2 n2|t |, (3.56)

D being the diffusion coefficient, D = (2e2νdR□)−1.
We neglect the contribution of 1D transmission and find from Eq. (3.39) the average

energy splitting

(δE)2 = 1

2(χ′(E0))2 MGQReffF

(
L

ξL

)
, (3.57)

M = 1

∆2 −E 2 [∆2 + (3.58)

+2E∆[u−
Au+

A cosθA
3 +u−

B u+
B cosθB

3 ]+
+2u+

Au−
Au+

B u−
B (∆2 cos(θA

3 −θB
3 )+

+(2E 2 −∆2)cos(θA
3 +θB

3 ))],

where, conform to the definitions of Ref. kornich:prr19 Reff = R□ξL/L, F (z) = 4z/π
∑∞

n=0 K0((2n+
1)z), F (0) = 1. This generalizes Eq. (6) of that work to the case of arbitrary scattering
matrices. A calculation error in Eq. (6) is corrected by dividing its r.h.s. by π.

3.12. CONCLUSIONS
In this work, we present a detailed study of the ABS spectrum in the three-terminal Andreev
molecule setup concentrating on the effects of 1D propagation in the wire and on the
competition of 1D and 3D propagation. We have identified several regimes for various
relations of the junction separation L as compared with the correlation lengths ξw,ξs in the
nanowire and in the superconducting lead. We have presented the details of ABS spectum
in these regimes and discussed the crossovers between the regimes. In particular, we
have discussed the limits of weak and strong 1D hybridization, the interference effect, the
emergence of the upper ABS from the continuous spectrum, and detailed the competition
of 1D and 3D transmissions seen in the hybridization of the ABS. Our results facilitate
the experimental realization of the setup where the presence of the discrete ABS and the
peculiarities of their spectrum can be used for quantum sensing and manipulation.
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If it wasn’t for bad luck,
I would have no luck at all.

Albert King

This chapter has been published as Supercurrent in the presence of direct transmission and a resonant localized
state [1] and the data is available on https://zenodo.org/record/5879475#.YfunmC8w2_U.

63

https://zenodo.org/record/5879475#.YfunmC8w2_U


4

64
4. SUPERCURRENT IN THE PRESENCE OF DIRECT TRANSMISSION AND A RESONANT

LOCALIZED STATE

4.1. SCOPE, STYLE AND STRUCTURE OF THE CHAPTER
In its present form, this Chapter is not intended for a submission to a journal. We believe
that the theory developed here is worth a journal publication only together with the account
of experimental activities, and full comparison of experimental and theoretical findings.
This publication is in preparation.

We also find the model to be of significant general interest for current research in
superconducting nanostructures. Despite the basic simplicity, the derivation of the model
and elaboration on concrete results invokes a big number of technical details which are not
normally given in a journal publication. So we chose to share our results in the present form
that gives a full account of these technical details.

The structure of the Chapter is as follows. In Section 4.2, we give a short summary of
our impression of the experimental results. We explain motivation of the model and list its
key ingredients in Section 4.3. The Hamiltonian formulation is given in Section 4.4. In
Section 4.5 we derive the Landauer description of normal electron transport for an arbitrary
number of dots and leads. We specify to two-dot, two-lead model in Section 4.6 where we
perform the necessary derivations to adjust the model to the situation at hand for the case
of normal transport. The illustrative normal transport examples are given in Section 4.7.
We turn to theoretical description of superconducting transport in Section 4.8 and describe
our numerical methods in Section 4.9. The most important Section ?? prodives several
examples of superconducting transport. We conclude in Section 4.10.

4.2. SHORT SUMMARY OF EXPERIMENTAL OBSERVATIONS
Let us shortly present the essence of experimental findings that inspired us to elaborate
on the model. These experiments have been performed by V. Levajac, J. Y. Wang, L.P.
Kouwehnoven, and other members of their team at QuTech, Delft University of Technology.
The proper account of the experiments will be published elsewhere. Here we present our
personal (theoretical) impression of the results.

The setup involves two superconducting junctions made by covering a semiconducting
nanowire with superconducting electrodes. The junctions are enclosed in a SQUID loop that
enables to characterize the dependence of the currents in the junctions on the superconducting
phases changing the magnetic flux in the loop. A substantial magnetic field can be also
applied in the plane of the substrate. There are gate electrodes affecting the junctions
separately. The measurement is a simple voltage measurement at a given current bias.
(Fig. 4.1 a). From this, one can inherit the critical current of two junctions in parallel.
Another parameter that can be varied in this experiment is the magnetic field in the plane
of substrate, parallel field.

Naturally, the supercurrents vary smoothly upon changing the gate voltages at various
magnetic fields. This is explained by depletion/addition of electron density to the junction
that closes/opens the transport channels and modulates their transparency. The conductances
of the junctions are several GQ ≡ e2/πħ suggesting 1-2 open transport channels. An unusual
observation the experimentalists share with us is a sharp dependence of the supercurrent
upon changing one of the gate voltages in a narrow interval. In this interval, the change of
the electron energies induced by the gate voltage is of the order of 1meV, that is comparable
with the value of the superconducting gap and Zeeman energy coming from the parallel
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field.
Some data can be interpreted as two close 0−π transitions in this narrow interval of

gate voltages. In an idealized case (which is not necessary an experimental one) where the
supercurrents through the junctions differ much in the magnitude, the I −φ dependence
of the Josephson current in the junction with smaller current can be directly seen in the
dependence of the critical current on the flux Φ in the SQID loop. If one changes the
gate voltage controlling the smallest junction, the observation could be then summarized
as follows (Fig. 4.1 b): i. the positions of supercurrent minima are close to Φ0/4+nΦ0

indicating the minimum of Josephson energy at φ= 0 ii. π-shifted dependence in the middle
of the interval indicating the minimum of Josephson energy at φ=π iii. Double periodicity
of the current at the borders of the interval.

Such pairs of close 0−π transitions occur may occur several times at different gate
voltage settings. The widths of the interval increases upon increasing the parallel magnetic
field. Sometimes the transitions merge and disappear at small magnetic field. Sometimes
the effect persists even at zero field.

4.3. THE MOTIVATION AND ESSENCE OF THE MODEL
The sharp dependence on the gate voltage in a narrow interval suggest that a localized state
is involved. The gate voltage shifts its energy level with respect to Fermi energy. Beyond
the interval, the state is either empty or occupied and hardly participates in transport, either
normal or superconducting. In the interval, resonant transport occurs via the state. The
width of the interval is set by either Γ, the width of the level due to escape to the leads, or
∆, the superconducting energy gap.

There are known mechanisms of 0−π transitions involving a localized state. First one
is due to spin splitting of Andreev states in magnetic field. If the splitting is of the order of
∆, the curvature of Andreev levels at zero phase may be inverted, and the Josephson energy
achieves minimum at φ=π rather than zero. If interaction in the localized state is essential,
the state is single-occupied in an interval of the gate voltage, and the minimum of Josephson
energy may be at φ = π in this interval (Contrary to a popular belief, this is not always
true for a single-occupied state). These mechanisms are not mutually exclusive but rather
related: in a mean-field approximation, the interaction may be described as a spin splitting,
and the field-induced splitting leads to single occupation if the chemical potential is between
the split levels. This provides extra motivation to explain the experimental observation with
a localized state.

However, the situation is obviously more complex than just the transport through a
localized state. At least a single transport channel is open when the localized state becomes
resonant. A very simplistic model would be independent parallel transport in the localized
state and in the channel. This model, however, is not flexible enough to fit the experimental
data. We need to take into account interference of transmissions through the channel and
the resonant states.

A motivation for this also comes from the presumed geometry of electron distribution
in the nanowire: the localized states are most likely appear in random potential minima of
a nanowire part where the density is depleted. (Fig. 4.2 a) Electron tunneling from these
minima may proceed to the leads as well as to the transport channel. There may be many
such minima that are subsequently filled upon changing the gate voltage giving rise to many
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Figure 4.1: a. Scheme of the setup (not in scale). Two semiconducting wires (black) are covered with a
superconducting film (light grey) forming two Josephson junctions in a SQUID loop. The wires are affected
by the voltages applied to the gate electrodes (dark grey).The loop is penetrated by magnetic flux Φ. The parallel
magnetic field B may be applied. b. An intriguing observation: a pair of 0−π transitions in a narrow interval of a
gate voltage. The curves give the dependence of critical current on the flux in the loop for a set of increasing gate
voltages and are offset for clarity.
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Figure 4.2: a. Cross-section of the wire. Geometry of electron distribution in the wire and the leads. The filled
states are given in black. The electron density is depleted near the wire surface. Random potential minima are
either filled (small black regions) or empty (regions with dashed boundaries). The resonant state is given in dark
grey. b. Essential parameters of the two-dot model in use. The second dot is only use to simulate a transport
channel with a transmission not depending on energy, so that the tunnel rates ΓR,L

1,2 and the positions of the dot

energy levels with respect to Fermi level, E1,2, satisfy ΓR,L
2 ,E2 ≫∆≃ ΓR,L

1 ,E1. There is also tunneling κ between
the dots, and the tunneling rates γR,L that cannot be ascribed to a certain dot.



4

68
4. SUPERCURRENT IN THE PRESENCE OF DIRECT TRANSMISSION AND A RESONANT

LOCALIZED STATE

localized states. We note that only the states with the escape rate Γ≃∆ may be responsible
for the observed peculiarity. Those with Γ≫∆ modify the transport smootly at the energy
scale Γ, so at the energy scale ∆ that is relevant for superconducting transport would only
cause the renormalization of the transmission coefficients of the transport channels. Those
with Γ≪ ∆ modify the transmission only in a narrow energy interval: this would not give
rise to Andreev states that require significant transmission at two opposite energies (for
electrons and holes).

To formulate a practical model encompassing the channel and the localized state, we
note that the transport channel can be conveniently modelled with a localized state as well,
provided the escape rate of this state Γ2 by far exceeds ∆. So we elaborate the model that
encompasses two localized states, or dots, that are connected to two leads by tunnelling.
Before writing any Hamiltonians, let us list most important parameters of the model (see
Fig. 4.2 b). Two dots are at energy levels E1,2 and are connected to left and right lead
by tunneling with the rates ΓL,R

1,2 . There is a direct tunnel coupling κ between the dots.
Important non-trivial element are tunneling rates γL,R that can not be ascribed to a certain
dot but are requied to describe tunneling of a superposition state of to dots. Since the second
dot is here only to model a channel, the model only makes sense under assumption ΓL,R

2 ≫
ΓL,R

1 ,E1. Owing to this, we can neglect the influence of the gate voltage and magnetic field
on E2. The parameters κ,γ are at intermediate scale, κ,γ≃p

Γ1Γ2.
The most important interaction in this model is the on-site interaction in the localized

state. It would be tempting to neglect this interaction, since we cannot treat it exactly.
Besides, the localized state is near the transport channel so the interaction should be strongly
suppressed by screening. However, the 0−π transition pairs are sometimes observed at zero
magnetic field, this suggest that interaction should play a role. We compromise by treating
the on-site interaction in a simple mean-field approach.

The bandstructure of the semiconductor material of the wire provides strong spin-orbit
interaction that we also include to the model. The coefficients κ,γL,R therefore posses the
corresponding spin structure.

