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Learning to Pick at Non-Zero-Velocity From
Interactive Demonstrations

Anna Mészáros , Giovanni Franzese , and Jens Kober , Senior Member, IEEE

Abstract—This work investigates how the intricate task of a
continuous pick & place (P&P) motion may be learned from
humans based on demonstrations and corrections. Due to the
complexity of the task, these demonstrations are often slow and
even slightly flawed, particularly at moments when multiple aspects
(i.e., end-effector movement, orientation, and gripper width) have
to be demonstrated at once. Rather than training a person to
give better demonstrations, non-expert users are provided with
the ability to interactively modify the dynamics of their initial
demonstration through teleoperated corrective feedback. This in
turn allows them to teach motions outside of their own physical
capabilities. In the end, the goal is to obtain a faster but reliable
execution of the task. The presented framework learns the desired
movement dynamics based on the current Cartesian position with
Gaussian Processes (GPs), resulting in a reactive, time-invariant
policy. Using GPs also allows online interactive corrections and
active disturbance rejection through epistemic uncertainty mini-
mization. The experimental evaluation of the framework is carried
out on a Franka-Emika Panda. Tests were performed to determine
i) the framework’s effectiveness in successfully learning how to
quickly pick & place an object, ii) ease of policy correction to
environmental changes (i.e., different object sizes and mass), and
iii) the framework’s usability for non-expert users.

Index Terms—Compliance and impedance control, imitation
learning, incremental learning.

I. INTRODUCTION

MORE often than not, robots employ a pick and place
(P&P) strategy wherein they approach the object, stop

and grip it and only then resume moving. We as humans, on
the other hand, tend to pick things in a single fluent and quick
motion. Of course, robots should also be able to complete a task
fairly quickly, which in the case of P&P introduces a number of
challenges, both from a control point of view [1] as well as a
learning point of view [2].

Learning from Demonstration (LfD) has become a popular
approach for allowing non-expert users to teach robots and thus
more easily integrate them into the working and daily environ-
ment [3]. Yet these provided demonstrations are sub-optimal
compared to what the robot might be able to achieve, e.g.,
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demos having slower dynamics. Concurrently, it is important
to consider that often, the execution of a task cannot simply be
sped up uniformly. For example, when learning a P&P move-
ment, retaining a high velocity when approaching the object can
generate high impact forces which can cause the object to bounce
away or topple over, potentially damaging the item in question
as well as making it impossible to pick on time. We as people are
able to identify such constraints and adapt accordingly, and can
transfer this knowledge to the robot through demonstrations.

This work studies the feasibility of robot picking only using
time-independent policies learned from human demonstrations
and corrections. Our previous work [4] already revealed the
effective application of minimum uncertainty GPs for learn-
ing variable impedance control in force application tasks like
cleaning, plugging, and pushing. In none of the previous cases,
however, were the dynamics of the end-effector (EE) orientation
or gripper learned nor were there critical contact dynamics
involved. Teaching more degrees of freedom while asking for
fast performance makes the task of non-zero-velocity picking
a challenging benchmark for studying the potential of learning
from non-expert human teachers.

The main contributions of this work over the previous are:
1) Proposing a framework for interactively altering the speed

and shape of robot motion dynamics in a decoupled man-
ner through teleoperated correction.

2) A novel minimum uncertainty inference for learning the
desired non-linear constraints of EE orientation and grip-
per width w.r.t. the EE position dynamics, while avoiding
dangerous extrapolations.

3) Showing the benefit of uncertainty minimisation for en-
abling local motion consistency when dealing with critical
precision tasks like fast picking, while being compliant in
the interaction.

4) Extending the framework for generalizing to different ob-
ject positions thanks to the parametrization w.r.t. moving
reference frames.

Fig. 1 summarizes the three phases of learning in the teach-
ing of a re-shelving operation: the initialization of the policy
with kinesthetic demonstration, the shaping of the dynamics
with teleoperated corrections, and the final evaluation of the
autonomous task execution.

