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ABSTRACT Security Operations Centers (SOCs) are in need of automation for triaging alerts. Current
approaches focus on analyzing and enriching individual alerts. We take a different approach and analyze
the population of alerts. In an observational study over 24 weeks, we find a surprising pattern: some
domains get analyzed again and again by different analysts, without coming to a final evaluation. Overall,
19% of the domains trigger 74% of all investigations. The most time-consuming domains are classified as
false positives and ‘‘potentially unwanted programs’’—the lowest threat level. To increase SOC efficiency,
we design DomainPrio, a tool that prioritizes domains that are likely to be the subject of repeated, incomplete
investigations. This enables us to indicate to the first analyst encountering this domain that the investigation
should be, if possible, completed on this first attempt, so future investigations on the same domain can be
prevented. DomainPrio is able to predict these domains with 89% accuracy and does so with an interpretable
and auditable logistic regression model. When evaluating our tool on 100 days of data from a production
setting, we find that it can potentially reduce the number of alert investigations by up to 35%, presenting the
SOC with very substantial efficiency gains.

INDEX TERMS Network security, security operations, security operations centers, SOC, threat analysis.

LIST OF ABBREVIATIONS
SOC Security Operations Center.
MSSP Managed Security Service Provider.
SIEM Security Information and Event Manage-

ment.
IPS Intrusion Prevention System.
UTM Unified Threat Management.
SOAR Security Orchestration, Automation, and

Response.
DNS Domain Name System.
PUP Potentially Unwanted Program.
FP False Positive.
C&C Command and Control.
IQR Interquartile Range.
TTL Time-To-Live.

The associate editor coordinating the review of this manuscript and

approving it for publication was Congduan Li .

SD Standard Deviation.
Var Variance.
TPR True Positive Rate.
TNR True Negative Rate.
BAC Balanced Accuracy.
ISP Internet Service Provider.

I. INTRODUCTION
Many organizations defend themselves through a patchwork
of security controls and threat detection systems. These sys-
tems generate a voluminous stream of events and alerts that
need to be monitored, analyzed, and acted upon, typically
by staff in a Security Operations Center (SOC). For years,
academic research and industry reports alike have raised
the problem of alert fatigue and analyst burnout [15], [30].
The key response to this problem has been to pursue better
automation. Indeed, an ‘‘insufficient automation level of SOC
components’’ was considered the top issue by SOCmanagers,
according to a recent study [17].
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The promise of automation for SOCs is clear: there is a
deluge of data and there is repetition in how the analysts
engage with the data [29], [31], [35]. Some approaches focus
on better separating the true positives from the false positives,
typically by estimating anomaly or maliciousness scores for
each alert [13], [19], [21], [22], [26]. Other approaches sup-
port the triage process by extracting and enriching the most
relevant information of an alert [8], [39], [40].

What these approaches have in common is that they fun-
damentally conceptualize the problem as analyzing each alert
on its own merits. In this paper, we take a different approach
and analyze the problem at the level of the total population of
alerts coming into a SOC. During a six-month observational
study in a large SOC of a Managed Security Service Provider
(MSSP), we find that analysts repeatedly investigate the same
domains showing up in different alerts, without coming to
a final evaluation on the domain. A final evaluation of a
domain would allow the automated handling of future alerts
relating to that domain by the Security Information and Event
Management (SIEM) system, at least until the domain would
have to be re-evaluated. This would save precious analyst
time.

The repeated investigations are concentrated in a fraction
of the domains. In fact, we observe a power-law distribu-
tion: 19% of the domains lead to 74% of all investigations
by triggering five or more analyst engagements. In extreme
cases, the same domain might be investigated over 500 times
in the course of 24 weeks. Even worse, when we analyze a
random sample of 400 of these domains, we find that the
majority were not part of high-threat alerts. Instead, they
mostly relate to false positives (50%) and non-malicious,
but unwanted, software (13%). Those two categories trigger
a factor of 12 more incomplete investigations than high-
threat domains. In short, a small fraction of all domains
consumes a disproportionate amount of time from SOC ana-
lysts, while not posing the most significant threat. We cor-
roborate these findings in two other large SOCs in different
countries.

Based on these observations, we propose a novel and com-
plementary approach to SOC automation aimed at increasing
efficiency and reducing alert fatigue. Rather than predicting
the true positives or enriching the information of individual
alerts, as prior studies aimed to do, we set out to reduce
the number of repeated investigations. For this purpose,
we design DomainPrio, a tool to predict which domains will
trigger repeated incomplete investigations across the total
pool of analysts, thus consuming the most SOC time. The
tool presents a twofold change in the process: (1) prioritize
domains that will end up consuming the most analyst time
and (2) ensure that investigations for these domains are com-
pleted, so related alerts can be automatically handled by the
SIEM. Using a feature set over SOC analysts’ engagements
across all domains, our classifier is able to predict domains
which will be investigated repeatedly with 89% accuracy.
With this prioritization, we save 10–341 subsequent inves-
tigations for each domain.

DomainPrio does not require analyst time and effort for
labeling or support. It can be automatically trained and
updated every day on the most recent features. The tool is
scalable and can be easily deployed. The underlying model,
a logistic regression, is interpretable and auditable. In short,
we make these contributions:
• We conduct a six-month observational study in a real-
world MSSP SOC and find that a small fraction of
the domains consumes the bulk of analyst time while
not posing the most significant threat. We confirm this
pattern in other SOCs.

• We design DomainPrio and demonstrate that it can pre-
dict with high accuracy which domains will end up con-
suming repeated investigations, without itself requiring
analysts’ time for labeling or support.

• By evaluating DomainPrio on a real SOC dataset in a
production setting, we find that prioritizing domains can
save an upper-bound of about 35% of all investigations
over a 100-day period.While in practice the gains will be
smaller, this still represents a major efficiency improve-
ment for a SOC.

II. SOC BACKGROUND
We first explore the workflow of an example SOC to better
understand SOC analysts’ needs in terms of tooling. This
allows us to account for those needs and focus our improve-
ment attempts on items relevant to SOC analysts.

A. CASE STUDY SOC
A recent survey of security practitioners [33] found that 51%
of organizations have decided to outsource some or all of their
SOC functions because of the difficulty of staffing analysts to
maintain an in-house SOC. MSSPs collect and analyze alerts
from customers’ networks and then detect threats and initiate
the response procedure on behalf of their customers [1],
sometimes also called SOC-as-a-Service. We conduct our
study in one SOC of anMSSP that operates a total of 10 SOCs
in the Americas, Asia-Pacific (APAC), and Europe, Middle
East and Africa (EMEA) regions, staffed by 2,000 cyber-
security professionals. Across all SOCS, the MSSP pro-
vides security services to more than 10,000 companies in
58 countries. It analyzes over 61 trillion events per year.
While there are organizational differences between in-house
and outsourced SOCs, their overall workflow is similar [35].
Hence, we expect our findings to also benefit in-house SOCs,
if they are sufficiently large to encounter the scale effects we
are leveraging in our case study.