4.4. HAMILTONIANS
In this Section, we give the Hamiltonians of the constituents of our model.

4.4.1. THE SINGLE DOT

We start with a dot Hamiltonian. It involves on-site annihilation operators d̂α, α being the
spin index, and reads

ĤD = d̂ †
αHαβd̂β+U n̂↑n̂↓ (4.1)

n̂α = d̂ †
αd̂α. The single-particle Hamiltonian reads

Ȟ = E +B ·σ

B being the magnetic field, σ being the vector of Pauli matrices.
Importantly, we treat the interaction in the mean-field approximation. If there is a

natural quantization axis (that can be absent in the presence of SO interaction in the coupling
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to the leads), the mean field gives the following additions to the single-particle Hamiltonian,

H↑↑ =U 〈n̂↓〉; H↓↓ =U 〈n̂↑〉. (4.2)

In general situation,
Hαβ =U

(
δαβ〈N̂〉−〈d̂ †

αd̂β〉
)

(4.3)

The advantage of this mean-field scheme is that it delivers exact results in the absence
of tunnel coupling. In particular, at zero magnetic field the ground state corresponds to
single occupation of the dot in the interval U > E −µ > 0. At the ends of the interval,
sharp transitions bring the dot to the states of zero and double occupation. The scheme is
approximate in the presence of tunnel coupling, yet we use it for the lack of better general
approach to interaction.

4.4.2. THE LEADS
We introduce annihilation operators in the leads ĉk,α where k labels the states of quasi-
continuous spectrum in the leads. The states k are distributed over the leads, those are
labelled with a. We assume the states k are invariant with respect to time inversion.

The leads are described by the usual BSC Hamiltonian

Ĥleads =
∑
k
ξk ĉ†

k,αĉk,α+
∑
a

∑
k∈a

(
∆∗

a ĉk,↑ĉk,↓+h.c
)

(4.4)

ξk are the energies of the corresponding states. The superconducting order parameter ∆a is
different in different leads. To describe normal leads, we just put ∆a = 0.

4.4.3. TUNNEL COUPLING
The tunnel coupling to the states is described by the following Hamiltonian

ĤT =∑
k

ĉ†
k,αt k

αβd̂β+h.c (4.5)

For time-reversible case, the tunnel amplitudes are given by

ť = tk + i tk ·σ (4.6)

with real tk ,tk . Of course, the multitude of tunneling amplitudes comes to the answers only
in a handful of parameters. One of such parameters is the decay rate from the dot to the
continuous spectrum of the lead a,

Γa(ϵ) = 2π
∑
k∈a

(|tk |2 +|tk |2
)
δ(ξk −ϵ) (4.7)

One can disregard the dependence of the rates on the energy ϵ.

4.5. NORMAL TRANSPORT FOR MANY DOTS
In this Section, we will derive the currents in the nanostructure assuming the leads are
normal and are kept at different filling facts. We do this derivation for an arbitrary number
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of the leads and dots, and later specify this for two dots and two terminals. Let us consider
the following Hamiltonian where we do not specify spin or dot structure

Ĥ =∑
k
ξk ĉ†

k ck + d̂ †
αHαβd̂β+

∑
k

(ĉ†
k t kβd̂β+h.c) (4.8)

The Heisenberg equations read

i ˙̂ck = ξk ĉk + tkαd̂α (4.9)

i ˙̂dα = Hαβd̂β+ t∗kαĉk (4.10)

The current operators are thus given by

Îa = ∑
k∈a

−i tkαd̂ †
k ĉα+h.c. (4.11)

We solve for operators ĉk ,

ĉk (t ) = ĉ0e−i xik t +
∫

d t ′gk (t , t ′)tkαd̂α(t ′),

gk (t , t ′) ≡−i e−iξk (t−t ′), and subsequently for d̂α,

d̂α(t ) =
∫

d t ′Gαβ(t , t ′)t∗βk e−iξk t ′ d̂ 0
k

where the Green’s function obeys(
i∂t − Ȟ − Σ̌)

Ǧ = δ(t − t ′) (4.12)

and
Σ̌(t , t ′) =∑

k
t∗kαgk (t , t ′)tkβ. (4.13)

It is also useful to introduce partial Σ that describe the decay to a certain lead,

Σ̌a(t , t ′) = ∑
k∈a

t∗kαgk (t , t ′)tkβ (4.14)

. With this,

ĉk (t ) = c0
k e−iξk t

+gk (t , t ′)tkαGαβ(t ′, t ′′)t∗k ′βe−iξk′ t ′′ ĉ0
k ′ (4.15)

in the above expression, we assume summation over t ′, t ′′,k ′. We substitute this into
the current operator, average over the quantum state replacing 〈ĉ0†

k ĉ0
k〉 = fk and get two

contributions corresponding to two terms in Eq. 4.15. The contribution A depends only on
the filling factor in the lead a and reads

I a
A = Tr

(
Ǧ(t , t ′)F̌ a(t ′, t )− F̌ a(t , t ′) ˇ̄G(t , t ′)

)
(4.16)
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where Ḡ(t , t ′) ≡G†(t ′, t ),

F̌ a(t , t ′) = ∑
k∈a

t∗kαtkβ fk e−iξk (t−t ′) (4.17)

The contribution B depends on filling factors in all leads

I a
B = Tr

(
Ǧ(t , t ′)

∑
b

F̌ b(t ′, t ′′) ˇ̄G(t ′′, t ′′′)Σ†
a(t ′′′, t )

−Σa(t , t ′)Ǧ(t ′, t ′′)
∑
b

F̌ b(t ′′, t ′′′) ˇ̄G(t ′′′, t )

)
(4.18)

We switch to the energy representation. To deal with the tunnel amplitudes, we will use the
following relation

Γ̌a(ϵ) = 2π
∑
k

t∗kαtkβδ(ϵ−ξk ) (4.19)

Γ̌a characterizing the decay from all dots to the lead a. Conventionally, we will disregard
the energy dependence of Γ (since we are working close to the Fermi level). With this,

F̌ a =−i Γ̌a fa(ϵ); Σ̌a =− i

2
Γ̌a , (4.20)

where we have taken into account that the filling factor depends on energy only, and
disregarded real part of Σ (that would lead to a renormalization of the dot Hamiltonian).
With this, the Green function is given by

Ǧ = 1

ϵ− Ȟ + i Γ̌/2
; (4.21)

Γ̌≡∑
a Γ̌a . The B contibution for the current for all b ̸= a can be written as

Ia/e = ∑
b ̸=a

∫
dϵ

2π
Pab(ϵ) fb(ϵ) (4.22)

Pab being the probability to scatter from all channels of terminal b to the channels of
terminal a,

Pab(ϵ) = Tr{Γ̌aǦ(ϵ)Γ̌b ˇ̄G(ϵ)} (4.23)

This is in accordance with the corresponding part of Landauer formula for multi-terminal
case. The contibution A reads:

I a
A/e =−i

∫
dϵ

2π
fa(ϵ)Tr{Γ̌a(Ǧ − ˇ̄G)} (4.24)

We use the relation
Ǧ − ˇ̄G =−iǦΓ̌ ˇ̄G (4.25)

to represent the contribution A in the form

I a
A/e =−

∫
dϵ

2π
fa(ϵ)

∑
b

Pab(ϵ) (4.26)
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summing everything together, we reproduce the Landauer formula

Ia/e =
∫

dϵ

2π

∑
b ̸=a

Pab(ϵ)( fa(ϵ)− fb(ϵ)) (4.27)

Let us construct a scattering matrix corresponding to the situation. The scattering to a
terminal a is described by Γ̌a . Let us represent this matrix as Γ̌a = W̌ †

a W̌a . The matrix W̌a

is a matrix where the second index goes over the dots and the first one over the channels of
the terminal a. This is of course an ambiguous representation, but so the scattering matrix
is (tell more about?) We combine all matrices Wa block by block to the matrix W where
the first index goes over all channels in all terminals. We note W̌ † W̌ = Γ̌. With this, a
scattering matrix describing the situation reads

Š = 1− iW̌ ǦW̌ † (4.28)

Its unitarity can be proven with using the relation (4.25).

4.6. NORMAL TRANSPORT FOR TWO DOTS
The case of the two dots, two terminals seems trivial but requires some elaboration for the
limit where Γ in the dots are very different, this is the case under consideration. To warm
up, let us specify to a single dot. We note that Γa in this case are diagonal in spin owing to
time-reversability and can be regarded as numbers. The transmission probability from the
left to the right (or vice versa) can be written as

T0(ϵ) = ΓLΓR

(ϵ−E)2 +Γ2/4
(4.29)

The ideal transmission is achieved at ΓL = ΓR = Γ/2 and ϵ= E . Let us go for two dots and
list possible parameters of the model. Those are: level energies (split in spin) E1 +B1 ·σ,
E2 +B1 ·σ, decays from the dots Γ1 = ΓL

1 +ΓR
1 , Γ2 = ΓL

2 +ΓR
2 , tunneling between the dots

κ+ iκ ·σ, and non-diagonal tunneling to the leads Γ12,21 ≡ γ± iγ ·σ. Let us write down the
Green’s function:

Ǧ−1 = ϵ−
[

H1 H12

H †
12 H2

]
(4.30)

H1,2 ≡ E1,2 +B1,2 ·σ− iΓ1,2/2 (4.31)
H12 ≡ κ+ iκ ·σ− i (γ+ iγ ·σ)/2 (4.32)

The idea of further transform is that the second dot provides a featureless background for
the first dot. To this end, we consider big E2,Γ2 ≫ ϵ,B2,E1,Γ1 As to γ,κ, they are assumed
to be of an intermediate scale, say γ≃p

Γ1Γ2.
We will apply a transform that approximately diagonalises the Green function so that

Ǧ = ǓǦdǓ−1 (4.33)
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where

Ǔ =
√

1+ s

2s

[
1 η+

−η− 1

]
; (4.34)

Ǔ−1 =
√

1+ s

2s

[
1 −η+
η− 1

]
(4.35)

and

η± = µ±
1+ s

; s ≡√
1+µ+µ−; (4.36)

µ± = 2
k ±k ·σ

−E2 + iΓ2/2
; (4.37)

k,k ≡−κ+ iγ/2,−κ+ iγ/2 (4.38)

with this, the biggest block of Ǧ−1
d is −E2 + iΓ2/2, while the smallest one reads

ϵ−E1 + iΓ1/2− k2 +k2

−E2 + iΓ2/2
(4.39)

We rewrite it as
ϵ−E1 + iΓ/2−∆E1 (4.40)

where the actual level width Γ is given by

Γ= Γ1 + Γ2C11 −2E2C10

E 2
2 +Γ2

2/4
; (4.41)

C11 ≡ κ2 −γ2/4+κ2 −γ2/4; (4.42)
C10 ≡ κγ+κγ (4.43)

and we neglect insignificant shift of the level position

∆E1 =−C10Γ2/2+C11E2

E 2
2 +Γ2

2/4
(4.44)

The Γa matrices are transformed as Γ̌L → Ǔ †Γ̌LǓ , Γ̌L → Ǔ−1†Γ̌LǓ−1.
Keeing terms of the relevant orders only, we obtain

