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HELIOGYRO ORBITAL CONTROL AUTHORITY 
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Abstract: Solar sailing is an elegant form of space propulsion that reflects solar photons to produce thrust. 

Different sail configurations exist, including a traditional flat sail (either square- or disc-shaped) and a 

heliogyro, which divides the sail membrane into a number of long, slender blades, analogous to a helicopter 

rotor. The magnitude and direction of the induced thrust force depends on the sail’s attitude with respect to the 

Sun, i.e. on the cone angle. At each cone angle, a flat sail can only generate force of particular magnitude and 

direction, while this paper demonstrates that a heliogyro can arbitrarily reduce the magnitude of the thrust 

vector through the additional control of pitching the blades. This gives the heliogyro more force control 

authority, which is exploited in this paper for orbital control. A linear-quadratic regulator feedback controller is 

used to quantify the maximum error in the injection state vector of a solar sail Sun-Earth sub-L1 halo orbit from 

which the nominal orbit can still be recovered. The conclusion is that approximately an order of magnitude 

larger error in position and velocity can be accommodated, demonstrating superior capabilities of the heliogyro 

over a flat sail for orbital control.   

 

Keywords: heliogyro, solar sail, sub-L1 halo orbit, orbital control 

 

1. Introduction 

Solar sailing is a relatively new form of spacecraft propulsion that exploits solar radiation pressure by 

using a large, very thin and highly reflective membrane to reflect solar photons, thereby inducing thrust. 

As a propellant-less form of propulsion, it has great potential for high-energy and long-duration missions 

and has recently been successfully demonstrated in space with the IKAROS [1], NanoSail-D2 [2] and 

LightSail-1 missions2. Each of these three missions employed a flat, square-shaped solar sail. However, 

renewed interest exists in the heliogyro concept [3]. This solar sail concept divides the sail area into a 

number of long, slender blades which are deployed from a central hub and maintained in a flat state 
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through spin-induced tension [4]. Not only does this allow simple packaging and deployment, it also 

removes the need for a relatively heavy mechanical deployment and stiffening structure as required for 

the flat sail configuration. The heliogyro concept is therefore more efficient, allowing greater thrust 

accelerations for the same sail loading (the spacecraft mass to sail area ratio).  

Significant research has been conducted regarding the heliogyro’s blade dynamics, stability and 

control [5] and its attitude control moment authority [6], but much remains to be explored in its orbital 

dynamics and control capabilities. Even its force-generating capabilities appear to hide some interesting 

possibilities.  For example, the force vector with respect to the sun line that a flat sail can achieve is 

constrained to the surface of a so-called “force bubble”; however, this is not the case for a heliogyro.  

This paper shows that the heliogyro’s additional ability of pitching its blades enables it to scale down the 

force magnitude in any direction. The heliogyro can therefore “fill up” the force bubble, allowing finer 

force control, which is exploited in this paper for orbital control. In particular, the ability of a flat sail and 

a heliogyro to correct for orbit injection errors into a solar sail Sun-Earth L1 halo orbit are investigated 

and compared.  

A solar sail sub-L1 halo orbit has been proposed for several mission concepts (e.g. Geostorm [7] and 

Sunjammer [8]), and is one of the key missions enabled by solar sail technology [9]. By exploiting a solar 

sail, this mission concept efficiently positions a platform along the Sun-Earth line, sunward of the L1 

point. From such a vantage point, the platform can almost double the warning time for solar storms over 

existing infrastructure at L1 (e.g. SOHO (ESA/NASA, 1996), ACE (NASA, 1997), WIND (NASA, 2004) and 

DSCOVR (NOAA/NASA, 2015)). This increased warning time is essential to allow operators of ground and 

space assets enough time to take appropriate action for incoming solar storms. While this mission concept has 

been investigated quite extensively (e.g. [7-9]), operational aspects such as recovery from injection errors have 

not been considered in great detail. In particular, a study to investigate the difference in performance between a 

flat sail and heliogyro in this respect has so far not been conducted. 

To that end, this paper is structured as follows. First, Section 2 explains the heliogyro force model, supported 

by a detailed explanation of the reference frames and their transformations in Appendix A. Section 3 outlines a 

range of possible pitch profiles of the heliogyro’s blades, followed by the impact of these pitch profiles on the 

heliogyro’s force generating capabilities in Section 4. Section 5 derives and presents the solar sail halo orbits 

that will serve as a test case throughout this paper, followed by the design of a linear-quadratic regulator 

(LQR) to maintain these orbits under injection errors in Section 6. Finally, Section 7 presents the results, while 

Section 8 investigates sensitivity analyses on the error tolerance and the injection location along the orbit.  
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2. Heliogyro force model 

