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Beyond linear elasticity: Jammed solids at finite shear strain and rate

Julia Boschan,⇤a Daniel Vågberg,a Ellák Somfai,b Brian P. Tighea

The shear response of soft solids can be modeled with linear elasticity, provided the forcing is slow and weak. Both of these
approximations must break down when the material loses rigidity, such as in foams and emulsions at their (un)jamming point
– suggesting that the window of linear elastic response near jamming is exceedingly narrow. Yet precisely when and how this
breakdown occurs remains unclear. To answer these questions, we perform computer simulations of stress relaxation and shear
start-up tests in athermal soft sphere packings, the canonical model for jamming. By systematically varying the strain amplitude,
strain rate, distance to jamming, and system size, we identify characteristic strain and time scales that quantify how and when
the window of linear elasticity closes, and relate these scales to changes in the microscopic contact network.

Linear elasticity predicts that when an isotropic solid is
sheared, the resulting stress � is directly proportional to the
strain � and independent of the strain rate �̇,

� = G0� , (1)

with a constant shear modulus G0. 1 The constitutive relation
(1) – a special case of Hooke’s law – is a simple, powerful,
and widely used model of mechanical response in solids. Yet
formally it applies only in the limit of vanishingly slow and
weak deformations. In practice materials possess characteris-
tic strain and time scales that define a linear elastic “window”,
i.e. a parameter range wherein Hooke’s law is accurate. De-
termining the size of this window is especially important in
soft solids, where viscous damping and nonlinearity play im-
portant roles.2 The goal of the present work is to determine
when Hooke’s law holds, and what eventually replaces it, in
soft sphere packings close to the (un)jamming transition.

Jammed sphere packings are a widely studied model of
emulsions and liquid foams3–6 and have close connections to
granular media and dense suspensions.7–9 Linear elastic prop-
erties of jammed solids, such as moduli and the vibrational
density of states, are by now well understood.10,11 Much less
is known about their viscoelastic7,12 and especially their non-
linear response.13,14 Yet the jamming transition must deter-
mine the linear elastic window, because the shear modulus G0

vanishes continuously at the jamming point, where the con-
fining pressure p goes to zero. Indeed, studies of oscillatory
rheology15 and shocks16–18 have shown that, precisely at the
jamming point, any deformation is effectively fast and strong,
and neither viscous effects nor nonlinearities can be neglected.

Because elasticity in foams, emulsions, and other amor-
phous materials results from repulsive contact forces, mi-

a Delft University of Technology, Process & Energy Laboratory, Leeghwater-
straat 39, 2628 CB Delft, The Netherlands; E-mail: j.boschan@tudelft.nl
b Institute for Solid State Physics and Optics, Wigner Research Center for
Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest,
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crostructural rearrangements of the contact network have sig-
natures in the mechanical response. Namely, they lead to
nonlinearity and irreversibility in the particle trajectories, and
eventually to steady plastic flow.19–24 Jammed packings of
perfectly rigid particles cannot deform without opening con-
tacts; their response is intrinsically nonlinear, and the number
of contact changes per unit strain diverges in the limit of large
system size.25,26 Recently Schreck and co-workers addressed
contact changes inside the jammed phase27–31; specifically,
they asked how many contact changes a jammed packing un-
dergoes before linear response breaks down. They found that
trajectories cease to be linear as soon as there is a single re-
arrangement (made or broken contact) in the contact network,
and contact changes occur for vanishing perturbation ampli-
tudes in large systems. Their findings caused the authors to
question, if not the formal validity, then at least the usefulness
of linear elasticity in jammed solids – not just at the jamming
point, but anywhere in the jammed phase.

There is, however, substantial evidence that it is useful to
distinguish between linear response in a strict sense, wherein
particle trajectories follow from linearizing the equations of
motion about an initial condition, and linear response in a
weak sense, wherein the stress-strain curve obeys Hooke’s
law.32–35 Hooke’s law remains applicable close to but above
jamming because coarse grained properties are less sensitive
to contact changes than are individual trajectories. Agno-
lin and Roux verified numerically that linearization captures
the initial slope of a stress-strain curve, while Van Deen et
al. showed explicitly that the slope of the stress-strain curve
is on average the same before and after the first contact
change32,33. Goodrich et al. further demonstrated that con-
tact changes have negligible effect on the density of states.35

These results verify the intuitive expectation that weak linear
response remains valid even after strict linear response is vio-
lated. This in turn raises – but does not answer – the question
of when Hooke’s law eventually does break down.
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Fig. 1 Ensemble-averaged stress-strain curves of packings sheared
at varying strain rate �̇0. Close to the jamming point the linear
stress-strain curve (dashed line) predicted by Hooke’s law holds over
a narrow interval at low strain, with deviations due to viscous and
plastic dissipation. The crossover strains �⇤ and �† are indicated for
the data sheared at slow but finite rate 0 < �̇0 < �̇† (open circles).

Recent experiments13,21, simulations,14,24,36,37 and theory38

provide evidence for a two stage yielding process, where re-
sponse first becomes nonlinear (stress is no longer directly
proportional to strain) and only later establishes steady plas-
tic flow (stress is independent of strain). To distinguish these
two crossovers, we will refer to them as softening and yield-
ing, respectively; our focus will be mainly on the softening
crossover. It remains unclear precisely how rate dependence,
nonlinearity, and contact changes contribute to the breakdown
of linear elasticity and onset of softening. In order to unravel
these effects, it is necessary to vary strain, strain rate, pres-
sure, and system size simultaneously and systematically – as
we do here for the first time. Using simulations of viscous soft
spheres, we find that Hooke’s law is valid within a surprisingly
narrow window bounded by viscous dissipation at small strain
and plastic dissipation at large strain. The size of the linear
elastic window displays power law scaling with pressure and
correlates with the accumulation of not one, but an extensive
number of contact changes.

