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A B S T R A C T   

In this paper, we link findings from a demographically representative discrete choice experiment (DCE) in eight 
European countries on the adoption of smart thermostats with an agent-based model (ABM) in a methodologi-
cally consistent way. We employ the ABM to simulate the diffusion pattern of smart thermostats until 2030 and 
to examine the effects of subsidies and recommendations by specific agents. Our findings highlight the impor-
tance of allowing for within- and across country heterogeneity in preferences for these policies and for tech-
nology attributes such as heating cost savings. Further, social interactions reinforce country differences in 
technology stock in the starting year of the simulations. We find that subsidies moderately accelerate the 
diffusion of smart thermostats, but they are less effective in countries with a large stock of smart thermostats in 
the starting year, strong preferences for heating cost savings, and when smart thermostats lead to a strong 
reduction in heating costs. For some countries, targeting subsidies at particular socio-economic groups (in our 
case low-income households) slightly mitigates free-riding effects. Our policy simulations further imply that 
recommendations by energy providers or by energy experts accelerate the diffusion of smart thermostats 
compared to recommendations by peers.   

1. Introduction 

The residential sector accounts for about 40 percent of total energy 
use and CO2 emissions globally, highlighting the need to study the 
diffusion of energy-saving technologies in this sector. In recent years, 
agent-based models (ABMs) have often been used to study the diffusion 
of sustainable energy technologies among households (Li et al., 2015; Li 
et al., 2017). For instance, previous studies have analysed the effects of 
policies to spur the diffusion of renewable and cogeneration technolo-
gies for electricity generation (Bruckner et al., 2005; Chappin and Dij-
kema, 2009; Palmer et al., 2015), of renewable-based heating systems 
(Sopha et al., 2013; McCoy and Lyons, 2014; Jensen et al., 2015; Rai and 
Robinson, 2015; Robinson and Rai, 2015; Snape et al., 2015), of 
energy-efficient household appliances (Schwarz and Ernst, 2009, 
Chappin and Afman, 2013; Hicks and Theis, 2014; Hicks et al., 2015; 
Zhang et al., 2016, Moglia et al., 2018; Chappin et al., 2019;), of insu-
lation measures (Friege et al., 2016), and of electric vehicles (EVs) 
(Köhler et al., 2009; Zhang et al., 2011; Noori and Tatari, 2016; Shafiei 

et al., 2012; Plötz et al., 2013; Wolf et al., 2016; Sun et al., 2019). 
ABMs are particularly well suited to model the diffusion of new 

technologies because their flexible architecture allows modellers to 
explicitly incorporate social interactions and to account for agent het-
erogeneity and for different environments. Thus, ABMs may integrate 
findings from behavioural research which suggests that technology 
adoption by individuals or households depends on social interactions 
(Rai and Henry, 2016) such as peer adoption and word-of-mouth rec-
ommendations by peers or experts (e.g. Kiesling et al., 2012). In addi-
tion, ABMs may explicitly account for agent heterogeneity by allowing 
for heterogeneity in decision processes or reservation prices (e.g. Can-
tono and Silverberg, 2009; Kiesling et al., 2012) as well as heterogeneity 
by socio-demographic characteristics (e.g. Zhang et al., 2011; Hicks and 
Theis, 2014; Hicks et al., 2015). Because ABMs allow for path de-
pendency, lock-in effects, and the passing of time (e.g. Hafner et al., 
2020), they also capture differences in the levels of development across 
markets. ABMs may therefore be employed to design and assess policies 
promoting the adoption of sustainable technologies and behaviours, 
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thereby accounting for social interactions, heterogeneity across agents, 
and the scale of adoption over time across different geographic areas. In 
this sense, ABMs enable a systematic analysis of the emergent dynamics 
induced by such policies. 

To parameterize ABMs, modellers rely on theory (e.g. Jager, 2017), 
ad-hoc assumptions (e.g. Hesselink and Chappin, 2019) and empirical 
results. For example, findings from empirical studies on agent utility for 
specific technologies (or technology characteristics) may be used to 
parameterize the agents’ decision model in an ABM (e.g. Holm et al., 
2016). 

Only few studies analysing household adoption of sustainable energy 
technologies with ABMs, however, employ individual-level survey data. 
For instance, to simulate the adoption of lighting systems, Hicks and 
Theis (2014) and Hicks et al. (2015) distinguish various groups of 
households based on socio-economic characteristics. Inspired by survey 
data, these groups receive different utility weights for particular tech-
nology attributes, but the link between the weights and the survey data 
remains ad-hoc. On the basis of psychological factors of the Theory of 
Planned Behavior (TPB) (Ajzen, 1985), Jensen et al. (2015) develop 
specific heuristics for different consumer groups; these heuristics are 
empirically calibrated based on a study by Schwarz and Ernst (2009) on 
water-saving shower heads. Studying the adoption of solar photovoltaics 
by households, Rai and Robinson (2015) use linear regression models 
based on survey data to operationalize psychological factors. Using 
location data from the survey, they populate the social network (on the 
basis of clustering socio-demographical characteristics), which in turn 
influences the evolution of attitudinal factors. Sopha et al. (2013) 
simulate the diffusion of wood-pellet heating systems in Norway, 
assuming household utility to be governed by the TPB and by peer 
adoption. They derive the weights of the various components of the 
utility function from an empirical survey. Shafiei et al. (2012) and Noori 
and Tatari (2016) study the adoption of electric vehicles in Iceland and 
the United States, respectively, distinguishing various household 
groups. In both studies, utility weights associated with particular auto-
mobile characteristics are derived in an ad-hoc manner from a survey of 
the Danish population. Thus, existing studies employing individual-level 
survey data typically rely on ad-hoc assumptions to obtain utility 
weights. 

A few studies use a more systematic approach to derive utility 
weights from survey data as input for an ABM. Analysing the adoption of 
electric vehicles in Ireland, McCoy and Lyons (2014) distinguish be-
tween income and environmental utility. They calculate environmental 
utility based on information from a representative survey on partici-
pants’ environmental attitudes and their stated energy efficiency 
behaviour. To calculate income utility, McCoy and Lyons (2014) use 
information on social class, tenure and age. To aggregate the individual 
components, they employ an ad-hoc ranking scheme which is assumed 
to vary by socio-economic groups. Wolf et al. (2016) study electric 
vehicle adoption in Berlin (Germany) and represent survey respondents 
as individual agents. Their modelling focuses on the role of emotions 
which are represented through an artificial neural network obtained 
from survey data and an experimental study. Studying the diffusion of 
photovoltaic systems in Italy, Palmer et al. (2015) introduce an agent’s 
utility function including payback time, environmental benefits, in-
come, and links to other adopters in the same category (constructed 
using Sinus-Milieu data for Italy). They calibrate the utility weights 
using data on the historic diffusion of photovoltaic systems in Italy. 
Finally, Zhang et al. (2011) simulate individual decisions to adopt 
electric vehicles in Germany using findings from a discrete choice 
experiment (DCE) to specify the parameters in the utility function. 
However, because their DCE is conducted with automobile experts, their 
findings may not be representative for the population at large. 

In this study, we employ an ABM to simulate the diffusion of smart 
thermostats in eight European countries until 2030; we directly inte-
grate findings from demographically representative surveys using DCEs 
in these countries. We analyse the DCEs via mixed logit models and 

establish a hard link between the utility weights obtained through the 
DCEs for various technology attributes and those used in the ABM. We 
also use the DCE results to account for preference heterogeneity. 
Further, we simulate the effects of subsidies and of recommendations by 
energy providers and experts compared to recommendations received 
from peers. Subsidies and recommendations are particularly relevant to 
spur the diffusion of new technologies. Because smart thermostats 
involve high perceived levels of complexity and technological and 
financial risks (Rijsdijk and Hultink, 2009; Ehrenhard et al., 2014; 
Wilson et al., 2017), subsidies and expert recommendations may be 
needed to overcome these additional barriers. We simulate the effects 
when all households are eligible to receive a subsidy and compare 
findings with a scenario where only low-income households are eligible 
to receive a subsidy. 

This paper contributes to the literature in multiple ways. First, 
relying on large-sample representative surveys, the parameters gov-
erning technology choice in our ABM are empirically grounded. In 
particular, building on Zhang et al. (2011), the parameter estimates 
obtained from the DCEs are used to specify the parameters of agents’ 
utility functions in the ABM. Thus, our methodology involves a hard link 
between a demographically representative DCE and individual-level 
survey data with an ABM. Lack of empirically grounded behaviour in-
puts has often been considered a main weakness of ABMs (e.g. Crooks, 
2008; Durlauf, 2012; Chattoe-Brown, 2013; Scheller et al., 2019). 

Second, we incorporate preference heterogeneity in a methodologi-
cally consistent way in an ABM reflecting household heterogeneity in 
responses to social interactions and to policy, and in key attributes of 
smart thermostats. To model this general preference heterogeneity, we 
use the standard deviations of the estimated means of the parameters as 
calculated by the mixed logit models. In the ABM, this heterogeneity is 
conceptualized as a source of uncertainty. Because the scant literature 
combining DCEs and ABMs did not employ mixed logit models, this 
approach is innovative. In addition, we allow for preference heteroge-
neity which is specific to particular socio-demographic characteristics 
such as age and income. This also allows for a more fine-grained un-
derstanding of the role of socio-demographic characteristics and their 
interactions with policy for the diffusion of smart thermostats. In this 
sense, our approach addresses challenges frequently directed at ABMs 
pertaining to limited empirical foundation and restrictive behavioural 
assumptions (e.g. Crooks, 2008; Durlauf, 2012; Chattoe Brown, 2013; 
Scheller et al., 2019). 

Third, our empirical analysis includes eight European countries. To 
our knowledge this is the first study integrating information from multi- 
country representative household surveys into an ABM. Thus, our 
approach explicitly recognizes heterogeneity in individual preferences 
across countries. It also allows the analysis of the role of differences in 
starting conditions (here the stock of smart thermostats in the starting 
year of the simulations) when analysing the effects of social interactions 
and policies on the diffusion of technologies over time. Because we 
include eight countries throughout the analysis, we show the implica-
tions of the differences in preferences and starting conditions between 
countries. 

