3D single-phase elastic metamaterial for low-frequency wave filtering

Ana Carolina Azevedo Vasconcelos¹; Dr. Dingena L. Schott¹; Dr. Alejandro M. Aragón²; Dr. Jovana Jovanova¹

a.c.azevedovasconcelos@tudelft.nl; d.l.schott@tudelft.nl; a.m.aragon@tudelft.nl; j.jovanova@tudelft.nl; ¹Department of Maritime & Transport Technology (MTT) ; ²Department of Precision and Microsystems Engineering (PME) Faculty of Mechanical, Maritime and Materials Engineering (3mE) Delft University of Technology

The increase of monopile dimensions has driven the high noise level to low-frequency regions

Single-phase unit cells can be designed to attenuate low-frequency waves

Due to the unit cell symmetry, the Irreducible Brillouin Zone (IBZ) corresponds to the shaded area

Geometric Parameters - Resonator			
а	Unit cell size	Wg	Beam's path width
R_1	Cavity radius	l_g	Beam's path length
R_2	Resonator radius	w _b	Beam width
h	Unit cell thickness	l_b	Beam length

From Bloch-Floquet theorem:

$$\mathbf{u}(\mathbf{x} + \mathbf{a}) = \mathbf{u}(\mathbf{x})e^{i(\mathbf{k}\cdot\mathbf{a} - \omega t)}$$

- $\mathbf{u} \longrightarrow$ Displacement vector
- $\mathbf{x} \longrightarrow$ Position vector
- **a** Lattice constant vector
- $\mathbf{k} \longrightarrow$ Wave vector

Dispersion relation and transmission analysis can predict the resonant bandgap

Dispersion Relation

$$\Omega = \frac{f * a}{c} \qquad \begin{array}{c} f \longrightarrow & \text{Eigenfrequency} \\ a \longrightarrow & \text{Unit cell size} \\ c \longrightarrow & \text{Wave speed} \end{array}$$

 $\mathbf{k} \longrightarrow \stackrel{\text{Nondimensional wave vector}}{\text{regarding to unit cell size}}$

Transmission Analysis

$$TL(dB) = 20 \log\left(\frac{\|\mathbf{p}_2\|}{\|\mathbf{p}_1\|}\right)$$

 $\mathbf{p_i} \longrightarrow \begin{array}{c} \text{Displacements measured} \\ \text{at points i = 1,2} \end{array}$

The effective mass density also highlights the resonant bandgap

Applying harmonic force at the unit cell boundaries and solving

$$(\mathbf{K} - \omega^2 \mathbf{M})\mathbf{U} = \mathbf{F}$$

The boundary displacements are evaluated. The effective mass density is defined as

$$\rho_{\rm eff}(\omega) = -\frac{1}{A} \frac{F_{\rm bound}}{\omega^2 U_{\rm bound}}$$

 $U, F_{bound} \longrightarrow$ Displacement and force measured at the external boundaries

The attenuation at the BG can be observed by obtaining the complex band structure

Dispersion Relation

Classical approach

 $\omega(\mathbf{k}) \longrightarrow$ Real wave vector; Only real part of the band structure; Only propagating Bloch modes.

Complex approach

 $\mathbf{k}(\omega) \longrightarrow$ Real frequency; Complex band structure Evanescent and propagating Bloch modes.

The wave filtering process is performed by the combination of unit cells with different topologies

The wave filtering process is performed by the combination of unit cells with different topologies

The wave attenuation is reached at the frequency ranges of the resonant bandgaps

12

The high noise levels are associated to the monopile eigenmodes

The single-phase unit cells can reduce the low-frequency noise during the pile driving process

Title: Energy dissipation and damping of additively manufactured Nitinol lattice structures under compressive loading Presenter: Zhaorui Yan – TU Delft

Thank for your attention!

A.C.AzevedoVasconcelos@tudelft.nl

