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Abstract 

The paper deals with the multi-objective optimization problem of laminated composite beam 

structures. The objective function is to minimize the weight of the whole laminated 

composite beam and maximize the natural frequency. The design variables include fiber 

volume fractions, thickness and fiber orientation angles of layers, in which the fiber volume 

fractions are taken as continuous design variables with the constraint on manufacturing 

process while the thickness and fiber orientation angles are considered as discrete variables. 

The beam structure is subject to the constraint in the natural frequency which must be greater 

than or equal to a predetermined frequency. For free vibration analysis of the structure, the 

finite element method is used with the two-node Bernoulli-Euler beam element. For solving 

the multi-objective optimization problem, the nondominated sorting genetic algorithm II 

(NSGA-II) is employed. The reliability and effectiveness of the proposed approach are 

demonstrated through three numerical examples by comparing the current results with those 

of previous studies in the literature. 
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1. Introduction

Due to various exceptional advantages, composite structures have been widely used 

in automotive industries, civil infrastructures, and aerospace structures, especially in aircraft 

and a lot of other engineering applications. One of the primary advantages of composite 

structures is smaller weight density in comparison with metallic structures. In addition, some 

composite structures also provide better stiffness compared to metallic structures. 

Beyond such the advantages, the effective use of composite structures also depends 

significantly on an optimal design which is the result of solving the single-objective or 

multi-objective optimization problems with either the lowest weight or the maximum 

stiffness (for the single-objective cases), or both of them (for the multi-objective cases). 

However, for the case of laminated composite structures, the optimization design 

procedure is usually more complex than those associated with isotropic material 

structures. This is because there is a large number of involved variables and the 

intrinsic anisotropy behavior of the individual layers in the laminated composite 

structures [1]. As a result, although there have been a lot of related studies published in 

the literature, design optimization for laminated composite structures has been still a matter 

of current research. 

Over several decades, the study on design optimization for laminated composite 

structures like beams and plates is preferred and has attracted a certain attention from many 

researchers around the world. A lot of these previous studies focused on single-

objective optimization in which the fitness functions are usually maximizing fundamental 

frequency [2–7], or maximizing buckling load [8–13], or maximizing strain energy/stress 

[14–17], or minimizing weight [18–20], or topology optimization [21,22] while design 

variables are frequently fiber orientation angles, fiber distribution and thickness of layers.  

Recently, Liu [23,24] and Vo-Duy et al. [25] presented a new approach for the 

lightweight design optimization of laminated composite beams and plates. In this 

approach, the fiber volume fractions of the layers are considered as design variables. 

Also, the frequency constraint is taken into account. According to the numerical 

results in these studies, the fiber volume factions of the layers shown their significant 

influence on the weight of the laminated composite structures. However, their studies 

were limited to a single objective, the weight of the laminated structures. Moreover, 

the design variables in these studies were just focused on either the fiber volume fractions 

of the layers in Refs. [23,24] or both fiber volume fractions of the layers and the thickness of 

the layers in Ref. [25].  



On the other hand, there have also been some papers conducted for multi-objective 

optimization of laminated composite structures. For example, Pelletier and Vel [26] studied 

the multi-objective optimization of fiber reinforced composite materials. Two models with 

conflicting objectives were carried out in this study. In the first model problem, the objective 

functions were to maximize the failure load and minimize the mass of a graphite/epoxy 

laminate subjected to the constraint of biaxial moments. In the second model problem, 

objective functions were to maximize the hoop rigidity and axial rigidity and minimize the 

mass of a graphite/epoxy cylindrical pressure vessel subjected to the constraint of the failure 

pressure which must be greater than a prescribed value. For both models, fiber orientation 

angles and fiber volume fractions were taken as design variables. In another study, Lee et al. 

[27] presented a work which aimed to minimize the weight of multilayered composite plates 

and minimize their maximum displacement. The design variables include the type of fiber, 

thickness and the fiber orientations of each layer. Vosoughi and Nikoo [28] developed a 

hybrid method for the maximizing fundamental natural frequency and thermal buckling 

temperature of laminated composite plates. Only fiber orientation angles are treated as design 

variables in this study. Recently, Honda et al. [29] examined the trade-off solutions between 

the mechanical performance and curvatures of reinforcing fibers of laminated composite 

plates via two conflicting objectives. One is to maximize the fundamental frequency or Tsai-

Wu failure criteria and the other is to minimize the curvature of the curvilinear fibers. In this 

work, the design variables are the coefficients of the shape of the curvilinear fibers.  

