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Preference-Based Multi-Objective
Optimization for Synchromodal
Transport Using Adaptive Large
Neighborhood Search

Yimeng Zhang1 , Bilge Atasoy1 , and Rudy R. Negenborn1

Abstract
Decision-makers in synchromodal transport (ST) have different preferences toward different objectives, such as cost, time,
and emissions. To solve the conflicts among objectives and obtain preferred solutions, a preference-based multi-objective
optimization model is developed. In ST, containers need to be transferred across modes, therefore the optimization problem
is formulated as a pickup and delivery problem with transshipment. The preferences of decision-makers are usually expressed
in linguistic terms, so weight intervals, that is, minimum and maximum weights, are assigned to objectives to represent such
vague preferences. An adaptive large neighborhood search is developed and used to obtain non-dominated solutions to con-
struct the Pareto frontier. Moreover, synchronization is an important feature of ST and it makes available resources fully uti-
lized. Therefore, four synchronization cases are identified and studied to make outgoing vehicles cooperate with changes of
incoming vehicles’ schedules at transshipment terminals. Case studies in the Rhine-Alpine corridor are designed and the
results show that the proposed approach provides non-dominated solutions which are in line with preferences. Moreover,
the mode share under different preferences is analyzed, which signals that different sustainability policies in transportation
will influence the mode share.
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With the growth of international trade in recent decades,
the use of intermodal transportation is increasing because
of its positive impacts on economics and the environment
(1, 2). Intermodal transport means freight transported by
at least two modes, for example, barge, train, and truck.
Trucks are fast and flexible but with high carbon emis-
sions, while trains are slow with low carbon emissions.
Barges are also slow but are good with both low cost and
low carbon emissions (3). Synchromodal transport (ST)
is the newest concept in the conceptual evolution of inter-
modal transport, which optimally uses all kinds of avail-
able resources and selects transport routes/modes at any
time based on the operational circumstances, customer
requirements, or both (1, 4).

In ST, carriers (operators of vehicles) have different
preferences toward different objectives according to the
requirements of shippers (owners or suppliers of contain-
ers). Typically, the primary objective of carriers is to

minimize the transport cost. Transport time also plays an
important role in transport route optimization because it
influences both cost and reliability. Moreover, the gov-
ernment stimulates stakeholders to minimize the total
CO2 emissions. To achieve ST, it is necessary to consider
multiple objectives and preferences and synthesize the
best attributes of different modes in the optimization
model for carriers. As shown in Figure 1, the carrier
needs to find the most appropriate routes of multiple
modes, including barges, trains, and trucks, according to
their preferences. Moreover, as a distinct feature of ST,
synchronization, that is, coordination of involved
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operations, is needed because transshipment makes vehi-
cles dependent on each other (5). For example, when the
carrier needs to transport perishable cargoes for shippers,
the time objective is important and the proportion of fast
modes (such as trains and trucks) in transport planning
will be higher. However, in the ST literature, most scho-
lars ignore the different objectives and preferences of car-
riers (6, 7).

To address the above gaps, this work introduces a
preference-based multi-objective optimization model for
ST. The optimization problem is formulated as a pickup
and delivery problem with transshipment (PDPT), and
an adaptive large neighborhood search (ALNS) is devel-
oped to solve it. The remainder of this paper is structured
as follows. The second section presents a brief literature
review which is followed by problem description and
mathematical model. Next, the solution methodology is
presented, after which experimental settings and results
are provided. The final section concludes the paper and
gives future research directions.

Literature Review

This paper studies transshipment, synchronization, and
preferences-based multi-objective optimization in ST.
Therefore, the presented literature review focuses on
these three distinctive aspects as well as literature that
studies multi-objective optimization for intermodal
transport.

Transshipment

A distinctive feature of intermodal transport is the trans-
shipment between modes/vehicles. To model transship-
ment, most scholars use the network flow (NF) model,
in which commodity flows are covered by arcs and paths
(a series of arcs) of the transport network rather than
routes of vehicles (1). The type of vehicles used can be
then ignored and containers can be transferred freely in
nodes of the network. The advantage of this approach is
that the computation time is relatively short. However,
these studies lack a direct vehicle routing component (8).
Compared with the NF model, optimizing both con-
tainer and vehicle routing brings three benefits:

1. Capacity constraints and time constraints can be
used on vehicles rather than services, which is
more accurate.

2. In the NF model, containers can only be trans-
ported on the predefined arc. If the vehicle rout-
ing is considered, the containers can change
routes on nodes of the arc, which is more flexible.

3. The optimization results can provide the routing
plan to vehicles directly, which is more practical.

Transshipment between vehicles is also a common
practice in other transportation operations and is consid-
ered in various modeling approaches, including vehicle
routing problem with trailers and transshipment (9),
vehicle routing problem with cross-docking (10), and
PDPT (11). PDPT is suitable for ST. Thus this research
studies PDPT for ST, considering both container routing
and vehicle routing.

In a previous paper (12), the authors proposed an
optimization model for PDPT in inland waterway trans-
port. There are three main differences between Zhang
et al. (12) and this paper: (a) Zhang et al. (12) only opti-
mized the routing of barges, while this paper considers
multiple modes; (b) this paper takes preferences into
account, which is not considered by Zhang et al. (12); (c)
specific synchronization cases are presented in this paper,
and they are not illustrated in Zhang et al. (12).

Synchronization

To use the available resources optimally, synchronization
is a key factor in optimization for ST (5). In the standard
vehicle routing problem (VRP), vehicles are independent
of one another. For example, removing a request from
one route does not affect any other route before this
request is inserted into routes again. In ST, by contrast,
a change in one route may have effects on other routes
even though no request is removed or added. For exam-
ple, removing request 1 from a route of vehicle k means
that vehicle k will deliver request 2 at the transshipment

Figure 1. Vehicle routing for synchromodal transport
considering preferences and synchronization.
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terminal earlier than the scheduled time, but vehicle l,
which will pick up request 2 at the transshipment termi-
nal, has not arrived. Therefore, vehicle l needs to change
its route to adapt to the new situation, otherwise request
2 needs to be stored at the transshipment terminal with a
storage fee. In the worst case, a change in one route may
render all other routes infeasible. This is called the inter-
dependence problem (8). Therefore the synchronization
among vehicles is crucial for the optimization of ST.
Behdani et al. (13) also point out that including synchro-
nization in the optimization process could improve trans-
portation performance.

