

Delft University of Technology

Timing is everything: Analysis and synthesis of traffic patterns in event-triggered control

de Albuquerque Gleizer, G.

DOI
10.4233/uuid:dc2fe776-5da3-4894-bd09-1e62d0397c83
Publication date
2022
Document Version
Final published version
Citation (APA)
de Albuquerque Gleizer, G. (2022). Timing is everything: Analysis and synthesis of traffic patterns in event-
triggered control. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:dc2fe776-5da3-4894-bd09-1e62d0397c83

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:dc2fe776-5da3-4894-bd09-1e62d0397c83
https://doi.org/10.4233/uuid:dc2fe776-5da3-4894-bd09-1e62d0397c83

Timing is Everything
Analysis and Synthesis of Traffic Patterns in

Event-Triggered Control

Gabriel de Albuquerque Gleizer

Timing is everything: Analysis and
synthesis of traffic patterns in

event-triggered control

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus, Prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board of Doctorates,

to be defended publicly on
Wednesday 29 June 2022 at 17:30 o’clock

by

Gabriel DE ALBUQUERQUE GLEIZER

Mestre em Ciências, em Engenharia Elétrica, Universidade Federal do Rio de Janeiro, Brazil,
born in Rio de Janeiro, Brazil.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Dr. M. Mazo Espinosa, Delft University of Technology, promotor
Prof. dr. ir. B. De Schutter, Delft University of Technology, promotor

Independent members:
Prof. dr. D. Nesic, University of Melbourne, Australia
Prof. dr. P. Tabuada, University of California, Los Angeles, USA
Prof. dr. ir. M. H. G. Verhaegen, Delft University of Technology
Dr. D. G. T. Antunes, Eindhoven University of Technology
Dr. R. Postoyan, CNRS and Lorraine University, France
Prof. dr. ir. T. Keviczky, Delft University of Technology

This research was funded by the European Research Council through the SENTIENT
project, Grant No. 755953.

Keywords: Event-triggered control, self-triggered control, formal methods, abstrac-
tion, scheduling, networked control systems, cyber-physical systems,
hybrid systems, sampled-data control, quantitative analysis and synthe-
sis, chaos, combinatorial games, automata theory, bounded disturbances.

Printed by: Print Service Ede

Cover: Gabriel de Albuquerque Gleizer

Style: TU Delft House Style, with small modifications

The author has set this thesis in LATEX using the Libertinus and Inconsolata fonts.

ISBN: 978-94-6384-347-8 e-ISBN: 978-94-6366-573-5

To Eliza and Liana.

vii

Contents

Summary xi

Samenvatting xiii

Acknowledgments xv

1 Introduction 1
1.1 Event-triggered and self-triggered control 2
1.2 Timing is everything . 5
1.3 Related work . 6
1.4 Contributions and outline of this dissertation 6
1.5 Scope . 8
1.6 Other contributions . 9

2 Mathematical Notation and Preliminaries 11
2.1 Notation . 11
2.2 Abstractions and transition Systems . 12

2.2.1 Simulation, behavioral equivalence, and abstractions 13
2.2.2 Quantitative automata . 16
2.2.3 Abstractions for control synthesis 17

2.3 Timed automata . 19
2.4 Event-triggered and self-triggered control 20
2.5 ETC traffic models . 21

3 Scalable Traffic Models for Scheduling 25
3.1 Introduction . 26
3.2 Problem Formulation. 27
3.3 PETC Traffic Model . 27

3.3.1 Quotient state set . 28
3.3.2 Quotient transition relations . 29
3.3.3 Early triggering . 30

3.4 Scheduling of PETC systems . 30
3.4.1 Early triggering and TGA . 30
3.4.2 Network and NCS models . 31
3.4.3 Strategies for schedulers . 32

3.5 Numerical Results using TGA . 32
3.6 Scheduling with finite-state systems . 35
3.7 Conclusions . 38

viii Contents

4 Bisimilar traffic models for a modified PETC 41
4.1 Introduction . 42
4.2 Problem Formulation. 42
4.3 Main Result . 44

4.3.1 Derived results for the original PETC 47
4.4 Numerical Results . 49
4.5 Conclusions . 50

5 Computing the sampling performance of PETC 51
5.1 Introduction . 52
5.2 Problem Statement . 53
5.3 SACE simulations and error bounds . 54
5.4 Limit Average from 𝑙-complete abstractions 56
5.5 Computing the SAIST of PETC . 58

5.5.1 𝑙-complete PETC traffic models. 58
5.5.2 Verifying SACE equivalence . 59
5.5.3 SACE simulation algorithm . 61
5.5.4 Robustness and computability 62
5.5.5 An improved algorithm . 64

5.6 Numerical Examples . 66
5.6.1 A two-dimensional linear system. 66
5.6.2 A three-dimensional linear system 67
5.6.3 A nonlinear system . 68
5.6.4 Section 4.4 revisited . 68

5.7 Conclusions . 69
5.A Proofs . 71

5.A.1 Proof of Theorem 5.2 . 71
5.A.2 Proof of Theorem 5.3 . 72

6 Chaos and Order in Event-Triggered Control 75
6.1 Introduction . 76
6.2 Mathematical Preliminaries on Chaos 77
6.3 Event-triggered control and its traffic 78

6.3.1 Isochronous subsets in ETC . 78
6.3.2 Problem statement . 79

6.4 Qualitative analysis: limit behaviors in ETC 80
6.4.1 Properties of limit metrics . 81
6.4.2 An illustrative example. 81
6.4.3 Invariant isosequential sets in ETC 83

6.5 Quantitative analysis: a symbolic approach 87
6.5.1 Robust limit metrics . 87
6.5.2 Estimating chaos in abstractions 89
6.5.3 Estimating and computing robust metrics 91

Contents ix

6.6 Numerical examples . 92
6.7 Discussion and Conclusions . 94
6.A Proofs . 96

6.A.1 Proof of Corollary 6.2 . 96
6.A.2 Proofs of Theorem 6.2 and Proposition 6.7 96
6.A.3 Proof of Theorem 6.3 . 97
6.A.4 Proof of Proposition 6.9 . 98

7 Optimizing sampling performance 101
7.1 Introduction . 102
7.2 Problem Formulation. 103
7.3 Finding an SDSS through abstractions 104

7.3.1 Weight-based abstractions . 104
7.3.2 Abstractions for optimal average weight 105
7.3.3 SDSS design . 106

7.4 Numerical example. 107
7.5 Discussion and conclusions . 109

8 Minimizing transition systems modulo alternating simulation equiva-
lence 111
8.1 Introduction . 112

8.1.1 Related Work. 113
8.1.2 A case for alternating simulation equivalence 114

8.2 Main result . 114
8.2.1 Overview of the algorithm . 114
8.2.2 Preserving equivalence modulo AS: correctness results. 116
8.2.3 Optimality results . 118

8.3 Case Study: scheduling PETC systems 120
8.3.1 A general result on ETC scheduling 121
8.3.2 Numerical example. 122

8.4 Conclusion and Future Work . 124
8.A Correctness and reduction proofs . 126

9 Self-triggered output-feedback control of LTI systems 133
9.1 Introduction . 134
9.2 Preliminaries . 135

9.2.1 Hybrid Dynamical Systems. 135
9.2.2 Recursive Guaranteed State Estimator 137

9.3 Problem definition and stability results 140
9.3.1 Triggering mechanism and stability results. 141

9.4 Self-triggered control implementation 144
9.5 Numerical example. 148
9.6 Conclusions . 150
9.A Proof of Lemma 9.1. 152
9.B Proof of Theorem 9.4 . 154
9.C Observer Initialization . 155

x Contents

10 Conclusion 159
10.1 Key learning points . 159
10.2 Opportunities for improvements . 161

10.2.1 Computational complexity . 161
10.2.2 Specialized abstractions for perturbed systems 162
10.2.3 Other opportunities . 163

10.3 Future research directions . 164

Bibliography 167

Glossary 178

Curriculum Vitæ 179

List of Publications 181

xi

Summary

Event-triggered control (ETC) and self-triggered control (STC) are sample-and-
hold control paradigms inwhich sensor data is only updated to the controller when nec-

essary, often aperiodically, in contrast to the well-established periodic sampling paradigm.
In ETC, a state-dependent event triggers a transmission, while in STC the controller decides
when to request the next sample. The main objective of ETC and STC is to reduce sampling
and transmissions when either sampling/transmitting is costly or network resources are
scarce. However, despite years of development in the ETC/STC field, little is known about
their sampling performances or how to accommodate the generated aperiodic traffic of
multiple ETC systems in a shared communication medium. This dissertation presents
methods to (i) schedule multiple ETC systems in a shared network, (ii) evaluate ETC sys-
tems’ sampling performance, and (iii) creating STC strategies that improve ETC systems’
sampling performance. In particular, we focus for the most part on ETC applied to linear
time-invariant (LTI) systems.

To solve these problems, we first model the timing behavior of ETC/STC systems,
obtaining what we call traffic models. The states of a traffic model are the transmitted
samples and its output is the elapsed time between consecutive transmissions, the inter-
sample time (IST). These models are infinite-state systems that can exhibit very complex—
even chaotic—behavior, as we demonstrate. To solve synthesis problems such as scheduling
and optimal STC sampling strategies, we augment the models with early-sampling choices,
which are guaranteed to preserve control stability and performance. The models are then
abstracted into finite-state systems or timed automata, on which many of our problems can
be computationally solved. Using these abstractions, the obtained schedulers are always
valid for the real systems, and the obtained metrics are always formal bounds to the real
system’s performance.

Our abstraction method is based on quotient and 𝑙-complete systems. That is, we
partition the state-space into regions, each region comprising all states whose next IST,
or next sequence of 𝑙 ISTs, is the same. This is made possible by observing that periodic
ETC (PETC)—a practical version of ETC where events are checked periodically—has a
finite output set, and that each obtained region is described by an intersection of finitely
many quadratic cones. The abstraction transitions, which enable predicting how samples
and their corresponding ISTs evolve over time, can be computed exactly using nonlinear
satisfiability-modulo-theories solvers, or approximately through convex semi-definite
relaxations. Infinite periodic IST patterns arising from these abstractions can be verified
to exist in the real traffic model via an eigenvector problem, which is central for solving
problem (ii) exactly.

Ourmethodology comprises a comprehensive framework for solving qualitative (schedul-
ing) and quantitative (sampling performance) problems for ETC and STC, as well as a
computational machinery that automates these processes, ultimately consolidated in the
open-source tool ETCetera. With the developed methods, we can show cases where

xii Summary

ETC significantly outperforms periodic sampling in terms of average inter-sample time,
and how to increase this performance further using look-ahead. We also manage to solve
the ETC scheduling problem efficiently, which is helped by an abstraction minimization
algorithm that we propose. In summary, this dissertation provides new tools to understand
and manipulate ETC traffic, and ultimately casts new light on the practical relevance of
ETC and STC.

xiii

Samenvatting

Event-triggered control (ETC, gebeurtenis getriggerde regeling) en self-triggered
control (STC, zelf getriggerde regeling) zijn sample-and-hold (bemonsteren en vasthou-

den) regelparadigma’s waarin sensordata alleen wordt geüpdate naar de regelaar indien
noodzakelijk, vaak aperiodiek, in tegenstelling tot de goed gevestigde periodische bemon-
stering paradigma. Binnen ETC wordt een transmissie getriggerd door een toestandsaf-
hankelijke gebeurtenis, terwijl in STC de regelaar beslist wanneer het volgende monster
wordt opgevraagd. Het hoofddoel van ETC en STC is het reduceren van bemonsteren
en transmissies wanneer ofwel bemonsteren/zenden duur is of netwerkbronnen schaars
zijn. Ondanks jaren van ontwikkelingen binnen het veld van ETC/STC, is er echter weinig
bekend over diens bemonsteringprestaties of hoe de gegenereerde aperiodieke verkeer
van meerdere ETC-systemen in een gedeeld communicatiemedium geaccommodeerd moet
worden. Deze dissertatie presenteert methodes om (i) meerdere ETC-systemen in een
gedeeld netwerk te plannen, (ii) de bemonsteringsprestaties van ETC-systemen te evalue-
ren, en (iii) STC-strategieën te creëren die de bemonsteringsprestaties van ETC-systemen
verbeteren. In het bijzonder richten we ons voor het grootste deel op ETC toegepast op
lineaire tijd-invariante (LTI) systemen.

Om deze problemen op te lossen, modelleren we eerst het timinggedrag van ETC/STC-
systemen, waarbij we zogenaamde verkeersmodellen verkrijgen. De toestanden van een
verkeersmodel zijn de verzonden monsters en de uitgang is de verstreken tijd tussen
opeenvolgende transmissies, de inter-sample time (IST, bemonstering tussentijd). Deze
modellen zijn oneindigetoestandssystemen die zeer complex — zelfs chaotisch — gedrag
kunnen vertonen, zoals we demonstreren. Om syntheseproblemen zoals planning en
optimale STC-bemonsteringstrategieën op te lossen, breiden we de modellen uit met vroege-
bemonstering keuzes, die gegarandeerd regelaar stabiliteit en prestaties behouden. De
modellen worden vervolgens geabstraheerd in eindigetoestandssystemen of tijdsautomaten,
waarop veel van onze problemen computationeel kunnen worden opgelost. Met behulp
van deze abstracties zijn de verkregen planners altijd geldig voor de echte systemen, en de
verkregen metrieken zijn altijd formele grenzen voor de prestaties van het echte systeem.

Onze abstractiemethode is gebaseerd op quotiënt- en 𝑙-complete systemen. Dat wil
zeggen, we verdelen de toestandsruimte in regio’s, waarbij elke regio alle toestanden omvat
waarvan de volgende IST of de volgende reeks van 𝑙 IST’s hetzelfde is. Dit wordt mogelijk
gemaakt door te observeren dat periodieke ETC (PETC) — een praktische versie van ETC
waarbij gebeurtenissen periodiek worden gecontroleerd — een eindige uitgangsset heeft,
en dat elke verkregen regio wordt beschreven door een snijpunt van eindige hoeveelheid
kwadratische kegels. De abstractie-overgangen, die het mogelijk maken om te voorspellen
hoe monsters en hun corresponderende IST’s over de tijd evolueren, kunnen exact worden
berekend met behulp van niet-lineaire satisfiability-modulo-theories oplossers, of bij bena-
dering door convexe semidefiniet programmeeringsproblemen versoepelingen. Oneindige
periodieke IST-patronen die voortkomen uit deze abstracties kunnen worden geverifieerd

xiv Samenvatting

of deze bestaan in het echte verkeersmodel via een eigenvectorprobleem, die centraal staan
voor het exact oplossen van probleem (ii).

Onze methodologie omvat een uitgebreid raamwerk voor het oplossen van kwalitatieve
(plannen) en kwantitatieve (bemonsteringsprestaties) problemen voor ETC en STC, evenals
computationeel middelen die deze processen automatiseren, en zijn geconsolideerd in de
open-source tool ETCetera. Met de ontwikkelde methoden kunnen we gevallen laten
zien waarin ETC aanzienlijk beter presteert dan periodieke bemonstering in termen van
gemiddelde inter-bemonsteringstijd, en hoe deze prestatie verder kan worden verbeterd met
behulp van vooruitziendheid. We slagen er ook in om het ETC-planningsprobleem efficiënt
op te lossen, middels een voorgesteld abstractieminimalisatie-algoritme. Samengevat biedt
deze dissertatie nieuwe middelen om ETC-verkeer te begrijpen en te manipuleren, en werpt
het uiteindelijk een nieuw licht op de praktische relevantie van ETC en STC.

xv

Acknowledgments

Adoctorate is a long and mostly lonesome journey. The solitude is exacerbated when
you do half of your doctorate during a pandemic, working mostly from home. But

it would be extremely naive to think it is an individual effort. The style of interactions is
different from most types of work, as indeed you have to spend significant time thinking
with yourself, writing, rewriting, double-checking, triple-checking, questioning, doubting...
but how much can an aspiring scientist do without support from peers and predecessors?
And perhaps most importantly, from family and friends, who lift the morale and fight the
occasional lack of humor from the doctoral candidate?

First of all, I would like to thank my biggest partner and supporter throughout this
journey, my loved wife Eliza. She was the first one to encourage me on this crazy idea of
interrupting an industrial career and pursuing my dream of doing a doctorate... abroad.
She came with me to the Netherlands with 10x the uncertainty I had, and endured a
tough period, lonelier than mine, in a new country with a tough job market to immigrants.
Nevertheless, she would always be the first to cheer me up and encourage me to give it
my best at my doctorate. She was even brave enough to jump with me on an even greater
journey, that of having a baby.

Talking about it, I would like to thank my daughter Liana. Despite how harder life gets
with the sleepless nights and the extra responsibility, having such an adorable daughter
gave me a whole new level of love and life enjoyment, which I never had thought to exist.
She came at the right time, weeks before the pandemic crashed in, and turned otherwise
boring into ever-shiny days, full of discoveries and excitement. She also, I confess, endured
some monologues about abstractions, linear algebra, and chaos theory while she just
wanted to relax and play with her favorite stuffed frog. Nevertheless, I must give big thanks
to the daycare teachers that have been taking care of my girl while Eliza and I work. They
undoubtedly have the most beautiful job there is.

I would also like to immensely thank my family, in particular my mother, Luciana. She
supported my decision to come abroad for a doctorate from day one. I imagine how hard it
is for a mother to do so; just thinking about the same with my daughter makes my eyes
water... still there she was, rooting for me, making the decision much lighter. I also thank
my brother and best friend Bernardo for the same reasons, plus keeping me up-to-date
about Botafogo... and my mother-in-law Tânia for having helped us while we moved out
of our flat in Rio. Lastly, special thanks to my cousins Orlandino and Matheus, who gave
me the pleasure of several great family reunions.

If my family supported my decision, it would not even exist if someone did not bet on
me as a doctoral candidate. Hence, I need to greatly thank my daily supervisor, Manuel:
it is not every day that someone in Europe selects a candidate coming from 6 years of
industry work, and not having studied in US or European schools. But more than accepting
to interview me and offering me a job, he has been the best supervisor I could ask for. He
has given the right mix of freedom and attention, always providing nice insights, always

xvi Acknowledgments

pushing for excellence, always embarking on wild ideas. Not without many fun chats about
rock music or parenting. Of course, I also thank my second promotor, Professor Bart, for
all the interesting discussions, and for having helped in critical times.

Throughout these four years I had the luck of making good friends at work. I would
like to thank Cees for the friendship, great conversations, gezellige walks, the mentoring
in my first few years, and of course, translating my summary to Dutch. I would like to
thank Giannis and Artemis for being such good friends, for the long discussions about
every imaginable topic, the excellent times in Greece, and also of course for the work
collaboration. In addition, I thank Daniel and Twan for the great times and conversations,
good discussions and idea exchanges, Khushraj and Sonam for the friendship, for helping
us in troublesome times, and for the prolific collaboration, and Rudi, Alexey, Andrea and
Anton for the nice talks and good laughs. Finally, I thank all DCSC Ph.D. candidates,
postdocs, professors and secretaries for the great times in and outside the office.

Part of my work was done in collaboration with researchers in the University of Trento
and Bruno Kessler Foundation, namely Matteo Trobinger, Timofei Istomin, Amy Lynn
Murphy and Prof. Gian Pietro Picco. I thank all of them for such a nice and fruitful
collaboration, which gave a new twist to the project I have worked on.

I would like to also thank the former Master students I have supervised or just partially
helped (and hence, was helped in return): Aleksandra Szymanek, Jacob Lont, Aniket
Samant, and Bas Boot. Supervising was one of the parts of the job I enjoyed the most, and
certainly having had bright, skillful, independent, and enthusiastic students contributed to
that enjoyment.

If I could manage to conclude a dissertation, it is because I have drunk from a knowl-
edge fountain far greater than my immediate colleagues. Each name that appears in the
Bibliography list deserves gratitude of mine, but not only those. The reviewers of the papers
I have submitted to have contributed greatly to the quality of this work. Furthermore,
the several professors who go beyond their job duties to record lectures and write books,
especially when they make them freely available on the internet, have been fundamental
in the process. I would not make sufficient sense of chaos theory, topology, and algebraic
geometry, if it were not for them. The same goes to research groups that develop software
tools and make them available for other researches, especially when open-source. And, of
course, all people that develop, maintain, and contribute to open-knowledge portals such
as Wikipedia, who I cannot thank enough.

To finalize, I am greatly indebted to the European society to have funded my Ph.D., to
the Brazilian society to have funded my education prior to that, and to TU Delft and the
Dutch society to have received me so well. And to all the great educators that I have the
luck to have had. Last but not least, immense thanks to my late father, Adilson, who was
my first enthusiast on the path of math and engineering. See you on the other side, dad!

Gabriel
Delft, May 2022

1

1

1
Introduction

If any of us humans would describe how we control something that we are operating,
it would be quite different than what computers do. Think about how you control the

temperature of your shower (if you still have the old pair of hot and cold water valves), or
how you control the cooking of your food.

In the first scenario, you set the valves to some level, wait for a while until it is pleasant
enough, and start showering; at some point the water may feel too cold or too hot, and
that triggers something inside you: you stop cleaning yourself for a moment and do a small
adjustment in those valves. The process repeats until you are done with showering — and
if you are lucky to live in a place where water supplies are steady, you only make a handful
of adjustments.

In the second scenario, you are not constantly tasting how good the food is; hence you
make a judgment, trying to predict how much seasoning is needed, or how much time is
left before it is done. Then you add a teaspoon of salt, some 10 rounds of crushing black
pepper, stir, wait a few minutes, and try the food. If it is still not quite there yet, you add
another pinch of salt, try again, and maybe this time it is good enough.

Real-life automatic control applications are typically not like any of these. In modern
days, a sensor collects the relevant data periodically, at some fast enough sampling rate;
this data feeds a controller running on a computer, which immediately updates the control
command to the actuator, that changes the operational setting of the process or machine.
This is what we control engineers call periodic sample-and-hold control, and it is very
successfully used in industry, robotics, home appliances, and many other applications.

So why do we not naturally apply periodic control on our daily activities? The most
honest answer would perhaps be “because we do not have internal clocks dictating our
actions,” or simply “we are not computers”. But if we reflect a little further, in none of the
scenarios above it would be particularly efficient to do periodic control.

In the showering scenario, the luckiest among us have only a pair of actuators, both
of our hands, to clean ourselves and regulate the shower temperature. And unless we
are extremely skilled, we need both hands for the cleaning process, which is much more
demanding to the actuators than regulating the shower temperature. Not surprisingly,
then, the strategy that we all learn from experience to efficiently allocate these two tasks

1

2 1 Introduction

to our limited set of actuators is to apply some sort of event-triggered control (ETC) to the
temperature regulation problem.

The second scenario is slightly different. We still have the limited number of actuators
for a multitude of tasks, but also the process of sensing is much more costly: we need to
get a spoon, bring it to the mouth, and wait a few seconds to finish our tasting analysis.
It is impractical to taste the food all the time, and in some cases it is even destructive or
impossible to do so (think of a steak or a cake). Hence we rely on somemodel of the cooking
process, typically a combination of recipe and experience, to predict when is the next time
we want to perform the sample-compute-act process. Instead of a sensation triggering the
action, we decide ourselves when to sense next, an approach called self-triggered control
(STC).

Historically, automatic control systems are designed such that these resource constraints
are absent, by having dedicated devices performing sensing and actuating functions. That
is, we install a dedicated sensor to constantly monitor a variable of interest, and put enough
actuators on the system such that they do not have to be divided into separate control
tasks. However, more recently there is one resource that ceased to be dedicated to a single
sensor-control-actuator triplet: the communication medium. Driven by the pressure costs
in industrial applications, as well as the increase in monitoring and control functions in
appliances or vehicles, the use of communication networks connecting multiple sensors,
actuators and control devices became prevalent in the past several decades. The cost benefits
range from reduction in wiring costs, to savings in maintenance and commissioning, to
reduction of weight in vehicles and of footprint in general. In addition, computer networks,
as opposed to old point-to-point 4–20 mA connections, allow for a myriad of different
communication packages to be sent in the same network, such as device diagnostics and
configuration.1 Finally, some control applications are only possible when using wireless
communication, such as drone swarms and car platooning.

With the communication medium becoming a shared resource, the control community
had to break away from the old periodic control paradigm. Instead of treating sampling,
transmitting, and actuating as free tasks, some cost needed to be attributed to those
tasks. Hence, if the thought was “sample as much as possible”, now it is “sample only
when needed”, or “act only when necessary”. This thought process, together with the right
people andmathematical tools, originated the concepts of event-triggered and self-triggered
control, which we introduce next.

1.1 Event-triggered and self-triggered control
While aperiodic sampling approaches for control have been studied since the 1950s (see,
e.g., [2]), it regained renewed interest in the 2000s, probably due to the reasons described
earlier. Inspired by the differences between Riemann and Lebesgue integration, an early
form of event-triggered control was proposed by Åström and Bernhardsson [3] with the
name of Lebesgue sampling. With this approach, a sample is only sent to the controller
when the sampling error, i.e., the difference between the current measurement and the last
sent measurement, exceeds a given threshold. Unlike a properly designed periodic sampling
1In fact, the HART protocol [1] allows for complex communications on top of the 4–20 mA standard connection,
effectively making a computer network with dedicated point-to-point communication. Obviously, it still suffers
from excessive wiring.

1.1 Event-triggered and self-triggered control

1

3

strategy, though, Lebesgue sampling does not guarantee global exponential stability (GES)
to the origin, but instead a form of practical stability [4], i.e., convergence of the state to a
ball around the origin. It was only with Tabuada in [5] that an event design that gives GES
was achieved, based on the framework of input-to-state stability (ISS) [6]: a sample should
be sent when the fraction between the sampling error and the actual state norms exceeds a
threshold. Fig. 1.1 shows an example of ETC architecture, the one addressed in [5]. Note
that the condition checker sits on the measurement side, which effectively requires this
capability to be on the sensing node.

Plant

Controller

State 𝝃 (𝑡)

Held state 𝝃̂ (𝑡)Input 𝝊(𝑡)

Held input 𝝊̂(𝑡)
ZOH Condition

checker

Figure 1.1: A basic ETC block diagram, where the state 𝝃 (𝑡) is fully measured and the triggering condition is
verified on the sensor size. ZOH stands for “zero-order hold”.

After Tabuada’s seminal paper, a myriad of new event designs (e.g., [7, 8]); different
triggering architectures and communication architectures, such as decentralized triggering
conditions (e.g., [9–12]); and applications to larger classes of control systems like output-
feedback control (e.g., [4, 11, 13]) were proposed. In particular, Heemels et al. [11] propose
periodic ETC (PETC), where the event is checked periodically instead of continuously.
This is a much more practical implementation than continuous ETC (CETC), because
smart sensors with condition checking capabilities are typically implemented in computing
devices.

The core idea behind [5] is to design an event that is a surrogate of a Lyapunov condition.
In essence, the triggering condition is such that, while it is not satisfied, a companion
Lyapunov function 𝑉 ∶ ℝ𝑛x →ℝ+ has negative derivative [5], or is bounded by a decaying
function [7, 14] (Fig. 1.2 depicts an example), or is decreasing in average [8]. Hence, if
one can predict a time instant such that this triggering condition has not yet turned true,
sampling at this moment will ensure the same Lyapunov stability and performance criterion
that is ensured by the ETC. This is fundamentally what STC does.

Self-triggered control is a close relative to ETC and followed a similar trajectory. One
of the earliest proponents was Velasco et al. [15] in 2003, but the necessary mathematical
formalism to establish a solid, general framework, was only given years later [9, 14, 16],
again using the ISS formalism. In STC, the controller decides when to sample next given
the most recent sample, typically by predicting when an ETC event would happen, as
mentioned previously. Fig. 1.3 shows the STC embodiment of the ETC in Fig. 1.1.

STC has some advantages over ETC. The first is that it does not require the sensor to
have smart capabilities other than being able to transmit a message upon request. The
second is that the communication times are more predictable under STC than under ETC:

1

4 1 Introduction

0.5 1 1.5 2

0.5
1

𝑡

𝑉

Figure 1.2: Lyapunov function 𝑉 at states checked under PETC, where the triggering condition is based on
bounding the Lyapunov function with an exponentially decaying function. Red circles indicate when samples are
transmitted to the controller, while blue x’s are the remaining checked states.

Plant

Controller

State 𝝃 (𝑡)

Held state 𝝃̂ (𝑡)Input 𝝊(𝑡)

Held input 𝝊̂(𝑡)
ZOH Condition

predictor

Figure 1.3: A basic STC block diagram, representing the self-triggered implementation of Fig. 1.1.

this can facilitate scheduling if the controller is requesting messages from multiple sensors,
and also allows for energy savings on the sensor side. For example, if the controller only
needs data from the sensor after 1 minute, the sensor can effectively sleep within this
minute. Naturally, these benefits come at some costs. The first one is that extra computation
is needed on the controller side. The second is the loss of simplicity: events in ETC are
typically very simple formulas, while STC needs heavier mathematical machinery, often
involving the model of the plant per se.

Still comparing ETC and STC, there is also an aspect that involves what trade-offs each
strategy gives, which is common in comparisons between reactive and predictive methods
in control. Due to its reactive nature, ETC can act faster in face of noise and disturbances,
or also more wisely avoid reacting while disturbances are actually helping stabilization.
In contrast, STC may consider a worst-case disturbance prediction analysis to determine
sampling times, in an attempt to match ETC’s performance while increasing the average
sampling frequency; or to ignore the effects of disturbance altogether, providing more
predictable sampling times at the cost of a loss in control performance.

1.2 Timing is everything

1

5

1.2 Timing is everything
As argued before, the biggest practical incentive to move from the simple well-established
periodic sampling towards ETC or STC is the reduction of necessary transmissions when
control systems share a communication medium, i.e., in the context of networked control
systems (NCSs). By reducing the communications, one could fit more controllers in the
same network, reducing costs and potentially enabling applications with communication
bandwidth constraints. In addition, in the particular case of wireless NCSs, less sampling
can imply reduced energy consumption on radio usage. This can substantially increase the
lifespan of wireless control applications in which wireless motes are battery powered, or
make these motes fully energy-sustainable if they use some sort of energy harvesting.

Let us look at the benefit of enabling more controllers per network, hereafter called
increasing network capacity, by considering a simple example: one controller can access the
network at a time, and this communication takes some elapsed time Δ (known as channel
occupancy time). For simplicity, during this time the whole control task is executed, i.e.,
sampling, transmissions, and control action calculation. Then, consider a case where three
control loops have sampling period of 3Δ each: it is easy to come up with a recurring
schedule that accommodates these three control loops, see the Gantt chart in Fig. 1.4 (left)
for a depiction. Now, consider only two control loops using ETC in this same network: even
if they produce much sparser traffic, the high variability of inter-sample times that they
generate make collisions almost inevitable, see Fig. 1.4 (right). Clearly, without some sort
of scheduling mechanism to adjust the transmission times, ETC’s potential in increasing
network capacity cannot be fulfilled.

𝑡Δ 𝑡
Figure 1.4: Gantt charts depicting network usage by different controllers. Periodic sampling (left) and ETC (right).

In STC, the communication is one-step predictable by design, hence it has advantages
in what concerns scheduling. If two controllers would sample at conflicting times, one
could anticipate one of these samplings to avoid the collision. Note that, based on how
these events are constructed, sampling earlier is always safe from a Lyapunov stability
perspective. Nonetheless, imagine you are implementing a network of self-triggered
controllers: what is the minimal information you need to be sure that conflicts can always
be avoided by sampling early? At least, the minimum inter-sample time, or MIST, of each
controller needs to be known, and fortunately, methods to compute it are abundant in the
ETC and STC literature. Now, suppose the control systems at hand have the same MIST of3Δ. Clearly, one cannot install four of these control systems in the same network. Now,
the MIST can be used as a fixed sampling period, since it is the time interval for which
the Lyapunov conditions are satisfied for the whole state space. Hence, even STC cannot
increase network capacity if all the information one has is the MISTs.

Let us look now at the second benefit, the mere average reduction in transmissions

1

6 1 Introduction

that ETC and STC can provide. If one inspects the rich ETC and STC literature, it becomes
evident that most of the evidence of superiority of ETC in comparison to periodic control in
this aspect is only supported through numerical case studies. In some cases, such as PETC,
one can obtain a straightforward qualitative assertion of non-inferiority by setting the event-
checking period equal to the largest periodic sampling time one can obtain. Nonetheless, no
quantitative measurement of this superiority has been established up until the work that
we have conducted; e.g., in PETC, doing this strategy often leads to periodic triggering of
the events, bringing no benefits at all.

Hopefully the reader is convinced at this point that a deeper look into these two aspects,
scheduling and quantitative evaluation of ETC or STC systems, is paramount to their
success in real applications. If the most relevant benefit they can offer is a change in timing
of control tasks, then understanding this timing and being able to manipulate it is arguably
as important as being able to determine stability and control performance.

Objective of this dissertation
The main objective of this dissertation is to present methods to (i) schedule multiple
ETC systems, (ii) evaluate ETC systems’ sampling performance, and (iii) if possible
improve ETC systems’ sampling peformance. As a building block to all these three
problems, we need to model the timing behavior of ETC/STC systems.

1.3 Related work
Much of the work described in this dissertation is based on symbolic abstractions using
the framework of Tabuada [17]. The modeling approaches are basically combinations of
well-established quotient systems and also 𝑙-complete approximations, which were first
introduced by Moor and Raisch [18]. When approaching quantitative problems, we rely
on the framework of quantitative automata of Chatterjee et al. [19]. Finally, a significant
part of our qualitative understanding of ETC’s generated traffic, and the insight to solving
several problems, is largely influenced by the behavioral approach to system modeling
advocated by Willems [20].

The problem of scheduling for ETC has been investigated prior to the project that
culminated in this dissertation. Notably, traffic models and their use for scheduling have
been addressed in [21–23], and these works have been used as stepping stones for much
that was done in this thesis.

The problem of formally quantifying ETC/STC performance was largely unaddressed
until this project. An exception is on deadbeat ETC for discrete-time systems subject to
Gaussian disturbances [24]. The subject of qualitatively understanding ETC’s sampling
behavior gained interest in the past years, during this project, with some interesting initial
results on planar linear systems in [25, 26].

1.4 Contributions and outline of this dissertation
In the next chapter we present the mathematical notation used throughout this dissertation,
and the necessary preliminaries: (weighted) transition systems and abstractions, ETC and
STC, and the fundamentals of ETC and STC traffic modeling.

1.4 Contributions and outline of this dissertation

1

7

In Chapter 3 we present the first contribution of this dissertation: scalable abstractions
of PETC systems. We develop abstractions whose size (in terms of number of states and
transitions) is independent of the state-space dimension, while the computation needed
to obtain them is only polynomially dependent on it. Moreover, these models are exact
simulations of the original PETC system’s traffic models, which gives them an advantage in
terms of predictive power. We also propose slightly different ways of solving the scheduling
problem; in particular, we notice that the abstractions we obtain allow us to solve the
scheduling problem using only finite systems, as opposed to timed automata as proposed in
previous work [22]. Hence, we achieve much higher scalability on the scheduling problem,
both in the abstraction process and in the scheduling process.

Chapter 4 goes a step further in the modeling process, aiming at improving the long-
term predictability of the models presented in Chapter 3. There we propose an abstraction
refinement approach that ensures exact predictability for as much time as is need to attain
a specified reduction in a reference Lyapunov function. We propose an alternative PETC
called Mixed PETC, which switches to (a slow-rate) periodic sampling when the state is
close to the origin, and show that we can obtain finite bisimilar traffic models to this Mixed
PETC (roughly posed, models that have exact predictive accuracy in the infinite run, see
Chapter 2 for a definition of bisimulation). Our proposed models can be used to compute
tighter estimates of traffic usage and decay rate of the closed-loop system.

The problem of computing the traffic performance of PETC is addressed thoroughly
in Chapter 5. There we show how one can build abstractions and their refinements to
compute the precise average inter-sample time of a PETC system. We give conditions
to when this precise computation is possible, and examples indicating when it is not. In
particular, we show how one can verify a given periodic traffic pattern of the system by
casting it as an eigenvalue problem. This work is the first to succeed in quantifying PETC
sampling performance, casting new light on its practical importance.

We further study ETC traffic in Chapter 6. We set ourselves to understand why some-
times ETC has predictable traffic, and why in other times it seems to be essentially random.
We find examples where in fact ETC exhibits chaotic behavior, which is more common
the more aggressive the ETC is designed towards sampling reduction. We present several
results related to how one can verify steady or periodic traffic patterns in CETC and PETC,
and how this relates to metrics such as average and limit-inferior ISTs. We then establish
notions of robust metrics, which are metrics that ignore exceptional initial states: measure-
zero sets from which any small perturbation leads to different behaviors with different
metrics. We show that these metrics can be computed exactly on PETC that does not
exhibit chaotic traffic, how to compute upper bounds to its behavioral entropy (a measure
of chaos observed from the traffic traces), and how to compute approximate robust metrics
even in chaotic cases.