This paper assumes an ideal solar sail model [4], which considers the sail to be perfectly reflecting and 

perfectly flat, without wrinkles or optical imperfections. Under these assumptions, the incoming solar 

photons are specularly reflected. The solar radiation pressure force and acceleration then act 

perpendicular to the sail surface (or the thi  heliogyro blade) and can be obtained through [10] 

 2
, ˆ2 cos

i i

i
i L i L

A
P

m
a n  (1) 

where P  is the solar radiation pressure (4.563 10-6 N/m2 at 1 Astronomical Unit (AU)) and iA  is the thi  

blade area. The thi  blade’s cone angle, i , is the angle between the Sun direction and the thi  blade’s 

normal, ˆ
i

Ln . To compute this angle, both vectors need to be defined in the same reference frame. This 

work considers four different reference frames (  ˆˆ ˆ, ,S s l p ,  1 2 3
ˆ ˆ ˆ, ,D d d d ,  1 2 3

ˆ ˆ ˆ, ,B b b b  and  ˆ ˆ ˆ, ,iL x y z ), 

which are detailed in Appendix A together with the transformations required to change between reference 

frames.  

To compute the cone angle, first the Sun-direction is transformed from the Sun  ˆˆ ˆ, ,S s l p  reference frame, 

 ˆ 1 0 0
T

S s , into the ith blade  ˆ ˆ ˆ, ,iL x y z  reference frame: 

      ˆ ˆ
i

T T T
L i SBL DB SDs s .  (2) 

The blade’s normal vector can be defined in the  ˆ ˆ ˆ, ,iL x y z  frame as 

  
,3

ˆ ˆ0 0 sign
i i

T

L L
 
 

n s  (3) 

where 
,3

ˆ
i

Ls  is the third component of the ˆ
i

Ls  unit vector, and the sign function ensures the sail normal 

points away from the Sun direction. The blade’s cone angle can then be computed from 

 ˆ ˆcos
i i

i L L  s n . (4) 

To obtain the total solar radiation pressure acceleration on all N  blades of the heliogyro in the  ˆˆ ˆ, ,S s l p ,  

 1 2 3
ˆ ˆ ˆ, ,D d d d  or  1 2 3

ˆ ˆ ˆ, ,B b b b  reference frames, the individual ,
i

i La components need to be transformed 

to the respective frame and summed. For the Sun  ˆˆ ˆ, ,S s l p  reference frame this becomes: 
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     ,

1
i

N

S i i L

i

SD DB BL


a a .  (5) 

Note that the total acceleration vector changes over each revolution and is therefore averaged over two 

revolutions. Also note that throughout this paper a value for the number of blades of N 4 will be assumed. 

The term 2 /iPA m  in Eq. (1) is usually rewritten using the so-called characteristic acceleration, ,c ia . The 

characteristic acceleration is the acceleration that the sail or heliogyro blade can achieve when facing the Sun 

(i.e. i  0) at Earth’s distance ( AUr  1 AU).  

 , 2
1

,    
N

c i i i

iAU

a
r


  



    (6) 

with   the gravitational parameter of the Sun and   the solar sail lightness number. At any other distance 

from the Sun, r , the solar sail acceleration becomes: 

 2
, 2

ˆcos
i i

i L i i L
r


 a n . (7) 

This paper assumes a baseline lightness number of   0.0363 based on the expected performance of relatively 

mature flat sail technology designed for the Sunjammer mission [8]. Note that, due to the reduced sail system 

mass, a near-term value for a similarly-mature heliogyro-type sail would be approximately   0.08 [3]. 

 

3. Heliogyro pitch profiles 

Equation (7) provides the solar radiation pressure acceleration in the  ˆ ˆ ˆ, ,iL x y z  frame, which can easily 

be transformed into any of the other reference frames using Appendix A. However, the pitch angle of the 

blade, i , is required to compute the  iBL  transformation matrix, which depends on the pitch profile 

selected. References 3 and 10 define three different pitch profiles, which can be used independently or in 

combination: 

1. Collective profile (‘co’) 

2. ½-Period cyclic profile (half-p, ‘hp’) 

3. 1-Period cyclic profile (cyclic , ‘cy’) 

Each of the pitch profiles and its effect on the solar radiation pressure force and moment is illustrated in 

Figure 1, which is taken from Reference 10. The ‘co’ profile pitches the blades collectively, while the 

‘hp’- and ‘cy’-profiles pitch the blades cyclically or sinusoidally. The ‘hp’ profile repeats after two 

revolutions, while the ‘cy’ profile repeats after one revolution. 
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Collective ½-Period cyclic 1-Period cyclic 

   

Figure 1 Illustration of pitch profiles at zero cone angle of the heliogyro (source: [10]). 