II. BACKGROUND AND RELATED WORK

When executing high-speed manipulation tasks which involve
establishing contact with an object, it is important to consider
the behaviour around the moment of impact. A reoccurring
approach observed in existing works consists of adapting the
relative velocity in order to mitigate the effects of the impact [5].
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Fig. 1. Learning flow for teaching a robot how to reshelve an item.; a) starting with a single demonstration, followed by b) multiple rounds of correction after
which, c) the robot is able to autonomously carry out the task.

Another strategy, which has been employed to absorb impacts
particularly in catching tasks [6], involves utilising a follow-
through behaviour which continues to track the predicted path
of an object even after interception [7]. Alternatively, one can
incorporate compliant behaviour into a provided attractor using
impedance control [8]. While it is unable to mitigate the initial
impact force irrespective of the set stiffness since the main
contribution to this force is the velocity of the impacting objects,
it is beneficial for absorbing the post-impact forces [9].

We can conclude that matching the velocity of an object likely
achieves the best reduction of impact force, however, such an
approach may not be optimal when considering the total time of
the trajectory execution. This is especially true for static objects,
wherein matching velocities would effectively bring the robot
to a stand-still prior to the picking action. A better approach,
therefore, is to interactively learn the feasible non-zero contact
velocity while ensuring moderate impact forces.

Being able to adapt/correct the learned velocity with ease
plays a key role in speeding up the overall execution of the
demonstrated trajectory while also considering that the move-
ment dynamics may require different degrees of adaptation at
different points of the trajectory; for example slowing down prior
to the moment of interception. Different works explore speed
adaptation during trajectory execution using different function
approximators. One approach involves altering the phase rate
of probabilistic movement primitives (ProMPs) [10], whereas
others propose a modified version of Dynamical Movement
Primitives (DMPs) in which the speed is altered through an ad-
ditional phase-dependent temporal scaling factor [11], or where
the temporal scaling factor is changed through corrections and
subsequently translated to changes in the learned dynamic move-
ment [12]. The mentioned works modulate the velocity either
using optimisation approaches or defined functions, or in the
case of [12] where human corrections are used, the corrections
are provided in a coupled manner for both the trajectory shape
and speed. Our approach instead focuses on combining imita-
tion learning and human interactive feedback [13] to provide
corrections to speed and shape in a decoupled manner through
teleoperation.

An alternative to phase-dependent methods, like DMPs, can
be obtained as the formulation of the motion as a reactive
controller according to

ẋ = f(x) (1)

where x is the robot state and f identifies the transition of
the robot state. GPs have been used for shaping a motion
from human demonstrations through the local modification of a
stable field [14]. However, none of the other works on learning
state-dependent dynamical systems take into account the infor-
mation of the uncertainty to increase motion consistency, and
reduce covariate shift. Furthermore, in the context of interactive
learning, we introduced the idea of decoupling the corrections
of shape and velocity and investigated how this can be beneficial
for allowing non-expert users to teach challenging tasks.

III. METHODOLOGY

The goal of this framework is to enable a user to teach the
robot the desired motion through demonstration and teleoperated
correction, see Algorithm 1. The robot is learning the desired
minimum uncertainty dynamical system on the end-effector,
formalized in Section III-A and the dynamics of the gripper
orientation and width as a function of the current robot position,
formalized in Section III-B. The main aim is to show that it is
possible to learn a policy and later correct the velocity so as to
achieve and surpass the performance of a skilled demonstrator.
All of these aspects are modelled with Gaussian Processes,
allowing interactive corrections of the dynamics and actions
online, see Section III-C.

A. Learning a Minimum Uncertainty Dynamical System

A non-linear dynamical system can be described by (1). This
type of formulation would fit perfectly in a velocity controller,
however, due to the necessity of dealing with impacts — for
which an impedance controller is more suitable [9] — we can
rewrite the motion dynamics into its integral form, i.e. we are
controlling the desired next point of the motion and not the
current desired velocity, based on

xdes = xt +

∫ t+Δt

t

ẋ dt

= xt + (xt+Δt − xt) = xt +Δx(xt) (2)

where xdes is the desired attractor position. Since ẋ is a function
of the current position x, the integral attractor distance Δx is
going to be a function of the robot position xt. The dynamical
system can be seen as an external (and slower) control loop
where the attractor position is updated as a function of the robot
position while the inner (and faster) impedance control loop
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simulates the dynamics of a critically damped second order
dynamical system towards the chosen attractor. As an analogy
to humans, the slower loop can be seen as the intention update
when generating a motion according to the current perceived
arm position while the impedance control represents the com-
pliance of the muscles and the joints in the interaction with the
environment.