Chapter 7 moves from quantitative verification to quantitative synthesis. In this chapter
we address the problem of improving the average sampling performance of PETC by using
early samples that reap benefits in the long run. This is achieved again by employing
finite-state abstractions, similarly to what is done for scheduling, but now solving a mean-
payoff game [27] on the abstraction, which optimizes the sampling performance in it. We
show how to compute the achieved performance by employing this strategy refined to the
concrete system — effectively a looking-ahead STC — and how to estimate its optimality

1

8 1 Introduction

gap. In a numerical example, it is shown that the ETC’s sampling performance can be
increased drastically by employing our approach.

In Chapter 8, we approach a different, but related, abstraction problem. Instead of
abstracting an ETC traffic model, we want to further abstract its abstraction without losing
any relevant information. In other words, we address the problem of obtaining reduced
abstractions for the sake of improved scalability. While finite system minimization with
respect to simulation or bisimulation is largely well-established, to our surprise the problem
was unaddressed for minimization with respect to alternating simulation (see Section 2.2.3),
a relation between systems that is suited for control applications. This is particularly
relevant for the scheduling problem, but also for other synthesis problems as in Chapter
7. We provide an algorithm that minimizes finite systems modulo alternating simulation
equivalence, proving its correctness and optimality, as well as showing that this system is
unique up to a special type of isomorphism. Later we apply this algorithm to PETC traffic
models, obtaining interesting general results about their schedulability and showcasing
how this minimization can drastically reduce the computation needed to obtain schedulers
(or unschedulability certificates).

Chapters 3–7 constitute the core of this dissertation. In all of them, the underlying
problem is somehow modeling a nominal PETC traffic — nominal in the sense that the
system is not subject to disturbances, noise, and full-state information is communicated
to the controller. Chapter 9 is the exception, presenting our last contribution: predicting
ISTs for systems under bounded external disturbances and noise, and with partial state
information. In fact, this prediction constitutes an STC that can be applied in this more
general control setting. We present an approach based on guaranteed state estimators,
which rely on set-based representation of the uncertainty, reachability analysis, and set
operations such as Minkowski sum and intersections. We design the algorithm in a way
that most of the heavy computation can be done offline, and only simpler linear-algebraic
operations are performed online. This is a stepping stone to understanding, predicting,
quantifying, and scheduling ETC on a more general and challenging control setting.

Finally, in Chapter 10 we present our conclusions. We summarize our key findings,
present opportunities for improvement, and discuss interesting future work directions.

1.5 Scope
Before entering the next chapter, it is important to comment on the scope of this work.
This dissertation is dedicated to ETC/STC of linear time-invariant (LTI) systems. Some of
the results we obtain are applicable for nonlinear systems, but for traffic modeling aimed at
nonlinear systems the reader is referred to [28–30]. Similarly, except for Chapter 9, we have
considered exclusively the nominal case where the system is not affected by disturbances.
While the traffic models we create can be extended to perturbed systems, an available
approach for linear systems with bounded disturbances is given in [23] and for nonlinear
systems in [30], and for linear systems with stochastic disturbances in [31].

Another important aspect is that we consider the problem of analyzing and manipu-
lating the traffic generated by a given controller. That is, we are not allowed to alter the
controller or even the triggering condition. This is based on the principle of separation
of concerns: the control design is a job to be executed regardless of the cyber-physical
implementation, and it typically generates a continuous-time controller. Then, an event-

1.6 Other contributions

1

9

triggering mechanism is designed in order to ensure that a good enough fraction of the
continuous-time performance is met, an approach called emulation. Finally, the sampling
performance can be evaluated given the triplet plant–controller–event, or a scheduler can
be designed for such triplets. Obviously the separation of concerns has the drawback of
decentralized approaches in general, i.e., missing the opportunity of optimizing both control
and sampling performance together. However, it allows that changes in the cyber-physical
implementation do not require a full redesign of the controller, keeping the tasks somewhat
independent. The problem of designing controllers together with events is called co-design,
and has its own large body of literature, see, e.g., [4, 32, 33].

1.6 Other contributions
In addition to the work here reported, we have worked in two main fronts. The first is the
development of a tool that automates much of the work needed to abstract ETC traffic mod-
els, evaluate their performance, and design schedulers and improved sampling strategies
— all the work reported in Chapters 3–8. This open-source tool is called ETCetera [34]
and is available in https://gitlab.tudelft.nl/sync-lab/ETCetera. This tool was
a joint effort with the other researchers in the ERC project that funded this research, and
further contains abstraction methods for nonlinear systems [28, 30], its own scheduling
problem solver [35], interfaces with UPPAAL Tiga [36] for scheduling with timed-game
automata (see Chapter 3), and simulation capabilities.

The second front is the design of specialized network stacks for ETC. In a collaboration
with the University of Trento and the Bruno Kessler Foundation, we have developed
the Wireless Control Bus [37], a network stack that utilizes concurrent transmissions to
minimize energy usage in wireless control systems. Concurrent transmissions allow for
constructive interference, which is particularly useful to turn otherwise competing sensors
flagging their events into a fast flooding of events for triggering a sensor data dissemination
phase. The stack is especially suitable for large-scale systems (in terms of both physical
dimensions and numbers of sensors and actuators connected to the network), for which
its tailor-made decentralized PETC protocol achieves massive reductions in radio energy
usage.

https://gitlab.tudelft.nl/sync-lab/ETCetera

2

11

2
Mathematical Notation and

Preliminaries

In this chapter we provide the notation (Section 2.1) and mathematical preliminaries
that are used across most of the chapters of this thesis. Section 2.2 presents the notion

of generalized transition systems from [17], weighted systems for quantitative verification
[19], and several definitions and fundamental results about abstractions. Then, we provide
a succinct introduction to event-triggered control (ETC) and self-triggered control (STC)
for linear time-invariant systems in Section 2.4. Finally, the traffic modeling of ETC systems
using generalized transition systems is presented in Section 2.5.

Notions that are only used in one specific chapter are presented locally.

2.1 Notation
This thesis applies a standard for font usage in mathematical symbols, with a few exceptions
to comply with tradition. Letters in normal italicized fonts (e.g., 𝑥) are used for scalar
variables or parameters, or scalar-valued functions, or elements of a set in a more abstract
way; bold lower-case letters (e.g., 𝒙) are used for vectors or vector-valued functions, and
bold upper-case letters (e.g., 𝑿) for matrix and matrix-valued functions; and calligraphic
letters (e.g., ) are used for sets or set-valued functions. Signals of time (such as solutions to
differential equations) are denoted with Greek letters, while points in some set are denoted
with (when possible, corresponding) Roman letters (e.g., 𝜉 (𝑡0) = 𝑥).

We denote by ℕ0 the set of natural numbers including 0, ℕ B ℕ0 ⧵ {0}, ℕ≤𝑛 B{1,2, ...,𝑛}, by ℚ the set of rational numbers, by ℝ the set of real numbers, with ℝ+ B{𝑥 ∈ ℝ ∣ 𝑥 ≥ 0}, i.e., the set of non-negative reals, and by ℂ the set of complex numbers.
The function ⌊𝑎⌋ denotes the largest integer not larger than 𝑎 ∈ ℝ, while ⌈𝑎⌉ denotes the
smallest integer not smaller than 𝑎. For a complex number 𝑧 ∈ ℂ,𝑧∗ denotes its complex
conjugate, arg𝑧 denotes its argument, and ℑ(𝑧) denotes its imaginary part.

For a vector 𝒙 ∈ ℝ𝑛 we denote by |𝒙| its Euclidean norm. For a square matrix 𝑨 ∈ ℝ𝑛×𝑛 ,
we write Tr(𝑨) to denote its trace, |𝑨| to denote its 2-induced norm. The set of eigenvalues
of 𝑨 is denoted by 𝜆(𝑨) ⊂ ℂ𝑛; 𝜆max(𝑨),𝜆min(𝑨), and 𝜆𝑖(𝑨) are its largest, smallest, and𝑖-th largest-in-magnitude eigenvalues, respectively. The sets 𝕊𝑛 , 𝕊𝑛+ and 𝕊𝑛++ are the sets of

2

12 2 Mathematical Notation and Preliminaries

symmetric, positive definite, and positive semi-definite real 𝑛 by 𝑛 matrices, respectively.
For 𝑷 ∈ 𝕊𝑛 , we write 𝑷 ≻ 0 (𝑷 ⪰ 0) if 𝑷 is positive definite (semi-definite).

For a set ⊆ Ω, we denote by | | its cardinality, by cl() its closure, by 𝜕 its boundary,
and by ̄ its complement, i.e., Ω ⧵ . We apply a function 𝑓 ∶  →  to a set  ⊆ 
the usual way, 𝑓 ()B {𝑓 (𝒙) ∣ 𝒙 ∈}. A set  ⊆ ℝ𝑛 is called homogeneous if 𝒙 ∈  ⟹𝜆𝒙 ∈ , ∀𝜆 ∈ ℝ ⧵ {0}. For a (binary) relation  ⊆ 𝑎 ×𝑏 , its inverse is denoted as −1 ={(𝑥𝑏 , 𝑥𝑎) ∈ 𝑏 ×𝑎 ∣ (𝑥𝑎 , 𝑥𝑏) ∈}. Every function 𝑓 ∶ 𝑎 → 𝑏 can be read as a relation,
namely {(𝑥𝑎 , 𝑥𝑏) ∈ 𝑎 ×𝑏 ∣ 𝑥𝑏 = 𝑓 (𝑥𝑎)}. When  ⊆  × is an equivalence relation on , i.e., it is reflexive, symmetric and transitive, we denote by [𝑥]B {𝑥′ ∣ (𝑥,𝑥′) ∈} the
equivalence class of 𝑥 ∈  , and by / the set of all equivalent classes. Finally, we denote
by 𝜋(𝑎)B {𝑥𝑏 ∈ 𝑏 ∣ (𝑥𝑎 , 𝑥𝑏) ∈ for some 𝑥𝑏 ∈ 𝑏} the natural projection of 𝑎 onto𝑏 .

For a sequence 𝜎 B {𝑥𝑖}𝑛𝑖=0, we denote by |𝜎 | = 𝑛 +1 its length. We often use a string
notation for sequences, e.g., 𝜎 = 𝑎𝑏𝑐 reads 𝜎(0) = 𝑥0 = 𝑎,𝜎(1) = 𝑥1 = 𝑏,𝜎(2) = 𝑥2 = 𝑐. Powers
and concatenations work as expected, e.g., 𝜎2 = 𝜎𝜎 = 𝑎𝑏𝑐𝑎𝑏𝑐. In particular, 𝜎𝜔 denotes the
infinite repetition of 𝜎 . We denote by + (resp. 𝜔) the sets of finite (resp. infinite) se-
quences with elements on . When the sub- and superscripts are absent, {𝑎𝑖}B 𝑎0, 𝑎1, 𝑎2, ...
denotes an infinite (on the right) sequence.

We say that an autonomous time-invariant system 𝝃̇ (𝑡) = 𝑓 (𝝃 (𝑡)) is globally exponen-
tially stable (GES) if there exist 𝑀 < ∞ and 𝑏 > 0 such that every solution of the system
satisfies |𝝃 (𝑡)| ≤ 𝑀e−𝑏𝑡 |𝝃 (0)| for every initial state 𝝃 (0); moreover, we call 𝑏 a decay rate es-
timate of the system. When needed to avoid ambiguity, we use 𝝃𝒙 (𝑡) to denote a trajectory
from initial state 𝝃 (0) = 𝒙.
2.2 Abstractions and transition Systems
Throughout this dissertation, we use the term abstraction to denote a simpler system
(typically finite-state) that captures desired properties of the concrete system (typically
infinite-state) we study. Finite-state abstractions are sometimes called finite-state approxi-
mations or symbolic models. The process of abstracting requires a formalism that allows
one to establish a relation between the concrete and abstract systems. We choose to use
the framework of [17], where the concept of Generalized Transition System is presented:

Definition 2.1 (Generalized Transition System [17]). A generalized transition system  is
a 6-tuple ( ,0, , , ,𝐻) where:

•  is the set of states,
• 0 ⊆  is the set of initial states,
•  is the set of inputs,
•  ⊆  × × is the set of edges (or transitions),
•  is the set of outputs, and
• 𝐻 ∶  →  is the output map.

We often refer to generalized transition systems simply as systems.
A system is said to be finite- (infinite-) state when the cardinality of  is finite (infinite),

and it is said to be just finite if both  and  are finite. A transition in  is denoted by
a triplet (𝑥,𝑢,𝑥′), and we often use 𝑥 𝑢−−−→ 𝑥′ to denote (𝑥,𝑢,𝑥′) ∈  . The set 𝑈 (𝑥)B {𝑢 ∣(𝑥,𝑢,𝑥′) ∈ }} denotes the actions available at state 𝑥 . We define Post(𝑥)B {𝑥′ ∣ (𝑥,𝑢,𝑥′) ∈

2.2 Abstractions and transition Systems

2

13

} as the set of states that can be reached from 𝑥 in one step, and by Pre(𝑥,𝑢)B {𝑥′ ∈  ∣𝑥′ 𝑢−−−→ 𝑥} the states from which, by applying 𝑢, reach 𝑥 in one step. When the system  is
not clear from context, we use, respectively, 𝑥 𝑢−−−→ 𝑥′,𝑈 (𝑥),Post (𝑥,𝑢), and Pre (𝑥,𝑢).

System  is said to be non-blocking if ∀𝑥 ∈  ,Post (𝑥) ≠ ∅, and deterministic if for
every 𝑥 ∈  and 𝑢 ∈ 𝑈 (𝑥), we have |Post(𝑥,𝑢)| = 1. For a state 𝑥 ∈  , we denote by (𝑥)B{ , {𝑥}, , , ,𝐻} the system  initialized at 𝑥 .

We call 𝑥0𝑢0𝑥1𝑢1𝑥2... an infinite internal behavior [20], or run of  if 𝑥0 ∈ 0 and(𝑥𝑖 ,𝑢𝑖 , 𝑥𝑖+1) ∈  for all 𝑖 ∈ ℕ, 𝑦0𝑦1... its corresponding infinite external behavior, or trace,
if 𝐻(𝑥𝑖) = 𝑦𝑖 for all 𝑖 ∈ ℕ. We denote by 𝐵 (𝑟) the external behavior from a run 𝑟 =𝑥0𝑢0𝑥1𝑢1𝑥2... (in the case above, 𝐵 (𝑟) = 𝑦0𝑦1...), by 𝑙𝑥 () (resp. +𝑥 () and 𝜔𝑥 ()) the set
of all 𝑙-long (resp. finite and infinite) external behaviors of  starting from state 𝑥 , and
by 𝑙 ()B⋃𝑥∈0 𝑙𝑥 () (resp. +()B⋃𝑥∈0 +𝑥 () and 𝜔()B⋃𝑥∈0 𝜔𝑥 ()) the set
of all 𝑙-long (resp. finite and infinite) external behaviors of  . Finally, ≤𝑛() is the set
of all behaviors of length ≤ 𝑛. A state 𝑥 is called reachable if there exists a run 𝑟 of 
containing 𝑥 ; throughout this thesis, we assume every state is reachable, which does not
affect generality as one can always remove unreachable states from a transition system
without changing its behavior.

When studying behaviors of finite systems, we can distinguish their transient compo-
nents: a finite sequence 𝛽 is called transient if there exists a finite 𝑙 such that 𝛾𝛽𝛼 ∈ 𝜔()
implies that |𝛾 | ≤ 𝑙 and 𝛽 is not a subsequence of 𝛼 ; equivalently, 𝛽 cannot occur infinitely
often in any infinite behavior of  .

A system is called autonomous if 𝑈 (𝑥) is a singleton for all 𝑥 ∈ 𝑋 , in which case we
shorten the notation of  by the 5-tuple ( ,0, , ,𝐻); in this case  is a subset of  × ,
and 𝑥 → 𝑥′ means (𝑥,𝑥′) ∈  . Likewise, the notation for runs is simplified to 𝑥0𝑥1𝑥2....

If  is both finite-state and autonomous, we can associate a directed graph, or digraph,𝐺 with it, where states are nodes and an edge 𝑥 → 𝑥′ exists if (𝑥,𝑥′) ∈  . Every digraph
has an associated (0,1)-matrix, the incidence matrix 𝑻 , obtained by attributing an index𝑖 to each node; then 𝑇𝑖𝑗 = 1 if 𝑥𝑖 → 𝑥𝑗 , 𝑇𝑖𝑗 = 0 otherwise. We say that 𝑻 is the incidence
matrix of  . A digraph is said to be strongly connected if there is a path from every node to
every other node. A strongly connected component (SSC) of 𝐺 is a maximal subgraph of 𝐺
that is strongly connected.

2.2.1 Simulation, behavioral eqivalence, and abstractions
Before presenting abstraction methods, we introduce several formal notions of relation
between two different systems. The first and perhaps most celebrated one is that of
simulation [38, 39], which requires the definition of a binary relation among the state
spaces of the two systems:

Definition 2.2 (Simulation Relation [17]). Consider two systems 𝑎 and 𝑏 with 𝑎 = 𝑏 .
A relation ⊆ 𝑎 ×𝑏 is a simulation relation from 𝑎 to 𝑏 if the following conditions are
satisfied:
i) for every 𝑥𝑎0 ∈ 𝑎0, there exists 𝑥𝑏0 ∈ 𝑏0 with (𝑥𝑎0, 𝑥𝑏0) ∈;
ii) for every (𝑥𝑎 , 𝑥𝑏) ∈,𝐻𝑎(𝑥𝑎) = 𝐻𝑏(𝑥𝑏);
iii) for every (𝑥𝑎 , 𝑥𝑏) ∈,we have that (𝑥𝑎 ,𝑢𝑎 , 𝑥′𝑎) ∈ 𝑎 implies the existence of (𝑥𝑏 ,𝑢𝑏 , 𝑥′𝑏) ∈ 𝑏

satisfying (𝑥′𝑎 , 𝑥′𝑏) ∈.

2

14 2 Mathematical Notation and Preliminaries

A simulation relation from 𝑎 to 𝑏 is denoted by 𝑎 ⪯ 𝑏 . Essentially, a simulation
relation ⊆ 𝑎 ×𝑏 captures which states of 𝑎 are simulated by which states of 𝑏 : for
the right state selection, their outputs are the same; and every transition in 𝑎 leads to
a state whose output can also be attained in 𝑏 after a single transition. It is important
to notice, however, that there might be transitions in 𝑏 that lead to states that are not
related to the ones attained in 𝑎 . When using simulation relations to model the behavior
of a system, these transitions are called spurious transitions.

If 𝑎 ⪯ 𝑏 , it becomes clear that any sequence of outputs from 𝑎 can be generated by𝑏 ; the converse is not true, unless there is in fact a bisimulation:

Definition 2.3 (Bisimulation [17]). Consider two systems 𝑎 and 𝑏 with 𝑎 = 𝑏 . 𝑎 is
said to be bisimilar to 𝑏 , denoted 𝑎 ≅ 𝑏 , if there exists a relation  such that:

•  is a simulation relation from 𝑎 to 𝑏 ;
• −1 is a simulation relation from 𝑏 to 𝑎 .
Weaker but important relations associated with simulation and bisimulation are, re-

spectively, behavioral inclusion and behavioral equivalence:

Definition 2.4 (Behavioral inclusion and equivalence [17]). Consider two systems 𝑎 and𝑏 with 𝑎 = 𝑏 . We say that 𝑎 is behaviorally included in 𝑏 , denoted by 𝑎 ⪯ 𝑏 ,
if 𝜔(𝑎) ⊆ 𝜔(𝑏). In case 𝜔(𝑎) = 𝜔(𝑏), we say that 𝑎 and 𝑏 are behaviorally
equivalent, which is denoted by 𝑎 ≅ 𝑏 .

(Bi)simulations imply behavioral inclusion (equivalence):

Theorem 2.1 ([17]). Given two systems 𝑎 and 𝑏 with 𝑎 = 𝑏 :
• 𝑎 ⪯ 𝑏 ⟹ 𝑎 ⪯ 𝑏 ;
• 𝑎 ≅ 𝑏 ⟹ 𝑎 ≅ 𝑏 .
The main difference between simulation and behavioral inclusion is that, in the former,

a relationship between states must be established: every transition in the concrete system
must have at least one matching transition in the abstraction leading to related states.
Behavioral inclusion is oblivious to state-based descriptions of a system: all one needs is
that all traces observed in the concrete system can also be observed in the abstraction.

Having the relation definitions in place, we can now present existing abstraction
methods. The first is the construction of quotient systems:

Definition 2.5 (Quotient System [17]). Consider a system  = ( ,0, , , ,𝐻) and let be an equivalence relation on  such that (𝑥,𝑥′) ∈ ⟹ 𝐻(𝑥) = 𝐻(𝑥′). The quotient of by , denoted by /, is the system (/, /0,  , /,  , 𝐻/) consisting of
• / = /;
• /0 = {𝑥/ ∈ / ∣ 𝑥/ ∩0 ≠ ∅};
• (𝑥/,𝑢,𝑥′/) ∈ / if there exists (𝑥,𝑢,𝑥′) ∈  with 𝑥 ∈ 𝑥/ and 𝑥′ ∈ 𝑥′/;
• 𝐻/(𝑥/) = 𝐻(𝑥) for some 𝑥 ∈ 𝑥/.
Building a quotient system is fundamentally aggregating states of the original system

that produce the same output, and then determining the transitions so that every possible
transition of the original system is reproduced in the quotient (symbolic) system. By
construction,  ⪯ /.

2.2 Abstractions and transition Systems

2

15

1

2

1,1 1,2

2,1 2,2

1,1,2 1,2,1

2,1,1 2,1,2 1,2,2

2,2,2

Figure 2.1: Example of 𝑙-complete PETC traffic models, for 𝑙 = 1 (left), 𝑙 = 2 (middle), and 𝑙 = 3 (right).
A second way building an abstraction is based on behavioral inclusion, through a so-

called 𝑙-complete model. Here we adapt the original definitions from [18, 40] for autonomous
systems:

Definition 2.6 (Strongest 𝑙-complete abstraction (adapted from [18, 40])). Consider an
autonomous transition system  B ( ,0, , ,𝐻), and let 𝑙 ⊆  𝑙 be the set of all 𝑙-long
subsequences of all behaviors in 𝜔(). Then, the system 𝑙 = (𝑙 ,𝑙 (),𝑙 , ,𝐻) is called
the strongest 𝑙-complete abstraction (S𝑙CA) of  , where

• 𝑙 = {(𝑦𝜎,𝜎𝑦′) ∣ 𝑦,𝑦′ ∈  ,𝜎 ∈  𝑙−1, 𝑦𝜎 ,𝜎𝑦′ ∈ 𝑙}.
• 𝐻(𝑦𝜎) = 𝑦 .
The idea behind the S𝑙CA is to encode the states as the 𝑙-long behavior fragments of

the concrete system. The transitions follow the “domino rule”: e.g., if the last 4 elements of
the behavior up to a given time are 𝑎𝑏𝑐𝑑 , after one step the first 3 elements must be 𝑏𝑐𝑑 ;
thus, from having observed 𝑎𝑏𝑐𝑑 alone, a transition from state 𝑎𝑏𝑐𝑑 can lead to any state
starting with 𝑏𝑐𝑑 . Finally, the output of a state is its first element.

To illustrate how successive 𝑙-complete approximations of a system operate, consider a
system  with behavior set {2𝜔 , 12𝜔 , 212𝜔 , (112)𝜔 , (121)𝜔 , (211)𝜔}. Fig. 2.1 presents its 1-,
2-, and 3-complete abstractions; as one can see, 1 and 2 have the trivial set of all possible
behaviors over the set  , but 𝜔(3) is smaller, closer to the concrete behavior set. That is,
we have 𝜔() ⊆ 𝜔(3) ⊆ 𝜔(2) ⊆ 𝜔(1), and in this example 3 has fewer spurious
behaviors than 2 and 1.
Remark 2.1. Here we directly present a realization of the S𝑙CA as a transition system
according to Def. 2.1. Schmuck et al. [40] showed that different realizations exist for the S𝑙CA
of a system, depending on whether you encode states based on past, future, or a mix of past
and future observations. In Def. 2.6, we pick the one based on future observations, which
simplifies the encoding (all states are 𝑙-long sequences without the need for "no-output yet"
characters, see [18]), and is the tightest abstraction from a simulation relation perspective (see
[40, Thm. 5]).

In [40, Theorem 9], it is concluded that a quotient-based approach as that of Def. 2.5
can create an abstraction bisimilar to the S𝑙CA in case the concrete system is future-unique,
which is the case of deterministic autonomous systems. Thus, we shall use the term 𝑙-
complete for quotient-based abstractions whose states represent the next 𝑙 outputs of their
related concrete states. With this in mind, the following fact is a direct consequence of
Theorems 6 and 7 from [40].

Proposition 2.1. Consider a deterministic autonomous system  and its S𝑙CA 𝑙 from
Definition 2.6, for some 𝑙 ≥ 1. Then,  ⪯ 𝑙+1 ⪯ 𝑙 .

2

16 2 Mathematical Notation and Preliminaries

Prop. 2.1 gives that 𝑙-complete abstractions provide a framework of obtaining simula-
tions and their refinements. It is not a surprising result, since encoding states with more
elements of the concrete system’s behavior constrains the set of behaviors it can generate,
even if it increases the number of states in the abstraction.

Remark 2.2. Bisimulation is obtained when 𝑙+1 = 𝑙 (modulo the names of the states); it is
trivial to see that this only happens when abstracting an autonomous deterministic system if
the abstraction is deterministic. In addition, lim𝑙→∞𝑙 ≅  .
2.2.2Quantitative automata
While much of the field of formal methods in control is concerned with qualitative analysis,
such as establishing safety, stability, and reachability, often quantitative computations
are of interest: examples are computing the decay rate, the maximum overshoot, or our
case, the average sampling period of an ETC system. In [19], Chatterjee et al. establish a
comprehensive framework for quantitative problems on finite-state systems, from which
we borrow some definitions and results, while adjusting notation to keep consistency with
the previous section.

Definition 2.7 (Weighted transition system (adapted from [19])). A weighted transition
system (WTS)  is the tuple ( ,0, , , ,𝐻 ,𝛾), where

• ( ,0, , , ,𝐻) is a non-blocking transition system;
• 𝛾 ∶  →ℚ is the weight function.

The notation adjustment we have made is including outputs to comply with Tabuada’s
transition systems.

We denote by 𝛾 (𝑟) the value trace of 𝑟 = 𝑥0𝑢0𝑥1... (e.g., 𝛾 (𝑟) = 𝑣0𝑣1...); when the
system is clear from context, we omit the subscript, abusing the notation of 𝛾 to sequences.
We use 𝛾𝑖(𝑟) for the 𝑖-th element of 𝛾(𝑟). We denote by 𝜔𝑥 () the set of all possible value
traces of  starting from state 𝑥 , and by 𝜔()B⋃𝑥∈0 𝜔𝑥 () the set of all possible value
traces of  . Again abusing notation, we denote by 𝛾() the set of all possible weight
valuations of  , which is guaranteed to be finite if  is finite. In some cases, the weights
are state-dependent instead of transition-dependent; we call these systems simple WTSs:

Definition 2.8 (Simple WTS). A WTS is called simple if for all (𝑥,𝑢,𝑥′) ∈  , we have that𝛾(𝑥,𝑢,𝑥′) = 𝐻(𝑥).
If  is a simple WTS, it holds trivially that () = 𝜔().
A value function Val ∶ ℚ𝜔 →ℝ attributes a value to an infinite sequence of weights𝜈 B 𝑣0𝑣1.... Among the most well-studied value functions, the ones of our interest areLimInf(𝜈)B liminf𝑛→∞ 𝑣𝑖 ,LimSup(𝜈)B limsup𝑛→∞ 𝑣𝑖 ,

LimAvg(𝜈)B liminf𝑛→∞ 1𝑛 +1 𝑛∑𝑖=0 𝑣𝑖 .

2.2 Abstractions and transition Systems

2

17

Similarly, for a finite sequence 𝜎 B {𝑣𝑖}𝑛𝑖=0, let Avg(𝜎)B 1𝑛+1 ∑𝑛𝑖=0𝑣𝑖 (the inf counterpart
is simply min(𝜎). For each value function we can define the following values of a value
trace set  ⊆ 2ℕ→ℚ,

ILI()B inf{liminf𝑖→∞ 𝑦𝑖 |||| {𝑦𝑖} ∈ },SLS()B sup{limsup𝑖→∞ 𝑦𝑖 ||||| {𝑦𝑖} ∈ 
},

ILA()B inf {liminf𝑛→∞ 1𝑛 +1 𝑛∑𝑖=0 𝑦𝑖 |||| {𝑦𝑖} ∈ },SLA()B sup {liminf𝑛→∞ 1𝑛 +1 𝑛∑𝑖=0 𝑦𝑖 |||| {𝑦𝑖} ∈ }.
(2.1)

For a value 𝑉 ∈ {ILI,SLS, ILA,SLA}, we often use the shorthand notation 𝑉 ()B 𝑉 ().
The following result, extracted from [19, Theorem 3] and its proof, gives that these

values are computable on finite WTSs:

Theorem 2.2. Given a finite-state WTS  ,
1) ILI() can be computed in(| |+| |); moreover, there exists 𝑥 ∈ such that𝐻(𝑥) = ILI()

and 𝑥 belongs to an SCC of the graph defined by  .
2) ILA() can be computed in (| || |). Moreover, system  admits a cycle 𝑥0𝑥1...𝑥𝑘

satisfying 𝑥𝑖 →𝑥𝑖+1, 𝑖 < 𝑘, and 𝑥𝑘 →𝑥0, s.t. the run 𝑟 = (𝑥0𝑥1...𝑥𝑘)𝜔 satisfies

liminf𝑛→∞ 1𝑛 +1 𝑛∑𝑖=0 𝛾𝑖(𝑟)) = ILA().
It is easy to see that, for a finite WTS  , we have that ILA() = −SLA(−), where we

denote by − the WTS  with all of its weights negated; hence the results of Theorem 2.2
apply equally to SLS and SLA.
Remark 2.3. The algorithm for computing ILI() and SLS() is the same as the one to
determine Büchi acceptance, and consists of computing SSCs and performing reachability
to those [19]. The cycle mentioned in Theorem 2.2 is a minimum average cycle (MAC), or
smallest-in-average cycle (SAC), of the weighted digraph defined by  . The algorithm to
compute the value is due to [41], which also detects reachable SCCs and employs dynamic
programming on those. The cycle can be recovered in (| |) using the algorithm in [42].

2.2.3 Abstractions for control synthesis
Whenever the interest is in control design, normal simulation relations as in Section 2.2.1
are not sufficient. Instead, [17] proposes the use of alternating simulation relations [43] for
this end.1 Here we make a small adaptation of the definition of Tabuada:
1The concept of alternating simulations in [43] was proposed for multi-player games on structures called
alternating transition systems. It was later simplified by Tabuada for a two-player game, where the controller
chooses actions in  to meet some specification against an antagonist environment that chooses the transitions.

2

18 2 Mathematical Notation and Preliminaries

Definition 2.9 (Alternating simulation relation). Consider two weighted systems (Def. 2.7)𝑎 and 𝑏 with 𝑎 ⊆ 𝑏 and 𝛾𝑎(𝑎) = 𝛾𝑏(𝑏). A relation  ⊆ 𝑎 ×𝑏 is a alternating
simulation relation (ASR) from 𝑎 to 𝑏 if the following conditions are satisfied:
i) ∀𝑥𝑏0 ∈ 𝑏0 ∃𝑥𝑎0 ∈ 𝑎0 such that (𝑥𝑎0, 𝑥𝑏0) ∈;
ii) ∀(𝑥𝑎 , 𝑥𝑏) ∈, it holds that 𝐻(𝑥𝑎) = 𝐻(𝑥𝑏);
iii) ∀(𝑥𝑎 , 𝑥𝑏) ∈, ∀𝑢𝑎 ∈ 𝑈𝑎(𝑥𝑎) ∃𝑢𝑏 ∈ 𝑈𝑏(𝑥𝑏) ∀𝑥′𝑏 ∈ Post𝑏 (𝑥𝑏 ,𝑢𝑏), ∃𝑥′𝑎 ∈ Post𝑎 (𝑥𝑎 ,𝑢𝑎) such

that (𝑥′𝑎 , 𝑥′𝑏) ∈.
When an ASR from 𝑎 to 𝑏 exists, we say that 𝑏 is an alternating simulation (AS) of 𝑎 ,
denoting it by 𝑎 ⪯AS 𝑏 . When using a specific relation, we use the notation 𝑎 ⪯ 𝑏 .

It is easy to see that if two relations1 and2 satisfy 𝑎 ⪯1 𝑏 and 𝑎 ⪯2 𝑏 , then𝑎 ⪯1∪2 𝑏 . The union of all ASRs from 𝑎 to 𝑏 is called the maximal alternating
simulation relation from 𝑎 to 𝑏 .

Intuitively, given 𝑎 and 𝑏 , an ASR from a 𝑎 to 𝑏 , implies that every controller
move of 𝑎 can be “replicated” by the controller of 𝑏 and every environment move of𝑏 can be “replicated” by that of 𝑎 . Informally, this means that the controller of 𝑏 is at
least as powerful as that of 𝑎 and the environment of 𝑎 is at least as powerful as that of𝑏 . This interpretation is also behind our modification of the definition w.r.t. [17], where
condition (i) is reversed: in our definition, the “environment” picks the initial state, so
every initial state in 𝑏 must be matched in 𝑎 . 2
Remark 2.4. Unlike in the simulation relation, when𝑎 ⪯AS 𝑏 , we say that𝑎 (the left-hand
side) is the abstraction.

The importance of alternating simulations for control stems from the following fact:
given any temporal-logic specification 𝜙 over the alphabet  , if 𝑎 ⪯AS 𝑏 , then the
existence of a controller for 𝑎 such that the closed-loop system satisfies 𝜙 implies that
there exists a controller for 𝑏 meeting the same specification; in fact, the strategy for 𝑎
can be refined for 𝑏 . Moreover, for any specification 𝜙, if (𝑥,𝑥′) ∈ and the controller
can ensure 𝜙 from 𝑥 , then it can ensure 𝜙 from 𝑥′; the symmetric notion holds: if the
controller cannot ensure 𝜙 from 𝑥′, then it cannot ensure it from 𝑥 . Alternating simulation
commutes with composition (as normal simulations do), making this notion suitable for
control design of a composition of systems, such as the scheduling problem we tackle in
Chapter 3. For a thorough exposition about these facts and how to synthesize controllers
for several types of specifications we refer the reader to [17].

Like in the case of simulation, AS also admits a bisimulation notion:

Definition 2.10 (Alternating bisimulation). Two transition systems 𝑎 and 𝑏 are said to
be alternatingly bisimilar, denoted by 𝑎 ≅𝐴𝑆 𝑏 , if there is an ASR from 𝑎 to 𝑏 such
that its inverse −1 is an ASR from 𝑏 to 𝑎 .

A relaxed notion w.r.t. bisimulation is that of equivalence:

2Note that Tabuada’s definition and ours are not fundamentally different. In both cases, one could have a single
initial state, and condition (i) of Def. 2.9 would be a consequence of condition (iii) by adding silent transitions
from the initial state to the “real” initial state set; for Tabuada’s definition, condition (i) would be derived by (iii)
if instead the controller would have a different action for each of these transitions.

2.3 Timed automata

2

19

Definition 2.11 (Alternating simulation equivalence (ASE)). Two transition systems 𝑎
and 𝑏 are said to be alternating-simulation equivalent, denoted by 𝑎 ≃AS 𝑏 , if there is an
ASR  from 𝑎 to 𝑏 and an ASR ′ from 𝑏 to 𝑎 .
2.3 Timed automata
Another class of transition systems for which a wide range of verification and synthe-
sis problems can be computationally solved is that of timed automata. Timed automata
are regular automata equipped with clocks, which are resettable real-valued variables
measuring the passage of time. Let  be a finite set of said clocks, and consider binary rela-
tions ⋈ ∈ {<,≤,=,≥, >}. A clock constraint 𝑔 is a conjunctive formula of atomic constraints𝑐 ⋈ 𝑘,𝑐 ∈ , 𝑘 ∈ ℕ. We denote by () the set of all clock constraints.