Reference 10 provides the thi  blade’s pitch angle for any combination of the three pitch profiles: 

    
1

sin sign sin
2 2

i co hp i hp hp cy i cya a a a


    
  

        
  

  (8) 

where coa , hpa , and cya  are the amplitudes of the collective, half-p and cyclic profiles, respectively, and 

hp  and cy  are the phase angles of the half-p and cyclic profiles, respectively.  

 

4. Heliogyro force capabilities 

For a flat, non-spinning solar sail at 1 AU, pitched with respect to the Sun direction at a cone angle   

(and a clock angle 0  , see Figure 16a in Appendix A), the normal vector to the sail area can be written 

in the  ˆˆ ˆ, ,S s l p  reference frame as 

  ˆ cos sin 0
T

S  n  . (9) 

The solar radiation pressure force that such a flat sail can achieve at 1 AU, per square meter sail area, and 

in the direction along the Sun line, sF , and perpendicular to it, lF , can be obtained from Eq. (1). 

Considering an interval for the cone angle of 90 ,90o o   
 

, the result is a “bubble-shaped” force curve 

as shown in Figure 2.  
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Figure 2 Flat solar sail “bubble-shaped” force curve providing the force per square meter sail area 

at 1 AU for  = [-90, 90] deg. 

As the heliogyro has the additional control of pitching the blades (in a collective, cyclic, or half-p manner 

as described in Figure 1) the achievable  ,s lF F -combinations are not constrained to the edge of the 

bubble, but can instead take on any value within the bubble. This is demonstrated in Figure 3, which 

shows contours of equal pitch amplitudes for the collective, half-p and cyclic pitch profiles. Each curve 

represents one specific amplitude of one of the profiles and is constructed by again considering an interval 

for the heliogyro’s cone angle of 90 ,90o o   
 

 and assuming 0  . Note that the curves for negative 

values of the amplitudes can be obtained by mirroring the figures on the left hand side of Figure 3 in the 

 ,x y -plane.  

The results in Figure 3 show that a heliogyro can be regarded as enabling a highly-variable lightness 

number, allowing it to scale the solar radiation pressure force between zero and that of an equivalent-area flat 

solar sail. Note that the half-p profile cannot generate any combination of the force magnitude and direction, as 

shown by the white region in the plot on the right hand side of Figure 3b. However, this white region can be 

captured by using a collective or cyclic profile, which do allow any combination of the force magnitude and 

direction. It is this property of a heliogyro, i.e. enabling a highly-variable lightness number, which is exploited in 

this paper for orbital control. In particular, to correct for injection errors into a solar sail Sun-Earth L1 solar sail 

halo orbit. 

 


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a) Collective profile 

 

  

b) Half-p profile, 1
2hp    

  

  

c) Cyclic profile, 1
2cy    

  

  

Figure 3 Heliogyro “bubble-shaped” force curves providing the force per square meter sail area at  

1 AU for  = [-90, 90] deg and different pitch profiles. 
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5. Solar sail Sun-Earth L1 halo orbits  

As indicated in the introduction of this paper, one near-term application of solar sail technology is an 

advanced space weather forecasting platform at a sub-L1 location [9]. By simply placing a Sun-facing sail 

on the Sun-Earth line, the L1 point can be displaced sunward, to a sub-L1 location. For a sail with 

Sunjammer’s lightness number, this would enable an increase in the solar storm warning time by a factor 

of 1.6 compared to existing infrastructure at the L1 point. In reality, the sail cannot be placed exactly on 

the Sun-Earth line as this causes solar radio interference during communications. It has therefore been 

suggested to place the sail in a solar sail halo orbit around the sub-L1 point such that it orbits a 5 deg solar 

exclusion zone (SEZ) [11].  

The generation of solar sail halo orbits has been investigated before (e.g. References 12-14), and the 

approach is briefly repeated here, starting with the solar sail dynamics in the Sun-Earth circular restricted 

three-body problem (CR3BP).  

 

5.1 Solar sail Sun-Earth circular restricted three-body problem 

The CR3BP describes the motion of an infinitely small mass, m , under the influence of the gravitational 

attraction of two much larger primary masses, 1m  and 2m . In the case of the solar sail Sun-Earth CR3BP, 

m  represents the solar sail spacecraft and 1m  and 2m  are the Sun and Earth, respectively. The CR3BP 

further assumes that the gravitational influence of the small mass on the larger masses can be neglected 

and that the larger masses move in circular orbits about their common center-of-mass. Figure 4 shows the 

synodic reference frame employed in the CR3BP that rotates at a constant angular velocity,   , about the 

z -axis, ˆω z .  

 

 

Figure 4 Schematic of solar sail circular restricted three-body problem. 