The desired Δx is fitted with a Gaussian Process (GP) us-
ing the data of a kinesthetic demonstration and user-provided
corrections. A GP is a non-parametric regression method [15]
where the mean and variance of the evaluation point are denoted
as

μ = k∗(ξ,x)�K(ξ, ξ)−1y, (3)

Σ = k(x,x)− k∗(ξ,x)�K(ξ, ξ)−1k∗(ξ,x), (4)

where x is the evaluation point, ξ is the input database and y is
the output database, andμ andΣ are the mean and variance of the
regression in the evaluation point. The chosen kernel function of
the process in this study is the sum of an Automatic Relevance
Determination Squared Exponential kernel and a White Noise
kernel according to

k(xi,xj) = σ2
f e(−

1
2 (xi−xj)

TΘ(xi−xj)) + σ2
nδij (5)

where δij is the Kroneker delta, Θ is a diagonal matrix of the
horizontal lengthscales, σf is the vertical lengthscale, and σn

is the observation noise. These hyper-parameters are the result
of the likelihood maximization of sampling y from the fitted
Gaussian Process. To avoid over/underfitting, we employed a
constrained optimization between reasonable bounds for the
search of the optimal hyperparameters.

Finally, something to consider when learning a dynamical
system in a reactive formulation is that the next robot position is
a function of the learned desired transition but also the external
disturbances. This may lead the robot in a position where its
policy is not confident anymore, i.e., high epistemic uncertainty.
Depending on where this occurs, the robot may not be able
to successfully pick up the object or bring it to its goal and
execute its motion. When we, as humans, execute a motion we
try to remain in regions where we are confident about what we
have learned up to that point. To encode this behaviour also in
the robot, the dynamical system was superposed with another
dynamical system that brings the robot towards regions of low
uncertainty. From a control point of view, this results in adding
another attractor field that is proportional to the gradient of the
variance manifold [4] according to

Δxstable(x) = −α∇Σ = α

(
2k�

∗ K
−1 ∂k∗

∂x

)
, (6)

where x is the evaluation point, and α is an automatically
modulated constant which ensures that the product of Δxs with
the robot impedanceKs is never higher than a set threshold. This
repulsive field can be seen as a behavioural stiffness: considering
a variance manifold as a potential energy, similar to elastic
energy, the robot is always acting towards the minimization of
this quantity; similarly, the lower level control, “the muscles,”
is trying to converge to the attractor in order to minimize its
physical tension. Thus, the Minimum Uncertainty Dynamical

System (MUDS) can be summarized as

xdes = x+Δx(x)− α∇Σ(x). (7)

The superposition of this field is not conflicting because when
close to the data, the prediction is non-zero while the uncertainty
is zero with a small gradient. As the uncertainty increases, the
prediction starts vanishing towards the mean of the independent
Process (in our case zero) while the stabilization field increases
its magnitude. This results in redirecting the robot towards
regions of low uncertainty.

B. Minimum Uncertainty Inference

When learning a complex task like a fluent P&P, the dy-
namics of the end-effector position have to be augmented with
the dynamics of the gripper orientation and width. Because in
a trajectory the dynamics of the orientation and gripper are
coupled with the dynamics of the end-effector, we decided to
learn the controlled action as a function of the robot’s position
with another GP. However, if the predictions are done based on
the current position, when outside of the region of certainty,
the robot would output the mean of an independent Process
(i.e., zero radians for the orientation along all three axes and
maximum gripper width) which could lead to an undesirable
generalization, e.g., tilting or dropping objects. In order to solve
this problem, we propose a minimum uncertainty inference,
obtained by projecting x in the highest correlated sample of
the database according to

x = argmax
ξi

(k (x, ξi)) (8)

where k is the kernel function with the optimized hyper-
parameters. This minimum uncertainty inference can be inter-
preted as a “mental” projection of the robot’s current state on
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Fig. 2. A schematic representation of the human-in-the-loop giving correc-
tions to the learned policy. The human has a visual feedback of the current robot
motion and gives corrections with a joystick.

the highest correlated state (according to the kernel function)
collected during the demonstration(s). The aim is to explicitly
avoid extrapolating outside the original demonstrated data while
still using the property of a smooth regressor of the GP. This
behaviour also matches the philosophy of actively taking actions
that would always minimize the uncertainty on the current robot
state. When the evaluation of the GP is performed with this
minimum uncertainty rule, we denote them with the superscript
MU .