Fourth, existing studies employing ABMs to analyse the diffusion of 
energy-efficient technologies have focused on appliances (Hicks and 
Theis, 2014; Hicks et al., 2015; Chappin et al., 2019), and insulation 
measures (Friege et al., 2016). Typically, these analyses involve either 
replacement (appliances, windows, heating systems) or improvement 
(insulation measures) of existing technology infrastructures that are 
already widely diffused. In contrast, ABMs have not been employed to 
analyse the diffusion of smart energy devices such as smart meters, 
smart appliances and smart thermostats. This study focuses on smart 
thermostats. Smart thermostats provide direct feedback on thermal en-
ergy consumption. By tracking thermal energy consumption patterns, 
sensing changes in human behaviour and environmental stimuli, and 
relying on artificial intelligence, some smart thermostats also offer users 
automatized heating control (e.g. Chan et al., 2008). In addition, smart 
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thermostats often allow users to monitor and adjust the temperature 
remotely through a smartphone application. Thus, smart thermostats 
generally enable households to more efficiently heat their homes (e.g. 
avoiding keeping temperatures unnecessarily high at night or when the 
dwelling is not occupied) and save up to 10% of heating costs without 
loss of comfort (Liang et al., 2012; Kleiminger et al., 2014). Because 
space heating offers a large potential to meet ambitious energy and 
climate policy targets such as the 55% reduction goal for greenhouse gas 
emissions in the European Union (European Commission, 2021), 
studying the diffusion of smart thermostats seems particularly worth-
while. Further, because smart thermostats are in the early stages of 
diffusion, accounting for household heterogeneity and for differences 
across countries is particularly relevant when analysing and modelling 
their diffusion. 

We organize the remainder of the paper as follows. Section 2 de-
scribes the methods in detail (both for the discrete choice experiment 
and the agent-based model). Section 3 presents and discusses the results. 
Section 4 summarizes the main findings and critically reflects on the 
limitations of our study. 

2. Methods 

In this section, we present the design of the DCE and describe the 
core elements of the ABM model. 

2.1. Description of DCE 

DCEs are conceptually based on the Lancasterian theory of demand 
(Lancaster, 1966) and the random utility framework (McFadden, 1974). 
They simulate a hypothetical market environment by asking partici-
pants to successively choose among multiple technology alternatives 
which differ in terms of their combination of attribute levels. Assuming 
that participants choose the technology that yields the highest utility in 
a given choice set, econometric methods are used to estimate the 
weights associated with the technology attributes in the utility function. 

2.1.1. Survey 
A multi-country online survey was fielded in July and August 2018 in 

France, Germany, Italy, Poland, Romania, Spain, Sweden, and the 
United Kingdom (UK) using quota sampling. For each country, the 
samples were representative in terms of age, gender, income and 
regional dispersion. Survey participants belonged to an existing online 
household panel provided by the survey institute Norstat. Only in-
dividuals involved in their household’s decisions for purchases, expen-
ditures and bills such as utility bills or household appliance shopping 
were eligible to participate in the survey. In each country, respondents 

participated in DCEs and were randomly assigned to DCEs on different 
technologies or policies, including one DCE on smart thermostats. In 
addition, in the general part of the survey, respondents were asked to 
provide information on standard socio-economic variables, on energy 
expenditures, and on characteristics of their dwelling. 

2.1.2. DCE for thermostats 
In the1 choice experiment, respondents made a series of choices 

between smart thermostat purchase alternatives (“We would like to 
know which heating control device you would prefer, if you were 
making a purchase and these were your only options”). Table 1 shows 
the attributes and levels selected for the DCE. In particular, recom-
mendation reflects the social interaction component of the utility 
function which is characteristic of ABM models, and may be influenced 
by policy. Subsidy captures government policy to accelerate the diffu-
sion of smart thermostats. We document the exact wording of the 
framing in Fig. A.1 in Appendix A. 

Using Ngene (ChoiceMetrics, 2014), we employed a Bayesian effi-
cient design (Sándor and Wedel, 2001), where priors were obtained 
from a pilot study with 50 participants from a separate online access 
panel in the UK. The decisions consisted of 12 scenarios divided into two 
blocks. Participants were randomly assigned to one of the blocks and 
therefore every respondent successively answered six scenarios with two 
choice alternatives. Instead of directly offering an opt-out option as a 
third-choice alternative, we designed a dual response approach: after 
participants had chosen their preferred alternative, they were asked in a 
follow-up question to indicate on a scale from 1 (“very unlikely”) to 4 
(“very likely”) how likely they were to actually buy their preferred 
alternative if it was available on the market. If a participant answered 
“unlikely” or “very unlikely”, the response was excluded from the 
econometric analyses. Fig. A.2 in Appendix A shows a scenario as seen 
by respondents from the UK. 

We use a mixed logit model (MXL) to analyze the DCE. In contrast to 
a standard conditional logit model, an MXL allows for unobserved 
individual-specific heterogeneity of the parameters βn across individuals 
(Revelt and Train, 1998) and hence does not rely on the Independence of 
Irrelevant Alternatives (IIA) assumption. Therefore, in addition to mean 
estimates for the parameters, MXL estimation also produces standard 
deviations for the parameter estimates. 

Equation (1) reflects the (latent) utility function of participant n 
choosing alternative j in choice set t 

Unjt = βnXnjt + εnjt, n = 1, ....,N, j = 1, 2, t = 1, ...,T (1)  

where N stands for the number of participants, T for the number of 
choice sets, and J for the number of alternatives. In our case, N differs by 
country, T=12 and J=2. Xnjt is a vector of smart thermostat attributes, 

Table 1 
Levels of different attributes considered in the thermostat choice experiment.  

Attribute Levels Variable name 

Heating bill 1% less, 5% less, 10% less savings 
Remote temperature control Yes, No remote 
Display of changes in energy consumption Yes, No display 
Recommendation by friends or colleagues (baseline) 

by independent energy experts 
by your energy provider 

recom_expert 
recom_provider 

Purchase price €150, €180, €210, €240, €270, €300 price 
Subsidy €0, €20, €40, €60 subsidy  

1 Tu et al. (2021) provide a more detailed description of the DCE and the 
econometric approach, a review of the literature on smart thermostat adoption, 
and a justification of the attributes and levels based on previous literature. In 
this paper, we employ the same data as Tu et al. (2021) as input for the ABM; 
our econometric analysis includes a different set of socio-economic variables to 
better reflect the focus of this paper. 
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εnjt refers to an error term assumed to follow an extreme-value Gumbel 
distribution, and βn is a vector of random parameters which varies 
among participants. This vector is characterized by density function 
f(β|θ) with a vector of parameters θ (Train, 2003). We assume all pa-
rameters to follow a normal distribution. 

In our case, the utility function is: 

Unjt =
(
βn,1 + β2elder + β3lowinc

)
× price

+
(
βn,4 + β5elder + β6lowinc

)
× subsidy

+
(
βn,7 + β8heat + β9elder + β10lowinc

)
× savings

+
(
βn,11 + β12elder + β13lowinc

)
× recom provider

(
βn,14 + β15elder + β16lowinc

)
× recom expert

+
(
βn,17 + β18elder + β19lowinc

)
× remote

+
(
βn,20 + β21elder + β22lowinc

)
× display + εnjt

(2) 

The variable price denotes net price (in euros)2, i.e. the price minus 
any subsidies as in Train and Atherton (1995). Heating cost savings (in 
percentage of heating costs) are denoted as savings. Rec_provider and 
rec_expert are dummy variables taking on the value 1 if the thermostat is 
recommended by an energy provider or by an independent expert, 
respectively. Recommendation by friends or colleagues is used as the 
baseline level and therefore not included in equation (2) to avoid sin-
gularity of the regressor matrix3. The two last attributes reflect features 
typical for smart thermostats. First, remote is a dummy variable that 
takes on the value 1 if the thermostat can be controlled through a remote 
device such as a smart phone. Second, display is a dummy variable that 
takes on the value 1 if the thermostat displays changes in energy con-
sumption when the temperature is modified. To account for household 
differences in heating costs, following the choice experiment, re-
spondents were asked to indicate their actual heating costs. In case re-
spondents did not know their heating costs or provided unreasonable 
values, we estimated heating costs based on building type, building age, 
living area, geographical region, heating system, and isolation mea-
sures.4 Reported or estimated heating costs were then divided by 100 
and an interaction term between the scaled heating costs (heat) and 
savings was included in the model. If respondents with higher heating 
costs value an additional 1% decrease in their heating costs more than 
households with lower heating costs, this interaction term is positive. In 
addition, our model allows for differences in individual preferences 
which are due to individual characteristics. Therefore, equation (2) in-
cludes interaction terms of the attributes with two dummy variables, 
lowinc and elder to consider the effects of income and age on preferences 
for attributes. Empirical studies have found income and age to be related 
with household adoption of heating-related investments in retrofit 
measures or low-carbon heating systems (e.g. Michelsen and Madlener, 
2012, 2016; Schleich, 2019, Schleich et al., 2019; Spyridaki et al., 
2020). The findings on the interaction terms also provide guidance for 
policy. In particular, policies targeted at particular socio-economic 
groups such as low-income households may result in more efficient 
use of resource because the free-rider problem is smaller. That is, a large 
share of households may have adopted a smart thermostat even without 
a subsidy. Finally, modelers can easily obtain information on income 
and age of the population from official statistics unlike for attitudes, for 
example. More specifically, lowinc took on the value 1 if household 

income (based on the survey questionnaire) belonged to the lowest in-
come category in a country. Second, elder took on the value 1 if the 
respondent was at least 55 years old (based on the survey question-
naire).5 All coefficients associated with the interaction terms enter the 
estimation via MXL as fixed parameters. We estimate the model via 
simulated log likelihood methods, using 500 Halton draws (Train, 
2003). 

2.2. Description of ABM 

2.2.1. Introduction to EMLab-Consumer 
The simulations are performed with EMLab-Consumer, an ABM that 

simulates household investments in appliances and heating systems. We 
provide a detailed description of the model in Appendix D, which fol-
lows the ODD+D (overview, design concepts and details including 
human decision making) protocol - an established standard for 
describing ABMs that include human decision-making (Müller et al., 
2013). The full model code is open source.6 A preliminary version of 
EMLab-Consumer is presented in Chappin et al. (2019). The model 
contains different types of agents (households and suppliers) as well as 
appliances. Households can own a variety of appliances, including a 
smart thermostat. Over a period of decades, households make use of 
their appliances and invest in replacement. They also interact with other 
households through a social network, sharing information on past 
adoption of appliances. 

