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Abstract
Moving structured data between different big data frame-
works and/or data warehouses/storage systems often cause
significant overhead. Most of the time more than 80%
of the total time spent in accessing data is elapsed in
serialization/de-serialization step. Columnar data formats
are gaining popularity in both analytics and transactional
databases. Apache Arrow, a unified columnar in-memory
data format promises to provide efficient data storage, access,
manipulation and transport. In addition, with the introduc-
tion of the Arrow Flight communication capabilities, which
is built on top of gRPC, Arrow enables high performance
data transfer over TCP networks. Arrow Flight allows paral-
lel Arrow RecordBatch transfer over networks in a platform
and language-independent way, and offers high performance,
parallelism and security based on open-source standards. In
this paper, we bring together some recently implemented
use cases of Arrow Flight with their benchmarking results.
These use cases include bulk Arrow data transfer, querying
subsystems and Flight as a microservice integration into dif-
ferent frameworks to show the throughput and scalability
results of this protocol. We show that Flight is able to achieve
up to 6000 MB/s and 4800 MB/s throughput for DoGet() and
DoPut() operations respectively. On Mellanox ConnectX-3
or Connect-IB interconnect nodes Flight can utilize upto 95%
of the total available bandwidth. Flight is scalable and can
use upto half of the available system cores efficiently for a
bidirectional communication. For query systems like Dremio,
Flight is order of magnitude faster than ODBC and turbodbc
protocols. Arrow Flight based implementation on Dremio
performs 20x and 30x better as compared to turbodbc and
ODBC connections respectively. We briefly outline some re-
cent Flight based use cases both in big data frameworks like
Apache Spark and Dask and remote Arrow data processing
tools. We also discuss some limitations and future outlook
of Apache Arrow and Arrow Flight as a whole.
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1 Introduction
Transferring data between databases/data storage systems
and client programs in bulk amounts for machine learning
applications or statistical analysis, is a common task in data-
science. This operation is rather expensive as compared to
subsequent operations and becomes even more expensive
when the data storage server runs on a different machine
or in a cloud environment. Open-source data science de-
velopers/researchers and organizations heavily rely on the
Python/R-based data-science eco-system. Apache Parquet,
ORC, Avro, and HDFS are commonly used binary formats to
store data in compressed form other than text based CSV for-
mat. Data serialization and de-serializations on different data
processing pipelines (e.g., converting to Pandas Dataframes)
built in this eco-system add an additional overhead before
actual data can be processed. If data has to be transferred
from a remote DBMS server using the DBMS network proto-
col to these applications, it becomes more expensive due to: i.
reading from row-oriented DBMS, ii. transferring via slower
ODBC/JDBC network protocols, iii. converting it to required
columnar format. So converting row-store data to colum-
nar format is always a major source of inefficiency in data
analytics pipelines [11]. As these formats are designed to
store imputable data structures (write-once and read-many),
because of this reason they are supposed to be helpful in
data analytics workloads only and are not susceptible for
transactional workloads. Conventionally, row-store DBMS
has been used for OLTP workloads, however recent work by
SAP HANA [7] paves the way to bring up column-oriented
databases to the mainstream by introducing a highly scalable
and efficient query processing engine for both transactional

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3527199.3527264
https://doi.org/10.1145/3527199.3527264
https://doi.org/10.1145/3527199.3527264


BID’22, April 2, 2022, Seoul, Republic of Korea Tanveer Ahmad, Zaid Al-Ars, and H. Peter Hofstee

and analytics workloads. TiDB [8] is an open-source example
of such a hybrid database system, that supports both trans-
actional and analytical workloads. It is both distributed and
MySQL compatible, featuring horizontal scalability, strong
consistency, and high availability.
Apache Arrow provides an open-standard unified in-

memory and columnar data format. It alleviates the need
of serialization/de-serialization of data through a common
format and by providing interfaces for different languages,
which makes zero-copy inter-process communication possi-
ble. Although Arrow targets mainly OLAP (read-only) work-
loads, OLTP workloads can still benefit from it. Arrow Flight
a submodule in Arrow project provides a protocol to imple-
ment a service which can send and receive Arrow (Record-
Batches) data streams over the network.
In this work, we discuss the current state-of-the-art for

Arrow Flight in terms of development and its applications.
We benchmark the performance of Arrow Flight on both the
client-server model as well as on the cluster environment
and examine the actual speed and bottlenecks in Arrow data
transfer, query execution and in microservices usage in dif-
ferent distributed big-data/machine learning frameworks.
The reminder of this paper is organized as follows: In

section "Background", we discuss the Apache Arrow and
Arrow Flight internals and architecture in details, followed
by a "Data Transfer Benchmarks" sections, where Arrow
Flight localhost and client-server benchmarks are discussed.
We then describe query subsystem and Arrow Flight as mi-
croservice integration into some data analytic frameworks
in "Use Cases" section. At the end in "Conclusion" section
we conclude this work by outlining some future approaches
and use cases.