Synchronization in VRP has been studied in the litera-
ture. According to Drexl (8), the following types of prob-
lems need to consider synchronization:

1. Pickup and delivery problem with split loads (14).
2. VRP with transshipment of loads or transfer of

persons (15).
3. The requirement of simultaneous presence of

vehicles at a location to render a service (16).
4. The existence of nonautonomous vehicles (17).

The problem in this research belongs to the second
type: VRP with transshipment of loads. Although many
studies have contributed to synchronization in VRP, to
the best of the authors’ knowledge, synchronization has
not been studied fully in ST (5).

Preference-Based Multi-Objective Optimization

Wang et al. (18) provide a summary of methods on how
to incorporate preferences into multi-objective optimiza-
tion (MOO), such as weight sum method, reference
point, reference direction, utility function, and so forth.
According to Coello et al. (19), preference-based MOO
approaches are divided into three categories: priori
(20, 21), progressive (22, 23), and posteriori (24) prefer-
ence articulations, which mean making decisions before,
during, and after search, respectively. In ST, it may be

impractical for a decision-maker (DM) to specify their
preferences completely before any alternatives are
known. However, the DM has at least a rough idea
about the reasonable trade-offs between different objec-
tives, which is termed vague preferences. For example,
Szlapczynska and Szlapczynski (20) propose a MOO
model in ship weather routing, considering vague prefer-
ences of DMs in the form of weight intervals. Therefore,
the priori preference articulations approach is used in
this paper and Pareto optimal solutions are obtained
according to preferences.

The e-constraint method is often used for multi-
objective problems; it is based on minimizing/maximiz-
ing one of the objectives and restricting the rest of the
objectives within predefined values (3). For heuristic
approaches, evolutionary algorithms, such as NSGA-2
(Nondominated Sorting Genetic Algorithm II) (25), are
often used in MOO problems. Besides evolutionary algo-
rithms, ALNS can also be used to solve the MOO prob-
lem. ALNS is more suitable for this study because it has
been successfully applied to VRP and performs robustly
on different instances because of its adaptive nature (11).

MOO for Intermodal Transport

Two types of problems are considered in the literature.
The service network design problem relates to choosing
services and optimizing vehicle frequencies in the trans-
port network. Route optimization involves the planning
decisions of routes and modes. The methods for solving
MOO used in different studies are different. Table 1 pro-
vides a summary of models in the literature to position
the present work. As mentioned above, the vehicle rout-
ing component has many benefits; taking synchroniza-
tion into account is conducive to making full use of
limited resources, and considering preferences is impor-
tant to solve the conflicts among objectives. However,
vehicle routing, synchronization, and preferences are
rarely considered in the literature and these are the core
contributions of this paper. Furthermore, an ALNS

Table 1. Comparison of Models in the Literature

Article Problem definition Objectives Vehicle routing Synchronization Preferences Solution method

Kalinina et al. (3) SND c, e, t 3 3 3 e
Xiong and Wang (26) RO c, t 3 3 3 GA
Baykasoğlu and Subulan (27) SND c, e, t 3 3 � CP, FGP
Ji and Luo (28) SND c, t 3 3 3 HEDA
Mnif and Bouamama (29) SND c, t 3 3 3 FA
Chen et al. (30) RO c, t, cc 3 3 3 NNCM
This paper RO c, e, t � � � ALNS

Note: c = cost; e = emission; t = time; cc = container usage cost; RO = route optimization; SND = service network design; GA = genetic algorithm;

FA = firework algorithm; HEDA = hybrid estimation of distribution algorithm; NNCM = normalized normal constraint method; e= e-constraint method;

CP = compromise programming; FGP = fuzzy goal programming approach.
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algorithm is used to solve the problem, and the proce-
dures within ALNS are tailored to be specific to the syn-
chromodal case which is another distinction of this
paper.

Problem Description

The main research question of this study is: How can ST
be optimized according to the preferences of the carrier?
To answer this research question, three key research
problems need to be solved, as shown in Figure 2:

1. Compared with unimodal transport, ST is more
complex because multiple modes are used and
transshipment is needed between modes/vehicles.
As illustrated in the literature review, considering
both container routing and vehicle routing in
transshipment modeling makes the optimization
more accurate, more flexible, and more practical.
To add vehicle routing into the model, the follow-
ing research questions need to be answered: How
to optimize container routing and vehicle routing
simultaneously? How to model the transshipment
with both vehicle and container constraints?

2. Compared with intermodal transport, synchroni-
zation should be taken into account because of
the synchromodality requirements in ST. Because
of the transshipment, the route planning of a vehi-
cle in ST may depend on the route planning of
other vehicles. With regard to the optimization
problem, a PDPT only makes the transshipment
possible, but does not make full use of transship-
ment because many solutions are infeasible with-
out synchronization. By coordinating vehicles,

synchronization takes full advantage of serving a
request by multiple vehicles/modes in ST. The fol-
lowing research questions need to be considered
in the synchronization: Is the vehicle dependent
on one vehicle or multiple vehicles? How do the
vehicles coordinate when they are dependent on
each other? Is there an infeasible solution no mat-
ter how the vehicles are coordinated?

3. Compared with single-objective optimization,
conflicts between objectives need to be considered
in the MOO. By taking preferences into account,
the problem may be addressed. As mentioned
above, in ST DMs usually cannot provide accu-
rate preferences. Therefore, we should consider
first how to represent the vague preferences of
DMs. Then, how to incorporate preferences into
the optimization model is another problem to
consider.

Solving Problem 1 (P1) is the basis for solving
Problem 2 (P2) and Problem 3 (P3). All methods for
these problems are used to establish the preference-based
MOO model for ST, which will be used to obtain attrac-
tive solutions for DMs.