So far in a general view, it can be seen from the literature that most of the studies related 

to multi-objective optimization of laminated composite structures focused on considering the 

optimal solutions related to minimal weight and static characteristic of the structures, and the 

design variables are either the thickness or fiber volume fraction that are integrated with the 

fiber orientation angles. There are a few papers, where the trade-off relationship between the 

weight and the frequency of the laminated composite beams are studied. Moreover, the 

simultaneous use of all the fiber volume fractions, thickness and fiber orientation angles of 

layers for multi-objective optimization of laminated composite structures is somewhat still 

limited.  

Under such mentioned research gaps for the multi-objective optimization of laminated 

composite beam structures and motivated by the studies of Liu [23,24] and our previous work 

[25] on lightweight design of laminated composite beams and plates under frequency 

constraint, the present paper hence deals with the multi-objective optimization of laminated 

composite beams for minimizing the weight of the whole laminated composite beam and 



maximizing its natural frequency. The design variables are fiber volume fractions, thickness 

and fiber orientation angles of layers in which the fiber volume fractions are taken as 

continuous design variables with the constraint on manufacturing process while the thickness 

and fiber orientation angles are considered as discrete variables. The beam structure is subject 

to the constraint in the natural frequency which must be greater than or equal to a 

predetermined frequency. For free vibration analysis of the structure, the finite element 

method is used with the two-node Bernoulli-Euler beam element. For solving the multi-

objective optimization problem, the nondominated sorting genetic algorithm II (NSGA-II) 

[30] is employed. Three numerical examples are implemented with the presence of Pareto 

optimal solution set. In addition, the present results are also compared with those of previous 

study in the literature to demonstrate the reliability and effectiveness of the proposed 

approach.  

The remainder of the paper is organized as follows. Section 2 summarizes the governing 

equations related to free vibration analysis of the laminated composite beam. Section 3 

formulates the multi-objective optimization problem for laminated composite beams. Section 

4 briefly presents the NSGA-II algorithm. Section 5 examines some numerical examples, and 

Section 6 draws some conclusions.  

2. Free vibration of laminated composite beams

Consider a laminated composite beam consisting of N layers. The size of the beam is 

characterized by the length L, the width b and the thickness h. A global coordinate system 

Oxyz is attached at the center of the beam such that the x-axis is in the longitudinal direction, 

as shown in Figure 1. Here the bending of the beam on the yz-plane is not considered. In each 

layer, we denote the fiber orientation angles by θ
(1)

, θ
(2)

, θ
(3)

,...., θ
(N)

, the fiber volume

fractions by 
1

fr , 
2

fr ,..., 
N

fr and vertical coordinates of layers by z0, z1,..., zN-1, zN. 

Based on a classical beam theory (CBT) or Euler Bernoulli (EB) beam theory where the 

influence of shear deformation and rotary inertia can be ignored, the displacement field of the 

laminated composite beam is given by 

0

( , ) ( )

( , ) ( )

xu x z z x

w x z w x




(1)



where u and w are x-direction and z-direction displacements of the beam respectively; x is 

the rotation of the cross section and determined by x

w

x






; and w0 is the z-direction 

displacement of the beam neutral axis. 

Figure 1. A laminated composite beam. 

The relationship between the displacement and strain is expressed by 
2
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Then the stress-strain equations for an element of material in the kth lamina may be written as 
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where ( )

1

kE  and ( )

2

kE  are longitudinal and transverse elastic moduli, respectively; ( )

12

k and 

( )

21

k are Poisson constants; ( )

12

kG is strain modulus. These parameters are calculated as [23,31] 
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where Ef  is the elastic modulus of fiber; Em is modulus of matrix; 
f is Poisson constant of

fiber and m is Poisson constant of matrix. 