2 Background
In this section, we outline the architectural and design as-
pects of Apache Arrow and its APIs, particularly Arrow
Flight, in detail.

2.1 Apache Arrow
Apache Arrow [1] intends to become a standard columnar
format for in-memory data analytics. Introduced in 2015, Ar-
row provides cross-language interoperability and IPC by sup-
porting different languages, C, C++, C#, Go, Java, JavaScript,
MATLAB, Python, R, Ruby, and Rust. Arrow also provides
support for heterogeneous platforms in the form of rapids.ai
for GP-GPUs and Fletcher for FPGA systems [14]. Apache
Arrow is increasingly extending its eco-system by support-
ing different APIs (e.g., Parquet, Plasma Object Store, Arrow
Compute, etc.) and many open-source libraries/tools are in-
tegrating Arrow inside them for efficient data manipulation
and transfer. For example, TensorFlow has recently intro-
duced the TensorFlow I/O [17] module to support the Arrow
data format, the Dremio big data framework is built around

Table 1. Example table stored as an Arrow RecordBatch

X Y Z
555 "Arrow" 5.7866
56565 "Data" 0.0
null "!" 3.14

Table 2. Arrow Buffers layout for data in Table 1

Arrow Buffers for:
Field X Field Y Field Z

Index Validity
(bit)

Values
(Int32)

Offsets
(Int32)

Values
(Utf8)

Values
(Double)

0 1 555 0 A 5.7866
1 1 56565 5 r 0.0
2 0 null 9 r 3.14
3 o
4 w
5 D
6 a
7 t
8 a
9 !

Table 3. Schema for RecordBatch in Table 1

Field X: Int32 (nullable),
Field Y: Utf8,
Field Z: Double

the Apache Arrow eco-system, pg2arrow (a utility to query
PostgreSQL relational database), turbodbc which supports
queries in Arrow format, etc.
Arrow stores data in contiguous memory locations to

make themost efficient use of CPU’s cache and vector (SIMD)
operations. In the Arrow format, data entries (records) are
stored in a table called a RecordBatch. An example of a
RecordBatch with three records (rows) and three fields
(columns) is shown in Table 1. As shown in Table 2, each field
in the RecordBatch table is stored in a separate memory re-
gion in a manner that is as contiguous as possible in memory.
This memory region is called an Arrow Field or Array which
can store data of different types—i.e., int, float, UTF8 charac-
ters, binary, timestamps, lists and nested types. Depending
on the data types, fields can have multiple Arrow Buffers to
store extra information about the data, such as a validity bit
for nullable data types, or offsets in the case of variable-sized
lists. Through this approach, accessing data from random
locations and in parallel with a minimum amount of pointers
traversing becomes possible. This approach makes Arrow
less efficient particularly in large write-updates of variable
length strings which is a point of concern for using Arrow
in transactional workloads.
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Each RecordBatch contains metadata, called a schema,
that represents the data types and names of stored fields in
the RecordBatch. Table 3 shows the schema of the example
Arrow RecordBatch shown in Table 1.

2.2 Arrow Flight
Arrow Flight [2] provides a high performance, secure, paral-
lel and cross-platform language support (using the Apache
Arrow data format) for bulk data transfers particularly for
analytics workloads across geographically distributed net-
works. Using Apache Arrow as standard data format across
all languages/frameworks as well as on the wire, Arrow
Flight data (Arrow RecordBatches) does not require any
serialization/de-serialization when it crosses process bound-
aries. As Arrow Flight operates directly on Arrow Record-
Batches without accessing data of individual rows as com-
pared to traditional ODBC/JDBC interfaces, it is able to
provide high performance bulk operations. Arrow Flight
supports encryption out of the box using gRPC’s built in
TLS/OpenSSL capabilities. Simple user/password authenti-
cation scheme is provided out-of-the-box in Arrow Flight
and provides extensible authentication handlers for some
advanced authentication schemes like Kerberos.