The agents in the simulation are generated on the basis of the survey 
data (see section 2.2.2 for details) and are distributed in a virtual 2- 
dimensional space. Their social network is generated through a semi- 
randomized process: we generate a scale-free network between agents 
on the basis of ad-hoc assumptions. In the simulation, we populate 
agents with three links on average, where links are formed within a 
relatively small radius around the agents’ virtual locations. 

When households decide to replace an appliance, they decide on 
which appliance to purchase and where to buy it. The decision logic uses 
the utility function as specified in equation (2) for the DCE (see the 
details provided in section 2.1 and 2.2.2). Beyond the components in the 
utility function, households are assumed to be limited in their decision 
in the number of options they consider, and affected by what is rec-
ommended by friends through their social network. Households are 
further assumed to consider the properties of the current appliance they 
are replacing. 

The model is implemented in NetLogo.7 The model itself is data-free 
and all parameters (household data, technology data, utility function 
data, and default policy parameters) are read from csv files at the start of 
the simulation. The set-up of the model allows for expansion in terms of 
policies, technology types, etc. 

2.2.2. Integrating findings from the discrete choice experiments and the 
general part of the survey 

The agents in the simulation are generated from the households in 
the survey in the sense that each survey participant corresponds to one 
agent. Although the survey participants are individuals, we assume that 
their decisions are representative of the household decisions. This 
assumption seems justified by the eligibility criteria that were used for 
survey participation. The decision logic is presented in Fig. 2. We inte-
grate information from the general part of the survey pertaining to 2 Note that the survey was always conducted in the country’s currency and 

we used the same monetary amounts across countries. To account for purchase 
power parity and round up the monetary values shown to the DCE participants, 
we used the following exchange rates for the non-Euro countries: Poland 1€ = 3 
PLN; Romania 1€ = 3 RON, Sweden 1€ = 10 SEK, and UK 1€ = £1.  

3 In all simulations below, households receive a recommendation from an 
energy provider or an independent expert, but not from both.  

4 Self-reported heating costs were assumed to be unreasonable when the 
difference between estimated and self-reported annual heating costs was larger 
than 750 euros. Our findings are virtually the same when we use 650 and 850 
euros instead of 750 euros as the cut-off value. 

5 Due to panel restrictions, we only recruited participants between 18 and 65 
years of age. As reported in Table 3, the share of respondents above 55 years of 
age lies between 14% (Romania), and 26% in the UK. We refrained from using a 
higher cut-off value to define elderly respondents as this would have led to very 
small subsamples of elder participants in some countries.  

6 See http://emlab.tudelft.nl.  
7 NetLogo is a popular open source agent-based modelling platform. See 

http://ccl.northwestern.edu/netlogo for more information. 
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participant age and income, how many options participants typically 
consider when replacing an appliance, and whether they already own a 
smart thermostat. 

The results of the DCEs as described in section 3.1 are directly fed 
into the ABM (hard link). More precisely, the estimated parameter 
means from the MXL are used as choice model parameters in the ABM. 
Accordingly, the thermostat purchase decision is driven by (i) technol-
ogy attributes, i.e. the net price of the thermostat, remote control and 
energy saving display features, (ii) whether it is recommended by friends 
or colleagues, an independent expert, or by the energy provider, and (iii) 
differences in the parameter estimates by sociodemographic character-
istics of the decision maker, i.e. age and disposable income. Age and 
income are used to determine groups distinguishing elderly and low- 
income households from others. 

The variables mentioned above are affected by policies. A subsidy 
will lower the retail price for agents. When only a particular de-
mographic subset of the population is eligible for a subsidy, the model 
accounts for the fact that the subsidy is only available for agents from 

that group. Further, in contrast to the baseline recommendation from 
friends (which is implemented through the social network), when other 
recommendation policies are used (for instance through experts or en-
ergy providers), the extra utility brought through these recommenda-
tions is obtained from the DCE results. 

Further, information from the survey on the number of options that 
participants typically consider when deciding on a new appliance is 
applied as a filter on the gross set of appliances that is evaluated by the 
agents in the decision logic. Agents observe the appliances of a limited 
number of other households in their social network (which forms the 
baseline recommendation, for which no policy needs to be represented) 
and add these appliances to the set of appliances they consider in their 
purchase decision. 

In addition to these properties, data regarding yearly heating costs 
(obtained through the survey) are included, because they affect the 
actual heating cost savings that are to be expected from adopting a smart 
thermostat. To capture heating costs in the ABM, we include information 
on gas price profiles available from Eurostat for each country. Except for 

Fig. 1. Decision logic for a household agent, as implemented in the ABM.  
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Poland and Sweden, natural gas accounts for the highest fuel share in 
residential heating in the countries in our sample.8 

As illustrated in red in Fig. 1, the utility function is the core element 
of the decision logic of the agents and governs household appliance 
choice. The ABM logic essentially conceptualizes this as a replacement 

question, but agents may start out with a regular thermostat or no 
thermostat at all (which are modelled identically in the ABM). After the 
expiration of each thermostat’s lifetime (set to 10 years in the model), 
whether there is no thermostat at all, a regular thermostat or a smart 
thermostat, household decision-makers first select the shops at which 
they would like to buy their appliances. Based on the stock of 

Table 2 
Results of mixed logit model for DCE on thermostat purchase decisions.   

France Germany Italy Poland Romania Spain Sweden UK 
Mean         

price -0.0058*** -0.0051*** -0.0067*** -0.0074*** -0.0053*** -0.0073*** -0.0077*** -0.0073*** 
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

subsidy 0.0003 -0.0088*** -0.0011 0.0009 0.0033** -0.0057*** 0.0013 -0.0063*** 
(0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001) 

savings 0.2301*** 0.3636*** 0.1986*** 0.3536*** 0.2282*** 0.2344*** 0.2297*** 0.1947*** 
(0.026) (0.033) (0.020) (0.034) (0.025) (0.017) (0.035) (0.018) 

recom_provider 0.4681*** 0.4762*** 0.4498*** -0.0304 0.7565*** 0.3090*** 0.1269 0.2289*** 
(0.103) (0.111) (0.103) (0.098) (0.097) (0.078) (0.110) (0.080) 

recom_expert 0.2820** 0.7397*** 0.5014*** 0.2553* 0.8739*** 0.3849*** 0.3995*** 0.1525* 
(0.116) (0.127) (0.106) (0.134) (0.127) (0.084) (0.124) (0.090) 

remote 0.3517*** 0.3626*** 0.4924*** 0.9168*** 0.6762*** 0.6142*** 0.8472*** 0.4168*** 
(0.092) (0.105) (0.083) (0.118) (0.093) (0.065) (0.129) (0.070) 

display 0.3240*** 0.4176*** 0.4015*** 0.5572*** 0.5849*** 0.4227*** 0.6563*** 0.3848*** 
(0.084) (0.090) (0.077) (0.089) (0.083) (0.059) (0.111) (0.065) 

heat_x_savings       0.0073***        
(0.002)  

elder_x_price                 

elder_x_subsidy                 

elder_x_savings 0.1399***   -0.1081**     
(0.042)   (0.043)     

elder_x_recom_provider   0.4253*   0.4346**     
(0.235)   (0.197)   

elder_x_recom_expert 0.3492  0.4547* 0.6734***  0.4594**  0.2490 
(0.230)  (0.250) (0.237)  (0.213)  (0.157) 

elder_x_remote    -0.6169***        
(0.207)     

elder_x_display                 

lowinc_x_price  -0.0046**        
(0.002)       

lowinc_x_subsidy       -0.0079*        
(0.004)  

lowinc_x_savings    -0.0969*** -0.0504*       
(0.036) (0.026)    

lowinc_x_recom_provider                 

lowinc_x_recom_expert    -0.2432 -0.3658**       
(0.203) (0.165)    

lowinc_x_remote                 

lowinc_x_display         
Standard deviation         
price 0.0056*** 0.0074*** 0.0056*** 0.0048** 0.0070*** 0.0043*** 0.0041 0.0060*** 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) 
subsidy 0.0043 0.0137*** 0.0114*** 0.0128*** 0.0106*** 0.0155*** 0.0168*** 0.0109*** 

(0.008) (0.004) (0.003) (0.004) (0.004) (0.002) (0.004) (0.003) 
savings 0.1914*** 0.2638*** 0.1451*** 0.2434*** 0.1747*** 0.1818*** 0.2339*** 0.1528*** 

(0.025) (0.032) (0.021) (0.026) (0.021) (0.016) (0.030) (0.018) 
recom_provider 0.0546 0.0271 0.0101 0.0408 0.2815 0.0081 0.1693 0.0144 

(0.332) (0.354) (0.315) (0.287) (0.320) (0.161) (0.413) (0.151) 
recom_expert 0.5527*** 0.5099* 0.2143 0.6165*** 0.6169*** 0.4732*** 0.3422 0.2461 

(0.197) (0.276) (0.369) (0.219) (0.178) (0.160) (0.360) (0.314) 
remote -0.0062 0.5656*** 0.2234 0.8145*** 0.5119*** 0.0601 0.9750*** 0.0970 

(0.237) (0.177) (0.260) (0.146) (0.146) (0.265) (0.168) (0.425) 
display 0.0053 0.0229 0.0008 0.0950 0.4414** 0.0163 0.6242*** 0.0055 

(0.200) (0.440) (0.153) (0.219) (0.177) (0.171) (0.186) (0.145) 
Number of participants 500 573 429 474 468 763 575 632 
Number of observations 3042 3760 3454 4050 4588 6430 3654 4420 

Standard errors in parentheses. 
* p < 0.10, ** p < 0.05, *** p < 0.01. 