Γ̌L =
[

gL Γ+L
12 −η∗−ΓL

2
Γ−L

12 −ΓL
2η− ΓL

2

]
(4.45)

gL ≡ ΓL
1 −Γ+L

12 η−−η∗−Γ−L
12 +η∗−ΓL

2η− (4.46)

Γ̌R =
[

gR Γ+R
12 −η+ΓR

2
Γ−R

12 −ΓR
2 η

∗+ ΓR
2

]
(4.47)

gR ≡ ΓR
1 −Γ+R

12 η
∗
+−η+Γ−R

12 +η+ΓR
2 η

∗
+− (4.48)
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With this, we can summarize the results for the total transmission coefficient Ttot

(summed over two spin directions). We introduce compact notations that adsorb the energy
dependence of the coefficient:

G± = 1

ϵ−E1 ±B + iΓ/2
; (4.49)

Gs,a = G+±G−
2

; Ḡi =G∗
i (4.50)

and write it down as

Ttot (E) = 2T0

+(ΓLΓR +Γ2)(G+Ḡ++G−Ḡ−) (4.51)
+2((Γ ·B )2/B 2 −Γ2)GaḠa (4.52)
+R X (G++G−+Ḡ++Ḡ−) (4.53)

−I X Im(G++G−−Ḡ+−Ḡ−) (4.54)

Here, the partial decay rate read (ΓL +ΓR = Γ)

ΓL = ΓL
1 +

C1Γ
L
2 −C L

3Γ2 −2E2C L
2

E 2
2 +Γ2

2/4
(4.55)

C1 ≡ κ2 +γ2/4+κ2 +γ2/4 (4.56)
C L

2 ≡ κ ·γL +γLκ (4.57)
C L

3 ≡ γ ·γL +γγL , (4.58)

and similar for R. The spin-orbit interaction is represented by the vector Γ,

Γ = E2C5 +κC4 +C6 ×κ+κC6

E 2
2 +Γ2

2/4
(4.59)

C4 = ΓL
2γR −ΓR

2 γL (4.60)
C5 = γRγL −γLγR +γR ×γL (4.61)
C6 = ΓR

2γL −ΓL
2γR (4.62)

and the coefficients R X , I Y read

R X = 1

E 2
2 +Γ2

2/4
(−E2C7 +κC8 +κ ·C9

−T0(E2C11 +C10Γ2/2)) (4.63)

I X = 1

E 2
2 +Γ2

2/4
(−C7Γ2/2+γC8/2+

γ ·C9/2−T0(E2C10 −C11Γ2/2)) (4.64)
C7 = γRγL +γR ·γL (4.65)

C8 = ΓL
2γR +ΓR

2 γL (4.66)

C9 =γRΓ
L
2 +γLΓ

R
2 (4.67)
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We will explain the physical significance of each term in Eq. 4.54 in the next Section.
To treat the interaction self-consistently, we also need the average charge and spin in

the dot,
〈d̂ †

αd̂β〉 ≡ nδαβ+n ·σ (4.68)

This is given by

ň =
∫

dϵ

2π
Ǧ

(
(ΓR +Γ ·σ) f R (ϵ)

+ (ΓL −Γ ·σ) f L(ϵ)
)

(4.69)

This can be rewritten in more detail as (b = B/B)

n =
∫

dϵ

2π

(
(GsḠs +GaḠa)(ΓR f R (ϵ)+ΓL f L(ϵ))

+ (b ·Γ)(GaḠs +GsḠa)( f R (ϵ)− f L(ϵ))
)

(4.70)

n =
∫

dϵ

2π

(
2b(b ·Γ)GaḠa +Γ(GsḠs −GaḠa)+

(b ×Γ)i (GaḠs −GsḠa))( f R (ϵ)− f L(ϵ))

+ b(GaḠs +GsḠa)(ΓR f R (ϵ)+ΓR f R (ϵ)
)

(4.71)

We substitute filling factors at vanishing temperature f L,R =Θ(eVL,R − ϵ) and integrate
over ϵ to obtain n,n and full current. It is also advantageous at this stage to switch to
dimensionless variables measuring energy in units of Γ and setting e = 1. We introduce
convenient functions

K ±
R,L = 1

2π
atan(2(VR,L −ϵd ±B)); (4.72)

L±
R,L = 1

2π
ln(4(VR,L ±B)2 +1); (4.73)

L± = L±
R −L±

L ; K ± = K ±
R −K ±

L . (4.74)

With this,

n = ∑
k=L,R

Γk (1/2+K +
k +K −

k )

+ (b ·Γ)(K ++K −), (4.75)
n = b

(
ΓR (K −

R −K +
R )+ΓL(K −

L −K +
L )

)
+ Γ

1+4B 2

(
K ++K −+B(L−−L+)

)
+ (b×Γ)

2(1+4B 2)

(
B(K ++K −)+L+−L−)

+ 2b(b·Γ)B
1+4B 2

(
4B(K ++K −)+L+−L−)

(4.76)

The self-consistency equations then read:

ϵd =Un; B = B0 −U n (4.77)
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Figure 4.3: The domain of magnetic phase.

B0 being the external magnetic field. This equation has to be solved at each VR,L . With this
solution, we can evaluate the current

I = T0(VL −VL)/π+2(ΓLΓR +Γ2)(K ++K −)

+ 4((Γ ·b)2 −Γ2)
B

1+4B 2

× (
4B(K ++K −)+L+−L−)

+ R X (L++L−)− I X (K ++K −)/2 (4.78)

Let us elaborate on the equilibrium case VR = VL = µ. The terms with spin-orbit
interaction do not appear in this case and the self-consistency equations read (K̃ = K R = K L)

ϵd =U (1/2+ K̃ ++ K̃ −); (4.79)
B = B0 −bU (K̃−− K̃+) (4.80)

We specify to B0 = 0 and determine the boundary of spontaneously magnetic phase where
B → 0. In this limit,

K̃−− K̃+ →−B
2

π

1

1+4(µ∗)2 ;µ∗ =µ−ϵd (4.81)

with this, the equations for the boundary read

U = (1+4(µ∗)2)
π

2
; (4.82)

µ=µ∗+U (1/2+ (1/π)atan(2µ∗)) (4.83)

An implicit plot is given in Fig 4.3. The splitting occurs above critical value Uc = π/2, at
large U the magnetic phase occurs in the interval µ= (0,U ) as it should be.
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4.7. NORMAL TRANSPORT EXAMPLES
In this Section, we will analyse the peculiarities of normal transport in the model at hand.
We restrict ourselves to zero-voltage conductance and non-interacting case where zero-
voltage conductance is simply given by Ttot at ϵ corresponding to Fermi level,

G(Vg ) = GQ

2
Ttot (ϵ= EF ). (4.84)

Since E1 is a linear function of the gate voltage, and shift of ϵ in Eq. 4.54 is equivalent to
the shift of E1, the energy dependence of Ttot directly gives the gate voltage dependence
of the conductance. The conductance with interaction is qualitatively similar to the non-
interacting one since the main effect of interaction in our model is the spin-splitting corresponding
to B ≃U .

Let us explain the physical significance of the terms in Eq. 4.54. All spin-orbit effects
are incorporated into a single vector Γ in the spin space. To start with, let us neglect the
spin-orbit interaction setting Γ= 0, so we can disregard the third term. In this case, Ttot is
contributed independently by spin orientations ± with respect to B . Their contributions are
shifted by 2B in energy.

The first term in Eq. 4.54 gives the featureless transmission of the transport channel and
asymptotic value of the conductance at |E1| ≫ Γ. The second term describes the resonant
transmission via the localized state and would show up even if there is no interference
between the transmissions through the channel and the localized state. It rives rise to a
Lorentzian peak - resonant transmission - of the width ≃ Γ in conductance that splits into
two at sufficiently big spin splitting ≃ Γ. Let us bring the fifth term into consideration.
Since G − Ḡ = −iΓGḠ its energy dependence is identical to the second one. However, it
usually gives a negative contribution to transmission describing destructive interference of
the transmissions in the dot and in the channel - resonant reflection.

The fourth term describes the celebrated Fano effect coming about the interference
of the resonant and featureless transmission. It is visually manifested as asymmetry of
otherwise Lorentzian peaks or dips. The antisymmetric Fano tail ∝ ϵ−1 at large distances
from the peak/dip centre beats Lorentzian tail ∝ ϵ−2. All these terms are hardly affected
by spin-orbit interaction, while the second one manifests it fully. It mixes up spin channels
and makes conductance to depend on the orientation of B with respect to Γ.

We illustrate the possible forms of the conductance energy/gate-voltage dependence
with the plots in Fig. 4.4 for 4 settings of the parameters ΓL,R

2 ,E2,κ,κ,γL,R ,γL,R . Owing to
separation of the scales assumed, the relevant parameters ΓL,R ,Γ,R X , I X are invariant with
respect to rescale with the factor A,

ΓL,R
2 ,E2 → A(ΓL,R

2 ,E2) (4.85)

κ,κ,γL,R ,γL,R →
p

A(κ,κ,γL,R ,γL,R ). (4.86)

For all settings, energy is in units of the resulting Γ. For each setting, we give the plots at
B = 0 and B = 2Γ, the latter to achieve a visible separation of resonant peculiarities. Spin-
orbit interaction is weak except the last setting where we give separate plots for B ∥ Γ and
B ⊥Γ.

For Fig. 4.4 a we choose ΓL
2 ,ΓR

2 ,E2 = A(0.2,0.8,0.5), κ,γL ,γR =p
A(0.5,0.2,0.2), ΓL

1 ,ΓR
1 =

1.6,3.5. We also specify small but finite spin-orbit terms yet they hardly affect the conductance.
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In this case, the transmission through the localized state is faster than the interference with
the transmission in the channel. This results in a resonant reflection peak at B = 0 that splits
into two upon increasing the magnetic field. A little Fano asymmetry can be noticed upon
a close look.

For Fig. 4.4 b we choose ΓL
2 ,ΓR

2 ,E2 = A(0.5,0.5,0), κ,γL ,γR =p
A(3.5,0.2,0.2), ΓL

1 ,ΓR
1 =

0.5,0.5. The transmission trough the channel is ideal, T0 = 1, the localized state is connected
to the channel better than to the leads. This results in a pronounced resonant reflection dip
at B = 0 that also splits into two upon increasing the magnetic field.

For Fig. 4.4 c we choose ΓL
2 ,ΓR

2 ,E2 = A(0.2,1.5,0), κ,γL ,γR =p
A(1.5,0.3,0.1), ΓL

1 ,ΓR
1 =

0.8,0.1. This choice is such that the competing processes of resontant transmission and
reflection almost compensate each other so the resulting resonance peculiarity assumes
almost antisymmetric Fano shape. The separation of the peculiarities upon the spin splitting
is less pronounced than in the previous examples owing to long-range Fano tails mentioned.

We illustrate the effect of strong spin-orbit interaction in Fig. 4.4 d. We choose
ΓL

2 ,ΓR
2 ,E2 = A(0.2,0.8,0.5), κ,γL ,γR =p

A(0.5,0.2,0.2), ΓL
1 ,ΓR

1 = 1.6,3.5. As to spin-dependent
parameters, we choose κ=p

ASO[0,0.2,−0.6], γL =p
ASO[0.3,0,0], γR =p

ASO[0.0,0,1]
and set the coefficient SO to 1.6, this is its maximal value that satisfies the positivity
conditions imposed on the matrices of the rates. The peculiarity at B = 0 is a peak with
a noticeable Fano addition. It splits at B = 2Γ changing its shape, that is different for
B ∥ Γ and B ⊥ Γ as well as for positive and negative energies. Note that owing to Onsager
symmetry G(B ) =G(−B ).

