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Data-association-free
Characterization of Labeling
Uncertainty: the Cross
Modeling Tracker

CARLOS MORENO LEON
HANS DRIESSEN
ALEXANDER YAROVOY

The Multiple Object Tracking problem for a known and constant

number of closely-spaced objects in a track-before-detect context

is considered. The underlying problem of decomposing a data-

association-free Bayes posterior density is analyzed. A previously

proposed solution for two objects moving in one-dimensional space

is generalized for higher dimensional problems where t objects move

in a M-dimensional space. The underlying problem is solved with

the proposed Cross Modeling Tracker by means of hypothesizing

physical crosses between the objects for a general t–MD objects case.

In particular, the mathematical definition of cross-between-objects

is generalized from a meaningful interpretation of the problem in

the low dimensional setting. A method to provide optimal references

for evaluation of the Cross Modeling Tracker is also considered.

The Cross Modeling Tracker algorithm is validated with the optimal

references by simulating t–MD closely-spaced objects scenarios.

Wider applicability of the Cross Modeling Tracker with respect

to comparable reviewed solutions is demonstrated via simulation

experiments.

NOMENCLATURE

MOT Multiple Object Tracking.
DBT Detect-before-track.
TBD Track-before-detect.
RFS Random Finite Sets.
SNR Signal to Noise Ratio.
DA Data-association.
CMT Cross Modeling Tracker.
MMSE Minimum Mean Square Error.
JPDA Joint Probabilistic Data Association.
MHT Multiple Hypothesis Tracking.
PHD Probability Hypothesis Density.
LMB Labeled Multi-Bernoulli.
GOSPA Generalized Optimal Subpatern Assign-

ment.
PF Particle Filter.
LPE Labeled Point Estimates.
MD M-dimensional.
t Number of objects.
sk State vector at time k.
ok Variable “order” at time k.
zk DBT measurement at time k with indication

of correct data association.
Zk Sequence of DBT measurements up to, and

including, time k.
zk DBT measurement at time k.
Zk Sequence of complete TBD measurements

up to, and including, time k.
zk Complete TBD measurement at time k.
Nr,Nb Number of range and bearing cells in zk.
zi, jk TBD measurement at cell i, j.
Np Number of particles.

I. INTRODUCTION

Multiple Object Tracking (MOT) refers to the prob-
lem of jointly estimating the presence and states or
trajectories of objects based on measurements from
sensors such as radars. The majority of reported MOT
solutions are only suitable in detect-before-track (DBT)
context, i.e., designed for detection measurements. This
paper aims to solve the MOT problem for a known
and constant number of closely-spaced objects in a
track-before-detect (TBD) context.

The problem of deciding which track state estimate
belongs to which physical object over time is known as
the labeling problem. Labels are considered as unique
identifiers assigned to each physical object in the track
initiation stage. In closely-spaced objects tracking, sen-
sor systems may not provide enough information to
uniquely match objects labels and objects point esti-
mates consistently over time, leading to uncertainty in
the labeling [3]. Labeling uncertainty can play a role
already in sensor systems even if the objects can be
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resolved by the sensor.This will occur if maneuverability
of the objects and/or sensor update intervals get large.

The terms labeling problem and labeling uncertainty
might be misleading, it is important to remark that there
is no uncertainty in the labels as they have been assigned
(and are therefore fully known) within the tracker. The
uncertainty is about the assignment of tracks to the
fully known set of labels [17]. However, due to histor-
ical reasons, we will continue referring to this problem
and the uncertainty as labeling problem and labeling
uncertainty.

Labels have been rigorously incorporated in MOT
solutions by two different means. Firstly, by using ran-
dom vector formulations. In this case, the order of
partitions in the random vector implicitly determines
the labels of the tracks. Secondly, by using random finite
sets (RFS) formations and explicitly introducing labels
as additional components in the (unordered) state
variable. The scope of this paper is limited to the case
of known and constant number of objects in order to
isolate the essence of the labeling problem. Under this
assumption, a vector formulation suffices.

TBD MOT uses multiple frames of the raw sen-
sor measurements with the objective of avoiding a hard
thresholding decision. Consequently, TBD algorithms
jointly estimate the existence of the target (detection)
as well as track its kinematic state (filtering).

Avoidance of hard thresholding in TBD prevents
loss of information,which is remarkably important in the
tracking of low signal to noise ratio (SNR) objects. Ad-
ditionally, TBD MOT cope with closely-spaced objects
tracking in cases where a DBT approach would have to
deal with merged measurements. Therefore, TBDMOT
provides an inherently increased resolution capability
over DBT MOT, which however makes it all the more
important to address data-association-free characteriza-
tion of labeling uncertainty.

The advantages of TBD tracking motivate this pa-
per to design an algorithm able to characterize labeling
uncertainty without using data-association (DA) tech-
niques. The aim of such algorithm is adding labeling
characterization capabilities to regular TBD filters such
as the one presented in [6].The lack of practical solutions
is discussed in the Literature Review section. In order
to fill the gap, this paper generalizes the association-free
framework in [17, Section IV] to arbitrarily high dimen-
sional problems.

The paper is organized as follows. Section II presents
the research questions and specifies the underlying
problem to answer them. Also, an extensive literature
review on the topic is provided. Section III presents a
generic formulation to characterize the Cross Model-
ing Tracker (CMT). Section IV revisits the evaluation
method specifically design in [18] to measure esti-
mation performance of the CMT. Sections V and VI
provide the analytical generalization of the method pre-
sented in [17, Section IV] to the general t–MD objects
case. Simulation results are also provided. Section VII

draws final conclusions and proposes future research
directions.

II. PROBLEM DESCRIPTION AND
CONTEXTUALIZATION IN LITERATURE

Consider an MOT problem based on raw (TBD)
measurements and a scenario containing t objects mov-
ing in aM-dimensional space (t–MD setting). Addition-
ally, consider that t is constant and known by the tracker.

In cases where the objects move far apart from each
other, labeling uncertainty is negligible and a regular
TBD tracker such as the one in [6] suffices to infer
the correct pair-matching between labels and point esti-
mates.However,when the t objectsmove closely-spaced,
labeling uncertainty degrades tracking performance and
even the optimal TBDMOT solution is prevented from
inferring the correct pair-matching between labels and
point estimates. It is important to remark that what we
refer to as pair-matching between labels and point es-
timates is conceptually different from the well-studied
pair-matching problem between detections and labels
(detections do not even exist in TBD). This difference
is described in Appendix A.

Precisely due to the mathematical limitations for
providing uncertainty-free labeling in complicated sce-
narios, estimation of certainty regarding all potential la-
beling possibilities is a topic of major importance. For
this reason, the problem considered in this paper is de-
scribed by the following two questions:

� What is the list of t! labeled point estimates for the cur-
rent dynamic state of the objects? Here each labeled
point estimate hypothesises the state of the t targets
with indication of the labels.

� What is the certainty corresponding to each labeled
point estimate in the list?

