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Abstract
We engineer planar Ge/SiGe heterostructures for low disorder and quiet hole quantum dot
operation by positioning the strained Ge channel 55 nm below the semiconductor/dielectric
interface. In heterostructure field effect transistors, we measure a percolation density for
two-dimensional hole transport of 2.1 × 1010 cm−2, indicative of a very low disorder potential
landscape experienced by holes in the buried Ge channel. These Ge heterostructures support quiet
operation of hole quantum dots and we measure an average charge noise level of√

SE = 0.6 μeV/
√

Hz at 1 Hz, with the lowest level below our detection limit√
SE = 0.2 μeV/

√
Hz. These results establish planar Ge as a promising platform for scaled

two-dimensional spin qubit arrays.

The promise of quantum information with quantum dots [1] has led to extensive studies for suitable quan-
tum materials. While initial research mainly focused on gallium arsenide heterostructures because of its
extremely low level of disorder, hyperfine interaction with nuclear spins has limited the quantum coher-
ence of spin qubits [2, 3]. Instead, silicon naturally contains only few non-zero nuclear spin isotopes and
can furthermore be isotopically enriched, such that quantum coherence can be maintained for very long times
[4, 5]. However, the relatively large effective mass and the presence of valley states complicates scalability [6]
and warrants the search for alternative quantum materials.

Germanium has prospects to overcome these challenges and is rapidly emerging as a unique material for
quantum information [7]. Holes in germanium exhibit strong and tunable spin–orbit coupling allowing for
fast and all-electrical control of spin qubits [8–11]. The light effective mass along the Ge quantum well (QW)
interface induces large orbital energy spacing for quantum dots and thereby relaxes the lithographic fabrication
requirements [12]. In addition, ohmic contacts can be made to metals, which enabled the development of
hybrid superconductor–semiconductor circuits [13–15], and promises novel approaches for long-range qubit
links to engineer scalable qubit tiles [16].

Importantly, Ge QWs can be engineered in silicon–germanium (Ge/SiGe) heterostructures [17] that are
fabricated using techniques compatible with existing semiconductor manufacturing [18], which facilitates
large scale device integration. These advances enabled to define stable quantum dots [13], to operate quan-
tum dot arrays [19], to realize single hole spin qubits [20] with long spin life-times [21], and to demonstrate
full two-qubit logic [11]. In all these experiments, the Ge QW was located remakarbly close to semiconduc-
tor/dielectric interface at a depth of only 22 nm [17]. While this shallow heterostructure showed an ultra-high
maximum mobility exceeding 5 × 105 cm2 V−1 s−1, possibly due to passivation of surface impurities by tun-
neled carriers from the QW, a rather high percolation density pp = 1.2 × 1011 cm−2 was measured. This value
is similar to the values reported for Si metal-oxide semiconductor field effect transistors [22–24] and about
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twice the value reported in Si/SiGe QWs [25, 26]. Since the percolation density characterizes disorder at low
densities, which is the typical regime for quantum dot operation, a significant development is still needed to
make undoped Ge/SiGe heterostructures compatible with existing architectures for large-scale quantum infor-
mation processing with quantum dots, all relying on highly uniform qubits that exhibit extremely low noise
[16, 27].

Here, we demonstrate planar Ge/SiGe heterostructures with very low levels of disorder and charge noise,
setting new benchmarks for semiconductor materials for spin qubits. We quantify disorder beyond the metric
of maximum mobility and focus on the percolation density, the single-particle relaxation time (τq), which
measures the time for which a momentum eigenstate can be defined even in the presence of scattering [28],
and we report the associated quantum mobility μq = eτ q/m∗ [29], with e the elementary charge and m∗ the
effective mass. By increasing the separation between the QW and the semiconductor/oxide interface to 55 nm,
both pp andμq improve, and we find percolation densities as low as pp = 2.1 × 1010 cm−2 and quantum mobil-
ities as high as μq = 2.5 × 104 cm2 V−1 s−1. We introduce a method to measure charge noise in gate-defined
quantum dots by scanning over Coulomb peaks to discriminate between measurement and device noise. We
find that charge noise can be below our detection limit of