B. SOC WORKFLOW
We outline the standard workflow in the case study SOC in
Figure 1, which is comparable to what has been reported in
other studies, e.g., [13], [17], [22], [31], [39]. The central
task of any SOC is real-time monitoring and analysis of
security alerts generated by systems in customer environ-
ments, such as Intrusion Prevention Systems (IPS), local web
proxies, sandboxes analyzing email attachments, and Unified
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FIGURE 1. SOC workflow overview: (1) The SOC receives alerts and tracks
them in a SIEM, (2) Automated pre-analysis classifies and handles alerts
that can be processed with pre-defined rules, (3) Alerts that can not be
handled automatically are forwarded to analysts, (4) An analyst triages
the incoming alerts, (5) If the triage warrants an investigation, the analyst
processes the alert (threat intelligence, domain lookups, etc.), (6) The
results are reported to the customer.

FIGURE 2. Wireframes of the alert monitor and domain checker. These
two tools are those in which SOC analysts spend most of their time.

Threat Management (UTM) solutions. Alerts and logs are
sent to the SOC’s analysis engine, which uses a SIEM to
handle the large number—up to 2 trillion alerts and logs per
month [26]—of alerts ((1) in Figure 1). The analysis engine
performs Security Orchestration, Automation, and Response
(SOAR), and responds to alerts where there are known
malicious characteristics and predefined rules automatically
((2) in Figure 1). Alerts that can not be automatically handled
are forwarded to the alert monitor for triage by a human
analyst ((3) in Figure 1), who receive an overview of the alerts
(see Figure 2).

An analyst then evaluates the alert based on a further
investigation of the information provided in the alert mon-
itor ((4) in Figure 1), and lookups of associated domain
names, IP addresses, and other indicators in threat intelli-
gence services ((5) in Figure 1). In our SOC, analysts can
conduct lookups on domains via a specific tool providing
threat intelligence results and other meta-information on a
domain (Figure 2).

The investigation ends with an evaluation (malicious or
benign) and, when needed, in reporting the threat to the
customer ((6) in Figure 1). Note that there is no unified score
indicating whether it is worthwhile to evaluate a domain.

FIGURE 3. CDF of the number of requests for unique domain names in
the SOC dataset. A small fraction of domains is responsible for
most (repeated) searches by analysts. The dashed lines separate the two
clusters in Figure 1.

TABLE 1. Overview of the 78,555 requests over 15,443 unique domains in
our dataset. 19.1% of domains with 5 or more search requests cause
73.5% of the total search volume.

While threat scores are provided by some threat intelligence
providers [36], they do not necessarily determine the next
action. For example, a domainmay be associatedwith a worm
for which a patch has already been deployed, so it poses
no imminent threat. Similarly, threat intelligence databases
suffer from false positives and false negatives. Hence, investi-
gating domain names while assessing an alert requires judge-
ment by human analysts.

III. OBSERVATIONAL STUDY
To better understand how much time analysts spend on inves-
tigating domains, andwhether there is room for improvement,
we received access to the logs of the domain checker tool,
which analysts use to engage with threat intelligence services
when investigating the domains that show up in alerts ((5) in
Figure 1). The dataset contains requests from SOC analysts
to the threat intelligence service and the timestamps of these
requests in one SOC of our target MSSP. Note that this data
does not contain any sensitive information about the customer
(e.g., customer names, IP addresses, and device information).
We have collected these logs from April 22, 2019, to October
11, 2019, for more than five consecutive months, spanning
the manual investigation of 15,443 unique domains based on
78,555 search requests by analysts.

A. REPEATED INVESTIGATIONS
When we explore our dataset by looking at the number of
search requests per domain, we find that a small fraction
of the domain names is causing the majority of requests,
with a long tail of domains that are seen only once or
twice (Figure 3). In fact, we see a power-law distribu-
tion with an almost perfect example of the 80/20 rule, see
Figure 1: 2,948 domains (19.1% of all domains) triggered
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TABLE 2. Results of 400 sampled domain names analyses within the case
study SOC. Domains posing no or a low risk make up two-thirds (63.1%)
of the domains and more than three-fourth (77.1%) of requests in our
sample.

57,725 requests (73.5% of all requests). In contrast,
12,495 domains were requested fewer than four times
(80.9% of all domains) and they collectively triggered 20,830
requests (26.5% of all requests). This means that a majority
of analysts’ time is spent on looking up domains that have
been looked up before without reaching a conclusion, or in
parallel by multiple analysts investigating different alerts.
If an analyst would complete the investigation of such a
domain, the result would be recorded, and either the SIEM
could directly handle alerts related to that domain, or the
result from the first investigation would be available to the
analyst handling an alert containing the concerned domain
name. To the best of our knowledge, this distribution—and
the pattern of repetitive investigations that it implies—has
not been reported in earlier studies on SOC automation.

B. SAMPLE OF MOST-INVESTIGATED DOMAINS
Next, two researchers authorized to collect data inside
the secure SOC environment investigated a sample of
400 domains from the total set of 2,948 domains which were
investigatedmore than five times (19.1% of all domains in the
dataset). For these domains, they assessed the final verdicts
(malicious/benign/etc.) as of May 2020, i.e., more than half
a year after the measurement period. We then aggregated
the results on-site to contain only the domain names, their
SOC status (investigation completed or pending), and their
final evaluation by the SOC. The resulting dataset does not
include any information identifying SOC customers or their
IT environments, even for the authors involved in the study,
see Figure 2.

In our sample of 400 domains, the investigation of
320 (80%) was completed, while the remaining 80 domain
names (20%) were still pending. Of these 80 domains,
19 were still pending because they are non-existent or invalid
domain names, for example, a string that is not a domain
name entered by the user in the URL bar of the browser, or a
non-existent domain name. For the remaining 61 domains,
no traces were observed at all (e.g., in passive DNS, threat
intelligence, and search engine), and no additional alerts had
been triggered after some time. Hence we did not reach a
verdict.

FIGURE 4. Example timelines of information requests for domains from
the four threat categories in our sample. The horizontal lines indicate the
time frame during which a domain occurs in the dataset. Each vertical tick
marks an analyst (incompletely) investigating this domain. Note the
higher density of investigations for low or no-risk domains.

Next, for the 320 completed investigations, the SOC’s final
decision can be put into four major categories: malware,
phishing, Potentially Unwanted Program (PUP), and False
Positive (FP):

Malware includes downloads from domain names where
malware is located, communication with domains used for
Command and Control (C&C), and domain names used by
known targeted attacks. As these indicate a compromise,
we consider them high risk.

Phishing includes domain names of phishing sites that
mimic legitimate sites to which customers are drawn via spam
emails or online advertisement networks. As these domains
may lead to fraud and disclosure of authentication informa-
tion, but do not indicate ongoing compromises, are ofmedium
risk.

Potentially Unwanted Programs differ per customer, and
may include everything from small games to browser tool-
bars. How to handle PUPs depends on each customer’s inter-
nal policies, but from a security perspective, they are a low
risk.

False Positives occur when a security appliance flagged
a domain as risky, but the investigation found it unrelated to
malicious or unwanted activities. These are rated as no risk
for the customers.

C. EVALUATION OF MOST-INVESTIGATED DOMAINS
In our sample of domains consuming most of SOC analysts’
time, we find that around half (50.3%) of all domain names
are false positives. A further 12.8% of domains relate to
PUPs. Only 17.0% of domains in our sample relate to high
or medium risks (9.5% to malware and 7.5% to phishing).
Note that this is in itself not surprising. According to a recent
study [14], false positive alerts in organizations account for
more than a quarter of all security alerts. However, this
imbalance further increases when we look at the number of
requests by analysts. FPs, on average, see around 1.5 times as
many requests as phishing and malware domains, while PUP-
related domains may see more than three times the request
volume in comparison to malware domains. In summary,
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FIGURE 5. Histograms of the time taken to investigate domain names by
SOC status in the case study SOC. The y-axis is on a log scale. The average
time spent on completed investigations is median 3.7 (IQR: 2.7–8.3)
minutes, and spent on pending domains is median 4.2 (IQR: 2.9–9.2)
minutes.