Definition 2.12. (Timed safety automaton, [44]). A timed safety automaton (TSA) is a tuple = (,0, ,, , 𝐼) where:
•  is the finite set of locations (or discrete states),
• 0 ⊆  is the set of initial locations,
•  is the finite set of actions,
•  is the finite set of clocks,
•  ⊆ ×() × ×2 × is the set of edges (or transitions), and
• 𝐼 ∶ → () assigns invariants to locations.
A TSA is a system with both discrete (the locations) and continuous states (the clocks).

All clocks increase value at the same rate, but transitions can reset the value of certain
clocks. The system can change locations through edges, depending on the action taken
and the clocks’ values. We denote by 𝑙 𝑔,𝑎,𝑟−−−−−−→ 𝑙′ the transition from 𝑙 ∈  to 𝑙′ ∈  under
action 𝑎 ∈ , with 𝑟 ⊆  as the set of clocks reset when this transition is taken, and 𝑔 over as the guards that enabled the transition. Invariants of a location are the sufficient clock
conditions for a transition to happen; in other words, the system is forced to leave the place𝑙 if a clock 𝑐 violates any invariant 𝐼 (𝑙). Symmetrically, a guard is a necessary condition for
a transition to occur.

Timed game automata (TGA) extend TSA by partitioning the set of actions into con-
trollable and uncontrollable. Controllable actions are decisions that the system operator
can choose, while uncontrollable actions are taken independently of the system operator
(e.g., by the environment or an opponent).

Definition 2.13. (Timed game automaton, [44]). A timed game automaton is a tuple = (,0,c,u,, , 𝐼) where:
• (,0,c ∪u,, , 𝐼) is a TSA,
• c is the set of controllable actions,
• u is the set of uncontrollable actions, and
• c ∩u = ∅.
The distinction between controllable and uncontrollable is paramount in our case. The

scheduler can control when to sample, but not how the system will react to this choice.
To define a strategy, let  be a TGA, and c ⊆  be its set of locations, for which a

controllable action exists. A strategy 𝑆 ∶ c × →2c determines which actions can be
taken depending on the TGA states. A deterministic strategy outputs a single action.

2

20 2 Mathematical Notation and Preliminaries

Finally, TGAs can be combined into a network of timed game automata (NTGA), which
allows for modularity [44]. An NTGA consists of 𝑛 TGAs 𝑖 = (𝑖 ,𝑖0,c,u,,𝑖 , 𝐼𝑖),
where 1) uncontrollable actions take precedence over controllable actions, and 2) a location
of the network, denoted as 𝑙 B (𝑙1, ..., 𝑙𝑛), has its invariant 𝐼 (𝑙) = ∧𝑖𝐼𝑖(𝑙𝑖). Most importantly,
TGAs within an NTGA can have transitions influence each other through synchronization
channels: for a channel a, the initiating transition is labeled a! and, when fired, all
transitions labeled a? have to fire simultaneously.

2.4 Event-triggered and self-triggered control
In most of the chapters ahead—the exception being Chapter 9—, we consider the basic ETC
architecture of Fig. 1.1 applied to a linear time-invariant (LTI) system using static linear
state-feedback and sample-and-hold control [45]:𝝃̇ (𝑡) = 𝑨𝝃(𝑡) +𝑩𝝊̂(𝑡),𝝊(𝑡) = 𝑲𝝃̂ (𝑡),𝝃 (0) = 𝝃̂ (0) = 𝒙0,
where the state of the plant 𝝃 (𝑡) ∈ ℝ𝑛x is sampled at instants 𝑡𝑖 , ∀𝑖 ∈ ℕ, and held constant
for the controller, which makes the state signal used for control 𝝃̂ satisfy 𝝃̂ (𝑡) = 𝝃 (𝑡𝑖),∀𝑡 ∈[𝑡𝑖 , 𝑡𝑖+1). Likewise, the control input 𝝊(𝑡) ∈ ℝ𝑛u is held in-between sampling instants, giving𝝊̂(𝑡) = 𝝊(𝑡𝑖),∀𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1), where 𝝊̂ is the control input signal that is in fact received by the
plant. The matrices 𝑨,𝑩 are the plant matrices and 𝑲 is the control gain, all of which have
appropriate dimensions. The time instant zero is chosen to the be the first samplingmoment,
hence 𝒙0 ∈ ℝ𝑛x is the initial plant state and initial sample. Note that we have neglected
possible delays in transmission or control computation. For this case, the equations can
simplified further: 𝝃̇ (𝑡) = 𝑨𝝃(𝑡) +𝑩𝑲𝝃̂ (𝑡), (2.2)𝝃 (0) = 𝝃̂ (0) = 𝒙0.

In ETC, a triggering condition determines the sequence of times 𝑡𝑖 . In PETC, this
condition is checked only periodically, with a fundamental checking period ℎ. The sampling
time 𝑡𝑖+1 hence assumes the following form:𝑡𝑖+1 = inf{𝑡 ∈  ∣ 𝑡 > 𝑡𝑖 and 𝑐(𝑡 − 𝑡𝑖 , 𝝃 (𝑡), 𝝃̂ (𝑡))}, (2.3)

where 𝑐 ∶  × ℝ𝑛x × ℝ𝑛x → {true, false} is the triggering condition, and  is the set of
checking times: the standard one is  = ℝ+, which is used in [5], and hereafter called
continuous ETC (CETC); the other one we often consider is PETC, where  = ℎℕ, with ℎ
being the checking period.

In this dissertation, we consider the family of quadratic triggering conditions from [11]
with an additional maximum inter-event time condition below:

𝑐(𝑠,𝒙, 𝒙̂)B [𝒙̂𝒙]T𝑸(𝑠)[𝒙̂𝒙] > 0 or 𝑠 ≤ 𝜏 (2.4)

2.5 ETC traffic models

2

21

where 𝑸 ∶  →𝕊2𝑛x is the designed triggering matrix function (possibly constant), and 𝜏
is the chosen maximum inter-event time. When  = ℎℕ, we assume for consistency that𝜏/ℎ ∈ ℕ.
Remark 2.5. Often a maximum 𝜏 naturally emerges form an ETC triggering condition. If
it ensures GES of the origin, this holds if all eigenvalues of 𝑨 have non-negative real part or,
more generally, if the control action satisfies 𝑩𝑲𝒙 ≠ 0 for all 𝒙 in the asymptotically stable
subspace of 𝑨. In such situations, 𝝃 (𝑡) does not converge to the origin without intermittent
resampling. Still, one may want to set a smaller maximum inter-event time so as to establish
a “heart beat” of the system.

Many of the triggering conditions available in the literature can be written as in Eq. (2.4);
the interested reader may refer to [11] for a comprehensive list of triggering and stability
conditions.
Remark 2.6. In STC, the sampling time 𝑡𝑖+1 is chosen at the time instant 𝑡𝑖 based on available
information. Most commonly, STC uses the currently available sample 𝝃 (𝑡𝑖) to determine the
inter-sample time (IST) 𝑠𝑖 such that 𝑡𝑖+1 = 𝑡𝑖 + 𝑠𝑖 . Clearly, given an ETC triggering condition𝑐, an STC implementation could obtain the exact same behavior by computing 𝑡𝑖+1 using
Equation (2.3); while this is trivial for PETC, this is not so computationally acceptable for
CETC, as this would essentially involve integrating the plant forward and detect a zero crossing.
Moreover, if the system is affected by disturbances, a precise prediction is no longer possible.
We address the latter case in Chapter 9.

2.5 ETC traffic models
Throughout this dissertation, we are interested in modeling the traffic generated by (P)ETC,
i.e., understanding how the inter-sample times evolve from different initial conditions. We
start by constructing the concrete traffic model, which is infinite-state. First, note that 𝝃 (𝑡)
is a function of 𝝃̂ (𝑡) = 𝝃 (𝑡𝑖) and the elapsed time 𝑠 B 𝑡 − 𝑡𝑖 :𝝃 (𝑡𝑖 + 𝑠) = 𝑴(𝑠)𝝃 (𝑡𝑖), (2.5)𝑴(𝑠)B 𝑨d(𝑠) +𝑩d(𝑠)𝑲 B e𝑨𝑠 +∫ 𝑠0 e𝑨𝑡d𝑡𝑩𝑲.
Applying (2.5) with 𝑠 = 𝑡𝑖+1−𝑡𝑖 , the inter-event time (IET, or inter-sample time, IST) 𝑡𝑖+1−𝑡𝑖 is
solely a function of the 𝑖-th sample 𝝃 (𝑡𝑖). Hence, we can define an IET function 𝜏 ∶ ℝ𝑛x →(0,𝜏] ∩ that returns the value of 𝑡𝑖+1 − 𝑡𝑖 given a sampled state 𝒙 ∈ ℝ𝑛x .3 It follows from
Eqs. (2.3)–(2.5) that 𝜏 (𝒙) = inf{𝑠 ∈  ∣ 𝒙T𝑵(𝑠)𝒙 > 0 or 𝑠 = 𝜏},𝑵(𝑠)B [𝑴(𝑠)

I]T𝑸(𝑠)[𝑴(𝑠)
I] , (2.6)

where I denotes the identity matrix. Thus, the event-driven evolution of sampled states
can be compactly described by the recurrence𝝃 (𝑡𝑖+1) = 𝑴(𝜏(𝝃 (𝑡𝑖)))𝝃 (𝑡𝑖)C 𝑓 (𝝃 (𝑡𝑖)), (2.7)
3We assume the triggering condition prevents Zeno behavior, which is standard in ETC design.

2

22 2 Mathematical Notation and Preliminaries

which finally gives the following discrete-time model:𝒙 𝑖+1 = 𝑓 (𝒙 𝑖),𝑦𝑖 = 𝜏(𝒙 𝑖), (2.8)

where 𝒙 𝑖 B 𝝃 (𝑡𝑖) and 𝑓 (𝒙) B 𝑴(𝜏(𝒙))𝒙 . We call 𝑓 the sample map and (2.8) the sample
system, which is equipped with an output 𝑦 that gives the associated inter-event time of 𝒙 𝑖 :
for a traffic model, this is the output of interest. We shall denote the sequence of outputs
from Eq. (2.8) for a given initial state 𝒙0 by {𝑦𝑖(𝒙0)}.

Referring to Remark 2.6, one can replace 𝜏 from (2.6) for any other function that can be
computed on the controller, which makes the model in (2.8) essentially the same for STC.

Eq. (2.8) can be described as a weighted generalized transition system:

Definition 2.14 (ETC trafficmodel). The ETC trafficmodel is theWTS = ( ,0, , ,𝐻 ,𝛾)
where  = 0 = ℝ𝑛x ;

 = {(𝒙,𝒙′) ∈  × ∣ 𝒙′ = 𝑓 (𝒙)};
 = (0,𝜏] ∩ ;𝐻 = 𝜏 ;𝛾 (𝒙,𝒙′) = 𝐻(𝒙).

(2.9)

We also include a weight function, which is equal to the output of the outbound state.
This will be useful in the chapters where we work with quantitative results, such as
Chapters 5–7. In the other chapters, the system is referred to simply by the 5-tuple without𝛾 . Clearly, the ETC traffic model is a simple WTS.

For PETC it is more convenient to deal with the discrete time 𝑘 ∈ ℕ, such that 𝑘 =𝑡/ℎ,∀𝑡 ∈  . The analogous of the function 𝜏 in discrete time is the function 𝜅 B 𝜏/ℎ, which
admits the following expression:𝜅(𝒙) = min{𝑘 ∈ {1,2, ...𝑘} ||| 𝒙T𝑵(ℎ𝑘)𝒙 > 0 or 𝑘 = 𝑘}, (2.10)

where 𝑘 B 𝜏/ℎ is the maximal-in-discrete-time IST.
Clearly, the PETC traffic model is finite-output:

Definition 2.15 (PETC trafficmodel). The PETC trafficmodel is the system = ( ,0, , ,𝐻 ,𝛾)
where  = 0 = ℝ𝑛x ;

 = {(𝒙,𝒙′) ∈  × ∣ 𝒙′ = 𝑓 (𝒙)};
 = {1,2, ..., 𝑘};𝐻 = 𝜅;𝛾 (𝒙,𝒙′) = 𝐻(𝒙).

(2.11)

The models in Defs. 2.14 and 2.15 are autonomous, and hence they serve solely for
the purpose of evaluating the traffic of ETC. If we want to be able to manipulate the ETC
traffic pattern for scheduling or improving its performance, we need to have an action set.

2.5 ETC traffic models

2

23

Throughout this dissertation, we consider the possibility of early triggering, i.e., we allow a
scheduler or any other sampling strategy to query for a sample before 𝜏 (𝝃 (𝑡𝑖)) time units
have elapsed. Considering how ETC triggering conditions are designed—the latest moment
such that some Lyapunov stability condition is sure to hold—this is a sound strategy in
terms of control stability and performance.

Definition 2.16 (ETC traffic model with early triggering). The ETC traffic model with early
triggering actions is the system  = ( ,0, , , ,𝐻 ,𝛾) where

 = 0 = ℝ𝑛x ;
 = (0,𝜏] ∩ ;
 = {(𝒙, 𝑠,𝒙′) ∈  × × ∣ 𝒙′ = 𝑴(𝑠)𝒙 and 𝑠 ≤ 𝜏(𝒙)};
 = (0,𝜏] ∩ ;𝐻 = 𝜏 ;𝛾 (𝒙, 𝑠,𝒙′) = 𝑠.

(2.12)

Notice that the action is precisely the IST to be chosen, and it also reflects on the weight
function. The output map is still 𝜏 and it now gives the ETC-based deadline. Again, it is
useful to specialize this model for PETC, which renders an infinite-state, but finite-input
and -output model.

Definition 2.17 (PETC traffic model with early triggering). The PETC traffic model with
early triggering actions is the system  = ( ,0, , , ,𝐻 ,𝛾) where

 = 0 = ℝ𝑛x ;
 = {1,2, ..., 𝑘};
 = {(𝒙, 𝑠,𝒙′) ∈  × × ∣ 𝒙′ = 𝑴(ℎ𝑠)𝒙 and 𝑠 ≤ 𝜏(𝒙)};
 = {1,2, ..., 𝑘};𝐻 = 𝜅;𝛾 (𝒙, 𝑠,𝒙′) = 𝑠.

(2.13)

3

25

3
Scalable Traffic Models for

Scheduling

This chapter addresses the problem of modeling and scheduling the transmissions generated
by multiple event-triggered control (ETC) loops sharing a network. We present a method to
build a finite-state model of the traffic generated by PETC based on quotient systems, which
by construction mitigates the combinatorial explosion that is typical of symbolic models; in
addition, it is a simulation of the original traffic model. The model is then augmented with
early sampling actions that can be used by a scheduler to adjust each system’s traffic. The
complete networked control system is then modeled both as a network of timed game automata
or as a parallel composition of automata. In both cases, the scheduling problem is effectively
solved, whilst the latter provides improved scalability at the cost of being more restrictive in
application.

This chapter is based on � G. de A. Gleizer and M. Mazo Jr. “Scalable Traffic Models for Scheduling of Linear
Periodic Event-Triggered Controllers”, presented at IFAC World Congress 2020 [46]. Section 3.6 is partially based on
� G. Delimpaltadakis, G. de A. Gleizer, I. van Straalen, and M. Mazo Jr., “ETCetera: beyond event-triggered control,”
in Proc. of the 25th Int’l Conf. on Hybrid Systems: Computation and Control (HSCC ’22) [34].

3

26 3 Scalable Traffic Models for Scheduling

3.1 Introduction

As we have argued in Chapter 1, the reduction in communications achieved by ETC
is of reduced importance if one cannot accommodate multiple ETC loops in a shared

network, and if nothing is done on a scheduler level, packet collisions are bound to happen.
In this chapter, we address the problem of collision-free scheduling of multiple ETC systems
in a shared network. More specifically, we design a scheduler that can adjust the traffic of
each system and prevent said collisions, while ensuring stability and performance of the
individual plants. Figure 3.1 depicts a networked control system (NCS) with multiple ETC
loops sharing a single communication channel, where all the individual plant controllers
are assumed, for simplicity, to run on the same device. In an ETC context, plant 𝑖 can
decide (based on the event occurrence) when to send its state sample 𝒙̂ 𝑖 , or the controller
(assumed to be collocated with the scheduler) can request it. Because ETC systems are better
described as hybrid systems (see, e.g., [4, 11, 47]), this scheduling problem belongs to the
class of control synthesis problems on hybrid systems, which is known to be undecidable in
general [48, 49]. Therefore, we use symbolic abstractions to tackle the scheduling problem,
which are particularly suitable as scheduling actions have an intrinsically discrete nature,
that of ordering tasks in the timeline.

This work is a follow up on [21–23, 50], which use timed game automata (TGA, Def. 2.13)
to approximately simulate ETC trafficmodels. Doing so, they demonstrate that a scheduling
strategy can be computed by composing multiple traffic TGAs with a network TGA and
solving a safety game. The major drawback of the abstractions presented therein is the
curse of dimensionality: their proposed isotropic partitioning creates a model where the
number of states in the abstraction increases exponentially with the state-space dimension
of the concrete plant.

Here we propose a different way of creating the traffic models: instead of partitioning
space, we partition time, and determine the states associated with a given triggering time
a posteriori. For PETC this allows to construct a quotient model (Def. 2.5), which simulates
(Def. 2.2) the concrete traffic model. The resulting regions are intersections of non-convex
quadratic cones that, despite being easy to check membership online, make the problem
of computing transitions a non-convex quadratic constraint satisfaction problem, which
is in general NP-hard [51]. We propose using semidefinite relaxations [51, 52], which are
fast and reliable to solve, but add extra conservativeness to the resulting abstraction. After
having constructed the traffic model, we augment it to allow for controllable early triggers,
which can be used by the scheduler to avoid conflicts.

To solve the scheduling problem we apply two approaches. In the first, we follow
the steps in [22] using timed game automata, with some minor modifications to keep the
number and earliness of scheduling interventions small. To test this, we generate strategies
using UPPAAL Tiga [36] and provide simulation results for an NCS with two ETC loops.
In the second approach, we form the scheduling problem using finite transition systems,
which requires additional assumptions concerning the checking periods of the individual
PETC systems. The advantage is increased scalability with respect to the number of control
loops in the shared network. Both approaches are implemented in ETCetera [34].

3.2 Problem Formulation

3

27

Plant 1

Controller

Network

𝑥"!

𝑢!
request1

Plant 𝑝

𝑥""

𝑢"
request𝑝

𝑢# 𝑥"# request𝑖

…

Figure 3.1: A network of 𝑝 ETC systems.

3.2 Problem Formulation
The starting point for scheduling ETC traffic is modeling it, for which we use symbolic
abstractions as in [22, 53]; however, we aim to build a quotient model, obtaining an exact
simulation relation. More than that, we want to mitigate the curse of dimensionality that
is typical of such abstractions:

Problem 3.1. Build a quotient model / for the traffic generated by system (2.2) using
triggering condition (2.4) such that the cardinality of / does not directly depend on 𝑛x.

A traffic model alone is not sufficient for scheduling. System (2.2) is autonomous, and a
scheduler needs to be able to alter the traffic pattern in some way to avoid communication
conflicts. We choose to allow the scheduler to request data before the ETC triggers. Thus,
we need to enrich the traffic model with controllable actions that represent this early
triggering:

Problem 3.2. Enhance / with transitions that capture the evolution of system (2.2) when
inter-event times smaller than 𝜅(𝑥) are chosen.

Finally, we need to pose and solve the scheduling problem:

Problem 3.3. Design an NTGA that forms the scheduling problem, for which a strategy
serves as a scheduler for the NCS with multiple event-triggered loops. In doing so, try to keep
the number of communications to a small level.

3.3 PETC Traffic Model
Constructing a quotient model of the PETC traffic model in Def. 2.15 requires two steps: 1)
gathering the states that share the same output in a single quotient state, and 2) computing
the transition relations between them.

3

28 3 Scalable Traffic Models for Scheduling

𝑘 = 4
𝑘 = 3𝑘 = 2𝑘 = 1𝑥2
𝑥1

Figure 3.2: An example of the quotient-induced partition of ℝ𝑛x on a two-dimensional linear PETC system, with𝑘 = 4. Each color represents a set 𝑘 , which is a conjunction of quadratic cones.

3.3.1Quotient state set
Gathering states that share the same output is in a sense straightforward in PETC. From
Eq. (2.10), we can determine the set𝑘 ⊆ ℝ𝑛x of states that will certainly have triggered by
time 𝑘:

𝑘 = {{𝒙 ∈ ℝ𝑛x ∣ 𝒙T𝑵(ℎ𝑘)𝒙 > 0}, 𝑘 < 𝑘,ℝ𝑛x , 𝑘 = 𝑘. (3.1)

Recall that 𝑘 is the imposed maximal-in-discrete-time IST. To determine the state set whose
output 𝑘 is the minimum that satisfies 𝒙T𝑵(ℎ𝑘)𝒙 > 0, one must remove from 𝑘 all states
that could have triggered before, i.e., that belong to some 𝑗 with 𝑗 < 𝑘. This is expressed
as

𝑘 =𝑘 ∩ 𝑘−1⋂𝑗=1 ̄𝑗 . (3.2)

By construction, 𝑘 , 𝑘 ∈ {1,2, ..., 𝑘} constitutes a partition of ℝ𝑛x (see Fig. 3.2 for a
depiction); also, 𝐻(𝒙) = 𝑘,∀𝒙 ∈ 𝑘 . Therefore, / = {1,2, ...} is a good candidate for
a quotient state set of the system  . Finally, different from [21], we have that |/| = 𝑘,
i.e., the cardinality of the quotient state space does not depend explicitly on 𝑛x. This in
part accomplishes solving Problem 3.1; however, for completing the model, we need to
establish the transitions between these quotient states.

Remark 3.1. Matrices 𝑵(ℎ𝑘) can be computed offline. Online determination of which region
the current state 𝒙 belongs to requires at most 𝑘 quadratic operations: for each 𝑘 from 1 to𝑘 −1, if 𝒙T𝑵(ℎ𝑘)𝒙 > 0, return 𝑘 ; if by the end of the iteration no such inequality was positive,
return 𝑘 .
Remark 3.2. Unperturbed state-feedback ETC has an intrinsic positive minimum inter-
sample time (MIST), which, in the case of PETC, can be bigger than 𝑘 = 1. In this case, for
all 𝑘 < 𝑘, where 𝑘 is such MIST, it holds that 𝑵(ℎ𝑘) ⪯ 0. This can be checked offline, and
the corresponding matrices may be discarded. Likewise, a maximum inter-event time 𝑘 can
naturally show up if, for example, 𝑵(ℎ𝑘∗) ≻ 0 for some 𝑘∗, which can also be checked offline.
In this case, take 𝑘 = 𝑘∗.

3.3 PETC Traffic Model

3

29

3.3.2Quotient transition relations
The problem of determining the transition relation between two quotient states 𝑖 and 𝑗
is, from Eq. (2.9), ∃𝒙 ∈ ℝ𝑛x ∶ 𝒙 ∈𝑖 , 𝝃𝒙 (ℎ𝑖) = 𝑴(ℎ𝑖)𝒙 ∈𝑗 , (3.3)
where the last equality uses Eq. (2.5). Expanding 𝑖 ,𝑗 with Eqs. (3.2) and (3.1) arrives in
the following non-convex quadratic constraint satisfaction problem:∃ 𝒙 ∈ ℝ𝑛x

s.t. 𝒙T𝑵(ℎ𝑖)𝒙 > 0,𝒙T𝑵(ℎ𝑖′)𝒙 ≤ 0,∀𝑖′ ∈ {1, ..., 𝑖 − 1},𝒙T𝑴(ℎ𝑖)T𝑵(ℎ𝑗)𝑴(ℎ𝑖)𝒙 > 0,𝒙T𝑴(ℎ𝑖)T𝑵(ℎ𝑗′)𝑴(ℎ𝑖)𝒙 ≤ 0,∀𝑗′ ∈ {1, ..., 𝑗 − 1}.
(3.4)

The non-convexity of this problem can be easily checked using the facts that both > and≤ inequalities are present, and that the matrices 𝑵(ℎ𝑖) are non-definite.1 We solve it by
means of semi-definite relaxations [52, SDR,],2 which take the form∃ 𝑿 ∈ 𝕊𝑛x+

s.t. Tr(𝑿T𝑵(ℎ𝑖)) ≥ 0,Tr(𝑿𝑵(ℎ𝑖′)) ≤ 0,∀𝑖′ ∈ {1, ..., 𝑖 − 1},Tr(𝑿𝑴(ℎ𝑖)T𝑵(ℎ𝑗)𝑴(ℎ𝑖)) ≥ 0,Tr(𝑿𝑴(ℎ𝑖)T𝑵(ℎ𝑗′)𝑴(ℎ𝑖)) ≤ 0,∀𝑗′ ∈ {1, ..., 𝑗 − 1},Tr(𝑿) = 1,
(3.5)

where the last equation was added to avoid the trivial solution 𝑿 = 0; the value 1 was
chosen arbitrarily, since Eq. (3.4) is homogeneous. To determine (offline) the complete
transition set /, one requires solving 𝑘2 semidefinite problems. The final model follows:

Model 3.1 (Quotient PETC TrafficModel). The quotient model of the PETC traffic in Def. 2.15
is the system / C (/,/0,/, ,𝐻/) with

• / = /0 = {1,2, ...,𝑘};
• / = {(𝑖 ,𝑗) ∣ Eq. (3.5) is satisfied};
• 𝐻/(𝑘) = 𝑘.
A typical PETC traffic model is depicted in Fig. 3.3 (left). By construction, we obtain

the following result:

Proposition 3.1. Model 3.1 is a quotient system of  from Def. 2.15, and, therefore, /
simulates  .

As a consequence, all sequences of triggering times generated by system (2.2)–(2.10)
can be generated by our model /. This solves Problem 3.1.
1See Remark 3.2: the definite cases are discarded.
2Additionally, we relax the strict inequalities with non-strict ones, so that it can fit the semi-definite programming
formulation.

3

30 3 Scalable Traffic Models for Scheduling

1 2

3 4

1 2

3 4

1 1,2

2

3
1,2,3

1,2,3

4

Figure 3.3: An example of quotient PETC traffic model (left) and the same system enhanced with early triggering
actions (right).

Remark 3.3. A relaxation generally provides conservative solutions. In our case, it may
generate spurious transitions. If such transitions do occur, this does not change the fact that
the constructed symbolic model simulates  .
3.3.3 Early triggering
As stated earlier, for the traffic model to be applicable for scheduling, we need to augment
it with controllable transitions that correspond to early triggering. From a quotient state𝑖 , one can allow early triggers for any 𝑘 ∈ ℕ ∶ 𝑘 < 𝑖; for simplicity we choose to label the
corresponding actions by 𝑘. It remains necessary to verify which transitions exist for such
actions. The problem is essentially the same as (3.3):∃𝒙 ∈ ℝ𝑛x ∶ 𝒙 ∈𝑖 , 𝝃𝒙 (ℎ𝑘) = 𝑴(ℎ𝑖)𝒙 ∈𝑗 . (3.6)

Eq. (3.6) can also be relaxed into a semidefinite problem like (3.5), by replacing 𝑗 by 𝑘. This
approach gives the following model:

Model 3.2 (Quotient PETC traffic model with early triggering). The quotient model of the
PETC traffic with early triggering is the system  ∗/ C (/,/0, , ∗/, ,𝐻/), where

•  = {1,2, ..., 𝑘};
•  ∗/ = {(𝑖 , 𝑘,𝑗) ∣ the SDR of Eq. (3.6) is satisfied}.
Computing all of its transitions requires solving 𝑘 +2𝑘 +...+𝑘(𝑘 −1) = 𝑘2(𝑘 −1)/2 ∈(𝑘3)

semidefinite problems. A depiction of the quotient model in Fig. 3.3 (left) enhanced with
early triggering is seen on the right side of the same figure. Model 3.2 solves Problem 3.2.

3.4 Scheduling of PETC systems
3.4.1 Early triggering and TGA
Now we can transform the quotient system  ∗/ into a TGA. For the game part, we set the
early triggering actions in  ∗/ as controllable, and the event triggers as uncontrollable.
All that is left is defining the clock set, the guards, and the invariants, resulting in the
following TGA:

Model 3.3 (PETCTraffic TimedGame). Themodel is the TGA = (/,/0,c,u,,c∪u, 𝐼) where

3.4 Scheduling of PETC systems

3

31

Idle InUse Bad

𝑐N ≤ Δcomm𝑐N B 0
done

comm

comm

Figure 3.4: TGA of a shared network.

• c = {early};
• u = {trigger};
•  = {𝑐};
• c = {(𝑖 , 𝑐 = 𝑘,early, {𝑐},𝑗) ∣ (𝑖 , 𝑘,𝑗) ∈  ∗};
• u = {(𝑖 , 𝑐 = 𝑖,trigger, {𝑐},𝑗) ∣ (𝑖 ,𝑗) ∈ /};
• 𝐼 (𝑖) = (𝑐 ≤ 𝑖).
Model 3.3 uses one clock, that is reset at every transition. The invariant of a quotient

state 𝑖 is 𝑐 ≤ 𝑖, because 𝑖 is the time that a trigger is sure to occur; hence 𝑐 = 𝑖 is the clock
constraint associated with this uncontrolled action. For the controlled, early triggering
actions, the transition is enabled at discrete instants satisfying 𝑐 = 𝑘, for 𝑘 < 𝑖.
3.4.2 Network and NCS models
For scheduling, we follow the same strategy as described in [22], using the same network
model as theirs, with a minor technical change3:

Model 3.4. (Network TGA, adapted from [22]). The network model is the TGA  =(, 𝑙0,cN, {∗},N,N, 𝐼N) where
•  = {Idle,InUse,Bad};
• cN = {comm,done};
•  = {𝑐N};
• N = {(Idle,true,comm, {𝑐N},InUse),(InUse, 𝑐N = Δ,done,∅,Idle),(InUse,true,comm,∅,Bad),(Bad,true,comm,∅,Bad)};
• 𝐼N(InUse) = (𝑐N ≤ Δ),

where ∗ denotes a “do-not-care” action and Δ is the maximum channel occupancy time.

Model 3.4 is represented in Fig. 3.4. The state Bad is reached if a second communication
happens while the channel is still occupied by the first.

To model the NCS, we build an NTGA of the two or more traffic models𝑖 with the
network model  . What remains to be done is synchronizing the correct actions. For this,
we add a synchronization channel called up, which is used as follows:
3The difference of this model with respect to [22] is that, here, all actions are controlled. We do this because of
how NTGA are composed in UPPAAL Tiga: if an uncontrolled edge is synchronized with a controlled edge, the
composed edge is uncontrolled. When we compose the traffic models with the network model, we want the
early communications to be controlled, and the trigger ones not to.

3

32 3 Scalable Traffic Models for Scheduling

• every early and trigger actions of each traffic model 𝑖 fires the synchronizing
action up!;

• every comm action of the network model  takes the synchronizing action up?.
While avoiding the Bad state is necessary, we also want that the number of early triggers
is small, so as to benefit from the communication savings of ETC. For that, we introduce an
integer variable 𝑒,0 ≤ 𝑒 ≤ 𝐸, representing an accumulated “earliness” of communications,
with 𝐸 as the maximum allowed earliness. It is essentially a bounded integrator that
increases every time an early trigger is done and decreases when a natural trigger happens.
It starts at zero and is updated as𝑒 ←max(0,min(𝐸,𝑒 + 𝑟(𝑘 − 𝑖) − 𝑒)) (3.7)

for every trigger or early transition from any traffic model, from quotient state 𝑖
when 𝑐 = 𝑘. The parameters 𝑟 ∈ ℕ+ and 𝑒 ∈ ℕ+ represent the cost of a time unit and a
reference value for 𝑒, respectively. The earlier the trigger is, the higher the cost incurred.
Parameter 𝑒 is necessarily positive so that natural triggers discount 𝑒. Like any arithmetic
on bounded integers, the evolution of 𝑒 can be represented as an automaton itself.4

As a final note, remember that the time in model  is normalized w.r.t. the check timeℎ. When composing the NTGA, one needs to put the clocks and their constraints in the
same time scale.

3.4.3 Strategies for schedulers
In UPPAAL Tiga, strategies can be generated so as to guarantee certain specifications.
We refer the reader to the manual of UPPAAL Tiga [36] for the complete list. In our
case, we want that the NTGA never enters state Bad of  , while keeping the earliness
below a certain threshold 𝐸. This can be achieved by setting the specification strategy
safe = control: A[] not network.Bad and e < E. The resulting strategy
maps the locations of each automaton and their clock valuations into the decision of
whether to trigger early or not. Therefore, a scheduler that implements such strategy needs
to determine online the regions 𝑖 that the state of each system belongs to, and keep track
of how much time elapsed since the last communication of each plant.

3.5 Numerical Results using TGA
Consider two copies of a linearized batch reactor, taken from [54], of the form (2.2) with

𝑨𝑖 = ⎡⎢⎢⎢⎣
1.38 −0.208 6.715 −5.676−0.581 −4.29 0 0.6751.067 4.273 −6.654 5.8930.048 4.273 1.343 −2.104

⎤⎥⎥⎥⎦ ,
𝑩𝑖 = ⎡⎢⎢⎢⎣

0 05.679 01.136 −3.1461.136 0
⎤⎥⎥⎥⎦ , ∀𝑖 ∈ {1,2}.

(3.8)

4UPPAAL Tiga allows one to use integer variables, and it performs the necessary operations automatically.

3.5 Numerical Results using TGA

3

33

6 8 10 12 14 16 18
6
8
10
12
14
16
18

from

to

Figure 3.5: Transition relations of  ∗/ of loop 1, for trigger actions (x) and early actions (o) with 𝑘 = 1.
Two different controllers 𝑲 𝑖 were designed for this plant using LQR with matrices𝑸LQR,1 =𝑸LQR,2 = I and 𝑹1 = 0.1I,𝑹2 = 0.05I. The Lyapunov function chosen was the LQ cost, that
is, setting 𝑸lyap,𝑖 = 𝑸LQR,𝑖 +𝑲T𝑖𝑹𝑖𝑲 𝑖 and solving the continuous-time Lyapunov equation
for 𝑷 𝑖 . We used a triggering condition based on the Lyapunov function, so as to guarantee
that 𝑉̇𝑖(𝑡) ≤ −𝜌𝑖𝝃 𝑖(𝑡)T𝑷 𝑖𝝃 𝑖(𝑡),
for some 0 < 𝜌𝑖 < 1. We set 𝜌1 = 𝜌2 = 0.8. This triggering condition can be expressed in
quadratic form (2.4) with

𝑸𝑖 = [𝑨T𝑖𝑷 𝑖 +𝑷 𝑖𝑨𝑖 +𝜌𝑖𝑸lyap,𝑖 𝑷 𝑖𝑩𝑖𝑲 𝑖𝑲T𝑖𝑩T𝑖𝑷 𝑖 0] .
In both cases, ℎ1 = ℎ2 = ℎ = 0.01; following Remark 3.2, we obtained natural maximum
inter-event times at 𝑘1 = 19 and 𝑘2 = 16 by imposing that 𝑵(ℎ𝑘) have its largest eigenvalue
bigger than 10−3. Likewise, both have MISTs greater than 1: 𝑘1 = 6, 𝑘2 = 4.

To build Model 3.3 for each control loop, we used Python with Numpy, Scipy and
control packages, and CVXPY [55] with solver SCS [56] to solve the semidefinite problems
involved. The whole process of computing matrices 𝑵(ℎ𝑘) and solving the semidefinite
problems took 46.64 seconds for loop 1 and 31.51 seconds for loop 2. The computer used is
a MacBook Pro with a 3.1 GHz Intel Core i5 CPU and memory of 8 GB, 2133 MHz LPDDR3.
The resulting transition relation for closed-loop system 1 is represented in Figure 3.5. As
one can see, there is a significant amount of nondeterminism introduced by this model,
especially for high triggering times.

A series of scripts was used to generate the XML files that are used for TGA models in
UPPAAL Tiga. We used all times in the NTGA relative to ℎ, and set Δ = 1. The earliness

3

34 3 Scalable Traffic Models for Scheduling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1
0
1

St
at
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5
10

𝑡

Co
nt
ro
li
np

ut

Figure 3.6: Trajectories of 𝝃 1(𝑡) (top) and 𝑲 1𝝃̂ 1(𝑡) (bottom).

parameters for Eq. (3.7) were 𝑟 = 2, 𝑒 = 1,𝐸 = 2. These parameters allow the scheduler to
trigger one step earlier at every two communications.

The strategy was solved in UPPAAL STRATEGO [57] version 4.1.20-5, which includes
all functionalities of UPPAAL Tiga. It took 0.864 s to find a solution. The generated strategy
is too long to be reproduced in this paper, but we give below one example of when an early
trigger has to occur:

If System 1 is in 6, System 2 is in 4, and 𝑒 = 0,
when 𝑐1 = 5 and 𝑐2 ∈ {1,2,3}, do early on System 1;
when 𝑐2 = 3 and 𝑐1 ∈ {3,4,5}, do early on System 2,

where 𝑐𝑖 represents the clock valuation of system 𝑖. As one can see, the strategy is not
deterministic. In the example above, the early trigger can be executed on any of the loops
when (𝑐1, 𝑐2) = (5,3). In such case, the scheduler must arbitrate who triggers.