Mathematical Model

The notations of the mathematical model are given in
Table 2. A MOO model for the PDPT in ST is given by
Equations 1–32 as described below. Three objectives,
that is, minimizing cost, emissions, and time, are consid-
ered, as Equations 1–3 show. The cost objective consists
of transportation cost of containers, fuel cost, transship-
ment cost, and cost associated with waiting, service, and

Figure 2. Key research problems in this study.
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transshipment time. ‘‘Emissions’’ in this paper refers to
CO2 emissions. There are different ways to calculate such
emissions in the literature (31), and the activity-based
method is one of the popular methods because activity
data is easier to obtain compared with other methods
(32, 33). Therefore this work uses the activity-based
method and calculation of CO2 emissions based on vehi-
cle type, distance, and amount of containers (34). For
different modes the emissions factor ek is different and
detailed data are shown in the Case Study section. The
time objective includes the time on the route and waiting
time at terminals. Because this paper considers vehicle,
container routing, and transshipment, both vehicle and
container flows are modeled and transshipment con-
straints are designed, which are illustrated in detail in
Equations 4–32.

minFcost =
X
k2K

X
(i, j)2A

X
r2R

(c1
kdij + c2

ktij)y
kr
ij qr +

X
k2K

X
(i, j)2A

(c3
kdijx

k
ij + c4

k(t
k
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i ))+X
k, l2K, k 6¼l

X
r2R
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kqrs

kl
ir +X
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X
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kekykr

ij qrdij=1000

ð1Þ
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X
k2K

X
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X
r2R

ekykr
ij qrdij ð2Þ

minFtime =
X
k2K

X
(i, j)2A

tijx
k
ij +

X
k2K

X
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(t
k
i � tk

i ) ð3Þ

Constraints (4)–(21) are the spatial constraints.
Constraints (4)–(11) are typical constraints in PDP.
Constraints (4) and (5) ensure that a vehicle begins and
ends at its begin and end depot, respectively. Constraints
(6) and (7) ensure that containers for each request must
be picked and delivered at its pick up and delivery termi-
nal, respectively. Constraints (8)–(10) are the subtour
elimination constraints, which provide tight bounds
among several polynomial-size versions of subtour elimi-
nation constraints (35). Constraint (11) is the capacity
constraint.

X
j2N

xk
ijł1 8k 2 K, 8i= o(k) ð4Þ

X
j2N

xk
ij =

X
j2N

xk
jl 8k 2 K, 8i= o(k), 8l = o0(k) ð5Þ

X
k2K

X
j2N

ykr
ij = 1 8r 2 R, 8i= p(r) ð6Þ

Table 2. Notation Used in the Model

Sets
R Set of requests
K Set of vehicles
N Set of terminals
A Set of arcs. For i, j 2 N, the arc from i to j is denoted by (i, j) 2 A
T � N Set of transshipment terminals
o(k)=o0(k) � N Initial/final depot of vehicle k 2 K
p(r)=d(r) � N Pickup/delivery terminal of request r 2 R
Variables
xk

ij Binary variable; 1 if vehicle k 2 K uses the arc (i, j) 2 A, 0 otherwise
ykr
ij Binary variable; 1 if request r 2 R transported by vehicle k uses arc (i, j) 2 A, 0 otherwise

zk
ij Binary variable; 1 if terminal i 2 N precedes (not necessarily immediately) terminal j 2 N in the route of the

vehicle k 2 K, 0 otherwise
skl
ir Binary variable; 1 if request r 2 R is transferred from vehicle k 2 K to vehicle l 6¼ k at node i 2 N, 0 otherwise

tki =t
k
i The arrival/departure time of vehicle k 2 K at terminal i 2 N

t0i k The service start time of vehicle k 2 K at terminal i 2 N
Parameters
uk Capacity (TEU) of vehicle k 2 K
ek Emissions (kg) per km/TEU of vehicle k 2 K
qr Quantity (TEU) of request r 2 R
tk

ij The transportation time (in hours) on arc (i, j) 2 A for vehicle k 2 K
½ap(r), bp(r)� The pickup time window for request r 2 R
½ad(r), bd(r)� The delivery time window for request r 2 R
t00i k=t000i k The transshipment/service time (in hours) for vehicle k 2 K at terminal i 2 N
vk Speed (km/h) of vehicle k 2 K. The upstream speed and downstream speed for a same barge are different
dij Distance (km) between terminal i 2 N and j 2 N
c1�6
k c1

k / c2
k are unit (one container) cost (euro) of transportation per km/hour using k 2 K. c3

k is the fuel cost per km
of vehicles. c4

k is the cost per hour of waiting time, transshipment time, and service time at a terminal. c5
k is the

transshipment cost per container. c6
k is the carbon tax coefficient per ton
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Flow conservation constraints of both vehicles and
requests are handled by Constraints (12)–(15).
Constraint (12) represents flow conservation for vehicle
flow and (13)–(14) represent flow conservation for
request flow. Constraint (13) is for transshipment term-
inals, and Constraint (14) is for regular terminals.
Constraint (15) links y and x variables to guarantee that,
for a request to be transported by a vehicle, that vehicle
needs to be traversing the associated arc.X
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Constraints (16)–(18) facilitate transshipment.
Constraint (16) ensures that the transshipment occurs
only once in the transshipment terminal. Furthermore,
Constraints (17) and (18) allow the transshipment only
when the request is transported by both vehicles k and l.X

j2N

ykr
ji +

X
j2N

ylr
ij łskl
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8r 2 R, 8i 2 T , 8k, l 2 K, k 6¼ l
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Characteristics of ST are considered in Constraints
(19)–(21). Constraint (19) avoids vehicles running on
unsuitable routes, for example, trucks cannot run on
inland waterways. Constraint (20) takes care of prede-
fined routes for certain vehicles, for example, trains have
fixed routes and terminals. Constraint (21) ensures the
transshipment occurs in the right transshipment

terminal, because some transshipment terminals only
allow the transshipment between two specific modes.
When containers need to be transferred from barges to
trucks, terminals that only allow transshipment between
barges and trains will not be considered.