The governing equation for free vibration of the laminated composite beam can be 

obtained by using the Hamilton’s principle  

(6) 

where 
( )k is the mass density of the kth layer and expressed as follows

 ( ) ( ) ( )1k k k

f f f mr r     (7) 

where ρf  and ρm are the density of fiber and matrix, respectively. 

Using the finite element method, the overall system equations of motion can be 

expressed as 

(8) 

where d is the nodal displacement vector;  is the second-order derivative with respect to 

time of d; M and K are the global mass and stiffness matrices which are assembled, 

respectively, from elemental stiffness matrix (K
e
) and elemental mass matrix (M

e
), given by
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where le is the length of the eth element and D11 and I1 are defined by 
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The natural frequency ω and mode shape f  of the beam are obtained by solving the 

eigenvalue problem which is derived from Equation (8) as follows 

  (K -w 2M )f = 0 (11) 

3. Formulation of the multi-objective optimization problem

In this study, the objective functions of multi-objective optimization problem are to 

minimize the weight and maximize the first natural frequency of a laminated composite 

beam. The optimization problem has a constraint on the first frequency that must be larger 

than a predefined value by designer. The mass of the laminated composite beam is strongly 

influenced by thickness and fiber volume fractions of layers while the first frequency of the 

laminated composite beam is significantly influenced not only by thickness and fiber volume 



fractions, but also by fiber orientation angles of layers. This paper hence considers all 

variables including thickness, fiber volume fractions and fiber orientation angles of layers as 

design variables. In addition, to investigate in detail, the effect of these variables on the 

Pareto-optimal solution, three models with various design variables are suggested for the 

multi-objective optimization problem as follows. 

+ Model 1: only fiber volume fractions of layers are the design variables:
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+ Model 2: fiber volume fractions and thickness of layers are the design variables:
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+ Model 3: fiber volume fractions, thickness and fiber orientation angles of layers are the

design variables: 

(14) 

where  ,fmass r t and  ,ffreq r t are the mass and first frequency of the beam, 

respectively; 
fr , t, θ are the design variable vectors of fiber volume fractions 

( )k

fr , thickness 

( )kt and fiber orientation angle θ
(k)

 of layers, respectively;  ( ) ( ) k k

fr  and kA are the mass 



density and the area of the kth layer, respectively; 1f is the lower bound of the first

frequency; lowt  and 
upt are respectively the lower and upper bounds of ( )kt ; N is the total 

number of layers; and 
max

fr  is the maximum of 
fr in a lamina. In manufacturing, it should be 

noted that the maximum value of rf depends on the arrangement of fiber in the matrix. As 

mentioned in references [31,32], the value of 
max

fr can be either 0.7854 if the fiber 

arrangement is a square array as described in Figure 2a or 0.9069 if the fiber arrangement is a 

hexagonal array as shown in Figure 2b. 

(a) (b) 

Figure 2. Fiber arrangements. (a) Square array; (b) Hexagonal array. 

4. NSGA-II algorithm

Unlike the single-objective optimization problem which provides only a single optimal 

solution, the multi-objective optimization problem will provide a set of points known as 

Pareto optimal set which represents the trade-off solutions between conflicting objectives. To 

obtain the Pareto-optimal solutions, a number of techniques have been proposed in the 

literature [33] in which the multi-objective evolutionary algorithms (MOEAs) such as 

NSGA-II [30], SPEA-II [34], and MOEA/D [35] gained much attention from the researchers 

due to their effectiveness and easy implementation. Among these attended MOEAs, 

the NSGA-II is considered as one of the most powerful methods. This algorithm is an 

improved version of NSGA [36] developed from the well-known genetic algorithm ([37–40]) 

and non-dominated sorting concept by Goldberg [41]. In the past decade, the NSGA-II 

has been improved and widely applied in design optimization of various problems (see, for 

example, 



references [42–45]) and also in design optimization of laminated composite plate structures 

[26,29]. In this paper, the NSGA-II algorithm is used to solve a the multi-objective 

optimization problem related to the laminated composite beam presented in section 3. 

The brief description of the algorithm is presented below.  

(1) Generate an initial population P0 with N solutions is randomly.