The basic scenario we identify is illustrated in Fig. 1, which
presents ensemble-averaged shear stress versus strain. Shear is
applied via a constant strain rate �̇0 at fixed volume. We iden-
tify three characteristic scales, each of which depend on the
initial pressure p: (i) For strains below �⇤ ⌘ �̇0⌧

⇤, where ⌧⇤

is a diverging time scale, viscous stresses are significant and
Eq. (1) underestimates the stress needed to deform the ma-
terial. This crossover strain vanishes under quasistatic shear
(�̇0 ! 0, filled squares). (ii) Above a vanishing strain �†

the material softens and Hooke’s law overestimates the stress.
This crossover is rate-independent, consistent with plastic ef-
fects. (iii) For strain rates above a vanishing scale �̇† (trian-
gles), Eq. (1) is never accurate and there is no strain interval
wherein the material responds as a linear elastic solid.

1 Soft spheres: Model and background

We first introduce the soft sphere model and summarize prior
results regarding linear elasticity near jamming.

1.1 Model

We perform numerical simulations of the Durian bubble
model4, a mesoscopic model for wet foams and emulsions.
The model treats bubbles/droplets as non-Brownian disks that
interact via elastic and viscous forces when they overlap.
Elastic forces are expressed in terms of the overlap �

ij

=
1 � r

ij

/(R
i

+ R
j

), where R
i

and R
j

denote radii and ~r
ij

points from the center of particle i to the center of j. The
force is repulsive and acts along the unit vector r̂

ij

= ~r
ij

/r
ij

:

~f el
ij

=

(
�k(�

ij

) �
ij

r̂
ij

, �
ij

> 0
~0, �

ij

< 0.
(2)

The prefactor k is the contact stiffness, which generally de-
pends on the overlap

k = k0 �↵�2 . (3)

Here k0 is a constant and ↵ is an exponent parameterizing the
interaction. In the following we consider harmonic interac-
tions (↵ = 2), which provide a reasonable model for bubbles
and droplets that resist deformation due to surface tension; we
also treat Hertzian interactions (↵ = 5/2), which correspond
to elastic spheres.

We perform simulations using two separate numerical
methods. The first is a molecular dynamics (MD) algorithm
that implements SLLOD dynamics39 using the velocity-Verlet
scheme. Energy is dissipated by viscous forces that are pro-
portional to the relative velocity �~v c

ij

of neighboring particles
evaluated at the contact,

~fvisc
ij

= �⌧0 k(�
ij

) �~v c

ij

, (4)

where ⌧0 is a microscopic relaxation time. Viscous forces can
apply torques, hence particles are allowed to rotate as well as
translate.

In addition to MD, we also perform simulations using a
nonlinear conjugate gradient (CG) routine40, which keeps the
system at a local minimum of the potential energy landscape,
which itself changes as the system undergoes shearing. The
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dynamics are therefore quasistatic, i.e. the particle trajectories
correspond to the limit of vanishing strain rate.

All results are reported in units where k0, ⌧0, and the av-
erage particle diameter have all been set to one. Each disk is
assigned a uniform mass m

i

= ⇡R2
i

, which places our results
in the overdamped limit.

Bubble packings consist of N = 128 to 2048 disks in the
widely studied 50:50 bidisperse mixture with a 1.4:1 diame-
ter ratio.41 Shear is implemented via Lees-Edwards “sliding
brick” boundary conditions at fixed volume V (area in two
dimensions). The stress tensor is given by

�
↵�

=
1

2V

X

ij

f
ij,↵

r
ij,�

� 1

V

X

i

m
i

v
i,↵

v
i,�

, (5)

where ~f
ij

is the sum of elastic and viscous contact forces
acting on particle i due to particle j, and ~v

i

is the veloc-
ity of particle i. Greek indices label components along the
Cartesian coordinates x and y. The confining pressure is
p = �(1/D)(�

xx

+ �
yy

), where D = 2 is the spatial di-
mension, while the shear stress is � = �

xy

. The second term
on the righthand side of Eq. (5) is a kinetic stress, which is
always negligible in the parameter ranges investigated here.

We use the pressure p to measure a packing’s distance to
jamming. Common alternatives are the excess volume fraction
�� = � � �

c

and excess mean contact number �z = z � z
c

,
where �

c

and z
c

= 2D refer to the respective values at jam-
ming.10,42,43 We prefer to use the pressure as an order parame-
ter because it is easily accessed in experiments (unlike z), and
its value at the transition, p

c

= 0, is known exactly (unlike
�). Therefore, prior to shearing, all packings are prepared at
a targeted pressure. The equilibration procedure includes the
box size and shape in addition to the particle positions as de-
grees of freedom, which guarantees that the stress tensor is
proportional to the unit matrix and that the packing is stable to
shear perturbations.44 At each pressure there are fluctuations
in � and z, however for a given preparation protocol the prob-
ability distributions of � and z tend to a delta function with
increasing N 40,42, and typical values (e.g. the mean or mode)
satisfy the scaling relation

p

k
⇠ �� ⇠ �z2 . (6)

Here k is a typical value of the contact stiffness k(�
ij

) in
Eq. (3), which is simply the constant k0 in the harmonic case
(↵ = 2). For other values of ↵, however, k depends on the
pressure. As the typical force trivially reflects its bulk coun-
terpart, f ⇠ p, the contact stiffness scales as k ⇠ f/� ⇠
p(↵�2)/(↵�1). In the following, all scaling relations will spec-
ify their dependence on k and the time scale ⌧0. In the present
work ⌧0 is independent of the overlap between particles (as in
the viscoelastic Hertzian contact problem45), but we include

10�1 100 101 102 103 104 105 106

t/�0

10�4

10�3

10�2

10�1

100

101

G
r

=
�
/�

0

N = 1024
p = 10�4.5

�0

�0 = 4 � 10�7

�0 = 4 � 10�6

�0 = 4 � 10�5

�0 = 4 � 10�4

a)

b)

c)

Fig. 2 The ensemble-averaged relaxation modulus Gr at pressure
p = 10�4.5 for four values of the strain amplitude �0. In all four
cases, Gr displays an initial plateau corresponding to affine particle
motion (inset a), followed by a power law decay as the particle
displacements become increasingly non-affine (b). At long times the
stress is fully relaxed and the final particle displacements are
strongly non-affine (c).