Figures 3.6 and 3.7 show the results of a simulation of the two control loops executing
in parallel with the communication managed by the synthesized scheduler. The initial
conditions are 𝝃 1(0) = [1 −1 1 −1]T and 𝝃 2(0) = [1 2 3 4]T. The first pair of com-
munications was arbitrated on a round-robin fashion. Figure 3.8 shows the communication
pattern of the NCS. As we can see, both systems’ states converge to zero, while there is no
conflict in communications. As designed through the earliness mechanism, about half of
the communications are early triggers, and half are natural, event triggers.

3.6 Scheduling with finite-state systems

3

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−4−2
02
4

St
at
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20−100
10

𝑡

Co
nt
ro
li
np

ut

Figure 3.7: Trajectories of 𝝃 2(𝑡) (top) and 𝑲 2𝝃̂ 2(𝑡) (bottom).

0.2 0.4 0.6 0.8
Plant 1
Plant 2 𝑡

Figure 3.8: Communication pattern of the simulated NCS: ‘x’ marks represent event triggers, while ‘o’ marks
represent early triggers.

3.6 Scheduling with finite-state systems
Even though our models have good scalability w.r.t. the plant’s state-space dimension, an
issue remains with the scalability w.r.t. the number of control loops to be scheduled. The
size of the obtained NTGA state space grows exponentially with the number of control
loops, and solving strategies for TGA is EXPTIME-complete [58]. According to experiments
in [59], solving the scheduling problem using UPPAAL Tiga on a system with 4 control
loops did not finish after five days. The conclusion is that scheduling ETC control loops
with TGA seems to be only viable with up to three systems, or if some other type of
multiplexing can be done to logically isolate the communications of small groups of control
loops.

In case the checking times of each plant and the channel occupancy time have a common
divisor, one can use finite-state systems instead of TGA to solve the scheduling problem,
by employing discrete clocks instead of continuous ones. In [35], such a method was
developed for PETC systems assuming, for simplicity, that all control loops share the same
checking time ℎ and that Δ = ℎ.

First, Model 3.2 is modified such that it acts on a per-sample basis. Instead of having
actions corresponding to the next inter-event time = = {1,2,…,𝑘}, a system can either
wait (w) , or trigger (t) at the current sampling time. The result is a new transition system:

Model 3.5 (Discrete-clock PETC traffic model). Given Model 3.2 and a maximum initial

3

36 3 Scalable Traffic Models for Scheduling

discrete-time delay 𝑑 ∈ ℕ, the discrete-clock PETC traffic model with early triggers is the
system ̂ = (̂ , ̂0,̂ , ̂ , ̂ , 𝐻̂), where:

• ̂ B {𝑇𝑖 ∣𝑖 ∈ /}∪{𝑊𝑖,𝑘 ∣ 1 ≤ 𝑘 < 𝐻(𝑖),𝑖 ∈ /}∪{𝐼1, 𝐼2,… , 𝐼𝑑},
• ̂0 B {𝐼1},
• ̂ B {w,t},
• ̂ B ̂t ∪ ̂w ∪ ̂0, where

– ̂t B {(𝑇𝑖 ,t,𝑇𝑗) ∣ (𝑖 , 1,𝑗) ∈  ∗/}∪{(𝑊𝑖,𝑘 ,t,𝑇𝑗) ∣ (𝑖 , 𝑘 + 1,𝑗) ∈  ∗/},
– ̂w B {(𝑊𝑖,𝑘 ,w,𝑊𝑖,𝑘+1) ∣ 1 ≤ 𝑘 < 𝐻(𝑖) − 1},
– ̂0 B {𝐼𝑖 ,t,𝑇𝑗 ∣ 𝑖 ∈ ℕ≤𝑑 ,𝑗 ∈ /}∪{𝐼𝑖 ,w, 𝐼𝑖+1 ∣ 𝑖 ∈ ℕ<𝑑−1},

• ̂ B {T,W},
• 𝐻̂ (𝑇𝑖) = T, 𝐻̂ (𝑊𝑖,𝑗) = 𝐻̂ (𝐼𝑘) = W.
The state space of Model 3.5 is composed by “triggered” states 𝑇𝑖 , one for each quotient

state 𝑖 ; “waited” states𝑊𝑖,𝑘 , representing a state in which 𝑘 time units have elapsed since
the last trigger, starting from 𝑇𝑖 ; and initialization states 𝐼𝑗 . The outputs indicate whether
the system has just triggered (T) or waited (W). In this transition system, triggering after 𝑘
samples becomes a sequence of 𝑘 −1 w actions followed by a single t action. The scheduling
problem now becomes avoiding that two systems enter a 𝑇 state simultaneously. The
first sampling upon initialization of the system is dictated by the states 𝐼𝑗 : each system
starts at 𝐼1 and has 𝑑 time units to trigger its first sample, from which it can go to any 𝑇𝑖
state (effectively initializing the traffic model). This approach also gives an extra degree of
freedom when it comes to initialization, and is more realistic as the state of the plant is
normally not known until the first sample is taken. Another reason for the initialization
states is that the output is defined with respect to what have just happened; hence, the
scheduling problem would start being infeasible if it initialized at a 𝑇𝑖 state. The discrete-
clock version of the system in Fig. 3.3 is depicted in Fig. 3.9.

For scheduling, we perform a parallel composition of each PETC system. When schedul-
ing 𝑝 control loops, denote the discrete-clock traffic model of the 𝑖-th loop by ̂𝑖 =(̂𝑖 , ̂𝑖;0,̂𝑖 , ̂𝑖 , ̂𝑖 , 𝐻̂𝑖). The resulting composition is given by the transition system × =(×,×;0,×,×,×,𝐻×), where

• × ∶= ̂1 ×⋯× ̂𝑝 ,
• ×;0 ∶= ̂1;0 ×⋯× ̂𝑝;0,
• × ∶= ̂1 ×⋯× ̂𝑝 ,
• × ∶= {(𝑥1,… ,𝑥𝑝), (𝑢1,… ,𝑢𝑝), (𝑥′1,… ,𝑥′𝑝) ∣ ∀𝑖 ∈ ℕ≤𝑝 , (𝑥𝑖 ,𝑢𝑖 , 𝑥′𝑖) ∈ ̂𝑖},
• × ∶= ̂0 ×⋯× ̂𝑛 ,
• 𝐻×(𝑥0,… ,𝑥𝑛) ∶= (𝐻̂0(𝑥0),… , 𝐻̂𝑛(𝑥𝑛)).
The job of the scheduler is to create a strategy satisfying the following safety spec-

ification: “always avoid states in × whose output contains more than one T”. Creating
a controller that is able to satisfy such a specification can be done effectively for finite
transition systems by solving a safety game [17, Chap. 6], where the maximal fixed point
of the operator𝐹 () = {𝑥 ∈ ∣ 𝑥 ∈ and ∃𝑢 ∈ 𝑈 (𝑥) ∶ ∅ ≠ Post𝑢(𝑥) ⊆}, (3.9)

3.6 Scheduling with finite-state systems

3

37

𝑇1
T

𝑇2
T

𝑊2,1
W

𝑇3
T

𝑊3,1
W

𝑊3,2
W

𝑇4
T

𝑊4,1
W

𝑊4,2
W

𝑊4,3
W

𝐼1
W

start

𝐼2
W

Figure 3.9: The discrete-clock model ̂ of the system depicted in Fig. 3.3, with 𝑑 = 2. Dashed arrows represent
action w, while full arrows represent t.

is found by iterating over its output (starting with 0 ∶= ×). The set  is the safe set
which in this case is given by:

 = {(𝑥1,… ,𝑥𝑛) ∈ × ∣ |||{𝑖 ∈ ℕ≤𝑝 ∣ 𝐻̂𝑖(𝑥𝑖) = T}||| ≤ 1}. (3.10)

The iteration finishes at some finite 𝑖 s.t. 𝑖 =𝑖+1 C∗, which contains all states of ×
from which there exists at least one action guaranteeing that bad states (a collision of
transmissions) can be avoided. If ∗ = ∅, the set of control loops is not schedulable (given
their abstractions); likewise if ∗ ≠ ∅ but ∗ ⊉ ×;0, which indicates that the system is not
schedulable from its initial condition, but it may be if the systems are initialized in a more
favorable way. The scheduler strategy can subsequently be defined as:𝑈𝑐 (𝑥) = {𝑢 ∈× ∣ ∅ ≠ Post𝑢(𝑥) ⊆∗}. (3.11)

This is a function that returns a set of safe actions given some combined state 𝑥 ∈ ×. This
combined state, just like in the scheduling problem with TGA, can be obtained from the
last sampled states of each of the control systems, plus a clock keeping track of the elapsed
time since the previous transmission.

Solving safety games in finite transition systems is more computationally efficient
than solving with TGA because it does not need the additional step of abstracting (even if
on-the-fly) the infinite TGA into a finite system. For additional efficiency (especially when
it comes to memory), this scheduling problem has been implemented in ETCetera [34]
using binary decision diagrams (BDDs) [60]. For details of this implementation, the reader
is kindly referred to [35].

3

38 3 Scalable Traffic Models for Scheduling

A numerical test. To exemplify the gain in scalability when using finite state systems for
the scheduling problem, we have solved it for the control loops presented in Section 3.5; but
instead of only two loops, we ran the problemwith five loops: four copies of the systemwith
matrices𝑨1,𝑩1,𝑲 1,𝑸1 and one copy of the systemwithmatrices𝑨2,𝑩2,𝑲 2,𝑸2. All systems
were set with 𝑑 = 10 maximum initial delay. The scheduling problem using ETCetera
with BDDs took only 663 ms to synthesize a scheduler. When adding a sixth system to
the network, another copy of the (𝑨1,𝑩1,𝑲 1,𝑸1) loop, the algorithm took significantly
longer—6 minutes and 41 seconds—to return an infeasibility answer.5

3.7 Conclusions
In this chapter, we have presented a method to build a quotient model of the traffic
generated by PETC, and how to augment it with early sampling actions for scheduling of
multiple PETC loops. The quotient model has many advantages with respect to previous
work: first, it is a (exact) simulation instead of an approximate simulation;6 and second, it
avoids the combinatorial explosion created by isotropic partitioning of the state space. The
state space and output map of the quotient model can be easily created straight from the
PETC and system matrices, requiring no solution of LMIs or other optimization problems.
The transition relations do require semidefinite problems to be solved, but only one per
transition, with no reachability tools required. It is relatively fast to compute, and the
models generated are reasonably small. The use of TGA models for scheduling of ETC had
already been demonstrated in [22]; here, we demonstrate that they can also be done for
PETC, and argue that it is in fact simpler to do so.

As we have seen, using TGA can make scheduling more than a few controllers in the
same network prohibitive. Under additional assumptions, we could pose the scheduling
problem with finite transition systems and, harnessing the power of BDDs, showed that it
can scale significantly better. However, it seems that solution times can vary significantly,
especially when the loops are in fact unschedulable. In Chapter 8, we address this issue by
minimizing the individual transition systems modulo alternating simulation equivalence.

Among the disadvantages of our solution is the high nondeterminism of the generated
models. The state-space partitions are based solely on the output function, and each region
seems to be large enough that, after some time, many regions can be reached. A highly
nondeterministic traffic model can hamper the generation of strategies, as the predictability
of the model after multiple steps gets smaller. In Chapter 4, we address this problem by
developing a framework of abstraction refinements for PETC.

A second point of attention is addressing optimality of these schedulers. Parameter-
izing the earliness function (3.7) is not always trivial. Even so, finding a scheduler that
minimizes the interventions is still an open problem. Priced TGA could be used, but their
undecidability for games with three clocks has been proven by [61], putting a roadblock in
that direction. Approximate solutions using stochastic priced TGA [57] have been briefly
explored (experimentally), and did not result in improved performance for the control
loops, perhaps because it is difficult to characterize probabilities in the transition systems
5These results can be reproduced within ETCetera by running the script in examples/scheduling_-
safetygame_5sys_4d.py.

6In approximate simulations, item (ii) of Def. 2.2 is replaced with “for every (𝑥𝑎 , 𝑥𝑏) ∈, |𝐻𝑎(𝑥𝑎) −𝐻𝑏(𝑥𝑏)| ≤ 𝜖” for
some 𝜖 > 0.

3.7 Conclusions

3

39

when the concrete systems are deterministic. In Chapter 7, we address sampling optimality
for one system, aiming at increasing its average inter-sample time. A similar approach
could be used for multiple systems.

The conflict-free scheduling problem with early triggers that we have presented has
broad applicability, but it may be too restrictive if the network protocol in use has ways
to recover from conflicts. For example, in Controller Area Networks (CAN bus), the node
with highest hard-coded priority successfully sends its message, hence conflicts are not
totally destructive. ETC scheduling for CAN networks has been addressed in [62], based
on the traffic models we introduced here. In addition, occasional late samples can not be
detrimental to stability, and allowing some can make the schedulability problem much less
stringent. Late triggers have been partially investigated in [35, 62] and shown to enable
schedulability when it is not possible otherwise. However, the different ways to address
the problem of late sampling in a way that their impact in control performance is formally
bounded or minimized is subject of current investigation.

4

41

4
Bisimilar traffic models for

a modified PETC

We provide a method to construct finite abstractions exactly bisimilar to linear systems under
a modified periodic event-triggered control, when considering as output the inter-event times
they generate. Assuming that the initial state lies on a known compact set, these finite-state
models can exactly predict all sequences of sampling times until a specified Lyapunov sublevel
set is reached. Based on these results, we provide a way to build tight models simulating the
traffic of conventional PETC. These models allow computing tight bounds on the PETC average
sampling frequency and global exponential stability (GES) decay rate.

This chapter is based on � G. de A. Gleizer and M. Mazo Jr. “Towards Traffic Bisimulation of Linear Periodic
Event-Triggered Controllers”, IEEE Control Systems Letters, vol. 5, no. 1, pp. 25–30, 2021. [63].

4

42 4 Bisimilar traffic models for a modified PETC

4.1 Introduction

The models presented in Section 3 have great scalability properties, but at the same
time they exhibit severe non-determinism, likely due to the small number of states of

the abstraction and the relaxations used when computing the transition relation. Therefore,
even though their one-step ahead predictions are exact, after a couple of steps its predic-
tion capability is severely limited. For example, revisit Fig. 3.5: The state 8 is the one
that exhibits the least non-determinism, having only 4 successor states after a trigger
transition. At the next step, it can reach 9, which has trigger transitions to all states.
Hence, the prediction of the IST after two samples from the current state is trvially “any”.

This chapter tackles precisely this longer-term predictability issue. Building upon the
quotient model from the previous chapter, we develop new abstractions that enumerate all
possible sequences of inter-event times until a Lyapunov sublevel set is reached. Based
on this, we propose a modified PETC mixed with periodic control, hereafter denoted
MPETC, that initiates with PETC sampling and switches to periodic sampling when the
states lie inside the aforementioned sublevel set. The MPETC retains the practical benefits
from PETC, while improving traffic predictability; for it, our abstraction constitutes a
bisimulation. The abstraction is computable because the number of possible sampling
sequences generated during the PETC phase is finite, and checking whether PETC generates
a given sampling sequence is decidable: it is equivalent to the satisfiability of a conjunction
of non-convex quadratic inequalities, to which solvers exist (e.g., the satisfiability-modulo-
theories (SMT) solver Z3 [64]). In our symbolic model, each state is associated with a
sequence of inter-event times, which is similar in spirit to [65]. When generating these
finitely many discrete states, exhaustive search can be avoided by employing a recursive
algorithm.

The clear advantages of our newmodel are the exact enumeration of sampling sequences
that can be generated by PETC on a significant future horizon and the establishment of
tight bounds on the Lyapunov function convergence speed. Naturally, a disadvantage
of our presented method is a substantial growth in the number of discrete states when
compared to Chapter 3. Finally, we show how to modify our bisimilar model to obtain a
tight traffic model simulating an unmodified PETC system, presenting two derived results:
tighter decay rate estimation (compared to, e.g., [11]), and maximum average triggering
frequency computation.

4.2 Problem Formulation
Consider system (2.2)–(2.4) with  = ℎℕ (PETC), a quadratic Lyapunov function 𝑉 (𝒙) =𝒙T𝑷𝒙,𝑷 ≻ 0, and the following assumptions:

Assumption 4.1. System (2.2)–(2.4) is GES, and there exists a known constant 0 ≤ 𝑎 < 1 such
that every solution of the system satisfies 𝑉 (𝝃 (𝑡𝑖+1)) ≤ 𝑎𝑉 (𝝃 (𝑡𝑖)).
Remark 4.1. To compute 𝑎, one can verify the implication∀𝒙 ∈ℝ𝑛x (∀𝑖 ∈ ℕ<𝑘 𝒙T𝑵(ℎ𝑖)𝒙 ≤ 0) and (𝒙T𝑵(ℎ𝑘)𝒙 > 0) ⟹ 𝑉(𝑴(ℎ𝑘)𝒙) ≤ 𝑎𝑉 (𝒙)
for every 𝑘 ∈ {1, ...𝑘}. This can be cast as a set of LMIs through the S-procedure.

4.2 Problem Formulation

4

43

Assumption 4.2. For system (2.2), there exists some ℎP > 0 such that the periodic sampling
sequence with 𝑡𝑖+1 = 𝑡𝑖 +ℎP ensures 𝑉 (𝝃 (𝑡𝑖+1) ≤ 𝑉 (𝝃 (𝑡𝑖)).

This will not necessarily follow from Assumption 4.1; however, ETC is typically de-
signed based on a continuous-time Lyapunov function, and for small enough values of ℎ,
the same Lyapunov function will work for periodic control.1

Assumption 4.3. A value 𝑉0 > 0 is known such that 𝝃 (0) ∈ 0 = {𝒙 ∈ ℝ𝑛p ∶ 𝑉 (𝒙) ≤ 𝑉0}.
Now let us propose a modification to the PETC system. Since ETC can reduce com-

munication frequency while ensuring a fast decay rate, it makes practical sense to focus
on ETC during the transient period. However, once states are close enough to the origin,
decay rates have disputable practical relevance. Therefore, we admit that, when 𝝃̂ (𝑡) enters
a small sublevel set P B {𝒙 ∈ ℝ𝑛p |𝑉 (𝑥) ≤ 𝑟𝑉0}, 𝑟 < 1, the controller can switch to periodic
sampling, with ℎP significantly bigger than ℎ; in fact, it can be as big as possible, provided
that it preserves Assumption 4.2. This results in more predictable (hence schedulable) traffic
while retaining a reduction of traffic. Let us denote by 𝑡𝑖+1(𝑡𝑖 , 𝝃 (𝑡𝑖))|PETC the solution of
Eq. (2.4). Mathematically, the mixed sampling strategy, hereafter denoted MPETC, dictates
the sampling times as follows:𝑡𝑖+1 = 𝑡𝑖+1(𝑡𝑖 , 𝝃 (𝑡𝑖))|PETC, 𝑉 (𝝃 (𝑡𝑖)) > 𝑟𝑉0𝑡𝑖+1 = 𝑡𝑖 +ℎP, 𝑉 (𝝃 (𝑡𝑖)) ≤ 𝑟𝑉0. (4.1)

Hereafter, let 0 B {𝒙 ∈ ℝ𝑛x |𝑉 (𝒙) ≤ 𝑉0} and P B {𝒙 ∈ ℝ𝑛x |𝑉 (𝒙) ≤ 𝑟𝑉0} = 𝑟0. This
system has the following infinite-state trafficmodel: EB ( ,0,PETC ∪P,E,𝐻E)where

 = 0;
PETC = {(𝒙,𝒙′) ∈ ( ⧵P) × ∣ 𝒙′ = 𝝃𝒙 (ℎ𝜅(𝒙))};

P = {(𝒙,𝒙′) ∈ P ×P ∣ 𝒙′ = 𝝃𝒙 (ℎP)};E = {ℎ,2ℎ, ..., 𝑘ℎ}∪{ℎP};𝐻E(𝒙) = {ℎ𝜅(𝑥), 𝒙 ∈  ⧵P,ℎP, 𝒙 ∈ P.
(4.2)

For states starting outside P, transitions and outputs (the inter-sample times) are dictated
by the PETC strategy; for states inside P, transitions and outputs are dictated by periodic
sampling. Note that P is defined over P ×P, i.e., states starting in P always land in P:
this comes from the forward invariance of sublevel sets of 𝑉 due to Assumption 4.2. We
are ready to define our main problem:

Problem 4.1. Considering Assumptions 4.1–4.3, determine if E admits a computable finite-
state bisimulation. If so, provide an algorithm to compute it.
1This is easy to see when one considers the first order approximation of the discrete-time transition matrixe𝑨ℎ ≊ I+𝑨ℎ. If the continuous-time Lyapunov inequality𝑨T𝑷 +𝑷𝑨 ⪯ −𝜖I holds for some 𝜖 > 0 then: ℎ(𝑨T𝑷 +𝑷𝑨) ⪯−ℎ𝜖I ⟺ (I+𝑨ℎ)T𝑷(I+𝑨ℎ)−𝑷 ⪯ −ℎ𝜖I+ℎ2𝑨T𝑷𝑨, which for sufficiently small ℎ results in e𝑨Tℎ𝑷e𝑨ℎ−𝑷 ⪯ −ℎ𝜖I ≺ 0,
i.e. the discrete-time Lyapunov inequality.

4

44 4 Bisimilar traffic models for a modified PETC

4.3 Main Result
To build a bisimilar model of E, the main observation is that eventually all trajectories of
the system (2.2), (4.1) enter P, which follows from Assumption 4.1. Clearly, when in P
the system admits a trivial, single-state traffic bisimulation:

Proposition 4.1. Define 𝐻P ∶ ℝ𝑛x →ℝ such that 𝐻P ≡ ℎP. The system
BP = ({P},{P},{(P,P)},{ℎP},𝐻P)

is a bisimilar quotient system of(P,P,PETC ∪P,E,𝐻E).
Another important observation is that, since the PETC system is asymptotically stable

(Assumption 4.1), states from 0 reach P in finite time. Thus, for any state in 0, there is
a finite number of PETC-generated samples, after which all samples are periodically taken.
Let 𝐾 B {𝑘,𝑘 +1, ..., 𝑘}; since at each step there are finitely many (|𝐾 |) inter-sample time
possibilities, we can state the following:

Lemma 4.1. Let Assumptions 4.1–4.3 hold, define 𝑁 B ⌈log𝑎(𝑟)⌉. Then system (4.2) can
produce at most |𝐾 |((|𝐾 | − 1)𝑁 −1)(|𝐾 | − 1)−1 different traces.
Proof. Using Assumption 4.1, recursively apply 𝑉 (𝝃 (𝑡𝑖+1) ≤ 𝑎𝑉 (𝝃 (𝑡𝑖)) to get 𝑉 (𝝃 (𝑡𝑁) ≤𝑎𝑁𝑉 (𝒙0) ≤ 𝑎𝑁𝑉0. Then, 𝑁 > log𝑎(𝑟) implies 𝑎𝑁𝑉0 ≤ 𝑟𝑉0; thus, it takes at most 𝑁 steps to
enter P. After this, from Proposition 4.1, the remaining trace is ℎP,ℎP, This is the trace
if 𝒙0 ∈ P, which accounts for one trace; E has at most |𝐾 | traces for which it takes one
step to reach P from 𝒙0, at most |𝐾 |2 traces for which it takes two steps to reach P, and
etc., up to |𝐾 |𝑁 for the maximum number of steps. Summing up this geometric series gives|𝐾 |((|𝐾 | − 1)𝑁 −1)(|𝐾 | − 1)−1. □

Lemma 4.1 permits the construction of a rather straightforward finite-state model
similar to E. Denote by 𝐾𝑚 the set of all sequences of length 𝑚 of the form (𝑘𝑖)𝑚𝑖=0, 𝑘𝑖 ∈ 𝐾.
We create one state for each sequence in 𝐾𝑚 . The state 𝑘1𝑘2...𝑘𝑚 is associated with the traceℎ𝑘1,ℎ𝑘2, ...,ℎ𝑘𝑚 ,ℎP,ℎP, ..., thus taking 𝑚 samples to enter the periodic sampling region. By
definition, its successor must be 𝑘2...𝑘𝑚 . Finally, let 𝜀 denote the empty sequence; a state 𝑘
generates the trace ℎ𝑘,ℎP,ℎP, ..., and thus its successor is 𝜀, associated with the periodic
sampling region. Hence, Post(𝜀) = 𝜀 and 𝐻 S(𝜀) = ℎP. Let 𝕂𝑁 B ∪𝑁𝑖=1𝐾 𝑖 ∪{𝜀}; we consolidate
this modeling strategy with the following result:

Proposition 4.2. Let Assumptions 4.1–4.3 hold and 𝑁 B ⌈log𝑎(𝑟)⌉. Consider the transition
system SB(𝕂𝑁 ,𝕂𝑁 ,S,E,𝐻 S)with

• S = {(𝑘𝜎,𝜎)|𝑘𝜎 ∈ 𝕂𝑁 }∪{(𝜀, 𝜀)};
• 𝐻 S(𝑘𝜎) = ℎ𝑘 and 𝐻 S(𝜀) = ℎP.

Then S ⪰ E.
Proof. System S generates all possible traces of type ℎ𝑘1,ℎ𝑘2, ...,ℎ𝑘𝑚 ,ℎ∗,ℎ∗, ..., for 0 ≤ 𝑚 ≤𝑁 , which, according to Lemma 4.1, include all possible traces of E; thus, the behavior of S
contains that of E. Because both systems E and S are deterministic and non-blocking,
this implies that S ⪰ E [17, Proposition 4.11]. □

4.3 Main Result

4

45

The set 𝕂𝑁 includes sequences that may not be generated by the PETC opereation. To
trim off these spurious sequences, let us define the following relation:

Definition 4.1 (MPETC inter-sample sequence relation). We denote byB ⊆  ×𝕂𝑁 the
relation satisfying (𝒙, 𝜀) ∈B iff 𝒙 ∈ P, (4.3)

and (𝒙,𝑘1𝑘2...𝑘𝑚) ∈B if and only if 𝒙 ∈ 0, (4.4a)𝒙 ∈𝑘1 , (4.4b)𝑴(ℎ𝑘1)𝒙 ∈𝑘2 , (4.4c)𝑴(ℎ𝑘2)𝑴(𝑘1)𝒙 ∈𝑘3 , (4.4d)⋮𝑴(ℎ𝑘𝑚−1)...𝑴(ℎ𝑘1)𝒙 ∈𝑘𝑚 , (4.4e)𝒙 ∉ P, (4.4f)𝑴(ℎ𝑘1)𝒙 ∉ P, (4.4g)⋮𝑴(ℎ𝑘𝑚−1)...𝑴(ℎ𝑘1)𝒙 ∉ P, (4.4h)𝑴(ℎ𝑘𝑚)...𝑴(ℎ𝑘1)𝒙 ∈ P, (4.4i)

where the sets 𝑘 are defined in (3.2).

Eq. (4.3) determines that states 𝒙 ∈ P are related to the state 𝜀. Finally, a state 𝒙 ∈ℝ𝑛 is related to a state 𝑘1𝑘2...𝑘𝑚 of the abstraction if the following are satisfied: 1) it
belongs to the compact set of interest (Eq. (4.4a)), 2) the inter-sample time sequence
that it generates up until it enters P is ℎ𝑘1,ℎ𝑘2, ..., 𝑘ℎ𝑚 (Eqs. (4.4b)–(4.4e)), and 3) the
sampled states 𝝃𝒙 (𝑘1ℎ),𝝃𝒙 ((𝑘1 +𝑘2)ℎ), ... of the trajectory starting from 𝒙 do not belong toP (Eqs. (4.4f)–(4.4h)), while the m-th sampled state does belong to P (Eq. (4.4i)).

We now employ the relation B to derive a finite model bisimilar to E as follows:

Definition 4.2. The MPETC finite traffic model is the system B B (B,B,S,E,𝐻 S)
with B B 𝜋B ().

This model is a subset of S, generating only inter-sample sequences that can be
produced by the concrete system E. Topologically, it is still a tree, such as S, but with
fewer states (see Figure 4.1). Our main result follows:

Theorem 4.1. Let Assumptions 4.1–4.3 hold and 𝑁 B ⌈log𝑎(𝑟)⌉. Then, E ≊ B.
Proof. We show that B is a simulation relation from E to B and −1B is a simulation
relation from B to E, checking each of the conditions of Definition 2.2.

Step 1: B is a simulation relation from E to B.
For condition (i), take a point 𝒙0 ∈ 0 =  . It either belongs to P, for which Eq. (4.3)

provides its related state; or it takes𝑚 PETC steps to reachP. In this latter case, it generates
some trace ℎ𝑘1,ℎ𝑘2, ...,ℎ𝑘𝑚 ,ℎ∗,ℎ∗, ... and therefore, by definition, it satisfies Eq. (4.4). Hence,

4

46 4 Bisimilar traffic models for a modified PETC

𝜀
1 2

34

1,1

2,1

3,1 4,1 1,2 2,2

3,2

4,2

1,3

2,3

3,34,31,42,4

3,4

4,4

4,4 4,1

1,1 1,2

1,3 2,13,1

3,3 3,2

2,2

Figure 4.1: On the left, an illustration of S (all states) and B (only solid-line states). On the right, a depiction of
S′ with S′ = {𝜎 ∈ B ∶ |𝜎 | = 2}.
the related state 𝑘1𝑘2...𝑘𝑚 belongs to B. Condition (ii) trivially holds by the definition ofB, and in particular by (4.3) and (4.4b).

Finally, for condition (iii), take (𝒙,𝜎) ∈B. If 𝒙 ∈ P, then 𝜎 = 𝜀. From Assumption
4.2, PostE (𝒙) ∈ P, which is related to 𝜀 = PostB (𝜀). If 𝒙 ∉ P, then 𝜎 = 𝑘1𝜎 ′ ∈ 𝕂𝑁 .
Therefore, PostE (𝒙) = 𝑴(𝑘1)𝒙. From Assumption 4.1, 𝑴(𝑘1)𝒙 ∈ 0; also, by inspecting
Eq. (4.4),𝑴(𝑘1)𝒙 satisfies Eqs. (4.4c)–(4.4i) and Eqs. (4.4g)–(4.4h): this implies that 𝑘2...𝑘𝑚 =𝜎 ′ = PostB (𝑘1𝜎 ′) is related to𝑴(𝑘1)𝒙 .

Step 2: −1B is a simulation relation from B to E.
For condition (i), if 𝑘1𝑘2...𝑘𝑚 ∈ B0 , then there exists a related initial state 𝒙0 which

satisfies Eq. (4.4); hence, from Eq. (4.4a), 𝒙0 ∈ 0. For 𝜀, any related state 𝒙0 belongs toP ⊂  = 0. Condition (ii) is the same as in Step 1. Finally, condition (iii) is verified
because the reasoning in Step 1 applies to every 𝒙 ∈  satisfying (𝜎 ,𝒙) ∈−1B . □

Remark 4.2. Determining if there exists 𝒙 satisfying Eq. (4.4) is a problem of checking
non-emptiness of a semi-algebraic set, which has been proven to be decidable [66]. One tool
that can be used to solve it is the SMT solver Z3 [64]. This requires unfolding the memberships
of Eq. (4.4) into the conjunctions of quadratic inequalities by applying Eq. (3.2).

For example, suppose we want to verify the sequence 𝜎 = (3,2). First we convert 𝒙 ∈3,
which is equivalent to 𝒙T𝑵(1)𝒙 ≤ 0 and 𝒙T𝑵(2)𝒙 ≤ 0 and 𝒙T𝑵(3)𝒙 > 0 if 3 < 𝑘, or just𝒙T𝑵(1)𝒙 ≤ 0 and 𝒙T𝑵(2)𝒙 ≤ 0 if 3 = 𝑘. Then we add constraints associated to 𝑴(3)𝒙 ∈ 2,
which are 𝒙T𝑴(3)T𝑵(1)𝑴(3)𝒙 ≤ 0 and 𝒙T𝑴(3)T𝑵(2)𝑴(3)𝒙 > 0, to the constraint set. The next
step is to add equations (4.4f)–(4.4i), which translate to 𝒙T𝑷𝒙 > 𝑟,𝒙T𝑴(3)T𝑷𝑴(3)𝒙 > 𝑟 and𝒙T𝑴(3)T𝑴(2)T𝑷𝑴(2)𝑴(3)𝒙 ≤ 𝑟 . Finally, we add the condition (4.4a), which is 𝒙T𝑷𝒙 ≤ 1. The
final SMT query to check whether (3,2) is a behavior of the system then becomes “∃𝒙 ∈ ℝ𝑛x
such that 𝒙T𝑵(1)𝒙 ≤ 0 and 𝒙T𝑵(2)𝒙 ≤ 0 and 𝒙T𝑵(3)𝒙 > 0 and 𝒙T𝑴(3)T𝑵(1)𝑴(3)𝒙 ≤ 0 and𝒙T𝑴(3)T𝑵(2)𝑴(3)𝒙 > 0 and 𝒙T𝑷𝒙 > 𝑟 and 𝒙T𝑴(3)T𝑷𝑴(3)𝒙 > 𝑟 and 𝒙T𝑴(3)T𝑴(2)T𝑷𝑴(2)𝑴(3)𝒙 ≤𝑟 and 𝒙T𝑷𝒙 ≤ 1.”
Proposition 4.3 (Complexity). The set B can be computed with (|𝐾 |𝑁 (𝑁 |𝐾 |)𝑛x)2(𝑛x)
operations.

4.3 Main Result

4

47

At 𝑡0
𝑥1

𝑥2 At 𝑡1
𝑥1

𝑥2

Figure 4.2: Depiction of the strategy used to build the PETC traffic abstraction: the trajectory 𝝃̂ (𝑡) is in orange
with samples marked, and P is the blue ellipse. The tail of the sequence from 𝑡0 = 0 is the head of the sequence
from the following sample 𝑡1.
Proof. From Lemma 4.1, we have seen that there can be at most |𝐾 |((|𝐾 | − 1)𝑁 −1)(|𝐾 |−1)−1 ∈(|𝐾 |𝑁) sampling sequences. Determining the state set B requires, in the worst case,
checking the existence of all of those sequences. For a sequence of length 𝑚, Eq. (4.4) has
one membership in 0 and 𝑚 memberships in P, each corresponding to one quadratic
inequality; and𝑚memberships in𝑘 , each corresponding to 𝑘 −𝑘 +1 quadratic inequalities.
Therefore, in the worst case, Eq. (4.4) has𝑚+1+𝑚|𝐾| inequalities, or 1+𝑁 +𝑁 |𝐾| ∈(𝑁 |𝐾 |)
for the longest sequence. The best known bound for deciding the existence of a real solution
to a conjunction of 𝑠 polynomial inequalities of 𝑛x variables and maximum degree 𝑑 is𝑠𝑛x+1𝑑(𝑛x) [67]. Replacing 𝑠 by 1 +𝑁 +𝑁 |𝐾| and 𝑑 by 2, multiplying by the number of
checks and working out the limits for big-O notation concludes the proof. □

Remark 4.3. Whilst all sequences of length 𝑁 must be checked in the worst case, it is
generally more efficient to employ a recursive algorithm, i.e., verifying Eq. (4.4) for sequences
from length 1 to 𝑁 . If a sequence 𝜎 shorter than 𝑁 does not verify Eq. (4.4), then no sequence𝑘𝜎 can do. Hence, many checks can be discarded using this simple observation.

Remark 4.4. Due to characteristics of the inequalities associated to Definition 4.1, one can set𝑉0 = 1 without loss of generality, with the only input to the model being the ratio of contraction𝑟 . For 𝑉0 = 𝑐 > 0,𝑐 ≠ 1, the model is the same: replace 𝒙 by
√𝑐𝒙 in Eq. (4.4), and √𝑐 is

canceled out in all inequalities.

4.3.1 Derived results for the original PETC
With a few changes to B, we can build a similar model of the PETC traffic that generates
fewer spurious traces than the quotient model of Chap. 3. This is because the PETC section
of the MPETC trace is of course generated by the pure PETC system (2.2)–(2.10). Hence,
to simulate the PETC traffic, one could do the following: for a given state 𝒙 ∈ ℝ𝑛x , take𝑉0 = 𝑉 (𝒙) and determine its related state 𝑘𝜎 from Eq. (4.4). Now take its successor𝑴(𝑘)𝒙 .
Again, set 𝑉0 = 𝑉 (𝑴(𝑘)𝒙) and determine its related state: it has to take the form 𝜎𝜎 ′, i.e.,
its first inter-sample times should be all but the first inter-sample times of its predecessor.
This idea is depicted in Fig. 4.2. Let us formalize this procedure.