In basic Arrow Flight communication, a client initiates the
communication by sending the GetFlightInfo() command
to the server. In case of a successful connection, the server
replies with available Flights by sending back FlightInfo
information, which contains so-called Tickets that define
locations (or Endpoints) of streams of RecordBatches at
the server side. Then, the DoPut() command is used by
the client to send a stream of RecordBatches to the server,
and the DoGet() command is used by the server to send a
stream back to the client. Both these commands are initi-
ated by the client. Figure 1(a) shows the data flow proto-
col diagram for an example Flight communication with the
GetFlightInfo() and DoGet() commands. In Figure 1(b),
the client uses the GetStream command to request one or
more streams of RecordBatches by calling their Ticket in-
formation. Figure 1(c) shows the internal structure of Flight
communication. Figure 1(d) shows the Flight protocol de-
scription within each stream, which contains the stream
metadata and RecordBatches.

Flight services can handle multiple Flight connections in
a cluster environment and can differentiate between them
using a Flight descriptor, which can define the composition
of Flight connections with batch size, and either file name
or SQL query command as shown in Figure 1(e).

2.3 Distributed Columnar-store and Analytics
Relational databases are optimized for transactional work-
loads, whichmakes them less efficient to support the needs of
modern analytics applications. Querying billions of rows on

demand from a row-oriented database for analytics and sta-
tistical purposes becomes a bottleneck in real-time column-
oriented data analytics workloads. Moreover, production-
ready analytics workloads and ML pipelines mostly use pub-
lic clusters and cloud computing infrastructures for a couple
of reasons including security, scalability, high-availability,
lower costs and on-demand easy to deploy functionality. All
major cloud service providers present their own distributed
datastores like Google (Cloud SQL for OLTP and BigQuery
for OLAP systems), Amazon (AWS Redshift and AWS S3) and
Azure (Cosmos DB and Synapse Analytics) for both analytics
and SQL. Apache Hive, Dremio, Presto and Apache Impala
are a couple of BI/data science SQL based engines built to
communicate with distributed datasets using different stor-
age formats. The support of universal storage formats (like
HDFS, ORC, CSV, Parquet) makes these systems flexible to
export data in any form and to any system for further pro-
cessing. For such a distributed data-store environment, it
essential to provide high-throughput methods to communi-
cate large datasets between systems. The Arrow format also
supports local, Parquet, HDFS and S3 distributed file systems,
which makes Arrow Flight an important differentiator for
Arrow-based applications.

2.4 DB-X Data Export to External tool
As reported in [11], the authors evaluate the data export (to
an external tool) performance of DB-X. They compared four
different export methods, (1) client-side RDMA, (2) Arrow
Flight RPC, (3) vectorized wire protocol from [15], and (4)
row-based PostgreSQL wire protocol. They used the TPC-
C ORDER_LINE table with 6000 blocks (approximately 7 GB
total size) on the server. By varying the % of frozen blocks in
DB-X they study the impact of concurrent transactions on
export speeds. Figure 4 shows when all the blocks are frozen,
RDMA saturates the bandwidthwhile Flight uses up to 80% of
the available bandwidth. When the system has to materialize
every block, the performance of Arrow Flight drops to be
equivalent to the vectorized wire protocol. RDMA performs
slightly worse than Arrow Flight with a large number of hot
blocks, because Flight has the materialized block in its CPU
cache, whereas the NIC bypasses this cache when sending
data. Overall the experiment shows that (de)-serialization is
the main bottleneck in achieving better data export speeds
in DBMS. Using a common data format in DBMS like Arrow
can boost the export speeds in-conjunction with the Arrow
Flight wire protocol.

3 Data Transfer Benchmarks
Bulk data transfers over long-haul networks has become an
integral part of modern data science applications. Reading
and extracting required data from remote datasets through re-
mote data services like ODBC or JDBC is inefficient and lacks
support for current applications and frameworks. Although
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Figure 1. a) Arrow Flight client-server communication protocol dataflow diagram for DoGet() operation. b) In depth Flight
streams communication dataflow for accessing RecordBatches in a stream. c) Flight streams endpoint. d) Inter-process
communication format. e) Arrow Flight cluster communication protocol dataflow diagram with multiple nodes and a single
planner node for DoGet() operation.

in the past decade, file-based (text formats like CSV, JSON and
binary formats like Avro, ORC and Parquet) data warehous-
ing has become popular, still raw data needs serialization/de-
serialization to a particular format when accessed/used by
different applications on remote/local servers. With Arrow
Flight, a unified Arrow columnar data format can be used,
which provides both over-the-wire data representation as
well as a public API for different languages and frameworks.
This in turn eliminates much of the serializations overheads
associated with data transport.