In order to fit the desired angles with a regressor, it is necessary
to have a smooth and continuous representation of the angles.
To this end we fit both sin(θ) and cos(θ) transformations of
the Euler angles and convert them back after the MU inference
during robot control (l. 17 Algorithm 1).

C. Interactive Policy Correction With Human-in-The-Loop

After learning from kinesthetic demonstrations the desired
transition Δx, Euler angles θ and the gripper width w in the
different points of the recorded trajectory, we still need to allow
the user to correct the policy during the robot execution. Our goal
is to obtain a fast continuous picking operation. With increasing
velocities, kinesthetic interactions with a robot manipulator can
become unsafe, and tuning both the attractor and gripper locally
becomes very challenging. Furthermore, it also gives rise to am-
biguity on the interpretation of the interaction forces as intended
corrections or undesired disturbances [12]. For this reason, we
opted for teleoperated corrections on the desired movement,
local velocity and gripper width. Thus, due to the necessity of
modifying the magnitude of the attractor distance proportionally
in all directions (when higher/lower velocity are requested), a
scaling factor is learned as a function of the position, resulting
in a desired attractor

xdes = x+ f(x) = x+ γ(x)Δx(x)− α∇Σ(x) (9)

where γ(x) is the attractor scaling factor. With this formulation,
corrections can be allocated in the 3 different components of
the vector or on the total magnitude of the vector itself. The
complete control loop with human-in-the-loop corrections can
be seen in Fig. 2. Overall, corrections are provided to the output
values ydemo of the different GPs for the attractor distance
Δx, scaling factor γ and the width of the gripper prongs w,
all of which are initialised with the kinesthetic demonstration.
With the evaluation of the kernel, the corrective input can be
smoothly spread to surrounding data points in accordance with

their correlation. The update rule was thus chosen as

ydemo = ydemo + kn
∗ (ξ,x)εµ (10)

where kn
∗ is the correlation vector k∗ normalised such that σf =

1, and εµ is the given correction provided at x.
It has previously been shown that spreading the corrections

on the database is more user-friendly, as well as time and
data efficient [4] than a simpler data aggregation [16], since
otherwise the GP model would essentially average between the
different outputs for a given input, leading to a slow learning.
Additionally, this constraint of spreading the corrections only
on existing points of the database avoids to modify the shape of
the variance manifold, keeping the motion always close to the
kinesthetic demonstration, according to (6), while still shaping
the motion dynamics, encoded in γ(x)Δx(x).

IV. VALIDATION EXPERIMENTS

Experiments were carried out to evaluate the effectiveness,
usability and robustness of the method. In Section IV-A, the
framework’s base functionality of taking slow demonstrations
and allowing the correction of the dynamics through corrective
feedback is tested, along with an ablation study to verify the
utility of uncertainty minimization. In Section IV-B, a base-
line comparison to a method that also addresses the problem
of interactive velocity modulation is performed. Section IV-C
analyses how well a learned policy can accommodate changes
in object properties such as size and weight. In Section IV-D, a
straightforward generalization w.r.t. different object locations is
briefly analysed. Lastly, in Section IV-E a user validation study
was carried out with non-experts to establish the usability of
the proposed method. A video of the experiments can be found
attached to this paper 1.

We used the 7 DoF Franka-Emika Panda with an impedance
controller and a ROS communication network for the online
attractor update with a frequency of 100 Hz. Furthermore, in
order to avoid overloading the GP with superfluous data, the
recording of the trajectory is carried out at 10 Hz considering that
whatever the human is showing at higher frequency is noise that
would anyway be filtered out by the GP fitting and the impedance
policy.