Definition 4.3 (PETC inter-sample sequence relation). Let 𝑉0 = 1. The relation S′ ⊆ℝ𝑛x ×𝕂𝑁 is given by: (𝒙,𝑘1𝑘2...𝑘𝑚) ∈S′ iff 𝒙/√𝑉 (𝒙) satisfies Eq. (4.4).

4

48 4 Bisimilar traffic models for a modified PETC

Theorem 4.2. Let Assumption 4.1 hold. Then, the system S′ B (S′ ,S′ ,S′ ,E,𝐻 S), with
S′ B 𝜋S′ (ℝ𝑛x) and S′ = {(𝑘𝜎,𝜎𝜎 ′) ∣ 𝑘𝜎,𝜎𝜎 ′ ∈ S′}, simulates the traffic generated by
System (2.2)–(2.4).
Proof. Take an initial state 𝒙 ∈ ℝ𝑛x , a PETC trajectory 𝝃𝒙 (𝑡) and its associated inter-sample
sequence 𝑘1𝑘2...𝑘𝑚 , after which 𝑉 (𝝃𝒙 (𝑡𝑚)) ≤ 𝑟𝑉 (𝒙) but 𝑉 (𝝃𝒙 (𝑡𝑚−1)) > 𝑟𝑉 (𝒙). This implies
that 𝒙/√𝑉 (𝒙) satisfies Eq. (4.4). Hence, (𝒙/√𝑉 (𝒙),𝑘1𝑘2...𝑘𝑚) ∈ S′ , and condition (i) of
Def. 2.2 holds. Condition (ii) is trivially satisfied, as 𝐻(𝒙) = ℎ𝑘1 = 𝐻 S(𝑘1𝑘2...𝑘𝑚). For
condition (iii), take its related sequence 𝑘1𝑘2...𝑘𝑚 . The successor of 𝒙 is 𝒙′ B 𝝃𝒙 (ℎ𝑘1) =𝑴(𝑘1)𝒙 , which satisfies Eqs. (4.4c)–(4.4i) and Eqs. (4.4g)–(4.4h); from homogeneity of 𝑘 ,𝑴(𝑘1)𝒙/√𝑉 (𝑴(𝑘1)𝒙) also satisfies Eqs. (4.4c)–(4.4e). Additionally, because of Assumption
4.1, we have that 𝑉 (𝒙′) < 𝑉 (𝒙); hence, Eqs. (4.4g)–(4.4h) holding for 𝒙/√𝑉 (𝒙) imply that𝑉 (𝝃𝒙 (𝑡𝑖)) > 𝑟𝑉 (𝒙) > 𝑟𝑉 (𝒙′) for all 1 ≤ 𝑖 ≤ 𝑚, and therefore Eqs. (4.4g)–(4.4h) also hold for𝒙′/√𝑉 (𝒙′). This shows that the prefix of the sequence related to 𝒙′ is 𝑘2...𝑘𝑚 . Finally,𝒙′/√𝑉 (𝒙′) satisfies Eq. (4.4) for some sequence in S′ ; combining with the conclusion
about the prefix above, (𝒙′,𝜎𝜎 ′) ∈S′ . The related transition exists because (𝑘𝜎,𝜎𝜎 ′) ∈ S′
for every 𝜎𝜎 ′ ∈ S′ . □

Remark 4.5. Effectively, to verify if 𝒙/√𝑉 (𝒙) satisfies Eq. (4.4) using SMT solvers, one only
needs to replace 𝒙T𝑷𝒙 ≤ 1 with the equality 𝒙T𝑷𝒙 = 1.

Note that S′ is, in general, nondeterministic. A depiction of such construction is seen
in Fig. 4.1. Some useful verification applications can be derived from the model S′ :
Proposition 4.4. An upper bound for the average triggering frequency of system (2.2), (2.4)
is 𝑓 ∗ = max𝜎∈S′ (|𝜎 |/(ℎ∑𝑘𝑖∈𝜎 𝑘𝑖)).
Proof. In the worst case, S′ generates 𝜎 ∗ B argmax𝜎∈S′ (|𝜎 |/(ℎ∑𝑘𝑖∈𝜎 𝑘𝑖)) repeatedly. □
Proposition 4.5. Let 𝑇 ∗ = ℎmax𝜎∈S′ (∑𝑘𝑖∈𝜎 (𝑘𝑖)) be the longest (time-wise) sequence in S′ .
Then 𝑏∗=𝐻 is an upper bound for the GES decay rate of system (2.2),(2.4).

Proof. Take an initial state 𝒙 ∈ ℝ𝑛x , its related sequence 𝜎 ∈ S′ , and set 𝑇 = ℎ∑𝑘𝑖∈𝜎 (𝑘𝑖).
Consider two cases:

Case 1: 𝑡 < 𝑇 . From GES of the PETC (Assumption 4.1), 𝑉 (𝑡) ≤ 𝑀e−2𝑏𝑡𝑉 (0) for some𝑏 > 0 and 𝑀 < ∞. Then,𝑉 (𝑡) ≤ 𝑀e−2𝑏𝑡𝑉 (0) = 𝑀e−2𝑏𝑡+2𝑏∗𝑡−2𝑏∗𝑡𝑉 (0) = e−2𝑏∗𝑡𝑀e−2(𝑏−𝑏∗)𝑡𝑉 (0) ≤ 𝑀 ′e−2𝑏∗𝑡𝑉 (0), (4.5)
where 𝑀 ′ B𝑀max(1,e2(𝑏∗−𝑏)𝑇 ∗)≥𝑀max(1,e2(𝑏∗−𝑏)𝑇).

Case 2: 𝑡 > 𝑇 . FromDef. 4.3, 𝑉 (𝑇) = 𝑉 (𝝃𝒙 (𝑇)) ≤ 𝑟𝑉0 = elog(𝑟)𝑉 (0) = e−2𝑏∗𝑇𝑉 (0). Partition
the trajectory 𝝃𝒙 (𝑡) in intervals [0, 𝑡𝑚1], [𝑡𝑚1 , 𝑡𝑚2], ..., [𝑡𝑚𝑛 , 𝑡] satisfying 𝑉 (𝑡𝑚𝑖) ≤ 𝑟𝑉 (𝑡𝑚𝑖−1)
and 𝑉 (𝑡𝑚𝑖) > 𝑟𝑉 (𝑡𝑚𝑖−1−1). Each interval but the last is associated with a sequence 𝜎𝑖 ∈ S′ ,
and therefore its duration is 𝑇𝑖 ≤ 𝑇 ∗. Thus, with 𝑡′ = 𝑡 − 𝑡𝑚𝑛 ,𝑉 (𝑡) = 𝑉 (∑𝑛𝑖=1𝑇𝑖 + 𝑡′) ≤ 𝑟𝑛𝑉 (𝑡′)

Eq. (4.5)≤ 𝑟𝑛𝑀 ′e−2𝑏∗𝑡′𝑉 (0) = 𝑀 ′e−2𝑏∗𝑛𝑇 ∗e−2𝑏∗𝑡′𝑉 (0)= 𝑀 ′e−2𝑏∗(𝑛𝑇 ∗+𝑡′)𝑉 (0) ≤ 𝑀 ′e−2𝑏∗𝑡𝑉 (0).

4.4 Numerical Results

4

49

In the two cases, we have 𝑉 (𝑡) ≤ 𝑀 ′e−2𝑏∗𝑡𝑉 (0), which implies|𝝃 (𝑡)| ≤ √𝑀 ′𝜆max(𝑷)/𝜆min(𝑷)e−𝑏∗𝑡 |𝝃 (0)|.
□

We conjecture that Proposition 4.5 provides a better estimate of the convergence rate
of System (2.2)–(2.4) than what can be obtained by, e.g., the theorems in [11]. The reason
behind this conjecture is that, as 𝑁 →∞ (or 𝑟 → 0), our bound approaches what would be
the joint spectral radius of the associated discrete-time system (see, e.g., [68]).

4.4 Numerical Results
Consider a plant and controller of the form (2.2) from [5], and the Lyapunov function𝑉 (𝒙) = 𝒙T𝑷Lyap𝒙 such that the continuous-time closed-loop system satisfies d𝑉 (𝝃 (𝑡))/d𝑡 =−𝝃 (𝑡)T𝑸Lyap𝝃 (𝑡), determined by the following matrices:

𝑨 = [0 1−2 3] , 𝑩 = [01] , 𝑲 = [1 −4] ,
𝑷Lyap = [1 0.250.25 1] , 𝑸Lyap = [0.5 0.250.25 1.5] .

For the PETC implementation, we use a predictive Lyapunov-based triggering condition
of the form 𝑉 (𝜻(𝑡)) > −𝜌𝜻(𝑡)T𝑸Lyap𝜻(𝑡), where 𝜻(𝑡)B 𝑨d(1)𝝃 (𝑡) +𝑩d(1)𝑲 𝝃̂ (𝑡) is the next-
sample prediction of the state and 0 < 𝜌 < 1 is the triggering parameter. Setting ℎ = 0.1 and𝑘 = 6, we put it in the form (2.4), and obtained 𝑎 = 0.952 using LMIs based on Remark 4.1.
For the periodic sampling, the maximum period that verifies Assumption 4.2 is ℎP = 0.4
(with resolution of 0.01). Finally, we verified that 𝑘 = 1 and set 𝑟 = 0.1. Lemma 4.1 gives𝑁 = 47 and a worst-case value of 8.5 ⋅ 1032 bisimulation states. We computed the bisimilar
state set B implementing a recursive algorithm (as discussed in Remark 4.3), obtaining a
total of only 219 states, out of which 84 belong to S′ . The Python implementation, using
Z3 to solve Eq. (4.4), took 66 seconds to generate these state sets.

Using MPETC, the maximum time it takes for P to be reached from any initial state𝒙 ∈ 0 is 𝑇 ∗ = ℎmax𝜎∈B (∑𝑘𝑖∈𝜎 (𝑘𝑖)) = 2.3. This is highlighted in Fig. 4.3, which shows

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
0.5
1

𝑇 ∗
𝑟

𝑡

𝑉(𝝃(𝑡)
) V

PETC

Figure 4.3: Trajectory of the Lyapunov function for 10 different initial conditions under MPETC, with PETC
samples marked. The maximum time 𝑇 ∗ it takes to reach P = 𝑟0 is highlighted.

4

50 4 Bisimilar traffic models for a modified PETC

simulations from 10 different initial conditions. For PETC, applying Proposition 4.5 gives𝑏∗ = 0.5, while the best GES rate that can be obtained using the LMI approaches from [11]
is 𝑏 = 0.23, using Theorem III.4. For the average PETC sampling frequency, Proposition
4.4 gives 𝑓 ∗ = 20/3 (much lower than the MIST value of 1/ℎ = 10), corresponding to the
sequence 𝜎 = (4,1,1,1,1,1).
Reproducing these results. The algorithm to generate MPETC bisimulations E and
their derived PETC abstractions S′ has been implemented in ETCetera. To reproduce
the results above, the following scripts within ETCetera can be used:

• examples/mpetc_simulations.py for Figs. 4.2 and 4.3;
• examples/mpetc_bisim.py for abstraction and the remaining numbers pre-
sented herein.

4.5 Conclusions
We have presented a practical alternative to ETC, the MPETC, which provides the benefits
of PETC during transients and the traffic predictability of periodic sampling when close
to steady state. Furthermore, we have presented a method to compute a bisimilar traffic
model for MPETC. In addition, we have presented some verification applications of the
(bi)similar models that can be used for both PETC and MPETC. This is an important step
towards understanding traffic characteristics of ETC, and it may support its applicability
in real NCSs, since the traffic benefits are among the main motivations for ETC use.

Extending themodels we have presentedwith early triggers for scheduling is easy. If one
denotes by 𝜎 the set of points in ℝ𝑛x such that Eq. (4.4) is satisfied, where 𝜎 B 𝑘1𝑘2...𝑘𝑚 ,
then checking if a transition 𝜎 𝑖−−→ 𝜎 ′ exists amounts to answering whether there exists𝒙 ∈𝜎 such that𝑴(ℎ𝑖)𝒙 ∈𝜎 ′ . This is also a problem of checking the existence of a real
solution to a conjunction of quadratic inequalities.

Among the drawbacks of the presented approach compared to Chap. 3 is the increased
computational complexity, putting at risk the scalability of the abstraction process. One
could use SDRs to solve Eq. (4.4), but it is unclear whether such relaxations can be too
permissive, to the point that most transitions cannot be ruled out, even when they do not
exist in fact. This can also have negative effects on the practical number of computations
necessary to finalize the model, as can be hinted by Remark 4.3: the number of 𝑚-long
sequences to be checked is(𝐾)𝑁𝑚−1,where 𝑁𝑚−1 is the number of (𝑚−1)-long sequences.
The smaller 𝑁𝑚−1 is, the smaller the number of checks to determine the 𝑚-long sequences
is. Using relaxations can only increase 𝑁𝑚 , for all 𝑚, and hence the number of satisfiability
checks can increase exponentially. A better alternative to SDR may be 𝛿-SMT [69], which
allows for better control of the precision error.

5

51

5
Computing the sampling

performance of PETC

We propose an approach through finite-state abstractions to do formal quantification of the
traffic generated by ETC of linear systems, in particular aiming at computing its smallest
average inter-sample time (SAIST). The method involves abstracting the traffic model through𝑙-complete abstractions, finding the cycle of minimum average length in the graph associated
to it, and verifying whether this cycle is an infinitely recurring traffic pattern. Based on this,
we present a semi-algorithm that can compute the exact SAIST of PETC, and conditions for
its termination. The method is proven to be robust to sufficiently small model uncertainties,
which allows its application to compute the SAIST of ETC of nonlinear systems.

This chapter is based on� G. de A. Gleizer and M. Mazo Jr. “Computing the sampling performance of event-triggered
control”, in Proc. of the 24th Int’l Conf. on Hybrid Systems: Computation and Control (HSCC ’21). [70] and � G. de
A. Gleizer and M. Mazo Jr. Computing the average inter-sample time of event-triggered control using quantitative
automata, under review at Nonlinear Analysis: Hybrid Systems. [71].

5

52 5 Computing the sampling performance of PETC

5.1 Introduction

Even though the major benefit of ETC compared to traditional periodic sampling
is the reduction in resource usage, until recently little was formally known about

its traffic-related performance. Existing work can be divided in two methods: analytical
vs. abstraction-based.1

The earliest work is due to Demirel et al. [24], and can be seen as a mix of abstraction-
based and analytical, where they compute the average inter-sample time (IST) of linear
event-triggered deadbeat controllers subject to Gaussian disturbances. The deadbeat nature
of the controller makes the system cease to be history-dependent after finite time, which
allows for the sampling behavior to be abstracted as a simple Markov chain. The sampling
performance can then be obtained analytically from this construction. Unfortunately, the
whole methodology is critically dependent on the deadbeat assumption, and cannot be
extended to a general class of linear controllers. The remaining papers that use analytical
methods [25, 26, 73] are dedicated to two-dimensional linear time-invariant (LTI) systems,
and some conditions are given to show when traffic converges to periodic sampling or
oscillatory patterns. While they are mostly interested in this qualitative understanding,
[73] allows to approximately compute average inter-sample for such planar systems when
the triggering parameters are sufficiently small.

The abstraction-based methods, such as the ones presented in Chapters 3 and 4, aim
majorly at ETC scheduling, with Props. 4.4 and 4.5 being the only results in this category
to give some quantitative performance indicator. Prop. 4.4 is the one aimed at sampling
performance, and essentially chooses the highest-in-frequency sequence of inter-sample
times as an upper bound to the average frequency that ETC exhibits. However, it is clear
that this bound may be too conservative: consider the numerical example of Section 4.4;
the sequence that maximizes frequency according to Prop. 4.4 is (4,1,1,1,1,1). But what if
this sequence only occurs transiently? E.g., if (4,1,1,1,1,1)𝜔 is not a behavior of the PETC
system, it might be that the average frequency exhibited by the system is in fact lower.

This chapter tackles the precise computation of the smallest (across initial states)
average inter-sample time (SAIST) of LTI systems under PETC. The SAIST constitutes a
natural metric which directly translates into average resource utilization in a network.
Our approach is based on the abstraction of a closed-loop PETC system into a weighted
transition system (WTS, Def. 2.7), where the weight of a transition is the IST generated
by the state. Instead of using the smallest-in-average sequence as in Prop. 4.4, we use the
smallest-in-average cycle (SAC) of the weighted graph associated with the abstraction using
Karp’s algorithm (Theorem 2.2), which we prove to be a lower bound of the PETC’s SAIST.
If 𝜎 B 𝑘1𝑘2...𝑘𝑚 is the SAC of the abstraction and 𝜎𝜔 is a behavior of the concrete system,
the lower bound is proven to be the exact SAIST of the PETC system. This observation
gives rise to the concept of smallest-average-cycle-equivalent simulation (SACE simulation).
If the smallest cycle is not exhibited by the PETC system, the abstraction can be further
refined until the cycle breaks, providing tighter bounds. This gives rise to a semi-algorithm
to compute average metrics through abstractions. This algorithmic framework can in fact

1It is also worth mentioning the approach of [72], which proposed an event-triggering mechanism that ensures
given traffic criteria in terms of a token bucket model. Despite very interesting, we veer away from this approach
because it is unclear whether adding conditions to enforce traffic patterns could actually degrade the sampling
performance of the original mechanism.

5.2 Problem Statement

5

53

be applied to the calculation of limit average metrics of general infinite systems, as long as
the weights belong to a finite set. When specialized to PETC SAIST, this semi-algorithm is
shown to be robust to sufficiently small model uncertainties, which allows its application
to PETC of smooth nonlinear systems.

This chapter follows the following structure: The main problem is stated in Section
5.2. The concept of SACE simulation and its associated basic results are shown in Section
5.3. Then, a general semi-algorithm to compute limit average metrics of infinite systems is
presented in Section 5.4, while its specialization for PETC SAIST computation is presented
in Section 5.5. Finally, numerical examples are given in Section 5.6, and conclusions and
future work are discussed in 5.7.

5.2 Problem Statement
Consider a PETC system (2.2)–(2.4) with  = ℎℕ. Throughout this chapter, we assume the
time units have been scaled so that ℎ = 1.2 Recall that the samples evolved according to the
discrete time model 𝒙 𝑖+1 = 𝑓 (𝒙 𝑖),𝑦𝑖 = 𝜏(𝒙 𝑖). (2.8 revisited)

Because the system is deterministic, there is a unique sequence of inter-event times from a
given initial state 𝒙0. Let us denote it by {𝑦𝑖(𝒙0)}. With this, we can attribute an average
inter-sample time (AIST) to every initial state:

AIST(𝒙)B liminf𝑛→∞ 1𝑛 +1 𝑛∑𝑖=0 𝑦𝑖(𝒙).
Using liminf instead of lim lets us use the limit lower bound in case the regular limit does
not exist, making the AIST metric well-defined.
Objective of this chapter. We want to devise a method to compute the exact smallest
average inter-sample time (SAIST) of the PETC system (2.2)–(2.4); i.e., the infimal AIST
across all possible initial states:

SAISTB inf𝒙∈ℝ𝑛x liminf𝑛→∞ 1𝑛 +1 𝑛∑𝑖=0 𝑦𝑖(𝒙). (5.1)

Furthermore, we want to understand the cases where the exact SAIST computation is not
possible, and quantify the estimation error if the best we can obtain is an approximation.

The mere application of Eq. (5.1) is largely unpromising: how can one choose a suf-
ficiently large 𝑛, or how can one exhaustively search for initial states to obtain one that
yields the SAIST? For this reason, we approach the SAIST computation problem through
finite-state abstractions.

Remark 5.1. The way we define SAIST implies that we do not expect that a system’s AIST
is irrespective of its initial conditions; as we shall see later in Section 5.6, it is possible that
multiple AISTs are observed. Hence, in these cases, we conservatively take the smallest.
2This time re-scaling can be achieved by simply multiplying 𝑨 and 𝑩 with ℎ.

5

54 5 Computing the sampling performance of PETC

5.3 SACE simulations and error bounds
From Theorem 2.2, we have an indication that it would be relatively straightforward to
compute the minimum average inter-sample time of an infinite system if we could represent
it as a weighted automaton, such as an abstraction. The question is how meaningful the
value obtained from the abstraction is for the concrete system. First, recall that ETC traffic
models are simpleWTS (Defs. 2.14 and 2.15); as such, we can characterize weight sequences,
hence run values, exclusively by external behaviors. Considering the notion of behavioral
inclusion, this gives a straightforward result:3

Proposition 5.1. If two simple WTSs 𝑎 and 𝑏 satisfy 𝑎 ⪯ (≅) 𝑏 , then ILA(𝑎) ≥ (=)ILA(𝑏) and SLA(𝑎) ≤ (=) SLA(𝑏).
Proof. Since the systems are simple, (𝑠) = 𝜔(𝑠), 𝑠 ∈ {𝑎,𝑏}. By definition, SLA(𝑠) =inf{LimAvg({𝑦𝑖}) ∣ {𝑦𝑖} ∈ (𝑠)} = inf{LimAvg({𝑦𝑖}) ∣ {𝑦𝑖} ∈ 𝜔(𝑠)}. Since 𝜔(𝑎) ⊆(=)𝜔(𝑏), and the inferior of the function on a set can only be smaller than that of a set
contained in it, the desired result follows for ILA. For SLA, the same reasoning is applied
symmetrically. □

Proposition 5.1 hints that obtaining a finite-state (bi)simulation of a PETC system
provides means to compute a lower bound (or the actual value) for its SAIST. Hence we
could use the abstractions from previous chapters to compute the metrics of interest.
However, on the one hand, a simulation alone does not provide how conservative the lower
bound may be; on the other hand, a finite-state bisimulation of an infinite system is often
impossible to be obtained. In fact, bisimulation is excessively strong, in the sense that all
behaviors and their fragments are exactly captured. As hinted by Theorem 2.2, the ILA is
determined by a minimum average cycle of the system. If one such cycle happens to have
a correspondence with the concrete system, this is sufficient to obtain the exact value for
the SAIST. This suggests the following abstraction:

Definition 5.1 (Smallest-average-cycle-equivalent simulation). Consider two simple WTSs𝑎 and 𝑏 satisfying 𝑎 ⪯ 𝑏 . Let SAC(𝑏) be the set of smallest-in-average cycles of 𝑏 . If
there exists a behavior of the form 𝑑𝑐𝜔 ∈ 𝜔(𝑎) where 𝑑 is finite and 𝑐 ∈ SAC(𝑏), then 𝑏
is a smallest-average-cycle-equivalent (SACE) simulation of 𝑎 .

A SACE simulation is a normal simulation with the added requirement that at least one
of the SACs of the abstraction is an actual recurrent behavior of the concrete system, after
some finite transient. Clearly, SACE simulation is stronger than simulation but significantly
weaker than bisimulation. Equivalently, a largest-average-cycle-equivalent simulation, or
LACE simulation, can be defined using the maximum average cycle instead. The following
result is a straightforward conclusion from Proposition 5.1 and Theorem 2.2.

Proposition 5.2. Consider two simpleWTSs𝑎 and𝑏 ; if𝑏 is a finite-state SACE simulation
of 𝑎 , then ILA(𝑎) = ILA(𝑏).
3Recall from (2.1) that ILA()B inf{liminf𝑛→∞ 1𝑛+1 ∑𝑛𝑖=0 𝑦𝑖 ∣ {𝑦𝑖} ∈ ()} is the infimal limit average of  .

5.3 SACE simulations and error bounds

5

55

Proof. FromDef. 5.1, take 𝑑𝑐𝜔 ∈𝜔(𝑎) for some finite-length sequence 𝑑 with 𝑐 = 𝑘1...𝑘𝑁 ∈SAC(𝑏). The associated LimAvg is

𝑣 B LimAvg(𝑑𝑐𝜔) = LimAvg(𝑐𝜔) = 1𝑁 𝑁∑1 𝑘𝑖 .
From Theorem 2.2, 𝑣 = ILA(𝑏). As 𝑣 is also the value of a behavior from 𝑎 , it holds that𝑣 ≥ ILA(𝑎). Since Prop. 5.1 gives that ILA(𝑎) ≥ ILA(𝑏), we have thatILA(𝑏) = 𝑣 ≥ ILA(𝑎) ≥ ILA(𝑏),
and thus ILA(𝑏) = ILA(𝑎). □

Again, an equivalent result can be used for the computation of SLA(𝑎).
Remark 5.2. In fact, to use Def. 5.1 and Prop. 5.2, it is not needed that the WTSs are
simple. One can always turn a WTS into an equivalent simple one by adding artificial states:
suppose that (𝑥,𝑦) and (𝑥,𝑧) belong to  and 𝛾(𝑥,𝑦) = 𝑎 ≠ 𝛾(𝑥,𝑧) = 𝑏. Add artificial states𝑦′ and 𝑧′ and replace the aforementioned transitions with (𝑥,𝑦′), (𝑥, 𝑧′), (𝑦′, 𝑦), (𝑧′, 𝑧), setting𝛾(𝑥,𝑦′) = 𝛾 (𝑥,𝑧′) = 0, 𝛾(𝑦′, 𝑦) = 𝑎 and 𝛾(𝑧′, 𝑧) = 𝑏. Applying this procedure to the whole
system gives a simple WTS, and again behaviors are equal to sequences of weights. The
LimAvg value of any run of this modified system is half of the value of the original equivalent
run (since we are adding zeros at every other transition).

For the cases where obtaining a SACE simulation of ILA(𝑎) is not possible, one may
still be interested in computing an estimate of the error ILA(𝑎)−ILA(𝑏).A trivial estimate
would be SLA(𝑏) − SLA(𝑏), but a better approximation can be found by inspecting the
maximal average cycle of the attractors of 𝑏 .
Proposition 5.3. Let 𝑎 B (𝑎 ,𝑎 ,𝑎 , ,𝐻𝑎) and 𝑏 B (𝑏 ,𝑏 ,𝑏 , ,𝐻𝑏) be two simple
autonomous WTSs,  be a simulation relation from 𝑎 to 𝑏 , and  ⊂ 𝑏 be a strongly
forward invariant set 4of 𝑏 . If there exists 𝑥𝑏 ∈ such that (𝑥𝑎 , 𝑥𝑏) ∈ for some 𝑥𝑎 ∈ 𝑎 ,
then ILA(𝑎) ≤ SLA((,,𝑏 , ,𝐻𝑏)) ≤ SLA(𝑏).
Proof. First, it is a simple exercise to see that ( , ′, , ,𝐻) ⪯ ( , , , ,𝐻) if  ′ ⊆  .
Now, take (𝑥𝑎 , 𝑥𝑏) ∈where 𝑥𝑏 ∈. Then, (𝑎 , {𝑥𝑎},𝑎 , ,𝐻𝑎) ⪯𝑎 . At the same time, with
the same relation we can verify that (𝑎 , {𝑥𝑎},𝑎 , ,𝐻𝑎) ⪯ (𝑏 , {𝑥𝑏},𝑏 , ,𝐻𝑏). There-
fore, by Prop. 5.1, ILA((𝑎 , {𝑥𝑎},𝑎 , ,𝐻𝑎)) ≥ ILA(𝑎), and SLA((𝑏 , {𝑥𝑏},𝑏 , ,𝐻𝑏)) ≥SLA((𝑎 , {𝑥𝑎},𝑎 , ,𝐻𝑎)). Because SLA(⋅) ≥ ILA(⋅), we get that SLA((𝑏 , {𝑥𝑏},𝑏 , ,𝐻𝑏)) ≥ILA(𝑎).

Now, because is strongly forward invariant, every run of (𝑏 , {𝑥𝑏},𝑏 , ,𝐻𝑏) con-
tains only states in. Thus, (𝑏 , {𝑥𝑏},𝑏 , ,𝐻𝑏) ≅ (, {𝑥𝑏},𝑏 , ,𝐻𝑏) ⪯ (,,𝑏 , ,𝐻𝑏).
Then, applying Prop. 5.1 again gives SLA((,,𝑏 , ,𝐻𝑏)) ≥ ILA(𝑎). This proves the
left-hand-side inequality.

The right-hand-side inequality is trivial: because (,,𝑏 , ,𝐻𝑏) ⪯ 𝑏 (as we only
remove states), Proposition 5.1 also gives that SLA(𝑏) ≥ SLA((,,𝑏 , ,𝐻𝑏)). □

4A strongly forward invariant set  ⊆  is a set that satisfies ∀𝑥 ∈, (𝑥,𝑥′) ∈  ⟹ 𝑥′ ∈.

5

56 5 Computing the sampling performance of PETC

When the abstraction 𝑏 is finite, its smallest strongly invariant sets are simply the
attractive strongly connected components (SCCs) of the graph associated with 𝑏 . Obtain-
ing the SCCs of a graph with 𝑛 vertices and 𝑚 edges has complexity (𝑛 +𝑚) [41] and in
fact is part of the steps to compute its smallest (or largest) average cycle.

5.4 Limit Average from 𝑙-complete abstractions
In this section we provide some results on the computation of the infimal limit average of
a simple WTS  through the use of its S𝑙CA 𝑙 . The first result is an obvious conclusion
from combining Prop. 2.1 with 5.1:

Proposition 5.4. Consider a simple WTS  and its S𝑙CA 𝑙 (Def. 2.6), for some 𝑙 ≥ 1. It holds
that ILA(𝑙) ≤ ILA().

Considering the idea of SACE simulation, a simple conceptual algorithm that can
compute the exact value of ILA() is given in Alg. 1. The idea is to increment 𝑙 until the
smallest-in-average cycle of 𝑙 is verified in the concrete system. The algorithm requires
one to be able to compute the S𝑙CA of a given system (line 3) and to verify the existence of
periodic behavior (line 5); these steps will be discussed for PETC traffic on Section 5.5. As
we will see now, Alg. 1 is in fact a semi-algorithm; depending on the behavior of  , it may
not terminate. The following result shows under which conditions there is a finite 𝑙 such
that ILA(𝑙) = ILA().
Theorem 5.1. Consider a simple finite WTS  and assume that there exists a finite 𝑚 ∈ℕ
such that every infinite behavior 𝛼 ∈𝜔() satisfies Avg(𝛽) ≥ ILA(), for every non-transient
subsequence 𝛽 of 𝛼 with |𝛽| = 𝑚. Then there exists a finite 𝑙 such that the 𝑙-complete simulation𝑙 of  satisfies ILA(𝑙) = ILA().
Proof. First we prove that, if 𝛽 is transient, then there exists 𝑙 large enough such that 𝛽
cannot be a subsequence of 𝜎𝜔 for any cycle 𝜎 of 𝑙 . For that, suppose by contradiction that,∀𝐿,∃𝑙 ≥ 𝐿 for which a cycle 𝜎 of 𝑙 exists s.t. 𝛽 is a subsequence of 𝜎𝜔 ; w.l.o.g., assume that𝑙 > 𝑚. Then, there exists a word 𝛾𝛽 of length 𝑙 that is a subsequence of 𝜎𝜔 ; hence, |𝛾 | = 𝑙 −𝑚.
This holds because for any natural number 𝑝, 𝜎𝑝𝛽 is a subsequence of 𝜎𝑝𝜎𝜔 = 𝜎𝜔 . Now, by
definition of 𝑙 , 𝛾𝛽 ∈ 𝑙 (). Since 𝑙 can be chosen arbitrarily large, 𝛽 can occur arbitrarily
late in a behavior of  , thus contradicting the fact that it is transient.

Therefore, there exists 𝑙 large enough such that, for every cycle 𝜎 of 𝑙 , every 𝑚-
long subsequence 𝛽 of 𝜎𝜔 is non-transient. From Theorem 2.2, one such cycle satisfiesILA(𝑙) = LimAvg(𝜎𝜔). Let 𝑝 B |𝜎 |. Then, 𝜎𝑚 has length 𝑝𝑚 and as such it can be divided
in 𝑝 non-transient subsequences 𝛽𝑖 , not necessarily distinct, of length 𝑚. Now,

ILA(𝑙) = LimAvg(𝜎𝜔) = LimAvg((𝜎𝑚)𝜔)) = Avg(𝜎𝑚) = 1𝑝 𝑝∑𝑖=1Avg(𝛽𝑖) ≥ ILA().
Since, by Prop. 5.4, ILA(𝑙) ≤ ILA(), it holds that ILA(𝑙) = ILA(). □

Theorem 5.1 states that it is sufficient for it to exist an 𝑚 large enough such that every
“persistent” 𝑚-long behavior fragment 𝛽 of  has higher or equal average than ILA().
Intuitively, constraining the assumption of 𝛽 occurring infinitely often has the idea of

5.4 Limit Average from 𝑙-complete abstractions

5

57

Algorithm 1 Computation of ILA()
Input: A simple WTS  with  ⊂ ℚ, | | < ∞
Output: 𝑙,𝑙 ,V,𝜎

1: 𝑙 ← 1
2: while true do
3: Build 𝑙 ⊳ (Def. 2.6)
4: V← ILA(𝑙), 𝜎 ← SAC(𝑙) ⊳ [41, 42]
5: if 𝜎𝜔 ∈ 𝜔() then
6: return
7: end if
8: 𝑙 ← 𝑙 +1
9: end while

excluding transient behaviors 𝛽 , which do not affect the LimAvg value. For cases where 𝛽
can occur infinitely often in some behavior, but 𝛽𝜔 is not a behavior of  , one can construct
counterexamples in which ILA(𝑙) < ILA() for all 𝑙:
Example 5.1. Consider a system  with behavior set 𝜔() = {(1𝑛2𝑛)𝜔 ∣ 𝑛 ∈ ℕ}. Obviously,ILA() = 1.5. However, for any 𝑙, (1𝑙)𝜔 ∈ 𝜔(𝑙), hence ILA(𝑙) = 1 for any 𝑙.
Example 5.2. Consider the system  = ([0,1], [0,1], , {0,1},𝐻)where  = {(𝑥,𝑥 +𝑎 mod 1)}
and 𝐻(𝑥) = 1 if 𝑥 < 𝑎 and 0 otherwise. When 𝑎 is irrational,  is called an irrational rotation.
Because it is ergodic with respect to the Lebesgue measure [74], LimAvg(𝛼) = 𝑎 for any𝛼 ∈ 𝜔(). Thus, ILA() = 𝑎 is irrational. Since for every finite 𝑙, ILA(𝑙) is a rational
number (as a consequence of Theorem 2.2 and the fact that 𝑙 is finite), ILA(𝑙) ≠ ILA().
Finally, from Prop. 5.4, ILA(𝑙) ≤ ILA(), thus ILA(𝑙) < ILA() for all finite 𝑙.

Note that, for Ex. 5.2, the minimum number of 1s in a behavior fragment of length 𝑛
is ⌊𝑛𝑎⌋, hence ILA(𝑙) = ⌊𝑙𝑎⌋𝑙 , which asymptotically approaches 𝑎 as 𝑙 goes to infinity. For
Ex. 5.1, we cannot obtain this asymptotic approximation.

The conditions in Theorem 5.1 do not imply that the SAC 𝜎 of 𝑙 satisfies 𝜎𝜔 ∈ 𝜔();
thus, we may have equality of LimAvg values without a SACE simulation. Therefore, under
these conditions, Alg. 1 can be interrupted with the exact value, but with no certificate that
this is the case. Its termination is guaranteed when there is a cyclic minimizing behavior,
and additionally that the other behaviors have limit average values strictly larger than that
of the cycle:

Theorem 5.2. Consider a simple WTS  , and suppose  satisfies the premises of Theorem 5.1.
Furthermore, assume there exists an 𝑚-long sequence 𝜎 such that 𝜎𝜔 ∈𝜔(), and that every
non-transient subsequence 𝛽, |𝛽| = 𝑚 of every behavior 𝛼 ∈ 𝜔() satisfies LimAvg(𝛽𝜔) >ILA() if 𝛽 is not a subsequence of 𝜎𝜔 . Then Alg. 1 terminates with V = ILA().

The proof requires some technical results on cyclic permutations of sequences and we
leave it for the appendix. The main insight is that the conditions of Theorem 5.2 imply
that, for sufficiently large 𝑙, 𝑙 has only one SAC 𝜎 , modulo cyclic permutations, which

5

58 5 Computing the sampling performance of PETC

attains the minimum value; at the same time, for large enough 𝑙 , this 𝜎 satisfies 𝜎𝜔 ∈𝜔().
Hereafter, we say that a system satisfying the premises of Theorem 5.2 has an isolated SAC.
This does not mean that the behavior of  is simple, or that a finite-state bisimulation of it
exists:

Example 5.3. Consider the doubling map system  = ([0,1], [0,1], , {0,1},𝐻) where  ={(𝑥,2𝑥 mod 1) ∣ 𝑥 ∈ [0,1]} and 𝐻(𝑥) = 0 if 𝑥 < 1/2 and 1 otherwise. The behavior of this
system is (0+1+)𝜔 , its smallest cycle is 0𝜔 with value zero (obtained with 𝑥0 = 0). This
system does not admit a finite-state bisimulation, but its 1-complete abstraction is 1 ={{0,1},{0,1},{(0,0), (0,1), (1,0), (1,1)},{0,1}, Id}, where Id is the identity operator. Clearly,1 is a SACE simulation of  (in fact, it is behaviorally equivalent, but not bisimilar). The
system  satisfies the premises of Theorem 5.2 with 𝑚 = 1.