8 Considering only one fuel type is a simplifying assumption and may not 
adequately reflect the actual conditions, especially not in Poland and Sweden. 
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thermostats in these shops9, they select the options for which they then 
determine and compare the level of their utility. Purchase probabilities 
are calculated from: 

Pni(βn) =
exp(βnXnit)

∑J
j=1exp

(
βnXnjt

), n = 1, ...,N, j = 1, 2 (3)  

where N stands for the number of participants, and J for the number of 
alternatives. βnXnit is the expected utility for alternative i for agent n. The 
coefficients βn are directly taken from the DCE (as indicated in yellow in 
Fig. 1). One time step in the simulation represents one year where all 
households have followed this decision logic. 

In each simulation run, the coefficients of individual agents are 
varied according to the standard deviations of the estimated parameter 
means obtained from the MXL (see Table 2).10 This allows us to analyse 
the emergent differences in adoption patterns that are due to general 
preference heterogeneity. 

2.2.3. Technology Data 
The smart thermostats in the simulations vary by attributes such as 

price and features. We collected information on attributes from 39 smart 
thermostats available on the market at the time of collection and these 
were consistently applied to all eight countries. These thermostats pro-
vide a range of attribute levels which covers the variety of products 
offered in the countries included in this study. At the same time, it may 
cover more options than consumers would typically see in local stores.11 

Table B.1 in Appendix B lists the smart thermostats used in the model. To 
balance the simulations, we added 39 regular thermostats.12 Regular 
thermostats are assumed to have no effect on energy consumption and to 
be available without additional cost to the household. This set-up forms 
the fall-back option, which is interpreted as households not switching to 
a smart thermostat, or simply choosing the default option that comes 
with the heating system or home and is assumed to be included in the 
price for the heating system or home. We may therefore use the same 
decision logic to simulate whether a smart thermostat is purchased and 
the type of smart thermostat chosen. 

2.2.4. Design of policy scenarios 
For each country included in the survey, we conduct separate sim-

ulations for two types of policies which may promote the diffusion of 
smart thermostats: subsidies and recommendations. Both types of pol-
icies were included in the DCE. We distinguish several policy scenarios. 

First, in the subsidy scenario, we consider a subsidy of either 30 or 60 
euros per smart thermostat. For most thermostats in our analysis, this 
means a considerable reduction in net price.13 We further distinguish 
whether all households are eligible to receive a subsidy or whether only 
low-income households are eligible to receive a subsidy. Second, in the 
recommendation scenario, we study the effects of recommendations 
provided by energy experts or energy providers compared to recom-
mendations provided by friends in the agents’ social network. Thus, we 
run two recommendation scenarios, one for recommendations by energy 

experts (expert recommendation scenario) and one for recommendations 
by energy providers (provider recommendation scenario). Specifically, for 
both recommendation scenarios, we assume half the smart thermostats 
to be recommended by energy experts or energy providers. 

The levels chosen for the subsidies and the shares of energy experts 
and energy providers recommending a particular smart thermostat are 
in the range of those used in the DCE. While it may be difficult to realize 
the upper levels of the subsidies (i.e 60€) and a share of 50% of ther-
mostats receiving a recommendation in practice, the simulation results 
indicate the effects such ambitious policies may have on the diffusion of 
smart thermostats, and hence provide valuable insights for policy- 
making. 

We conduct 100 runs per policy setting to capture the differences 
between individual model runs. The main sources of differences are the 
following. First, parameter uncertainty, which is captured by the stan-
dard deviations of the estimated means of the parameters βn in equation 
(2) affects the utility weights and therefore utilities for the options and, 
consequently, purchase choices. Second, the actual sets of options that 
are considered by the agents differ between each decision round: the 
number of options considered are selected at random from the larger set 
of possible options (pre-selected relevant options in Fig. 1). Third, actual 
choices are random and depend on the relative utility of the considered 
options (see equation 4). Fourth, differences between the generated 
social networks affect the run because of the options that are considered 
by friends. 

3. Results 

We first present the results of the DCE and then the findings of the 
policy simulations with the ABM. 

3.1. Results of the DCE 

When estimating the parameters in equation (2), most of the inter-
action terms were found to be insignificant. We then re-estimated the 
models using only the interaction terms that had been significant at 
p<0.1 in the first estimation. Further, to limit the potential effects of 
hypothetical bias, we only used scenarios in which respondents indi-
cated that they were “somewhat likely” or “very likely” to purchase their 
preferred option. This criterion resulted in two to twelve observations 
per respondent. The exact number of respondents in the DCE on ther-
mostat purchase decisions in each country is shown in the last row of 
Table 2, which reports the results of the final models. 

Looking first at the bottom part of Table 2, we note that over half the 
standard deviations are statistically significant which corroborates our 
use of a MXL model.14 This also implies heterogeneity of parameter 
estimates across individuals, which we model as a key source of un-
certainty in the simulations with the ABM.15 Furthermore, it means that 
allowing preferences for attributes to vary by age and income only 
partially captures heterogeneity across individuals’ valuation of the 
attributes. 

We now briefly turn to the results for the estimated means of the 
parameters which are shown in the upper part of Table 2. These values 
are used to specify the utility function in the ABM. The coefficients 
associated with the main effects (i.e. price, subsidy, savings, recom_pro-
vider, recom_expert, remote, and display) capture the preferences of those 
participants where all interaction terms are set to zero, i.e. participants 
younger than 55 living in households with higher income levels than the 

9 See next section for details.  
10 We report these in the lower part of Table 2. For the simulation runs, we 

only varied the standard deviations if they were statistically significant at 
p<0.1.  
11 In contrast, developing country-specific option sets for appliances, would 

allow for local policy analyses.  
12 If the number of smart thermostats was higher than the number of regular 

thermostats, households would be more likely to choose a smart thermostat due 
to the higher probability of having more smart thermostats in the consideration 
set than regular thermostats.  
13 For cheap smart thermostats, these subsidy levels may imply negative net 

price. Based on additional simulations where we cap the net price at zero, we 
find that the results presented in section 3 are not sensitive to negative net 
prices. 

14 In addition, we conducted likelihood ratio tests on the joint significance of 
standard deviations. The null hypothesis that standard deviations of the pref-
erence parameters are jointly equal to zero can be rejected in all countries (p- 
values < 0.001).  
15 In the ABM simulations, we set standard deviations to 0 if the p-value was 

above 0.1. 
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lowest income category in each country. For these ’benchmark’ house-
holds, the coefficient associated with price is negative and statistically 
significant in all eight countries. Hence an increase in price (net of any 
subsidy) lowers the latent utility in equation (2) and also lowers the 
propensity to purchase a thermostat. The findings for subsidy and hence 
the effectiveness of a subsidy varies across countries. For half the 
countries in our sample, the coefficient is not statistically significant, 
implying that subsidies appear to have an effect on households’ utility 
only through the decrease in net price. For Germany, Spain and the UK, 
it is negative, and for Romania it is positive. Thus, similar to the findings 
by Train and Atherton (1995) or Li et al. (2016) in related contexts, in 
these countries, subsidies have an additional negative or positive 
non-monetary effect on household utility. The findings for savings imply 
that, on average, participants from all eight countries value heating cost 
savings. Preferences for heating cost savings are particularly strong in 
Germany and Poland. 

The coefficients associated with recom_provider and recom_expert are 
typically positive and statistically significant, suggesting that energy 
providers and independent energy experts are more reliable sources of 
advice than friends and colleagues (i.e. the baseline). To compare the 
effects of recommendations by energy providers versus energy experts, 
we carried out Wald tests. The results of these tests suggest that for 
Germany, Poland, and Sweden, the average participant preferred advice 
by experts rather than energy providers (at p<0.05). For the other 

countries in the study, the differences are not statistically significant. 
In all countries, the coefficients for remote and display are positive 

and statistically significant, implying that participants value these 
technology attributes. 

The interaction term between savings and households’ scaled heat-
ing costs, heat_x_savings, is significant only in Sweden. Thus, for Sweden, 
but not for the other countries in our survey, we find evidence that re-
spondents with higher heating costs value an additional 1% decrease in 
their heating costs more than households with lower heating costs. In 
addition, Table 2 suggests that preferences for smart thermostat attri-
butes generally vary by income or age compared to the benchmark 
group, but there is substantial heterogeneity across countries. 

3.2. ABM simulation results 

We first present country-specific inputs for the simulations taken 
from the general survey (section 3.2.1). In a second step, we show the 
findings of a base simulation, for which no policy is assumed to be in 
place (section 3.2.2). In the next steps, we present the findings for the 
two policy simulations, i.e. the subsidy (section 3.2.3) and recommen-
dations by independent energy experts and energy providers (compared 
to recommendations by friends only) (section 3.2.4). 

Table 3 
Variable means and standard deviations (in parentheses) used in the simulations.  

Variables France Germany Italy Poland Romania Spain Sweden UK 

Households 1765 1232 1045 2048 1184 1317 2035 1855 
Age (years) 42 

(13) 
43 
(13) 

43 
(12) 

42 
(13) 

39 
(12) 

42 
(12) 

42 
(14) 

43 
(13) 

Elderly (%) 22 23 18 22 14 18 25 26 
Low income (%)17 27 34 41 23 42 41 24 45 
Smart thermostats in 2018 (%) 11.9 5.4 13.6 6.3 31.2 17.8 3.4 13 
Heating costs (€/year) 1366 

(1301) 
745 
(1090) 

581 
(794) 

684 
(960) 

336 
(458) 

541 
(606) 

894 
(1083) 

841 
(982) 

Number of options considered 6.5 
(6.2) 

6.3 
(5.5) 

9.9 
(6.9) 

11.3 
(7.0) 

12.0 
(8.3) 

6.3 
(5.4) 

11.0 
(7.0) 

9.9& 
(7.0)  

17 Note that the category low income was based on the quotas used by the market research company in each country, which explains the different percentages across 
countries. The following cut-off values for monthly after-tax income were used in each country to determine the low income category: up to 1999€ in France, Italy, and 
Spain, 1499€ in Germany, 8860 PLN (2953€) in Poland, 1800 RON (600€) in Romania, 199999 kr (1999€) in Sweden, and £1579 (€1579) in the UK. 