 

 

y  

  

 

2m  

1m  

1   

  

 

O  

 

r  
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The dynamics of the CR3BP are made dimensionless by taking the sum of the two larger masses as the 

unit of mass, i.e. 1 2 1m m  , the distance between the main bodies as the unit of length, and 1/  as the 

unit of time (1 year is then represented by 2 ). With the mass ratio  2 1 2/m m m   , the masses of 

the large bodies become 1 1m    and 2m  , and their location along the x -axis become   and 

1  , respectively.  

In this reference system, the motion of the solar sail is described by [4]: 

   CR3BP2 V      r ω r ω ω r a   (10) 

with  
T

x y zr  the position vector of m , CR3BPa  the solar sail acceleration of Eq. (7) transformed 

to the CR3BP reference frame and V  the gravitational potential. The latter two are given by 

  
2

CR3BP CR3BP 1 CR3BP2
1

1
ˆ ˆ ˆ

r





 a n r n  (11) 

 
1 2

1
V

r r

  
   

 
 (12) 

with CR3BPn̂  the solar sail normal vector in the CR3BP reference frame, and the vectors 1r  and 2r  

defined as  1
T

x y z r  and  2 1
T

x y z     r . Following Reference 4, the centripetal 

acceleration in Eq. (10) can be written as the gradient of a scalar potential function and combined with the 

gravitational potential into a new, effective potential,     2 2
1 2/ 2 1 / /U x y r r       . The solar 

sail dynamics in the CR3BP are then described by: 

 CR3BP2 U   r ω r a .  (13) 

 

5.2 Solar sail halo orbits 

Many works in the literature (e.g., [12-17]) describe methods to find solar sail periodic (halo) orbits under 

the dynamics described in Eq. (13) or similar systems. In this paper, the same approach as in 

Reference 14 is adopted, which shows that solar sail halo orbits exist under different sail steering laws, 

e.g. CR3BP 1ˆ ˆn r  and  CR3BPˆ 1 0 0
T

n . In this work, the latter steering law is adopted.  

A first guess for the orbits is obtained by approximating the equations of motion in Eq. (13) in the 

neighborhood of the sub-L1 point by linearization and expanding the effective potential and solar sail 

acceleration terms to third order with a Taylor series. The Lindstedt-Poincaré method is subsequently 

used to find the third order solution to this approximated dynamical system. Details on the method can be 
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found in Reference 14. As these solutions only hold in the linearized system, the orbit quickly diverges 

when it is integrated in the full non-linear system of Eq. (13). A differential correction scheme is therefore 

applied to correct the initial conditions of the approximated orbit to find solar sail halo orbits in the full 

non-linear system. First, solar sail halo orbits with small amplitudes, i.e. close to the sub-L1 point, are 

generated. A continuation scheme is subsequently applied to gradually increase the orbit’s amplitude until 

the orbit fits around the 5 deg SEZ.  

The resulting solar sail halo orbits are presented in Figure 5a-b for a range of sail lightness numbers, 

while Figure 5c-d provides the orbit for Sunjammer’s performance, i.e.   0.0363. The initial conditions 

of the latter orbit are 

    0 0 0  0.97971178 0 0.00296954 0 0.01322934 0
T T

 x r r , (14)  

which correspond to the most northern (i.e. out-of-ecliptic) location of a solar sail halo orbit with in- and 

out-of-plane amplitudes of 1,473,872 and 444,236 km, respectively. 

 

a) b) 

 
 

c) d) 

  

Figure 5 Solar sail halo orbits fitting around a 5 deg solar exclusion zone.  

a-b)  = 0.01 - 0.04 . c-d)  = 0.0363.  
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6. Linear-quadratic controller 

To investigate the orbital control capabilities of a heliogyro, this paper investigates how well the 

heliogyro can recover from errors on the injection into the solar sail halo orbits obtained in the previous 

section. To this end, an LQR feedback controller algorithm has been implemented in 

MATLAB/Simulink, similar to the works in [18-20], which have demonstrated the applicability of this 

type of controller for similar problems. A simplified block diagram of the LQR is provided in Figure 6. 

 

 

Figure 6 Simplified block diagram of LQR for solar sail halo orbit control. The constraint on the 

lightness number, 0    max, only applies to the heliogyro, not to the flat sail configuration. 

 

As a result of the injection error, the trajectory, x , will deviate from the nominal solar sail halo orbit, i.e. the 

reference trajectory, Refx . The error on the state, Ref  x x x  is used to compute the required feedback 

control, u , which is added to the reference control to obtain the total control, Ref  u u u . The idea is 

that this total control will bring the trajectory back to the reference trajectory after some time.  