Now that we have the general framework for the computation of ILA(), we see how
to apply it for PETC traffic.

5.5 Computing the SAIST of PETC
Consider now the PETC traffic model  from Def. 2.15 as the concrete infinite-state system
for which we want develop an algorithm like Alg. 1. For this we need to be able to (i) build
an 𝑙-complete abstraction of the system, (ii) compute its SAC, and (iii) check if its minimum
mean cycle exists in the concrete system. Naturally, Karp’s algorithm [41, 42] constitute
the tool for task (ii). In the next section we present how to obtain 𝑙-complete abstractions
of  . Then, in Section 5.5.2, we show how can a cyclic behavior be verified to be trace of . Finally, we present the full algorithm and discuss its robustness and applicability in
subsequent subsections.

5.5.1 𝑙-complete PETC traffic models
In this section, we fix  as a PETC traffic model (2.15). Obtaining its strongest 𝑙-complete
abstraction is very similar to the models proposed in Chapter 4; however, instead of
partitioning the state-space  into regions associated to different sequences that lead to
some given reduction in a chosen Lyapunov function, we divide  into regions 𝑦1𝑦2...𝑦𝑙 ,
where the first 𝑙 elements of any behavior in 𝜔𝑥 (), for any 𝑥 ∈ 𝑦1𝑦2...𝑦𝑙 , are exactly𝑦1, 𝑦2, ..., 𝑦𝑙 . If  is deterministic, this division generates a partition, as from one state 𝑥
there exists only one infinite behavior. The relation is thus a simplified version of Def. 4.3:

Definition 5.2 (PETC inter-sample sequence relation). Given a sequence length 𝑙 , we denote
by 𝑙 ⊆ ℝ𝑛x × 𝑙 the relation satisfying (𝒙,𝑘1𝑘2...𝑘𝑙) ∈𝑙 if and only if𝒙 ∈𝑘1 , (5.2a)𝑴(𝑘1)𝒙 ∈𝑘2 , (5.2b)𝑴(𝑘2)𝑴(𝑘1)𝒙 ∈𝑘3 , (5.2c)⋮𝑴(𝑘𝑙−1)...𝑴(𝑘1)𝒙 ∈𝑘𝑙 , (5.2d)

where the sets 𝑘 are defined in (3.2).

5.5 Computing the SAIST of PETC

5

59

By construction, a state 𝒙 ∈ ℝ𝑛 of the concrete PETC traffic model is related to a state𝑘1𝑘2...𝑘𝑙 of the abstraction if its generated inter-sample time sequence for the next 𝑙 samples
is 𝑘1, 𝑘2, ..., 𝑘𝑙 .
Remark 5.3. Setting 𝑙 = 1 gives a normal quotient state-set, similar to the one presented in
Chapter 3.

Definition 5.3. Given an integer 𝑙 ≥ 1, the 𝑙-complete PETC traffic model is the system𝑙 B (𝑙 ,𝑙 ,𝑙 , ,𝐻𝑙), with
• 𝑙 B 𝜋𝑙 (),
• 𝑙 = {(𝑘𝜎,𝜎𝑘′) ∣ 𝑘,𝑘′ ∈  ,𝜎 ∈  𝑙−1, 𝑘𝜎 ,𝜎𝑘′ ∈ 𝑙},
• 𝐻𝑙 (𝑘1𝑘2...𝑘𝑙) = 𝑘1.
The model above partitions the state-space ℝ𝑛x of the PETC into subsets associated

with the next 𝑙 inter-sample times these states generate, i.e., it is an 𝑙-complete abstraction,
but also a quotient-based model. Computing the state set, 𝜋𝑙 (), requires determining
whether or not, for each 𝑘1𝑘2...𝑘𝑙 ∈  𝑙 , its associated conjunction of quadratic inequalities
in Eq. (5.2) admits a solution 𝒙 ∈ ℝ𝑛x ; only if it does, then 𝜎 ∈ 𝑙 . This can be determined
using a nonlinear satisfiability-modulo-theories (SMT) solver such as Z3 [64]: for that, the
variable is 𝒙 ∈ ℝ𝑛x and the query is ∃𝒙 ∈ ℝ𝑛x ∶ Eq. (5.2) holds.5 The output map 𝐻𝑙 is the
next sample alone, and the transition relation is based on the domino rule, as in Def. 2.6.

5.5.2 Verifying SACE eqivalence
In this subsection, we are interested in determining whether a sequence of outputs(𝑘1𝑘2...𝑘𝑚)𝜔 C 𝜎𝜔 is a possible behavior of  . This is equivalent to finding a run {𝒙 𝑖}
whose trace is 𝜎𝜔 . From now on, we denote by 𝜎 , or 𝜎 -cone, the set of all points 𝒙 ∈ ℝ𝑛x
satisfying Eq. (5.2) with 𝑙 = 𝑚 and by𝑴𝜎 B𝑴(𝑘𝑚)𝑴(𝑘𝑚−1)⋯𝑴(𝑘1). For the formal results,
consider the following classes of square matrices:

Definition 5.4 (Mixed matrix). Consider a matrix 𝑴 ∈ ℝ𝑛×𝑛 and let 𝜆𝑖 , 𝑖 ∈ ℕ≤𝑛 be its
eigenvalues sorted such that |𝜆𝑖 | ≥ |𝜆𝑖+1| for all 𝑖. We say that 𝑴 is mixed if, for all 𝑖 < 𝑛,|𝜆𝑖 | = |𝜆𝑖+1| implies that ℑ(𝜆𝑖) ≠ 0 and 𝜆𝑖 = 𝜆∗𝑖+1.
Remark 5.4. Mixed matrices cannot have eigenvalues with the same magnitude, except
for complex conjugate pairs. Every mixed matrix is diagonalizable, but the converse does
not hold (e.g., the identity is not mixed). The set of mixed matrices is full Lebesgue measure.
With a non-pathological choice of ℎ,6 the matrices𝑴(1),𝑴(2), ...𝑴(𝑘) from Eq. (2.10) are all
mixed, even if 𝑲 is chosen to place poles of 𝑨+𝑩𝑲 in the same point of the complex plane; it
is sensible (but not guaranteed) to expect that their products are also mixed. From a linear
systems perspective, all modes of a mixed matrix have different speeds.

Definition 5.5 (Matrix of irrational rotations). A matrix𝑴 ∈ ℝ𝑛×𝑛 is said to be of irrational
rotations if the arguments of all of its complex eigenvalues are irrational multiples of π.
5Alternatively, this query may be solved approximately through convex relaxations as proposed in Chapter 3.
Using relaxations implies finding inter-sample sequences that may not be exhibited by the real system. This still
generates a simulation relation, but containing more spurious behaviors.

6Typically, only countably many values of ℎ will render𝑴(𝑘) non-mixed for a given 𝑘.

5

60 5 Computing the sampling performance of PETC

1
2

1

Figure 5.1: Illustration of Theorem 5.3 in ℝ3. The blue cone splits ℝ3 into 1 and 2 the line is an invariant of𝑴(1) and the plane is an invariant of𝑴(2). Points indicate distinct sample trajectories {𝒙 𝑖}.
Remark 5.5. If𝑴 has a pair of complex conjugate eigenvalues whose argument is a rational
multiple of π, i.e., 𝑝π/𝑞, where 𝑝,𝑞 ∈ ℕ, then the corresponding eigenvalues of 𝑴𝑞 are real.
The set of real matrices of rational rotations is Lebesgue-measure zero but dense in ℝ𝑛×𝑛 .

If 𝑴𝜎 is mixed and of irrational rotations, one can verify if 𝜎𝜔 is a behavior of  by
checking the linear invariants of𝑴𝜎 :
Theorem 5.3. Consider the PETC system  (Def. 2.15) and let 𝜎 ∈𝑚 ,𝑚 ∈ ℕ, be a sequence
of outputs. (i) If 𝑴𝜎 is nonsingular and there exists a linear invariant  of 𝑴𝜎 such that ⧵ {0} ⊆𝜎 , then 𝜎𝜔 ∈ 𝜔(). Moreover, if (ii)𝑴𝜎 is additionally mixed and of irrational
rotations, then 𝜎𝜔 ∈ 𝜔() implies that there exists a linear invariant  of 𝑴𝜎 such that ⊆ cl(𝜎).

To avoid a long detour in our exposition, we leave the proof to the appendix, instead
providing here a depiction of the idea behind it: In Fig. 5.1, we have 𝑚 = 1 and  = {1,2},
and the blue cone splits ℝ3, the state space, in 1 and 2; the two plots have different
matrices 𝑴(1). Runs {𝒙 𝑖} that generate the trace 1𝜔 are solutions of the linear system𝒙 𝑖+1 =𝑴(1)𝒙 𝑖 , one such example being depicted with white dots. Likewise, black dots show
a run generating the trace 2𝜔 , and it has to be a solution of 𝒙 𝑖+1 = 𝑴(2)𝒙 𝑖 . In the example
on the left, the black line is supported by one real eigenvector of𝑴(1) and, as it belongs
to 1, at least solutions on top of this eigendirection are runs of the PETC system  . In
our example, this eigenvector is associated with a dominant mode of 𝑴(1), so solutions
starting close to it converge towards it. The plane depicted on the left of Fig. 5.1 is an
invariant of𝑴(2) associated to complex conjugate eigenvalues. Solutions starting in this
plane stay in this plane, spiraling towards the origin (in case the PETC implementation is
stabilizing), which confirms that 2𝜔 is also a behavior of  . The example on the right shows
the defective case where the converse does not hold: for that, assume that 1 does not
include its depicted blue boundary; however, the black line representing an eigendirection
of𝑴(1) runs precisely on this boundary. In this example, the white dots represent a run{𝒙 𝑖} in1, thus generating the trace 1𝜔 , but no invariant of𝑴(1) is a subset of1. Because
the depicted mode of𝑴(1) is dominant, there are solutions that start close to its associated
eigendirection that stay in 1 forever.

5.5 Computing the SAIST of PETC

5

61

Based on Theorem 5.3, in the non-defective cases we can verify a cyclic behavior 𝜎𝜔 by
taking the finitely many linear invariants  of𝑴𝜎 and checking if  ⧵ {0} ⊆𝜎 , or, more
explicitly, taking 𝜎 = 𝑘1𝑘2...𝑘𝑚 ,

 ⧵ {0} ⊆𝑘1 ,𝑴(𝑘1) ⧵ {0} ⊆𝑘2 ,⋮𝑴(𝑘𝑚−1)...𝑴(𝑘1) ⧵ {0} ⊆𝑘𝑚 .
(5.3)

Because each 𝑘 is an intersection of quadratic sets (see Eq. (3.2)), we must be able to
check whether a linear space is a subset of a given quadratic set, which is nothing but a
positive-(semi)definiteness check:
Proposition 5.5. Let  be a linear subspace with basis 𝒗1,𝒗2, ...,𝒗𝑚 , and let 𝑽 be the
matrix composed of the vectors 𝒗𝑖 as columns. Let 𝑸 ∈ 𝕊𝑛 be a symmetric matrix and define𝑛 B {𝒙 ∈ ℝ𝑛 ∣ 𝒙T𝑸𝒙 ≥ 0} and 𝑠 B {𝒙 ∈ ℝ𝑛 ∣ 𝒙T𝑸𝒙 > 0}. Then,  ⧵ {0} ⊆ 𝑛 (resp. 𝑠) if
and only if 𝑽T𝑸𝑽 ⪰ 0 (resp. 𝑽T𝑸𝑽 ≻ 0).
Proof. For brevity, let us consider the strict inequality case (the other is analogous). First,
note that = {𝑽𝒂 ∣ 𝒂 ∈ ℝ𝑚}. Hence, if we want all points in to belong to 𝑠 , we need
that ∀𝒂 ∈ ℝ𝑚 ⧵ {0}, 𝒂T𝑽T𝑸𝑽𝒂 > 0,
which is exactly the definition of 𝑽T𝑸𝑽 ≻ 0. □

5.5.3 SACE simulation algorithm
Combining the 𝑙-complete trafficmodels from Section 5.5.1 with the stopping criterion based
on checking linear invariants from Section 5.5.2, we specialize Algorithm 1 into Algorithm
2 to generate a finite-state SACE simulation of the PETC traffic model  , together with
the computation of its SAIST ILA(). In the outer loop, the relation 𝑙 and corresponding
finite-state system 𝑙 are built, followed by the computation of one of its SACs 𝜎 . Then,
an inner loop looks for linear subspaces of𝑴𝜎 satisfying ⧵ {0} ⊆𝜎 (Theorem 5.3);
because 𝑴𝜎 is assumed to be mixed and of irrational rotations7, it suffices to verify 1-
dimensional subspaces for real eigenvectors and 2-dimensional subspaces for complex
conjugate ones8; if one is found, the algorithm terminates. Otherwise, 𝑙 is incremented
and the main loop is repeated. Hereafter, we say that a linear invariant subspace of a
mixed matrix is basic if it is the span of a real eigenvector or of a pair of complex conjugate
eigenvectors.

In order to state formal results about the correctness of Algorithm 2, we need to account
for the conditions in Theorem 5.3.
Definition 5.6 (Normalized distance). The normalized distance between a point 𝒙 ∈ ℝ𝑛 and
a set  ⊆ ℝ𝑛 , denoted by 𝑑n(𝒙,) is defined as inf𝒍∈(1− 𝒍T𝒙|𝒍||𝒙|). The normalized distance

between two sets is 𝑑n(,′)B inf𝒍∈ 𝑑n(𝒍,′).
7Any matrix is arbitrarily close to a mixed matrix of irrational rotations; numerically checking if it is otherwise is
not robust. A more thorough discussion about this is available in Section 5.5.4

8If a larger dimensional subspace ′ is a subset of 𝜎 , any smaller dimensional subspace  ⊂′ will also be.
Thus, there is no benefit in verifying subspaces that are combinations of smaller real linear subspaces

5

62 5 Computing the sampling performance of PETC

Algorithm 2 PETC SAIST computation algorithm

Input:  and𝑴(𝑘),𝑘 , ∀𝑘 ∈ 
Output: 𝑙,𝑙 ,𝜎 ,SAIST

1: 𝑙 ← 1
2: while true do
3: Build 𝑙 and 𝑙 ⊳ (Defs. 5.2 and 5.3)
4: SAIST← ILA(𝑙), 𝜎 ← SAC(𝑙) ⊳ [41, 42]
5: for all  ∈ BILS(𝑴𝜎) do ⊳ BILS = basic invariant linear subspaces
6: if  satisfies Eq. (5.3) with 𝑘1, 𝑘2, ..., 𝑘𝑚 = 𝜎 then
7: return
8: end if
9: end for
10: 𝑙 ← 𝑙 +1
11: end while

As the quantity 𝒍T𝒙|𝒍||𝒙| is the cosine of the angle between the vectors 𝒍 and 𝒙 , the normal-
ized distance varies between 0 and 1, measuring how close 𝒙 is, modulo magnitude, to the
set. It is a more sensible choice of distance when dealing with homogeneous sets than
the Euclidean distance, which would be zero as the origin is always in or arbitrarily close
to such sets. This distance is needed for some technical results that come later, as well as
for the following definition.

Definition 5.7 (Regularity). A sequence of ISTs 𝜎 B 𝑘1𝑘2...𝑘𝑚 is said to be regular if (i)𝑴𝜎
is nonsingular, mixed, and of irrational rotations, and (ii) for every invariant linear subspace of𝑴𝜎 , we have that 𝑑n(, 𝜕𝜎) ≥ 𝜖 for some 𝜖 > 0.

Regularity of a sequence 𝜎 prevents that one of the invariants of𝑴𝜎 intersect 𝜕𝜎 (the
case in the right of Fig. 5.1), requiring a minimal 𝜖 clearance to its boundary. The following
result establishes conditions for the termination of Alg. 2; the proof is in the Appendix.

Theorem 5.4. Suppose that  (Def. 2.15) has an isolated smallest-in-average cycle 𝜎 that is
regular. Then, Alg. 2 terminates with SAIST = ILA().

The conditions of Theorem 5.4 are the same behavioral conditions as in Theorem 5.2:
the system must exhibit a minimizing periodic behavior, and competing infinite behaviors
must be composed of subsequences that have average value strictly larger than the minimal
value. Additionally, the smallest cycle must be regular, which is not a limiting assumption.
Therefore, the algorithm may not terminate when, for example, a minimizing behavior is
aperiodic. In this case, we may still expect increasingly better estimates of ILA() with
larger values of 𝑙.
5.5.4 Robustness and computability
Algorithm 2 relies on the matrices 𝑴(𝑘) from Eq. (2.10), whose elements are typically
transcendental. Therefore, one may wonder if the algorithm, or more generically a given

5.5 Computing the SAIST of PETC

5

63

𝑙-complete SACE traffic model, is robust to small round-off errors when computing those
matrices, as well as other small model mismatches. In this section, we are going to see
that this is true given that some mild assumptions are satisfied. For this, we need proper
definitions.

Definition 5.8 (Perturbed PETC system). Given a PETC system (2.2)–(2.4) and its data𝑨,𝑩,𝑲 ,𝑸,𝑘, the PETC system with data 𝑨̃, 𝑩̃, 𝑲̃ , 𝑸̃,𝑘 is called a 𝛿-perturbation of the former
if |||𝑨− 𝑨̃||| ≤ 𝛿, |||𝑩𝑲 − 𝑩̃𝑲̃ ||| ≤ 𝛿, and |||𝑸 − 𝑸̃||| ≤ 𝛿 . Furthermore, the traffic model ̃ cf. Def. 2.15 of
a 𝛿-perturbation of system (2.2)–(2.4) is denoted a 𝛿-perturbation of  .
Remark 5.6. Considering Footnote 2, Def. 5.8 also encompasses variations in the actual
checking period ℎ.
Definition 5.9 (𝜖-inflation). The 𝜖-inflation of a quadratic cone {𝒙 ∈ ℝ𝑛 ∣ 𝒙T𝑸𝒙 ≥(>) 0} is
the set {𝒙 ∈ ℝ𝑛 ∣ 𝒙T(𝑸 +𝜖I)𝒙 ≥(>) 0}, for 𝜖 > 0. An 𝜖-inflation of the intersection of quadratic
cones is defined as the intersection of the 𝜖-inflations.

Let 𝛿 () be the set of all 𝛿-perturbations of  . We have the following results.

Proposition 5.6. If 𝑙 is an 𝑙-complete model (Def. 5.3) of  , then there exists 𝛿 > 0 such that𝑙 is an 𝑙-complete model of every ̃ ∈ 𝛿 () if there exists an 𝜖 > 0 such that the following
conditions hold:

• For every 𝜎 ∈ 𝑙 (), there exists 𝒙 ∈𝜎 s.t. 𝑑n(𝒙,𝜕𝜎) > 𝜖; and
• for every 𝜎 ∉ 𝑙 (), every 𝜖-inflation of 𝜎 is empty.

Proof. By Definition 5.3, 𝑙 is an S𝑙CA of every ̃ ∈ 𝛿 () if
1) 𝜎 ∈ 𝑙 () ⟹ 𝜎 ∈ 𝑙 (̃),∀̃ ∈ 𝛿 (), and
2) 𝜎 ∉ 𝑙 () ⟹ 𝜎 ∈ 𝑙 (̃),∀̃ ∉ 𝛿 ().

For item 1, we must have a non-zero vector 𝒙 ∈ ̃𝜎 , where ̃𝜎 is the 𝜎-cone of the 𝛿-
perturbation ̃ . Because 𝑑n(𝒙,𝜕𝜎) > 𝜖, we have that the normalized distance to the
complement of 𝜎 satisfies 𝑑n(𝒙,̄𝜎) > 𝜖. By continuity, this implies that 𝑑n(𝒙, ̄̃𝜎) > 0 for
small enough 𝛿 , and hence 𝒙 ∈ ̃ ⟹ 𝜎 ∈ 𝑙 (̃). Likewise, for item 2, we cannot have a
vector 𝒙 ∈ ̃𝜎 ; by continuity, for small enough 𝛿 , ̃𝜎 is a subset of the 𝜖-inflation of 𝜎 ,
which is empty, and therefore 𝜎 ∉ 𝑙 (̃). □

The conditions in Prop. 5.6 rule out marginal cases of degeneracy, and are expected to
hold in general for sufficiently small 𝜖. I.e., if 𝜎 is a behavior of  and 𝜎 has a non-empty
interior (equivalent to 𝑛d(𝒙,𝜕𝜎) > 𝜖 for some 𝒙 and 𝜖), then sufficiently small perturbations
to the sets whose intersection gives 𝜎 do not render it empty; symmetrically, if 𝜎 is not
a behavior of  , not only 𝜎 must be empty, but small perturbations on the sets whose
intersection composes 𝜎 must retain its emptiness, thus not creating a new behavior.

Proposition 5.7. Let 𝜎𝜔 be a cyclic behavior of  . Then, if 𝜎 is regular, there exists some𝛿 > 0 such that 𝜎𝜔 ∈ 𝜔(̃), for all ̃ ∈ 𝛿 ().
Proof. From Theorem 5.3, we have that 𝜎𝜔 ∈ 𝜔() ⟹  ⊆ cl(𝜎) for a basic linear
invariant subspace  of 𝑴𝜎 . From regularity of 𝜎 , 𝑑n(, 𝜕𝜎) > 𝜖. Together with  ⊆cl(𝜎), we have that 𝑑n(,̄𝜎) > 𝜖. Since 𝜎 is regular,𝑴𝜎 is mixed by definition. Then, by

5

64 5 Computing the sampling performance of PETC

continuity of eigenvalues and eigenvectors, for small enough 𝛿 , the perturbed eigenvalues 𝜆̃𝑖
are qualitatively unchanged: 𝜆𝑖 ∈ ℝ ⟹ 𝜆̃𝑖 ∈ ℝ, ℑ(𝜆𝑖) ≠ 0 ⟹ ℑ(𝜆̃𝑖) ≠ 0, and |𝜆𝑖 | > |𝜆𝑖+1| ⟹|𝜆̃𝑖 | > |𝜆̃𝑖+1|. Thus, if is a line associated to a real eigenvalue, so is the corresponding basic
linear subspace ̃ of 𝑴̃𝜎 ; and likewise if  is a plane corresponding to complex conjugate
eigenvalues of irrational rotations: even if 𝑴̃𝜎 is not of irrational rotations, the plane ̃ is
one of its invariants. In addition, 𝑑n(,̃) < 𝑑,where 𝑑 diminishes with 𝛿 . Hence, for small
enough 𝛿 we have that 𝑑n(,̄𝜎) > 𝜖 ⟹ 𝑑n(̃, ̄̃𝜎) > 0 ⟹ ̃ ⧵ {0} ⊆ ̃𝜎 . Therefore,
applying again Theorem 5.3, we conclude that 𝜎𝜔 ∈ 𝜔(̃),∀̃ ∈ 𝜖 (). □

These two propositions combined give the following result:

Theorem 5.5. Let 𝑙 be the SACE simulation of a PETC traffic model  . If its smallest-in-
average cycle 𝜎 is regular and 𝑙 satisfies the premises of Prop. 5.6, then there exists 𝛿 > 0
such that 𝑙 is SACE simulation of every ̃ ∈ 𝛿 ().

Theorem 5.5 has two interesting implications. The first is that sufficiently small round-
off errors on the matrices𝑴(𝑘) and 𝑸 of Eq. (2.10) do not affect the correct computation
of ILA(); hence, ILA() is computable for a class of linear systems, even though 𝑴(𝑘)
typically contains transcendental numbers. The second implication is that, informally,
we can apply our method to nonlinear systems, as long as the closed loop ETC system
is asymptotically stable and the involved functions are sufficiently smooth. Asymptotic
stability implies that the state converges to a ball of any radius, no matter how small, in
finite time; therefore, the sequence of sampling times up to this point do not affect the
system’s SAIST. Inside a sufficiently small ball, the nonlinear flow belongs to a convex
combination of 𝛿-perturbations of its linearization about the equilibrium. If the linearized
system  satisfies the premises of Theorem 5.5, the SAIST of the nonlinear system is equal
to ILA().
5.5.5 An improved algorithm
Verifying the existence of each 𝑙-long behavior to obtain𝑙 and 𝑙 (line 3 of Alg. 2) has
exponential complexity on the number of variables [63, 67]. To reduce the number of
times these problems are solved, we propose a more efficient refinement approach than
performing the full (𝑙 + 1)-complete abstraction. At every iteration of Alg. 2, we only refine
the states of the abstraction associated with the previous SAC. This procedure is explained
in Algorithm 3, where 𝜎 is the set of states that compose the SAC.9

To illustrate this approach, see Fig. 2.1, where three steps of this refinement approach
are executed in the example of Fig. 5.2: in depth 3, the SAC is already (1,1,2)𝜔 , but it
requires only 6 verification procedures: 1, 2, (1,1), (1,2), (1,1,1) (disproved) and (1,1,2); the3-complete model would require up to 2+4+8 = 14 verification procedures to obtain the
same SAC. The disadvantage of this approach is that the obtained graph is more connected
(as we have fewer states but more behaviors), and thus the computation of an upper bound
using Prop. 5.3 often gives too distant values.

9In fact, the corrected Karp’s algorithm in [42] returns sequence of states that generate the SAC, from which
determining the SAC is trivial. Algorithm 3 needs the states, hence we use the function SAC∗ which returns
both the states 𝜎 and the behavioral cycle 𝜎 itself.

5.5 Computing the SAIST of PETC

5

65

Algorithm 3 Fast PETC SAIST computation algorithm

Input: 1 and𝑴(𝑘),𝑘 , ∀𝑘 ∈ 
Output: 𝑑,𝑑 ,𝜎 ,SAIST

1: 𝑑 ← 1 ⊳ 𝑑 is the depth of the algorithm
2: while true do
3: SAIST← ILA(𝑙), (𝜎 ,𝜎) ← SAC∗(𝑙) ⊳ [41, 42]
4: for all  ∈ BILS(𝑴𝜎) do ⊳ BILS = basic invariant linear subspaces
5: if  satisfies Eq. (5.3) with 𝑘1, 𝑘2, ..., 𝑘𝑚 C 𝜎 then
6: return
7: end if
8: end for
9: 𝑑+1 ← 𝑑 ⧵𝜎 ⊳ Remove states to be refined
10: for all (𝛼,𝛽) ∈ 𝑑 such that 𝛼 ∈ 𝜎 and |𝛼 | ≤ |𝛽| do ⊳ If |𝛼 | > |𝛽| no new candidate

is generated via the domino rule
11: 𝑘 ← 𝛽(|𝛼|) ⊳ The |𝛼 |-th element of 𝛽
12: 𝛾 ← 𝛼𝑘 ⊳ New candidate: sequence of length |𝛼 | + 1 given the Domino rule
13: if ∃𝒙 ∈ ℝ𝑛x such that 𝑘1𝑘2...𝑘𝑙 C 𝛾 satisfies Eqs. (5.2)–(3.2) then ⊳ Nonlinear

SMT
14: 𝑑+1 ← 𝑑+1 ∪{𝛾}
15: end if
16: end for
17: 𝑑+1 ←{(𝑘𝜎,𝜎𝑘′) ∣ 𝑘,𝑘′ ∈  , 𝑘𝜎 ,𝜎𝑘′ ∈ 𝑑+1} ⊳ Domino rule
18: 𝐻𝑑+1(𝑘𝜎)← 𝑘 for all 𝑘𝜎 ∈ 𝑑+1
19: 𝑑+1 ← (𝑑+1,𝑑+1,𝑑+1, ,𝐻𝑑+1)
20: 𝑑 ← 𝑑 +1
21: end while

1 2 1,1 1,2 2 1,1,2 1,2 2

Figure 5.2: Illustration of Alg. 3 on the system  of Fig. 2.1.

5

66 5 Computing the sampling performance of PETC

5.6 Numerical Examples
In what follows we present three different numerical examples. They can be reproduced by
using ETCetera, with an implementation of Algorithms 2 and 3, including an interface
with Z3 to solve the nonlinear SMT problems associated with verifying a sequence 𝜎 . To
reproduce the results of this section, the following scripts within ETCetera can be used:

• examples/nahs_example1_traj.py for Fig. 5.3;
• examples/nahs_example1_traj2.py for Fig. 5.4;
• examples/nahs_example1_table.py for Table 5.1 and other data presented
in Section 5.6.1;

• examples/nahs_example2_table.py for Table 5.2;
• examples/nahs_example3.py for the SAIST bounds in Section 5.6.3 and Fig. 5.5.

5.6.1 A two-dimensional linear system
We start by considering the example from [70]: the system (2.2) with

𝑨 = [0 1−2 3] , 𝑩 = [01] , 𝑲 = [0 −5] ,
and the triggering condition of [5], |𝝃 (𝑡)− 𝝃̂ (𝑡)| > 𝑎|𝝃 (𝑡)| for some 0 < 𝑎 < 1, which can be put
in the form Eq. (2.4). Checking time was set to ℎ = 0.05, and maximum inter-sample time to𝑘 = 20. Using a Python implementation of Algorithm 2 with Z3 [64] to solve Eq. (5.2), we
attempted to compute its SAIST through a SACE simulation for 𝑎 ∈ {0.1,0.2,0.3,0.4,0.5}.
Table 5.1 presents the SAIST for each 𝑎, as well as the 𝑙 value (Def. 2.6) where it was obtained.
Only for 𝑎 = 0.1 the algorithm did not terminate before 𝑙 = 50: for this case, the actual 𝑘
of the system was 3, and all 𝑴(𝑘),𝑘 ≤ 3, have complex eigenvalues. Thus, it is possible
that it does not have periodic behaviors, similarly to the irrational rotation of Example 5.2.
Nonetheless, applying Prop. 5.3 gives an upper bound for ILA() of 1.596; hence, we know
that 1.572 ≤ ILA() ≤ 1.596, giving an uncertainty of only 0.024. For the other cases, trivial
cycles were found for 𝑎 = 0.4 (5𝜔) and 𝑎 = 0.5 (6𝜔), but it took a few iterations to break, e.g.,
the 2𝜔 loop. Interestingly, the simplest cycles for 𝑎 = 0.2 and 𝑎 = 0.3 had length, respectively,
27 and 28, showing that PETC can often lead to very complex recurring patterns (see an
example in Fig. 5.3). In addition, the case of 𝑎 = 0.4 has two verified cyclic behaviors, 5𝜔 and6𝜔 (see Fig. 5.4), while with 𝑎 = 0.5 three cycles are obtained: 6𝜔 , 7𝜔 and 8𝜔 : this confirms
that a single PETC system can exhibit multiple different periodic behaviors.

The results were generated on a MacBook Pro 2017 using a single processor. As Table
5.1 shows, even for 𝑙 = 50 the CPU time was kept under 10 minutes.

Table 5.1: SAIST values for the example of Section 5.6.1

𝑎 0.1 0.2 0.3 0.4 0.5𝑙 50* 15 26 12 10
SAIST 1.572 2.74 3.42 5 6

CPU time [s] 327 41 147 29 45
* Algorithm interrupted before finding a verified cycle.

5.6 Numerical Examples

5

67

0 50 100 150 200 250 300 350 4000
2
4
6

Normalized time

IS
T

Running average
IST

Figure 5.3: ISTs and their running average for the example of §5.6.1 with 𝑎 = 0.2 from a pseudo-randomly
generated initial state. The dashed black line represents the computed SAIST.

0 50 100 150 200 250 3000
2
4
6
8

Normalized time

IS
T

Running average
IST (5𝜔)
IST (6𝜔)

Figure 5.4: IST running averages for the example of §5.6.1 with 𝑎 = 0.4 from 20 pseudo-randomly generated initial
states, two of which with their raw ISTs depicted.The dashed black line represents the computed SAIST. In this
example, there are two different periodic patterns that the system may converge to, depending on the initial state.

5.6.2 A three-dimensional linear system
With 𝑛x = 3, the computational time involved in solving the existence problem of Eq. (5.2)
increased significantly. Therefore we applied Alg. 3 to system (2.2)–(2.4) with

𝑨 = ⎡⎢⎢⎣
0 1 00 0 11 −1 −1⎤⎥⎥⎦ , 𝑩 = ⎡⎢⎢⎣

001⎤⎥⎥⎦ , 𝑲 = [−2 −1 −1] ,
with ℎ = 0.1,𝑘 = 20 and the triggering condition |𝝃 (𝑡) − 𝝃̂ (𝑡)| > 𝑎|𝝃 (𝑡)|. This time, some
parallelization was also applied: at most 10 threads of an Intel® Xeon® W-2145 CPU were
used, solving multiple instances of Eq. (5.2) in parallel whenever possible. Table 5.2 shows
the results for multiple choices of 𝑎, where 𝑙 now is the largest length of any state in the
abstraction. The algorithm was set to a maximum depth of 200, which was only reached
for 𝑎 = 0.2. The CPU times varied dramatically, in some cases taking less than a minute,
whilst in others reaching an hour. The most interesting thing we observe is that, even
though the SAIST never decreases with 𝑎 as expected, there is not a consistent increase
on its values after 𝑎 = 0.3. This is reasonable considering the results of §5.5.4: for small

5

68 5 Computing the sampling performance of PETC

Table 5.2: SAIST values for the example of Section 5.6.2

𝑎 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9𝑙 1 18* 14 8 6 7 6 5 9
SAIST 1 1.921 3 3 3 4 4 4 9.5

CPU time [s] 2 3056 1551 95 185 236 153 40 2955

enough perturbations of the ETC system’s parameters, the same cycle may still be present
(Prop. 5.7). Interestingly, for 𝑎 = 0.9 there is a substantial jump in the SAIST value.

5.6.3 A nonlinear system
Consider now the PETC triggering rule |𝝃 (𝑡) − 𝝃̂ (𝑡)| > 𝑎|𝝃 (𝑡)| with ℎ = 0.05,𝑎 = 0.452 applied
to the following nonlinear jet engine system [29]:𝜉̇1(𝑡) = −𝜉2(𝑡) − 1.5𝜉1(𝑡)2 −0.5𝜉1(𝑡)3𝜉̇2(𝑡) = 𝜐(𝑡),𝜐(𝑡) = 𝜉1(𝑡) − 0.5(𝜉1(𝑡)2 +1)(𝑦(𝑡) + 𝜉1(𝑡)2𝑦(𝑡) + 𝜉1(𝑡)𝑦(𝑡)2),
where 𝑦(𝑡) = (𝜉1(𝑡)2 +𝜉2(𝑡))/(𝜉1(𝑡)2 +1). The origin of the closed-loop system is asymptoti-
cally stable10, therefore we can obtain its SAIST through its linearized model around the
origin, which is of the form (2.2) with

𝑨 = [0 −10 0] , 𝑩 = [01] , 𝑲 = [1 −0.5] .
We ran Alg. 2 and stopped it with 𝑙 = 100, obtaining an approximate value of ILA() = 8.882.
Using Prop. 5.3, an upper bound of 8.892was obtained, thus giving an error of 0.01. Figure 5.5
shows ISTs and their running averages for five PETC simulations starting each from a
different pseudo-randomly generated initial state, for both the nonlinear model and the
linearized model. It can be seen that the running averages in both cases converge to the
predicted SAIST value, even though the averages are significantly different in the beginning
of the simulation. The right plot shows how the difference between ISTs based on the
nonlinear model and the linear model diminish as the state norm approaches zero: in the
plotted simulation there is no error after the state norm is below 0.03 (around time instant
400).

5.6.4 Section 4.4 revisited
Before finishing the numerical examples section, it is worth revisiting the example of the
previous chapter. Recall the discussion of the introduction: the lower bound to the SAIST of
that system was 1.5, witnessed by the sequence (4,1,1,1,1,1); and while this is 50% higher
than the trivial value of 1 given by the MIST (minimum inter-sample time), it is far from
10For stability analysis of PETC of nonlinear systems, see, e.g., [47].