We also provide an example with interaction implementing the self-consistent scheme
described in the previous Section (Fig. 4.5). For this example, we choose ΓL

2 ,ΓR
2 ,E2 =

A(0.2,1.5,−15), κ,γL ,γR = p
A(0.8,0.1,0.1), ΓL

1 ,ΓR
1 = 1.1,0.9. This choice corresponds to

very low channel transmission (T0 = 10−3). The average number of electrons in the dot is
presented in Fig. 4.5a as a function of E1 for several interaction strengths, at zero voltage
difference and magnetic field. All curves change from full occupation at big negative
E1 to zero occupation big positive E1. At U = 0 and U = Γ the curves are smooth with
no spontaneous spin splitting emerging throught the whole interval of E1. For higher
interaction strengths, there is an interval of E1 where the spontaneous splitting is present.
The ends of this interval are in principle manifested by cusps in the curves. Only cusps at
the end of the interval close to zero are visible, the cusps at the other end are too small.
It might seem that the zero-voltage conductance (Fig. 4.5 b) can be computed from Ttot

at the parameters Ẽ1, B̃ that solve the self-consistency equation at zero voltage difference.
However, this is not so, since these parameters also depend on voltage difference. We
compute zero-voltage conductance by numerically differentiating the current (Eq. 4.78)
at small voltage differences. At zero interaction, we see a resonant transmission peak. Its
height does not reach GQ because of the asymmetry ΓR ̸= ΓL . At U = Γ, there is still a single
peak. At higher U we see the splitting of the peak. The height of the peaks split is a half
of the height of the original peak if they are sufficiently separated. As we have conjectured
earlier, this is qualitatively similar to the conductance traces where spin splitting is induced
by the magnetic field.
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Figure 4.4: Examples of normal transport. The energy dependence of Ttot is the same as the conductance
dependence on the gate voltage. Red curves correspond to B = 0, green curves to B = 2Γ. a. Basic example:
resonant transmission b. Dip: resonant reflection c. Fano. d. Strong spin-orbit. Here, green (blue) curve is for
parallel (perpendicular) orientation of B with respect to Γ.
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Figure 4.5: Example of normal transport with interaction. Resonant transmission regime, no magnetic field, no
SO coupling. The setup parameters are given in the text. a. The average number of electrons in the localized state
versus E1 at various interaction strengths. b. Zero-voltage conductance versus E1 at various interaction strengths.

4.8. SUPERCONDUCTING TRANSPORT
In this Section, we elaborate on the description of superconducting transport in our model.
Since supercurrent is a property of the ground state of the system, it is convenient to work
with electron Green functions in imaginary time and introduce Nambu structure. Let us
start, as we did previously, with an arbitrary number of dots and superconducting leads. If
we neglect tunnel couplings, the inverse Green function H (ϵ) is a matrix in the space of
the dots, spin and Nabmu and reads:

Ȟ = iϵτz − Ȟ . (4.87)

The tunnel couplings to the leads labelled by a add the self-energy part

Ȟ = iϵτz − Ȟ + i

2

∑
a
Γ̌aQ̌a (4.88)

where Γ̌a are given by Eq. 4.19 and the matrix Q̌a is a matrix in Nambu space reflecting
the properties of the superconducting lead a,

Qa = 1√
ϵ2 +∆2

a

[
ϵ ∆ae iφa

∆ae−iφa −ϵ
]

, (4.89)

Q2
a = 1.

To find supercurrents, we need to evaluate the total energy and take its derivatives with
respect to the phase differences. Since that are dots that connect the leads with different
phase, the phase-dependent energy is the energy of the dots. The latter can be expressed as

E =−1

2

∫
dϵ

2π
lndet

(
Ȟ

)
(4.90)
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To see how does this work, let us check this formula neglecting tunnel couplings. With
this, the energy is the sum over eigenvalues of Ȟ , En ,

E =−1

2

∫
dϵ

2π
ln

(
ϵ2 +E 2

n

)
(4.91)

The integral formally diverges at ϵ→∞. To regularize it, we substract its value at En = 0 to
obtain

E =−∑
n

|En |
2

+ const (4.92)

To recover a familiar formula, we shift the constant by Tr(Ȟ)/2,

E =−∑
n

|En |
2

+∑
n

En

2
+ const = (4.93)∑

n
EnΘ(−En)+ const , (4.94)

so it becomes the energy of the filled states (those with En < 0). This suggest we need
to handle the integral with care keeping eye on possible problems at big ϵ. Fortunately,
no special care has to be taken for the phase-dependent energy since it is accumulated at
superconducting gap scale ϵ≃∆. We have to be careful when expressing the occupation of
the dots in terms of derivatives of E with respect to dot energies (as we do for numerical
calculations). For instance, the average occupation of the dot 1 reads

〈n̂1〉 = ∂E

∂E1
+1, (4.95)

the last term correcting for high-energy divergences.
For our starting two-dot, two-lead model, the inverse Green function reads (c.f. with

Eq. 4.30).

H =
[
H11 H12

H21 H22

]
(4.96)

, where

H11 = iϵτz −E1 − (B1 · σ̌)τz

+ i

2
(ΓR

1 Q̌R +ΓL
1Q̌L), (4.97)

H22 = iϵτz −E2 − (B1 · σ̌)τz

+ i

2
(ΓR

2 Q̌R +ΓL
2Q̌L), (4.98)

H12 =−κ̌+ i

2
{γ̌LQ̌L + γ̌RQ̌R }, (4.99)

H21 =−κ̌† + i

2
{γ̌†

LQ̌L + γ̌†
RQ̌R }, (4.100)

and we turn back to the compact notations
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κ̌, κ̌† = κ± iκ ·σ (4.101)

γ̌L,R , γ̌†
L,R = γL,R ± iγL,R ·σ (4.102)

and made use of Q matrices corresponding to two leads

Q̌L,R = 1p
ϵ2 +∆2

[
ϵ ∆e iφL,R

∆e−iφL,R −ϵ
]

. (4.103)

Next goal is to reduce the number of parameters implementing the separation of scales
mentioned and implemented for the normal transport. This is achieved by the following
transformation of the determinant

lndet
(
Ȟ

)= lndet
(
Ȟ11 −Ȟ12Ȟ

−1
22 Ȟ21

)
+ lndet

(
Ȟ22

)
(4.104)

and implementing E2,Γ2 ≫ γ,κ≫ ϵ,B2,E1,Γ1.
Let us first evaluate det

(
Ȟ22

)
, which is that of a 4×4 matrix with spin structure taken

into account. Since we may assume ϵ,B2 ≪ Γ2,E2 the spin structure is trivial and the answer
reads

lndet
(
Ȟ22

)= 2ln

(
E 2

2 +
1

4
Γ2

2

)
+

2ln

(
1−T0

∆2

∆2 +ϵ2 sin2φ/2

)
, (4.105)

where, as previously, we define Γ2 = ΓL
2 +ΓR

2 and T0 = ΓL
2Γ

R
2 /(E 2

2 + 1
4Γ

2
2).

The energies of Andreev levels are determined from zeros of this determinant. We
recover the well-known expression for the energy of the spin-degenerate Andreev level in a
contact with transparency T0,

E Andr =∆
√

1−T0 sin2(φ/2) (4.106)

The integration of the log of the determinant over the energy gives the expected result for
the energy of the ground state,

E =−E Andr (4.107)

Let us turn to evaluation of the rest of the expression. We note that

Ȟ −1
22 =−E2 + i

2 (Γ2RQ̌R +Γ2LQ̌L)(
E 2

2 +
Γ2

2
4

)
(1−T0s)

(4.108)

where we have introduced a convenient compact notation

s ≡ ∆p
∆2 +ϵ2

sin2(φ/2) (4.109)
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The matrix in the first determinant thus contains a factor (1 − T0s) in the denominator.
Multiplying with this factor cancels det

(
Ȟ22

)
so the whole expression can be reduced to

the following relatively simple form

lndet
(
Ȟ

)= (4.110)
lndet((1−T0s)(iϵτz −E1 − (B · σ̌)τz )

+∆E + s∆ES (4.111)

+ i

2
(ΓR (s)Q̌R +ΓL(s)Q̌L) (4.112)

+ i

4
Γ · σ̌(Q̌LQ̌R −Q̌RQ̌L)

)
,

where

ΓL,R (s) = ΓL,R + sΓL,R
S . (4.113)

The parameters ΓL,R , ∆E , Γ have been already defined in our consideration of normal
transport. The compact description of superconducting transport brings three additional
parameters

∆ES = −E2C7 +κC8 +κ ·C9

E 2
2 +Γ2

2/4
(4.114)

ΓL
S =−T0Γ

L
1 +

ΓR (γ2
L +γ2

L)

E 2
2 +Γ2

2/4
(4.115)

ΓR
S =−T0Γ

R
1 + ΓL(γ2

R +γ2
R )

E 2
2 +Γ2

2/4
. (4.116)

Here, ∆ES is a part of the expression (4.63) for R X but is an independent parameter.
Since both normal and superconducting transport originate from the same scattering

matrix, there are many examples when the parameters characterizing the superconducting
transport can be directly determined from the results of normal transport measurements, a
single channel with transparency T0 being the simplest one. The presence of the additional
parameters ∆ES , ΓL,R

S is therefore rather disappointing: we cannot predict superconducting
transport exclusively from the results of normal transport measurements and have to rely on
model assumptions.

Let us outline the physical meaning of the overall structure of the expression (4.110).
The first term is a product of the terms whose zeros give the Andreev level in the transport
channel and energy level in an isolated localized state, the product indicate that these levels
are independent. The rest of the terms thus describe the hybridization of these levels. Note
that the terms with ∆E cannot be cancelled by a shift of E1, so in distinction from the normal
case, are active in the presence of superconductivity. The terms with Γ(s) are similar to
tunnel decay terms in Eq. 4.97, in distinction from normal case the presence of the second
dot does not just renormalize Γ. The last term describes spin-orbit effect and is proportional
to the same vector Γ as in the normal case. In distinction from all other terms, it is odd in the
phase difference since it is proportional to the commutator of two Q̌. The combination of
this term and that with magnetic field results in a shift of the mimimum of superconducting
current from 0 or π positions.
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4.9. NUMERICAL DETAILS
In this Section, we provide the overal strategy and details of our numerical calculations.

We postpone the discussion of self-consistency assuming that we already know E1 and
B . To find the phase-dependent energy, we have to integrate the log of the determinant over
ϵ. We compute directly the determinant of 8×8 matrices implementing the difference of
scales numerically. For quick computation at each energy, we represent the matrix Ȟ as a
sum over various scalar functions of ϵ,

Ȟ = Ǎ+ϵB̌ + ϵp
ϵ2 +∆2

Č + ∆p
ϵ2 +∆2

Ď(φL ,φR ) (4.117)

where the matrices Ǎ − Ď do not depend on ϵ and only Ď depends on the supercondictig
phase. We define the function of ϵ as

Although in our model the phase-dependent energy is not a minus half-sum of ABS
energies as it would be for energy-independent transmission, we can use this sum for
qualitative estimations. With this, the half-sum of the first and second energies would result
in an inverted supercurrent, but the half-sum of the third and fourth states, that is, the
contribution of the transport channel, adds to the balance a usual supercurrent of slightly
bigger amplitude.