For comparison, the solar sail halo orbits will be controlled both with a flat sail and a heliogyro. For a flat 

sail, the control components only include the sail’s attitude. This attitude is described using the cone and 

clock angles (see Figure 16a of Appendix A), resulting in      
T

t t t    u . Note that the reference 

control consists of the cone and clock angles required to achieve  CR3BPˆ 1 0 0
T

n along the solar sail 

 Reference controls  

 

 Reference states  
 Compute gain, K   

 

 + 
+ 

Ref
u   

Ref
u   

Ref
x   

u   

max

90 90

0

o o



 

   
 

     
  
 

u   

 Reference states 

 

 

 Integrate dynamics 

 - 
+ 

 x   

x   

Ref
x   

 Initial condition 

K   

0x   

Compute feedback,  

 u K x   
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halo orbit. Figure 7 shows an example of the reference controls for the solar sail halo orbit with 

  0.0363 of Figure 5c-d. For the heliogyro, the scalable lightness number is an additional control (i.e. 

       
T

t t t t     u ) to account both for the attitude of the heliogyro and the effect of pitching 

the blades. The block diagram in Figure 6 shows that the following bounds are enforced on these control 

components: 

 

max

90 90

 -     

       0 (for heliogyro)

o o



 

  

   

 

  (15) 

If it is assumed that the state error is small, i.e. the sailcraft remains close to the reference trajectory at all 

time, the system dynamics can be described by linearizing the equations of motion in Eq. (13) around the 

reference conditions. For that, Eq. (13) is rewritten as a set of first order differential equations: 

       , ,t t t tx f x u   (16) 

to obtain 

    x A x B u  (17) 

with 

 6 6 6 3
, ,

,     

Ref Ref Ref Ref

x x

    
        x u x u

f f
A B

x u
. (18) 

Note that the notation of the time dependency is omitted for brevity. For a continuous-time linear system as 

described in Eq. (16) and a cost function defined as 

  
0

T TJ dt   


  x Q x u R u   (19) 

the feedback control law that minimizes the value of the cost is  

   u K x .  (20) 

The first and second terms on the right hand side of Eq. (19) penalise the transient state error and control 

effort, respectively, where the weighing matrices 6 6 6 610,000x xQ I  and 3 3 3 3x xR I  are obtained by 

trial and error. In Eq. (20), 3 6xK  is the gain matrix. The gain matrix can be found by solving the Riccati 

equation, which, in this work, is done by supplying the Matlab function lqr.m with the matrices A , B , 

Q  , and R .   
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Figure 7 Reference control for solar sail halo orbit with  = 0.0363.  

 

Finally, the injection error is modelled by perturbing the initial condition of the solar sail halo orbit, see 

Eq. (14), as 

  0 0 0 0 0
T

    x r r r r , (21) 

where the perturbation is provided in the direction of the unstable eigenvector, ξ  (i.e. the eigenvector 

corresponding to the eigenvalue of the state transition matrix with 1i  ). With 
T

p v   ξ ξ ξ , the 

perturbations become 0 0 pr  r ξ  and 0 0 vr  r ξ . Section 7 will present results for a large range of 

perturbation magnitudes, 0r  and 0r .  

 

 

7. Results 

This section provides the results of the LQR feedback controller of Section 6 to correct for errors in the 

injection of the solar sail halo orbits of Section 5. The control is considered successful if, after four orbital 

revolutions, the errors in position and velocity are smaller than a tolerance,  . In this section a value 

of   0.0005 (in CR3BP units) will be considered, which corresponds to a maximum allowable error 

of 75,000 km in position and 15 m/s in velocity. A sensitivity analysis on the magnitude of this tolerance 

is provided in Section 7. 

The first results, in Figure 8, are for a lightness number equal to that of Sunjammer, i.e.   0.0363, see 

Figure 5c and d for the corresponding solar sail halo orbit. Figure 8a and b provide, respectively, the 

recoverable injection error for a flat solar sail and a heliogyro with an upper limit on the lightness number 

of 0.04, i.e. max  0.04. Both plots consider a wide range for the position and velocity error magnitudes 
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in the initial condition, but note the difference in scales between the plots; the heliogyro can correct for 

significantly larger injection errors in position and velocity than a flat sail, approximately an order of 

magnitude. Details for the case represented by the black “X” in Figure 8b are given in plots c and d, showing 

how the heliogyro settles the lightness number around the nominal value of 0.0363 and how the orbit is 

recovered.    

 

a)  b) 

  

c) d) 

  

Figure 8 Orbital control of solar sail halo orbit with  = 0.0363. a-b) Recoverable injection error for 

(a) a flat sail and (b) heliogyro with max = 0.04. c-d) Detailed results for black marker in plot b).  