A regular TBD tracker is known to fail at answer-
ing these questions in closely-spaced objects scenarios
for two reasons. First, particle-based approximations
(required due to the highly non-linear nature of theTBD
measurement models) cannot approximate multimodal
densities for long periods of time [7]. This can be tack-
led by using a convenient proposal density [15]. Sec-
ond,extraction ofminimummean square error (MMSE)
point estimates from a TBD multimodal posterior den-
sity results in track-coalescence underperformance [5].
This can be solved efficiently by means of characteriz-
ing the labeling uncertainty implicitly contained in the
TBDmultimodal density [17]. The purpose of this paper
is providing such characterization for the general t–MD
objects case.

A. Formulation of the Problem

The link between the DA problem and the labeling
problem is formulatedmathematically inAppendixA.It
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is concluded that in DBT context, the labeling problem
is implicitly solved by tackling the DA problem. Unfor-
tunately, the same analytic method cannot be applied in
TBD filtering to solve the labeling problem due to the
absence of detections.

In TBD context,zk contains the power reflected from
the tracking scenario for each radar cell at time step
k. For instance, a 2D raw data set zk can be modeled
as in [6] by Nr × Nb power measurements zi jk , where
i = 1, 2, ...,Nr and j = 1, 2, ...,Nb.

The permutation of measurement zk described in
AppendixAmakes no sense for the TBDmeasurements
zk. Therefore πm(zk) (see Appendix A) cannot be used
to hypothesize labeling associations in TBD. However,
the decomposition using permutations in sk, derived in
Appendix A, can be formulated also in TBD:

p(sk|Zk) ∝
t!∑

m=1

l(zk|πm(sk))p(sk|Zk−1). (1)

We consider the worst case scenario, where TBD
measurements do not incorporate information about ob-
jects’ labels. Under this assumption, the TBD likelihood
model for the measurements conditioned on the state
l(zk|sk) is invariant with respect to permutation of parti-
tions in the state vector:

l(zk|πm(sk)) = l(zk|πn(sk)) ∀{m,n} : {πm, πn} ∈ �.

(2)
This is a remarkable difference with respect to DBT,
where l(zk|sk) is permutation variant (even when the
measurements do not provide any information about the
labels). Due to equation (2), equation (1) provides a de-
composition in which all components end up being iden-
tical disregarding whether objects are closely-spaced or
not. For this reason, equation (1) is certainly not rele-
vant for labeling characterization in TBD. In fact, it can
be simplified as:

p(sk|Zk) ∝
t!∑

m=1

l(zk|πm(sk))p(sk|Zk−1)

∝ l(zk|sk)p(sk|Zk−1). (3)

The simplification in equation (3) illustrates that,
although p(sk|Zk) can be calculated, an analytical de-
composition of p(sk|Zk) cannot be accessed by the TBD
filter. This defines the specific problem which needs to
be tackled to answer the two questions of interest.

B. Related Literature

Aplethora ofMOT techniques have been developed
over recent decades including Joint Probabilistic Data
Association (JPDA) [13], Multiple Hypothesis Track-
ing (MHT) [21], and Probability Hypothesis Density
(PHD) [19]. These algorithms are designed to work with
detections. As the scope of this paper is within TBD
MOT, none of these methods are suitable.

Some RFS-based trackers use multitrajectory den-
sities instead of multiobject densities [23]. A multitra-
jectory random variable incorporates the states of the
entire history for each trajectory in the set. With this
information, track formation is enabled without any
type of label incorporation. Although some reported
RFS multitrajectory trackers accommodate TBD mod-
els [16], answering the two questions in the Problem
Description section does not require information about
the entire history of the trajectories.

In [14], an RFS-based mutiobject filter is adapted to
work in TBD context. The adaptation is based on fitting
a particle-based multiobject density approximation as a
Labeled Multi-Bernoulli (LMB) RFS density after each
filtering iteration.Nonetheless, questions in the Problem
Description section cannot be answered. In fact, the so-
called Improved LMB filter provides low Generalized
Optimal Subpatern Assignment (GOSPA) errors at the
expense of losing labeling information.

In [24], a backward simulationmethod is proposed to
recover full trajectory (labeling) information from unla-
beled filtering mutiobject densities. However, the pro-
cess (generating unlabeled filtering posteriors, recover-
ing trajectory information and marginalizing to obtain
the filtering density of interest) involves unnecessary
complexity overhead. This is specially so in TBD con-
text, where RFS prior conjugacy cannot be exploited as
particle-based approximations are required to accom-
modate highly nonlinear measurement models. Addi-
tionally, the problem in the scope of this paper does not
even need to be formulated with RFS as the number of
objects is assumed known and constant.

Aoki et al. provided a mathematical characteriza-
tion of the labeling uncertainties with clear physical
interpretation in [1]. However, the proposed Multitar-
get Sequential Monte Carlo filter algorithm involves a
computational complexity of O(N2

pt!
2). This computa-

tional bottleneck is prohibitive for tracking scenarios
with more than two objects.

Blom and Bloem [4] introduced a decomposition
of the exact Bayes posterior density into the weighted
sum of permutation invariant and permutation strictly
variant components. The so-called “unique decomposi-
tion” was used by García-Fernández in [15] to provide
a particle filtering solution relevant for our problem
description. The main focus in [15] is on calculating the
probability of successful labeling after object separation,
where the posterior multiobject density has symmet-
ric nature [8], [20]. In particular, the contribution of
García-Fernández to the characterization of labeling
uncertainty problem is based on linking the so-called
probability of successful labeling to the particular metric
and point estimate considered [15]. These contributions
where exemplified for the tracking of two objects with
wireless sensor networks.

A generalization of the “unique decomposition” [4]
was provided by Croise et al. in [9],where themain focus
is to demonstrate how this decomposition can be used to
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approximate Minimum Mean Optimal Subpartern As-
signment (MMOSPA) estimates . Although MMOSPA
estimates do not provide answers to the questions in
the ProblemDescription section due to its unlabeled na-
ture, it is important to remark that the consideration of
Optimal Subpartern Assignment (OSPA) metric (or its
generalization GOSPA) has been reported successful at
preventing track-coalescence.However,MMOSPA esti-
mates are very computationally demanding to calculate
and therefore its implementation in dynamic systems
has only been reported under some approximations [10],
[11].

The use ofMMOSPAestimates has been encouraged
by the majority of reviewed solutions. Only [15] has re-
ported successful results at avoiding track-coalescence
using MMSE estimates. This becomes possible as the
specific problem formulated in Section II-A is tackled by
incorporating characterization of labeling uncertainty in
the filtering process. Interestingly, this characterization
does not rely on DA techniques and therefore it is us-
able in TBD.Unfortunately,although proposed as future
work in [15], the generalization of this solution for more
than two objects has not been addressed.