3.1 Evaluation system
Arrow Flight based bulk data transfer benchmarks in this sec-
tion are executed on the SurfSara Cartesius [16] HPC cluster
(part of the Dutch national supercomputing infrastructure).

Each CPU-only node is equipped with a dual socket Intel
Xeon Processor (E5-4650) running at 2.7 GHz. Each processor
has 32 physical cores with support of 64 hyper-threading
jobs. A total of 256-GBytes of DDR4 DRAMwith a maximum
of 59.7 GB/s bandwidth is available for each node. All nodes
are connected through Mellanox ConnectX-3 or Connect-IB
InfiniBand adapter providing 4×FDR (Fourteen DataRate)
resulting in 56 Gbit/s inter-node bandwidth.

3.2 Client-Server Microbenchmarks
To measure the absolute speed and performance of Arrow
Flight, we use the Flight built-in performance benchmark
written in C++ in both localhost and on a network in a
client-server setting. In localhost, a loopback network inter-
face is established on a single computer node. Usually, in
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DoPut() [localhost] DoGet() [localhost]

Figure 2. Arrow Flight DoPut() and DoGet() throughput with multiple stream/threads with varying number of records per
stream (10-90 million) on a localhost.

DoGet() [remote]DoPut() [remote]

Figure 3. Arrow Flight DoPut() and DoGet() throughput with multiple stream/threads with varying number of records per
stream (0.2-90 million) on a remote client-server nodes connected through a Mellanox ConnectX-3 or Connect-IB InfiniBand
adapter.

client-server model server controls the communication be-
tween associated client(s) over the network. Figure 2 shows
throughput variation of Arrow Flight data transport for lo-
calhost while Figure 3 shows throughput for client-server
settings. We use 1, 2, 4, 8 and 16 streams in parallel with each
stream having 10-90 million records. Each record contains
32 bytes. On localhost, both DoPut() and DoGet() functions
give a throughput in the order of 1GB/s for single stream
up to 10GB/s with 16 streams in parallel. As the localhost
processor has 16 physical cores on two sockets with support
of 32 hyper-threading jobs. So Arrow Flight performance

shows a significant increase in throughput when more par-
allel streams are employed. We also observe that increas-
ing the parallel streams more than 16 decreases the overall
performance. We run the client-server benchmark in a net-
work [16] in which every node has a Mellanox ConnectX-3
or Connect-IB (Haswell thin nodes) InfiniBand adapter pro-
viding 4 × FDR (Fourteen Data Rate) resulting in 56 Gbit/s
inter-node bandwidth. We see the same trend in this re-
mote data transfer setting with throughput increasing from
1.2GB/s to 1.65GB/s for DoPut() while DoGet() achieves
1.5GB/s to 2GB/s throughput with up to 16 streams in paral-
lel. To compare the throughput of Arrow Flight with other
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Figure 4. Data Export – Measurements of export speed
with different export mechanisms in DB-X, varying % of
hot blocks [11].

Figure 5. iPerf3 based client/server benchmarking of TCP
data send/receive overall transfer throughput on a Mellanox
ConnectX-3 or Connect-IB InfiniBand adapter based system.

common communication protocols, Figure 6 measures the
throughput of Flight over InfiniBand (Flight-o-IB) and two
other communication protocols on the same network for re-
mote client-server communication: 1. the TCP protocol over
InfiniBand (TCP-o-IB), commonly used for long-haul data
communication, and 2. RDMA over InfiniBand (RDMA-o-IB)
protocol, commonly used for high-throughput cluster-based
communication. To measure TCP throughput, we use the
iPerf3 [10] network performance measurement tool with
multiple parallel streams, which is able to measures raw TCP
throughput as shown in Figure 5 with minimal overhead. For
RDMA throughput, we use the ib_write_bw (InfiniBand
write bandwidth) tool which is part of the Perftest Pack-
age [12]. Figure 6 shows that RDMA is able to achieve a
high throughput of 6.2GB/s (close to the theoretical max
of 7GB/s) for a wide range of data sizes. TCP, on the other
hand, has a low throughput of about 2GB/s for small data
sizes (256B) that increases slowly as the data size increases,
consistently suffering from high overhead for a wide range