77.1% of requests in our sample are caused by repeated
lookups for low or no-risk domains.

We visualize example cases for the lookup patterns we see
in these five categories in Figure 4. Each line is a domain
and each tick signifies the time when that domain was inves-
tigated by an analyst. While the length of the investigation
period varies across all categories, the higher frequency of
lookups for FP and PUP related domains is clearly visible.
If a verdict was reached for FP and PUP domains earlier, or if
re-investigations would only be triggered when new infor-
mation becomes available, significant time spent by analysts
could be saved.

Hence, we suggest that the SOC should provide an indica-
tor for domains that have a higher probability for repeated
investigations in the future. This way, analysts can either
attempt to finish the domain investigation (if enough infor-
mation is available), or close an unsuccessful investigation
noting insufficient information being available. In the former
case, the SIEM can then automatically annotate and handle
these domains, while in the latter case, the SIEM can take care
of prompting analysts to investigate this domain only if new
information became available in the used threat intelligence
database. While this approach to give priority to domains
that are likely associated with a low risk or even no risk at
all might seem counter-intuitive, it frees time for the SOC.
Our approach limits time spent on futile re-investigations of
domains where the information basis did not change, and
on domains that are tangential to an alert and potentially do
not warrant a full investigation (which analysts only notice
while already investigating it). Instead analysts can focus on
thoroughly investigating high severity alerts and performing
in-depth malware analysis.

D. TIME SPENT ON INVESTIGATIONS
In order to estimate the impact of the repeated investigations
on scarce resources, we explore the amount of time SOC
analysts spend on a single domain investigation. While the
SOC environment operates various kinds of logging, none
straightforwardly captures the duration. The start time of
an investigation is observed from the query to the Domain
Checker tool. The end time is more problematic, however.
For completed evaluations, we can use the timestamp for
when the evaluation result was entered into the alert monitor.

TABLE 3. Requests over unique domains in SOC#2 and SOC#3. Again,
we find that a small set of domains with 5 or more requests is
responsible for the bulk of all requests.

When investigations are incomplete, analysts often do not log
any result, so we lack an event that marks the end time. Still,
for a small subset of incomplete investigations, the analyst
enters a ‘pending’ comment into the monitor. That gives us
an approximate end time for those investigations.

We obtained detailed logs for 2,027 investigations by ana-
lysts at the SOC on December 6–12, 2020. For 146 inves-
tigations, we have both start and end timestamps. Of these,
88 logs have the SOC status of completed and the remaining
58 logs have the SOC status of pending. Figure 5 shows
the histograms of these results by SOC status (completed or
pending). Across all 146 investigations the median duration
is 3.8 minutes per case, with outliers going to beyond one
hour (interquartile range (IQR): 2.8–8.7 minutes). We also
see that investigations resulting in ‘pending’ take more time
than those with that are completed: a median of 4.2 (IQR:
2.9–9.2) minutes versus 3.7 minutes (IQR: 2.7–8.3) minutes,
respectively. Given the volume of investigations, these esti-
mates underline that preventing repetitive investigations is
worth pursuing.

E. REASONS FOR REPEATED INVESTIGATIONS
We conducted several informal conversations with SOC ana-
lysts to understand the reasons for the repeated, incomplete
investigations. Two key factors were mentioned: limited time
and limited information during an investigation. How do
these factors impact our idea to prioritize the investiga-
tions of domains that are likely to trigger many additional
investigations?

The first factor, limited time, can be taken into account
in a straightforward manner. More time could be allotted
for priority investigations, since this would prevent many
recurring later investigations, producing an overall efficiency
gain.

The second factor, limited availability of information,
poses a more difficult challenge. Missing information is not
something that can be changed at the time of the investiga-
tion. That being said, almost all investigations occur under
the condition of limited information. Are the domains that
are repeatedly investigated suffering from lower information
availability than those where the investigation is successfully
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completed? Surprisingly, the answer appears to be: no. To see
this, we take another look at the 146 domains we discussed
in Section III-D. Of the 146 domains, 119 (82%) were
investigated for the first time in the SOC. Some of these
domains showed up in subsequent alerts. During that time,
the analysts did not have access to the completed evaluation
results because of issues with the SIEM. This meant that
those domains would be investigated again, even if their
prior investigation had been successfully concluded. This
temporary glitch allows us to investigate if domains that are
repeatedly investigated are more difficult to evaluate. Of the
119 first-time investigations, 69 (58%) were completed by
analysts and 50 (42%) remained pending. We observe that
in both groups, domains have the same probability of being
investigated repeatedly later. Of the 69 domains ‘completed’
on the first attempt, 7 (10%)were investigated repeatedly, and
62 (90%) were not. Of the 50 domains ‘pending’ after the first
attempt, 6 (12%) were investigated repeatedly, and 44 (88%)
were not.

In short, whether a domain triggers subsequent investiga-
tions is independent of how difficult it is to evaluate it. Thus,
it makes sense to prioritize these domains. This even holds if
their investigation cannot be completed in the first attempt.
If the analyst succeeds only on the second or third attempt,
this will still reduce subsequent investigations.

F. GENERALIZATION TO OTHER SOCs
To determine whether the pattern of repeated investigations
can be found in other SOCs as well, we also collected and
examined datasets from two different SOCs (SOC#2 and
SOC#3 in Figure 3). SOC#2 is also an MSSP, but operating
on a different continent. It uses a different SIEM implemen-
tation and toolchain, while the basic workflow is the same
as in our case-study (Figure 1). SOC#3 is an in-house SOC
focused on threat hunting in the network of the organiza-
tion. It is located in the same country as our case study.
For SOC#2, we collected data on 97,548 investigations of
7,310 domain names by analysts between April 22, 2019 and
March 26, 2020. For SOC#3, we collected data on 307,614
investigations of 25,046 domain names by analysts between
June 28, 2019 and November 12, 2020. In both SOCs,
we find a very similar lookup pattern for domains as we
saw in our case study. Specifically, in SOC#2, 1,981 (27.1%)
domain names accounted for 90,312 (92.6%) requests, and in
SOC#3, 4,746 (18.9%) domain names accounted for 249,577
(81.1%) requests. These results demonstrate that the pattern
of repeated investigations likely generalizes beyond our SOC
to other SOC implementations, analysis tools and workflows.

IV. TOOL DESIGN
To prevent time-sinks in SOC activities, we design Domain-
Prio. DomainPrio predicts—in real-time—which domains
will end up consuming the most SOC resources in the future.
This allows analysts to prioritize reaching a conclusion on
these domains, which prevents repeated future evaluations.

FIGURE 6. Overview of DomainPrio’s steps to identify domains likely to
cause repeated lookups: (i) extracting features, (ii) extracting labels,
(iii) training, and (iv) predicting.

A. IMPROVEMENTS AND EFFICIENCY GAINS
The underlying assumption of the tool is that preventing
continuous incomplete evaluations can save analysts time.
Intuitively, and following our observations in Section III-E,
there are two classes of incompletely investigated domains:
i) Domains for which the investigation time is insufficient,
or that are tangential to the investigation, and, ii) Domains
for which not enough information is available at the time of
investigation.