5.7 Conclusions

5

69

0 100 200 300 400 500 600 700 800 900 1,0006
8
10

IS
T
(ru

nn
in
g
av
er
ag
e)

Nonlinear
Linear

0 100 200 300 400 500 600 700 800 900 1,000
6
8
10
12

Normalized time

IS
T

Nonlinear
Linear

0 100 200 300 400 500 600 700 800 900 1,0000
0.2
0.4
0.6
0.8

St
at
e
no

rm

State norm

Figure 5.5: Top: running average of ISTs of five nonlinear PETC simulations and of five corresponding linear
PETC simulations, with the dashed black line representing the estimated SAIST. Bottom: ISTs for one nonlinear
PETC simulation and the corresponding ISTs predicted by the linear PETC model, with the state norm overlaid
on a secondary axis.

the value of 4 that can still stabilize the system through periodic sampling (and somehow
justifies the MPETC approach of said chapter). However, as we have seen, Prop. 4.4 can be
extremely conservative as it does not consider which behaviors are transient and which are
persistent. Using the improved version of Algorithm 2, as described in Sec. 5.6.2, we obtain
after only 20 seconds of computation the exact SAIST of 3.97, witnessed by the behavior(2,6,6,1,6,5,6,6,6,6,6,1,1,1,1,2,6,6,1)𝜔 . This is nearly the same SAIST of the best periodic
sampling that can be found for that controller satisfying Assumption 4.2, and 4x higher
than the MIST.

5.7 Conclusions
We have presented a method to compute the sampling performance of PETC, namely its
smallest average inter-sample time, by means of an abstraction called SACE simulation.
For this we rely on methods of abstracting and refining to obtain tighter simulations, and
getting their smallest-in-average cycle through Karp’s algorithm. A SACE simulation
requires that this cycle, repeated ad infinitum, is a behavior of the concrete system; for this,
we need to find an invariant of the system, which is possible for PETC of linear systems
through the inspection of linear invariants of an associated discrete-time linear system. In
the generic case — quotient sets with non-empty interior and linear invariants not touching

5

70 5 Computing the sampling performance of PETC

the boundary of the cones they belong to — a SACE simulation is proven to be robust to
small model uncertainties, which allows us to use the presented method to a large class
of nonlinear systems. Even if an exact SACE simulation is not obtained, every simulation
provides a lower bound to the SAIST, and upper bounds can also be computed from the
abstractions. Our numerical results indicate that these bounds can be very close after
sufficiently many refinements.

As with most applications of finite-state abstractions, our approach suffers from the
“curse of dimensionality”: with a three-dimensional system the computation can reach
nearly an hour to complete. In fact, it can be argued that this curse is more severe in our case
than in most control and verification applications, since we rely on strongest 𝑙-complete
abstractions, which require no spurious behavior fragments of length up to 𝑙. This may
prevent the usage of most reachability tools to this end, as over- or under-approximations
can create such spurious behaviors or remove potentially important ones. This is one of
the reasons why we have used Z3 for our implementation, as it is one of the few exact
nonlinear SAT solvers available. Nevertheless, the robustness results we have presented
indicate that exactness may not be necessary in most cases. This is a stronger reason to
use approximate nonlinear SMT solvers such as dReal [69] in order to start addressing the
issue of dimensionality, as discussed in the previous chapter.

It is interesting to observe that the problem of computing the (smallest) limit average
metric of an infinite system is highly dependent on its infinite behavior properties: systems
with aperiodic behavior can make it impossible to obtain a SACE simulation, but other
pathological behaviors can be even worse, such as the infamous (1𝑛2𝑛)𝜔 , where not even a
good approximation can be achieved. Better behavioral understanding of systems is crucial
for the further development of quantitative verification methods. This understanding is
the main subject of Chapter 6, which has implications in metric computation.

Finally, natural extensions of this line of work are extending it to systems with dis-
turbances, in particular stochastic noise, which is addressed in [31], as well as the usage
of abstractions for synthesis of sampling strategies that maximize the closed-loop SAIST,
which we discuss in Chapter 7.

5.A Proofs

5

71

5.A Proofs
5.A.1 Proof of Theorem 5.2
The proof relies on the notion of cyclic permutations. A word 𝜎 ′ is called a cyclic permu-
tation of 𝜎 B 𝑎0𝑎1...𝑎𝑛 if 𝜎 ′ = 𝑎𝑖𝑎𝑖+1...𝑎𝑛𝑎0𝑎1...𝑎𝑖−1 for some 𝑖 ≤ 𝑛. For example, the cyclic
permutations of 1234 are 1234, 2341, 3412, and 4123. Clearly, all 𝑛-long subsequences of𝜎𝜔 are precisely the cyclic permutations of 𝜎 . Now we introduce the following Lemmas:

Lemma 5.1. Let 𝜎 ∈ 𝑛 and 𝜎 ′ ∈ 𝑛 be cyclic permutations of each other. If 𝜎 = 𝛼𝑎 and𝜎 ′ = 𝛼𝑏, where 𝛼 ∈ 𝑛−1 and 𝑎,𝑏 ∈  , then 𝑎 = 𝑏 and thus 𝜎 = 𝜎 ′.
Proof. Let 𝜎 = 𝑎0𝑎1...𝑎𝑛−1. Then 𝜎 ′ = 𝑎𝑖𝑎𝑖+1...𝑎𝑛−1𝑎0...𝑎𝑖−1 for some 𝑖 > 0 (if 𝑖 = 0 the result
is trivial). If their (𝑛 − 1)-long prefixes are equal, then 𝑎𝑗 = 𝑎𝑗+𝑖 mod 𝑛 for all 𝑗 < 𝑛 − 1. In
particular, take 𝑗 = 𝑖 − 1; then 𝑎𝑖−1 = 𝑎2𝑖−1 mod 𝑛 = 𝑎3𝑖−1 mod 𝑛 = ... = 𝑎𝑘𝑖−1 mod 𝑛 , where 𝑘 is
the smallest number such that 𝑘𝑖 − 1 mod 𝑛 = 𝑛 − 1 (in the worst case, 𝑘 = 𝑛, for 𝑖 and 𝑛
coprime). Thus, 𝑎𝑖−1 = 𝑎𝑘𝑖−1 mod 𝑛 = 𝑎𝑛−1, concluding the proof. □

Lemma 5.2. Let 𝜎 ∈ 𝑛 and 𝜎 ′ ∈ 𝑛 be cyclic permutations of each other. If 𝜎 ≠ 𝜎 ′, then
there is a subsequence 𝛼 of length 𝑛 of 𝜎𝜎 ′ that is not a cyclic permutation of 𝜎 .
Proof. Let 𝜎 = 𝑎0𝑎1...𝑎𝑛−1. Then 𝜎 ′ = 𝑎𝑖𝑎𝑖+1...𝑎𝑛−1𝑎0...𝑎𝑖−1 for some 𝑖 > 0. We have 𝜎𝜎 ′ =𝑎0𝑎1...𝑎𝑛−1𝑎𝑖𝑎𝑖+1...𝑎𝑛−1𝑎0...𝑎𝑖−1.

Suppose, for contradiction, that every 𝑛-long subsequence of 𝜎𝜎 ′ is a cyclic permutation
of 𝜎 . Let us look at the first nontrivial subsequence, 𝜎1 B 𝑎1...𝑎𝑛−1𝑎𝑖 . Because 𝑎1...𝑎𝑛−1𝑎0 is
a cyclic permutation of 𝜎 , from Lemma 5.1 we get that 𝑎0 = 𝑎𝑖 . Now let us apply induction:
suppose that for some 𝐽 < 𝑛, 𝑎𝑗 = 𝑎𝑖+𝑗 mod 𝑛 for all 𝑗 < 𝐽 ; we are going to show that this also
holds for 𝑗 = 𝐽 . First, suppose that 𝐽 < 𝑛 − 𝑖; then 𝜎𝐽 = 𝑎𝐽 𝑎𝐽+1...𝑎𝑛−1𝑎𝑖𝑎𝑖+1...𝑎𝑖+𝐽−2𝑎𝑖+𝐽−1 =𝑎𝐽 𝑎𝐽+1...𝑎𝑛−1𝑎0𝑎1...𝑎𝐽−2𝑎𝑖+𝐽−1. Again, because 𝑎𝐽 𝑎𝐽+1...𝑎𝑛−1𝑎0𝑎1...𝑎𝐽−1 is a cyclic permu-
tation of 𝜎 , apply Lemma 5.1 to obtain 𝑎𝑖+𝐽−1 = 𝑎𝐽−1. Second, suppose that 𝐽 ≥ 𝑛 − 𝑖.
Then, 𝜎𝐽 = 𝑎𝐽 ...𝑎𝑛−1𝑎𝑖 ..𝑎𝑛−1𝑎0𝑎1...𝑎𝑖+𝐽−𝑛−1 = 𝑎𝐽 ...𝑎𝑛−1𝑎0..𝑎𝑛−𝑖−1𝑎0𝑎1...𝑎𝑖+𝐽−𝑛−1.Note that 𝑎𝑘 =𝑎𝑘+𝑛 mod 𝑛 = 𝑎𝑘+𝑛−𝑖 as long as 𝑘 + 𝑛 − 𝑖 < 𝐽 , i.e., 𝑘 < 𝑖 + 𝐽 − 𝑛. Thus, we arrive at 𝜎𝐽 =𝑎𝐽 ...𝑎𝑛−1𝑎0..𝑎𝑛−𝑖−1𝑎𝑛−𝑖 ...𝑎𝐽−2𝑎𝑖+𝐽−𝑛−1. Again, apply Lemma 5.1 to get that 𝑎𝑖+𝐽−𝑛−1 = 𝑎𝐽−1.
We have that 𝐽 − 1+ 𝑖 mod 𝑛 = 𝑖 + 𝐽 − 𝑛 − 1, since 𝑛 > 𝐽 ≥ 𝑛 − 𝑖; our hypothesis is thus con-
firmed. The fact that 𝑎𝑗 = 𝑎𝑖+𝑗 mod 𝑛 for all 𝑗 < 𝑛 implies that 𝜎 ′ = 𝑎𝑖𝑎𝑖+1...𝑎𝑛−1𝑎0...𝑎𝑖−1 =𝑎0𝑎1...𝑎𝑛−1−𝑖𝑎𝑛−𝑖 ...𝑎𝑛−1 = 𝜎 , which contradicts the fact that 𝜎 ≠ 𝜎 ′. □

Proof of Theorem 5.2. From Theorem 5.1, there is an 𝑙 large enough such that ILA(𝑙) =ILA(). It is easy to see that taking 𝑙 ≥ 𝑚 ensures that 𝜎 is a cycle of the graph associated
to 𝑙 .

We prove that, because now LimAvg(𝛽𝜔) > ILA() for every 𝛽 that is not a subsequence
of 𝜎𝜔 (thus not a cyclic permutation of 𝜎), the SAC of 𝑙 is unique up to cyclic permutations.
Suppose, for contradiction, that another cycle 𝜎 ′ is a SAC of 𝑙 , with |𝜎 ′| = 𝑝. As in the
proof of Theorem 5.1, we divide (𝜎 ′)𝑚 into 𝑝 subsequences of length 𝑚, obtaining

ILA(𝑙) = LimAvg((𝜎 ′)𝜔) = LimAvg(((𝜎 ′)𝑚)𝜔)) = Avg((𝜎 ′)𝑚) = 1𝑝 𝑝∑𝑖=1Avg(𝛽𝑖).

5

72 5 Computing the sampling performance of PETC

If (i) some 𝛽𝑖 is not a cyclic permutation of 𝜎 , 1𝑝 ∑𝑝𝑖=1Avg(𝛽𝑖) > ILA(𝑙), which yields the
contradiction. Now, suppose (ii) that every 𝛽𝑖 is a cyclic permutation of 𝜎 ; since 𝜎 ′ is not
the same cycle as 𝜎 , it cannot be that 𝛽𝑖 = 𝛽𝑗 for all 𝑖, 𝑗 ≤ 𝑝. If 𝛽𝑖 ≠ 𝛽𝑗 for some 𝑖, 𝑗, suppose
without loss of generality that they are adjacent in (𝜎 ′)𝜔 , i.e., either 𝑗 = 𝑖 + 1 or 𝑖 = 𝑝 and𝑗 = 1. Then we have from Lemma 5.2 that there exists an 𝑚-long subsequence of 𝛽𝑖𝛽𝑗 that
is not a cyclic permutation of 𝜎 . Thus, 𝜎 ′ has at least one subsequence 𝛽′ with average
larger than ILA(), which brings us back to case (i). The contradiction is thus achieved in
all cases.

Concluding, 𝑙 has only one cycle 𝜎 (modulo cyclic permutations) that attains its
minimum value. Hence, running Karp’s algorithm (Theorem 2.2) retrieves it; by assumption,𝜎𝜔 ∈ 𝜔(), thus the algorithm terminates at line 6. □

5.A.2 Proof of Theorem 5.3
Before the main proof, we need some definitions. Given a map 𝑓 ∶ 𝑋 →𝑋 and the discrete-
time autonomous system defined by 𝑥𝑖+1 = 𝑓 (𝑥𝑖), we call the forward orbit of 𝑥 the set(𝑥)B {𝑓 𝑛(𝑥) ∣ 𝑛 ∈ ℕ}. The 𝜔-limit set of 𝑥 , denoted by 𝜔(𝑥) is the set of cluster points of(𝑥), or alternatively, 𝜔(𝑥) = ⋂𝑛∈ℕcl({𝑓 𝑘 (𝑥) ∣ 𝑘 > 𝑛}).
By definition of closure, if (𝑥) ⊂ ⊂ 𝑋 , then 𝜔(𝑥) ⊂ cl().

We introduce the following Lemma.

Lemma 5.3. Let 𝑴 ∈ ℝ𝑛×𝑛 be a nonsingular mixed matrix and  ⊆ ℝ𝑛 be a homogeneous
set, i.e., it satisfies 𝒙 ∈ ⟹ 𝜆𝒙 ∈, ∀𝜆 ∈ ℝ ⧵ {0}. If there exists a trajectory 𝝃 ∶ ℕ→ℝ𝑛x
satisfying 𝝃 (𝑘 +1) = 𝑴𝝃(𝑘) and 𝝃 (𝑘) ∈ ∀𝑘 ∈ ℕ, then there exists a linear subspace  that
is an invariant of 𝑴𝑞 and satisfies  ⊆ cl(), where 𝑞 ∈ ℕ. Furthermore, 𝑞 = 1 if 𝑴 is of
irrational rotations.

Proof. Because  is homogeneous, 𝝃 (𝑘) ∈ for all 𝑘 implies that the normalized trajectory𝝃 (𝑘)/|𝝃 (𝑘)| ∈  for all 𝑘; likewise, for any constant 𝑐 ≠ 0, we have that 𝑐𝝃 (𝑘)/|𝝃 (𝑘)| ∈ .
Therefore, let us investigate the “normalized” version of the iteration 𝒙 𝑖+1 = 𝑴𝒙 𝑖 : this is
defined by the map 𝑓 ∶ 𝐵𝑛 →𝐵𝑛 , where 𝐵𝑛 is the unit ball in ℝ𝑛 and 𝑓 (𝒙) = 𝑴𝒙/|𝑴𝒙|. Our
strategy is to first determine what is 𝜔(𝒙); then, we will prove that the set {𝑐𝜔(𝒙) ∣ 𝑐 ∈ℝ ⧵ {0}}, a radial expansion of 𝜔(𝒙), is a linear subspace of 𝑴. Because 𝜔(𝒙) ⊆ cl() and𝒙 ∈ ⟹ 𝑐𝒙 ∈, we conclude that {𝑐𝜔(𝒙) ∣ 𝑐 ∈ ℝ ⧵ {0}} ⊆ cl().

Now we investigate case by case depending on the eigenvalues 𝜆𝑖 of 𝑴. Since 𝑴 is
mixed, it is diagonalizable, and hence the trajectory 𝝃 (𝑘) can be decomposed as∑𝑛𝑖=1 𝑎𝑖𝒗𝑖𝜆𝑘𝑖 ,
where 𝒗𝑖 are the eigenvectors of𝑴 satisfying |𝒗𝑖 | = 1, and the coefficients 𝑎𝑖 are chosen
such that 𝝃 (0) = ∑𝑛𝑖=1 𝑎𝑖𝒗𝑖 . Let 𝑚 ≤ 𝑛 such that 𝑎𝑖 = 0 for 𝑖 < 𝑚, hence 𝜆𝑚 is the dominant
eigenvalue for this initial condition. Throughout, let 𝒙 B 𝝃 (0)/ |𝝃 (0)|.

5.A Proofs

5

73

Case 1: 𝜆𝑚 is real. Then

lim𝑘→∞ 𝝃 (𝑘)|𝝃 (𝑘)| = lim𝑘→∞ 𝑎𝑚𝒗𝑚𝜆𝑘𝑚 + ... + 𝑎𝑛𝒗𝑛𝜆𝑘𝑛|𝑎𝑚𝒗𝑚𝜆𝑘𝑚 + ... + 𝑎𝑛𝒗𝑛𝜆𝑘𝑛 |
= lim𝑘→∞ 𝑎𝑚𝒗𝑚 + ... + 𝑎𝑛𝒗𝑛(𝜆𝑛𝜆𝑚)𝑘||||𝑎𝑚𝒗𝑚 + ... + 𝑎𝑛𝒗𝑛(𝜆𝑛𝜆𝑚)𝑘 |||| = lim𝑘→∞ 𝑎𝑚𝒗𝑚|𝑎𝑚𝒗𝑚 | = ±𝑎𝑚𝒗𝑚 .

Hence, the set {𝑐𝜔(𝒙) ∣ 𝑐 ∈ ℝ ⧵ {0}} is the line {±𝑐𝒗𝑚 ∣ 𝑐 ∈ ℝ ⧵ {0}} = {𝑐𝒗𝑚 ∣ 𝑐 ∈ ℝ ⧵ {0}},
which is an invariant of𝑴 .

For the next cases, 𝜆𝑚 and 𝜆𝑚+1 form a complex conjugate pair, thus 𝒗𝑖+1 = 𝒗∗𝑖 . Denote
by 𝜃 B arg𝜆𝑚 .

Case 2: 𝜃/𝜋 ∉ ℚ. Using a similar approach as Case 1, we get lim𝑘→∞ 𝝃 (𝑘)/|𝝃 (𝑘)| =±(𝒗𝑚ei𝜃𝑘 +𝒗𝑚+1e−i𝜃𝑘). Because 𝜃 is not a rational multiple of 𝜋 , {𝑘𝜃 ∣ 𝑘 ∈ ℕ} is a dense
subset of [0,2π] and, therefore, 𝜔(𝒙) = cl({±(𝒗𝑚ei𝜃𝑘 +𝒗𝑚+1e−i𝜃𝑘 ∣ 𝜃 ∈ 𝑘 ∈ℕ}which is equal
to the ellipse B {𝒗𝑚ei𝛼 +𝒗𝑚+1e−i𝛼 ∣ 𝛼 ∈ [0,2𝜋)}. The set {𝑐𝒙 ∣ 𝒙 ∈ , 𝑐 ∈ ℝ ⧵ {0}} is the
unique plane supported by 𝒗𝑚 and 𝒗𝑚+1, and as such is an invariant of𝑴 .

Case 3: 𝜃/𝜋 = 𝑝/𝑞, where 𝑝,𝑞 ∈ ℕ are co-prime. The𝑚-th and (𝑚+1)-th eigenvalues of𝑴 have the form 𝑟e±i𝑝𝜋/𝑞 , and as a consequence the corresponding eigenvalues of𝑴𝑞 are𝜆𝑞𝑚 = 𝜆𝑞𝑚+1 = 𝑟𝑞 ∈ ℝ. The geometric multiplicity of 𝜆𝑞𝑚 is 2, since𝑴𝑞 is also diagonalizable.
Thus, we have that lim𝑘→∞ 𝝃 (𝑞𝑘)/|𝝃 (𝑞𝑘)| = 𝑎𝑚𝒗𝑖 +𝑎𝑚+1𝒗𝑖+1 C 𝒛. Hence, we have 𝜔(𝒙) ⊇{𝑐𝒛 ∣ 𝑐 ∈ ℝ ⧵ {0}}, a line that is an invariant of 𝑴𝑞 . Finally, this line is a subset of cl(),
since {𝑐𝒛 ∣ 𝑐 ∈ ℝ ⧵ {0}} ⊆ 𝜔(𝒙) ⊆ cl(). □

Proof of Theorem 5.3. Statement (i),  ⧵ {0} ⊆ 𝜎 implies 𝜎𝜔 ∈ (), is straightforward.
Take any point 𝒙 ∈ ⊆ 𝜎 . By definition of 𝜎 , we have that 𝒙 ∈ 𝑘1 ,𝑴(𝑘1)𝒙 ∈ 𝑘2 , ...,
and𝑴(𝑘𝑚−1)⋯𝑴(𝑘1)𝒙 ∈𝑘𝑚 . The (𝑚+1)-th element of the run starting from initial state𝒙 is 𝒙′ = 𝑴(𝑘𝑚)𝑴(𝑘𝑚−1)⋯𝑴(𝑘1)𝒙 = 𝑴𝜎𝒙. Since is an invariant of𝑴𝜎 and this matrix
is nonsingular, 𝒙′ ∈  ⧵ {0}. Thus, the behavior from 𝒙 is 𝜎𝒙′ (). Applying the same
reasoning recursively with 𝒙′ in the place of 𝒙 , we conclude that 𝒙 () = 𝜎𝜔 .

Statement (ii) follows from Lemma 5.3, by applying it with  =𝜎 and𝑴 =𝑴𝜎 , and
using the fact that 𝜎 is an homogeneous set.

□

6

75

6
Chaos and Order in

Event-Triggered Control

This chapter addresses robustness of the ETC traffic patterns that attain minimal average IST,
and how this depends on the qualitative properties of the traffic. First, we notice that often these
minimizing traffic patterns are fragile in the sense that they only occur for a measure-zero set
of initial conditions, and small perturbations lead to completely different traffic patterns. Thus,
we define and address the problem of computing robust traffic metrics of PETC. To compute
such robust limit metrics, we characterize limit traffic patterns by observing invariant lines
and planes through the origin, as well as their attractivity. We show that ETC can exhibit
very complex, even chaotic traffic, especially when the triggering condition is aggressive in
reducing communications. Then, we present abstraction-based methods to compute robust
limit metrics such as limit average and limit inferior IST of PETC, as well as measuring the
emergence of chaos. The proposed methodology and tools allow us to find ETC examples that
provably outperform periodic sampling in terms of average IST. In particular for PETC, we
prove that this requires aperiodic or chaotic traffic.

This chapter is based on � G. de A. Gleizer and M. Mazo Jr, “Chaos and order in event-triggered control,” arXiv
preprint arXiv:2201.04462 [75].

6

76 6 Chaos and Order in Event-Triggered Control

6.1 Introduction

While executing the algorithms of the previous chapter on a number of PETC sys-
tems and simulating them, we occasionally noticed that it was difficult to obtain,

by randomly choosing the system’s initial state, the metric that we had computed. Inter-
estingly, in several cases the minimizing periodic patterns would only happen for very
specific initial states; any small perturbation on those would eventually lead to a totally
different traffic pattern. This could be seen a strength of our algorithm: it can find patterns
that are difficult to find through mere simulation. But how useful in practice is a metric
that only occurs from a measure-zero set of initial conditions?

The observation of these fleeting behaviors had already been made in [25, 26] for
2-dimensional linear systems. In fact, in most cases we would observe something similar to
what was reported therein: a system has two limit fixed IST patterns, one “stable” and one
“unstable”, or it converges to quasi-periodic behaviors. However, as we tune the triggering
parameters to make it trigger less frequently, different things start occurring. For example,
as seen in Sec. 5.6.1, with 𝑎 = 0.2,0.3, we obtained periodic patterns that, by inspection, are
“stable”. This phenomenon was not observed in [25, 26], and it could perhaps be specific
to PETC. But it could also be that more complex traffic patterns are only seen when the
triggering condition is tuned to generate sufficiently sparse inter-sample times. We confirm
this in the present chapter; in fact, ETC systems can even exhibit chaotic traffic.

The present chapter makes an attempt to expand the qualitative understanding of
ETC’s asymptotic traffic patterns and bridge it to the quantitative approach of Chapter
5. For that, we first characterize limit metrics of interest, such as limit inferior and limit
average, and observe that they are related to the asymptotic properties of the traffic. This
is the starting point for our main contributions: (i) presenting limit behaviors of LTI ETC
systems and methods to compute them, not limited to ℝ2; (ii) classifying limit behaviors
in terms of stable vs. unstable, periodic vs. aperiodic, orderly vs. chaotic; and (iii) based
on this classification, expanding the results from Chapter 5 for PETC to compute robust
metrics. We propose auxiliary concepts and obtain results that may be useful on their own
right: (i) we show that the law of evolution of state samples can be regarded as a map of
the projective space to itself, which allows us to conclude that stationary traffic patterns
are always exhibited in CETC for odd-dimensional systems (Theorem 6.2); (ii) we show
that if a PETC that renders the origin globally asymptotically stable (GES) converges to
a periodic traffic pattern, then this traffic pattern can be used as a (multi-rate) periodic
sampling schedule (Prop. 6.8) — this does not necessarily happen to CETC; (iii) we provide
a stability characterization for outputs of a system, when these outputs come from a finite
set; and (iv) we present the notion of behavioral entropy (Def. 6.10) as a measure of chaos
of a system’s set of output trajectories, how to compute this quantity in an abstraction
(Theorem 6.5), and show that this quantity is an upper bound of the concrete system’s
(Prop. 6.10).

This chapter is organized as follows: Section 6.2 is dedicated to some basic preliminaries
on chaos in dynamical systems. Section 6.3 presents how ISTs can be computed, and the
main problem statement. The qualitative side of the work, presenting limiting behaviors and
their general properties, is given in Section 6.4, where we are able to establish conditions for
which periodic patterns occur and the associated states that generate them. In doing that,
we explore their local attractivity and the emergence of chaotic invariant sets. This paves

6.2 Mathematical Preliminaries on Chaos

6

77

the way for the quantitative side of this work in Section 6.5 using symbolic abstractions,
where we properly define robust limit metrics for PETC taking chaos into consideration,
provide methods to estimate PETC’s behavioral entropy, establish when traffic patterns
are not involved in chaos, and describe how to estimate the desired robust limit metrics.
Numerical examples are given in Section 6.6, and conclusions in Section 6.7.

6.2 Mathematical Preliminaries on Chaos
Consider the map 𝑓 ∶ → and the discrete-time system (or recursion) 𝒙(𝑘 +1) = 𝑓 (𝒙(𝑘)).
A set  ⊂  is said to fixed or invariant if 𝑓 () =  , forward invariant if 𝑓 () ⊆  , and
periodic if there is some 𝑚 ∈ ℕ such that 𝑓𝑚() =  . The forward orbit of a point 𝒙 is(𝒙)B {𝑓 𝑘 (𝒙) ∣ 𝑘 ∈ ℕ0}. Obviously, every forward orbit is forward invariant. Whilst there
are multiple slightly different definitions of chaos, we use the concept of [76], which relies
on the notions of transitivity and sensitivity to initial conditions.

Definition 6.1 (Transitivity [76, Sec. 2.5]). A map 𝑓 ∶  →  is said to be (topologically)
transitive on an invariant set  if the forward orbit of some point 𝑝 ∈  is dense in  . From
the Birkhoff Transitivity Theorem, this is equivalent to the following property: for every two
open subsets  and  of  , there is a positive integer 𝑛 such that 𝑓 𝑛() ∩ ≠ ∅.

If 𝑓 is transitive, points starting arbitrarily close to each other can drift away but will
come arbitrarily close back to each other after enough iterations.

Definition 6.2 (Sensitivity to initial conditions[76, Sec. 3.5]). A map 𝑓 ∶  →  ,  being
a metric space, is said to be sensitive to initial conditions on an invariant set  ⊆  if there is
an 𝑟 > 0 such that, for each point 𝒙 ∈ and for each 𝜖 > 0, there exists a point 𝒚 ∈ satisfying𝑑(𝒙,𝒚) < 𝜖 and a 𝑘 ∈ ℕ with 𝑑(𝑓 𝑘 (𝒙), 𝑓 𝑘 (𝒚)) ≥ 𝑟 .
Definition 6.3 (Chaos[76, Sec. 3.5]). A map 𝑓 ∶  →  ,  being a metric space, is said to
be chaotic on an invariant set  provided (i) 𝑓 is transitive on  , and (ii) 𝑓 is sensitive to
initial conditions on  .

In case a chaotic system is additionally ergodic1 the celebrated Birkhoff Ergodic Theorem
is particularly useful when one is interested in limit average metrics:

Theorem 6.1 (Birkhoff Ergodic Theorem [76]). Assume 𝑓 ∶  →  is an ergodic function
with ergodic measure 𝜇, and let 𝑔 ∶  →ℝ be a 𝜇-integrable function. Then,

lim𝑛→∞ 1𝑛 +1 𝑛∑𝑖=1 𝑔 ◦ 𝑓 𝑖(𝑥) = ∫ 𝑔(𝑥)d𝜇(𝑥)
for 𝜇-almost every 𝑥 .

As a consequence, if 𝑓 is ergodic and 𝜇 is well-behaved2, the time-average (left-hand side
of the expression above) converges to the same value from almost every initial condition.
1See [76] for a rigorous definition of ergodicity. We skip the definition and present a simplified version of the
Birkhoff Ergodic Theorem due to readability considerations.

2That is, 0 < 𝜇(𝑥) < ∞ for all 𝑥 in the invariant set of interest; this prevents considering Dirac deltas or points out
of the ergodic invariant set; as a consequence 𝜇-almost all is the same as almost all.

6

78 6 Chaos and Order in Event-Triggered Control

6.3 Event-triggered control and its traffic
Consider the traffic model of an ETC system (2.2)–(2.4) through its sample map𝒙 𝑖+1 = 𝑓 (𝒙 𝑖),𝑦𝑖 = 𝜏(𝒙 𝑖). (2.8 revisited)

As in the previous chapter, we shall denote the sequence of outputs from Eq. (2.8) for a
given initial state 𝒙0 by {𝑦𝑖(𝒙0)}. Let us investigate the possible inter-sample behaviors of
an ETC system.

6.3.1 Isochronous subsets in ETC
We start our analysis of inter-sample behaviors of ETC by studying the subsets of ℝ𝑛x
that generate the same inter-sample time. The first characteristic to be highlighted is that
inter-sample times are insensitive to magnitude.

Proposition 6.1 (Adapted from [14]). The sample system (2.8) is homogeneous; more
specifically, for all 𝜆 ∈ ℝ ⧵ {0},𝜏 (𝜆𝒙) = 𝜏(𝒙) and 𝑓 (𝜆𝒙) = 𝜆𝑓 (𝒙).
Proof. With respect to Eq. (2.6), sign((𝜆𝒙)T𝑸(𝑠)(𝜆𝒙)) = sign(𝜆2𝒙T𝑸(𝑠)𝒙) = sign(𝒙T𝑸(𝑠)𝒙),
hence 𝜏 (𝜆𝒙) = 𝜏(𝒙).With this, 𝑓 (𝜆𝒙) = 𝑴(𝜏(𝜆𝒙))𝜆𝒙 = 𝜆𝑴(𝜏(𝒙))𝒙 = 𝜆𝑓 (𝒙). □

This fact implies that the sequence {𝑦𝑖(𝒙)} is equal to {𝑦𝑖(𝜆𝒙)}, for any 𝜆 ≠ 0. Hence,
to determine whether ETC exhibits fixed (periodic) behavior, we need to verify which lines
passing thorough the origin, or collections of lines, are invariant under 𝑓 or under a finite
iterate of 𝑓 . Hereafter we shall refer to lines that pass through the origin as o-lines.

Let us first look in detail what are the subsets of ℝ𝑛x which share the same inter-event
time:

Definition 6.4. Consider system (2.8). We denote by 𝑠 ⊂ ℝ𝑛x , the set of all states which
trigger after 𝑠 time units, i.e.,

𝑠 B {𝒙 ∈ ℝ𝑛x ∣ 𝜏 (𝒙) = 𝑠}.
We call 𝑠 an isochronous subset.3

Proposition 6.2. Consider system (2.2)–(2.4). An isochronous subset𝑠 can be characterized
as
i) If  = ℝ+ (CETC) and 𝑠 < 𝜏 , 𝑠 = {𝒙 ∈ ℝ𝑛 ∣ 𝒙T𝑵(𝑠)𝒙 = 0 and 𝒙T𝑵(𝑠′)𝒙 ≤ 0,∀𝑠′ < 𝑠 and𝒙T𝑵̇ (𝑠)𝒙 > 0}.
ii) If  = ℎℕ (PETC) and 𝑠 < 𝜏 , 𝑠 = {𝒙 ∈ ℝ𝑛 ∣ 𝒙T𝑵(𝑠)𝒙 > 0 and 𝒙T𝑵(𝑠′)𝒙 ≤ 0,∀𝑠′ < 𝑠, 𝑠′ ∈ℎℕ}.
iii) 𝜏 = {𝒙 ∈ ℝ𝑛 ∣ 𝒙T𝑵(𝑠′)𝒙 ≤ 0,∀𝑠′ < 𝜏 , 𝑠′ ∈  }.
Proof. This is a trivial manipulation of Eq. (2.6), where in (i) we use the fact that 𝑵(𝑠) is
differentiable over [0, 𝜏). □

3The concept of isochronous manifolds was introduced in ETC for nonlinear homogeneous systems in [77]. In our
case, the isochronous subsets of CETC are (in general) (𝑛x −1)-dimensional subsets, but may not be manifolds.
Whether they are manifolds or not is not relevant to our results.

6.3 Event-triggered control and its traffic

6

79

The isochronous subset 𝜏 is the intersection of an algebraic set with infinitely many
semialgebraic sets for CETC; for PETC, it is the intersection of finitely many semialgebraic
sets. We can extend the definition of isochronous subset to a sequence of inter-sample
times:

Definition 6.5 (Isosequential subset). Consider the system (2.8). The set 𝑦𝜎 , 𝑦 ∈  ,𝜎 ∈ 𝑚−1 for some 𝑚 ∈ ℕ, is defined recursively as the set of states 𝒙 ∈ ℝ𝑛x such that 𝒙 ∈ 𝑦1 ,
and𝑴(𝑦1)𝒙 ∈𝜎 . By convention, 𝜖 = ℝ𝑛x , where 𝜖 denotes the empty sequence.

As we can see, the set 𝜎 is also the intersection of (semi)algebraic sets as in the
singleton case. We end this section with a result that simplifies the analysis for CETC
under some special conditions.

Proposition 6.3. Consider system (2.8) and  = ℝ+ (CETC). If 𝜏 = inf{𝑠 > 0 ∣ 𝑵 (𝑠) ≻ 0} < ∞
and ∀𝒙 ∈ ℝ𝑛x ⧵ {0}, 𝑠 ∈ (0, 𝜏],𝒙T𝑵(𝑠)𝒙 = 0 ⟹ 𝒙T𝑵̇ (𝑠)𝒙 > 0
then
i) 𝑓 and 𝜏 are differentiable;
ii) 𝑠 = {𝒙 ∈ ℝ𝑛x ∣ 𝒙T𝑵(𝑠)𝒙 = 0},∀𝑠 ∈ (0, 𝜏).
Proof. We first prove (ii), which is a lemma to (i).

ii) Consider the function 𝜙𝒙 (𝑠) = 𝒙T𝑵(𝑠)𝒙 , which is differentiable. We want to prove that,
if for some 𝑠, 𝜙𝒙 (𝑠) = 0, then all conditions from Prop. 6.2 (i) are satisfied; since 𝜙̇𝒙 (𝑠) > 0 by
assumption, we need to prove that 𝜙𝒙 (𝑠′) ≤ 0,∀𝑠′ < 𝑠. Now, since 𝜙𝒙 (𝑠) = 0 ⟹ 𝜙̇𝒙 (𝑠) > 0,
from continuity, it holds that 𝜙𝒙 (𝑠−) < 0 for some 𝑠− < 𝑠. For contradiction, assume 𝜙𝒙 (𝑠′) > 0
for some 𝑠′ < 𝑠−. Then, from Bolzano’s theorem there is some point 𝑠′′ ∈ (𝑠′, 𝑠−) such that
that 𝜙𝒙 (𝑠′′) = 0. One such 𝑠′′ must have 𝜙𝒙 (𝑠′′) cross zero from positive to negative, which
implies 𝜙̇𝒙 (𝑠′′) ≤ 0, leading to a contradiction.

i) Now 𝜏 (𝒙) is characterized by the implicit equation 𝒙T𝑵(𝜏)𝒙 = 0. Therefore we can
simply apply the implicit function theorem, whose condition (𝜙𝒙 (𝑠) = 0 ⇒ 𝜙̇𝒙 (𝑠) ≠ 0) is
satisfied by ours. □

Remark 6.1. The condition in Proposition 6.3 is equivalent, by the s-procedure, to the linear
matrix inequality ∃𝜆 ∈ ℝ ∶ 𝜆𝑵(𝑠) + 𝑵̇ (𝑠) ≻ 0. Note that it is trivially satisfied if 𝑵̇ (𝑠) ≻ 0 for
all 𝑠 ∈ [0, 𝜏], which holds when the triggering function 𝜙𝒙 is monotonically increasing for all𝒙 .