Fig. 2. Adoption of smart thermostats for no-policy scenario. Runs start in 2018 and end in 2030 (indicated with ticks 1-12). The scenarios distinguish between 
heating cost savings of 5% (in red) and 10% (in blue). Variation within a year for different runs are displayed as a box plot, where the box captures 50% middle 
values, the whiskers the other 50%, apart from outliers. Median is portrayed as a line in the box. 
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Fig. 3. Adoption of smart thermostats in 2030 for subsidy scenario. Top: all households receive subsidy; bottom: only low-income households receive subsidy. 
Median adoption rates are shown as horizontal lines. Spread is indicated by width of the shaded areas. The red non-dashed line refers to 10% heating cost savings. 
The blue dashed line depicts heating cost savings of 5%. 

Fig. 4. Adoption of smart thermostats in 2030 for the provider recommendation scenario. Median adoption rates are indicated by horizontal lines. Spread is 
indicated by width of shaded areas. Red non-dashed line refers to no recommendation. Blue dashed line depicts 50% of smart devices are recommended by en-
ergy providers. 
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3.2.1. Country-specific information 
Table 3 presents information on the means and standard deviations 

of key household-level variables that are used in the simulation. This 
data is obtained from the general survey as described in section 2.1.1., 
and includes information on all survey participants, i.e. not only on 
those that were (randomly) chosen to participate in the thermostat DCE. 

For age, countries are rather similar in terms of means and standard 
deviations, but the share of elderly (i.e. at least 55 years of age) varies 
between 13% for Romania and 26% for the UK. Similarly, the share of 
low-income households, i.e. those eligible for a subsidy in the subsidy 
policy scenario, varies considerably across our country samples, ranging 
from 23% for Poland to 45% for the UK. 

The share of households that reported to have already adopted a 
smart thermostat in the year the survey was conducted (2018) varies 
substantially between countries, with low adoption rates of 3 to 7% in 
Germany, Poland and Sweden, medium adoption rates of 13 to 18% in 
France, Italy, Spain and the UK, and high adoption rates of 31% in 
Romania. These figures imply considerable heterogeneity in the starting 
position across countries, which will affect the path of smart thermostats 
adoption in the simulations.16 

The descriptive statistics on heating costs suggest that heating costs 
also vary substantially across and within countries, reflecting hetero-
geneity in benefits of smart thermostat adoption. Differences in heating 
costs between countries may be explained by differences in the general 
climate, in typical heating technologies and in prices of the respective 
energy carriers. Differences within countries reflect heterogeneity in 
building and heating infrastructure and heating behaviour. 

Finally, the number of options for devices that households typically 
consider also vary between countries - from around 6 for France, Ger-
many and Spain, to 10 to 12 for the other countries - and within coun-
tries. These figures suggest considerable heterogeneity in the number of 
thermostats that households consider when they replace a thermostat. 

3.2.2. No-policy scenario 
Results of simulating the diffusion of smart thermostats in the no- 

policy scenario appear in Fig. 2 for each country. We distinguish two 
cases. The top (bottom) row shows the results for the 5%-case (10%- 
case) where the adoption of a smart thermostat is assumed to lower 
heating costs by 5% (10%). The expected adoption rates are presented 
per country per simulated year between 2018 and 2030, labelled as ticks 
1-12. Because simulation runs with the same settings lead to varying 
adoption rates, we present the findings as box plots per simulated year: 
the median is shown as the horizontal bar in the box, the box contains 
50% of the adoption rates simulated for that country in that particular 
year, the whiskers represent all other values that are not considered to 
be outliers. 

The median and mean adoption rates differ across countries as well 
as their spread. In general, the expected rate of adoption of smart 
thermostats in 2030 is high. In comparison, the market of home energy 
management technologies in the EU is expected to grow annually at a 
rate of 10% (Guidehouse, 2020, p. 107). For the 5%-case (10%-case), 
this rate ranges from 55% (71%) in Sweden to 78% (86%) in Romania. 
In general, Romania and Poland exhibit the highest expected adoption 
rates in 2030, ahead of Germany, France, Sweden and Spain. The UK and 
Italy have the lowest expected adoption rates. These different rates 
reflect differences across countries (i) in preferences such as the valua-
tion of heating cost savings (e.g. as presented in section 3.1); (ii) in the 
initial conditions such as the share of smart thermostats owned in 2018 
leading to positive feedback effects through the social network (as 
presented in section 3.2.1); (iii) in the interaction of valuation and initial 
conditions such as differences in valuation by socio-economic groups; 
and (iv) in the number of options households consider when purchasing 
a thermostat. The adoption rates shown in Fig. 2 result from the com-
binations of these factors. 

To illustrate the relative importance of these effects, we conducted 
additional simulations. To explore the role of the initial conditions, we 
ran an additional no-policy scenario simulation where we set the share of 
households who had adopted a smart thermostat in 2018 at zero in all 
countries (see Fig. C.1 in Appendix C). Comparing Fig. C.1 with Fig. 2 
suggests that the high adoption rates in 2030 in Romania are mainly 
driven by the high initial adoption rates in 2018 and hence positive 
network effects. In contrast, the high adoption rate in Poland in 2030 
can be explained by strong preferences for smart thermostat attributes 
such as net price, heating cost savings and remote control and display 
features (see Table 2). To explore this, we ran an additional simulation 
where we set all coefficients of the utility function for Poland to the 
averages of the other seven countries and compared the outcome (see 

Fig. 5. Adoption of smart thermostats in 2030 for the expert recommendation scenario. Median adoption rates are indicated by horizontal lines Spread is indicated 
by width of shaded areas. Red non-dashed line refers to no recommendation. Blue dashed line depicts 50% of smart devices are recommended by providers. 

16 For some countries - notably Romania - the self-reported adoption of smart 
thermostats appears high. Because of lack of publicly available data - infor-
mation on smart thermostats is typically subsumed under home energy man-
agement system (HEMS) technologies (e.g. Guidehouse, 2020) – we cannot 
compare the numbers based on self-reports with those from actual adoption. 
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Fig. C.2 in Appendix C) with Fig. 2. Finally, the relatively low adoption 
rates of Italy and the UK may be explained by relatively weaker pref-
erences for heating cost savings in these countries. Indeed, when we 
replace the coefficient associated with heating cost savings in Italy and 
the UK by the average value of these coefficients in the other six coun-
tries, adoption rates of smart thermostats in 2030 in Italy and the UK are 
similar to those of the other countries (see Fig. C.3 in Appendix C for the 
5%-case). 

From the differences across and within countries in Fig. 2 we observe 
that expected heating cost savings are an important driver of adoption. 
Mean adoption rates in 2030 are 10-20 percentage points higher in the 
10%-case than in the 5%-case. This finding can be explained by the DCE 
results presented in Section 3.1. Accordingly, the coefficients associated 
with savings in Table 2 are statistically significant and large for all 
countries, suggesting that households care about heating cost savings. 

For Romania, the difference in the median values between the 5%- 
and 10%-cases is relatively small because heating cost levels are rela-
tively small (see Table 3), and the adoption rate is generally high. Hence 
a difference of 5 percentage points in heating cost savings does not 
translate into substantial monetary amounts. In comparison, the differ-
ence in adoption rates between the 5% case and the 10% case is 
particularly large in Germany, Poland, and Sweden where average 
heating costs and participants’ valuation of heating cost savings are both 
high (see Table 2 and Table 3). 

Finally, we note that – even without a subsidy or recommendations 
provided by energy experts or energy providers – the rates of smart 
thermostats adoption are quite high in 2030 in most of the countries in 
our sample. In addition to participants’ high valuation of heating cost 
savings, these large rates are driven by assumptions made in the ABM 
about the average lifetime of thermostats (10 years) and the composition 
of consumers’ consideration set when they purchase a new thermostat. 
These assumptions imply for instance that smart thermostats (and rec-
ommendations) are visible in the shops. 

3.2.3. Subsidy policy scenario 
Fig. 3 shows the adoption rates (median values and spread) in 2030 

for each country when subsidies are implemented, and how these rates 
vary by subsidy eligibility and heating cost savings. The effects of sub-
sidies are shown within each column for subsidy levels of 0, 30 and 60 
euros per smart thermostat. In the rows, the target group for the subsidy 
is varied. The top part (bottom part) shows the results of the simulations 
when all households (only low-income households) are eligible to 
receive a subsidy. The effects of the subsidy depend on participants’ 
valuation of the net price, and on potential negative or positive non- 
monetary effects associated with receiving a subsidy (see Table 2). 

We first discuss the findings for the scenario where all households are 
eligible to receive a subsidy. Because in most countries adoption is 
already high without a subsidy, the impact of a subsidy is rather modest 
and the share of free riders is substantial. We find that subsidies offered 
to all households have the largest impact in France, Italy, Poland, 
Romania, and Sweden, where they increase adoption rates by 1-3% 
points per 30 euro increase in the subsidy in 2030. As can be seen in 
Table 2, for these countries the effect of a subsidy on the net price is not 
weakened by a countervailing non-monetary effect. In comparison, the 
effect of a subsidy is rather modest in Germany, Spain, and the UK. For 
these countries, the effect of a subsidy on the net price is offset by a 
negative non-monetary effect (see coefficient on subsidy in Table 2). 
Possibly, households in these countries perceive a subsidy as a signal for 
low quality of those devices (similar to Li et al. (2016)). 

We note that in general, the effect of a subsidy on adoption is 
stronger when smart thermostats lower heating costs by 5% rather than 

10%. Larger cost savings imply larger adoption rates in the no-policy 
scenario, and hence more free riding. 

As illustrated in the lower part of Table 3, the impact of subsidies that 
are only offered to low-income households on the adoption of smart 
thermostats is modest in all countries. Because fewer households are 
eligible for the subsidy (between 24% and 45% of the households, see 
Table 3) subsidies targeted at low-income households are less effective. 
In addition, for Sweden, low-income households exhibit a larger nega-
tive non-monetary effect for subsidies than high-income households (see 
coefficient on lowinc_x_subsidy in Table 2). On the other hand, subsidies 
targeted at low-income households may be more efficient in terms of 
energy savings obtained per euro of subsidy spent because free riding is 
lower. 

3.2.4. Recommendation policy scenarios 
The effects of recommendations by energy providers and indepen-

dent energy experts (compared to recommendations by friends or col-
leagues) on smart thermostat adoption rates are shown in Fig. 4 and 
Fig. 5. 