(2) Create an offspring population Qt using binary tournament selection based on 

crowding-comparison operator, crossover and mutation performed on the parent 

population (Pt), where subscript “t” denotes the number of generations. The 

offspring population and its parent population are then combined to produce the 

entire population Rt.

(3) Perform a fast nondominated sorting approach on the entire population Rt to identify 

different nondominated fronts of objective functions F1, F2, etc.

(4) Create a new parent population (Pt+1) of size N from the obtained fronts (Fi).

(5) Repeat the process until the maximum number of iterations is reached. 

For more details of the above procedure, the readers are encouraged to refer to the original 

paper [30]. 

5. Numerical examples

In this section, numerical results of optimal design for a symmetric laminated composite 

beam structure are presented. The beam was previously studied by Liu [23] for single-

objective optimization. The geometric parameters of the laminated composite beam are given 

by: length L = 14.4 m, width b = 0.3 m and height h = 0.48 m. The beam has the same 

number of layers (N = 8) and the same material properties as given by Liu [23], i.e., the fiber 

material 294GPafE  , 0.2fv  , 
31.81g/cmf  and the matrix material 4.2GPamE  , 

0.3mv  , 31.24g/cmm  . The laminated composite beam has two kinds of fiber orientation 

angles which include [0
0
/90

0
/45

0
/-45

0
]S and [45

0
/0

0
/90

0
/-45

0
]S.

The optimization problem is investigated with three different models as already 

mentioned in Section 3. In all models, the fiber volume fractions of layers are treated as the 

continuous design variables and its upper bound, rmax, is set to be 0.9069. In addition, in the 

first model, the thickness of layers and fiber orientation angles are fixed and same as those in 

[23], i.e, t
(k)

 = 6 mm (k = 1,...,8) and two kinds of fiber orientation angles including

[0
0
/90

0
/45

0
/-45

0
]S and [45

0
/0

0
/90

0
/-45

0
]S. In the second model, the fiber orientation angles of

layers are kept constant similarly as in the first model while thicknesses of layers are treated 



as the discrete design variables which are integers in the range of [1, 20] (unit: mm). In the 

third model, both thickness and fiber orientation angles of layers are considered as discrete 

design variables in which the constraint of thickness the same as considered in the second 

model and the fiber orientation angles of layers are integers in the range of [-90
0
, 90

0
].

In each model, the optimization problem is conducted with four different boundary 

conditions: fixed–fixed, fixed–free, fixed–pinned and pinned–pinned, and the NSGA-II 

method is applied with the population size of 50 and maximum number of iterations of 100. 

5.1 Solution of frequencies of laminated composite beam using finite element method 

The frequencies of the laminated composite beam are determined by using two-

node Bernoulli-Euler beam element. The accuracy and reliability of the programing by this 

finite element analysis is demonstrated through the numerical results of the case of [0/90/45/-

45]s laminated composite beam whose fibre volume fractions are rf 
(k)

 = 50% (k = 1, 2, ..., 8).

The beam structure is divided into 16 beam elements of equal lengths. The first four squares 

of frequencies (ω
2
) of the beam with four different boundary conditions are provided in Table

1 in comparison with the analytical solutions. It can be seen from the table an excellent 

agreement between results. The results illustrated clearly the high accuracy and reliability of 

the numerical analysis for determining the frequencies of the laminated composite beam, and 

hence this numerical analysis can be ready to integrate effectively with the NSGA-II for 

finding the optimal solutions of the multi-objective optimization problems.  

Table 1. The first four frequencies ω
2
 (Hz

2
) of the laminated composite beam. 

Boundary 

condition 
Method Mode 1 Mode 2 Mode 3 Mode 4 

pinned-pinned 
Analytical [23] 2862 45,795 231,838 732,722 

Present 2862 45,795 231,840 732,746 

fixed-fixed 
Analytical [23] 14,708 111,761 429,514 1,173,680 

Present 14,708 111,761 429,522 1,173,740 

fixed-free 
Analytical [23] 363 14,266 111,848 429,503 

Present 363 14,266 111,849 429,511 

fixed-pinned 
Analytical [23] 6985 73,355 319,324 933,803 

Present 6985 73,355 319,329 933,841 



5.2. Solution of multi-objective optimization problem: Model 1 

Figures from Figure 3 to Figure 6 show the Pareto-optimal solutions of the laminated 

composite beams for different boundary conditions where the horizontal and vertical axes 

represent the weight and first frequency, respectively. For each beam and each boundary 

condition, the optimal solution corresponding with the lowest frequency is provided in Table 

2, Table 3, Table 4 and Table 5 in comparison with the single-objective optimization solution 

obtained by Liu [23].  