⌧0 because one could imagine a damping coefficient k⌧0 with
more general overlap dependence than the form treated here.

1.2 Shear modulus and the role of contact changes

In large systems the linear elastic shear modulus G0 vanishes
continuously with pressure,

G0/k ⇠ (p/k)µ , (7)

with µ = 1/2. Hence jammed solids’ shear stiffness can be
arbitrarily weak. The scaling of G0 has been determined mul-
tiple times, both numerically42,46,47 and theoretically15,48,49; it
is verified for our own packings in Fig. 3a and c, as discussed
in Section 2.

There are two standard approaches to determining G0. The
first, which we employ, is to numerically impose a small but
finite shear strain and relax the packing to its new energy
minimum.42,46 In the second approach one writes down the
D equations of motion for each particle and linearizes them
about a reference state, which results in a matrix equation in-
volving the Hessian; solutions to this equation describe the re-
sponse to an infinitesimally weak shear.15,44,47,49–51 The latter
approach allows access to the zero strain limit, but it is blind
to any influence of contact changes.

When calculating the shear modulus using the finite differ-
ence method over strain differences as small as 10�9, double
precision arithmetic does not provide sufficiently accurate re-
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sults. 52 A straightforward but computationally expensive ap-
proach is to switch to quadruple precision. Instead we repre-
sent each particle position as the sum of two double precision
variables, which gives sufficient precision for the present work
and is significantly faster than the GCC Quad-Precision Math
Library. Since we are aware of precision issues, we have taken
great care to verify our results. The shear modulus calculated
using finite difference method agrees with the corresponding
shear modulus obtained using the Hessian matrix10, provided
the strain amplitude is small enough that the packing neither
forms new contacts, nor breaks existing ones.

Van Deen et al. 33 measured the typical strain at the first
contact change, and found that it depends on both pressure
and system size,

�(1)
cc ⇠ (p/k)1/2

N
. (8)

The inverse N -dependence is consistent with what one would
expect from a Poisson process. Similar to the findings of
Schreck et al. 27, who determined a critical perturbation am-
plitude by deforming packings along normal modes, the strain
scale in Eq. (8) vanishes in the large system limit, even at fi-
nite pressure. Earlier work by Combe and Roux probed de-
formations of rigid disks precisely at jamming; they identi-
fied a dimensionless stress scale �

(1)
cc /p ⇠ 1/N1.16. Naı̈vely

extrapolating to soft spheres would then give a strain scale
�
(1)
cc ⇠ �

(1)
cc /G0 ⇠ (p/k)1/2/N1.16, in reasonable but not ex-

act agreement with Eq. (8).

2 Stress relaxation

We will characterize mechanical response in jammed solids
using stress relaxation and flow start-up tests, two standard
rheological tests. In the linear regime they are equivalent to
each other and to other common tests such as creep response
and oscillatory rheology, because complete knowledge of the
results of one test permits calculation of the others.2

We employ stress relaxation tests to access the time scale
⌧⇤ over which viscous effects are significant, and we use flow
start-up tests to determine the strain scale �† beyond which
the stress-strain curve becomes nonlinear. We consider stress
relaxation first.

In a stress relaxation test one measures the time-dependent
stress �(t, �0) that develops in a response to a sudden shear
strain with amplitude �0, i.e.

�(t) =

⇢
0 t < 0
�0 t � 0 .

(9)

The relaxation modulus is

G
r

(t, �0) ⌘ �(t, �0)

�0
. (10)

We determine G
r

by employing the shear protocol of Hatano.7

A packing’s particles and simulation cell are affinely displaced
in accordance with a simple shear with amplitude �0. E.g. for
a simple shear in the x̂-direction, the position of a particle i
initially at (x

i

, y
i

) instantaneously becomes (x
i

+ �0yi, yi),
while the Lees-Edwards boundary conditions are shifted by
�̂0Ly

, where L
y

is the height of the simulation cell. Then the
particles are allowed to relax to a new mechanical equilibrium
while the Lees-Edwards offset is held fixed.

The main panel of Fig. 2 illustrates four relaxation mod-
uli of a single packing equilibrated at pressure p = 10�4.5

and then sheared with strain amplitudes varying over three
decades. All four undergo a relaxation from an initial plateau
at short times to a final, lower plateau at long times. The
character of the particle motions changes as relaxation pro-
gresses in time. While the particle motions immediately af-
ter the deformation are affine (Fig. 2a), they become increas-
ingly non-affine as the stresses relax to a new static equilib-
rium (Fig. 2b,c).

For sufficiently small strain amplitudes, linear response is
obtained and any dependence of the relaxation modulus on �0
is sub-dominant. The near-perfect overlap of the moduli for
the two smaller strain amplitudes Fig. 2 indicates that they
reside in the linear regime. The long-time plateau is then
equal to the linear elastic modulus G0. In practice there is
a crossover time scale ⌧⇤ such that for longer times t � ⌧⇤

viscous damping is negligible and the relaxation modulus is
well approximated by its asymptote, G

r

' G0. For the data
in Fig. 2a the crossover time is ⌧⇤ ⇡ 104⌧0. In the following
Section we will determine the scaling of ⌧⇤ with pressure.