Example B. (Fig. 4.7) This inspired us to check if the 0−π transitions can be achieved
at very low transmission of the transport channel. We have taken the following set of
parameters ΓL

2 ,ΓR
2 ,E2 = A(0.2,1.5,−15), κ,γL ,γR =p

A(0.8,0.1,0.1), ΓL
1 ,ΓR

1 = 1.1,0.91. For
this choice, T0 ≃ 10−3 ΓL = 1.1,ΓR = 0.91,Γ = 2.03. The normal conductance traces (Fig.
4.7d) show a classical scenario of resonant transmission that saturates to almost zero far
from the resonance.

The check was successful. We plot the traces of ET ≡ ET (φ=π)−ET (φ= 0) for various
magnetic fields in Fig. 4.7a. The traces look like those in Fig. 4.6a except the shift
downwards by ≃ 0.25. Owing to this, ET is negative for B > 0.8 in an interval of gate
voltages that increases with B , 0−π transitions are at the ends of the interval.

We plot the phase dependence of the supercurrent for |B | = 2 and various E1 in Fig. 4.7b.
The 0−π transitions at this field take place at E1 ≈±1.25. In accordance with this, the almost
sinusoidal curves at E1 = −2.5,2 are of positive amplitude while those at E1 = 0,−1 are of
negative one. Note a rather low value ≃ 0.02 of the maximum "negative" current, almost
25 times smaller than the maximum value of the current in a single transport channel. An
interesting curve is found close to the transition, at E1 = −1.5. Here, the current jumps
between sin-like curves of positive and negative amplitude. The total integral of the current
between 0 and π is still positive, so Eπ > 0.

An example of the phase dependence of ABS energies is given in Fig. 4.7c. Since the
transmission of the channel is very low, we see only two spin-split ABS. The upper one is
close to the gap edge, and eventually merges with continuous spectrum at φ≈ 0.6,2π−0.6.
The lower one is close to zero, and exhibits two zero crossings at φ≈π±0.65 corresponding
to the discontinuities in corresponding curve in Fig. 4.7b.

Example C. (Figs. 4.8,4.9) In this example, we illustrate the effect of SO coupling on the
superconducting transport. We choose ΓL

2 ,ΓR
2 ,E2 = A(1.2,1.5,−1), κ,γL ,γR =p

A(0.2,0.6,0.2),
ΓL

1 ,ΓR
1 = 1.6,3.5. As to spin-dependent parameters, we choose κ = p

ASO[0,0.8,0], γL =p
ASO[0,0.2,0], γR = p

ASO[0,0.1,0] with SO = 1 that gives T0 = 0.64,ΓL = 1.1,ΓR =
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(a) Eπ ≡ ET (φ=π)−ET (φ= 0) versus E1 at several values
of magnetic field.
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(e) Normal zero-voltage conductance versus E1 at several
values of magnetic field.

Figure 4.6: Example A. Resonant transmission, moderate channel transmission. No SO coupling.
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Figure 4.7: Example B. Resonant transmission, low channel transmission. No SO coupling. A pair of 0−π
transitions occurs at |B | > 0.
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1.38,Γ = 2.48 and a significant Γ = 0.45y . As we see from the Figs. 4.8d,4.9d that give
the traces of normal conductance, this set also illustrates a well-developed Fano resonance
with antisymmetric features split in sufficiently high magnetic field.

We consider first B ⊥Γ. In this case, the time-reversibility provides the symmetry φ↔
−φ that was present in all previous plots. Let us concentrate at the 0−π energy difference
(Fig. 4.8a). The curve at zero magnetic field qualitatively follows the normal conductance.
Upon increasing the magnetic field we see the multiple cusps that are already familiar from
Figs. 4.6, 4.7 and indicate the spin splitting and eventual zero crossing of ABS. The shape
of the trace becomes more complex, and the minimum ET becomes smaller. However, it
does not reach zero that is necessary for 0−π transition.

The phase dependence of superconducting current at B = 2 and various E1 is presented
in Fig. 4.8b. Most curves display pronounced discontinuities manifesting the zero crossings
at corresponding phases. Except for this, the dependence is rather sinusoidal corresponding
to moderate transmission. It looks like the current jumps between two sin-like curves of
different amplitudes.

It is interesting to see 3 ABS in the plot presenting the phase dependence of ABS
energies for E1 =−1.5 and B = 2 (Fig. 4.8c). The fourth state is either shifted over the gap
edge to the continuous spectrum or is present very close to the edge so we cannot resolve
it with accuracy of our numerics. The lowest state displays the familiar zero crossings
corresponding to the current jumps.

When we change from perpendicular to parallel field (Fig. 4.9) we do not see much
change in normal conductance: the difference between the corresponding traces in Figs.
4.9d and 4.8d does not exceed 10 % . This is explained by the fact that the effect is of the
second order in Γ, ∝Γ2/Γ2, and |Γ|/Γ≃ 0.2 is not so big. We also do not see much changes
in ET traces (Fig. 4.8a versus Fig. 4.9a).

The most prominent effect of SO coupling is the breaking of φ ↔ −φ symmetry in
magnetic field, the effect ∝ |Γ|/Γ at B ≃ Γ. We see this in Fig. 4.9b where the current-
phase dependencies for B = 2 are now shifted sin-like curves with jumps. The values of the
shift vary from trace to trace, also in sign, and are ≃ 0.2−0.3. In addition to the shifts of
the sin-like curves, the positions of jumps are shifted non-symmetrically, these shifts are
≃ 0−0.5.

Non-symmetry of the phase dependence of ABS energies is clearly seen in Fig. 4.9c
that is done at the same parameters as Fig. 4.8c. Also, beside shift, the energy first ABS is
significantly affected by the direction of the magnetic field. A fine detail is the crossing of
the second and the third ABS near φ≈ 1. It may seem that in the presence of SO coupling
all level crossings shall be avoided, since spin is not a good quantum number. However,
since Γ is the only spin vector in our model, for the particular case B ∥ Γ the projection of
spin on B is a good quantum number and the leves of different projections may cross.

4.10. CONCLUSIONS
In conclusion, we have formulated a model that accurately describes normal and superconducting
transport for a situation where a high transmission in a transport channel is accompanied
by propagation through a resonant localized state. The motivation came from experimental
observation of a pair of 0−π transitions separated by a small interval in the gate voltage.
We have presented several examples those by no means exhaust the rich parameter space of
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Figure 4.8: Example C. Well-developed Fano features, moderate SO coupling. Magnetic field B ⊥Γ

the model. More extensive exploration of this space is required to understand if the model
can explain the experimental observation.
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Figure 4.9: Example C. Well-developed Fano features, moderate SO coupling. No interaction. Magnetic field
B ∥Γ. Pronounced asymmetry in φ.
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If the doors of perception were cleansed
every thing would appear to man as it is,

Infinite.

William Blake, The Marriage of Heaven and Hell
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The topological properties of quantum spectra in condensed matter systems got
considerable attention in the past decade and are still under active consideration [46, 48,
43, 47]. A large research field that has been formed thereby addresses gapped phases
of insulators [18] and superconductors [28] characterized by globally defined topological
numbers, and the edge modes [7] at the interfaces separating such phases. In addition to
this, the spectra can exhibit topological singularities in the form of level crossings where the
topological charge is defined at the singularity rather than globally. The simplest example
of such singularity is a Weyl point (WP) [39] corresponding to crossing of two levels in
a point in 3D space of parameters. Physical realizations of WPs include special points in
the bandstructure of 3D solids [3], spectra of polyatomic molecules [14] and nanomagnets
[38], quantum transport systems [23].

The occurrence of WPs have been recently predicted in the spectrum of Andreev bound
states (ABS) of generic 4-terminal superconducting nanostructures [30] where the 3D
parameter space is formed by three independent superconducting phases of the terminals.
Most important WPs are the crossings at zero energy that define the topology of the ground
state. These WPs in 3D give rise to 2D global Chern numbers that are directly manifested
as quantized transconductances of the nanostructure. The ideal periodicity of the space
of superconducting phases allows to model higher-dimensional bandstructures with the
multi-terminal superconducting nanostructures (MTSN). These ideas resulted in outburst
of theoretical [41, 42, 20, 22, 13, 37, 44] and experimental [26, 17, 11, 27, 12] activities in
the field of MTSN.

A separate recent development concerned semiclassical MTSN where a big number of
ABS form a quasi-continuous spectrum. It has been predicted [25] that this spectrum can
be either gapped or gapless depening on speficics of the MTSN and the point in the space of
the superconducting phases. A specific topology can be introduced in semiclassical MTSN.
It has been discovered and confirmed experimentally [33, 34] that the gapped phases are
characterised by topological numbers, and the gapless phase is explained by topological
protection of these numbers [45]. The protection-unprotection transition has been discussed
in this context [21].

In this Chapter, we analyse the gapless spectrum at the level of discrete states and reveal
the abundance of zero-energy topological singularities (Fig. 5.1 c). In 4-terminal structures,
those are isolated WPs separated by a typical distance lc ≃ (G/GQ )−1/2 ≪ 2π. (G is a
typical conductance of the nanostructure, GQ ≡ e2/πħ). The positions of WPs are random
determined by details of electron interference in the structure, while their averaged density
and its correlations are determined by the structure design. We relate the density of WPs to
the parameter lc governing the universal parametric correlations [31, 5] in random matrix
ensembles, show how to compute this density for concrete nanostructures, investigate the
density correlations manifested as the transconductace of the structure, and shortly discuss
the opportunities of experimental detection of the WPs in semiclassical MTSN’s.

Let us start with qualitative estimations. Given a 4-terminal nanostructure of a typical
conductance G one expects ≃G/GQ , GQ ≡ e2/πħ, conduction channels, and, correspondingly,
≃ G/GQ discrete Andreev bound states affected by superconductivity. This estimation is
valid both for "short" nanostructures with the typical size smaller than the superconducting
coherence length, where these levels are spread in energy interval ∆, ∆ being the
superconducting coherence length, and "large" nanostructure where these levels are
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Figure 5.1: Weyl points in semi-classical MTSN. a. 4-terminal semiconducting nanostructure, three independent
phases forming a parameter space. b. The domains of gapped and gapless phases at ϕ3 = 0. c. The discrete
spectrum near the boundary of gapped and gapless domains plotted along a path in 3D parametric space that goes
via the WPs. The distance between the WP’s is of the order of the local value of lc , a parameter governing the
universal parametric correlations in the corresponding random matrix ensemble.
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concentrated in a much smaller energy interval ETh ≃ (G/GQ )δS , δS being the mean level
spacing in the normal state. The energies of these levels depend on the 3 superconducting
phases. Owing to periodicity in phases, the spectrum is to be considered in a Brillouin
zone (BZ) of the size ≃ 2π. The RMT of parametric correlations suggests that the level
energies wiggle randomly. The energies change at the scale of the level spacing at a typical
distance lc in the parameter space [31, 5]. This distance is determined from comparison
of the mean fluctuations of the derivatives of the energies with respect to the parameters
and this level spacing. For our situation, the estimation lc ≃

√
G/GQ in the space of phases

holds for both long and short nanostructures. To understand WP’s we concentrate on the
level that is closest to zero energy. Upon wiggling, it will reach zero at a typical distance of
the order of lc . Therefore, the total number of WP’s in the Brillouin zone can be estimated
as Nw ≃ (lc )−3 ≃ (G/GQ )3/2.