As can be seen from Table 2 to Table 5, the obtained weights by the present approach 

are the same as those by Liu [23] in almost cases. A little difference is observed only for the 

case of [45
0
/0

0
/90

0
/-45

0
] beam with fixed-free boundary condition. This is because the fiber

volume fraction varies from 0 to 1 in Liu’s study while it varies from 0 to 0.9060 in the 

present study which is more accurate as shown in geometrical analysis of Figure 2.  

As can be observed in Figures from Figure 3 to Figure 6, the Pareto-optimal curves are 

different for two beams having different fiber orientations. Particularly, for the case of 

[0
0
/90

0
/45

0
/-45

0
]s beam, the Pareto-optimal solutions are seen to be nearly linear for all four

various boundary conditions. While for the case of [45
0
/0

0
/90

0
/-45

0
]s beam, these curves are

nonlinear for all four various boundary conditions. Also, it can be seen that the best weights 

corresponding to the lowest frequency of the case of [45
0
/0

0
/90

0
/-45

0
]s beam are always

greater than those of the case of [0
0
/90

0
/45

0
/-45

0
]s beam.

(a) [0
0
/90

0
/45

0
/-45

0
]s (b) [45

0
/0

0
/90

0
/-45

0
]s

Figure 3. Pareto-optimal solutions of fixed–fixed beam for model 1. 
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0
/45

0
/-45

0
]s (b) [45

0
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/90

0
/-45

0
]s

Figure 4. Pareto-optimal solutions of fixed–free beam for model 1. 
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Figure 5. Pareto-optimal solutions of fixed–pinned beam for model 1. 
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Figure 6. Pareto-optimal solutions of pinned- pinned beam for model 1. 

Table 2. Optimal design results of the fixed-fixed beam for model 1 

Fibre orientation Method 
Fiber volume fraction (%) Weight 

(kg) 

Frequency 

(Hz
2
) (1)

fr (2)

fr (3)

fr (4)

fr

[0
0
/90

0
/45

0
/-45

0
]s 

Ref. [23] 29.2 0 0 0 2658 10000 

NSGA-II 29.2 0 0 0 2658 10000 

[45
0
/0

0
/90

0
/-45

0
]s 

Ref. [23] 0 59.9 0 0 2748 10000 

NSGA-II 0 60.03 0 0 2748 10000 

Table 3. Optimal design results of the fixed–free beam for model 1 

Fibre orientation Method 
Fiber volume fraction (%) Weight 

(kg) 

Frequency 

(Hz
2
) (1)

fr (2)

fr (3)

fr (4)

fr

[0
0
/90

0
/45

0
/-45

0
]s 

Ref. [23] 50.7 0 0 0 2721 400 

NSGA-II 50.7 0 0 0 2721 400 

[45
0
/0

0
/90

0
/-45

0
]s 

Ref. [23] 16 100 0 0 2914 400 

NSGA-II 34.95 90.69 0 0 2943 400 

Table 4. Optimal design results of the fixed–pinned beam for model 1 

Fibre orientation Method 
Fiber volume fraction (%) Weight 

(kg) 

Frequency 

(Hz
2
) (1)

fr (2)

fr (3)

fr (4)

fr

[0
0
/90

0
/45

0
/-45

0
]s 

Ref. [23] 13.7 0 0 0 2612 2500 

NSGA-II 13.8 0 0 0 2612 2500 
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[45
0
/0

0
/90

0
/-45

0
]s Ref. [23] 0 27 0 0 2652 2500 

NSGA-II 0 27.6 0 0 2652 2500 

Table 5. Optimal design results of the pinned –pinned beam for model 1 

Fibre orientation Method 
Fiber volume fraction (%) Weight 

(kg) 