2.1 Scaling in the relaxation modulus

We now characterize stress relaxation in linear response by
measuring the relaxation modulus, averaged over ensembles
of packings prepared at varying pressure. We will show that
G

r

collapses to a critical scaling function governed by the dis-
tance to the jamming point, thereby providing a numerical test
of recent theoretical predictions by Tighe.15 In particular we
test the prediction that the rescaled shear modulus G/G0 col-
lapses to a master curve when plotted versus the rescaled time
t/⌧⇤, with a relaxation time that diverges as

⌧⇤ ⇠
✓

k

p

◆
�

⌧0 (11)

for � = 1. Both the form of the master curve and the
divergence of the relaxation time can be related to slowly
relaxing eigenmodes that become increasingly abundant on
approach to jamming. These modes favor sliding motion
between contacting particles47, reminiscent of zero energy
floppy modes53, and play an important role in theoretical de-
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Fig. 3 (a) The linear shear modulus G0 in harmonic packings for varying pressure p and number of particles N . (b) The relaxation time ⌧⇤

for the same range of p and N as in (a). (c) Finite size scaling collapse of G0. (d) Finite size scaling collapse of ⌧⇤. (e) The relaxation
modulus Gr collapses to a master curve when Gr and t are rescaled with G0 and ⌧⇤, respectively, as determined in (a) and (b). At short times
the master curve decays as a power law with exponent ✓ = µ/� ⇡ 0.44 (dashed line), using the estimates from (c) and (d).

scriptions of mechanical response near jamming.15,48,49,51,54

For further details, we direct the reader to Ref.15.
We showed in Fig. 2 that a packing relaxes in three stages.

The short-time plateau is trivial, in the sense that viscous
forces prevent the particles from relaxing at rates faster than
1/⌧0; hence particles have not had time to depart significantly
from the imposed affine deformation and the relaxation mod-
ulus reflects the contact stiffness, G

r

⇠ k. We therefore focus
hereafter on the response on time scales t � ⌧0.

To demonstrate dynamic critical scaling in G
r

, we first de-
termine the scaling of its long-time asymptote G0. We then
identify the time scale ⌧⇤ on which G

r

significantly deviates
from G0. Finally, we show that rescaling with these two pa-
rameters collapses the relaxation moduli for a range of pres-
sures to a single master curve. While we address variations
with strain in subsequent Sections, the strain amplitude here is
fixed to a value �0 = 10�5.5. We have verified that this strain
amplitude is in the linear regime for all of the data presented
in this Section.

As noted above, at long times the relaxation modulus ap-
proaches the linear quasistatic modulus, G

r

(t ! 1) ' G0.
We verify Eq. (7) in our harmonic packings with two closely
related tests. First we fit a power law to data from systems of
N = 2048 particles; the best fit has a slope of 0.48 (Fig. 3a,
dashed line). Next, we repeat the finite size scaling analysis of
Goodrich et al. 55, who showed that finite size effects become
important when a packing has O(1) contacts in excess of iso-
staticity, or equivalently when p/k ⇠ 1/N2 – c.f. Eq. (6).
Consistent with their results, Fig. 3a shows clear finite size ef-
fects in G0. Data for different system sizes can be collapsed

to a master curve by plotting G ⌘ G0N versus the rescaled
pressure x ⌘ pN2. The master curve approaches a power law
xµ consistent with µ = 0.5, as shown in Fig. 3c. The scaling
of Eq. (7), and specifically the value µ = 1/2, is verified by
this data collapse, together with the requirement for the mod-
ulus to be an intensive property of large systems. To see this,
note that G0 is intensive only if G ⇠ x1/2 for large x.

Again referring to Fig. 2, there is clearly some time scale ⌧⇤

such that for t < ⌧⇤ the relaxation modulus deviates signifi-
cantly from the quasistatic modulus. The relaxation time is de-
termined from the point where G

r

, averaged over an ensemble
of at least 100 packings per condition, has decayed to within
a fraction � of its final value, G

r

(t = ⌧⇤) = (1 + �)G0.
We present data for � = 1/e, but similar scaling results for
a range of �. 37 Raw data for varying p and N is shown in
Fig. 3b. Fitting a power law to the data for N = 2048 gives
an exponent � = 0.94. We now again seek to refine our es-
timate by collapsing data to a master curve. As ⌧⇤ and G0

are both properties of the relaxation modulus, we require the
rescaled pressure to remain x = pN2, which collapses the G0

data. We then search for data collapse in ⌧⇤ by rescaling the
relaxation time as ⌧⇤/N2�, which implies that ⌧⇤ diverges in
large systems in accord with Eq. (11). While we find reason-
able data collapse for � = 0.94, the best collapse occurs for
a larger value � ⇡ 1.13, shown in Fig. 3d. The theoretical
prediction � = 1 clearly falls within the range of our numer-
ical estimates,15 although on the basis of the present data we
cannot exclude a slightly different value of �.

We now use the linear quasistatic modulus G0 and the char-
acteristic time scale ⌧⇤ to collapse the relaxation modulus to a
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master curve R(s). Fig. 3c plots R ⌘ G
r

/G0 versus s ⌘ t/⌧⇤

for a range of pressures and system sizes; data from the triv-
ial affine regime at times t < 10⌧0 have been excluded. The
resulting data collapse is excellent, and the master curve it
reveals has two scaling regimes: R ' 1 for s � 1, and
R ⇠ s�✓ for s ⌧ 1. The plateau at large s corresponds to
the quasistatic scaling G

r

' G0. The power law relaxation at
shorter times corresponds to G

r

⇠ G0(t/⌧⇤)�✓ for some ex-
ponent ✓. By considering a marginal solid prepared at the jam-
ming point, one finds that the prefactor of t�✓ cannot depend
on the pressure. Invoking the pressure scaling of G0 and ⌧⇤ in
the large N limit, identified above, we conclude that ✓ = µ/�.
Hence in large systems the relaxation modulus scales as

G
r

(t)

k
⇠
⇢

(⌧0/t)✓ 1 ⌧ t/⌧0 ⌧ (k/p)�

(p/k)µ (k/p)� ⌧ t/⌧0 .
(12)

with µ = 1/2, � ⇡ 1, and ✓ = µ/� ⇡ 0.5. These findings are
consistent with the theoretical predictions in Ref.15.