√
SE = 0.2 μeV/

√
Hz at 1 Hz, about an order of

magnitude less than previously reported for germanium quantum dots [13].
We grow Ge/SiGe heterostructures by reduced-pressure chemical vapor deposition on a Si(001) wafer and

fabricate Hall-bar shaped heterostructure field effect transistors (H-FETs) for magnetotransport characteri-
zation by four-probes low-frequency lock-in techniques as described in reference [17]. Figure 1(a) shows a
cross-section schematic of the H-FET in the channel region. Figure 1(b) shows a high angle annular dark field
scanning transmission electron (HAADF-STEM) image of the active layers of the H-FET, with no visible defects
or dislocations. The strained Ge QW is uniform, has a thickness of ≈ 16 nm [determined by the analysis of
high resolution STEM image as discussed in the supplementary information (https://stacks.iop.org/MQT/1/
011002/mmedia)], and is separated from the SiOx/Al2O3 dielectric stack by a Si0.2Ge0.8 barrier. The QW thick-
ness is in agreement with the values reported in reference [17], highlighting the reproducible growth process
achieved by reduced-pressure chemical vapor deposition in an industrial reactor. We chose a Si0.2Ge0.8 barrier
thickness t = 55 nm to suppress surface tunneling from the strained Ge QW [30] and improve the electronic
environment, while maintaining a sharp confinement potential for quantum dots with excellent tunability. We
achieve smooth interfaces between the Ge QW and nearby Si0.2Ge0.8 and between then Si0.2Ge0.8 barrier and
the dielectric, highlighting the high-quality of epitaxy and device processing.

Applying a negative bias to the Ti/Au gate induces a two-dimensional hole gas and controls the carrier den-
sity in the QW. Figure 1(c) shows the transport mobility μ as a function of density p. The mobility increases
steeply to 1×105 cm2 V−1 s−1 in the low-density range (2.4–3.9×1010 cm−2) due to increased screening of scat-
tering from remote charged impurities, likely at the semiconductor/dielectric interface. At higher density, the
mobility also becomes limited by short-range scattering from impurities within or near the QW and saturates,
reaching a maximum value of 2.5 × 105 cm2 V−1 s−1 at a density of 9.2 × 1010 cm−2. The saturation of mobil-
ity upon increasing density indicates that surface tunneling is suppressed in this H-FET. In shallow Ge/SiGe
heterostructures, an upturn in μ vs p dependence was observed above p = 3 × 1011 cm−2 instead, with no sign
of saturation [17]. Figure 1(d) shows the conductivity σ as a function of density p. We extract a percolation
density of pp = 2.14 ± 0.03 × 1010 cm−2 by fitting σ in the low density regime (up to p = 3.8 × 1010 cm−2) to
percolation theory [17, 22–24] (see supplementary information). For measurements across two H-FETs fabri-
cated on the same wafer we obtain a weighted average percolation density 〈pp〉 = (2.17 ± 0.02) × 1010 cm−2,
pointing to uniform heterostructure deposition across the wafer and fabrication process. The obtained pp is
indicative of very low disorder at low density, which is the typical condition for quantum dot operation, rep-
resenting a ≈ 5× improvement compared to previous heterostructures supporting Ge spin qubits [17], and
setting a new benchmark for group-IV materials that have practical use for spin qubits.

We further characterize disorder in the Ge H-FET by measuring the single-particle relaxation time τ q and
the associated quantum mobility μq. τ q determines the quantum level broadening Γ = �/2τq of the momen-
tum eigenstates and is affected by all scattering events. This is distinct from the transport scattering time τ t,
which instead is unaffected by forward scattering [28] and determines the conductivity and the classical mobil-
ity μ = eτ t/m∗. As such we argue that μq is a disorder qualifier less forgiving than μ and in principle is more
informative of the qubit surrounding environment, since μq does not exclude a priori any source of scattering,
which in turn might degrade qubit performance.