Our detailed results (See Fig. 5.3) indeed give

Nw = A(G/GQ )3/2 (5.1)

for the cross-like structures with the arm conductances G where A = 0.40 for the ballistic
conductor and A = 0.16 for the diffusive one. The dimensionless coefficient A < 1, this
is explained by a rather small fraction of BZ volume taken by the gapless phase (25% for
ballistic and 18% for diffusive cross).

As it was shown in [30] the transconductance of the structure is defined by a Chern
number of a plane traversing the BZ. The difference of two Chern numbers corresponding
to two different planes is given by the total charge of the WP’s enclosed between the planes.
A naive estimation of the variance of this difference would be the number of WP’s enclosed,
〈〈(C1 −C2)〉〉 ≃ Nw ≃ dl−3

c , 2π≪ d ≫ łc being the separation of the planes. This estimation
would hold for randomly placed uncorrelated WP’s. However, they do correlate similar to
ions in an electroneutral gas: a charge of a WP is screened by other points at the distance
of the order of their separation, that is, of lc . Therefore, only WP’s at a distance ≃ lc

contribute to the fluctuation of the Chern number and 〈〈(C1 −C2)〉〉 ≃ l−2
c ≃ (G/GQ ). A

typical transconductance is thus ≃√
GQG .

Our quantitative results are obtained in the course of three activities: A. we study
numerically a generic RM model to relate the density of WPs to l−3

c and quantify the
correlations of WP’s. B. we develop a theory to compute l−3

c (φ) for any MTSN described
by the quantum circuit theory [24] and derive concrete expressions for a single-node circuit.
C. We find numerically the positions of WP’s in the ballistic cross junction (Fig. 3 a) to
prove the consistency of the results obtained in the activities A and B. The details of all
activities are given in [1].

Activity A. The studies of statistics of spectral crossings have been pioneered by Wilkinson
et al. [40, 36, 35]. They introduced a convenient RMT model in a 3D parameter space {φi },

H(φ) =
3∑

i=1

(
sinφi Xi +cosφi Yi

)
(5.2)

In this model, Xi ,Yi are 2N ×2N random Hermitian matrices with independent normally
distributed elements of variance 1/3, N ≫ 1. Since we address the WPs in superconducting
stuctures at zero energy, in distinction from [40, 36, 35], we choose these random matrices
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to obey BdG mirror symmetry of the spectrum (class C [2]). Generally, lc is defined as
l−3

c =
√

det〈〈vi v j 〉〉/δ3
S , vi ≡ ∂E/∂φi , δS is the mean level spacing at the corresponding

energy. For the model in use, lc = π
p

3/2N conveniently does not depend on φ so that the
WP density is uniform. We search the positions of WPs by an iterative minimization of the
energy of the closest to zero level. To make sure we find all the WPs, we repeat the iteration
cycle starting it from a randomly chosen point in the parameter space. We have to do this
a number of times that by a factor exceeds the expected number of points. The execution
time of the algorithm thus scales as N 9/2 so we cannot access very large N and work with
N = 40−80. For the WP concentration, we compute

Nw /V = (0.83±0.05)l−3
c . (5.3)

This is lower than the concentration of the level crossings in GUE ensemble [36] (2/3)
p
πl−3

c ≈
1.18l−3

c . We reproduce this result searching for the crossings of 10th and 11th levels.
We address the correlator of charges of the WP’s, 〈〈Q(0)Q(r )〉〉, r being the vector

distance in units of lc . To enhance the statistics, we have evaluated an equivalent correlator
of Berry curvatures of the closest to zero level. The results of 105 runs per point are
presented in Fig. 5.2 and can be fitted with

〈Bα(0)Bβ(r )〉 = δαβB(r ),r B(r ) ≈ 10.4e−2.8r−3.3r 2
(5.4)

Since the charge density of WPs is given by the divergence of Berry curvature ([8, 16]),

〈〈Q(0)Q(r )〉〉 = (4π)−2∇2B(r ), (5.5)

see Fig. 5.2 c for the plot. By virtue of electro-neutrality of WP gas,
∫

dr 〈〈Q(0)Q(r )〉〉 =
−Nw /V . The fluctuations of Chern number over a surface of the size ≫ lc are governed by
D ≡−∫

dr r 〈〈Q(0)Q(r )〉〉,
〈〈C 2〉〉 = D

∫
dSl−2

c (φ), (5.6)

D ≈ 0.5 from our calculations, dS being an area element of the surface.
Activity B. While there are no perturbative methods to compute the density of WPs

directly, they are available for the mesoscopic parametric correlations [32, 15]. With those,
one can compute l−3

c for any system characterized by electronic Green functions. We
make use of the quantum circuit theory [24] that is a powerful finite-element technique
for electronic Green functions. In quantum circuit theory, the structure is subdivided into
reservoirs and nodes, the network is formed by connectors of various kinds, for instance,
ballistic, tunnel or diffusive. The Green functions are presented by the matrices Ĝa , Ĝ2 = 1,
TrĜ = 0 defined in the nodes and and the reservoirs. The semiclassical solution is obtained
by minimization of an action with respect to Ĝ in the reservoirs at fixed Ĝ in the nodes.

The mesoscopic parametric correlations for a general circuit theory have been derived
in [9]. For this, one substitutes to the action Ĝ of double dimension, two diagonal blocks
corresponding to the parameter sets 1,2. Near the minimum, the action can be expanded
up to quadratic terms with respect to non-diagonal deviations of Ǧ , M̌ being the matrix
characterizing the quadratic expansion. The correlator of mesoscopic fluctuations of the
action values at two parameter sets reads [9]

〈〈S1S2〉〉 = lndet′M̌ (5.7)
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Figure 5.2: Correlations of Weyl points. a. The distribution of WP charge is " electroneutral". Owing to this,
the fluctuations of Chern numbers in the planes 1,2 are contributed by WPs at the distance ≃ lc from the planes
(in grey strips). b. The numerical results for the correlator of Berry curvatures and the fit. c. The charge-charge
correlator as computed from the fit.
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Figure 5.3: Weyl points in concrete nanostructures. Example circuits: ballistic (a) and diffusive (b) crosses of
identical arm conductances G . The results for dV /d(l−c 3) for the ballistic (c) and diffusive (d) cross. In (c), we
compare estimations obtained from the analytical formula (green bars) and the actual positions of the WPs found
(red bars) to demonstrate the correspondence within the statistical error. An example of WP positions found (e),
G/GQ = 50.
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where ’prime’ excludes the zero eigenvalues of M̌ from the determinant.
We implement this general technique to compute l−3

c for concrete superconducting
nanostructures. It is known [6] that the energies of Andreev bound states are expressed
in terms of the effective scattering matrix SS∗, S being the electron scattering matrix in the
space of all channels coming to the nanostructure, S∗ being the hole scattering matrix,the
superconducting phases included. The circuit-theory action at the imaginary energy ∆sinθ
(see e.g. [29]) before the averaging over the mesoscopic fluctuations can be expressed
in terms of eigenvalues SS∗ → −e iλ of the effective scattering matrix, these eigenvalues
coming in ± pairs

S (θ,φ) =−∑
λ

ln
(
1−cos2θcos2(λ/2)

)
(5.8)

≈−∑
λ

ln(θ+ iλ) (5.9)

the last equality holding for close to zero energies/eigenvalues. The correlator of the
velocities in this limit is related to the correlator of the action values,

〈〈∂αS (θ)∂βS (θ′)〉〉 =π 〈〈vαvβ〉〉ρλ
|θ|+ |θ′| . (5.10)

The action can be represented in a quantum circuit theory of 2×2 matrices, and the correlator
is to be computed with the aid of Eq. 5.7. In Supplementary Material [1], we derive an
explicit expression of l−3

c for a single-node structure.
We concentrate on two simplest example MTSN (Fig. 5.3 a,b): a chaotic cavity connected

to four leads by ballistic conductors of the same conductance G , ballistic cross, and the
corresponding diffusive structure, diffusive cross. With the expressions obtained, we compute
the distribution of l−3

c , and, consequently, the WP density, over the phase space, by evaluating
l−3

c in random points and collecting the data into histograms: this gives a fraction of the
phase space volume dV /d(l−3

c ), at a given l−3
c . The histograms for these two examples

are qualitatively similar but distinct. Summing up the histograms and employing the result
(5.1) gives the already mentioned estimations of the number of WP’s, Eq. 5.3.

Activity C. We explicitly compute the WP positions for random chaotic cavities. For
this, we pick up the electron scattering matrix S from the circular orthogonal ensemble,
and find all phase settings at which SS∗ has an eigenvalue −1 [6]. We find 75-95 WPs for
N = G/GQ = 50 conform to the results of the activities A,B and verify the scaling of the
number of points with N . We also perform a more thorough check evaluating l−3

c in the
random positions found and collecting the data to the histogram. The resulting estimation
of dV /d(l−3

c ) that involves 2686 WP’s coincides with the results of activity B within the
statistical error (Fig. 5.3 c). In Fig. 5.3 e, we plot the positions of WP’s found for a
realization of S at G/GQ = 50. We choose the coordinate system in the space of phases to
be consistent with the symmetry of the structure,

χ1 = 1

2
(φ1 −φ2 −φ3), (5.11)

χ2,3 are defined by the above relation with cyclically permuted indexes. In these coordinates,
the BZ is the truncated octahedron, as for a fcc lattice. The gapped region is in the centre
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of the BZ, the gapless region encloses its boundary [19]. The special points where the
gapless region becomes infinitesimally thin [21] are located in the centres of the squares
and hexagons, and, as seen in the Figure, the WPs are mostly concentrated in the corners of
the BZ.

Let us shortly discuss the methods of experimental detection of WPs in MTSN. For
sufficiently large level splitting G ≃GQ , the WPs can be found spectroscopically as the zeros
of the lowest Andreev state. For G ≃ GQ where the level splitting is small not exceeding
kB T , the detection is more challenging. For this case, we envisage the following detection
methods: i. (Telegraph) noise measurements of the inductive or Berry curvature response
of the MTSN. These responses diverge for a single discrete state at WP position. While
the averaging over the states with thermal Boltzmann weights cancels the divergence, it
is manifested in the noise at the time scale of the order of the time of switching between
the states. ii. Transconductance (noise) measurements. We predict a transconductance ≃√

GGQ . While in the presence of thermal averaging this transconductance is not quantized,
its value will exhibit fluctuations as a function of the control phase [30] that can be used for
scanning the WP positions. iii. Transport spectroscopy. If the MTSN is in a weak tunnel
contact with a normal lead, the differential conductance of this tunnel junction exhibits low-
voltage anomalies at the WP positions [10]. There is also a WP signature persisting at high
voltage bias [10].