xk
ij = 0 8k 2 Kmode8(i, j) 2 AnAmode ð19Þ

xk
ij = 0 8k 2 Kcertain8(i, j) 2 AnApredefined ð20Þ

skl
jr = 0 8k 2 Kmode1

8l 2 Kmode2, 8j 2 TnTmode2
mode1 , 8r 2 R

ð21Þ

Constraints (22)–(30) are the temporal constraints.
Constraint (22) guarantees that the arrival time of vehi-
cle is earlier than the service start time. Constraint (23)
maintains that the departure happens only after the ser-
vice is completed. Constraint (24) ensures that the time
on the route is consistent with the distance traveled and
speed, and that M is a large enough positive number.
Constraints (25) and (26) take care of the time windows.
These constraints give the possibility of waiting at term-
inals when a vehicle arrives earlier. Constraint (27) adds
the service time of pickup and delivery.

tk
i łt0ik 8i 2 N , 8k 2 K ð22Þ

t0ikłt
k
i 8i 2 N , 8k 2 K ð23Þ

t
k
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k
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Constraints (28)–(30) include time constraints for
transshipment. If there is a transshipment from vehicle k

to vehicle l, but vehicle l arrives before vehicle k departs,
then Constraint (28) allows vehicle l to wait until vehicle
k completes its unloading. Constraints (29) and (30) add
transshipment time at the transshipment terminal.

t
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Constraints (31) and (32) set variables x and y as bin-
ary variables.
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ij 2 f0, 1g 8(i, j) 2 A, 8k 2 K ð31Þ
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With regard to complexity, there are a total of jN j2jKj
x-variables and jN j2jKjjRj y-variables. In the worst case,
jRj is bounded by jN j2. The total number of variables is
bounded by O(jN j4jKj).

Solution Methodology

This section solves the research problems one by one.
First, to solve the PDPT, an ALNS approach is devel-
oped and the ALNS structure is described. Next, to make
full use of available resources, the synchronization
methods between vehicles/modes are proposed. Finally,
to solve the conflicts between objectives and obtain pre-
ferred solutions, the weight interval method proposed
by Szlapczynska and Szlapczynski (20) is used to add
vague preferences to the MOO model. Note that both
preferences and synchronization are incorporated into
ALNS.

ALNS Algorithm

Solving the MOO problem to optimality by the exact
approach often needs multiple runs for different objec-
tives and a long computation time. In the authors’ previ-
ous work (12), Gurobi was used to solve a similar PDPT
in inland waterway transport, and the results showed
that it took more than 12 h when there were more than
six requests. Therefore, heuristics are needed to solve
MOO. ALNS has already been used for VRP successfully
and it performs well on large-scale instances (11, 14, 16).
The adaptive nature of ALNS, that is, choosing operators
according to their past performances, is a significant
advantage over other approaches. Therefore, ALNS is
chosen for solving the optimization problem in this study.

ALNS was proposed in 2006 based on an extension of
the large neighborhood search heuristic (36), and ALNS
adopted an adaptive mechanism to make it robust in dif-
ferent scenarios. To solve the MOO problem and reduce

Algorithm 1: ALNS algorithm for preference-based MOO

Input: K, R; Output: Xnd

set Xinitial as empty routes of K; set X and Xnd as empty sets; Rpool = R;
[Xinitial, Rpool] = GreedyInsertion(Xinitial, Rpool);
while Rpool is not empty do

[Xinitial, Rpool] = RandomRemoval(Xinitial);
[Xinitial, Rpool] = GreedyInsertion(Xinitial, Rpool);

end
Xlast  Xinitial; Add Xlast to X ;
repeat

refresh weights and choose operators at the beginning of every s iterations;
Xcurrent  Xlast; [Xcurrent, Rpool] = RemovalOperator(Xcurrent); flag= False;
While Rpool is not empty do

if flag== True then
[Xcurrent, Rpool] = RemovalOperator(Xcurrent)

else
flag= True

end
[Xcurrent, Rpool] = InsertionOperator(Xcurrent, Rpool);

end
if
Pn

i= 1 Gi(Xcurrent,Xlast).0 then
Xlast  Xcurrent

else
Xlast  Xcurrent with probability p;

end
Add Xlast to X;

Until a predefined number;
for X in X do

nd= 1 // the solution is non-dominated solution when
for X0 in X�X do

if
Pn

i= 1 Gi(X
0,X).0 then

nd= 0; break; // X is dominated by X’, break current loop
end

end
if nd== 1 then

Add X to Xnd;
end

end
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the computation time, a preference-based ALNS is pro-
posed, as shown in Algorithm 1. The input of the algo-
rithm is vehicles information K and request information
R, and the output is the non-dominated solution set Xnd.
Rpool is a set of active requests that need to be inserted to
routes. ALNS finds (near) optimal solutions by using
removal and insertion operators. In the beginning, an
initial solution Xinitial constructed by an insertion opera-
tor (such as Greedy Insertion used in this paper) is
needed for the following iterations. If there are still active
requests in Rpool after using the Greedy Insertion opera-
tor, Random Removal and Greedy Insertion operators
will be used alternately until Rpool is empty. Then, ALNS
searches solutions in a predefined number of iterations
guided by objectives. At the beginning of every s itera-
tions, the weights, that is, scores of past performance, of
operators are refreshed and operators used in the next s

iterations are chosen based on the weights. In each itera-
tion, routes will be destroyed and repaired alternately
until all requests are served, that is, a feasible solution is
found. It is worth noting that the initial solution is
obtained by using two operators, while the solutions in
the following iterations are obtained using all operators
with an adaptive mechanism.

At the end of the iteration, a decision is made
whether to accept current solution Xcurrent obtained in
this iteration by comparing it with the last solution
Xlast obtained in the last iteration. If the current solu-
tion is worse than the last solution, it will be accepted
with a probability p to avoid local optima more easily.
Simulated annealing idea is used and probability p gra-
dually declines to avoid local optima (36), as the fol-
lowing equation shows:

p= e

Pn

i= 1
Gi (Xcurrent,Xlast )�

Pn

n= 1
Fi (Xcurrent)

T , ð33Þ

where T.0 is the temperature which starts from an ini-
tial temperature and gradually decreases in every itera-
tion by cooling rate, c, where 0\c\1. n is the number
of objectives and Fi(Xcurrent) is the ith objective of Xcurrent.Pn

i= 1 Gi(Xcurrent,Xlast) represents the dominance degree
between Xcurrent and Xlast, which will be defined in
Equation 38 when introducing the weight interval
method.