For the provider recommendation scenario, we observe an increase in 
adoption rates of 3-5% points compared to the no-policy scenario for most 
countries. For some countries (e.g. France, Germany, and Spain), these 
effects are somewhat larger in the 5%-case than in the 10%-case because 
participants in these countries value energy costs savings relatively 
highly which translates into larger adoption rates in the no-policy sce-
nario. In comparison, provider recommendations have no effects in 
Poland and Sweden because our DCE analysis did not find recommen-
dations by energy providers to differ from recommendations by friends 
or colleagues in these countries (see Table 2). 

For the expert recommendation scenario, Fig. 5 shows an increase in 
adoption rates compared to the no-policy scenario for all countries. As 
expected from the results of the DCE, compared to the provider recom-
mendation scenario, the size effects are large for Germany, Poland, and 
Sweden, and similar for the other countries. Likewise, the impact of 
expert recommendations appears somewhat larger in the 5%-case than 
in the 10%-case. 

4. Conclusions 

In this paper, we link findings from a multi-country demographically 
representative DCE on the adoption of smart thermostats with an ABM 
(EMLab-Consumer) in a methodologically consistent way. Therefore, we 
did not have to use additional (ad-hoc) assumptions to parameterize 
agents’ utility functions, i.e. the weights associated with particular 
technology attributes or policy variables, which ultimately govern 
technology choice and the diffusion of a technology. The empirical 
foundation of our ABM is further strengthened by integrating additional 
information (e.g. on the technology stock, heating costs, socio- 
demographics, and decision process). Most notably, our findings for 
the DCEs highlight the importance of allowing for heterogeneity in 
preferences within and across countries when parameterizing ABM 
models. Allowing preference parameters to vary by socio-demographic 
factors such as age and income partially captures this heterogeneity. 
These findings challenge the practice of transferring survey-based 
findings obtained for one country to parameterize a model for another 
country. 

A simulation of the diffusion of smart thermostats in eight European 
countries until 2030 with the EMLab-Consumer model suggests that 
smart thermostats will quickly diffuse in most countries in our sample. 
The simulations further illustrate the importance of allowing for within- 
and between-country heterogeneity in preferences for technology 
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attributes such as the valuation of heating cost savings, and in responses 
to policies such as subsidies, or recommendations by independent en-
ergy experts. Further, social interactions reinforce differences between 
countries in the technology stock in the starting year, in particular for a 
new technology like a smart thermostat. While we find that subsidies 
moderately accelerate the diffusion of smart thermostats, they are less 
effective in countries with a large stock of smart thermostats in the 
starting year, and when smart thermostats lead to a strong reduction in 
heating costs (in our case of 10% versus 5%). In these cases, adoption of 
smart thermostats is high even without a subsidy mainly because of 
positive social interaction effects and because households strongly value 
heating costs savings. These results also point to the importance of 
technological progress that may lead to substantial savings in heating 
costs. Our simulations further suggest that targeting subsidies at 
particular socio-economic groups (in our case low-income households) 
may slightly mitigate such free-riding effects. Finally, our policy simu-
lations further imply that recommendations by energy providers or by 
energy experts accelerate the diffusion of smart thermostats compared 
to recommendations by peers. 

In this study, we explore a hard link between a DCE and an ABM for a 
particular technology, a given set of technology attributes and policies 
and thereby allowing agents’ valuation of attributes and policies to vary 
by age and income. A similar methodology could be applied to model the 
diffusion patterns of other novel household energy technologies or ser-
vices. Similarly, in our context, additional or other attributes relevant 
for household adoption of smart thermostats could be included such as 
environmental benefits (e.g. lower CO2-emissions), brand, or customer 
ratings of smart thermostats. Likewise, preferences could be varied by 
other socio-demographic factors such as gender or education and by 
regional differences within countries. Furthermore, DCEs may also be 
employed to examine barriers to energy efficiency. For example, the 
well-known landlord-tenant problem could be captured by splitting the 
samples between dwelling owners and renters, or by interacting an 
ownership dummy with the attributes in the econometric estimations of 
the DCE. In principle, DCEs could also be employed to analyse house-
hold preferences for owning or renting energy technologies such as 
heating systems or large household appliances (see Schleich et al., 
2021). Finally, DCEs would allow estimating the role of behavioural 
factors like individual time or risk preferences for household adoption of 
technologies which may then be integrated into ABMS. 

While hard-linking DCEs with an ABM to study the diffusion of smart 
thermostats in a multi-country setting allowed for interesting insights, 
the approach is subject to limitations. One important caveat is the hy-
pothetical bias inherent in DCEs (e.g. Hensher, 2010). To mitigate the 
hypothetical bias in this study, we only used those choices in our ana-
lyses where participants indicated in a follow-up question that they 
would likely make the same choice in a real purchase situation. Further, 
it is only possible to establish a hard link for the product or service at-
tributes that can be studied well via DCEs. For example, in our context, it 
would be challenging to directly capture in a DCE the role of data pri-
vacy concerns, perceived loss of comfort, transaction costs, or lack of 
information related to the adoption of a smart thermostat. Similarly, it 
would be difficult to capture the (perceived) quality of recommenda-
tions via a DCE. To avoid cognitive overload and to limit task 
complexity, only a limited number of attributes can be included in a 
DCE. Therefore, researchers may inadvertently neglect relevant attri-
butes in DCE designs. 

Next, and akin to other studies integrating survey-based data into 

models, our simulations until 2030 implicitly assume that agents’ 
preferences do not change over this period. We also assume that pref-
erences of laggards and early adopters of smart thermostats are 
identical. 

Moreover, our simulation results depend on self-reported data such 
as whether households had a smart thermostat installed in 2018. Hence, 
our data may suffer from social desirability bias. Likewise, households 
may not have been able to correctly identify whether their thermostat 
was indeed a smart thermostat. If actual rates of adoption of smart 
thermostats in the initial year were lower than assumed, our simulations 
would have overstated the diffusion of smart thermostats for countries 
with strong network effects. 

Further, our approach did not model the relation between con-
sumers, retailers and technology providers. For example, retailers could 
employ adaptive marketing strategies and respond to low sales volumes 
with additional promotion measures. Similarly, we did not include a 
government agent, who could endogenously adapt policy. For example, 
a cost-minimizing government could lower the subsidy rate over time to 
limit free riding. 

Despite these limitations, we believe our modelling approach and 
policy simulations help to better understand the effects of different 
mechanisms and preference heterogeneity on the diffusion of a novel 
energy technology like smart thermostats. 
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Appendix A 

Instructions of the discrete choice experiment 
The instructions used in the DCE are presented below. Fig. A.1 shows 

a choice card as used in the DCE and Fig. A.2 shows the framing used in 
the DCE. 
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Fig. A.1. Example of a choice card shown to respondents in the DCE in the UK.  

Fig. A.2. Framing used to introduce the DCE in the UK.  
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Appendix B 

Smart thermostat data 
Table B.1 shows the smart thermostats used in the ABM. 

Table B.1 
Data on smart thermostats.  

ID Name Price (in euros) Remote temperature control Display of changes in energy consumption 

1 futurepowerp1monitor 100 No No 
2 smartmeterdashboard 19 No No 
3 energiemanageronline 31.4 Yes Yes 
4 cemmbasic 179.3 No No 
5 iungo 189 No No 
6 energylinkhomewizard 279 No No 
7 Smappeegas & water 450 No No 
8 youlessenergymonitor 79 No No 
9 MEMo2wire 623 Yes No 
10 huisbaasje 133 No No 
11 mijnwoning.nl 0 No No 
12 smartdodosslimmemeteruitlezer 0 No No 
13 toon 383 Yes Yes 
14 spiderconnect 299 Yes Yes 
15 slimmemeterwifiadapter 86.75 Yes No 
16 milo2wire 175.45 Yes Yes 
17 bokslive 110 No No 
18 oxxioapp 0 No No 
19 slimmemeterportal.nl 0 No No 
20 beeclear 99 No No 
21 enelogicpremium 117 No No 
22 maxem 634 No No 
23 aurumenergieapp 99.95 No No 
24 smappeenergy 229 No No 
25 enelogicbasis 0 No No 
26 smappeesolar 349 No No 
27 essentthuisapp 49 Yes Yes 
28 enelogicpremium 38 No No 
29 engieeapp 0 Yes No 
30 umeter 0 No No 
31 optosense 193.9 No No 
32 slimmemeteruitlezen.nl 40 No No 
33 trioIIenergiedisplay 99.95 No No 
34 smappeeplus 599 No No 
35 powersense 193.9 No No 
36 iunoglite 109 No No 
37 mijnenergieinzicht 0 No No 
38 mijnhuisonline 336 Yes No 
39 plugwisesmilep1 99 No No 

Source: Adapted from https://www.energieverbruiksmanagers.nl. 

E.J.L. Chappin et al.                                                                                                                                                                                                                            

https://www.energieverbruiksmanagers.nl


Technological Forecasting & Social Change 180 (2022) 121682

15

Appendix C 

Additional simulation results 
Figs C.1 to C.3 provide additional simulation results checking the 

validity of some of the key results. Fig. C.1 shows the adoption of smart 
thermostats for the no-policy scenario assuming adoption rate of zero in 

2018 in all countries. Figs C.2 and C.3 show additional results for spe-
cific countries using modified utility coefficients for the 5% heating cost 
savings case. In Fig. C.2, the utility of price, heating cost savings and of 
remote and display functions were replaced by the respective averages 
of the other seven countries for Poland. In Fig. C.3, the utility of heating 
cost savings was replaced by the average of the other six countries for 

Fig. C.1. Adoption of smart thermostats for no-policy scenario assuming adoption rate of zero in 2018 in all countries.  

Fig. C.2. Adoption of smart thermostats in Poland for original (green) and alternative (red) specification of the utility function.  
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the UK and Italy. 

Appendix D 

ODD+D Protocol for EMLab-Consumer (smart thermostat version) 
Following Müller et al (2013), Table D.1 presents the ODD+D 

(overview, design concepts and details including human decision mak-
ing) protocol - an established standard for describing ABMs that include 
human decision-making protocol for the model EMLab-Consumer (spe-
cific to smart thermostats simulations). 

Fig. C.3. Adoption of smart thermostats in Italy and the UK for original (green) and alternative (red) specification of the utility function.  
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Table D.1 
ODD+D for the model EMLab-Consumer, specific to smart thermostat simulations.   