Anomalous stress relaxation with exponent ✓ ⇡ 0.5 was
first observed in simulations below jamming7 and is also
found in disordered spring networks.56,57 It is related via
Fourier transform to the anomalous scaling of the frequency
dependent complex shear modulus G⇤ ⇠ (ı!)1�✓ found in
viscoelastic solids near jamming.15 We revisit the scaling re-
lation of Eq. (12) in Section 3.6.

3 Finite strain

When does linear elasticity break down under increasing
strain, and what lies beyond? To answer these questions, we
now probe shear response at finite strain using flow start-up
tests.

3.1 Flow start-up

In a flow start-up test, strain-controlled boundary conditions
are used to “turn on” a flow with constant strain rate �̇0 at
time t = 0, i.e.

�(t) =

⇢
0 t < 0

�̇0t t � 0
(13)

To implement flow start-up in MD, at time t = 0 a packing’s
particles and simulation cell are instantaneously assigned an
affine velocity profile ~v

i

= (�̇0 y
i

, 0)T in accordance with a
simple shear with strain rate �̇0; the Lees-Edwards images
of the simulation cell are assigned a commensurate velocity.
Then the particles are allowed to evolve according to Newton’s
laws while the Lees-Edwards boundary conditions maintain
constant velocity, so that the total strain �(t) grows linearly in
time.
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Fig. 4 Averaged stress-strain curves under quasistatic shear at
varying pressure p. Solid and dashed curves were calculated using
different strain protocols. Dashed curves: fixed strain steps of 10�3,
sheared to a final strain of unity. Solid curves: logarithmically
increasing strain steps, beginning at 10�9 and reaching a total strain
of 10�2 after 600 steps.

We also perform quasistatic shear simulations using nonlin-
ear CG minimization to realize the limit of vanishing strain
rate. Particle positions are evolved by giving the Lees-
Edwards boundary conditions a series of small strain incre-
ments and equilibrating to a new minimum of the elastic po-
tential energy. The stress � is then reported as a function of the
accumulated strain. For some runs we use a variable step size
in order to more accurately determine the response at small
strain.

Fig. 1 illustrates the output of both the finite strain rate and
quasistatic protocols.

3.2 Quasistatic stress-strain curves

To avoid complications due to rate-dependence, we consider
the limit of vanishing strain rate first.

Fig. 4 plots the ensemble-averaged stress-strain curve �(�)
for harmonic packings at varying pressure. Packings contain
N = 1024 particles, and each data point is averaged over at
least 600 configurations. Several features of the stress-strain
curves stand out. First, there is indeed a window of initially
linear growth. Second, beyond a strain of approximately 5 -
10% the system achieves steady plastic flow and the stress-
strain curve is flat. Finally, the end of linear elasticity and the
beginning of steady plastic flow do not generally coincide; in-
stead there is an interval in which the stress-strain curve has
a complex nonlinear form. We shall refer to the end of the
linear elastic regime as “softening” because the stress initially
dips below the extrapolation of Hooke’s law. (In the plastic-
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Fig. 5 (main panel) Data from Fig. 4, expressed as a dimensionless
effective shear modulus �/G0� and plotted versus the rescaled
strain �/p. (inset) The crossover strain �† where the effective shear
modulus has decayed by an amount � in a system of N = 1024
particles.

ity literature the same phenomenon would be denoted “strain
hardening”.) Moreover, for sufficiently low pressures there is
a strain interval over which the stress increases faster than lin-
early. This surprising behavior is worthy of further attention,
but the focus of the present work will be on the end of linear
elasticity and the onset of softening. This occurs on a strain
scale �† that clearly depends on pressure.

3.3 Onset of softening

We now determine the pressure and system size dependence
of the softening (or nonlinear) strain scale �†.

Fig. 5 replots the quasistatic shear data from Fig. 4 (solid
curves), now with the linear elastic trend G0� scaled out. The
rescaling collapses data for varying pressures in the linear
regime and renders the linear regime flat. The strain axis in
Fig. 5b is also rescaled with the pressure, a choice that will
be justified below. The onset of softening occurs near unity in
the rescaled strain coordinate for all pressures, which suggests
that �† scales linearly with p in harmonic packings (↵ = 2).

Unlike the linear relaxation modulus in Fig. 3c, the qua-
sistatic shear data in Fig. 5 do not collapse to a master curve;
instead the slope immediately after softening steepens (in a
log-log plot) as the pressure decreases. As a result, it is not
possible to unambiguously identify a correlation �† ⇠ p⌫ be-
tween the crossover strain and the pressure. To clarify this
point, the inset of Fig. 5 plots the strain where �/G0� has de-
cayed by an amount � from its plateau value, denoted �†(�).
This strain scale is indeed approximately linear in the pressure
p (dashed curves), but a power law fit gives an exponent ⌫ in
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Fig. 6 (main panel) The dimensionless shear modulus of
quasistatically sheared Hertzian packings plotted versus the rescaled
strain �/p2/3. (inset) Pressure-dependence of the crossover strain
�†.

the range 0.87 to 1.06, depending on the value of �. Bear-
ing the above subtlety in mind, we nevertheless conclude that
an effective power law with ⌫ = 1 provides a reasonable de-
scription of the softening strain. Section 2.1 presents further
evidence to support this conclusion.

3.4 Hertzian packings

In the previous section the pressure-dependence of �† was de-
termined for harmonic packings. We now generalize this re-
sult to other pair potentials, with numerical verification for the
case of Hertzian packings (↵ = 5/2).