Frequency 

(Hz
2
) (1)

fr (2)

fr (3)

fr (4)

fr

[0
0
/90

0
/45

0
/-45

0
]s 

Ref. [23] 3.7 0 0 0 2582 400 

NSGA-II 4 0 0 0 2582 400 

[45
0
/0

0
/90

0
/-45

0
]s 

Ref. [23] 0 7.3 0 0 2593 400 

NSGA-II 0 7.96 0 0 2593 400 

5.3. Solution of multi-objective optimization problem: Model 2 

The Pareto-optimal solutions of two laminated composite beams for various boundary 

conditions are shown in Figure 7, Figure 8, Figure 9 and Figure 10. For the purpose of 

comparison, the corresponding Pareto-optimal solutions in model 1 are also illustrated 

simultaneously in these figures. It can be observed from these figures that the Pareto-optimal 

solution line in model 2 locates higher than that in model 1. It means that model 2 yields 

better results than the model 1. For example, as can be seen in Figure 7a, the weight of 

optimal structure in model 2 (1645 kg - design point A) is less than that of the model 1 (2658 

kg - design point C) while the frequencies are the same (10000 Hz). Also, in the same mass 

(close to 2658kg), model 2 has frequency 26539 Hz (design point B) greater than that of the 

model 1 (10000 Hz – design point C). In Figures from Figure 8 to Figure 10, the same results 

in comparison are shown.  

Tables from Table 6 to Table 9 provide the fiber volume fractions and thickness of the layers 

corresponding with design points A, B, C in Figures from Figure 7 to Figure 10. It can be 

seen that the total thicknesses in design points A and B are smaller than that in design point 

C. In contrast, the fiber volume fractions of each layer of design points A and B are much

larger than that of the design point C. 
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Figure 7. Pareto-optimal solutions of fixed–fixed beam for model 2 and model 1 
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Figure 8. Pareto-optimal solutions of fixed–free beam for model 2 and model 1. 
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Figure 9. Pareto-optimal solutions of fixed–pinned beam for model 2 and model 1. 
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Figure 10. Pareto-optimal solutions of pinned- pinned beam for model 2 and model 1. 

Table 6. Optimal design results of the laminated composite beams (fixed–fixed) for model 2 

Fibre 

orientation 

Design 

variable 

Thickness 

(mm) 
Fiber volume fraction (%) Weight 

(kg) 

Frequency 

(Hz
2
) 

t1 t2 t3 t4 
(1)

fr (2)

fr (3)

fr (4)

fr

[0
0
/90

0
/45

0
/-45

0
]s 

rf (C) 6 6 6 6 29.2 0 0 0 2658 10000 

t, rf (A) 6 5 1 1 85.39 0 0 0 1645 10000 

t, rf (B) 9 6 4 2 90 0 0 0 2649 26539 
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[45
0
/0

0
/90

0
/-45

0
]s 

rf (C) 6 6 6 6 0 60.03 0 0 2748 10000 

t, rf (A) 1 6 3 4 18.65 90.69 0 0 1778 10000 

t, rf (B) 1 8 5 8 35.86 90.69 0 2.22 2741 28484 

Table 7. Optimal design results of the laminated composite beams (fixed–free) for model 2 

Fibre 

orientations 

Design 

variable 

Thickness 

(mm) 
Fiber volume fraction (%) Weight 

(kg) 

Frequency 

(Hz
2
) 

t1 t2 t3 t4 
(1)

fr (2)

fr (3)

fr (4)

fr

[0
0
/90

0
/45

0
/-45

0
]s 

rf (C) 6 6 6 6 50.7 0 0 0 2721 400 

t, rf (A) 8 1 6 1 90.69 0 0 0 2071 400 

t, rf (B) 11 2 6 2 87.96 1.32 0 0 2728 682 

[45
0
/0

0
/90

0
/-45

0
]s 

rf (C) 6 6 6 6 34.95 90.69 0 0 2943 400 

t, rf (A) 1 8 7 1 84.85 90.69 0 0 2220 400 

t, rf (B) 1 10 9 3 73.09 90.69 0 0 2947 731 

Table 8. Optimal design results of the laminated composite beams (fixed–pinned) for model 2 