An alternative solution for incorporating DA-free
characterization of labeling uncertainty in the filtering
process was provided in [17, Section IV]. Although this
solution tackles the problem formulated in Section II-
A, it is only usable for the 2–1D objects case. Specifi-
cally, the generalization of [17, Section IV] is the gap to
be filled with the contribution in this paper.

C. Detailed Review of [17, Section IV]: Modeling
Crosses for the 2–1D Objects Case

Fig. 1 illustrates the idea of cross modeling in
the most simple scenario where the labeling prob-
lem appears: two one-dimensional objects approach
each other, stay closely-spaced for a while and finally
split.

Fig. 1. Representation on top hypothesizes that objects have
(physically) crossed an even number of times from k = 0 to k = k′.

Representation at the bottom hypothesizes that objects have
(physically) crossed an odd number of times from k = 0 to k = k′.

At k = 0, the tracker places a label to each object
according to the tracker’s convention: e.g., blue to the
target that is further away and red to the other. At any

later point in time, for instance k = k′, two labeling pos-
sibilities are worth considering. One where the furthest
object is blue and the nearest one red (example trajec-
tories on top of the figure) and the other with opposite
colors, positions being the same (example trajectories at
the bottom of the figure).

Note that the questions in Section II do not ask about
past states but only current information, for instance at
k = k′. However, although full trajectory information is
not required, it is essential to estimate whether the ob-
jects have crossed an even or an odd number of times
from k = 0 to k = k′ in order to characterize the two
possible labeling solutions.

Based on described estimation of crosses, [17,Section
IV] proposed a method to decompose the association-
free TBD multiobject posterior density. For closely-
spaced objects situations, the non-decomposed p(sk|Zk)
in equation (3) displays symmetric multimodality:

10 20 30 40 50 60 70
2661

2661.5

2662

2662.5

2663

2663.5

2661 2661.5 2662 2662.5 2663 2663.5
2661

2661.5

2662

2662.5

2663

2663.5

Fig. 2. Illustration of a closely-spaced targets situation. Ground
truth trajectories of two targets moving in a line (2–1D objects

scenario) in the left-hand side. Last joint multiobject position density
(position components of p(sk|Zk)) represented in the right-hand side.

One interpretation of the multimodality in p(sk|Zk)
with physical meaning is that the objects may have
well crossed each other from one time scan to the
next one. As one can see in Fig. 2, the probabil-
ity mass of p(sk|Zk) concentrates in separated re-
gions of the joint state space. These regions represent
different labeling permutations of the information of
interest.

In [17, Section IV], it is assumed that the state vari-
able is a vector where partitions are stacked: sk =
[xbk ẋ

b
k x

r
k ẋ

r
k]
T . Positions of each partition are denoted as

xk and velocities as ẋk. b and r are the labels for the first
and second partition respectively (blue and red for print-
ing clarity). In order to hypothesize crosses between ob-
jects, the concept of order at time step k was defined
in [17, Section IV] as:

ok = d(sk) =
{
1 if xbk > xrk
2 otherwise.

(4)

For two objects moving in one dimension, the variable
order determines whether the position of one 1D object
is larger or less than the position of another 1D object.
Also, it is trivial to interpret a permutation of order in
the state vector as a cross of objects between time steps
k− 1 and k:
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Fig. 3. No permutation of order (left-hand side), permutation of
order (right-hand side).

The notion of order/cross escapes to physical inter-
pretation in higher dimensional problems. One cannot
tell whether the position of one 2D object is larger or
less than the position of another 2D object as the defini-
tion of “>” and “<” is only valid in the 1D line. In fact,
although one order definition was provided in [17, Sec-
tion V] for the 2–2D objects case, counterexamples were
found proving it wrong.

III. GENERALIZED CHARACTERIZATION OF CROSS
MODELING

Fig. 4 illustrates the block diagram of the CMT al-
gorithm required to solve the formulated problem in
Section II-A:

Fig. 4. This TBD framework was pictured in an equivalent way
in [17]. Although the block diagram of the algorithm is generic, the
definition of ok in [17, Section IV] does not allow its use out of the

2–1D objects case. Hence, the importance of generalizing the
definition of ok.

The solution to be generalized ([17, Section IV])
was designed for particle-based implementations of the
Bayesian filter. In particle filtering, “particle mixing” is a
characteristic phenomenon inherent in approximations
of multimodal densities [12]. Interestingly for our label-
ing problem, when “particle mixing” happens at least
two particles are represented with permuted order of
partitions in the state vector [8]. In order to generalize
the definition of order/cross in [17, Section IV] to arbi-
trarily high dimensional problems, this paper proposes to
analyze and exploit “particle mixing”effects in the parti-
cle cloud.Exploitation of such “particle mixing”analysis
is realized by means of clustering the particle cloud.

Clustering the particle cloud results in remarkable
benefits compared to existent methods. These benefits
are: straightforward extraction of labeling certaintymea-
sures and trouble-free use of computationally efficient
MMSE estimation (even when p(sk|Zk) is multimodal).

A. State Space Model

The general nonlinear dynamic system and observa-
tion models can be denoted as f and q respectively:

sk = f (sk−1,nk−1), (5)

zk = q(sk, vk), k ∈ N, (6)

where sk,nk, zk, and vk represent the state, process noise,
measurement, and measurement noise, respectively.

We tackle the MOT problem in the framework of
recursive Bayesian filtering. The predicted and poste-
rior densities of interest p(sk|Zk−1) and p(sk|Zk) are ob-
tained by iteration over the Chapman–Kolmogórov and
Bayes equations:

p(sk|Zk−1) =
∫

p(sk|sk−1)p(sk−1|Zk−1)dsk−1, (7)

p(sk|Zk) = p(zk|sk)p(sk|Zk−1)
p(zk|Zk−1)

, (8)

in this framework, the models in equations (5) and (6)
are expressed in the form of p(sk|sk−1) and p(zk|sk),
respectively.

Due to the nonlinear nature of TBD measurement
models, the Bayesian recursion formulated in equa-
tions (7) and (8) cannot be implemented via (stochastic)
parametric models [22]. For this reason, a particle filter
(PF) will be used to approximate the recursion.