If we flag a domain as likely causing repeated investiga-
tions, we can instruct the analyst handling the domain to
take this into account. They can then either reach a final
verdict, especially on tangentially related or PUP and FP
domains, or determine that there is insufficient information
in threat intelligence databases to complete the investigation
at this time. With the domain being correctly flagged, the
SIEM can then automatically handle associated alerts with
the Analysis Engine changing the conditions under which
alerts are triggered once an evaluation is complete. For mali-
cious domain names (related to malware or phishing), we can
create custom blocklists or custom signatures, while domains
identified as FPs lead to the SIEM logic to be updated to
prevent alerting. If, however, the analyst annotates a domain
as not having sufficient information in the available threat
intelligence databases, the SIEM can automatically check
whether the amount of available information, i.e., number of
entries related to the domain from threat intelligence, (signif-
icantly) changed since the last investigation. If no or limited
new information became available, we can alert the analyst to
this, preventing them from spending time on an necessarily
incomplete investigation again. In case more information
became available, the analyst can reevaluate the domain.
Hence, our approach can reduce the number of investigations
by preventing futile investigation attempts as well as ensuring
seemingly tangential time-sinks are completely investigated,
preventing 100s of incomplete investigations, which we see
for 19% of all domains.

Of course, one cannot evaluate a domain once and then
never again, as the threat landscape changes all the time.
Any SOC that records the results from previous investigations
and then uses these results to handle an alert with the same
threat indicator, will have to set a policy for when the initial
evaluation needs to be revisited. Simply put, the SOC will
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have to set a Time-To-Live (TTL) value for its completed
evaluations. Our tool also functions in this context and will
thus need to include the TTL policy as a setting for when
a domain needs to be re-investigated. As this is part of
the tool’s configuration, we did not include this element in
our tool.

B. APPROACH
DomainPrio consists of four steps, see Figure 6: (i) extracting
features (Section IV-C) (ii) extracting labels (Section IV-D)
(iii) training (Section IV-E) (iv) predicting (Section IV-F) We
first automatically extract features and labels with which the
model can be trained (top half of Figure 6). We then use
this training data (features+labels) to generate the model.
Next, the trained model is fed with the most recent extracted
features of the SOC’s engagements with domains to predict
which observed domains would end up consuming the most
SOC resources in the future (bottom half of the figure). These
steps can be conducted daily to always train on the most
recent data.

DomainPrio leverages existing data in the SOC environ-
ment and behavioral features of SOC analysts (e.g., how they
consume threat intelligence information, when they query
specific information, and how often they manually query
information) to predict how time-consuming a domain name
will end up being, without explicit manual labeling by an
analyst. As discussed by [35], new tools added in SOC tend
to be individual solutions that consume time and resources
for maintenance. In contrast, we designed DomainPrio to be
maintenance-free for analysts.

C. STEP 1: EXTRACTING FEATURES
To predict which domains will end up consuming the most
time of SOC analysts, DomainPrio extracts features on how
analysts have interacted with that domain in a configurable
prior period. The data captures how the overall population
of SOC analysts has interacted with the threat intelligence
platform (i.e., (5) shown in Figure 1) after they receive
domain names marked as suspicious in alerts coming from
their customers’ networks. Specifically, we use 80 historical
SOC behavioral features summarized in Figure 4. These
80 features are calculated for 5 different time windows
(i.e., 1, 3, 7, 14, and 30 days) as illustrated in Figure 7.
We set up the 5 time windows because we intend to distin-
guish between domain names in alerts that appear in bursts
over a short period of time and domain names in alerts that
appear over longer periods of time. We split the most recent
week into 1, 3, and 7 days, because DomainPrio is used in
real time and we would like to include separate features for
more granular periods. While SOCs will be different in the
implementation of their systems, these features are based on
data that should be readily available from logs that are present
in most if not all SOCs. To the best of our knowledge, these
features are novel and have not been used before to improve
SOC automation.

TABLE 4. List of historical SOC behavioral features.

FIGURE 7. Timeline for extracting historical SOC features.

1) NUMBER OF REQUESTS TO THREAT INTELLIGENCE
PLATFORM (NO. 1–5)
These features are the number of requests of a domain
name by SOC analysts. Specifically, we count the number of
request queries to threat intelligence platforms (e.g., Virus-
Total) for each specified time window (1/3/7/14/30 days).
The intuition behind these features is that suspicious domain
names manually investigated by SOC analysts have differ-
ent characteristics. For example, some domain names are
simultaneously observed in many customers’ networks in the
short term and others are occasionally observed in multiple
customers in the long term.

2) ELAPSED DAYS FROM FIRST INVESTIGATION
DATE (NO. 6–10)
We calculate the number of days that elapse between the
date of the first investigation by SOC analysts and that
of the feature extraction in each specified time window
(1/3/7/14/30 days). The intent of using these features is to dis-
tinguish between domain names that have been investigated
earlier by SOC analysts and those that have been investigated
more recently.

3) ELAPSED DAYS FROM LAST INVESTIGATION
DATE (NO. 11–15)
Similar to the former features, we then calculate the number
of days that elapsed from the date of the last investigation
in each time window. We include this features to assess
whether a domain name has been continually investigated
until recently in the SOC.
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4) INVESTIGATION PERIOD (NO. 16–20)
This feature is a period (days) from the first investigation
to the last investigation in each time window. This is useful
for distinguishing between domain names that have been
investigated for a long time by SOC analysts and those that
have only been investigated for a short time.

5) MEAN/MIN/MAX/SD/VAR OF NUMBER OF REQUESTS
PER A DAY (NO. 21–45)
These features calculate 5 different statistics, i.e., mean, mini-
mum,maximum, standard deviation (SD), and variance (Var),
for the number of requests per day for each time window.
We adopt these features to capture the trend of how multiple
SOC analysts were investigating a domain within each time
window.

6) WEEKDAY RATIO OF REQUESTS (NO. 46–50)
We calculate the fraction of weekdays for each date on which
SOC analysts issued a request to a threat intelligence platform
for each time window (the last 1/3/7/14/30 days). A weekday
is defined as Monday through Friday in local time at the SOC
analysts’ office. The intent of designing this feature is that
on weekdays SOC analysts typically investigate suspicious
domain names recently observed from customer networks,
however, on weekends, they tend to investigate more unusual
domain names or perform threat hunting which cannot be
done on weekdays due to the higher alert load then.

7) DAY-SHIFT RATIO OF REQUESTS (NO. 51–55)
Next, we calculate the fraction of requests issued by day-
shift SOC analysts for each time window. There are 2 types
of SOC analysts, e.g., day-shift and night-shift, to deal with
customers 24 hours a day and 365 days a year. The intuition
behind adopting this feature is that, as with the weekday
ratio described above, the MSSP’s customers tend to be large
companies having most alerts during the day, thus trends
differ between day-shift night-shift analysts.

8) MEAN/MIN/MAX/SD/VAR OF TIME INTERVAL BETWEEN
REQUESTS (NO. 56–80)
These features calculate 5 different statistics, i.e., mean, min,
max, SD, and Var, for the time interval (seconds) between
requests for a domain name from SOC analysts for each
time window. The reason for this is that we would like to
distinguish between a request of domain names used in tar-
geted attacks against a particular company and those used
in non-targeted attacks that reach multiple companies. For
example, a domain name used for a targeted attack is observed
in only a few companies/employees thus rarely investigated,
a domain name used for non-targeted attacks is widely spread
across companies/employees thus often investigated by mul-
tiple SOC analysts in a short period.