 

Note that, although the upper limit on the lightness number of 0.04 is larger than Sunjammer’s flat sail 

near-term technology, it is still a realistic value. As stated in the introduction, similar near-term heliogyro 

technology can enable lightness numbers of approximately   0.08. Also note that increasing the 

(constant) lightness number for the flat sail to 0.04 (while the solar sail halo orbit is designed for a value 

of 0.0363) leads to the situation that no injection error, no matter how small the error, can be recovered 

from. Only the heliogyro’s unique ability to change the lightness number allows the use of a larger 

lightness number than required for the solar sail halo orbit, as it can reduce the lightness number and 

settle it around the nominal value once the injection error has been overcome. 
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To show the effect of other values for max  on the recoverable injection error, Figure 9 has been 

included. As can be expected, the larger the value for max , the larger the injection error that can be 

corrected for. In fact, for a value of max  0.038 the heliogyro enables an exact order of magnitude 

larger error in both position and velocity range compared to the flat sail. This is an increase in the nominal 

lightness number of 5 percent. Note that the small gap in the recoverable injection error surface for 

max  0.037 is caused by the inability to satisfy the error tolerance on the position. More details on such 

gaps are provided in Section 8.2 where the sensitivity on the error tolerance is further investigated.  

 

 

Figure 9 Orbital control of solar sail halo orbit with  = 0.0363. Recoverable injection error for flat 

sail (grey) and heliogyro with different values for max (color).  

 

Figure 10 provides some additional details on the lightness number control profile for the case indicated 

by the black marker in Figure 8b for different values for max . The full profiles are shown in plot a with 

further details in plots b and c. The figure shows that the lightness number control profile is very similar 

for each value for max and only differs in the length of time that the maximum lightness number value is 

requested. Note that all control profiles start from a  -value of 0, the lower limit on the lightness 

number. This is due to the fact that the LQR requests a rather large negative lightness number at the start.  
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a)  

 

b) c) 

  

Figure 10 Orbital control of solar sail halo orbit with  = 0.0363 and 0r  -800,000 km and 

0r 100 m/s. Solar sail lightness number control profile for different values for max.  

 

7.1 Additional halo orbits 

The results in Figure 8 and Figure 9 have been generated for a nominal lightness number of 0.0363. This 

section investigates the heliogyro performance for some of the other orbits shown in Figure 5, in 

particular for   0.01, 0.02, 0.03, and 0.04. The results are provided in Figure 11, which shows (where 

possible) the recoverable injection error for both a flat sail (in grey) and for a heliogyro (in color), where 

different values for max  are considered for the heliogyro configuration. In particular, max  is increased 

with increments of 10% up to an increase of 100%, i.e.  max 1 /10i       with 1,2,...,10i  . Note 

that for   0.01 and 0.02 and the flat sail configuration, the recoverable injection error is so small that it 

is not even visible on the axis scales used in Figure 11.  

The results in Figure 11 show that, the larger  , the larger the recoverable injection error. This holds 

both for the heliogyro and the flat sail configurations. In fact, while for   0.03 and 0.0363 values of 

max  0.033 and 0.038 (i.e. a 10 and 5 percent increase compared to the nominal lightness number) 
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achieve an order of magnitude increase in the recoverable injection error for a heliogyro compared to the 

flat sail configuration, such an increase is not achievable for   0.04. I.e. the orbital control capabilities 

of the flat sail seem to improve faster with the value for   than that of the heliogyro. However, still, the 

heliogyro significantly outperforms the flat sail configuration, which is immediately clear from 

comparing the grey and colored surfaces in Figure 11. 

 

  

  

Figure 11 Orbital control of solar sail halo orbits with  = 0.01, 0.02, 0.03, and 0.04. Recoverable 

injection error for flat sail (in grey) and heliogyro (in color) for different values for max.  

 

8. Sensitivity analyses 

A few assumptions have been made to generate the results of Section 7, including an error tolerance of 

  0.0005 and that injection into the solar sail halo orbit takes place at 0y   and 0z  , i.e. at the 

northernmost point of the orbit. In this section, these parameters are varied and their effect on the orbital 
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control capabilities of the heliogyro are investigated. Note that, to limit the amount of results to be 

presented, only the case of   0.0363 with max  0.04 is considered.  

 

8.1 Error tolerance 

As mentioned, the results throughout this paper have considered the orbital control successful if, after 

four orbital periods, the error on position and velocity is smaller than a certain tolerance,   0.0005, 

which corresponds to an allowable error in position and velocity of 75,000 km and 15 m/s, respectively. 