B. A Generic Decomposition of p(sk|Zk) in TBD

As detailed in the Section II-A, the underlying con-
cern to answer the questions in Section II is how to de-
compose p(sk|Zk) in TBD. A generic decomposition of
p(sk|Zk) can be formulated by introducing an auxiliary
variable ok:

p(sk|Zk) =
t!∑
i=1

p(sk,ok = i|Zk). (9)

Please note that the desired definition of ok is not the
one in equation (4) as we are targeting its generalization
to the t–MD objects case. The new density of interest
p(sk,ok|Zk), can be factorized as:

p(sk,ok|Zk) = p(sk|ok,Zk)P(ok|Zk), (10)

where p(sk|ok,Zk) is the posterior density of the state
vector given ok and the measurements, while P(ok|Zk)
is the posterior probability of ok. Both can be computed
using the association-free (non-decomposed) TBD filter
output p(sk|Zk) and a certain probabilistic definition of
the auxiliary variable ok:

p(sk|ok,Zk) = P(ok|sk,Zk)p(sk|Zk)
P(ok|Zk)

, (11)

P(ok|Zk) =
∫
sk
P(ok|sk)p(sk|Zk)dsk. (12)
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Assuming that the generalized definition of ok is con-
ditionally independent on Zk given sk (this is the case
for the solution in [17, Section IV]), equation (11) can
be rewritten as:

p(sk|ok,Zk) = P(ok|sk)p(sk|Zk)
P(ok|Zk)

. (13)

The generic decomposition in equation (9) together
with the desired statistical definition of order P(ok|sk)
should allow answering the questions of interest. When
MMSE estimation is the choice for extracting point
estimates, the desired definition P(ok|sk) should en-
sure that each component in equation (9) p(sk|ok =
m,Zk) is unimodal. Under this condition, the list of
t! label point estimates (question 1) can be provided
avoiding track-coalescence. Finally, the desired defini-
tion P(ok|sk) should be such that P(ok = m|Zk) repre-
sent the certainty of labeling associationm (question 2).

1) Labeled Point Estimates and Labeling Certainties
of the CMT: In a particle-based implementation of
the Bayesian recursion, p(sk|Zk) is represented with a
weighted set of particles {sik,wi

k}
Np

i=1. According to the
decomposition in equation (9),MMSE order-dependent
labeled point estimates (LPEs) can be calculated as the
expected value of sk given the order and measurements:

E[sk|ok,Zk] =
∫
sk
skp(sk|ok,Zk)dsk

=
Eq(13)

1
P(ok|Zk)

∫
sk
skP(ok|sk)p(sk|Zk)dsk

≈ 1
P(ok|Zk)

∑
i

wi
ks
i
kP(ok|sik).

(14)

Order-dependent labeling certainties are necessarily in
the second factor of equation (10):

P(ok|Zk) =
∫
sk
P(ok|sk)p(sk|Zk)dsk ≈

∑
i

wi
kP(ok|sik).

(15)

Evaluation of E[sk|ok,Zk] for each possible realiza-
tion of ok provides a different vector of LPEs (answer to
question 1):

E[sk|ok = m,Zk] ≈ 1
P(ok = m|Zk)

∑
i

wi
ks

i
kP(ok = m|sik)

≈ 1
P(ok = m|Zk)

∑
i|oik=m

wi
ks

i
k wherem ∈ {1, 2, .., t!}. (16)

In the same way, evaluation of P(ok|Zk) for each possi-
ble realization of ok provides a scalar with the associated
labeling probability (answer to question 2):

P(ok = m|Zk) ≈
∑
i

wi
kP(ok = m|sik) ≈

∑
i|oik=m

wi
k. (17)

2) Algorithm Implementation: Alg. 1 is the practi-
cal implementation of the functionalities illustrated in
Fig. 4.

Algorithm 1 Pseudo-code of the PF algorithm for
implementation of the CMT. Extensions over the plain
SIR TBD particle filter plus traditional MMSE estimate
extraction are highlighted in blue color. p(sk) and p(nk)
denote the initial prior and the process noise models.

1 k = 0
2 Draw Np samples sik from p(sk)
3 Draw Np samples nik from p(nk)
4 k = k+ 1
5 sik = f (sik−1,n

i
k−1)

6 Calculate oik according to the definition of
“order” under test

7 Given zk, obtain w̃i
k = p(zk|sik)

8 Normalize weights wi
k = w̃i

k/
∑Np

j=1 w̃
j
k

9 Resample from p̂(sk|Zk) = ∑Np

i=1 wi
kδ(sk − sik):

10 Extract LPEs according to equation (16)
11 Obtain certainty measures of LPEs

according to equation (17)
go to 3

IV. PERFORMANCE EVALUATION OF THE CROSS
MODELING (CM) METHOD

Before delving into the main contribution of this pa-
per, this section provides an optimal reference for fu-
ture evaluation of the generalized CMT. Also, the val-
idation of the solution in [17, Section IV] is provided
in this section. Two algorithms implementing the op-
timal reference were provided in [18] based on the
link between the DA problem and the labeling prob-
lem. In order to provide a self-contained explanation,
the essential theory required to build up the optimal
references is provided in Appendix A. The method
we apply to validate the CMT can be summarized as
follows:

In DBT context and taking the considerations from the
sixth bullet point in Appendix A.

� Generate the analytical decomposition of p(sk|Zk):

p(sk|Zk) ∝
t!∑

m=1

l(πm(zk)|sk)p(sk|Zk−1). (18)

� For each data-association-dependent component
l(πm(zk)|sk)p(sk|Zk−1)
– Extract MMSE labeled point estimates (optimal
reference):

E[p(πm(zk)|sk)p(sk|Zk−1)]

=
∫
sk
skp(πm(zk)|sk)p(sk|Zk−1)dsk. (19)
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– Extract labeling certainty associated (optimal refer-
ence):

p(πm(zk)|Zk) =
∫
l(πm(zk)|sk)p(sk|Zk−1)dsk∑t!

m=1

∫
l(πm(zk)|sk)p(sk|Zk−1)dsk

.

(20)

� Decompose p(sk|Zk) from equation (18) using the
CMT decomposition (equation (9)):

p(sk|Zk) =
t!∑

m=1

p(sk,ok = m|Zk). (21)

� For each data-association-free component p(sk,
ok = m|Zk), factorize it as in equation (10) and:
– Extract CMT MMSE labeled point estimates ac-
cording to equation (16).

– Extract CMT labeling certainty associated accord-
ing to equation (17).

It is very important to remark that, although the
CMT is motivated by the needs of TBD filtering, per-
formance of the CMT can only be evaluated in the con-
text of DBT. This becomes apparent when consider-
ing the evaluation method described above this lines.
Please note that the optimal references in equations (19)
and (20) need to be derived from the DBT analytical ex-
pression in equation (18). Nonetheless, the validation in
DBT guaranties equivalent estimation performance of
the CMT in TBD.This is because the CMT is designed to
infer the relevant DA-free decomposition of any poste-
rior density, disregarding whether it (the posterior den-
sity) was generated in the context of DBT or TBD.

Estimation performance of the CMT can be mea-
sured as the quality of the decomposition in equa-
tion (21). This is done in following sections by using
the results in equations (19) and (20) as the optimal
reference to answer the questions in Section II. For the
validation of the proposed generalization of “order,”
the results in equations (16) and (17) will be compared
with the optimal reference.

A. Algorithm Implementation

Alg. 2 implements the generation of the optimal ref-
erences to answer questions in Section II based on the
decomposition of equation (18). Concerning the sec-
ond Remark in the Appendix A, p(sk|Zk−1) is com-
monly formulated as amixture of densities in algorithms
such as MHT, leading to exponentially increasing num-
ber of hypotheses over time. However, in the context
of this paper, equation (18) is implemented with a sin-
gle particle filter. Therefore, p(sk|Zk−1) can be formu-
lated as a single density, even when it has multimodal
nature.