A wireless Logitech F710 Gamepad was used for teleoperated
corrections. The Gamepad was chosen due to the number of
required inputs, it being an established ergonomic input device
in the gaming industry, as well as ensuring that users remain
at a safe distance from the robot at all times considering the
high-speed motion dynamics. Due to the limited number of con-
tinuous inputs, both the gripper and scaling factor corrections are
provided through discrete increments. The attractor corrections
are provided through the continuous inputs of the two thumb-
sticks, with the movement in the x-y-plane regulated by the left
thumbstick and the height regulated by the right thumbstick. As
an added safety feature, one of the triggers was utilised as a
safety button which, when released, ends the execution of the
algorithm, halting the robot. Lastly, users can comfortably start
the execution from any point along the trajectory as well as bring
the robot to the start of the trajectory. As a final remark, it is worth

1https://youtu.be/XoW6AkK793g

https://youtu.be/XoW6AkK793g
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Fig. 3. Range of correction times per round for each aspect depicted by the
shaded areas, with the average times depicted by the solid lines. Statistics made
over 5 repetitions.

underlining that the capability of correcting the orientation after
the demonstration was not enabled due to the limitations of the
teleoperation interface, not due to any limitations surrounding
the algorithm itself and is thus left to future work.

A. Interactive Fluent Pick & Place With MUDS

For this experiment, asingle demonstration was provided
wherein the end-effector orientation, gripper width, and attractor
distance are obtained and used for initialising the respective
GP models. The goal of the task is to i) reduce the execution
time by 4 times w.r.t. the demonstration time of the motion with
kinesthetic teaching, and ii) have an execution time of 3 s or less.
We repeated the experiment 5 times.

Within less than 3 min it was possible to fully train the robot
to pick & place the object with the desired performance, four
out of five times. Only a fraction of that time was needed for the
demonstration (avg. 11 s) and explicit feedback from the human
(avg. 6.8 s). This points towards primarily needing fine-tuning
corrections from the human, which is further supported by the
time spent giving corrections for each of the three correctable
aspects (see Fig. 3).

It is worth noting that a correction round refers to an execution
of a trajectory with optional user corrections, which can be
stopped at any point of the execution and not just at the goal.
The time spent correcting the attractor was minimal, as it was
only required around the moment when the object is reached.
This is because the human tends to stop at the object during the
demonstration to avoid knocking it over and to deal with the
closing of the gripper. To avoid that the motion stops, minor
corrections to the attractor were provided for ensuring it follows
the desired continuous picking motion. Afterwards only correc-
tions for the gripper and scaling factor are provided. Whenever
corrections to the scaling factor were provided, resulting in
higher velocity, corrections to the gripper had to be provided
as well to offset the communication delay of the gripper. Due to
the unreliability of the gripper, despite corrections to the timing,
the gripper still sometimes closed at the incorrect moment.
Nevertheless, after corrections, an average success rate of 82%
out of 10 autonomous executions of 5 different trained policies
(41 successes over 50 executions in total) could still be achieved.
For the complete performance details, please refer to Table I.

To verify the existence of gripper unreliability we measured
the delay between sending the command for closing the gripper
and the actual moment of closing. Measurements were gathered
from 20 rollouts. While the average delay was 0.93 s, it ranged
from 0.56 s to 1.54 s. Considering this stochasticity, the best

TABLE I
METHOD PERFORMANCE (5 DEMOS, 50 EXECUTIONS)

strategy is to push the object at non-zero velocity for a long
enough time so that it encompasses the possible moments at
which the gripper might close.

One of the main concerns when increasing the velocity along a
trajectory is diverging from said trajectory, particularly in curves.
While the shape of the trajectory did change slightly, divergence
from the trajectory could be avoided thanks to the uncertainty
minimisation even when the attractor magnitude was noticeably
increased compared to the original demonstration. This can be
observed within the attractor vector fields in Fig. 4. This is an
important feature of the proposed method, opening an alternative
to many methods that are not dealing with covariate shift when
they try to generalize. The goal was to show that even if the
dynamics of the trajectory are modified, the obtained trajectory
is not changing much, resembling the original demonstration.