Figure 6. Throughput comparison of IPoIB using iPerf3,
Flight-over-IB and RDMA (Infinaband) on a Connect-IB In-
finiBand adapter based client-server remote system.

of data sizes. In contrast, Flight has extremely low band-
width for very small data sizes of up to 1KB, but then consis-
tently outperforms TCP for larger sizes and is able to achieve
about 95% of the RDMA bandwidth (or more than 80% of
the maximum achievable bandwidth) for data sizes of 2.6GB
or larger. This shows the capabilities of Flights to ensure
high throughput for bulk data transfers that is comparable to
high-throughput protocols such as RDMA over InfiniBand,
while retaining the benefits of ease of programmability, se-
curity, and allowing access to a wide range of web-based
services.

In addition, the figures show that Flight allows improving
the throughput by increasing the number of parallel streams.
However, this is not the case for TCP, as increasing the
number of streams results in more network congestion and
a slight reduction in throughout.

4 Use Cases
This section presents some common use cases of Arrow
Flight related to query data transfer from a remote data
service, and to Arrow Flight usage in big data frameworks
for distributed data transfers in a cluster to be consumed in
microservices.

4.1 Query Subsystem
Transferring big amounts of data from a local/remote server
to a querying client is a common task in both analytics (sta-
tistical analysis or machine learning applications) and trans-
actional database systems. As described in [15], a typical
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Figure 7. A typical client-server communication for query
execution [15]. (a) Without Flight: a large amount of time
spent in (de)-serialization of the result set is shown. (b) With
Flight: the total time spent in query execution on Arrow
data with Arrow Flight based communication eliminates any
(de)-serialization overhead.

client-server data communication scenario is shown in Fig-
ure 7, where the communication time is heavily influenced
by data serialization overhead.
Arrow Flight provides a standard in-memory unified

columnar data format. Exporting Arrow tables to any client
language interface avoids (de)-serialization overhead. Bet-
ter columnar compression techniques and parallel Arrow
streams transfer make Arrow Flight ideal for efficient big
data transfers.

In this section, we focus on Dremio, an production grade
Arrow native analytics framework. We measure the perfor-
mance metrics of different client side protocols (ODBC and
turbodbc) for querying on the Dremio remote client-server
and compare the results with Arrow Flight as shown in Fig-
ure 8.We also look at two systems under development: Arrow
Datafusion (an Arrow Flight based client-server query API),
and FlightSQL (a native SQL API for Arrow data).

Dremio - ODBC. Dremio provides a custom ODBC driver
for different client types. We used a Linux based Dremio
ODBC driver and used it with the pyodbc Python API to
query the NYC Taxi database (in parquet format) from a
Dremio server running remotely in a cluster.

Figure 8. Total time spent in querying NYC Taxi dataset on
a remote Dremio client-server nodes with varying number of
records (1-16 millions) through ODBC, turbodbc and Flight
connections.

Figure 9. Total time spent in querying NYC Taxi dataset on a
remote Arrow Flight based client-server nodes implemented
in Data-fusion project with varying number of records (0.1-
16 millions).

Dremio - turbodbc. We also used the Dremio ODBC driver
to connect with a Dremio client through the turbodbc Python
API. Here too, we queried the NYC Taxi database (in parquet
format) from a Dremio server running remotely in the same
cluster.
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Dremio - Flight. Dremio offers client and server Flight end-
point support for Arrow Flight connections that is also au-
thentication OAuth2.0 compliant. Moreover this implemen-
tation provides TLS encryption to establish an encrypted
connection.

The runtime performance comparison results for all three
methods on a single select query are shown in Figure 8. Ar-
row Flight based implementation on Dremio performs 20x
and 30x better as compared to turbodbc and ODBC connec-
tions respectively.

Data-Fusion - Flight. DataFusion is an in-memory, Arrow-
native query engine implemented in Rust. Though this frame-
work is in its initial phases of development, it does support
SQL queries against iterators of RecordBatch in both CSV and
Parquet file formats. Both the Arrow Flight client and server
implementations are available. Figure 9 shows the results we
obtained by running the Arrow Flight client-server bench-
mark provided in Data-Fusion repository. We converted NYC
Taxi dataset used in previous Dremio demo to Parquet for-
mat and query the same dataset for specific elements in each
iteration.