Algorithm 2 Pseudo-code for generation of optimal
references (lines 9 and 10) to answer questions in
Section II.

1 k = 0
2 Draw Np samples s jk from p(sk)
3 Draw Np samples n jk from p(nk)
4 k = k+ 1
5 s jk = f (s jk−1,n

j
k−1)

Generate data-association-dependent posterior
beliefs

6 for i=1 until t!
7 Given zk, obtain w̃

i, j
k = p(πi(zk)|s jk)

8 Normalize weights w
i, j
k = w̃

i, j
k /

∑Np

j=1 w̃
i, j
k

9 Extract LPEs according to the particle − based
approximation of equation (19)

10 Obtain certainty measures of LPEs according to
particle − based approximation of equation (20)
Sum data-association-dependent posteriors in
order to approximate p(sk|Zk) with a single
particle cloud

11 for j=1 until Np

12 w
′ j
k = ∑t!

i=1 w
i, j
k

13 Normalize weights w
j
k = w

′ j
k /

∑Np

j=1 w
′ j
k

14 Resample Np times from
p̂(sk|Zk) = ∑Np

j=1 w
j
kδ(sk − s jk) to

generate p̂(sk|Zk) = 1
Np

∑Np

j=1 δ(sk − s jk)
go to 3

B. Performance Evaluation of [17, Section IV]

The choice of simulation parameters to evaluate the
solution in [17, Section IV] is shown in Table I. This
parametrization generates high amount of labeling un-
certainty in order to challenge the MOT algorithm. This
becomes apparent when considering the overlapping in
between partitions of different colors (labels) of the pre-
dicted and posterior particle cloud in Fig. 5.

The evaluation can be reproduced by setting up the
trajectories for the objects with initial and minimum dis-
tance as indicated by di and dm in Table I. The evalu-
ation considers the dynamic and measurement models
as nearly constant velocity [2] and linear-Gaussian. The
standard deviations of the process noise and observation
noise are indicated by σn and σv , respectively, in Table I,

TABLE I
Parameters of the simulation

Parameter Value

di 1.66 m
dm 0.22 m
σn 0.14 m/s3/2

σv 0.045 m
τ 1 s
Np 10000 particles
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Fig. 5. Illustration of real trajectories as well as predicted and
posterior particle clouds along all simulation time steps. The particle
mixing effect can be observed, for instance, in the posterior particle
clouds after object separation. In fact, different particles hypothesize

the state of the same physical object with different partitions.

where τ denotes the revisit time. Without loss of gener-
ality, choosing these simple models suffices to validate
Alg. 1 with Alg. 2.

The definition of ok in equation (4) can be rewritten
in a probabilistic form:

P(ok = 1|sk) = 1 i f xbk > xrk,

P(ok = 2|sk) = 1 i f xbk ≤ xrk.
(22)

The definition in equation (22) can be plugged into
equations (13) and (12) in order to decompose p(sk|Zk)
using the CMT (Alg. 1). By these means, LPEs and
associated labeling certainties can be generated with
Alg. 1 and evaluated with the optimal reference gen-
erated by Alg. 2. Simulation results illustrated in
Figs. 6 and 7 validate the cross modeling solution for
the 2–1D objects case using the evaluation method de-
scribed along this section.
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Fig. 6. Evaluation of estimation performance of the CM method for
a 2–1D objects scenario. Cross modeling based estimates are

extracted only from the cluster associated to “order” 1.
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Fig. 7. Evaluation of estimation performance of the CM method for
a 2–1D objects scenario. Cross modeling based estimates are

extracted only from the cluster associated to “order” 2.

1) Comments on the Results: Alg. 1 decomposes
the particle cloud in two (t!) clusters. These clusters
explicitly approximate the DA-free decomposition in
equation (9). The cluster associated to “order” 1 sup-
ports the hypothesis that the maneuvers of the two
labeled objects lead to non-crossed trajectories with
respect to the initialization ∀k. This cluster produces
LPEs represented in Fig. 6 as x̄b,rk (o = 1). The certainty
measure associated (P(o = 1|Zk) curve) is extracted
from the particle approximation of the joint multiobject
posterior in step 11 of Alg. 1.

Over the first 4 seconds of the simulation, the
LPE(o = 1) holds full certainty. No single particle be-
longs to the cluster o = 2 and therefore, no representa-
tive can be extracted from there (see Fig.7).As expected,
P(ok = 1|Zk) drops down to around 0.5 after the ob-
jects remain closely-spaced for some time. This means
that labeling information has been completely lost. La-
beling information cannot be recovered after the split as
suggested by the measure of certainty. The LPE(o = 2)
supports the hypothesis that the maneuvers of the two
labeled objects lead to crossed trajectories with respect
to the initialization ∀k.

Estimation results produced by the CMT closely
match the optimal references generated by Alg. 2. This
validates the CM method as a solution to the prob-
lem defined in the Section II-A for the 2–1D objects
scenario.

V. FIRST GENERALIZATION OF THE DEFINITION OF
cross: SCENARIOS WITH ARBITRARY NUMBER t
OF 1D OBJECTS

For 2–1D object settings, equation (4) provides the
order of any particle given its state. We will refer to this
calculation as an absolute evaluation of order. Unlike 1-
D points, 2-D points cannot be ordered making use of
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the operators ≤ and >. For this reason, finding an abso-
lute evaluation of “order” in 2-D is not a trivial concern.

A. Absolute Versus Relative Order Calculation and the
Definition of Cross:

An alternative method to obtain the order can be re-
alized by relative evaluation: relying on the prior order at
time step k− 1 and detecting whether or not the objects
have crossed from time step k− 1 to k,

P(ok = 1|sk) = 1 P(ok = 2|sk) = 1

P(ok−1 = 1|sk−1) = 1 no cross cross
P(ok−1 = 2|sk−1) = 1 cross no cross

For 2–1D objects scenarios:

xrk < xbk xrk ≥ xbk

xrk−1 < xbk−1 no cross cross
xrk−1 ≥ xbk−1 cross no cross

Therefore, for a cross to be declared, one of the two
following conditions should hold:

xrk−r < xbk−r and xrk ≥ xbk, (23)

xrk−r ≥ xbk−r and xrk < xbk. (24)

The relative “order” evaluation method shifts the
generalization problem from the definition of order to
the definition of cross. A cross detector for 2–1D ob-
jects can be derived from the absolute definition in equa-
tion (4). Let us denote s′pk as the position part of the
state vector sk = [xbk ẋbk xrk ẋrk] of particle p at time
step k: s′pk = [xp,bk xp,rk ]. Since s′pk and s′pk−1 are vectors
in a 2D space (two objects placed along 1D spacial di-
mension), one can calculate the Euclidean distance or
l2−norm between them in the joint space as (superscript
p is dropped for notation simplicity):

norm(s′k − s′k−1) =
√
(xrk − xrk−1)