To further evaluate the benefit of the uncertainty minimisation
on the training as well as on the final execution, we performed
an ablation study. The desired policy was trained once with the
uncertainty minimisation active (w/ UM) and once without it
(w/o UM). It was observed that the uncertainty minimisation
made the training easier since it kept the robot close to the
demonstrated trajectory. This translated to a shorter training time
of 70 s w/ UM, whereas w/o UM 218 s were needed. We then
performed two tests for observing the effect on the execution;
one with a perturbation to the robot’s initial position and one
without such perturbation. The policies were rolled out 20 times
each. The effect of the uncertainty minimisation was observed
in the success rates of the P&P as well as the average distance
error (ADE) of the executed trajectory w.r.t. the demonstrated
trajectory. Without perturbations the policy w/ UM achieved the
higher success rate of 95% and lower ADE of 0.023 m whereas
the policy w/o UM only achieved a success rate of 45% and
an ADE of 0.051 m. Similar results are observed when the
perturbation is added, where the success rate of the policy w/
UM was 100% and the ADE was 0.034 m whereas the policy
w/o UM only achieved 50% and had an increased ADE of 0.090
m.

For an evaluation of its benefit for reaching a goal while
rejecting disturbances we would like to refer the reader to our
prior work [4].

B. Baseline Comparison

We compare to a state-of-the-art approach in interactive dy-
namics modulation presented in [12]. The base method was
replicated based on the details given in the paper with the only
major change being that we do not learn the orientation with
the DMPs. Since the focus of this baseline comparison was on
the modulation of the translational dynamics, the gripper and
orientation were controlled with the GPs, conditioned on the
robot’s current position for all the tests. Corrections were given
with the joystick in both cases out of safety concerns when the
robot is moving at high velocity.
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Fig. 4. Use case of robot assistance in grocery packing. In the attractor vector-field the arrows denotes the direction of the attractor and the color gradient denotes
the magnitude of the attractor. The vector field based on original demonstration, with the demonstrated trajectory is compared with the one after training, with the
executed trajectory.

We initialized the DMP, a version of our algorithm using the
scaling factor (V1) and a version without the scaling factor (V2)
with a single demonstration of picking the object given along
the y-axis. Then, the object was displaced 7 cm to the side (x-
direction) to compare the ability of both algorithms for reshaping
and speeding up the motion.

What could be noticed with the DMP-based approach is that
when a correction in x-direction was given the robot would
virtually stop and only occasionally move forward. The cause of
this was determined to be the dot-product of the position error
with the predicted velocity p̃�ṗd. This is used for changing the
temporal scaling factor τ of the DMPs, such that when the error
is in the direction of the velocity the evolution of the DMP is
sped up whereas in the opposite case, the evolution of the DMP
is slowed down. In our case, although the predicted velocity
alongxwas very small, it was occasionally negative which could
account for the undesired slowing down of the motion. Only in
the moments when the velocity became positive along this axis
did the robot move forward. As for speeding up, this was later
possible along the y-axis, however, the generated acceleration
was rather high even when a small correction was given. This is
very likely due to the fast convergence of τ . The total training
time for a successful picking policy was 197 s. The final achieved
execution time was 8.43 s which was 1.17 times faster than the
original.

With MUDS the correction in x-direction did not affect the
motion in y-direction. Through the correction of the attractor
distance along each of the axes, the shape of the trajectory
along each of the axes could be easily altered. When using
the scaling factor γ (V1), the speed along each of the axes of
motion increases proportionally. Alternatively, if one chooses to
not useγ and directly affect the velocity by changing the attractor
distance along an axis (V2), one can ensure that the corrections
do not affect the remaining axes. Depending on whether the
velocity increase should be proportional in all directions (e.g.,
speeding up a diagonal motion in x-y-direction) or only along
a single axis, the two approaches of altering the velocity help
account for both possibilities. With V1 48 s were needed to train
a successful picking policy whereas 46 s were needed for V2.
The final execution times were 2.67 s for V1 and 2.24 s for V2
which translated to an increase of speed by 3.71 and 4.41 times
respectively.

Fig. 5. L-R: rigid (250 g), rigid (900 g), flexible (100 g), small & deformable
(250 g).