When plotting the actual errors in position and velocity after four orbital periods corresponding to Figure 

8b, the results as shown in Figure 12 are obtained. Note that for computational speed, propagation is 

truncated when the error on the position becomes larger than 0.01 (i.e. 1,500,000 km), which is 

considered an unrecoverable error. The error in position in Figure 12a therefore never exceeds a value of 

0.01.  

a) b) 

  

c) d) 

  

Figure 12 Orbital control of solar sail halo orbit with  = 0.0363 and  max = 0.04. Achievable error 

tolerance, , on (a-b) position and (c-d) velocity after 4 orbital period.  
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Figure 12a and c show a very clear and sharp drop in the error on the final position and velocity between 

the dark grey regions ( 0.001  ) and the bright regions. When zooming in on the darker regions, more 

details appear, see Figure 12b and d. These plots show that for an error tolerance on the position of 

0.0001   a small region exists where this tolerance cannot be met. Something similar holds for the error 

in velocity, although this region exists at even smaller values for the tolerance. These regions cause the 

gaps in the recoverable injection error as shown in Figure 9 for max  0.037 as well as in Figure 13.  

Figure 13 shows the recoverable injection error for the case considered in this section (i.e. for   0.0363 

with max  0.04) and for 55 10   , 41 10 , 42.5 10 , 45 10 , 47.5 10 , and 31 10 . Figure 13 thus 

shows “horizontal slices” of the three-dimensional plots in Figure 12b and d. For larger values of the error 

tolerance the recoverable injection errors appear to be the same and coincide with the dark regions in 

Figure 12a and c. However, for small values of the error tolerance, the range of recoverable injection 

errors becomes smaller and the “gaps” due to the unmet tolerance on the position error (and for even 

smaller values also the unmet tolerance on the velocity error) become clearly visible. Although these gaps 

indicate that the tolerance cannot be met within 4 orbital revolutions, additional simulations have shown 

that the gaps reduce for longer propagation times, indicating that, given time, the gaps may disappear 

altogether.  

 

 

Figure 13 Orbital control of solar sail halo orbit with  = 0.0363 and  max = 0.04. Recoverable 

injection error for different values for the error tolerance, .  

 

8.2 Injection location 

The results in this paper thus far have only considered orbit injection at the most northern location of the 

solar sail halo orbit; however, injection may occur at any location along the orbit. In this section, four 
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injection locations, coinciding with the crossings of the  ,x z - and  ,x y -planes, are therefore 

considered (see Figure 14).  
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Figure 14 Alternative injection locations along the solar sail halo orbit with  = 0.0363. 

 

The results are provided in Figure 15a and show only a minor effect of the injection location on the 

recoverable injection error. Only at the extremes of the position and velocity error intervals some 

differences can be observed, which are more clearly visible in the contour plot of Figure 15b. 

 

a) b) 

  

Figure 15 Orbital control of solar sail halo orbit with  = 0.0363 and  max= 0.04. Recoverable 

injection error for different injection locations.  
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9. Conclusions 

This paper has demonstrated the superior capabilities of a heliogyro for orbital control compared to the 

traditional flat sail configuration. These capabilities exist due to the heliogyro’s unique ability to scale the 

solar sail force vector in any direction between zero and the force magnitude that an equivalent-area flat 

sail can generate in that direction. In other words, the heliogyro fills the well-known solar sail force-

bubble and can be considered as having a highly-variable lightness number. This variable lightness 

number complements the sail’s attitude as control variables in a linear-quadratic regulator that has been 

used in this paper to recover from an error in the injection state vector of a Sun-Earth L1 solar sail halo 

orbit. Furthermore, the variable lightness number, as well as the smaller sail loading of a heliogyro, 

enables the use of a maximum lightness number that is larger than the nominal lightness number for 

which the solar sail halo orbit is designed. After recovering from the injection error, the heliogyro can 

scale down the lightness number and settle it around the nominal value.  

For a solar sail halo orbit with a nominal sail lightness number of   0.0363 (technology designed for 

the Sunjammer mission) and a maximum sail lightness number of max   0.038 (an increase in the 

nominal value of 5%), the heliogyro can accommodate an order of magnitude larger range on the 

injection error than a flat solar sail, which has a fixed lightness number equal to the nominal value. Note 

that the injection error is applied in the direction of the unstable eigenvector and that control is considered 

successful if the error on the position and velocity after four orbital periods is smaller than a certain 

tolerance. If the value for max  is increased further, an even larger injection error can be recovered with 

very similar  -control profiles: only the amount of time that the maximum lightness number is requested 

by the controller reduces with increasing max . 

For solar sail halo orbits with smaller or larger nominal sail lightness numbers, the recoverable injection 

error also scale down or up, respectively. This holds both for the heliogyro as for the flat sail 

configuration, but the heliogyro always outperforms the flat sail. 