2 + (xbk − xbk−1)
2 (25)

=
√
(xrk)

2 − 2(xrkx
r
k−1) + (xrk−1)

2 + (xbk)
2 − 2(xbkx

b
k−1) + (xbk−1)

2

(26)

=
√
(xbk − xrk−1)

2 + (xrk − xbk−1)
2 + 2(xrk−1 − xbk−1)(x

b
k − xrk) (27)

Then,

norm2(s′k − s′k−1) = (xbk − xrk−1)
2 + (xrk − xbk−1)

2

+ 2(xrk−1 − xbk−1)(x
b
k − xrk) (28)

norm2(s′k − s′k−1) = norm2(�s′k − s′k−1) +K (29)

where K = 2(xrk−1 − xbk−1)(x
b
k − xrk) and � denotes the

permutation matrix:

� =
(
0 1

1 0

)
. (30)

Each of the equations (23) and (24) define conditions for
a cross to be declared. Interestingly, when any of these
equations is applied to function K, the result is K > 0
as long as xrk−1, x

b
k−1, x

r
k and x

b
k take positive values. Vari-

ables xrk−1,x
b
k−1,x

r
k,and x

b
k can only take positive values in

our application problem as these are range magnitudes.
Therefore, inequation (31) holds as long as a cross in the
state vector of particle p takes place:

norm2(s′pk − s′pk−1) > norm2(�s′pk − s′pk−1). (31)

Equivalently, the next order switch condition can be
used to find out whether or not a cross should be de-
clared for the particle p between time instants k − 1
and k.

norm(s′pk − s′pk−1) > norm(�s′pk − s′pk−1). (32)

The result in equation (32) can be pictured in a phys-
ically meaningful way:

Fig. 8. The illustration in the left hand side represents an
order switch as the points pk and pk+1 belong to different sides of the
diagonal xr = xb. Indeed, inequation (32) holds in this case. In the
right hand side the point p does not cross the line xr = xb between

time instants k and k+ 1 meaning that the order remains the same in
this case. Indeed, inequation (32) does not hold.

B. Generalization of Cross from 2–1D to t–1D Cases

This generalization considering 1D objects makes
use of the relative definition of “order”based on inequa-
tion (32), applied to all possible pairs of partitions in
the state vector. As the number of possible labeling so-
lutions is t!, only the extension from two to three tar-
gets will be exemplified due to space limitations. Nev-
ertheless, there is no loss of generality as the same
technique can be applied to any arbitrary number of
targets t.

For a three-object scenario, the three partitions in the
state vector can be ordered in six different ways accord-
ing to, for instance, the following convention:
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TABLE II
As an example, this convention will group in cluster 1 those particles
complying with: position of the first partition is less than the position
of the second partition, being the position of the second partition less
than the position of the third partition. For the sake of printing clarity
in forthcoming simulation experiments, the first, second and third

partitions will be identified with colors green, red, and blue,
respectively.

1D magnitude
increasing direction

→
o= 1 1st 2nd 3rd

o= 2 1st 3rd 2nd

o= 3 2nd 1st 3rd

o= 4 3rd 1st 2nd

o= 5 2nd 3rd 1st

o= 6 3rd 2nd 1st

Between time steps k− 1 and k, there exist eight dif-
ferent types of crosses which could happen. Each cross
type is composed of three boolean variables. These are
used to codify whether or not a cross is declared between
pairs of partitions. When the boolean variable is set to
1, a cross is declared between the corresponding pair of
objects. For instance, one can adopt the following con-
vention:

Cross of Cross of Cross of
partitions partitions partitions
1st − 2nd 1st − 3rd 2nd − 3rd

C1 0 0 0
C2 0 0 1
C3 1 0 0
C4 0 1 1
C5 1 1 0
C6 1 1 1
C7 1 0 1
C8 0 1 0

These cross-type codes can be used now for relative
evaluation of the order at time step k, given the order at
time step k− 1.

ok = 1 ok = 2 ok = 3 ok = 4 ok = 5 ok = 6

ok−1 = 1 C1 C2 C3 C4 C5 C6
ok−1 = 2 C2 C1 C7 C8 C6 C5
ok−1 = 3 C3 C7 C1 C6 C8 C4
ok−1 = 4 C4 C8 C6 C1 C7 C3
ok−1 = 5 C5 C6 C8 C7 C1 C2
ok−1 = 6 C6 C5 C4 C3 C2 C1

C. Simulation Results

The estimation performance of the CM method for
a 3–1D objects scenario, using inequation (32) as the
“cross detector”, is illustrated in this subsection. Note
that the validation method summarized in Section IV
is based on evaluation of data association hypotheses.
Therefore,Alg. 2 can be used right away to generate op-
timal LPEs and labeling probabilities in any arbitrary
t–MD objects case. Fig. 9 illustrates the estimation per-
formance of the CM tracker.

1) Discussion of Results: The results in Fig. 9 re-
veal remarkably accurate estimation performance of the
CMT both in the computation of LPEs and labeling
probabilities.This validates the CMT as a convenient so-
lution to answer the questions in Section II for scenar-
ios where an arbitrary number of objects move in one
dimension.

The choice of the particular ground truth trajectories
in Fig. 9 results in complete loss of labeling information
(1/3! certainty for all LPEs). Although Fig. 9 illustrates
this worst case scenario, it is apparent that the CMT ac-
curately estimates labeling uncertain also in more favor-
able scenarios. For instance, scenarios where the objects
remain closely-spaced for a shorter time and labeling
certainty is lost only partially.

Disregarding the scenario, losing labeling informa-
tion is a physical limitation inherent in closely-spaced
object scenarios. Furthermore, once labeling certainty
is lost, is mathematically not possible to recover it (as-
suming that the objects cannot be differentiated in mea-
surements/maneuverability). In this context, all what can
be expected from the tracker is that it captures the un-
certainty produced by the combination scenario/sensor-
limitations as accurately as possible.While regular TBD
filters such as the one in [6] fail at doing so, the CMT
reports successful results for the cases simulated so far.

VI. SECOND GENERALIZATION OF THE DEFINITION
OF cross: FROM t–1D TO t–MD OBJECTS

Section III-B presented a generic DA-free decompo-
sition of p(sk|Zk) by introducing the (not yet defined)
variable ok. An analytical expression for the LPEs and
labeling probabilities (dependent on the definition of ok)
was provided in equations (16) and (17).Another analyt-
ical derivation provided in Section V-A has proved that
the relative calculation of ok for the 2–1D objects case,
based on inequation (32), leads to identical results than
the absolute calculation of ok based on equation (4).

Section V-B illustrated how the relative calculation
of ok [based on inequation (32)] can be extended seam-
lessly to cope with more than two objects moving in a
one-dimensional space. This section covers the general-
ization of the relative calculation of ok from 1D to MD
objects. In practice, simulation experiments will be lim-
ited to caseswhereM is 2 and 3 to illustrate that theCMT
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Fig. 9. Evaluation of estimation results provided from the clusters associated to all states of “order” in Table II.

can be used for tracking land/sea objects (2D) and air
objects (3D).