Fibre 

orientation 

Design 

variable 

Thickness 

(mm) 
Fiber volume fraction (%) Weight 

(kg) 

Frequency 

(Hz
2
) 

t1 t2 t3 t4 
(1)

fr (2)

fr (3)

fr (4)

fr

[0
0
/90

0
/45

0
/-45

0
]s 

rf (C) 6 6 6 6 13.7 0 0 0 2612 2500 

t, rf (A) 6 1 1 1 89.02 0 0 0 1227 2500 

t, rf (B) 11 1 4 4 90.69 0 0 0 2634 12294 

[45
0
/0

0
/90

0
/-45

0
]s 

rf (C) 6 6 6 6 0 27 0 0 2652 2500 

t, rf (A) 1 4 1 5 1.3 86.45 0 0 1349 2500 

t, rf (B) 1 8 2 10 39.97 90.64 0 2.88 2641 10930 

Table 9. Optimal design results of the laminated composite beams (pinned- pinned) for model 2 

Fibre 

orientation 

Design 

variable 

Thickness (mm) Fiber volume fraction (%) Weight 

(kg) 

Frequency 

(Hz
2
) t1 t2 t3 t4 

(1)

fr (2)

fr (3)

fr (4)

fr

[0
0
/90

0
/45

0
/-45

0
]s 

rf (C) 6 6 6 6 3.7 0 0 0 2582 400 

t, rf (A) 3 1 1 1 80.86 0 0 0 762 400 

t, rf (B) 10 6 2 2 89.42 0 0 0 2583 4884 

[45
0
/0

0
/90

0
/-45

0
]s 

rf (C) 6 6 6 6 0 7.3 0 0 2593 400 

t, rf (A) 1 2 3 1 87.89 90.35 0 0 882 400 

t, rf (B) 1 9 2 8 89.50 90.69 0 0 2589 4411 



5.4. Solution of multi-objective optimization problem: Model 3 

The obtained Pareto-optimal solutions of beams for various boundary conditions are 

shown in Figure 11, Figure 12, Figure 13 and Figure 14. Similarly, for the purpose of 

comparison, the corresponding Pareto-optimal solutions in model 2 are also shown in these 

figures. It can be seen that the fiber orientation also affects the optimal design results. In all 

cases of boundary conditions, the results of model 3 corresponding three design variables are 

better than the solutions of model 2 with fixed fiber orientations.  

Tables from Table 10 to Table 13 list the values of specific design points which have the 

smallest frequency on Pareto-optimal solutions of Figures from Figure 11 to Figure 14. As 

can be seen from these tables that model 3 yields different optimal solutions with those of 

model 2 and it always gives the smallest weight corresponding with the same frequency 

(1000 Hz). This reveals that fiber orientations angles have a useful effect on the Pareto-

optimal solutions. 

Figure 11. Pareto-optimal solutions of fixed–fixed beam for model 3 and model 2. 
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Figure 12. Pareto-optimal solutions of fixed–free beam for model 3 and model 2. 

Figure 13. Pareto-optimal solutions of fixed–pinned beam for model 3 and model 2. 
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Figure 14. Pareto-optimal solutions of pinned- pinned beam for model 3 and model 2. 

Table 10. Optimal design results of the laminated composite beams (fixed–fixed) for model 3 

Design variable 

Thickness 

(mm) 

Fibre orientation 

(
0
) 

Fiber volume fraction 

(%) Weight 

(kg) 

Frequency 

(Hz
2
) 

t1 t2 t3 t4 θ1 θ2 θ3 θ4 
(1)

fr (2)

fr (3)

fr (4)

fr

t, rf  

[0
0
/90

0
/45

0
/-45

0
]s 

(A) 

6 5 1 1 0 90 45 -45 85.39 0 0 0 1645 10000 

t, rf  

[45
0
/0

0
/90

0
/-45

0
]s 

(B) 

1 6 3 4 45 0 90 -45 18.65 90.69 0 0 1778 10000 

t, rf and θ (C) 5 2 2 4 0 -2 -60 -44 90.69 19.75 0 0 1636 10000 

Table 11. Optimal design results of the laminated composite beams (fixed–free) for model 3 