Outline Guiding questions EMLab-Consumer 

Overview I.i Purpose I.i.a What is the purpose 
of the study? 

We simulate the diffusion 
of smart thermostats in 
eight European countries 
until 2030 (i.e. 
description); we directly 
integrate findings from 
demographically 
representative surveys 
using DCEs in the same 
countries. We simulate 
the effects of subsidies 
and recommendations by 
energy providers and 
experts compared to 
recommendations 
received from peers. 
The model EMLab- 
consumer has been 
developed to also 
simulate other devices 
(fridges, heating systems, 
etc.); some of the 
implemented 
functionality does not 
apply to thermostats. 
Such additional 
functionality includes: 
house-/household- 
specific restrictions for 
devices, electricity 
consumption of devices, 
manufacturer 
improvement of the 
energy efficiency of 
devices, shops 
introducing new 
appliance models and 
taking old models from 
their stocks, various 
policy variables such as 
energy labels. Features 
that do not apply are not 
included in the 
description below.   

I.ii.b For whom is the 
model designed? 

Researchers and energy 
policy analysts/policy- 
makers.  

I.ii Entities, state 
variables, and scales 

I.ii.a What kinds of 
entities are in the model? 

Households including 
their homes with 
appliances, the 
government as a policy- 
maker, shops that sell 
appliances, 
manufacturers that 
develop appliances 

I.ii.b By what attributes 
(i.e. state variables and 
parameters) are these 
entities characterized? 

Households: age (years), 
income, current 
thermostat, yearly 
heating costs (€/year), 
number of options 
considered while 
replacing, utility 
function. 
Thermostats: price, 
whether they are smart or 
not (represented as label 
A vs B), whether they can 
be remotely controlled, 
whether they have a 
display. 
Shop: stock of appliances. 

I.ii.c What are the 
exogenous factors / 
drivers of the model? 

Gas prices, policy 
variables, percentage of 
heating costs saved by 

(continued on next page) 
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Table D.1 (continued )  

Outline Guiding questions EMLab-Consumer 

adopting a smart 
thermostat. 

I.ii.d If applicable, how is 
space included in the 
model? 

Agents are scattered 
around at the start of the 
simulation in a 2D street- 
like orientation so they 
have neighbors that they 
can observe. 

I.ii.e What are the 
temporal and spatial 
resolutions and extents of 
the model? 

1 time step represents 1 
year. The simulation runs 
for ticks 0-12, 
representing the years 
2018-2030. One grid cell 
can host one house.  

I.iii Process overview and 
scheduling 

I.iii.a What entity does 
what, and in what order? 

Policy specific 
interventions. 
Shops update their stock. 
Appliances break at the 
end of their lifetime. 
Households decide 
whether they want to 
replace still working 
appliances. 
Households replace 
broken appliances and 
appliances selected in 4. 
Households consume 
energy by using the 
appliances. 
Households pay for the 
energy they consume 
Decommissioned 
appliances are removed 
from the simulation 
The screen is updated. 
Proceed to the next tick; 
stop the simulation after 
tick 12. 

Design Concepts II.i Theoretical and 
Empirical Background 

II.i.a Which general 
concepts, theories or 
hypotheses are 
underlying the model’s 
design at the system level 
or at the level(s) of the 
submodel(s) (apart from 
the decision model)? 
What is the link to 
complexity and the 
purpose of the model? 

Theory of Planned 
Behavior (Ajzen, 1985).  

II.i.b On what 
assumptions is/are the 
agents’ decision model(s) 
based? 

Utility theory for the 
replacement decision. 
The key purpose of this 
model is to integrate both 
representative survey 
results of households as 
well as mixed logit 
models that model the 
household’s replacement 
of appliances. 

II.i.c Why is a/are certain 
decision model(s) 
chosen? 

Because of the model 
purpose: to hard-link 
results from a survey and 
discrete choice 
experiment. 

II.i.d If the model / a 
submodel (e.g. the 
decision model) is based 
on empirical data, where 
does the data come from? 

Representative survey in 
8 countries, and the 
results from a discrete 
choice experiment on 
thermostat purchase. 

II.i.e At which level of 
aggregation were the 
data available? 

The survey data is at the 
household level. The 
results from the discrete 
choice experiment is at 
the population level, but 
includes heterogeneity 
with respect to 

(continued on next page) 
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Table D.1 (continued )  

Outline Guiding questions EMLab-Consumer 

demographic properties 
(age, income) and 
includes standard 
deviations that enable 
varying data between 
households of the same 
group.   

II.ii Individual Decision 
Making 

II.ii.a What are the 
subjects and objects of 
decision-making? On 
which level of 
aggregation is decision- 
making modeled? Are 
multiple levels of 
decision making 
included? 

Individual households 
decide on replacement of 
individual appliances in 
their homes. 

II.ii.b What is the basic 
rationality behind agents’ 
decision-making in the 
model? Do agents pursue 
an explicit objective or 
have other success 
criteria? 

Rational choice (utility 
maximization). 

II.ii.c How do agents 
make their decisions? 

Primarily on the basis of a 
utility function.   

II.ii.d Do the agents adapt 
their behavior to 
changing endogenous 
and exogenous state 
variables? And if yes, 
how? 

No. 

II.ii.e Do social norms or 
cultural values play a role 
in the decision-making 
process? 

No. 

II.ii.f Do spatial aspects 
play a role in the decision 
process? 

Agents consider 
appliances that they 
observe from friends (in 
their social network 
which is generated at the 
start of the simulation, 
and includes households 
that are nearby in space). 

II.ii.g Do temporal 
aspects play a role in the 
decision process? 

Appliances have a 
lifetime, so the trigger for 
replacement is mainly 
coming from appliances 
that break down. 

II.ii.h To which extent 
and how is uncertainty 
included in the agents’ 
decision rules? 

Standard deviations for 
the utility functions 
represent uncertainty in 
the agent behavior: 
agents from the same 
group all have slightly 
different utility functions. 
Utility coefficients differ 
only for standard 
deviations that were 
statistically significantly 
different from 0. 
Furthermore, the utility 
function provides the 
relative probabilities for 
purchasing new 
appliances: an appliance 
with a higher utility has a 
higher chance of being 
adopted than one with a 
lower utility (see 
equations later in this 
document).  

II.iii Learning II.iii.a Is individual 
learning included in the 
decision process? How do 
individuals change their 
decision rules over time 

No. 

(continued on next page) 
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Table D.1 (continued )  

Outline Guiding questions EMLab-Consumer 

as consequence of their 
experience? 
II.iii.b Is collective 
learning implemented in 
the model? 

No.  

II.iv Individual Sensing II.iv.a What endogenous 
and exogenous state 
variables are individuals 
assumed to sense and 
consider in their 
decisions? Is the sensing 
process erroneous? 

Exogenous: households 
know all exogenous 
variables, they know 
energy prices, they know 
whether subsidies are 
relevant, who 
recommends an 
appliance, whether an 
appliance fits the home. 
Endogenous: households 
sense what appliances are 
in store, whether 
appliances are broken. 
No erroneous processes.   

II.iv.b What state 
variables of which other 
individuals can an 
individual perceive? Is 
the sensing process 
erroneous? 

Agents observe 
appliances of others, so 
their decisions co-evolve. 
No erroneous processes. 

II.iv.c What is the spatial 
scale of sensing? 

Local and social network. 
Shops in the vicinity. 

II.iv.d Are the 
mechanisms by which 
agents obtain 
information modeled 
explicitly, or are 
individuals simply 
assumed to know these 
variables? 

Modelled explicitly in the 
set of options agents 
consider in their 
replacement logic. 

II.iv.e Are costs for 
cognition and costs for 
gathering information 
included in the model? 

Only implicitly through 
recommendations by 
energy experts and 
providers (the value of 
lowering high-quality 
information).  

II.v Individual Prediction  II.v.a Which data uses the 
agent to predict future 
conditions? 

Assuming constant 
energy prices and 
appliance prices. 

II.v.b What internal 
models are agents 
assumed to use to 
estimate future 
conditions or 
consequences of their 
decisions? 

None. 

II.v.c Might agents be 
erroneous in the 
prediction process, and 
how is it implemented? 

Their energy costs may be 
erroneous, as the model 
assumes constant energy 
prices. They also do not 
anticipate replacement of 
other appliance types, 
which affects the myopic 
foresight in simulations 
where multiple appliance 
types are included.  

II.vi Interaction II.vi.a Are interactions 
among agents and 
entities assumed as direct 
or indirect? 

Direct interactions 
amongst household 
agents and between 
households and shops, 
indirect interactions with 
manufacturers and 
governments. 

II.vi.b On what do the 
interactions depend? 

Spatial distance and 
network. 

II.vi.c If the interactions 
involve communication, 
how are such 
communications 
represented? 

Interactions between 
households are not using 
communication; only 
based on observations. 

(continued on next page) 
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Table D.1 (continued )  

Outline Guiding questions EMLab-Consumer 

II.vi.d If a coordination 
network exists, how does 
it affect the agent 
behaviour? Is the 
structure of the network 
imposed or emergent? 

The social network is 
scale free, generated at 
the start of the simulation 
and static during the 
simulation.  

II.vii Collectives II.vii.a Do the individuals 
form or belong to 
aggregations that affect, 
and are affected by, the 
individuals? Are these 
aggregations imposed by 
the modeller or do they 
emerge during the 
simulation? 

No. (There are utility 
terms that are specific for 
socio-demographic 
groups).  

II.vii.b How are 
collectives represented? 

N/A.  

II.viii Heterogeneity II.viii.a Are the agents 
heterogeneous? If yes, 
which state variables 
and/or processes differ 
between the agents? 

Yes, in their demographic 
properties according to 
the survey, the properties 
of their homes and 
appliance and in their 
utility functions. 

II.viii.b Are the agents 
heterogeneous in their 
decision-making? If yes, 
which decision models or 
decision objects differ 
between the agents? 

The utility function takes 
into account 
heterogeneity between 
various socio-economic 
groups and standard 
deviations within the 
group. (The utility 
coefficients in the utility 
function differ for 
variables for which 
statistically significant 
standard deviations were 
found from the discrete 
choice experiment.)  