5.1. SUPPLEMENTAL MATERIAL

In this Supplemental Material, we present additional details about the activites A, B, and C.

5.2. ACTIVITY A: DENSITY AND CHARGE CORRELATIONS

OF WP IN A UNIFORM PARAMETER SPACE

The goal of this activity is to relate the actual density of WP’s with the universal correlation
parameter lc . We implement a variation of Wilkinson model with random class C 2N ×2N
matrices (Eq. 1 of the main text) where lc ≡ π

p
3/2N does not depend on the position in

the 3d space of the phases. N=60 lc = 0.496 N=80 lc = 0.430

To find the WP’s, we implement an iterative optimization procedure in the 3D parameter
space. The optimization function is the smallest in modulus eigenvalue of the matrix. Since
it involves the matrix diagonalization, the computation time scales as N 3. The initial
position is chosen randomly. The coordinates of a WP are found after several tens of
iterations. To find all WP’s, we repeat the procedure again and again, keeping the list of
WP’s found to exclude the duplicates. We learned from the experience that the procedure
has to be repeated five times the expected number of WP’s: further runs do not deliver
new points. Since the expected number of points scales as N 3/2, the total computation time
scales as N 9/2 and really big N are not accessible for practical calculations. The following
table summarizes our concrete results for the number of W P averaged for a number of runs
:
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N 40 60 80

# runs 34 5 2
< NW > 930.5±60.5 1692.0±49.9 2571.5±24.5

cW 0.844±0.054 0.836±0.024 0.825±0.007

This brought us to the value cW = 0.83±0.05 (Eq. 2 of the main text).
As an extra check of the method in use, we compute the concentration of the level

crossings far from zero energy, namely between the 10th and 11th level. We expect this
to be close to the concentration of WP’s in the GUE ensemble. Willkinson et al. have
computed this concentration to be (2/3)

p
π ≈ 1.18 in units of l−3

c . Our calculation for
N = 40 averaged over 6 runs gives a consistent value 1.146±0.065.

In the course of calculations, we have accumulated significant statistics of WP coordinates
and their charges. We hoped that these statistics suffices to compute the charge-charge
correlations of WP distribution. However, this did not work. The histograms approximating
the charge density at a given distance from a WP exhibited significant fluctuations at relatively
large distances. Our attempts to smooth these fluctuations considering the Laplace transform
of the charge-charge correlator initially led us to an erroneous conclusion of a power-like
tail in this correlator.

Fortunately, we checked these conclusions with an alternative method. We have computed
the correlator of Berry curvatures at given distances. The most general form of the correlator
of two vector quantities Bα in the dimensionless coordinates r reads

〈〈Bα(R)Bβ(R + r )〉〉 = δαβB(r )+ rαrβ

r 2 B1(r ) (5.12)

Since Q(r ) = (4π)−1∂αBα(r ), the charge-charge correlator is then expressed as

(4π)2〈〈Q(R)Q(R + r )〉〉 = 3

r 2

∂

∂r
(r B1(r ))− 1

r 2

∂

∂r

(
r 2 ∂

∂r
B(r )

)
(5.13)

We compute the correlator at each r separately accumulating the statistics of Berry
curvatures Bα

1,2 in two random points 1,2 separated by the distance r . The computation is
relatively fast so for each point we can accumulate 104 samples for N = 40 and 105 samples
for N = 20. It may seem that the two independent functions in the correlator are just given
by the average products

B(r ) = 1

4

(
〈Bα

1 Bα
2 〉−〈Bα

1 nαBβ
2 nβ〉

)
; (5.14)

B1(r ) =−1

2
〈Bα

1 Bα
2 〉+

3

2
〈Bα

1 nαBβ
2 nβ〉. (5.15)

However, the evaluation is not so simple. As has been mentioned in [8], the distribution of
Bα has long power-law tails resulting in an infinite variance. Owing to this, the accuracy of
computed averages does not increase with the number of samples in the statistics.

The universal prescription to evaluate the averages in this situation is to disregard the
large values. We implement it in the following fashion: we rescale the accumulated values
of Bα to decrease it if large,

B̄α = Bα√
1+BβBβ/B 2

0

. (5.16)
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Here, B0 is a parameter and the modulus of the rescaled B̄α never exceeds B0. The variance
of B̄α is thus finite, and usual statistical considerations do apply. The value of B0 should not
be taken too small since the averages would not approximate the correlator, nor too large
since the large values of Bα would not be suppressed. In practice, we plot the averages
versus B0 and pick up the value of the average that persist in a large interval of B0.

Within statistical error, B1(r ) = 0 for all r. We can prove this analytically for r ≪ 1.
With this,

〈〈Q(0)Q(r )〉〉 = (4π)−2∇2B(r ). (5.17)

AS stated in the main text, the correlator of Berry curvatures can be approximated with

B(r ) ≈ 10.4e−2.8r−3.3r 2
(5.18)

This has no trace of long-distance power-law correlations.
This expression also proves the electro-neutrality of the WP distribution,∫

dr 〈〈Q(0)Q(r )〉〉 =−Nw /V (5.19)

that is, the presence of a WP with the charge +1 at a point results in a depletion of average
charge density around the point, the charge depleted being −1.

After completion of these calculation, we became aware of a similar calculation of the
Berry curvature correlations. [16]. The authors address the correlator in a general GUE
ensemble that is similar but distinct from near-zero energy correlator of interest. However,
they use the same fitting function and end up with similar coefficients. In our notations,
they give

r B(r ) ≈ 7.42e−3.56x−2.03x2
. (5.20)

5.3. ACTIVITY B: FINDING lc IN QUANTUM CIRCUIT THEORY

The goal of this activity is to find the scale governing universal parametric correlations
for concrete nanostructures that can modelled with quantum circuit theory [24]. For a 3D
parameter space, this scale is defined as

l−3
c =

√
det〈〈vi v j 〉〉/δ3

S (5.21)

where vi ≡ ∂E/∂φi is the "velocity" of an energy level in the spectrum and δS is the mean
level spacing. The parameter l−3

c depends on energy as well as on a point in the parameter
space.

5.3.1. THE ACTION, MEAN LEVEL SPACING, AND THE VELOCITY CORRELATOR
At quantum level, the nanostructure is characterized by an electron scattering matrix S in
the space of of the quantum channels incoming from the leads where the superconducting
phase is incorporated with a factor e iφi ascribed to a channel coming from the lead i . One
can derive (see e.g. [29]) an action for imaginary-time Green functions characterizing the
nanostructure,

S (ϵ) =−1

2
Trln

(
E +ϵ

2E
+ E −ϵ

2E
SS∗

)
(5.22)
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ϵ being the imaginary energy, E ≡
p
ϵ2 +∆2. It is known [6] that the Andreev bound states

are related to the eigenvalues of SS∗. For these eigenvalues, we will use

SS∗ →−e iλ. (5.23)

The eigenvalues λ come in ± pairs. The energies of the bound states correspond to zeros of
the expression under the log. We introduce the notation ϵ/E = sinθ, −π/2 < θ < π/2, and
rewrite the action as

S (θ) =−∑
λ

ln
(
1−cos2θcos2(λ/2)

)
(5.24)

Since we are interested in characteristics of the spectrum near zero energy, we can
expand in small θ,λ so the action becomes:

S =−∑
λ

ln(θ− iλ/2) =− ∑
λ>0

ln
(
θ2 +λ2/4

)
(5.25)

In this limit, each λ gives a bound state at energy ∆λ. Let us compute the derivative of the
action with respect to θ:

∂S

∂θ
=− ∑

λ>0

2θ

θ2 +λ2/4
=−ρλ

∫ ∞

0
dλ

2θ

θ2 +λ2/4
=−2πsgn(θ)ρλ (5.26)

where we made a semiclassical approximation replacing the summation over the discrete λ
with integration over their continuous density ρλ. The semiclassical action has therefore a
cusp at θ = 0, the value of the cusp determines the density of the eigenvalues, that is directly
related to the mean level spacing.

Let us look at the random velocities of the levels, the velocity with respect to a parameter
α being vα ≡ ∂αλ The derivative of the action then reads

∂αS =− ∑
λ>0

λvα
2(θ2 +λ2/4)

(5.27)

The velocities correlate at the same level only. For the correlator of the derivatives, this
gives

〈〈∂αS (θ)∂βS (θ′)〉〉 = 〈〈vαvβ〉〉
ρλ

4

∫ ∞

0

dλ λ2

(θ2 +λ2/4)(θ′2 +λ2/4)
=π 〈〈vαvβ〉〉ρλ

|θ|+ |θ′| (5.28)

This implies that if we know 〈〈S (θ,φ)S (θ′,φ)〉〉, we can evaluate the velocity correlators
and l−3

c

5.3.2. SEMICLASSICS: SADDLE POINT
In quantum circuit theory approach, the same action is expressed as a functional of the
matrices Ǧ , Ǧ2 = 1, TrǦ = 0 that is defined in the nodes and reservoirs of the nanostructure.
The situation in hand we can describe with 2×2 matrices. These matrices are fixed in the
leads

Ǧi =
[

sinθ cosθe−iφi

cosθe iφi −sinθ

]
. (5.29)
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The matrices in the nodes are obtained by minimization of the action. In case of a short
nanosctructure, the action is a sum of contributions of each connector,

S =∑
c

Sc ; Sc = 1

2
TrFc

(
1

2
(ǦaǦb +ǦbǦa)

)
. (5.30)

The function Fc is proportional to the conductance of the connector and depends on the
type of the connector. For instance, for a quantum point contact of conductance G F (x) =
−(G/GQ ) ln((x +1)/2). Generally, a connector is characterized by a set of transmission
coefficients Tp , and

F (x) =−∑
p

ln

(
1+ T

2
(x −1)

)
. (5.31)

Long nanostructures can be described with addition of "leakage" connectors [24], yet we
do not need this extension since the density of Weyl points is determined by the spectrum
properties at zero energy that do not depend on the size of the nanostructure.

We will restrict ourselves to the simplest situation with a single node in the nanostructure
and any number of the reservoirs. The connectors can be labelled with the lead index i , and

S = 1

2

∑
i

TrFi

(
1

2
(Ǧi Ǧ +ǦGi )

)
(5.32)

where Ǧ is the matrix in the node. We will make use of the fact that Ǧi Ǧ +ǦǦi is a number
rather than a matrix for any 2×2 matrices.

It is constructive to map the 2×2 matrices on the corresponding 3D vectors,

Ǧi → (cosθcosφi ,cosθ sinφi , sinθ) (5.33)

while the node matrix
Ǧ → (cosΘcosΦ,cosΘsinΦ, sinΘ) (5.34)

This gives the following inner products for each connector,

si = sinθ sinΘ+cosΘcosθcos
(
φi −Φ

)
, (5.35)

so the action reads
S =∑

i
Fi (si ) (5.36)

To find Ǧ , we minimize with respect to Θ, φ. This gives two conditions:

0 = ∑
i

F ′
i (si )∂Θsi =

∑
i

F ′
i (si )(sinθcosΘ− sinΘcos

(
φi −Φ

)
) (5.37)

0 = ∑
i

F ′
i (si )∂Φsi =

∑
i

F ′
i (si )sin

(
φi −Φ

)
(5.38)

In the limit of θ→ 0, this becomes

0 = ∑
i

F ′
i (si )cos

(
φi −Φ

)=∑
i

F ′
i (si )si (5.39)

0 = ∑
i

F ′
i (si )sin

(
φi −Φ

)
(5.40)
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We can extract level spacing from the cusp of the action at small θ. By virtue of optimization,
sgnΘ = sgnθ. Therefore, at small values of θ si → si +|θ||sinΘ|, and the cusp part of the
action reads

S = |θ||sinΘ|∑
i

F ′
i (si ) (5.41)

The density of the eigenvalues is then extracted with the aid of Eq. 5.26.