After all solutions are obtained and stored in the solu-
tion set X, Xnd is obtained by comparing all solutions
through the dominance rule. X�X means the solution set
without X .

The design of different operators is widely discussed
in the literature (11, 36–39) as well as the authors’ previ-
ous paper (12). Besides traditional operators, including
Greedy Insertion, Transshipment Insertion, Random
Insertion, Worst Removal, and Random Removal opera-
tors, this work designs two customized operators, that is,

Route Removal and Node Removal operators. The fol-
lowing introduces the customized operators in detail and
the others are introduced briefly.

Greedy Insertion operator tries all possible solutions
using one vehicle and more than one vehicle and inserts
the request into the best route(s) (38, 39).

Transshipment Insertion operator also inserts requests
greedily, but it only tries solutions using more than one
vehicle and transshipment (11, 39).

Random Insertion operator chooses vehicles and posi-
tions randomly and inserts the request once the solution
is feasible (37, 40).

Worst Removal operator removes the requests with
the highest cost in each route (38, 39).

Random Removal operator selects part of vehicles and
removes one request from each vehicle randomly (37, 40).

Route Removal: because of the interdependence of
vehicles in ST, insertion operators may not be able to
find feasible solutions based on a few removals in a short
time. In this case, the route needs to be cleared, which
means all requests in a route are removed to the request
pool. Another idea behind this operator is to guide the
search in the direction of minimizing the number of used
vehicles and making full use of capacity. First, this oper-
ator obtains a random number n with a given numerical
distribution ½x1, x2, :::, x3� for ½1, 2, :::,m�, where m is the
number of routes which served requests, x1 = 1=j and
xi = xi�1=j when i.1. Then, it chooses n vehicles accord-
ing to a probability c= uavak =(

P
k2K2serve

uavak ), where u2ava
k

is available capacity and Kserve is a set of vehicles which
have served requests. The vehicle whose capacity has not
been fully made use of will have a higher probability of
being cleared. In an extreme case, all routes will be
cleared and all requests fill the request pool. In this case,
this operator may change the search direction from the
beginning and thus provide a larger neighborhood for
insertion operators.

Node Removal: most of the time, barges and trains in
ST carry multiple requests, therefore removing part of
the requests may not change the routes of vehicles.
However, the cost savings are usually obtained from
minimizing distance, that is, changing the routes of vehi-
cles. To obtain better solutions quicker, the Node
Removal operator is designed, which deletes visited
terminals from the routes. Similar to the Route Removal
operator, this operator chooses n vehicles based on a dis-
tribution and probability c. One terminal of each route
is randomly chosen and all requests which visit this ter-
minal will be removed.

Synchronization Between Vehicles

This work studies the synchronization among vehicles,
which means that vehicles can cooperate to get the best
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solution when a vehicle influences other vehicles (espe-
cially when there is transshipment between vehicles/
modes). For example, in the transshipment terminal, if
the delivery vehicle arrives later than the planned time,
the route plan of the pickup vehicle needs to be synchro-
nized to find a suitable arrival time. Synchronization is
considered after ALNS operators are used. If the current
solution violates constraints, such as time constraints,
the synchronization procedure will start and make other
vehicles cooperate with the insertion/removal. After the
synchronization, the feasibility of the solution will be
rechecked.

Four cases are listed below to illustrate the synchroni-
zation among vehicles in ST.

Synchronization Case 1. When a request is transported by
more than one vehicle, the time between these vehicles is
synchronized, as shown in Figure 3a. The time from the
arrival time till the service start time is the waiting time,
and departure happens after service time or transship-
ment time is completed. In Figure 3a, the request is first
transported by vehicle k and then transferred to vehicle l.
At the transshipment terminal, vehicle k should arrive
earlier than vehicle l. However, vehicle k arrives at

transshipment terminal before vehicle l completes the
unloading, therefore vehicle l waits for vehicle k.

Synchronization Case 2. Extended from case 1, a more
complex situation is considered, as shown in Figure 3b.
When request 1 is inserted in vehicle l, the pickup time of
requests 3 and 4 will be influenced. If the waiting time
for request 3 and 4 is changed, then the delivery time for
requests 2, 3, and 4 need to be calculated based on both
changes from insertion of request 1 and waiting time of
request 3 and 4.

Synchronization Case 3. After the insertion, when there are
cross requests, as shown in Figure 3c, the solution is
infeasible. According to the time constraints, we have the
following equations:

tTp2\tTd1, ð34aÞ

tTd2.tTp1, ð34bÞ

tTp2.tTd2, ð34cÞ

tTp1.tTd1, ð34dÞ

(a)

(b) (c) (d)

Figure 3. Synchronization cases: (a) case 1: time synchronization in the transshipment terminal, (b) case 2: complex transshipment
situation, (c) case 3: synchronization with cross requests, and (d) case 4: synchronization of relevant routes.

Zhang et al 79



where tTp means pickup time at transshipment terminal
and tTd means delivery time at transshipment terminal.
From Equation 34, we can get:

tTp1.tTd2, ð35Þ

which violates Equation 34b, therefore this solution is
infeasible.

Synchronization Case 4. The synchronization for relevant
vehicles is considered. Except for the situation described
above, other vehicles may be influenced by the transship-
ment when one request is inserted or removed. As shown
in Figure 3d, request 1 is inserted into the route of vehicle
l, and then vehicle l is influenced by the transshipment of
requests 2. Since the request 3 is transferred from vehicle
l to vehicle m, the vehicle m (such vehicles called relevant
vehicles) is also influenced. In this research, these rele-
vant vehicles can cooperate with changes by extending or
shortening the waiting time.