To measure τq and μq we probe the disorder-induced broadening of the 2DHG Landau levels in magne-
totransport. Figure 2(a) shows the longitudinal resistivity ρxx and transverse Hall resistance Rxy as a function
of B at a fixed density corresponding to the maximum transport mobility. We observe Shubnikov–de Haas
oscillations above B = 0.37 T and Zeeman splitting above B = 0.83 T, from which we estimate an effective
g∗ = 12.7 following the methodology in reference [17]. The oscillation minima go to zero above B = 4.3 T,
signaling high quality magnetotransport from a single high-mobility subband corresponding to the heavy hole
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Figure 1. (a) Schematic of a Ge/SiGe heterostructure field effect transistor. The strained Ge (sGe) QW is grown coherent to a
strain-relaxed Si0.2Ge0.8 layer obtained by reverse grading. A Si0.2Ge0.8 barrier separates the QW from the dielectric stack—native
silicon oxide followed by Al2O3 —and from the Ti/Au metallic gate metal. (b) HAADF-STEM image of the active layers of the
Ge/SiGe heterostructure field effect transistor. Scale bar is 20 nm. (c) Mobility μ and (d) conductivity σxx as a function of density
p at a temperature T = 1.7 K. The red line in (d) is a fit to percolation theory in the low density regime.

fundamental state in the Ge QW. Rxy develops flat plateaus corresponding to oscillation minima in ρxx, due
to the integer quantum Hall effect. Signatures of the ν = 5/3 fractional state are visible both in ρxx and Rxy,
indicating a robust energy gap that survives thermal broadening at 1.7 K.

Figure 2(b) shows the low-field oscillation amplitude Δρxx = (ρxx − ρ0) as a function of perpen-
dicular magnetic field B, where ρ0 is the ρxx value at B = 0. We estimate a single-particle relaxation
time τ q = 0.87 ps from a fit of the Shubnikov–de Haas oscillation envelope to the function Δρxx ≈
ρ0B1/2χ/sinh(χ)exp(−π/ωcτ q), where χ = 2π2kBT/�ωc, kB is the Boltzmann constant, � is the Planck con-
stant and ωc is the cyclotron frequency (figure 2(b), red curve) [31].4 Correspondingly, we estimate Γ =

377 μeV. This is ≈ 4× smaller than Γ at a comparable p in a shallow QW positioned 17 nm below the surface,
signaling that disorder is greatly reduced in the heterostructure detailed in this work. We find a Dingle ratio
τ t/τ q = 10, which is ≈ 3× smaller compared to shallower QWs [17], confirming that long-range scattering
is reduced, as expected from the μ dependence on p in figure 1(c).

In figure 2(c) we show the quantum mobility μq as a function of the percolation density pp measured for
QWs positioned at different distance t from the semiconductor/dielectric interface. For each heterostructure,
μq is evaluated at saturation density psat ∼ 1/t [12]. We observe a clear correlation: as the QW is separated from
the impurities at the semiconductor/dielectric interface, both our disorder qualifiers pp and μq improve and
reach best values in the heterostructure with t = 55 nm. The observed correlation also implies that percolation
density, which may be measured at higher temperatures and more easily than Shubnikov–de Haas oscillations,
is sufficient to provide a fast feedback loop on heterostructure growth and device processing.

We now move on to the formation of quantum dots in this platform. We fabricate six quantum dots in
three different devices, all consisting of a set aluminum ohmic leads, as well as two metallic gate layers defining
the quantum dots [19]. We operate the quantum dots in transport mode by applying a bias voltage across the
quantum dot ohmic leads and measuring the resulting current for each dot. In figure 3(a) we measure the

4 For the analysis of τ q and μq in figures 2(b) and (c), we extrapolate the effective mass m∗ from reference [12] at the rele-
vant density. Specifically, for the 55 nm-deep quantum well discussed here we assume m∗ = 0.062 × m0 at the saturation density
psat = 2.1 × 1011 cm−2.
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Figure 2. (a) Longitudinal resistivity (ρxx, black curve) and transverse Hall resistance (Rxy , red curve) as a function of
perpendicular magnetic field B measured at a density p = 2.1 × 1011 cm−2. The first four Landau level integer filling factors (ν)
are labeled, along with the 5/3 fractional state. (b) Low-magnetic field oscillation amplitude (Δρxx, black curve) as a function of B
after polynomial background subtraction and theoretical fit of the envelope (red curve) to evaluate the single-particle relaxation
time τ q. (c) Quantum mobility (μq) as a function of percolation density measured in heterostructures with barrier thickness t in
the range of 17–55 nm.

source–drain current ISD in blue as a function of the applied plunger gate voltage VP and a typical Coulomb
peak in the device conductance can be observed.