FIGURE 8. Timeline of Feature and Label Extraction. F -Days are used for
feature extraction, L-Days for label extraction, P-Days for prediction.

D. STEP 2: EXTRACTING LABELS
The second step of DomainPrio is labeling the domain names.
Our aim is not to label malicious domains, but to label
domains that have consumed the most SOC resources. Our
aim is that by training the model on these labels, it can predict
in real time which of the more recent domains will trigger five
or more future investigations. More formally, we label those
domains as a priority that triggered more than K investiga-
tions in the L days before training the model (Figure 8). These
labels can be extracted automatically from the SOC dataset.
When deploying our tool in the SOC environment, we set
K = 5. Our choice of K is based on the results of our obser-
vational study, where this count almost perfectly demarcates
the 80/20 boundary. Domains with 5 or more investigations
make up just 19% of the domains while triggering 74% of all
investigations (Section III). By repeating label extraction on
a daily basis, we can continue to add new labeled data. These
labels are derived from normal operations and do not require
any analyst effort.

E. STEP 3: TRAINING
We now train the model that is the core of DomainPrio. The
training data consists of the extracted features and labeled
domains obtained in Steps 1 and 2. We decided to employ a
standard logistic regression algorithm for two reasons. First,
the logistic regression is scalable and fast so that we can
use it for real-time prediction of lots of suspicious domain
names from a lot of customers in our SOC environment.
If the algorithm is not fast enough, DomainPrio will not
help SOC analysts to reduce their workload in any way.
Second, the logistic regression has good interpretability, i.e.,
its results are explainable to SOC analysts. The output of
logistic regression can be interpreted as the probability that
the input domain name will be a priority and shows how each
feature contributes to the result, increasing trust in the tool’s
recommendations.

We use an L1 regularized logistic regression [18]. Given
a domain name’s feature vector x shown in Section IV-C,
we model the conditional probability of the label y ∈
{0 (non-priority), 1 (priority)} with the following equation:

p(y = 1|x; θ ) = σ
(
θ>x

)
= 1/

(
1+ exp

(
−θ>x

))
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where θ is the parameter of the logistic regression model, σ is
the sigmoid function, and all features in x are normalized into
the range [0,1]. For training, we use a set of n labeled training
data {(xi, yi)}ni=1 to find the parameter θ when minimizing the
next objective function that introduces a hyper-parameter λ
that determines the degree of regularization.

min
θ

∑n
i=1− log p (yi|xi; θ)+ λ‖θ‖1

The L1 regularized component (λ‖θ‖1) adds a penalty to
the objective function. This contributes to output sparse
feature weights, i.e., features that do not contribute signifi-
cantly are identified and pruned. Note, that the L1 regular-
ization is more powerful than other regularization methods
(e.g., L2 regularization) in reducing the feature coefficients
closer to zero. In other words, more features are pruned
and the reduced number of features contributes to prevent-
ing overfitting. It also helps to reduce memory usage and
makes the results presented to SOC analysts more concise and
explainable.

F. STEP 4: PREDICTING
We use the model generated in Step 3 to predict analyst
effort-intensive domain names in our SOC environment. Our
goal here is to predict the probability that SOC analysts will
manually analyze a domain namemore thanK times within P
days, using only the features available at that time. Using the
parameters θ trained above, the probability p that a domain
name’s feature vector x indicates effort intensity and the
predicted label ŷ are defined as follows:

ŷ =

{
1, if p(y|x; θ ) ≥ 0.5
0, otherwise.

Note that the model predicts the probability of a new domain
name being repeatedly looked up using only the features
available at that time.

After Step 4, DomainPrio outputs the domain names pre-
dicted to be lead to frequent domain lookups (ŷ = 1), i.e.,
domains that should be prioritized to prevent these repeated
lookups, in descending order of their probability and presents
them to SOC analysts, as shown in Figure 6. SOC analysts
can then use the results to prioritize and efficiently conduct
triage and deeper analysis ((4) in Figure 1). Specifically, SOC
analysts will be required to determine and record the action
to be taken on these domain names in the analysis platform
(completing the investigation or marking it as ‘insufficient
threat intelligence’), rather than pending the decision. This
ensures that domain names causing time-sinks are either han-
dled early, avoiding future repeated lookups, or are only re-
investigated as soon as the information basis changed, thereby
increasing the SOC’s efficiency.

G. DATA FLOW IN PRODUCTION
When deploying DomainPrio in production, the training
phase (Steps 1–3) is conducted offline and repeated daily.
It is based on the historical data of the past F + L days.

Each day, the newly-trained model will be deployed at the
point marked ‘‘NOW’’ in Figure 8 and make predictions in
real time. The daily update of the model is necessary in order
to catch up with the changes in features due to the changes
in analyst behavior after the deployment of DomainPrio.
Besides, there is no downside to keeping the training model
updated as it is a very lightweight process anyway. This is also
supported by the low requirement of computational resources
for DomainPrio in comparison to, e.g., Deep Learning based
approaches, due to our choice of an L1 regularized logistic
regression.

DomainPrio receives from the SOC analysis engine a
domain name in an alert from the customer environment.
The domain name is processed in Step 1, and the features
in Figure 4 are immediately extracted using the last F days
of data from the NOW point. This is also a very lightweight
process. Then, using recent features, Step 4 is performed
to calculate the probability p that the domain name will
be investigated more than K times in P days in the future
from ‘‘NOW’’ on. These three steps are repeated for every
incoming domain, and a set of priority domain names for SOC
analysts is presented in the interface of the Domain Checker
(see Figure 1).

V. TOOL EVALUATION
We evaluate whether DomainPrio can proactively identify
domain names that are repeatedly investigated in a production
setting. We use a dataset collected from the SOC between
May 29, 2019 – October 11, 2019. Here, we follow the prac-
tices of prior studies [8], [13], [21], [34], [40] and evaluate
the tool in an offline setting based on a real-world historical
dataset.

A. EVALUATION SETTING
As described in Section IV-F, our goal is to predict the domain
names that SOC analysts will investigate more than K times
during P days. In our case study SOC, we set K = 5 based
on the results of the observational study in Section III.

Instead of evaluating all the data across the whole dataset
in one shot, we create 100 slices of sliding time windows—
i.e., different overlapping time periods. This is a best prac-
tice [6], [23], [32] for evaluating machine learning systems
over time. During these tests, we also evaluate the impact
of the three parameters that can be supplied to our tool (the
number of days for F , the feature extraction period, L, the
labeling period, and P, the prediction period) on the accuracy
of DomainPrio’s predictions.

Figure 5 shows an example of the slices for our exper-
iments for F = 30, L = 3, and P = 3. In this case,
we designate the first 30 days of the dataset as training
data followed by a labeling period of three days (L = 3).
If F would be smaller (e.g., F = 3), then we only use the
32 features of time windows ≤ 3 days, see Section IV and
Figure 4. We use the following day for real-time predicting,
i.e., the day on which the model is trained and on which we
assess the probability of domains in alerts being frequently
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TABLE 5. Example of how we create 100 slices from our dataset for evaluation, with F = 30 and L = P = 3.

looked up in the three days (P = 3), starting at midnight.
Note that the tests are independent, i.e., no information from
Test #1’s model is carried over to that trained and evaluated
in Test #2.