Finally, sensitivity analyses have shown that the range of recoverable injection errors does not change 

much within an error tolerance in the range of 41 10 - 31 10  (i.e. an error in position and velocity 

of 15,000 – 150,000 km and 3-30 m/s after 4 orbital periods). However, below a value of 41 10 , the 

recoverable injection errors (especially in position) do become smaller, but are still significantly larger 

than those recoverable with a flat sail. Also, larger injection errors for small tolerances can be overcome if 

propagation time is increased. Furthermore, from considering different injection locations along the orbit, 

it appears that the injection location has only a minor effect on the heliogyro’s performance to correct for 

injection errors.  
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Appendix A Reference frames and transformations 

Following Reference 10, four different reference frames are involved in defining the forces and moments 

produced by a heliogyro, see Figure 16. (Note that there is a slight difference in the definition of the 

 1 2 3
ˆ ˆ ˆ, ,D d d d -frame with Reference 10).  

1. Sun coordinate system,  ˆˆ ˆ, ,S s l p   

- ŝ : Sun-spacecraft vector (for heliocentric orbits ˆ ˆs r ), referred to as ‘radial’ 
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- l̂ : Local horizontal with respect to the Sun (for heliocentric orbits ˆ ˆl v ), referred to as 

‘transverse’ 

- p̂ : Reference axis for the clock angle   (for heliocentric orbits ˆp̂ h ) 

2. Despun coordinate system,  1 2 3
ˆ ˆ ˆ, ,D d d d  

- 1d̂ : Along the heliogyro spin axis Ω   

- 2d̂ : Completes the right handed reference frame (along blade 4 at time 0t  ) 

- 3d̂ : Along blade 1 at time 0t    

This reference frame is thus defined at time 0t   and remains fixed while the heliogyro rotates. 

3. Body coordinate system,  1 2 3
ˆ ˆ ˆ, ,B b b b    

- 1b̂ : Along blade 1 at time t   

- 2b̂ : Completes right handed reference frame (along blade 4 at time t ) 

- 3b̂ : Along the heliogyro spin axis Ω   

This reference frame is thus fixed to the blades and rotates while the heliogyro rotates. 

4. Flat thi  blade coordinate system,   ˆ ˆ ˆ, ,iL x y z   

- x̂ : Along thi  blade span 

- ŷ : Along thi  blade chord 

- ẑ : Normal to thi  blade ( ˆẑ n ) 

To transform between these reference frames, the following rotation operations are required, where the 

following definition and notation of the standard rotation matrices is adopted: 

 , , ,

1 0 0 cos 0 sin cos sin 0

0 cos sin ,  0 1 0 ,  sin cos 0

0 sin cos sin 0 cos 0 0 1

x y zR R R  

   

   

   

     
     

   
     
          

  (23) 

1. Transformation from  1 2 3
ˆ ˆ ˆ, ,D d d d  →  ˆˆ ˆ, ,S s l p   

A vector in,  1 2 3
ˆ ˆ ˆ, ,D d d d , Dx , can be transformed to a vector in  ˆˆ ˆ, ,S s l p , Sx , through 

  , ,S z x D DR R SD  x x x   (24) 

2. Transformation from  1 2 3
ˆ ˆ ˆ, ,B b b b  →  1 2 3

ˆ ˆ ˆ, ,D d d d  

A vector in  1 2 3
ˆ ˆ ˆ, ,B b b b , Bx , can be transformed to a vector in  1 2 3

ˆ ˆ ˆ, ,D d d d , Dx ,  through 
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  
1

, ,
,

2

D x z B B
y

R R R DB  


 x x x ,  (25) 

where i  is defined as 

 
1

,      2i i i

i
t

N
   


   , (26) 

with i  the thi  blade number and N  the number of heliogyro blades.  The constant   and / 2  

rotations are merely to change the axis numbering to align with convention in literature. 

3. Transformation from  ˆ ˆ ˆ, ,iL x y z  →  1 2 3
ˆ ˆ ˆ, ,B b b b  

A vector in  ˆ ˆ ˆ, ,iL x y z , 
i

Lx , can be transformed to a vector in  1 2 3
ˆ ˆ ˆ, ,B b b b , Bx ,  through 

  , ,
i i i i

B z x L i LR R BL  x x x ,  (27) 

 with i  the pitch angle of the blade.  

 



26 

 

 

  

ŝ   

l̂   

p̂   

1d̂   

2d̂   

3d̂   

 

   

   Ω   

a) b) 

 

 

c)  

 

Figure 16 Reference frames involved in the computation of forces and moments on heliogyro.  

a) S - and D -frames. b) D - and B -frames. c) B - and iL  -frames. 
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