TABLE II
PERFORMANCE IN INTERACTIVE ADAPTATION

C. Interactive Adaptation to New Object Properties

It can be that we want to pick up a different object after
having learned a desired P&P behaviour. Even small changes
in object properties can result in failure when using the same
policy. Rather than demonstrating and retraining the strategy for
every new object, or relying on hard-coded rules to adapt to these
changes, corrections can be used to adapt the learned policy. A
selection of four different objects was taken (seen in Fig. 5) to
make a comparison of training from a new demonstration (new)
and training a policy by adapting an existing policy (adp), as
reported in Table II .

For the latter case, the initial policy was trained on a rigid
water-bottle with a weight of 250 g ( 1© in Fig. 5), our ‘source’
object. Once a satisfactory policy was achieved, the training
object was swapped out for another object. The policy was then
executed and corrected if necessary. Corrections were provided
until the policy was successfully executed with the new object,
after which an evaluation of the performance was performed.
Subsequently, a different object was swapped in and the learned
policy was reset to the initial policy.
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TABLE III
PERFORMANCE OF NON-EXPERTS WHO SUCCESSFULLY FINISHED THE TASK

For each new object, the policy could be successfully cor-
rected. For the same object but with a greater weight 2© the initial
policy carried out the policy successfully in the first execution,
hence it was deemed that no corrections were necessary. For the
flexible object 3© due to its lighter weight and ease at which it
could be knocked over, minor corrections to both the velocity
and gripper had to be given. Lastly, for the deformable object
4© it was necessary to reduce the speed for a successful picking.

Otherwise, the object kept being knocked over upon impact due
to its smaller support polygon. Nevertheless, for all three objects
with their different properties it was possible to alter the policy
within less time than what is needed for training from a new
demonstration (see Table II).

It is important to note that the strategies for the separate objects
are not stored as this would require a further form of knowledge
representation or policy parametrization, which is outside the
scope of this work. This evaluation does, however, show that
adapting an existing policy is faster than learning from scratch,
which can be beneficial for gathering knowledge more quickly.

D. Generalizing to New Positions

An important point of any algorithm is the generalisation
capability. The above experiments were confined to policies
trained within a global frame, making their generalizability
limited. This can be overcome by using the position w.r.t. a
local reference frame as input. To this end, a minor alteration
had to be made where two policies were learned; one w.r.t. a
local frame within the target object, and one w.r.t. a local frame
at the goal. To determine which policy should be used when,
a simple heuristic was applied which stated that the robot first
moves w.r.t. the object and after picking it up moves w.r.t. the
goal [17]. It is important to note that with the current approach
there is a limit to how much the relative distance between the two
frames can be changed w.r.t. the demonstrated one since when
switching the frame of reference, the new policy must remain
confident otherwise it will arrest the motion for safety.

To validate this extension we performed a short experiment
where we trained the two policies (w.r.t. the object and w.r.t.
the goal) with the frames fixed in one position. After the policy
was successfully trained we placed the object in 20 different
locations. The distance of these positions from the training
location were taken from the ranges x ∈ [−0.26; 0.02], y ∈
[−0.30; 0.28], and z ∈ [0; 0.08] all while considering locations
physically feasible for the robot.

The total training time amounted to 99.4 s of which 78.9 s
were needed for the corrections. Out of the 20 executions 13 were
successful without any external influence, and 3 were successful
once the human physically guided the robot into the region of
certainty. For the latter 3, this was in fact a desired behaviour
and a design choice to ensure that the robot does not generalise

and potentially behave in an unsafe manner in situations it has
never seen. If a person wants to add information on how to
behave in these areas, this can be done by adding new points as
was addressed in [4], but this was not the focus of the proposed
method. The remaining 4 executions resulted in clear failure.
Out of these, 2 were in the case where the object was placed
at a greater height than the demonstration. After successfully
picking up the object, the robot proceeded to get stuck against
the surface of the table since the policy w.r.t. the goal dictated
that it should be following a trajectory that was below its current
position.