DomainPrio—including feature extraction for the logistic
regression—does not require special computational machin-
ery. Instead, it is being run on a standard laptop (1.3GHz Intel
Core m7 CPU/8GB Memory/512GB SSD Disk), providing
real-time performance. This is because the logistic regression
algorithm used in DomainPrio and calculating features are
both lightweight and scalable. This also means that our tool
does not require a GPU to reach sufficient performance, as it
is common with deep neural networks.

B. PERFORMANCE EVALUATION
We use the true positive rate (TPR), true negative rate (TNR),
and balanced accuracy (BAC) as metrics for performance.
Here, the TPR is the fraction of correctly identified priority
domain names, TNR is the fraction of correctly identified
non-priority domain names, and BAC is the mean of TPR and
TNR, which avoids overstated performance on an imbalanced
dataset to fairly evaluate the training model [16]. Correctly
identified means that the model prediction for the prediction
period Pwas correct. Note, again, that our tool does not try to
identify malicious domain names, but rather domain names
that will trigger many investigations, so that those can be
prioritized and save time of subsequent investigations. Thus,
positive means a domain having priority, and negative means
that a domain has no priority.

First, we evaluate DomainPrio by varying the feature
period F and the labeling period L, with P set to the same
duration as L, see Figure 6. We find that, apart from a very
short labeling and prediction period with L = P = 1, a larger
F increases the BAC, with the highest BAC being 0.892 with
F = 30 and L = 7. While an increase in the size of the
feature set can be expected to improve the predictive power of
our tool, we nonetheless opted to test this first, before relying
on F = 30 in our remaining tests. We found the standard
deviation (SD) to be small, especially with L = P ≥ 7.
This means that the accuracy of DomainPrio is stable over
time, e.g., across changes in the threat landscape or specific
analysts across the 100 slices that make up the evaluation
dataset.

Next, we set F = 30 and evaluate DomainPrio given
a varying labeling period L and prediction period P,

see Figure 7. We find the BAC to peak for L = P, regardless
of the value for L. For example, when L = 7, the BAC
increases from P = 1 to P = 7, and then decreases from
P = 7 to P = 30. Hence, we recommend L = P when
deploying our tool in production. However, note that as L = P
was increased, the best results for the TPR occur when
L = P = 30, and for the TNR and BAC when
L = P = 7. Given that an increase in L increases the time
it takes for the most recent data to be labeled and applied to
the training model (see Figure 8), and based on discussions
with SOC analysts on the practicality, we hence recommend
L = P = 7 for production use, as it has the highest BAC
and a relatively small labeling period. In short, with these
parameters, our model predicts with 89% accuracy which
domains will consume more than 5 investigations.

C. SELECTED SOC FEATURES IN DomainPrio
Now that we know that our model achieves high accu-
racy, we investigate which of the SOC behavioral features
shown in Figure 4 were the significant contributing fea-
tures selected by DomainPrio. As explained in Section IV,
DomainPrio’s L1 regularized logistic regression prunes fea-
tures that do not contribute to the results and selects only those
features that contribute significantly.We can inspect the coef-
ficients of the trained logistic regression model to identify
those features that increased or decreased the probability of
being classified as a priority. We do this for 100 tests run with
L = P = 7 and F = 30, i.e., generating 100 independent
regression models. Figure 8 summarizes the most frequent
features increasing/decreasing the probability across 100 test
slices.

We find three notable characteristics among the features
that increased the probability.

1) Requests to threat intelligence platforms (Features
1 and 5) were selected every time. This follows the
intuition that domain names which have been investi-
gated more often in the most recent time window have
a higher probability in subsequent periods.

2) The (SD of) requests per day (Features 44 and 39)
were also frequently selected, i.e., 100 and 92 times,
respectively. This means that if there is greater vari-
ability in the number of requests per day contained in
the time window (e.g., a greater difference between
a well-surveyed day and a less well-surveyed day),
then the domain name will have more priority later on.
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TABLE 6. TPR/TNR/BAC for DomainPrio with varying F days and L = P
days. Mean±SD across all 100 tests.

For example, a domain starting to be (incompletely)
investigated more frequently on a given day will have
a higher probability in the future.

3) The time interval between requests (Features 64, 59,
78, 69, and 57). This means that if there is greater vari-
ability in the intervals between requests in the timewin-
dow, then the domain name will have a higher priority
thereafter. For example, alerts that appear infrequently,
but are considered to be a priority by analysts and can
be investigated multiple times over a period of time,
have a higher probability due to the high variability of
the time interval.

Furthermore, we found three patterns among the most
common features that decreased the probability:

1) The maximum time-interval between requests
(Features 58 and 63) were both selected 98 times.
This means that if the maximum time interval
between requests within the time window is too large
(e.g., a domain that has not been investigated in a few
months), the priority of the domain name becomes
lower.

2) The time elapsed since the first/last investigation
date (Features 15 and 10) were selected 97 and
82 times, respectively. This means that if toomany days
have passed since a SOC analyst first/last investigated
a domain name in the past, the probability of it having
priority thereafter is calculated to be low.

3) The day-shift ratio of requests (Features 55 and 51),
were selected 89 times and 79 times, respectively. This
means that those domain names regularly investigated
by day-shift SOC analysts are predicted to have a lower
priority, and conversely, those investigated by night-
shift SOC analysts will be considered to have a higher
priority. For example, this indicates that domain names
from alerts occurring at night, which are typically hard

TABLE 7. TPR/TNR/BAC for DomainPrio with varying L and P days for
F = 30. Mean±SD across all 100 tests.

to observe or uncommon in customer environments, are
more likely to be considered a priority and investigated
by SOC analysts.

In our experiments, only 2 out of 80 features
(Features 11 and 16) were not selected at least once
over our 100 trial runs, with several more being rarely
selected, e.g., Feature 6. On closer investigation, we found
that they are features of elapsed days or periods of
time calculated only over a 1-day time window. Hence,
one might consider removing these features in the
future.

D. REQUIRED NUMBER OF INVESTIGATIONS
The faster DomainPrio can identify priority domains, the
more repeated investigations can be prevented. While
DomainPrio uses a range of features (see Section IV-C), its
score also depends on the number of prior investigations in
order to label priority domains. From our evaluation results
for DomainPrio (deployed with L = P = 7 and F = 30),
we can quantify howmany previous analyst investigations are
required for DomainPrio to identify a domain as a priority.
On production data, DomainPrio was able to identify priority
domains with as little as two prior analyst engagements.
While individual outliers may only be flagged as a priority
after up to 82 prior analyst engagements, the median on our
dataset is 6 with an IQR of 4–14.

Based on these numbers, we can then also calculate how
many subsequent investigations can be prevented. This ranges
from 10 to a maximum of 341 prevented investigations
(median: 33.5; IQR: 17–59.8). In the best case, DomainPrio
identified a domain as a priority after three investigations of
the domain, which could have prevented up to 341 subsequent
investigations. These numbers are several times higher than
the number of required investigations, indicating the potential
for large efficiency gains.
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TABLE 8. Top 10 features that increase or decrease the probability of being classified as a priority.