The reader is referred to Appendix B at this point
in order to understand the complexity of extending the
definition of ok in equation (4) to objects moving in 2
and 3 spacial dimensions.

A. Generalization of the Cross Detector for 2–2D
Objects Settings

Inequation (32) does not extend straightforwardly
from 2–1D to 2–2D objects scenarios as illustrated in
Appendix B. However, the reason why inequation (32)
works well for the 2–1D case can be found after analyz-
ing the functionK derived in Section V-A.Given the 2D
points s′pk−1 and s

′p
k (two objects in a 1D space), the func-

tion K = 2(xrk−1 − xbk−1)(x
b
k − xrk) complies with a very

particular condition:

K(s′pk−1, s
′p
k ) = −K(s′pk−1,�(s′pk )), (33)

as s′pk and �(s′pk ) are crossed with respect to each other,
K can be regarded as an odd function in the “order” of
s′pk . In other words, two different evaluations of K, using
the current state of particle p and its permuted version
are equal in absolute value but different in sign:

|K(s′pk−1, s
′p
k )| = |K(s′pk−1,�(s′pk ))|

sgn(K(s′pk−1, s
′p
k )) = sgn(−K(s′pk−1,�(s′pk ))).

(34)

Additionally, as we already pointed out in Section V-A:

K(s′pk−1, s
′p
k ) > 0 ⇔ s′pk−1, s

′p
k are crossed. (35)

The condition K(s′pk−1, s
′p
k ) > 0 and inequation (32)

are equivalent “cross detectors” for the 2–1D case due

to equation (29). Our problem formulation can be nar-
rowed down to the following question:What is the 2–2D
counterpart of the K function which can be applied to
the two 4D points s′pk−1 and s

′p
k ?

Let us consider an equivalent expression of K intro-
ducing the norm function, which we denote as K2–1D:

K = K2–1D = 2(norm(s′rk−1) − norm(s′bk−1))(norm(s′bk )

−norm(s′rk )). (36)

The desired function K2–2D : R
8 → R can be found by

considering the counterpart ofK2–1D for the 2–2D case:

K2–2D = 2(norm(s′rk−1) − norm(s′bk−1))(norm(s′bk )

−norm(s′rk )). (37)

where now s′pk = [xp,bk yp,bk xp,rk yp,rk ]T , s′p,rk = [xp,rk yp,rk ]T

and s′p,bk = [xp,bk yp,bk ]T .K2–2D is indeed the odd function
(in the “order”of s′k) which complies with the conditions
in equations (33) and (35). Therefore, the extension of
the definition of “cross” for the 2–2D objects case is:

K2–2D > 0. (38)

1) Simulations Results: The results provided by the
CMT for the 2–2D objects case using inequation (38) as
the “cross detector” are shown in Fig. 10.

B. Discussion of the Results

The results reveal remarkably accurate estimation
performance of the CMT both in the computation of
LPEs and labeling probabilities. This validates the CMT
as a convenient solution to answer the questions in
Section II for 2D objects. In fact, LPEs result in low
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Fig. 10. Evaluation of estimation performance of the CM method
when inequation (38) is used as the “cross detector.” LPEs and

labeling uncertainties are extracted from the clusters “order” 1 and 2,
illustrated on top and middle figures. Alg. 2 is the performance
evaluator algorithm. The figure at the bottom confirms that the
“order detector” in inequation (38) is appropriate. In fact, the

associated clustering method removes particle mixing within clusters
after objects separation.

OSPA errors. This becomes possible even when extract-
ing cost efficient MMSE [see equation (16)] point esti-
mates thanks to the clustering method, which separates
particles in different state of “order.” These results sup-
port our argument that the design of the proper “cross
detector” should produce a decomposition of p(sk|Zk)
where each component is unimodal. Also, very accurate
estimation of labeling uncertainty is provided, which
can be calculated by simply considering the proportion
of particles within each order-dependent cluster [see
equation (17)].

C. Generalization of the Cross Detector to 2–3D
Objects Settings

The function K2–3D : R
12 → R is the counterpart of

K2–1D for the 2–3D objects case:

K2−3D = 2(norm(s′rk−1) − norm(s′bk−1))(norm(s′bk )

−norm(s′rk )), (39)

where now s′pk = [xp,bk yp,bk zp,bk xp,rk yp,rk zp,bk ]T . As s′pk and
�(s′pk ) are in different states of “order,”K2−3D is also and
odd function (in the “order” of s′pk ) which complies with
the conditions in equations (33) and (35). The evalua-
tions of the current state and its permuted version are
equal in absolute value but different in sign. Therefore,
the exact same definition for the “cross detector” from
K2–1D and K2–2D cases can be used in the K2−3D case:

K2−3D > 0. (40)

1) Simulations Results: The results provided by the
CM method for the 2–3D objects case using inequa-
tion (40) as the “cross detector” are shown in Figs. 11
and 12.

Fig. 11. Evaluation of estimation performance of the CM method
when inequation (40) is used as the “order switch” detector. Labeled
point estimates are extracted from the cluster “order” 1. Alg. 2 is the

performance evaluator algorithm.

Fig. 12. Evaluation of estimation performance of the CM method
when inequation (40) is used as the “cross detector.” Labeled point
estimates are extracted from the cluster “order” 2. Alg. 2 is the

performance evaluator algorithm.

D. Discussion of the Results

The results reveal remarkably accurate estimation
performance of the CMT both in the computation of
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LPEs and labeling probabilities. This validates the CMT
as a convenient solution to answer the questions in Sec-
tion II also for 3D objects.

VII. CONCLUSIONS

Cross Modeling Tracking has been presented as a
DA-free solution to the MOT problem. DA-free solu-
tions are specially relevant in the TBD context, where
advantages concerning tracking of low SNR and closely-
spaced objects have been reported in previous literature.
The main contribution of the paper is the non-trivial
generalization of the idea in [17, Section IV] from the
2–1D objects case to the t–MD objects cases.

The underlying problem to solve the MOT problem
in TBD has been formulated as: how to decompose a
DA-free Bayes posterior so that labeling uncertainty can
be characterized. The reviewed method in [17, Section
IV] provides an answer based on modeling crosses be-
tween objects, but it is only suitable in the 2–1D objects
case. A generic formulation of the desired decomposi-
tion for the t–MD case is provided. Furthermore, the
generalized definition of cross-between-objects has been
derived from ameaningful interpretation of the problem
in the low dimensional setting.

The paper also revisits the method in [18] and uses
it to generate optimal references in order to evaluate
estimation performance of the CMT. Simulation results
involving challenging closely-spaced objects scenarios
have been provided. The results illustrate that the CMT
is usable in the general t–MD objects case under the as-
sumption that t is known and constant. Therefore, the
proposed solution extends the state-of-the-art of TBD
MOT. For the first time in literature, characterization
of labeling uncertainty with validated estimation per-
formance and efficient scalability has been provided for
seamless use in TBD context.