II.ix Stochasticity  II.ix.a What processes 
(including initialization) 
are modeled by assuming 
they are random or partly 
random? 

Some of the missing data, 
interpolation of data that 
is incomplete (specific 
number from a range 
which was part of a 
survey question). The 
current age of the 
appliances is random 
between 0 and the 
lifetime, the order in 
which agents decide on 
replacement, the 
generated social network, 
the utility weighted 
probability in the 
replacement decision (see 
below).  

II.x Observation II.x.a What data are 
collected from the ABM 
for testing, 
understanding, and 
analyzing it, and how and 
when are they collected? 

Through NetLogo’s 
textual reporting 
function, all functions 
were tested during the 
development. The 
initialization code 
contains error 
notifications when input 
data is incomplete or 
erroneous. All settings, 
and data are stored in 
separate text files and 
there is a default settings 
file. 
All key model outputs are 
collected in runs in 
NetLogo behavior space 
experiment, and 
processed with R to 
visualize main results, 
including spread and 
aggregate statistics. 

(continued on next page) 
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Table D.1 (continued )  

Outline Guiding questions EMLab-Consumer   

II.x.b What key results, 
outputs or characteristics 
of the model are 
emerging from the 
individuals? (Emergence) 

Diffusion patterns, 
specific to countries, 
socio-economic groups, 
policy settings, including 
spread between results. 

Details II.i Implementation 
Details 

III.i.a How has the model 
been implemented? 

Netlogo. 

III.i.b Is the model 
accessible and if so 
where? 

The model is published 
open source. It is 
available through http 
://emlab.tudelft.nl. 

III.ii Initialization III.ii.a What is the initial 
state of the model world, 
i.e. at time t=0 of a 
simulation run? 

Each household in a 
country in the survey is 
represented as one agent. 

III.ii.b Is initialization 
always the same, or is it 
allowed to vary among 
simulations? 

The simulation runs one 
country at a time; policy 
variables affect the 
simulation runs. 

III.ii.c Are the initial 
values chosen arbitrarily 
or based on data? 

Based on data.  

III.iii Input Data III.iii.a Does the model 
use input from external 
sources such as data files 
or other models to 
represent processes that 
change over time? 

Based on survey results 
from the EU H2020 
CHEETAH project survey 
(https://www.briskee-ch 
eetah.eu/cheetah/) and 
Eurostat energy price 
data. 

III.iv Submodels III.iv.a What, in detail, 
are the submodels that 
represent the processes 
listed in ‘Process 
overview and 
scheduling’? 

Government applies 
policy-specific 
interventions. For 
subsidies: government 
alters the prices 
according to the subsidy 
level that consumers pay 
for eligible devices. This 
can be target-group 
specific (only elderly or 
only low-income 
households). For 
recommendations, each 
device eligible for 
recommendations may be 
flagged as recommended. 
For restrictions, some 
devices may be taken out 
of stores (not applicable 
to thermostats). 
Shops update their stock 
(new or improved 
appliances are included, 
but this is not applicable 
to thermostats, which are 
assumed to be available 
throughout the 
simulation). 
Appliances break at the 
end of their lifetime 
(which is determined 
when appliances are 
created. The actual 
lifetime is based on the 
expected lifetime and a 
standard deviation. 
Thermostat lifetimes are 
assumed to be 10 years; 
they vary with a standard 
deviation of 3 years. 
Households decide 
whether they want to 
replace still working 
appliances, this is done 
randomly for 1% of the 
households. 
Households replace the 
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Table D.1 (continued )  

Outline Guiding questions EMLab-Consumer 

appliances marked in 
step 4 and all broken 
appliances according to 
the scheme in the main 
article (Fig. 1). First, they 
visit a shop that matches 
their selection. They first 
select all relevant options 
from the shop, which 
becomes their longlist of 
options. They add 
thermostats of some of 
their neighbors and 
friends to this longlist. 
From this list, they draw, 
at random, a shortlist 
(sized as the typical 
number of options they 
consider) and this 
becomes the 
consideration set. For 
each of the thermostats in 
this consideration set, 
they apply their utility 
function to determine 
their utility. Utility 
functions stem from the 
mixed logit models. For 
smart thermostats in 
particular, (see Equation 
1 in the paper), this 
utility function includes 
parameters regarding the 
thermostat (price, 
display, remote access), 
households (especially 
elderly and/or low- 
income), and policy 
(subsidy level) and 
further assumptions 
(heating cost savings). 
Finally, households select 
one thermostat out of the 
set on the basis of a 
utility-weighted 
probability. Purchasing 
probabilities are 
calculated according to  
Equation 2 in the paper, 
where higher utility 
translates to a higher 
chance of purchase. Old 
appliances are marked 
decommissioned. 
Households consume 
energy by using the 
appliances. 
A smart thermostat is 
assumed to lead to 
particular heating 
savings because 
households are able to 
observe their heating 
consumption. 
Households pay for the 
energy they consume for 
their appliances (not 
directly applicable to 
smart thermostats, but 
for heating systems, 
fridges, and so on.). 
Decommissioned 
appliances are removed 
from the simulation for 
performance reasons. 
The screen is updated. 

(continued on next page) 
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Table D.1 (continued )  

Outline Guiding questions EMLab-Consumer 

Proceed to the next tick, 
until the simulation is 
stopped.   

III.iv.b What are the 
model parameters, their 
dimensions and reference 
values? 

For all main simulation 
parameters, data is 
coming from country- 
specific survey 
parameters. This process 
is explicitly coded, 
including the set of 
parameter names and 
imputation of missing 
data. 
Reference values for the 
parameters below are in 
parentheses. 
Other general model 
parameters are the 
number of shops that 
households visit (all) and 
parameters about how 
the social network is 
generated and how this 
affects the purchase 
decisions: minimum 
network size (3), number 
of appliances of friends 
(in the network) that 
households consider (5), 
number of appliances of 
neighbors that agents 
consider (5), the radius 
that households use to 
find neighbors (2) and, 
finally, the number of 
friends’ or neighbors’ 
appliances that 
households will add to 
their consideration set 
(3). 
For the simulation of 
thermostats in particular, 
policy variables (which 
are otherwise turned off 
by default): the level of a 
subsidy (reference € 0), 
which households are 
eligible for the subsidy 
(all households), the fact 
that only smart 
thermostats (label A) are 
eligible for subsidies, the 
percentage of heating 
costs reduction due to 
having a smart 
thermostat (reference 
value 10%), and whether 
smart thermostats can 
also by replaced by 
regular thermostats (off). 
Other model parameters 
are specific to other 
appliances (e.g. 
appliance improvements 
and price developments). 
A number of switches are 
included for testing 
functionality.   

III.iv.c How were 
submodels designed or 
chosen, and how were 
they parameterized and 
then tested? 

The model was developed 
in the context of the EU 
H2020 project CHEETAH 
(https://www.briskee-ch 
eetah.eu/cheetah/); 
parametrization was 
developed in 
communication with 
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Shafiei, E., Thorkelsson, H., Ásgeirsson, E.I., Davidsdottir, B., Raberto, M., Stefansson, H., 
2012. An agent-based modeling approach to predict the evolution of market share of 
electric vehicles: A case study from Iceland. Technological Forecasting and Social 
Change 79, 1638–1653. https://doi.org/10.1016/j.techfore.2012.05.011. 

Table D.1 (continued )  

Outline Guiding questions EMLab-Consumer 

various project partners, 
presenting preliminary 
model versions and 
results.  

E.J.L. Chappin et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0001
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0001
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0001
https://doi.org/10.1016/j.ecolecon.2004.12.032
https://doi.org/10.1016/j.techfore.2008.04.010
https://doi.org/10.1016/j.techfore.2008.04.010
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0004
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0004
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0004
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0005
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0005
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0005
https://doi.org/10.1016/j.eist.2012.11.005
https://doi.org/10.1016/j.eist.2012.11.005
https://doi.org/10.1016/j.techfore.2008.08.004
https://doi.org/10.5153/sro.3055
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0009
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0009
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0011
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0011
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0012
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0012
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0012
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0014
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0014
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0014
https://doi.org/10.1016/j.ecolecon.2020.106779
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0017
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0017
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0017
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0018
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0018
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0018
https://doi.org/10.1007/s11367-013-0643-8
https://doi.org/10.1111/jiec.12281
https://doi.org/10.18564/jasss.3121
https://doi.org/10.18564/jasss.3522
https://doi.org/10.1016/j.techfore.2015.06.006
https://doi.org/10.1007/s10100-011-0210-y
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0025
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0025
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0025
https://doi.org/10.1016/j.ecolecon.2009.06.027
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0027
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0027
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0028
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0028
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0028
https://doi.org/10.1016/j.techfore.2015.07.017
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0030
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0030
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0030
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0031
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0031
https://doi.org/10.1016/j.erss.2014.07.008
https://doi.org/10.1016/0047-2727(74)90003-6
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0034
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0034
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0034
https://doi.org/10.18564/jasss.3729
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0036
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0036
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0036
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0036
https://doi.org/10.1016/j.energy.2015.12.018
https://doi.org/10.1016/j.techfore.2015.06.011
https://doi.org/10.1016/j.ecolecon.2014.09.021
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0040
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0040
https://doi.org/10.1016/j.envsoft.2015.04.014
https://doi.org/10.1016/j.envsoft.2015.04.014
https://doi.org/10.1162/003465398557735
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0043
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0043
https://doi.org/10.1016/j.apenergy.2015.04.071
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0045
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0045
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0045
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0045
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0045
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0046
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0046
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0047
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0047
http://refhub.elsevier.com/S0040-1625(22)00187-1/sbref0047
https://doi.org/10.1016/j.enpol.2021.112523
https://doi.org/10.1016/j.enpol.2021.112523
https://doi.org/10.1016/j.techfore.2008.03.024
https://doi.org/10.1016/j.techfore.2012.05.011


Technological Forecasting & Social Change 180 (2022) 121682

26

Snape, J.R., Boait, P.J., Rylatt, R.M., 2015. Will domestic consumers take up the 
renewable heat incentive? An analysis of the barriers to heat pump adoption using 
agent-based modelling. Energy Policy 85, 32–38. https://doi.org/10.1016/j. 
enpol.2015.05.008. 
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