Recall that the natural units of stress are set by the contact
stiffness k, which itself varies with pressure when ↵ 6= 2.
Based on the linear scaling of �† in harmonic packings, we
anticipate

�† ⇠ p

k
⇠ p1/(↵�1) , (14)

which becomes �† ⇠ p2/3 in the Hertzian case. To test this re-
lation, we repeat the analysis of the preceding Section; results
are shown in Fig. 6. We again find a finite linear elastic win-
dow that gives way to softening. Softening onset can again be
described with a �-dependent exponent (see inset). Its value
has a narrow spread about 2/3; power law fits give slopes be-
tween 0.63 and 0.74.

3.5 Relating softening and contact changes

Why does the linear elastic window close when it does? We
now seek to relate softening with contact changes on the par-
ticle scale.21–24,27,33 Specifically, we identify a correlation be-
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tween the softening strain �†, the cumulative number of con-
tact changes, and the distance to the isostatic contact num-
ber z

c

. In so doing we will answer the question first posed
by Schreck and co-workers27, who asked how many contact
changes a packing can accumulate while still displaying lin-
ear elastic response.

We begin by investigating the ensemble-averaged contact
change density ncc(�) ⌘ [Nmake(�) + Nbreak(�)]/N , where
Nmake and Nbreak are the number of made and broken con-
tacts, respectively, accumulated during a strain �. Contact
changes are identified by comparing the contact network at
strain � to the network at zero strain.

In Fig. 7a we plot ncc for packings of harmonic particles
at pressure p = 10�4 and varying system size. The data col-
lapse to a single curve, indicating that ncc is indeed an in-
tensive quantity. The effect of varying pressure is shown in
Fig. 7b. There are two qualitatively distinct regimes in ncc,
with a crossover governed by pressure.

To better understand these features, we seek to collapse the
ncc data to a master curve. By plotting N ⌘ ncc/p⌧ versus
y ⌘ �/p, we obtain excellent collapse for ⌧ = 1/2, as shown

in Fig. 7b for the same pressures as in Fig. 7a and system
sizes N = 128 . . . 1024. The scaling function N ⇠ y for
small y, while N ⇠ y⌧ for y & 1. The rescaled strain y
provides further evidence for a crossover scale �† ⇠ p/k, now
apparent at the microscale. Moreover, the fact that data for
varying system sizes all collapse to the same master curve is
an important indicator that �† is an intensive strain scale that
remains finite in the large system size limit.

The scaling collapse in Fig. 7c generalizes the results of
Van Deen et al. 33, who determined the strain scale �

(1)
cc ⇠

(p/k)1/2/N associated with the first contact change. To see
this, note that the inverse slope (d�/dncc)/N represents the
average strain interval between contact changes at a given
strain. Hence the initial slope of ncc is fixed by �

(1)
cc ,

ncc(�) ' 1

N

 
�

�
(1)
cc

!
(15)

as � ! 0. From Fig. 7 it is apparent that ncc remains linear
in � up to the crossover strain �†. We conclude that �

(1)
cc de-

scribes the strain between successive contact changes over the
entire interval 0 < � < �†. In the softening regime the strain
between contact changes increases; it scales as ncc ⇠ �1/2

(see Fig. 7c). This corresponds to an increasing and strain-
dependent mean interval �1/2/N between contact changes.

Let us now re-interpret the softening crossover strain �† ⇠
�z2 (c.f. Eq. (6)) in terms of the coordination of the contact
network. We recall that �z = z�z

c

is the difference between
the initial contact number z and the isostatic value z

c

, which
corresponds to the minimum number of contacts per particle
needed for rigidity. The excess coordination �z is therefore
an important characterization of the contact network. The con-
tact change density at the softening crossover, n†

cc, can be re-
lated to �z via Eq. (15), while making use of Eq. (6),

n†
cc ⌘ ncc(�

†) ⇠ �z . (16)

Hence we have empirically identified a topological criterion
for the onset of softening: an initially isotropic packing soft-
ens when it has undergone an extensive number of contact
changes that is comparable to the number of contacts it ini-
tially had in excess of isostaticity. Note that this does not
mean the packing is isostatic at the softening crossover, as ncc

counts both made and broken contacts.

3.6 Rate-dependence

To this point we have considered nonlinear response exclu-
sively in the limit of quasistatic shearing. A material accu-
mulates strain quasistatically when the imposed strain rate is
slower than the longest relaxation time in the system. Be-
cause relaxation times near jamming are long and deforma-
tions in the lab always occur at finite rate, we can anticipate
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Fig. 8 The effective shear modulus during flow start-up for
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versus strain for varying strain rates �̇0. (inset) The same data
collapses for early times when plotted versus t, decaying as a power
law with exponent ✓ = µ/� ⇡ 0.44 (dashed line).

that quasistatic response is difficult to achieve and that rate-
dependence generically plays a significant role. Hence it is
important to consider shear at finite strain and finite strain rate.
We now consider flow start-up tests in which a finite strain rate
�̇0 is imposed at time t = 0, cf. Eq. (13).

Fig. 8 displays the mechanical response to flow start-up for
varying strain rates. To facilitate comparison with the qua-
sistatic results of the previous section, data are plotted in terms
of the dimensionless quantity �(t; �̇0)/G0�, which we shall
refer to as the effective shear modulus. The data are for sys-
tems of N = 1024 particles, averaged over an ensemble of
around 100 realizations each. Here we plot data for the pres-
sure p = 10�4; results are qualitatively similar for other pres-
sures. For comparison, we also plot the result of quasistatic
shear (solid circles) applied to the same ensemble of packings.

Packings sheared sufficiently slowly follow the quasistatic
curve; see e.g. data for �̇0 = 10�11. For smaller strains,
however, the effective shear modulus is stiffer than the qua-
sistatic curve and decays as �/� ⇠ t�✓ (see inset). This
is rate-dependence: for a given strain amplitude, the mod-
ulus increases with increasing strain rate. Correspondingly,
the characteristic strain �⇤ where curves in the main panel of
Fig. 8 reach the linear elastic plateau (�/G0� ⇡ 1) grows with
�̇0. For sufficiently high strain rates there is no linear elas-
tic plateau; for the data in Fig. 8 this occurs for �̇0 ⇡ 10�8.
Hence there is a characteristic strain rate, �̇†, beyond which
the linear elastic window has closed: packings sheared faster
than �̇† are always rate-dependent and/or strain softening.