Weight Interval Method

MOO aims to yield a set of non-dominated solutions
presenting the optimal trade-offs between different
objectives. These solutions are obtained by the Pareto
improvement, which means a change to a different solu-
tion that makes at least one objective better off without
making any other objective worse off. Figure 4 gives the
Pareto frontier of bi-objective optimization for ST,
where different DMs have different preferred solutions.
As shown in Figure 4, preferred solutions are non-
dominated solutions, which are in line with DMs’ prefer-
ences. DM A mainly wants to minimize the cost, DM C
prefers to reduce the transport time, and DM B wants to

balance cost and time. Based on their preferences, they
will choose their preferred solutions in the Pareto fron-
tier. Therefore, it is important to consider DMs’ prefer-
ences in MOO. Integrating preferences into the MOO
approach and guiding the search toward solutions that
are considered relevant by the DM may yield two impor-
tant advantages:

1. Instead of a diverse set of solutions, many of them
clearly irrelevant to the DM, a search guided
toward the DM’s preferences will yield a more
fine-grained and suitable selection of alternatives.

2. By focusing the search onto the relevant part of
the search space, the objective space and the com-
putation time can be reduced, especially when sol-
ving real-life MOO problems (20, 41).

Using the weight interval method proposed by
Szlapczynska and Szlapczynski (20), the vague prefer-
ences are added to ALNS. The weight interval which is
assigned to the ith objective is:

wi 2 (wmin
i ,wmax

i ), ð36Þ

where 0 ł wmin
i \1, 0\wmax

i ł 1, and wmin
i ł wmax

i . The
weight interval can represent vague preferences, such as
linguistic terms.

Under the vague preferences, the Pareto dominance
rule is extended from traditional Pareto dominance (20).
In this paper, solution X dominates X 0 when:

Xn

i= 1

Gi(X ,X 0).0, ð37Þ

where

Gi(X ,X 0)=

wmin
i (Fi(X

0)� Fi(X )), Fi(X
0)� Fi(X )ø 0

wmax
i (Fi(X

0)� Fi(X )), Fi(X
0)� Fi(X )\0

(
ð38Þ

and n is the number of objectives.
In ALNS, vague preferences are considered when

comparing solutions. Before comparison, all objectives
are normalized.

Case Study

The proposed model is applied to a ST network in the
Rhine-Alpine corridor, which runs from Rotterdam to
Genoa along the Rhine River through Europe’s indus-
trial heart. All experiments are implemented in Python
3.7 and run with 8GB of memory and an Intel Core i7
CPU with two 1.90GHz and 2.11GHz cores.

Figure 4. The Pareto frontier of bi-objective optimization for
synchromodal transport.
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We assume that shippers provide the request informa-
tion (including pickup and delivery terminals, number of
containers, and time windows), and carriers provide
transport network information (including terminal loca-
tion and type, distances among terminals, vehicle infor-
mation, and cost data). The coefficients, such as carbon
emission, loading/unloading time, and transshipment
cost, are derived from Van Riessen et al. (6), Guo et al.
(34), and Li et al. (42). The coefficients used are as fol-
lows: c1

k / c2
k / ek equal to 0.2758/30.98/0.8866, 0.0213/

0.6122/0.2288, and 0.0635/7.54/0.3146 for trucks, barges,
and trains, respectively. c3

k / c4
k / c5

k / c6
k / t00i k=t000i k equal to

10/1/24/8/0.5/0.5, and they are the same for different
modes. The parameter j in Route Removal and Node
Removal operators is set as 1.3 in this paper. The
instances used are available at a research data website
(https://figshare.com/s/4f7f513488accd5ecddb).

The parameters in ALNS need to be tuned before the
optimization. To do that, the Pareto frontiers need to be
compared in MOO instead of solutions comparison in
the parameter tuning of single-objective optimization.
The average value of all non-dominated solutions’ objec-
tive function values represent the Pareto frontier in the
frontiers comparison, as Equation 39 shows:

P=

Pm
j= 1

Pn
i= 1 Fi(Xj)

m
, ð39Þ

where P is the value which represents the Pareto frontier,
m is the number of non-dominated solutions, n is the
number of objectives, and Fi(Xj) is the ith normalized
objective value of non-dominated solution Xj. The para-
meters which generate minimum value P will be used in
the optimization.

The parameters to be tuned include total iteration
number, number of iterations for refreshing weights, ini-
tial temperature, and cooling rate. For example, the
iteration number influences the quality of results, as
shown in Figure 5, which shows Pareto frontiers for 10
requests and five vehicles under two objectives (cost and
emission). Because P3000iterations is less than P50iterations, the
Pareto frontiers with 3,000 iterations are better than
frontiers with 50 iterations. It is worthy of note that
these findings are only for this specific instance. Ideally,
the parameters need to be tuned for each instance before
the optimization.

The results for one of the experiments with five vehi-
cles, 10 requests, and 10,000 iterations of ALNS are given
in Figure 6. In this experiment, the objectives include cost
and emissions. The requests and vehicles are randomly
generated, and in total 19 terminals are used. The regular
Pareto frontier, that is, Pareto frontier without prefer-
ences, is shown in Figure 6a. The other five figures com-
pare the Pareto frontiers under different weight intervals
with the regular Pareto frontier. Figure 6b to 6d, show

the results when the weight interval narrows down from
[0.1, 0.9] to [0.33, 0.66]. As the weight interval narrows
down, the relative importance of cost and emissions is
similar for both and therefore the trade-off between the
objectives is more obvious. Figure 6e and 6f, show two
opposite situations. In Figure 6e, the DM prefers to
reduce emissions. In contrast, the DM favors reducing
cost in Figure 6f.

It is interesting to investigate the following research
question: What mode/route will the DMs with different
preferences choose? To answer this research question, a
case study is designed and five terminals are used, includ-
ing two seaports (Rotterdam and Antwerp) and three
inland terminals (Duisburg, Worth, and Basel). The
transport network information is obtained from
Contargo company (https://www.contargo.net/). Almost
all modes can run between all terminals except for one
situation: there is no train between Rotterdam and
Antwerp. Table 3 shows the vehicle and request informa-
tion. To guarantee that all modes have a similar chance
to serve requests, different modes have the same number
of vehicles, and there is no time window because vehicle
speeds are different. Three objectives are considered:
cost, emissions, and time.