Apache Arrow - FlightSQL. FlightSQL is a new proposal
being implemented by the Apache Arrow community to
become a standard way of accessing Arrow data via SQL-
like semantics over Flight. The main idea of this framework
is to use ODBC and JDBC data access best practices while
maintaining the high throughput facilitated by Arrow Flight.

4.2 Microservices Integration
Arrow Flight can be integrated into data transfer and re-
mote data analytics microservices for efficient and parallel
processing of Arrow columnar data using many different
frameworks like Dask and Spark, as discussed next.

4.2.1 Flight Data Microservice - Apache Spark [13].
This Arrow Flight based microservice implementation is an
early prototype test to showcase the reading of columnar Ar-
row data, reading in parallel many Flight endpoints as Spark
partitions, this design uses the Spark Datasource V2 API to
connect to Flight endpoints. Figure 10 shows performance
comparisons in terms of total time for default JDBC, serial
flight, parallel flight and parallel flight with 8 nodes. This
test returns n rows to Spark executors and then performs
a non-trivial calculation on them. This test was performed
on a 4x node EMR with querying a 4x node Dremio AWS
Edition (m5d.8xlarge) by the developer.

4.2.2 Flight Data Microservice - Apache
Spark/TensorFlow Clients [4]. A basic Apache Ar-
row Flight data service with Apache Spark and TensorFlow
clients has been demonstrated. In this demo a simple data
producer with an InMemoryStore allows clients to put/get
Arrow streams to an in-memory store. Existing PySpark
DataFrame partitions are mapped by a Spark client to

produce an Arrow stream of each partition which are put
under the FlightDescriptor. A PyArrow client reads these
streams and convert them into Pandas Dataframes. Similarly,
a TensorFlow client reads each Arrow stream, one at a time,
into an ArrowStreamDataset so records can be iterated over
as Tensors [4].

4.2.3 XGBatch - Pandas/Dask [6]. ML model deploy-
ment generally consists of two phases. First, models are
trained and validated with existing datasets to uncover pat-
tern and correlations within the data. Then, the best per-
forming trained model is applied to new datasets, to perform
various tasks, such as predicting the probability scores in the
case of classification problems, or estimating averages in the
case of regression problems [5]. In production environments,
ML based applications usually have separate deployment
methods for real time model needs (e.g., an API or gRPC ser-
vice, etc.) vs batch scoring (e.g., some form of Spark or Dask
based solution) [6]. Real time use cases need low latency
for processing millions of records each row at a time, while
batch processes need to take advantage of modern hard-
ware features like multi-cores, vectorization, accelerators
(GPUs/FPGAs) and high throughput interconnects on clus-
ter environments to process and transfer the large amount of
data quickly. XGBATCH as shown in Figure 11 uses Apache
Arrow’s Flight framework (which is built on the gRPC proto-
col under the hood) to stream batches of data to the scoring
service, which in-turn scores it as a batch, and finally streams
the batch back to the client. Using Flight ensures low latency
for real time use cases, as well as an efficient method for
scoring large batches of data.

4.2.4 FlightGrid/PyGrid - AI Models Training [18].
PyGrid is a peer-to-peer platform for secure, privacy-
preserving and decentralized data science and analytics. Data
owners and scientists can collectively train AI models us-
ing the PySyft framework. In PyGrid data-centric federated
learning (FL) use cases, a lot of data movement between
domain and workers network is involved. In a FlightGrid
implementation for a simple network using mnist dataset
with batch size 1024 and pre-trained model with Arrow data
format on Arrow Flight nodes shows more than 5x speedup
with the same accuracy as compared to regular grid data.

4.2.5 The Mesh for Data platform - Arrow/Flight
module [9]. The Mesh for Data is a cloud-native platform
to control the data usage within an organization premises.
It provides a platform to unify data access, governance and
orchestration, enabling business agility while securing en-
terprise data. The arrow-flight-module (AFM) for The Mesh
for Data brings enforcement of data governance policies to
the world of Apache Arrow Flight for fast and efficient data
movement and analytics within applications to consume tab-
ular data from the data sources. Currently, AFM provides
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support for a couple of different file-systems, formats and
queries for Arrow datasets.