To qualify the quantum dot environment, we measure the charge noise picked up by a single quantum
dot. A 100 s long trace of ISD is acquired and split into ten segments of equal lengths. The power spectrum
density of the noise S is obtained by averaging the discrete Fourier transform of the ten segments. In order to
distinguish noise caused by the measurement equipment from charge noise acting on the quantum dot, we
repeat the same measurement for different quantum dot plunger gate voltages spanning a full Coulomb peak.
Figure 3(a) shows ISD (blue), as well as the numerical derivative δISD/δVP (red) indicating the sensitivity of
the source–drain current to electric field variations, for all gate voltages where charge noise measurements are
performed. In figure 3(b) we show the noise spectrum density as a function of both VP as well as frequency
f. A clear increase of S can be observed on the flanks of the Coulomb peak, corresponding to the points of
highest sensitivity. At the top of the Coulomb peak, where the local derivative of the source drain current is
close to zero, the noise spectral density drops. This is a clear indication that the measured spectrum originates
in the environment of the quantum dot and not the measurement equipment or other noise sources such as
tunneling noise [32, 33]. We argue that solely comparing the noise spectrum at the flank of a Coulomb peak to
the noise spectrum in Coulomb blockade is not sufficient, as the noise floor of a transimpedance amplifier often
strongly depends on the impedance of the load. By moving from Coulomb blockade to the flank of a Coulomb
peak, the device impedance can typically change from Rblock > 100 GΩ to Rtransport < 1MΩ, thereby rendering
a comparison of the two noise spectra invalid. The difference in device impedance between the flank and top
of a Coulomb peak is typically less than an order of magnitude and is therefore a good indicator of the source
of the observed noise spectrum. Figure 3(c) shows the equivalent detuning noise spectral density SE measured
at VP = −698.8 mV, using a lever arm of α ≈ 0.1 as obtained from Coulomb diamond measurements for
each dot. The spectrum follows an approximate 1/f trend at low frequencies [33], allowing us to extract an
equivalent detuning noise at 1 Hz. We perform charge noise measurements on all six quantum dots and the

results are presented in figure 3(d). The average detuning noise at 1 Hz is
√

SE = 0.6 μeV/
√

Hz, with the
lowest value being limited by our measurement setup at 0.2 μeV/

√
Hz. This is a factor of two smaller than
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Figure 3. (a) Source–drain current ISD (blue) through quantum dot one of device one as well as the numerical derivative (red)
related to the sensitivity of the source–drain current to electric field variations. (b) Frequency dependence of the power spectrum
density of ISD, for different plunger gate voltages VP. Each trace consists of ten averaged 10 s samples of the source–drain current.
(c) Power spectrum density of the noise picked up by quantum dot one of device onr, for VP = −698.8 mV. Solid line
corresponds to apparent linear fit to the data, yielding a slope of −0.92. (d) The charge noise measured at f = 1 Hz for six
different quantum dots in three different devices. The point in red corresponds to the data in panels (a)–(c). Dashed line
indicates the mean value across all quantum dots.

the charge noise
√

SE = 1.4 μeV/
√

Hz reported in shallower 22 nm-deep Ge QWs [13]. Moreover, the lowest
charge noise values reported here compare favourably to other material systems, 0.5 μeV/

√
Hz for Si/SiO2

[34], 0.8 μeV/
√

Hz for Si/SiGe [33], ∼ 1 μeV/
√

Hz for InSb [35] or 7.5 μeV/
√

Hz for GaAs [36].
In summary, we have engineered planar Ge/SiGe heterostructures for low disorder and quiet quantum

dot operation. By positioning the Ge QW 55 nm below the semiconductor/oxide interface we achieve an
excellent trade-off between an improved electronic environment and a sharp confinement potential for gate-
defined quantum dots. We measure a percolation density for two-dimensional hole conduction pp = 2.14 ×
1010 cm−2. At such low carrier density, measurements might be limited by the contact resistance leaving room

for further improvement. In quantum dots, we observe an average charge noise of
√

SE = 0.6 μeV/
√

Hz
at 1 Hz, with the lowest value below the detection limit

√
SE = 0.2 μeV/

√
Hz of our setup. Since impuri-

ties at the semiconductor/oxide interface are the limiting factor of the electronic environment, even better
percolation density and charge noise are expected in these Ge/SiGe heterostructures if a better quality semi-
conductor/dielectric interface is achieved. These results mark a significant step forward in the germanium
quantum information route.
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