5.3.3. SEMICLASSICS: CORRELATIONS
To compute the correlations of the action at two different parameter settings, (θ,φi ), and
(θ′,φ′

i ), we have to double the dimension of the matrices. So we consider 4×4 matrices.
We need to do this separately for diffusion and Cooperon channels [9]. For the reservoirs,
these matrices are made from two diagonal blocks, each corresponding to a setting of the
corresponding reservoir. We will distinguish the settings marking or not marking then with
a prime,

Ǧi →
[

Gi 0
0 G ′

i

]
(5.42)

For the diffusion channel, G ′
i is just given by Eq. 5.29. For the Cooperon channel, G ′

i is
transposed.

The optimization of the action results in the block-diagonal matrix in the node

Ĝ0 →
[

G0 0
0 G ′

0

]
(5.43)

To compute the correlations, we have to derive the quadratic expansion of the action near
this optimum. With the quadratic accuracy, Ĝ is given by

Ǧ = Ǧ0 + ǧ − 1

2
Ǧ0 ǧ 2; ǧ Ǧ +Ǧ ǧ = 0 (5.44)

We need to substitute this to the action and expand it to the terms quadratic in ǧ . The
first-order terms cancel since Ǧ0 corresponds to the minimum of the action.

This calculation is made most efficiently in the basis where G0 is a diagonal matrix,

Ĝ0 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 (5.45)

In this basis, a matrix of a reservoir read

Ĝi =


s u 0 0

u∗ −s 0 0
0 0 s′ u′
0 0 u′∗ −s′

 (5.46)

where s,u posess the index i , s2 + |u|2 = 1, s being inner product introduced earlier. The
minimization equation in these basis reads:

0 =∑
i

F ′(si )ui . (5.47)
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Let us specify those more explicitly. We choose a basis in the space of 3d vectors with
the z-axis in the direction of G0, the angle φ is counted from Φ,

x = (−sinΘ,0,cosΘ) (5.48)
y = (0,1,0) (5.49)

z = (cosΘ,0,sin(Θ)) (5.50)

From this,

u =−sinΘcosθcos
(
φi −Φ

)+cosΘsinθ+ i cos(θ)sin
(
φi −Φ

)
. (5.51)

At θ→ 0,
u =−sinΘcos

(
φi −Φ

)+ i sin
(
φi −Φ

)
. (5.52)

Let us proceed with the expansion. We need to choose the ǧ in the non-diagonal blocks
and guarantee that it anti-commutes with Ǧ - otherwise, it will not modify Ǧ and the value
of the action will not change. The most general matrix of this kind can be parametrized as

0 0 0 w2

0 0 w1 0
0 v1 0 0

v2 0 0 0

 (5.53)

A straightforward but lengthy calculation results in the following form:

δS = 1

2

∑
i

[
v1

v2

][
Ai B∗

i
Bi Ai

][
w1

w2

]
(5.54)

with

Ai =
F ′

i (si )(1− s2
i )−F ′

i (s′i )(1− s′2i )

si − s′i
; Bi = ui u′

i

F ′(si )−F ′(s′i )

si − s′i
(5.55)

This expression is for the diffusion channel, for the Cooperon channel we need to replace
u′ → u′∗.

5.3.4. CLOSE POINTS
For our task, we need to analyse the quadratic form in close points, φi → φ′

i . The form of
the correlator given by Eq. 5.28 suggests that there is an eivenvalue of this matrix that goes
to 0 at φi → φ′

i and θ→ 0, and the parametric dependence of this eigenvalue defines the
correlations. The calculation shows no such eigenvalue in the diffusion channel, so from
now on we concentrate on the Cooperon one. In this case,

A =∑
i

(F ′(si )(1− s2
i ))′ =∑

i
F ′′(si )(1− s2

i )−2
∑

i
F ′(si )si ;B =∑

i
F ′′(si )(1− s2

i ) (5.56)

At θ → 0,
∑

i F ′(si )si → 0 and the determinant A2 − |B 2| vanishes indicating the small
eigenvalue expected. The determinant can be presented as

(A−ReB)(A+ReB)− (ImB)2 (5.57)
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where A −ReB goes to zero in close points at θ→ 0, A +ReB does not, and ImB goes to
zero in close points irrespective of θ.

Let us compute A−B in conciding points.

A = (F ′(s)(1− s2))′; B = (1− s2)F ′′(s) → A−B =−2sF ′(s) (5.58)

Here, the summation over i is implied. We know that
∑

i F ′(si )ui = 0 at any θ. We note
that

si = sinθ sinΘ+cosθcosΘcos
(
φi −Φ

)
(5.59)

Re(ui ) = −sinΘcosθcos
(
φi −Φ

)+ sinθcosΘ (5.60)

To this end, we evaluate∑
i

F ′(si )si =
∑

i
F ′(si )(si +cotanΘReui ) = sinθ

sinΘ

∑
i

F ′(si ) (5.61)

Generaling to small θ and the same points in the phase space, we obtain

A−B =−|θ|+ |θ′|
sinΘ

∑
i

F ′(si ) (5.62)

Let us compute A+B . We can neglect θ and the difference between the points to obtain

A+B = 2
∑

i
F ′′(si )(1− s2

i ) (5.63)

Let us compute the terms in A−ReB that are proportional to the squares of the differences
between the points. We start with

A−ReB = F ′(s)(1− s2)−F ′(s′)(1− s′2)

s − s′
− uu′∗+u′u∗

2

F ′(s)−F ′(s′)
s − s′

(5.64)

Let us represent
u =

√
1− s2e iµ; u′ =

√
1− s′2e iµ′ (5.65)

With this, the difference becomes

A−ReB = F ′(s)(1− s2)−F ′(s′)(1− s′2)

s − s′
−

√
1− s2

√
1− s′2 cos

(
µ−µ′)F ′(s)−F ′(s′)

s − s′
(5.66)

There are two contributions to the difference. One comes from δµi and reads

A−ReB = 1

2

∑
i

(δµ)2
i (1− s2

i )F ′′(si ) (5.67)

For another one, one can set δµ= 0.

A−ReB = (5.68)

F ′(1− s2)−F ′(s′)(1− s′2)+
√

(1− s2)(1− s′2)(F ′(s′)−F ′(s))

s − s′
= (5.69)

− s + s′p
1− s2 +

p
1− s′2

(
F ′(s)

√
1− s2 +F ′(s′)

√
1− s2

)
(5.70)
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To simplify, we may add F ′(s)s+F ′(s′)s′ that is zero under sum provided θ = 0. This gives

A−ReB =
√

(1− s2)(1− s′2)p
1− s2 +

p
1− s′2

(F ′(s)−F ′(s′))

(
sp

1− s2
− s′p

1− s′2

)
(5.71)

With this, we get for the difference

A−ReB = 1

2

∑
i

(δs)i
F ′′(si )

1− s2
i

+ 1

2

∑
i

(δµ)2
i (1− s2

i )F ′′(si ) (5.72)

We also have to inspect ImB .

ImB = i
uu′∗−u∗u

2

F ′(s)−F ′(s′)
s − s′

≈ δµ(1− s2)F ′′(s) (5.73)

With all this,

ln det = ln(C +D) (5.74)

C =−|θ|+ |θ′|
sinΘ

∑
i

F ′(si ) (5.75)

D = 1

2

∑
i

(δs)i
F ′′(si )

1− s2
i

+ 1

2

∑
i

(δµ)2
i (1− s2

i )F ′′(si ) (5.76)

−
(∑

i δµi (1− s2
i )F ′′(si )

)2

2
∑

i F ′′(si )(1− s2
i )

(5.77)

The latter part can be presented as

D = 1

2
Dαβδφαδφβ (5.78)

α,β labelling the independent phases. For this, we need to express δsi , δµi in terms of δφi .
The corresponding formulas are straightforward but rather cumbersome. In fact, we do not
use those in numerical calculations, but rather compute δsi , δµi in terms of δφi to evaluate
the quadratic form Dαβ. So we do not give these formulas here.

5.3.5. RESULTING RELATION
We recall that the density in the phase space can be expressed as

l−3
c =

√
det < vαvβ >ρ3

λ (5.79)

We have derived that

ρλ =
|sinΘ|

2π
|∑

i
F ′(si )| (5.80)

Sαβ =π
〈〈vαvβ〉〉ρλ
|θ|+ |θ′| (5.81)

Sαβ =
Dαβ

C
(5.82)
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Figure 5.4: The boundary of the gapless region (orange points) for several cross-sections plotted in a 3D along
with the edges of the Brillouin zone. The view axis is perpendicular to the cross-section plane. a: cross-section
plane χ3 = 0, b: cross-section plane χ1 =χ2, c: cross-section plane χ1 +χ2 +χ3 = 0.

So we get

π2 < vαvβ > ρ2
λ = Dαβ

sin2Θ

2
(5.83)

Finally, collecting all terms, we obtain:

l−3
c =

√
detDαβ

sin3Θ

2
p

2π3
. (5.84)

We will use this formula for numerical evaluations. We stress this requires minimization
for each set of φi to compute Θ,Φ and minimization around this point to evaluate Dαβ.

5.4. ACTIVITY C: WP POSITIONS FOR BALLISTIC CROSS
Within the activity, we find the coordinates of the WP’s in a ballistic cavity model connected
to four superconducting leads. We take a random realization of the 4N × 4N electron
scattering matrix, augment it with the phases of the superconducting reservoirs and find
the points where SS∗ has an eigenvalue −1 with the optimization procedure similar to that
described in Section 5.3. Our results for the total number of points are summarized in the
following table

N 50 35 20

# runs 15 8 10
< NW > 153.5±13.8 93.0±11.8 46.4±6.7

From this, we inherit Nw = 0.40G/GQ as cited in the main text.
The points are found within the gapless region predicted by the semiclassical calculation.

In Fig. 5.4 we present the boundaries of the gapless region for several cross-sections of the
Brillouin zone in χ1,2,3 coordinates. We see that the boundary touches the centres of the
squares and hexagons bounding the Brillouin zone.

To check the correspondence of the positions of the WP’s found with the predictions of
the semi-classical theory, we compute the semi-classical density l−3

c in the positions found
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and accumulate the data to a histogram. The resulting distribution should differ by a factor
of l−3

c from the distribution of l−3
c itself. Indeed, when we plot together the distribution of

l−3
c and the distribution corrected by the factor, we observe a satisfactory correspondence

(Fig. 3c of the main text). In conclusion, we present several 3D views of a realization of
WP for N = 50. (Fig. 5.5)
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Figure 5.5: Positions of Weyl points for a given realization of S at N = 50 at various view angles.
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