To understand the rate-dependent response at small strains,

we revisit the relaxation modulus determined in Section 2. In
linear response the stress after flow start-up depends only on
the elapsed time t = �/�̇0,

�

�
=

1

t

Z
t

0
G

r

(t0) dt0 . (17)

Employing the scaling relations of Eq. (12), one finds

�

�
⇠ k

⇣⌧0
t

⌘
✓

, ⌧0 < t < ⌧⇤ , (18)

as verified in Fig. 8 (inset). Linear elasticity �/� ' G0 is only
established at longer times, when � > �̇0⌧

⇤ ⇠ (k/p)� �̇0⌧0.
Hence the relaxation time ⌧⇤ plays an important role: it gov-
erns the crossover from rate-dependent to quasistatic linear re-
sponse. The system requires a time ⌧⇤ to relax after a pertur-
bation. When it is driven at a faster rate, it cannot relax fully
and hence its response depends on the driving rate.

We can now identify the characteristic strain rate �̇† where
the linear elastic window closes. This rate is reached when the
bound on quasistaticity, � > �̇0⌧

⇤, collides with the bound on
linearity, � < �†, giving

�̇† ⇠ (p/k)1+�

⌧0
, (19)

with 1 + � ⇡ 2. This strain rate vanishes rapidly near jam-
ming, hence packings must be sheared increasingly slowly to
observe a stress-strain curve that obeys Hooke’s law.

4 Implications for experiment

The time scale ⌧⇤, strain scales �⇤ and �†, and strain rate �̇† all
place bounds on the window of linear elastic response. Which
of these quantities are most relevant depends on the particular
rheological test one performs. For example, in a flow start-up
test Hooke’s Law is accurate within the window �⇤ < � < �†,
provided the strain rate �̇0 < �̇†. This is the scenario depicted
in Fig. 1; it is also illustrated schematically in Fig. 9. In a stress
relaxation test, however, the strain amplitude and test duration
can be varied independently. Hooke’s law is then accurate for
�0 < �† provided one waits for a time t > ⌧⇤ for the system to
relax. (We have verified that the softening onset still occurs at
�† when the full strain �0 is applied in one step, as opposed to
a quasistatic series of small steps.) Similar parameter ranges
can be constructed for other rheological tests.

What experimental scales do these quantities correspond
to? Most importantly, one must collect data in the scaling
regime near jamming. Quantities such as the excess coordi-
nation and moduli show gradual deviations from scaling when
the excess volume fraction exceeds �� ⇡ 10�1. 58 Deter-
mining the volume fraction with an accuracy better than 1%
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is difficult43,59,60, hence the experimentally accessible scaling
regime is typically just one decade wide in ��.

The onset of softening occurs at a strain scale �† ⇠ (p/k) ⇠
��. If we take the smallest experimentally accessible value
of �� to be 10�2, then Hooke’s law can (potentially) be ob-
served for strains on the order of 1% and smaller.

To estimate the scales ⌧⇤, �⇤, and �̇†, one must know the
microscopic time scale ⌧0, which arises from a balance be-
tween viscous and elastic forces. Simple dimensional analysis
then suggests a time scale on the order of ⌘d/�

s

, where ⌘ is the
viscosity of the continuous phase, d is a typical bubble size,
and �

s

is the surface tension.61 In dishwasher detergent, for
example, viscosities are on the order of 1 mPa·s and surface
tensions �

s

⇠ 10 mN/m, while bubble sizes can from 100 µm
to 1 cm.62,63 Hence microscopic time scales fall somewhere in
the range 10�5 . . . 10�3 s. For �� on the order 10�2, the time
scale ⌧⇤ ⇠ ⌧0/(p/k) ⇠ ⌧0/�� remains shorter than 0.1 s at
accessible values of ��, while �̇† ⇠ ��2/⌧0 can be as low as
0.1 s�1.

We offer a note of caution when considering bounds involv-
ing the time scale ⌧0. First, experiments find power law relax-
ation at volume fractions deep in the jammed phase.64 There is
an associated time scale that can be on the order of 1 s depend-
ing on sample age, which is significantly longer than our esti-
mates of ⌧0 above. This suggests that coarsening and details
of the continuous phase flow within thin films and Plateau bor-
ders may play an important role – in addition to the strongly
non-affine motion associated with proximity to jamming15,65

– yet neither are incorporated in Durian’s bubble model. 4 Sec-
ond, while we have considered dissipation proportional to the
relative velocity of contacting particles, the viscous force law
need not be linear. In foams, for example, the dominant source
of damping depends sensitively on microscopic details such
as the size of the bubbles and the type of surfactant used.62

Often one finds Bretherton-type damping proportional to (rel-
ative) velocity to the power 2/3.63,66 We anticipate that nonlin-
ear damping would impact the relaxation dynamics5,67,68 and
alter the value of the exponents ✓ and �. For sufficiently long
times or slow shearing above �

c

, however, we expect particles
to follow quasistatic trajectories and the differences between
various methods of damping to become negligible.

5 Discussion

Using a combination of stress relaxation and flow start-up
tests, we have shown that soft solids near jamming are eas-
ily driven out of the linear elastic regime. There is, however,
a narrow linear elastic window that survives the accumulation
of an extensive number of contact changes. This window is
bounded from below by viscous dissipation and bounded from
above by the onset of strain softening due to plastic dissipa-
tion. Close to the transition these two bounds collide and the
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Fig. 9 In a flow start-up test, quasistatic linear response (G ⇡ G0)
occupies a strain window �⇤ < � < �† (shaded regions). For
smaller strains the response is rate-dependent, with a crossover
strain �⇤ that depends on both pressure and strain rate. Softening
sets in for higher strains, with a crossover �† that depends only on
the pressure. The intersection of the rate-dependent and softening
crossovers defines a strain rate �̇† above which there is no
quasistatic linear response, i.e. the shaded region closes.

linear elastic window closes. Hence marginal solids are eas-
ily driven into rate-dependent and/or strain softening regimes
on at volume fractions and strain scales relevant to the labora-
tory. Fig. 9 provides a qualitative summary of our results for
the case of flow start-up.