Design variable 

Thickness 

(mm) 

Fibre orientation 

(
0
) 

Fiber volume fraction (%) 
Weight 

(kg) 

Frequency 

(Hz
2
) 

t1 t2 t3 t4 θ1 θ2 θ3 θ4 
(1)

fr (2)

fr (3)

fr (4)

fr

t, rf  

[0
0
/90

0
/45

0
/-45

0
]s 

(A) 

8 1 6 1 0 90 45 -45 90.69 0 0 0 2071 400 

t, rf  

[45
0
/0

0
/90

0
/-45

0
]s 

(B) 

1 8 7 1 45 0 90 -45 84.85 90.69 0 0 2220 400 

t, rf and θ (C) 8 1 1 6 0 32 -6 -35 90.51 0 0 0 2070 400 

Table 12. Optimal design results of the laminated composite beams (fixed–pinned) for model 3 

Design variable 
Thickness 

(mm) 

Fibre orientation 

(
0
) 

Fiber volume fraction (%) 
Weight 

(kg) 

Frequency 

(Hz
2
) 
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t1 t2 t3 t4 θ1 θ2 θ3 θ4 
(1)

fr (2)

fr (3)

fr (4)

fr

t, rf  

[0
0
/90

0
/45

0
/-45

0
]s 

(A) 

6 1 1 1 0 90 45 -45 89.02 0 0 0 1227 2500 

t, rf  

[45
0
/0

0
/90

0
/-45

0
]s 

(B) 

1 4 1 5 45 0 90 -45 1.3 86.45 0 0 1349 2500 

t, rf and θ (C) 5 1 1 2 0 -1 -15 26 90.69 12.65 0 0 1194 2500 

Table 13. Optimal design results of the laminated composite beams (pinned- pinned) for model 3 

Design variable 

Thickness 

(mm) 

Fibre orientation 

(
0
) 

Fiber volume fraction (%) Weight

(kg) 

Frequency 

(Hz
2
) 

t1 t2 t3 t4 θ1 θ2 θ3 θ4 
(1)

fr (2)

fr (3)

fr (4)

fr

t, rf  

[0
0
/90

0
/45

0
/-45

0
]s 

(A) 

3 1 1 1 0 90 45 -45 80.86 0 0 0 762 400 

t, rf  

[45
0
/0

0
/90

0
/-45

0
]s 

(B) 

1 2 3 1 45 0 90 -45 87.89 90.35 0 0 882 400 

t, rf and θ (C) 3 1 1 1 0 5 42 37 79.42 0 0 0 749 400 

6. Conclusion

The paper deals with the multi-objective optimization problem for laminated composite beam 

structures. The objective functions are to minimum the weight of the whole laminated 

composite beam and maximize the natural frequency. The design variables include fiber 

volume fractions, thickness and fiber orientation angles of layers, in which the fiber volume 

fractions are taken as continuous design variables with the constraint on manufacturing 

process while the thickness and fiber orientation angles are discrete variables. The beam 

structure is subject to the constraint in the natural frequency which must be greater than or 

equal to a predetermined value. Three models with different combination of variables are 

investigated: (1) model 1 considers only one fiber volume fractions of layers as design 

variable; (2) model 2 considers both fiber volume fractions and thickness of layers and (3) 

model 3 considers all three design variables including thickness, fiber volume fractions and 

fiber orientation angles of layers. Then, the NSGA-II algorithm is employed to solve the 

multi-objective optimization problems. 

Three numerical examples on a rectangle laminated composite beam structure with four 

different boundary conditions are performed. The obtained Pareto-optimal solutions are 

presented and discussed. From the numerical results, it can be seen that the optimal results of 



model 2 and model 3 outperform those of model 1. This is because of the presence of the 

design variable "thickness of the layers" in the models 2 and 3. In addition, the numerical 

results also show the useful effect of the third design variable "fiber orientation angles of 

layers" in the model 3 compared to the model 2. The results show that model 3 yields 

improved optimal solutions compared to those of model 2.  
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