E. COMPARISON: PRIORITY BY NO. OF INVESTIGATIONS
While our evaluation demonstrates that DomainPrio can
effectively identify priority domains to improve the efficiency
of the SOC, one might intuitively claim that the same result
could be obtained when prioritizing domains purely based on
the number of incomplete investigations in the past. Hence,
we also compare DomainPrio’s performance against that sim-
ple baseline solution: prioritizing a domain name if it has been
investigated more than R times in the past. After evaluating
this naive baseline tool with the same settings and dataset
as DomainPrio, we found that the BAC of that baseline
tool was always worse than that of DomainPrio under any
R or P. Figure 9 shows the evaluation results of the baseline
tool prioritizing by the number of prior requests. In fact,
the best BAC for that baseline tool is only 0.799±0.049
(R = 5, P = 30), while the best BAC for DomainPrio is
0.892±0.048. This reinforces our findings in Section V-C.
The inclusion of additional features, such as those focusing on
the behavior of SOC analysts, improves the performance of
DomainPrio.

F. COMPARISON: PRIORITY BY THREAT LEVEL
Finally, we test how DomainPrio fares against metrics pri-
oritizing domains based on their estimated maliciousness,
as common in the literature [13], [19], [21], [22], [26]. As we
can run this analysis on our dataset in hindsight, we do not
have to rely on in-place calculated metrics for maliciousness.
Instead, we can use VirusTotal [36]—an established tool in
the field [24] integrating data from over 60 security ven-
dors [37]—as the primary threat intelligence source, to assess
which threat level domains ideally would have received when
they were first encountered.

Our baseline maliciousness score tool first checks Virus-
Total’s domain report [38] to see whether the domain name is
associated with known threats. It then counts the number of
times a domain name is considered malicious by engines in
the VirusTotal dataset across four threat types:

1) Detected URLs: The number of malicious URLs that
contain the domain name

2) Detected communicating files: The number of bina-
ries seen connecting to the domain

3) Detected downloaded files: The number of malicious
files retrieved from this URL

4) Detected referring files: The number of malicious
files that contain the domain name as a string

If the sum of these four metrics exceeds a predefined thresh-
old (V ), the baseline tool predicts the domain has priority,
with a higher V indicating a higher priority. Hence, as we
evaluate DomainPrio on historic data, we can benchmark it
against a baseline tool that is representative of how a threat-
level assessment tool would prioritize domains.

When evaluating our dataset with the baseline tool for
V = 1..V = 10, the BAC of the baseline tool is on average
0.2–0.3 lower than for DomainPrio under similar conditions
(in terms of P), see Figure 6. Figure 10 shows the evaluation
results of the baseline tool prioritizing by threat level. Even in
the best case for the baseline tool (V = 4, P = 30), the BAC
remains at 0.609±0.052, while DomainPrio reaches a BAC
of 0.892±0.048 in its best case (F = 30 and P = L = 7).
This means that the baseline tool is not significantly better
than random chance—and significantly worse than Domain-
Prio—at predicting whether an incoming domain name will
constitute a time sink, and should therefore be analyzed for
automated handling by the SIEM as early as possible. This
is consistent with our finding in Section III-B that repeat
investigations are worse for domains that pose no or only
a low threat. To put it differently, DomainPrio is a solution
that works orthogonally to threat-based automation for SOCs.
One can best view them as complementary.

G. EFFICIENCY GAINS BY DomainPrio
We calculate the potential efficiency gains DomainPrio
could have provided to the SOC (assuming DomainPrio was
deployed with L = P = 7 and F = 30). To estimate
the upper-bound efficiency gain, we assume that if a domain
was identified as a priority, its investigation would be com-
pleted on the day it was first observed, preventing subse-
quent (incomplete) investigations of that domain—the ideal
scenario envisioned by DomainPrio. While this upper bound
will not be reached in practice (see Section IV-A), it provides
an estimate of the expected gains’ order of magnitude.

From our historical dataset, we take a period of 100 days.
This contains 9,668 unique domain names in 30,269 inves-
tigations by SOC analysts. In the ideal scenario, Domain-
Prio would have reduced the number of investigations to
19,554, i.e., a dramatic efficiency gain of 35%—calculated
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TABLE 9. TPR/TNR/BAC for the baseline tool prioritizing by the number
of requests with varying R and P days. Mean±SD across all 100 tests.

as (30,269–19,554) / 30,269 * 100. How many hours this
saves is, of course, dependent on the size of the SOC—more
precisely, on the overall volume of investigations—where
DomainPrio would be deployed. In our case study, this would
translate into an estimate of time saved of median 679 hours
(IQR: 500–1,554 hours), based on the median of 3.8 minutes
(IQR: 2.8–8.7 minutes) per investigation (see Section III-D).
Taking the IQR, for the 100 day period covered by our
estimate, these savings add up to 0.6–1.9 full time positions
(based on an 8-hour workday) that could be re-allocated to
more valuable tasks like threat hunting.

To repeat, the SOCwon’t reach this upper-bound efficiency
gain. However, as we discussed in Section IV-A, the lim-
itations are unlikely to erode most of the efficiency gains
enabled by the tool. It is also worth highlighting that the tool
is practical, cheap and easily deployable, so these gains can be
captured against a modest investment. All in all, we find that
DomainPrio has the potential for dramatic efficiency gains,
freeing up significant time for analysts to shift towards threat.

VI. DISCUSSION
In this section, we first discuss the implications our evalua-
tion has for deploying DomainPrio in a SOC. Furthermore,
we describe the limitations of our research and DomainPrio
which have to be considered when using it in practice.

As explained in Section IV, we designed DomainPrio for
actual deployment. Under these conditions, a core require-
ment of DomainPrio is that it should not increase the work-
load of SOC analysts. This means that we do not use any
manually labeled data, but designed it to work out-of-the-box
with already available data from the SOC. Hence, Domain-
Prio uses features focused on the behavior of SOC analysts
when using threat intelligence services. Automatic extrac-
tion of labels using time-series data from the SOC allows
the autonomous generation and deployment of a continually
updated model.

TABLE 10. TPR/TNR/BAC for the baseline tool prioritizing by threat level
with varying V and P days. Mean±SD across all 100 tests.

A SOC implementing DomainPrio has to be aware that it is
complementary to other proposed forms of automation, i.e.,
predicting maliciousness or enriching alerts. The output of
DomainPrio is whether the domain should be a priority for
analysts to complete an evaluation. It does not conflict with
other tools that assist in analyzing alerts, and can be combined
with them.

Unlike earlier tools that specifically work on handling
or rating alerts, DomainPrio ranks existing workload items.
This means that potential false negatives or false positives
do not have a significant impact on the SOC performance.
A false negative of DomainPrio does not lead to a threat
being overlooked, but instead only to a domain potentially
being investigated multiple times. The only downside is that
the existing time loss associated with that process is not
remediated. Similarly, a false positive will only result in
analysts working earlier and perhaps a bit longer on an alert
within the current SOC workflow. The main effect of false
negatives and false positives is that efficiency gains of the tool
will be marginally lower than the theoretical maximum, not
that the SOC would miss major alerts or misdiagnose them.
In other words, the tool does not need to meet the high level of
accuracy usually required for usable machine learning (ML)-
based SOC support tools.

DomainPrio is not a complex black box AI, but a straight-
forward logistic regression model that is likely better aligned
with analyst mental models. Since our goal is to improve
SOC operational efficiency, we would not want to spend a lot
of computational cost and time on creating a training model
of the tool itself and searching for its optimal parameters or
performing yet another computation to obtain an explanation
of its output results.