As for future work, the formulation of the CMT
within the RFS framework will be investigated in or-
der to add cardinality estimation capabilities. This is re-
quired for the CMT to be declared as a solution for
the complete MOT problem, where the assumption of
known and constant number of objects does not hold.
Additionally, studying the use of the CMT in the context
of DBT may lead to interesting advantages. This may be
specially the case when comparing withDBTmethods in
scenarios where DA needs to account for large number
of non-negligible hypotheses.

APPENDIX A RELATION BETWEEN THE DATA
ASSOCIATION PROBLEM AND THE
LABELING PROBLEM

Definitions:

� DA defines hypotheses matching detections and
labels.

� Labeling association defines hypotheses matching
point estimates and labels.

Applicability:

� DA applies before update.
� Labeling association applies after update and point
estimate extraction.

The interesting problem from the application point
of view is the labeling problem. The purpose of this ap-
pendix is illustrating that:

� DBT trackers only tackle the DA problem. However,
once the DA problem is solved, the solution of the
labeling problem follows right away: one only needs
to perform association dependent updates and extract
(labeled) point estimates.

Let us take the following considerations in order to
prove that onceDA is solved, the solution to the labeling
problem follows right away:

� In DBT context, let us consider:
– Perfect detectability, no false detections.
– No merged measurements.
– The measurements do not provide any info about
label.

Let us define zk as the vector of detections at time
step k with explicit indication of correct DA: zk =
[p1, p2, ..., pt]

T . The vector ω = [π1, π2, ..., πt!]T con-
tains the functions to perform all possible permutations
of t elements. The tracker cannot access zk but an unla-
beled version of it, which we denote as zk.

The DBT measurement zk is a set since different
ways of ordering detections define the same measure-
ment. Nevertheless, one can formulate zk as a vector,
zk = [d1,d2, ..., d t]T . Note that the subscripts in zk are
labels, the subscripts in zk only define the particular or-
der in which detections are collocated, as this order is
random:

P(zk = πm(zk)) = P(zk = πn(zk))

∀{m,n} : {πm, πn} ∈ ω. (41)

Let us consider the state vector sk, where the individ-
ual states of t objects are staked with explicit indication
of labels: sk = [s1k, s

2
k, ..., s

t
k]
T . Solving the DA problem

requires: generation of DA hypotheses and evaluation
of the DA hypotheses. Let us use hk to note the set of
generated DA hypotheses: hk = {(a1,a2, ...,at!)}, where
am = πm(zk), for m =1, 2, .., t!. Note that the subscripts
in the vector am are not labels, the labels are implicit in
the order of am. For illustrative purposes, consider there
are two objects and a1 = [d2

,d1]T : this means that a1
hypothesizes that the detection which came in second
position in zk was produced by target labeled as 1 and
the one which came in first position was produced by the
target labeled as 2.

Given the model for the likelihood of the measure-
ments conditioned on the state l(zk|sk), a DA dependent
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decomposition of p(sk|Zk) can be formulated as:

p(sk|Zk) ∝
t!∑

m=1

l(πm(zk)|sk)p(sk|Zk−1). (42)

From equation (42), one can conclude that in DBT
an analytical decomposition relevant for labeling char-
acterization follows from solving the DA problem. In
fact, each component in the sum directly relates one DA
hypotheses πm(zk) with its association-dependent poste-
rior l(πm(zk)|sk)p(sk|Zk−1). Furthermore, extraction of
sufficient statistics from each component in the sum, by
minimizing the MMSE, provides a labeled point esti-
mate. Note that a labeled point estimate explicitly hy-
pothesizes one particular association between point es-
timates and labels. This trivial derivation demonstrates
that once DA is solved, the solution of the labeling prob-
lem follows right away.

Remarks:

� The analytical evaluation of labeling association hy-
potheses has a one-to-one relation to the evaluation
of DA hypotheses. In particular, the certainty asso-
ciated to the labeled point estimate extracted from
l(πm(zk)|sk)p(sk|Zk−1) is:

p(πm(zk)|Zk)

=
∫
l(πm(zk)|sk)p(sk|Zk−1)dsk∑t!

m=1

∫
l(πm(zk)|sk)p(sk|Zk−1)dsk

. (43)

� Under the assumption that p(sk|Zk−1) can be formu-
lated as one single density ∀k, equation (42) does not
run into combinatorial explosion over time.

� This analytical derivation is the base of the optimal
reference that will be used to evaluate the CMT pro-
posed as the main contribution of this paper.

� Note that the evaluations of l(πm(zk)|sk) and
l(zk|πm(sk)) are equivalent. Therefore, equation (42)
can be rewritten as:

p(sk|Zk) ∝
t!∑

m=1

l(zk|πm(sk))p(sk|Zk−1). (44)

APPENDIX B NAIVE GENERALIZATION OF ok

A naive extension of the definition of “cross”
from 2–1D to 2–2D settings will be presented in this
appendix. This is not only to illustrate the complexity of
the problem but also to familiarize the reader with some
consistency checks that the correct extension of “cross”
should comply with.

The naive attempt presented in this appendix con-
siders that inequation (32) is the “cross detector” for the
2–2D objects case. After all, a point can be evaluated by
the l2−norm function disregarding the dimensionality of
the point. Only two formal modifications need to be ac-
counted for when extending inequation (32) from 2–1D
to 2–2D settings. First, the l2 − norm calculation for the

2–2D objects case becomes:

norm(s′k − s′k−1)

=
√
(xrk − xrk−1)

2 + (xbk − xbk−1)
2 + (yrk − yrk−1)

2 + (ybk − ybk−1)
2,

(45)

where now s′pk = [xp,bk yp,bk xp,rk yp,rk ]T . Second, the permu-
tation matrix � for the 2–2D objects case becomes:

� =

⎛
⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎠ . (46)

Given these modifications, the results provided by the
CMT for the 2–2D objects case are shown in Fig. 13.
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Fig. 13. Evaluation of estimation performance of the CM method
using a naive 2–2D “cross” detector. Alg. 2 generates the optimal

references.

The results reveal degraded estimation performance
of the CMT both in the computation of LPEs and label-
ing probabilities. In fact, LPEs result in high OSPA er-
rors (specially after objects separation) due to the well
known “track coalescence” effect. This undesired effect
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is expected if MMSE point estimates are extracted from
multimodal densities when labeling uncertainty charac-
terization is not appropriately accounted for.

One can conclude that this attempt to generalize the
definition of “cross” is naive. In fact, the use of inequa-
tion (32) as the “cross detector” does not remove par-
ticle mixing inside each cluster after objects separation.
This is illustrated at the bottom part of Fig. 13,where the
particlemixing-ratio using CMT clustering, calculated as
the ratio between the number of “mixed particles” and
the total number of particles, does not drop to zero after
target separation.
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