In this case, 10 instances are generated from 10
requests, that is, the ith instance includes i request(s).
For example, the fifth instance includes requests 0–4.
The upper part of Table 4 shows regular (meaning no
preferences) non-dominated solutions with request 1.
Except for Truck1 in Solution 5, which is empty from
Antwerp to Rotterdam, other vehicles transport request
1 on their routes. Solution 1 is also the best solution for
cost minimization (single-objective optimization) and the
barge is used in this solution. From these non-dominated
solutions, we can see that different modes and routes are
used after emission and time objectives are considered.
This insight is useful to see the impact of different poli-
cies on transportation networks with regard to environ-
mental considerations.

Besides the regular case, two scenarios (each scenario
includes three cases) with preferences are designed. The
weight intervals of three objectives in the first scenario
are the same but narrow down from case s1c1 (meaning
scenario 1 case 1) to s1c3. The weight intervals of s1c1,
s1c2, and s1c3 are [0.1,0.9], [0.25,0.75], and [0.33,0.66],
respectively. In the second scenario, each case prefers
one objective. Cases s2c1, s2c2, and s2c3 prefer minimiz-
ing cost, emissions, and time, respectively. The weight
interval of the preferred objective is [0.5,1.0], and weight
intervals of the other two objectives are [0.1,0.5]. For
example, the weight intervals of s2c1 are Cost: [0.5,1.0],
Emission&Time: [0.1,0.5].

For each instance, there are seven cases and each case
is repeated three times to obtain the average value.
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Therefore, a total of 210 experiments were performed. In
each experiment, ALNS runs for 1,000 iterations and the
computation time depends on instance size. For the
instances with one request and 10 requests, the computa-
tion times are around 1min and 15min, respectively.
The share of used modes is calculated for every case, as
shown in the bottom part of Table 4. The results show
that the solution tends to be better when the weight nar-
rows down in the first scenario (s1c1, s1c2, and s1c3) as
the cost, emissions, and time reduce. The share of the
barge in s1c3 is larger than in s1c2 because s1c3 sacrifices

time in exchange for better cost and emission, thus mak-
ing the overall result better. In the second scenario, the
minimum value of each objective is in line with prefer-
ences. The parameters used in this paper set the barge as
having the lowest cost, emissions, and speed, and the
truck is the fastest but has the highest cost and emis-
sions. Therefore, the barge is used the most when costs
or emissions are prioritized. Nevertheless, when time is
minimized (s2c3) the train’s share becomes the highest
because the barge speed is too low and truck’s cost and
emissions are high. The results are sensitive to the cost,

(a) (b)

(c) (d)

(e) (f)

Figure 5. Pareto frontiers of bi-objective optimization under 50 iterations and 3,000 iterations: (a) regular Pareto frontier, (b)
cost&emission: [0.1,0.9], (c) cost&emission: [0.25,0.75], (d) cost&emission: [0.33,0.66], (e) cost: [0.1,0.5], emission: [0.5,1.0], and (f) cost:
[0.5,1.0], emission: [0.1,0.5].
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emissions, and time parameters. When the parameters
change in reality, the share of modes may also change.
In inland waterway transport, there are more uncertain-
ties than other modes, such as long waiting times, lock/
bridge open time, and changing water level. In the mean-
time, compared with other modes, there may be limited
depth and inadequate air draft in inland waterway trans-
port. Therefore, although the results in this paper show
the advantages of barges and encourage DMs to choose
barges, barges are not utilized as frequently in reality.
The uncertainties and limitations of modes will be con-
sidered in the future to make the model more practical.

The proposed model is also compared with a recent
paper (34), using the same instances. Guo et al. (34)

solved a similar ST planning problem with us and mini-
mized the transport cost, but they did not consider pre-
ferences. Guo et al. (34)’s instances are based on a
transport network operated by European Gateway
Services, which contains 116 vehicles (49 barges, 33
trains, and 34 trucks) and 10 terminals (three deep-sea
terminals and seven inland terminals, and all terminals
could be used as transshipment terminals). In the follow-
ing results, the same cost objective is used as in Guo
et al. (34). Table 5 shows the results of instances with
five, 10, 20, and 30 requests under two conflicting objec-
tives, that is, minimizing cost and time. Under the same
setting, the proposed model can find the same solution
as Guo et al. (34), and the results are not repeated in

(a) (b)

(c) (d)

(e) (f)

Figure 6. Pareto frontiers of bi-objective optimization: (a) regular Pareto frontier, (b) cost&emission: [0.1,0.9], (c) cost&emission:
[0.25,0.75], (d) cost&emission: [0.33,0.66], (e) cost: [0.1,0.5], emission: [0.5,1.0], and (f) cost: [0.5,1.0], emission: [0.1,0.5].

Zhang et al 83



Table 5. In instances with five and 10 requests, the trans-
port cost is the same as in Guo et al. (34) when the DM
prefers the cost objective because the latter solution
dominates other solutions. In instances with 20 and 30
requests, the transport cost is slightly higher than in Guo
et al. (34) and the transport time decreases because the
transport time of that solution cannot satisfy the prefer-
ences on both cost and time objectives. When the DM
prefers the Time objective, the transport time is reduced
more, and the mode shares of trains and trucks increase.
This comparison shows that the proposed methodology
finds the optimal solutions when the objective is the

same and that the solutions can be adapted to the prefer-
ences of the carrier with a multi-objective setting with
preferences.