Figure 10. Performance results of Apache Arrow Flight end-
points integration in Apache Spark using the Spark Data-
source V2 interface. The results show the total time spent in
Spark default JDBC, serial Flight, parallel Flight and parallel
Flight with 8-node connections.

Scoring Microservices

Client stream Arrow data
to the scoring service

Scoring service streams
batches of scores back to client

Scores entire batches 
in parallel (multi-threading)

Client

Remote Server

Flight

Figure 11. A remote scoring microservice using Arrow data
batches and communicating via Arrow Flight.

5 Future Outlook
Currently Flight service operations rely only on TCP data
transport layer. Using gRPC to coordinate get and put trans-
fers on protocols other than TCP like RDMA have huge
potential to speed up bulk data transfers over the networks
with RDMA support. As shown in [11] for some typical
databases, the data export speed to some external applica-
tions while the majority of the blocks is in a frozen state can
utilize up to 80% of total available network bandwidth. This
result suggests that bypassing the network stack for Arrow
bulk data transfers via RDMA can easily saturate high band-
widths networks. The Flight SQL proposal [3] which is being

implemented paves the way for client-server databases to
directly communicate with SQL-like semantics. This feature
will enable browsing database metadata and execution of
queries while transferring data streams with Arrow Flight.
In the context of distributed systems, many different dis-

tributed columnar databases and query engines also propose
to integrate an Arrow Flight layer support for data export to
external applications/transfer bulk data in Arrow supported
frameworks. In addition, many distributed AI/ML training
and inference workloads [6, 17] are also being equipped with
Arrow Flight functionality.

6 Limitations of this work
This work is an early of what is possible with Arrow format
and Arrow Flight as an Arrow data transfer, querying and
microservice context. Arrow APIs including Arrow Flight
are under heavily development process for both new features
addition and performance improvements. At the same time
all the projects discussed in this article are also under devel-
opment. We believe in coming months these projects will be
matured enough to be integrated into existing frameworks
for both better performance and scalability.

7 Conclusion
Apache Arrow is a columnar in-memory data format which
provides cross-language support for data analytic appli-
cations and frameworks. It enables fast data movement
within big data frameworks eco-system by avoiding (de)-
serialization overheads. Arrow Flight is gRPC based frame-
work which provides high speed data communication ser-
vices for Arrow data transfer over the networks. In this arti-
cle, we demonstrated and benchmarked a couple of Arrow
Flight use cases. For bulk Arrow data transfer we bench-
marked the throughput on both local and remote hosts
with varying batch sizes on a 7000 MB/s inter-node band-
width. The maximum 1650 MB/s throughput achieved for
DoPut() while DoGet() achieves upto 2000 MB/s through-
put with upto 16 streams in parallel on remote hosts. On
local machine Arrow Flight achieves upto 10KMB/s through-
put. In genomics pipeline, the distributed regions specific
chromosomes sorting of ArrowSAM data achieves upto 500
MB/s throughput. Note that in this particular scenario, all
nodes are connected through Flight endpoints and send-
ing/receiving Arrow RecordBatch streams at the same time
in parallel. We also included the results of DB-X bulk data
export speeds of different (client-side RDMA, Arrow Flight,
vectorized wire protocol and row-based PostgreSQL wire
protocol) protocols, where Flight protocol uses nearly 80%
of total available bandwidth in case all blocks are frozen. By
comparing the results of different data querying APIs like
ODBC, turbodbc and Flight on a Dremio client also shows
a significant performance/data transfer time improvement
when accessing/querying somehow big size datasets. Arrow
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Flight based implementation on Dremio performs 20x and
30x better as compared to turbodbc and ODBC connections
respectively. Rust based Datafusion Flight API also provides
client-server implementation for SQL querying on CSV and
Parquet data over Flight. Moreover, we also analysed some
microservices uses cases like Apache Spark and TensorFlow
clients to put/get Arrow data streams in parallel where Flight
can be used as a fast Arrow data transfer layer to speedup
the analytical processes on batches. Reading multiple Flight
endpoints in parallel as Spark partitions in a multi-node
cluster as compared to existing serial JDBC approach in
Spark improves the performance by many folds. Batch scor-
ing/processing and remote ML models training/testing on
single as well as multi-node cluster environments on Arrow
data through Flight has potential to improve the performance
of existing algorithms by an orders-of-magnitude.
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