While our simulations are in two dimensions, we expect the
scaling relations we have identified to hold for D > 2. To the
best of our knowledge, all scaling exponents near jamming
that have been measured in both 2D and 3D are the same.
There is also numerical evidence that D = 2 is the transition’s
upper critical dimension.35,55

Our work provides a bridge between linear elasticity near
jamming, viscoelasticity at finite strain rate, and nonlinearity
at finite strain amplitude. The measured relaxation modulus
G

r

is in good agreement with the linear viscoelasticity pre-
dicted by Tighe,15 as well as simulations by Hatano conducted
in the unjammed phase.7 Our findings regarding the crossover
to nonlinear strain softening can be compared to several prior
studies. The granular experiments of Coulais et al. show soft-
ening, although their crossover strain scales differently with
the distance to jamming, possibly due to the presence of static
friction.13 The emulsions of Knowlton et al. are more similar
to our simulated systems, and do indeed display a crossover
strain that is roughly linear in ��, consistent with our �†. 21

A recent scaling theory by Goodrich et al. 38, by contrast, pre-
dicts a crossover strain �† ⇠ ��3/4, which is excluded by our
data. Nakayama et al. 36 claim agreement between their nu-
merical data and the theoretical exponent 3/4, although they
note that their data is also compatible with a linear scaling in

10 | 1–12



��. A recent study by Otsuki and Hayakawa14 also finds a
strain scale proportional to �� in simulations of large ampli-
tude oscillatory shear at finite frequency. The agreement be-
tween the crossover strains in our quasistatic simulations and
these oscillatory shear simulations is surprising, as most of
the latter results are for frequencies higher than �̇†, where vis-
cous stresses dominate. There are also qualitative differences
between the quasistatic shear modulus, which cannot be col-
lapsed to a master curve (Fig. 5), and the storage modulus in
oscillatory shear, which can.14,37 We speculate that there are
corresponding microstructural differences between packings
in steady state and transient shear,20 similar to those which
produce memory effects. 69

Soft sphere packings near jamming approach the isostatic
state, which also governs the rigidity of closely related mate-
rials such as biopolymer and fiber networks.70–73 It is there-
fore remarkable to note that, whereas sphere packings soften
under strain, quasistatically sheared amorphous networks are
strain stiffening beyond a crossover strain that scales as �z 74,
which vanishes more slowly than �† ⇠ �z2 in packings.
Hence nonlinearity sets in later and with opposite effect in
networks.75 We expect that this difference is attributable to
contact changes, which are absent or controlled by slow bind-
ing/unbinding processes in networks.

We have demonstrated that softening occurs when the sys-
tem has accumulated a finite number of contact changes corre-
lated with the system’s initial distance from the isostatic state.
This establishes an important link between microscopic and
bulk response. Yet further work investigating the relationship
between microscopic irreversibility, softening, and yielding is
needed. The inter-cycle diffusivity in oscillatory shear, for ex-
ample, jumps at yielding21,24, but its pressure dependence has
not been studied. Shear reversal tests could also provide in-
sight into the connection between jamming and plasticity.

While the onset of softening can be probed with quasistatic
simulation methods, rate dependent effects such as the strain
scale �⇤ should be sensitive to the manner in which energy is
dissipated. The dissipative contact forces considered here are
most appropriate as a model for foams and emulsions. Hence
useful extensions to the present work might consider systems
with, e.g., lubrication forces or a thermostat.
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26 E. Lerner, G. Düring and M. Wyart, Soft Matter, 2013, 9,
8252–8263.

27 C. F. Schreck, T. Bertrand, C. S. O’Hern and M. Shattuck,
Phys. Rev. Lett., 2011, 107, 078301.

28 C. F. Schreck, T. Bertrand, C. S. O’Hern and M. D. Shat-
tuck, arxiv:1306.1961, 2013.

29 C. F. Schreck, R. S. Hoy, M. D. Shattuck and C. S. O’Hern,
Phys. Rev. E, 2013, 88, 052205.

30 C. Schreck, C. O’Hern and M. Shattuck, Granular Matter,
2014, 16, 209–216.

31 T. Bertrand, C. F. Schreck, C. S. O’Hern and M. D. Shat-
tuck, Phys. Rev. E, 2014, 89, 062203.

32 I. Agnolin and J.-N. Roux, Phys. Rev. E, 2007, 76, 061304.
33 M. S. van Deen, J. Simon, Z. Zeravcic, S. Dagois-Bohy,

B. P. Tighe and M. van Hecke, Phys. Rev. E, 2014, 90,
020202.

34 C. P. Goodrich, A. J. Liu and S. R. Nagel, Phys. Rev. Lett.,
2014, 112, 049801.

35 C. P. Goodrich, S. Dagois-Bohy, B. P. Tighe, M. van
Hecke, A. J. Liu and S. R. Nagel, Phys. Rev. E, 2014, 90,
022138.

36 D. Nakayama, H. Yoshino and F. Zamponi,
arxiv:1512.06544, 2015.

37 S. Dagois-Bohy, E. Somfai, B. P. Tighe and M. van Hecke,
(in preparation), 2014.

38 C. P. Goodrich, A. J. Liu and J. P. Sethna,
arXiv:1510.03469, 2015.

39 D. J. Evans and G. Morriss, Statistical Mechanics of
Nonequilibrium Liquids, Cambridge University Press,
2008.
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