Conclusion and Future Studies

In this research, a preference-based MOO (PMOO)
model is developed to address the conflicts among multi-
ple objectives of carriers in ST. Compared with models
in the literature (3, 28, 30), the contributions of this work
are the considerations of vehicle routing, synchroniza-
tion, and preferences in ST. The VRP is regarded as a

Table 3. Vehicle and Request Information

Vehicle Capacity (TEU) Speed (km/h) Begin depot Fixed route

Barge1 100 15 Antwerp Free
Barge2 100 15 Rotterdam Free
Truck1 50 75 Antwerp Free
Truck2 50 75 Rotterdam Free
Train1 75 45 Antwerp Antwerp-Duisburg-Worth-Basel
Train2 75 45 Rotterdam Rotterdam-Duisburg-Worth-Basel

Request Pickup terminal Delivery terminal Time window Load

0 Antwerp Duisburg Free 25
1 Rotterdam Duisburg Free 50
2 Antwerp Worth Free 25
3 Rotterdam Worth Free 50
4 Antwerp Basel Free 25
5 Rotterdam Basel Free 50
6 Duisburg Worth Free 25
7 Duisburg Basel Free 50
8 Worth Basel Free 25
9 Antwerp Rotterdam Free 50

Table 4. Regular Non-Dominated Solutions and Mode Shares of Different Cases

Solution Cost (euro) Time (h) Emission (kg) Vehicles and routes

1 4379.309 27.16 2158.728 Barge1: Antwerp! Duisburg
2 5979.755 10.387 2968.251 Train1: Antwerp! Duisburg
3 6756.684 15.831 2753.751 Barge1: Antwerp! Rotterdam;

Train2: Rotterdam! Duisburg
4 6004.381 23.716 2373.228 Train1: Antwerp! Rotterdam;

Barge2: Rotterdam! Duisburg
5 11394.345 10.254 6935.071 Truck1: Antwerp! Rotterdam! Duisburg;

Train1: Antwerp! Rotterdam
6 10351.813 7.032 8365.071 Truck1: Antwerp! Duisburg

Name Average cost (euro) Average emission (kg) Average time (h) Share of barge (%) Share of train (%) Share of truck (%)

Regular 35710.5 31635.6 95.2 49.87 39.58 10.55
s1c1 30283.7 28549.2 96.0 64.93 33.97 1.1
s1c2 29628.0 28367.4 94.4 62.08 37.40 0.53
s1c3 27546.1 27457.4 98.6 73.37 26.16 0.48
s2c1 26966.5 27195.0 100.8 72.14 27.86 0
s2c2 28306.0 27068.6 103.0 72.13 27.39 0.48
s2c3 33250.9 30068.9 85.7 42.57 54.75 2.68
Average 30241.7 28620.3 96.3 62.44 35.30 2.26
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PDPT, and both vehicle routing and container flow are
modeled to achieve the transshipment in ST. Because of
the requirements of ST, the synchronization between
vehicles is considered, which makes the model more flex-
ible. Based on the optimization model, which considers
vehicle routing and synchronization, the weight interval
is incorporated into ALNS to represent the vague prefer-
ences of DMs. The case study on the Rhine-Alpine
corridor verified that the proposed model provides non-
dominated solutions which reveal DM preferences.
Under different preferences in this paper, the barge is the
most popular transport mode because of its low cost and
low emissions. When a DM prefers to minimize trans-
port time, transport modes with higher speed are used
more frequently. It is worth noticing that the mode used
is dependent on the input parameters. When these para-
meters change in another instance, the mode share may
be different.

The proposed model is able to target a selected part of
the Pareto frontier based on a DM’s vague preferences.
This is a significant advantage for carriers in ST because
they can just enter their linguistic preferences and then
obtain solutions which reveal their preferences. Using the
proposed model, DMs do not need to struggle to solve
conflicts between their objectives from many solutions
with different modes and routes. Compared with MOO
without preferences, this model not only reduces the
number of alternatives but also chooses solutions which
are preferred by DMs.

The proposed model can be encapsulated in a software
application in the intermodal transport domain. DMs
enter transport network information, requests, and pre-
ferences into the software and then they will obtain pre-
ferred solutions. The model is designed for intermodal
container transport, but it can also be applied to other
transport domains if the shipments are non-splittable,

such as truck-load transport. Moreover, this work com-
bined PMOO and PDPT in ST, which may be helpful for
solving similar problems in the VRP domain.

Future research will focus on the following aspects:

1. A carrier usually transports containers for multi-
ple shippers with heterogeneous preferences, such
as low-cost, fast, sustainable, reliable, or low-risk
transport. To improve the service quality and
gain superiority in the business competition, the
carrier needs to satisfy the expectations of ship-
pers. Therefore, future research will study ST
planning considering the heterogeneous prefer-
ences of shippers.

2. Collaborative planning among carriers is an inter-
esting direction, which may reduce transport cost,
time, and emissions. Shippers can also identify
attractive bundles of requests and consolidate
their cargo to help the carriers in reducing empty
trips and making full use of the capacity of the
vehicles (43). Conflicts between preferences also
happen in collaborative planning among carriers
and shippers. Therefore, the PMOO model for
collaborative planning is a promising research
direction.

3. Uncertainties are common in ST, such as delay
(travel time uncertainty) and new requests from a
spot market (demand uncertainty). Considering
uncertainties in the proposed model is also an
interesting direction. The current model assumes
that all vehicles are available at their begin depot
from time 0. In reality, vehicles are not always
available because of travel time uncertainties,
such as delay and bad weather. Therefore, an
interesting future research direction is the incor-
poration of uncertainties both on the availability

Table 5. Comparison with Guo et al. (34)

Number of requests Average cost (euro) Average time (h) Share of barge (%) Share of train (%) Share of truck (%)

5 I 4386 29 60 0 40
5 s 4386 29 60 0 40
5 } 4386 29 60 0 40
10 I 25988 151 50 29 21
10 s 25988 151 50 29 21
10 } 36351 127 47 28 25
20 I 44198 236 57 18 25
20 s 44858 212 54 19 27
20 } 58787 163 52 26 22
30 I 65126 329 50 11 39
30 s 69824 326 49 12 39
30 } 85484 271 48 11 41

Note: I= benchmark (34); s= decision-maker (DM) prefers the Cost objective, and the weight intervals are = Cost [0.5, 1.0], Time [0.1, 0.5]; }= DM

prefers the Time objective, and the weight intervals are = Cost [0.1, 0.5], Time [0.5, 1.0].

Zhang et al 85



of the services and also on the demand side. For
example, if serving a new request can make the
DM more satisfied, the original plan can be
changed.
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