E. Are Humans Great Teachers? A User Study

Since the aim of the proposed method is to enable people,
who may not have a background in robotics and machine
learning, to teach a robot, a preliminary user validation study
was carried out. A total of ten participants aged 23 to 28 took
part in this study (approved by TU Delft HREC). The same
setup as in Fig. 4 was used, with the bag being replaced by
a small square tower to provide a clearer goal. Half an hour
of familiarisation with the setup was given before the actual
trials began. There were two trials of ten minutes which were
presented in a randomised order. In one trial (T1), users were
required to perform a kinesthetic demonstration at a speed they
were comfortable with. Afterwards, they had the possibility
to correct the demonstration with the possibility to scale the
attractor distance. To ensure that the main contribution to the
velocity resulted from the scaling factor, the attractor Δx itself
was bounded to 4 cm. In the other trial (T2), users were required
to provide a fast kinesthetic demonstration. The attractor for this
trial was left unbounded and any corrections for the velocity
had to be performed by directly altering the attractor in the
three Cartesian directions. A trial was considered successful if
the final trajectory execution time was 4 s or less. The goal of
this study was two-fold; i) verifying the feasibility of allowing
non-experts to teach the robot non-zero-velocity P&P and ii)
determining which correction approach users may prefer. In
terms of performance, all participants were able to successfully
pick & place the object in T1. Only one was unable to reach the 4
s goal. For T2, only one was unable to teach the task successfully.

Nevertheless, overall good teaching performance could be
observed in both trials. For T1, users were able to teach the
task within, on average, 5.4 min with 19 correction rounds. The
average time at which the robot could successfully pick & place
the object that they could teach was 3.4 s with the best time
being 2.2 s. For reference, the time needed to demonstrate the
behaviour at a fast pace in T2 was at best 3.9 s, but generally
participants needed more than 5 s to carry out the demonstrations
(Table III for detailed results). It thus becomes clear that overall
non-experts are not able to or are not comfortable with providing
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fast demonstrations. Provided a faster demonstration, the time
needed for corrections however did tend to be lower.

Participants were also asked which correction approach they
preferred (T1 or T2). Within the group of participants, there was
no clear preference towards one method or the other. There were,
however, clear personal preferences. Half preferred to correct
the complete translational dynamics with one input, claiming
that it made it easier for trajectory shaping or more intuitive
for altering the velocity since it compared more closely to the
controls that are familiar from video games. Meanwhile, the rest
found it easier to focus on correcting one aspect at a time, thus
preferring to first correct the trajectory before increasing the
velocity with the scaling factor γ, since there was less chance
of accidentally affecting the other aspect with the corrections.
This means that by opting for only one correction approach, the
performance and comfort of some people would be hampered.
For this reason it is important that the method gives people the
possibility of using either of the two approaches.

V. CONCLUSION AND FUTURE WORK

We demonstrated that the motion dynamics of a user’s demon-
stration can be successfully altered in a non-uniform manner
using teleoperated user corrections. This allows users to over-
come the limitations they had during the demonstration and
teach the actual desired behaviour. It further allows users to
compensate for delays within the system which are not directly
known to them but are observable in the system’s performance.
Additionally, generalization to different object positions was
obtained by switching between the two dynamical systems,
learned in the respective reference frames. This proved how the
variance minimization can be successfully used also to transition
between two different frames. This opens many possibility of
creating a sequence of multiple simpler dynamical systems for
accomplishing complex robot tasks, i.e., assembling multiple
components.

It was additionally shown that non-experts are able to suc-
cessfully teach a non-zero-velocity motion for picking & placing
objects. Irrespective of their prior experience or lack thereof with
robots, they were able to successfully train this complex task,
teaching and correcting the motion dynamics of many degrees
of freedom. It could be seen that when only using the kinesthetic
demonstration, people generally could not attain the desired
execution time even with a fast demonstration. However, with the
help of corrections to the motion dynamics, an execution speed
outside of their demonstration capabilities became achievable.
Since people have different preferences of teaching and correct-
ing robots, we concluded that the final framework requires the
velocity corrections to be provided both in a coupled (with only
Δx) and decoupled manner (with γ and bounded Δx).

Certain aspects remain to be addressed for better generaliza-
tion and performance of the proposed framework. A next step
would be to study how to obtain haptic corrections of the policy

while ensuring a fast but safe human-robot interaction. Further
work is also needed in order to account for obstacles and reshape
the vector field accordingly.
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