Our observational study suggests that, prior to deciding
on the deployment of DomainPrio, SOCs could test the
value of the tool by computing simple metrics for SOC
management, e.g., how often an alert investigation was left
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unresolved or how often the same domain or IP address
was repeatedly investigated. This will help to find avenues
potentially very effective forms of automation. The work of
Sundaramurthy et al. [30] explains why these paths are often
not explored and contribute to notification fatigue.

VII. LIMITATIONS
We discuss four key limitations of our research and Domain-
Prio. First, our evaluation of DomainPrio is based on a single
SOC. Even though we find similar investigation patterns in
different SOCs, both in geography, customer base and orga-
nizational setup, the model parameters that were found to be
optimal in our case study might need to be adjusted for the
deployment in another SOC.

Second, the threat level of a domain can change over time.
Hence, also domains initially flagged as benign should later
be reinvestigated. While this issue is not specific to Domain-
Prio, we suggested attaching a time-to-live (TTL) to domain
names, after which the domain is reset to ‘not investigated
before’ to address this issue.

Third, our tool has been tested in the context of domain
names and not for other threat indicators. Hence, before
deploying the same prioritization on other aspects of alerts,
e.g., IP addresses or file hashes, the efficacy of DomainPrio
will have to be reevaluated.

Finally, the efficiency gains of DomainPrio have been
estimated based on historic data from a real SOC, and not
measured after a full-scale deployment of DomainPrio in that
SOC. Hence, our estimate of the efficiency gains is a theoret-
ical maximum, see Section IV-A for a broader discussion.

VIII. RELATED WORK
Here, we briefly discuss recent examples of related work in
terms of support tools that aid analysts in their SOCwork and
approaches to identify malicious domains.

A. SUPPORTING SOC ANALYSTS
Previous studies have focused on helping reduce the work-
load of SOC analysts and enhance detection capabilities for
enterprise customers. These studies can be further divided
into two main categories: estimating maliciousness scores for
alerts and extracting relevant information from alerts. Due to
the extent of literature, we focus on themost recent work here.

1) ESTIMATING MALICIOUSNESS
Hassan et al. [13] propose NoDoze to rank threat alerts based
on their aggregate anomaly scores, reduce false alarms,
and provide contextual explanations of the generated alerts.
However, this and similar systems need to use OS-level logs
of hosts in each enterprise and do not consider outsourced
SOC environments which havemany enterprises (customers).
Akinrolabu et al. [2] propose features to identify malicious
network traffic that is useful in SOC environments through
interviews with SOC analysts. However, these features are
focused on the behavior of malware and assess the mali-
ciousness of alerts. Veeramachaneni et al. [34] propose an

approach that combines security analysts’ feedback/labeling
and machine learning techniques to detect unseen attacks.
Gupta et al. [11] propose an approach that uses a deep neural
network to predict whether an event is identified as malicious
by SOC analysts and notified to customers. However, such
approaches need explicit labeling by analysts which requires
additional time/budget and identifies events similar to prior
malicious events. Shibahara et al. [28] propose a system to
prioritize alerts and identify potentially successful attacks in
an outsourced SOC environment by analyzing the correlation
between alerts from different vendors’ appliances to assess
an alert threat level.

2) EXTRACTING INFORMATION FROM ALERTS
Zhong et al. [40] propose a system to extract rules for filter
operations, search operations, and selection operations from
multiple events and logs from the history of SOC analysts’
SIEM operations. The same authors [39] propose a system
of recording SIEM operations during senior analysts’ work
to bridge the skills gap between senior and junior analysts at
SOCs. Chen et al. [8] developed a ‘‘virtual’’ security product
which predicts what security events would have been gener-
ated by a security product if it had been present. The virtual
product can help SOC analysts to enrich events and to make
better decisions in terms of handling alerts/incidents.

3) SUMMARY
While the SOC environments and motivation of prioritiza-
tion in the related work is similar to ours, the approach is
fundamentally different. Related work attempts to predict the
maliciousness or threat level of alerts or observed malware,
similar to our baseline tool, where we do not predict mali-
ciousness but can even use a-posteriori ground-truth data
in our evaluation, providing reliable threat level estimates.
In contrast to that we utilize information on SOC analysts’
behavior to reduce their workload by detecting and prevent-
ing time sinks analysts encounter.

B. DETECTING MALICIOUS DOMAIN NAMES
Several studies focused on the difference between malicious
and non-malicious domain names and their corresponding
feature vectors to detect malicious ones using machine learn-
ing algorithms.

Ma et al. [20] detect malicious domain names and URLs
based on their lexical structure. Félegyházi et al. [10] focus
on using WHOIS information to detect malicious domain
names. Notos [3] was the first domain-reputation system to
detect malicious domain names that share similar patterns in
terms of IP address and domain-name usage. Sato et al. [27]
rely on DNS queries from multiple infected devices to find
malicious domain names. Exposure [7] is a proposal to find
malicious domain names based on the time-series changes in
DNS traffic or queries. Antonakakis et al. [4] propose Kopis,
which uses the characteristics of user behavior observed
in authoritative name servers to detect malicious domain
names. They also propose Pleiades [5], which focuses on
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DNS queries to non-existent domain names in caching name
servers to detect malicious C&C domain names. Segugio [25]
was proposed to detect C&C domain names from DNS traffic
patterns in large ISP networks. Chiba et al. [9] used time-
series features of domain-name usage and network-based fea-
tures of IP addresses and domain names to detect malicious
domain names. Predator [12] is a system by Hao et al. to
detect malicious domain names when they are registered.
Oprea et al. [22] propose a system called MADE to prioritize
the riskiest domain names contacted by hosts using a super-
vised machine learning algorithm and data extracted from
security logs.

1) SUMMARY
The major objective of related work is detecting malicious
domains in various networks to directly flag them or prior-
itize their investigation. Again, this is fundamentally differ-
ent from our approach of prioritizing domain investigations
based on what saves the SOC the most time. Hence, what
ultimatelymakes our work unique is not using the ‘malicious-
ness’ of a domain as a proxy to estimate how worthwhile an
investigation is, but directly estimating how likely it is that the
SOC saves time by investigating a domain name now rather
than (multiple times) later.

IX. CONCLUSION
In this work, we present a novel perspective on improving
SOC efficiency. Based on an observational study of the SOC’s
activity logs, we find that a major time drain in SOCs is
the repeated and incomplete investigation of domain names
encountered during alert investigations.

To reduce this overhead, we propose DomainPrio, a tool
using an auditable logistic regression model, which identifies
domains that are likely to become time drains for the SOC.
We use a feature set from the SOC analysts’ prior engage-
ments with similar domain names, without requiring manual
labeling of input data. This enables analysts to conclusively
investigate these domains as soon as they show up, which
in turn enables the SIEM to directly present this informa-
tion to analysts or to automatically handle the alert without
analyst intervention when the domain is encountered again.
Using SOC data from a production setting, we estimate that
the deployment of DomainPrio can reduce the number of
requests SOC analysts have to issue by up to 35% by pre-
venting repeated and incomplete threat intelligence requests
for domain names encountered in alerts.

We hope that our findings will benefit the SOC community
and enable analysts to save time where possible, so they can
focus on the creative and challenging analysis tasks, instead
of suffering from alert fatigue.
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