The condition in Proposition 6.3 ensures that the triggering function crosses zero only
once for each initial condition 𝒙 , which in turn simplifies the isochronous subset description
to a simple quadratic form and renders 𝑓 and 𝜏 continuous. As we will see, even when this
continuity is observed, the behaviors generated by ETC can be extremely rich.

6.3.2 Problem statement
Expanding on Chapter 5, we are interested in quantifying the traffic usage of system
(2.2)–(2.4), which involves studying the sample system (2.8). Some candidate metrics are
the following:

• InfB inf𝒙∈ℝ𝑛x 𝜏(𝒙);

6

80 6 Chaos and Order in Event-Triggered Control

• SupB sup𝒙∈ℝ𝑛x 𝜏(𝒙);
• InfLimInfB inf𝒙∈ℝ𝑛x liminf𝑖→∞ 𝑦𝑖(𝒙);
• SupLimSupB sup𝒙∈ℝ𝑛x limsup𝑖→∞ 𝑦𝑖(𝒙);
• InfLimAvgB inf𝒙∈ℝ𝑛x liminf𝑛→∞ 1𝑛+1 ∑𝑛𝑖=0 𝑦𝑖(𝒙).
• SupLimAvgB sup𝒙∈ℝ𝑛x limsup𝑛→∞ 1𝑛+1 ∑𝑛𝑖=0 𝑦𝑖(𝒙).
The first twometrics are simply theminimal andmaximal inter-sample times that can be

exhibited. The minimal is the one that has received most attention in the literature, mainly
to prove absence of Zeno behavior for different triggering conditions. These metrics serve
as worst- and best-case inter-event times and provide a basic information about how sample-
efficient one given ETC system is. Inf is trivially calculated as Inf = inf{𝑠 ∈  ∣ 𝑵 (𝑠) ⊀ 0},
while Sup is a bit more complicated: Sup =min(𝜏 , inf{𝑠 ∈  ∣ ∀𝒙 ∈ ℝ𝑛x∃𝑠′ < 𝑠 𝒙T𝑵(𝑠′)𝒙 > 0}).
The last four metrics concern limit behaviors of the system. InfLimInf gives what is the
minimal inter-sample time the system can exhibit as the number of samples goes to infinity:
in other words, after transients on the sequence 𝑦𝑖 vanish. The symmetric case value is
given by SupLimSup. Finally, InfLimAvg (SupLimAvg) gives the minimum (maximum)
among initial states of average inter-sample time. Here, liminf (limsup) is used to ensure
that the value exists even if the sequence of averages does not converge.

We argue that the limit metrics are more informative to determine the performance of
a sampling mechanism than the simpler Inf and Sup metrics. For instance, if the states 𝒙
associated to Inf are transient, in the sense that from almost all other initial states they
are never visited, the Inf metric turns out to be very conservative; after a few samples, the
typical inter-sample time of the system will be higher. InfLimInf gives the complementary
information of what minimal inter-sample time can appear infinitely often. InfLimAvg
informs about the average utilization rate. A disadvantage of these two metrics is that
they can still capture exceptional behavior: suppose, for example, that a measure-zero set ⊂ ℝ𝑛x is invariant under (2.8) and it is associated to the InfLimInf or InfLimAvg of the
system; moreover, suppose for every state 𝒙 ∉  , the trajectories 𝝃𝒙 (𝑡𝑖), 𝑖 ∈ ℕ, never enter , but instead converge to some other subset with higher values of InfLimInf or InfLimAvg.
Then, the metric will not reflect the dominant performance of the system. This information
might still be useful, but a more robust version of these metrics is of interest. In any case,
robust or not, we need a hint of how one could compute these metrics. This will allow us
to properly define what robust should be in this context.

Problem Statement. Given an ETC system, (i) identify its limit traffic patterns, (ii)
characterize their robustness w.r.t. small perturbations in the initial state, and (iii) compute
the system’s robust limit metrics.

6.4Qualitative analysis: limit behaviors in ETC
In this section we investigate the limit behaviors of the traffic generated by ETC. We first
see that limit metrics are insensitive to transient behavior; then we look at some examples
to classify the different limit behaviors that can be exhibited. In several cases, ETC traffic
converges to a periodic sampling pattern, which is shown to be characterized by linear
invariants. This characterization allows us to show that, if PETC stabilizes a periodic traffic
pattern, then this traffic pattern can be used as a sampling schedule that guarantees GES
of the system.

6.4Qualitative analysis: limit behaviors in ETC

6

81

6.4.1 Properties of limit metrics
The following trivial result shows that limit metrics are insensitive to transient behavior.
We focus on inferior metrics, as the superior counterparts follow similar reasoning.

Proposition 6.4. Let {𝑘𝑖} be a sequence of real numbers and decompose it as 𝑘𝑖 = 𝑎𝑖 +𝑏𝑖 ,
where 𝑏𝑖 is the transient component, i.e., it satisfies lim𝑖→∞ 𝑏𝑖 = 0. Then,
(i) liminf𝑖→∞ 𝑘𝑖 = liminf𝑖→∞ 𝑎𝑖 ,
(ii) liminf𝑛→∞ 1𝑛+1 ∑𝑛𝑖=0 𝑘𝑖 = liminf𝑛→∞ 1𝑛+1 ∑𝑛𝑖=0 𝑎𝑖 .
Proof. It is a property of liminf that liminf𝑖→∞(𝑎𝑖 + 𝑏𝑖) = liminf𝑖→∞ 𝑎𝑖 + liminf𝑖→∞ 𝑏𝑖 if
either {𝑎𝑖} or {𝑏𝑖} converge. Thus, result (i) trivially holds. For item (ii), we only need to
prove that the sequence { 1𝑛+1 ∑𝑛𝑖=0 𝑏𝑖} converges and is equal to zero. For this, we apply
the Stolz–Cesàro theorem:liminf𝑛→∞ 𝑏𝑖 = 0 ≤ liminf𝑛→∞ 1𝑛 +1 𝑛∑𝑖=0 𝑏𝑖 ≤ limsup𝑛→∞ 𝑏𝑖 = 0,
which concludes the proof. □

Corollary 6.1. Let {𝑘𝑖} be ultimately periodic, i.e., 𝑘𝑖 = 𝑎𝑖 +𝑏𝑖 , lim𝑖→∞ 𝑏𝑖 = 0 and 𝑎𝑖+𝑀 = 𝑎𝑖
for some 𝑀 ∈ℕ+ and all 𝑖. Then,
(i) liminf𝑖→∞ 𝑘𝑖 = min𝑖<𝑀 𝑎𝑖 ,
(ii) liminf𝑛→∞ 1𝑛+1 ∑𝑛𝑖=0 𝑘𝑖 = 1𝑀 ∑𝑀−1𝑖=0 𝑎𝑖 .

Proposition 6.4 implies that computing limit metrics of ETC is fundamentally a problem
of finding its limit behaviors, ignoring transients. In particular, given Corollary 6.1, if a
sequence of inter-event times 𝑦𝑖 converges to a periodic pattern, then the limit metrics are
solely functions of the periodic component. This motivates us to study fixed and periodic
solutions of (2.8); for example, if some 𝑦 is a recurring pattern of (2.8), then there must be
a subset of 𝑦 that is invariant. This is done in Section 6.4.3. Before that, we investigate
some examples to understand what are the possible limit behaviors exhibited by ETC.

6.4.2 An illustrative example
Consider system (2.2)–(2.4), i.e., 𝝃̇ (𝑡) = 𝑨𝝃(𝑡) +𝑩𝑲𝝃̂ (𝑡),𝑡𝑖+1 = inf{𝑡 ∈  ∣ 𝑡 > 𝑡𝑖 and 𝑐(𝑡 − 𝑡𝑖 , 𝝃 (𝑡), 𝝃̂ (𝑡))},𝑐(𝑠,𝒙, 𝒙̂)B [𝒙̂𝒙]T𝑸(𝑠)[𝒙̂𝒙] > 0 or 𝑠 ≤ 𝜏 ,
with state-space dimension 𝑛x = 2. In this case, an o-line of the corresponding sample map,
Eq. (2.8), is uniquely defined by the angle 𝜃 B angle(𝒙)B arctan𝑥1/𝑥2 ∈ [−𝜋/2,𝜋/2). Using
the coordinate 𝜃 and identifying points along an o-line (that is, regarding any point along
an o-line as the same), the sample system (2.8) becomes𝜃𝑖+1 = 𝑓 (𝜃𝑖)B angle(𝑓 ([sin𝜃 cos𝜃]T)),𝑦𝑖 = 𝜏(𝜃)B 𝜏([sin𝜃 cos𝜃]T). (6.1)

6

82 6 Chaos and Order in Event-Triggered Control

−1 0 1
−1
0
1

𝜃
—

𝑓(𝜃)
0.00

0.05

0.10

0.15

0.20

0.25

—
𝜏(𝜃)

Figure 6.1: Map 𝑓 and inter-event time 𝜏 for case 1 of Example 6.1.

The map 𝑓 can be seen as a map on the unit circle. An analysis of system (6.1) has been
conducted in [26], aiming at finding fixed points or the absence of them. In the cases
studied in [26], when there was a fixed point, there was always a stable fixed point. In
the next example we show that this is not always true, and investigate the many possible
behaviors that ETC traffic exhibits.

Example 6.1. Consider system (2.2)–(2.4) with

𝑨 = [0 1−2 3] , 𝑩 = [01] ,𝑐(𝑠,𝒙, 𝒙̂) = |𝒙 − 𝒙̂| > 𝑎|𝒙|, (6.2)

where 𝑎 ∈ (0,1) is the triggering parameter. This is the seminal triggering condition of [5],
which can be put in the form (2.4) with sufficiently large 𝜏 . The graphs of 𝑓 and 𝜏(⋅), for CETC
( = ℝ+) are given for four cases:
1) 𝑲 = [0 −5] ,𝑎 = 0.2: Fig. 6.1. The map 𝑓 is invertible, orientation-preserving4, and has

no fixed points.
2) 𝑲 = [0 −6] ,𝑎 = 0.32: Fig. 6.2a. The map 𝑓 is no longer invertible. It has one unstable

fixed point near 𝜃 = −1.3 and one stable fixed point near 𝜃 = −0.6.
3) 𝑲 = [0 −6] ,𝑎 = 0.5: Fig. 6.2b. The map 𝑓 has two unstable fixed points, but a stable

period-4 solution as indicated by the cobweb diagram.
4) 𝑲 = [0 −6] ,𝑎 = 0.6: Fig. 6.2c. The map 𝑓 has no stable fixed points or orbits, and exhibits

chaotic behavior. By inspection of the graph, the system has as a minimal set5 the interval[−1.07,−0.42], which contains the maximum inter-sample time 𝜏 ≊ 0.76, so SupLimSup =
Sup ≊ 0.76.
Finally, notice that all these maps are differentiable, but this is not always the case, as

has been observed in [26]. In particular, it is almost never the case for PETC ( = ℎℕ). One
example is shown in Fig. 6.2d, for 𝑲 = [0 −6] ,𝑎 = 0.32 (like case 2) and ℎ = 0.05. Different
from the CETC case, its fixed points are unstable and it exhibits chaos.
4A map 𝑓 ∶  →  is said to be orientation-preserving if its Jacobian 𝐽𝑓 satisfies det(𝐽𝑓 (𝒙)) > 0 for all 𝒙 ∈  .
5A minimal set is an invariant set which contains no proper subsets that are also invariant.

6.4Qualitative analysis: limit behaviors in ETC

6

83

−1.5 −1 −0.5−1.5
−1

−0.5
𝑓(𝜃)

(a) Case 2

−1.5 −1 −0.5
(b) Case 3

−1.5 −1 −0.5−1.5
−1

−0.5

𝜃

𝑓(𝜃)

(c) Case 4

−1 0 1𝜃
(d) Case 2, PETC (ℎ = 0.05) implementation.

Figure 6.2: Maps 𝑓 for Example 6.1, along with cobweb diagrams of solutions of (6.1) starting from 𝜃0 = 0. A stable
orbit for Case 3 is highlighted in red.

Remark 6.2. Invertible orientation-preserving maps on the circle have been extensively
studied in the field of dynamical systems [74], and they have an attribute called rotation
number. When the rotation number is rational 𝑝/𝑞, 𝑝 and 𝑞 coprime, all solutions converge to a
periodic orbit of period 𝑞. When it is irrational, all solutions are quasi-periodic: oscillatory, but
the same point is never visited twice. In the latter case, if 𝑓 is twice continuously differentiable,
it is topologically conjugate to an irrational rotation 𝑔(𝜃) = (𝜃 + 𝑟𝜋 mod 𝜋) − 𝜋/2, which
is ergodic and its orbit is dense in [−𝜋/2,𝜋/2). Hence, InfLimInf = Inf, and InfLimAvg =
SupLimAvg can be obtained to arbitrary precision through simulations from any initial
condition.

6.4.3 Invariant isoseqential sets in ETC
Example 6.1 illustrates the complex behavior that can emerge in ETC traffic. Nonetheless
it becomes apparent that obtaining fixed or periodic patterns is a fundamental step in the
traffic characterization. The first thing we want is a computational or analytical method to
determine fixed and periodic patterns. Then, we want to characterize their local stability.

6

84 6 Chaos and Order in Event-Triggered Control

1
2

Figure 6.3: Illustration of Theorem 5.3 in ℝ3. The blue cone splits ℝ3 into 1 and 2 the line is an invariant
of𝑴(1) and the plane is an invariant of𝑴(2). Points indicate distinct sample trajectories {𝒙 𝑖}, with the arrows
indicating progress of time.

In Theorem 5.3, we have seen that periodic patterns can be characterized by linear
invariants. According to this Theorem, ETC exhibits a periodic sampling pattern whenever
a linear invariant set  of the corresponding linear system is contained in the associated
isosequential subset; in fact, the set  ⧵ {0} is a periodic set (with period 𝑚) of 𝑓 . To
better illustrate Theorem 5.3 and how we can further investigate these linear invariants
to characterize their stability, consider a modified version of Fig. 5.1 for a PETC system
with 𝑛x = 3 and 𝑘 = 2 in Fig. 6.3. The same behaviors as therein are present: because an
invariant of 𝑴(1) is a subset of 1, we know that 1𝜔 is a sampling pattern exhibited by
the system; likewise with𝑴(2). The corollary given below (see the proof in the Appendix)
states that in general this invariant is an o-line (or o-plane, a plane through the origin), and
we have an if-and-only-if condition.

Corollary 6.2. Given the premises of Theorem 5.3, assume (i) 𝑴𝜎 is nonsingular, mixed,
and of irrational rotations, and that (ii) for every linear invariant  of𝑴𝜎 ,  ⊆ cl(𝜎) ⟹ ⧵ {0} ⊆𝜎 . Then 𝜎𝜔 is a possible output sequence of system (2.8) if and only if there exists
an o-line or o-plane  invariant of𝑴𝜎 such that ⧵ {0} ⊆𝜎 .

Condition (ii) is satisfied in the illustrative example of Fig. 6.3, as the invariants lie in
the interior of the corresponding isochronous sets; this prevents the pathological cases
described in the previous chapter (Fig. 5.1, right). In addition, the conditions in this corollary
simplify the analysis to o-lines and o-planes, giving that higher dimensional subspaces are
not needed for investigation.

Remark 6.3. Using Corollary 6.2, one can find fixed inter-sample patterns (𝑡)𝜔 by searching
over 𝑡 ∈ [𝜏 , 𝜏] for an𝑴(𝑡) with a linear subspace belonging to 𝑡 , which can be checked using
Prop. 5.5. This search is one-dimensional, in contrast to the search for invariants of system
(2.8) over ℝ𝑛x .

The following lemma is useful when dealing with fixed o-lines.

6.4Qualitative analysis: limit behaviors in ETC

6

85

Lemma 6.1. Let 𝒍 be a fixed o-line of 𝑓 in system (2.8), i.e., 𝒙 ∈ 𝒍 ⟹ 𝑓 (𝒙) ∈ 𝒍. Then, there
exists a real 𝜆 such that 𝑓 (𝒙) = 𝜆𝒙 for all 𝒙 ∈ 𝒍.
Proof. By Prop. 6.1, every 𝒙 ∈ 𝒍 shares the same inter-sample time 𝜏 . Then, 𝑓 (𝒙) = 𝑴(𝜏)𝒙 =𝑎(𝒙)𝒙 since 𝑓 (𝒙) ∈ 𝒍. Hence, by definition of eigenvalues, 𝒙 is an eigenvector of𝑴(𝜏) and𝑎(𝒙) = 𝜆 is the corresponding eigenvalue. □

For some classic triggering conditions, we can get some interesting specialized results:

Proposition 6.5. Consider system (2.2)–(2.4) with 𝑐(𝑠,𝒙, 𝒙̂) ≡ |𝒙 − 𝒙̂| > 𝑎|𝒙|,  = ℝ+, and
assume 0 < 𝑎 < 1 is designed rendering the closed-loop system GES. A fixed o-line with inter-
sample time 𝜏 exists iff 1/(1+𝑎) ∈ 𝜆(𝑴(𝜏)).
Proof. By Lemma 6.1, the points in the fixed o-line satisfy 𝒙̂(𝑡𝑖+1) = 𝜆𝒙̂(𝑡𝑖), where 𝜆 is a
real eigenvalue of𝑴(𝜏). From the triggering condition, it then holds that |𝜆𝒙̂ − 𝒙̂| = 𝑎|𝜆𝒙̂|.
Hence, |𝜆 − 1| = 𝑎|𝜆|∴𝜆 = 1/(1±𝑎). Since |𝜆| < 1 for GES, 𝜆 = 1/(1+𝑎) < 1. □

Proposition 6.6. Consider system (2.2)–(2.4) with 𝑐(𝑠,𝒙, 𝒙̂) ≡ 𝒙T𝑷𝒙 > e−2𝜌𝑠 𝒙̂T𝑷𝒙̂,  = ℝ+,
with 0 < 𝜌 < 1 and 𝑷 ≻ 0.6 A fixed o-line with inter-sample time 𝜏 exists iff either e−𝜌𝜏 or−e−𝜌𝜏 is an eigenvalue of𝑴(𝜏).
Proof. Using the same arguments as in Prop. 6.5, we have that 𝒙̂(𝑡𝑖+1) = 𝑎𝒙̂(𝑡𝑖). Let 𝒛B √𝑷𝒙̂ .
An invariant o-line then satisfies 𝑎2𝒛T𝒛 = e−2𝜌𝜏𝒛T𝒛∴𝑎 = ±e−𝜌𝜏 . Now,

√𝑷−1𝑴(𝜏)√𝑷𝒙̂ =√𝑷−1𝑴(𝜏)𝒛 = 𝑎 √𝑷−1𝒛 = 𝑎𝒙̂. Since𝑴(𝜏) is similar to
√𝑷−1𝑴(𝜏)√𝑷 , 𝑎 ∈ 𝜆(𝑴(𝜏)). □

A more general result can be obtained by invoking a result from topology (see the
proof in the Appendix) to conclude about which cases a fixed o-line certainly exists, only
by knowing the state-space dimension 𝑛x;
Theorem 6.2. Consider the system (2.8) and assume 𝑓 is continuous and 𝑓 (𝒙) ≠ 0 for all𝒙 ≠ 0. If 𝑛x is odd, then 𝑓 has a fixed o-line.

Apart from o-lines, it is also interesting to know when can o-planes be fixed. A PETC
example where this happens is illustrated in Fig. 6.3. The next result presents for which
dimensions this can generally hold (the proof is also in the Appendix).

Theorem 6.3. System (2.8) can only exhibit a fixed o-plane  that is isochronous (i.e.,∀𝒙 ∈  ⧵ {0},𝜏 (𝒙) = 𝑦 for some 𝑦) if 𝑵(𝑦) is singular or one of the following hold.
(i) 𝑛x = 2 and 𝜏 = 𝜏 (periodic sampling, trivial);
(ii) 𝑛x = 3 and  = ℎℕ (PETC);
(iii) 𝑛x ≥ 4.

After having determined the fixed (or periodic) o-lines and o-planes of system (2.8),
the next step is to characterize their (local) attractivity. We say that an o-line 𝒍 ⊂ ℝ𝑛x is
attractive if for any other o-line 𝒍′ close enough to 𝒍, lim𝑛→∞ 𝑓 𝑛(𝒍′) = 𝒍. The following can
be applied for fixed o-lines (see proof in the Appendix.)
6This is the triggering condition initially used for STC in [14].

6

86 6 Chaos and Order in Event-Triggered Control

Proposition 6.7. Let 𝒍 B {𝑎𝒙 ∣ 𝑎 ∈ ℝ ⧵ {0}} be a fixed o-line of system (2.8), and suppose 𝑓
is differentiable at 𝒙, with 𝐽𝑓 (𝒙) being the corresponding Jacobian matrix. Take 𝜆 as the real
s.t. 𝑓 (𝒙) = 𝜆𝒙 (Lemma 6.1), and let 𝑶𝒙 be an orthonormal basis for the orthogonal complement
of 𝒙 . Then, if 1𝜆𝑶𝒙 T𝐽𝑓 (𝒙)𝑶𝒙 is Schur, then 𝒍 is locally attractive.

The Jacobian matrix can be expressed as 𝐽𝑓 = 𝜕(𝑴(𝜏(𝒙))𝒙)/𝜕𝒙 = 𝜕(𝑴(𝜏(𝒙))/𝜕𝒙)𝒙 +𝑴(𝜏(𝒙))) = −2𝒙T𝑵̇ (𝜏 (𝒙))𝒙 𝑴̇(𝜏 (𝒙))𝒙𝒙T𝑵(𝜏(𝒙)) +𝑴(𝜏(𝒙)). (6.3)

The matrix 𝑶𝒙 T𝐽𝑓 (𝒙)𝑶𝒙 is the Jacobian of 𝑓 w.r.t. the non-radial directions and projected
onto those. It is easy to see that the eigenvalues of 𝑶𝒙 T𝐽𝑓 (𝒙)𝑶𝒙 are the same as those of𝐽𝑓 except the one associated with the eigenvector 𝒙 , while 𝜆 is precisely the eigenvalue
associated with 𝒙; hence Prop. 6.7 gives a condition on the ratio between the largest-in-
magnitude eigenvalue of 𝐽𝑓 and that of the fixed o-line in consideration. For fixed planes,
this analysis may require more sophisticated analyses of orbital stability, such as Poincaré
return maps.

As we see next, the case of PETC is revealing thanks to the fact that𝑴 is constant by
parts and, thus, 𝐽𝑓 = 𝑴(𝜏(𝒙)) almost everywhere. Because PETC exhibits a discrete set of
outputs, a proper definition of stability of an infinite sequence is necessary.

Definition 6.6. Consider system (2.8) with  = ℎℕ (PETC). An infinite sequence of outputs{𝑦𝑖} is said to be stable if there exists 𝒙 ∈ ℝ𝑛x with a neighborhood such that every 𝒙′ ∈
satisfies 𝑦𝑖(𝒙′) = 𝑦𝑖(𝒙) = 𝑦𝑖 , ∀𝑖 ∈ ℕ.
Proposition 6.8. Consider system (2.8) with  = ℎℕ (PETC) and assume it is GES. Let {𝑦𝑖}
be a 𝑝-periodic output trajectory associated with it, and let𝑴 B𝑴(𝑦𝑝−1)⋯𝑴(𝑦1)𝑴(𝑦0). If{𝑦𝑖} is stable, then𝑴 is Schur.

Proof. Every trajectory {𝒙 𝑖} of (2.8) that generates {𝑦𝑖} satisfies 𝒙 𝑖+𝑝 = 𝑴𝒙 𝑖 . If 𝑴 is not
Schur, then from almost every 𝒙0, (and hence for any point’s neighborhood) there are no𝑀 > 0,0 < 𝑎 < 1 such that |𝒙𝑚𝑝 | ≤ 𝑀𝑎𝑚 |𝒙0| which implies that the PETC system is not GES.
This is a contradiction. □

Proposition 6.8 implies that stable fixed or periodic sampling patterns generated by
a PETC system can be used in a multi-rate periodically sampled system, which will also
render the origin GES. Note that the existence of such a stable periodic sampling pattern
does not imply that the PETC generates that pattern everywhere; as a matter of fact, it may
generate sequences that converge to this stable sequence. In these cases, the PETC has a
rival periodic sampling schedule which also achieves GES. 7 This is not necessarily true if
no stable periodic pattern is exhibited, i.e., when PETC exhibits chaotic or aperiodic traffic.

Remark 6.4. Proposition 6.8 and its associated conclusion are not true for CETC. For example,
consider the case 2 from Ex. 6.1: its stable fixed point occurs for the inter-event time 𝑦 ≈0.3903; the eigenvalues of𝑴(𝑦) are 0.757 (which is 1/(1+𝑎) as expected from Prop. 6.5) and

7While both approaches stabilize the system with equal limit average sampling performances, their transients
should be different. It remains to be investigated if their asymptotic performance properties, i.e., GES decay
rates, are the same.

6.5Quantitative analysis: a symbolic approach

6

87

−1.33, hence 𝑴(𝑦) is not Schur. Given Prop. 6.8, it is now not surprising that case 2’s PETC
implementation (Fig. 6.2d) does not exhibit an asymptotically stable inter-event time trajectory.
More interestingly, this stays true regardless of how small ℎ is.

This Section has presented many properties of fixed and periodic subsets of ETC, such
as dimensional conditions for fixed o-lines and o-planes to exist, how to find them, and
how to characterize their attractivity. However, it has not yet provided a means to compute
the limit metrics or their robust versions. Looking again at Example 6.1, it is clear that
several challenges remain:
1) If a stable fixed or periodic pattern is found, can we ensure that it is almost globally

attractive? (Here, almost is used to exclude the finitely many unstable fixed or periodic
patterns, in case these exist.)

2) If 𝑓 has fixed or periodic patterns, how can we obtain some information about the
limit metrics?

3) If multiple fixed or periodic patterns are found, but inside a chaotic invariant set, how
to compute robust limit metrics?

The next Section provides (partial) answers to these questions for PETC using a symbolic
approach.

6.5Quantitative analysis: a symbolic approach
This Section expands the results of Chapter 5 by considering a distinction between robust
and fragile limit behaviors. Here we use the same traffic modeling framework as done
there: hence, consider a PETC system (2.2)–(2.4) with  = ℎℕ, and denote hereafter its
traffic model from Def. 2.15 by  . Let 𝑙 be its 𝑙-complete abstraction (Def. 5.3). Let us see
how we can use the insights from the previous section to understand how can we further
detect if a cycle satisfying Theorem 5.3 is robust or not by inspecting in Fig. 6.4 the 1- and
2-complete abstractions of the illustrative example in Fig. 6.3.

1
1

2
2

1
11
1

12
1

22
2

2

Figure 6.4: 𝑙-complete models of the illustrative PETC system of Fig. 6.3, for 𝑙 = 1 (left) and 𝑙 = 2 (right). Each
node represents a state, with the top label being the state label and the bottom being its output.

By observing Fig. 6.4, note that (1,2) ∈ 2 means that there are points in ℝ3 that belong
to 1, but the next sample would belong to 2; at the same time, (2,1) ∉ 2, which implies
that no points leave 2 after sampling, i.e., 2 is forward-invariant. Hence, it appears that2𝜔 is robust, while 1𝜔 is not. This kind of observation is central when using abstractions
to differentiate robust from fragile behaviors.

6.5.1 Robust limit metrics
Fragile cyclic behaviors that minimize the limit average metrics happen in the real examples
we have show: revisiting cases 2 and 3 of Example 6.1, we have 1 and 2 unstable fixed

6

88 6 Chaos and Order in Event-Triggered Control

points, respectively. In both cases, the unstable fixed point near 𝜃 = −1.3 gives the value
of InfLimInf and InfLimAvg; but for all other initial conditions 𝜃0, trajectories {𝜃𝑖} are
attracted to the stable fixed point in case 2 and the stable period-4 orbit in case 3. Thus,
robust limit metrics should be oblivious to unstable orbits. Let us properly define what stable
and unstable behaviors are for systems with a finite output set:

Definition 6.7 (Stable behaviors). Consider a deterministic WTS  where  is a metric
space and  is finite. A periodic behavior 𝜎𝜔 ∈𝜔() is said to be stable if there exists 𝑥 ∈ 
with a neighborhood  such that every 𝑥′ ∈ satisfies 𝜔𝑥 = 𝜔𝑥′ = 𝜎𝜔 (as in Def. 6.6).

Definition 6.8 (Robust limit metrics). Let  be a simpleWTS,𝜔u () be the set of its unstable
behaviors, and 𝑉 be a system limit metric (ILA or ILI). Then the robust version of the metric
is Rob𝑉 ()B 𝑉 (𝜔() ⧵𝜔u ()).

Removing unstable behaviors as the ones discussed above is safe in that small pertur-
bations in the initial state lead to distant behaviors. However, consider case 4 of Example
6.1 and its chaotic invariant set: it has infinitely many unstable orbits, and almost every
orbit comes arbitrarily close to those orbits. In fact, due to transitivity, every initial solution
starting on the chaotic invariant set will come arbitrarily close to any unstable orbit within it.
Thus, the infimum of a set of metrics on behaviors on a chaotic set, even when excluding
the unstable ones, can be equal to one of its unstable behaviors. This deserves a further
distinction between unstable behaviors.

Definition 6.9 (Absolutely unstable behaviors). Consider a deterministic WTS  where is a metric space and  is finite. A periodic behavior 𝜎𝜔 ∈ 𝜔() is said to be absolutely
unstable (a.u.) if it is unstable and for almost all 𝑥 there exists 𝐿 ∈ ℕ such that ∀𝑙 > 𝐿, 𝜎 𝑙 is
not a subsequence of 𝜔𝑥 (). The set of a.u. behaviors of  is denoted by 𝜔au().

A.u. behaviors are fragile in the sense that small perturbations to initial states lead to
substantially different behaviors.

Periodic behaviors of a PETC system  that occur in an abstraction 𝑙 can be verified
to be (absolutely) unstable (see proof in the Appendix).

Proposition 6.9. Consider a PETC traffic model  and let 𝜎𝜔 ∈ 𝜔(). Assume 𝑴𝑘 is
nonsingular for all 𝑘 ∈ {1, ..., 𝑘}. Further, assume 𝑴𝜎 is mixed, and let 𝒗1,𝒗2, ...,𝒗𝑛 be the
unitary eigenvectors of 𝑴 ordered from largest-in-magnitude corresponding eigenvalue to
smallest. Denote by any linear invariant of𝑴𝜎 containing 𝒗1. (I) If ⊈ cl(𝜎), then 𝜎𝜔
is an unstable behavior. (II) If additionally the cycle 𝑥1𝑥2...𝑥𝑐 in 𝑙 that generates 𝜎𝜔 (i.e.,𝐵𝑙 ({𝑥1𝑥2...𝑥𝑐}𝜔) = 𝜎𝜔) is the only cycle of its SCC, then 𝜎𝜔 is absolutely unstable in  .

Hereafter we shall denote a linear invariant containing 𝒗1 as in Prop. 6.9 a dominant
linear invariant, after the concept of dominant modes in linear systems. Referring again to
Fig. 6.3 and the corresponding 2-complete model (Fig. 6.4), we see two periodic behaviors,1𝜔 and 2𝜔 . The illustrated o-line is an invariant of 𝑴(1) that is not dominant (as can be
inferred by the trajectory of gray points that diverge from the line); moreover, the cycle of2 that generates 1𝜔 is a simple cycle, the node 11 with a self loop. This implies that 1𝜔
is absolutely unstable. Note that this conclusion could not be obtained by inspecting 1,
which is a complete graph without simple cycles. The behavior 2𝜔 , on the other hand, is
stable.

6.5Quantitative analysis: a symbolic approach

6

89

Clearly, removing only a.u. behaviors is safe to give a lower bound estimate to Rob𝑉 (),
i.e., 𝑉 (𝜔() ⧵𝜔au()) ≤ 𝑉 (𝜔() ⧵𝜔u ()). An equality holds when  is not chaotic, since
all unstable behaviors are also absolutely unstable. Therefore, determining when  is or is
not chaotic is critical to compute the exact value of Rob𝑉 (). As we see next, chaos on 
can be estimated from the abstraction 𝑙 .
6.5.2 Estimating chaos in abstractions
In this section we show how to detect (and quantify) chaos on a PETC traffic model  , and
when one can conclude that  is not chaotic. A commonly used measure of chaos is the
topological entropy ℎ() [76], satisfying ℎ() ≥ 0, with ℎ() = 0 implying there is no chaos.
However, instead of a topological measure, we are interested in a measure of chaos of the
output of the system: if the state is behaving chaotically but this is not reflected in the
output, it does not interfere in the metrics we are interested. Therefore, we shall introduce
here a notion called behavioral entropy, which is a natural extension of the original concept.

Definition 6.10 (Behavioral entropy). Consider a system  and equip  with a metric 𝑑 . A
set ⊂𝜔() is called (𝑛, 𝜖)-separated if for all behaviors 𝒚,𝒚′ ∈ , where 𝒚 = 𝑦0𝑦1...𝑦𝑖 ... and𝒚′ = 𝑦′0𝑦′1...𝑦′𝑖 ..., we have 𝑑(𝑦𝑖 , 𝑦′𝑖) > 𝜖 for all 𝑖 ≤ 𝑛. Let 𝑠(𝑛,𝜖,) be the maximum cardinality
of any (𝑛, 𝜖)-separated set. The behavioral entropy is the quantity

ℎ()B lim𝜖→0 limsup𝑛→∞ log(𝑠(𝑛,𝜖,))𝑛 . (6.4)

In particular, if | | < ∞ and the distance metric is 𝑑(𝑦,𝑦′) = 0 if 𝑦 = 𝑦′ and 𝑑(𝑦,𝑦′) = 1
otherwise, we can ignore the 𝜖 component, and it turns out that

ℎ() = limsup𝑛→∞ log(𝑁 (𝑛,))𝑛 , (6.5)

where 𝑁(𝑛,) is the number of different words of length 𝑛 over the alphabet  that are
possible trace segments of  .

A system is called behaviorally chaotic whenever its behavioral entropy is positive.

Remark 6.5. The topological entropy also takes the form in Eq. (6.5) for subshifts of finite
type, an abstraction used for autonomous dynamical systems to study their topological
properties (see [76]).

Definition 6.10 takes a behavioral approach [20] to extend the original definition [76]
for systems that are possibly nondeterministic and have output maps. If 𝐻 = Id andPost(𝑥) = {𝑓 (𝑥)} for some continuous map 𝑓 ∶  →  , we recover the original notion. It
may seem unproductive to extend a measure of chaos to non-deterministic systems, as
these should all be chaotic in some sense; however, this is not always the case. For example,
consider2 of Fig. 6.4: it is easy to see that𝑁(𝑛,2) = 𝑛+1 ∶ 11...11,11...12, ..., 122...22,22...22.
Hence, ℎ(2) = lim𝑛→∞(log(𝑛 +1)/𝑛) = 0, and this system is not (behaviorally) chaotic.

Proposition 6.10. Consider two transition systems𝑎 and𝑏 with𝑎 =𝑏 = s.t.𝑎 ⪯ 𝑏 .
If | | < ∞, then ℎ(𝑎) ≤ ℎ(𝑏).

6

90 6 Chaos and Order in Event-Triggered Control

Proof. Trivially, from behavioral inclusion [17], ∀𝑛 ∈ ℕ,𝑁 (𝑛,𝑎) ≤ 𝑁 (𝑛,𝑏). The result
follows from monotonicity of the log function. □

The question now is how to compute the behavioral entropy of a finite-state system.
This result is known for topological entropy of subshifts of finite type, which is the same
as a finite-state transition system with 𝐻 = Id:
Theorem 6.4 ([76, Theorem IX.1.9]). 8 Let  be a finite system and 𝑁 ′(𝑛,) be the number
of different 𝑛-length words over the alphabet  generated by  (note that this reflects the
internal behavior of ). Then,

limsup𝑛→∞ log(𝑁 ′(𝑛,))𝑛 = log𝜆1(𝑻),
where 𝑻 is the incidence matrix of  .

Under a detectability condition of  , the same result holds for behavioral entropy:

Definition 6.11 (Detectability). A transition system  is said to be 𝑙-detectable if there exists
a finite 𝑙 ∈ ℕ such that, for each word 𝑤 ∈ +(), |𝑤| ≥ 𝑙, there exists a unique 𝑥 ∈  such
that 𝑤 ∈ +𝑥 ().
Theorem 6.5. Let  be an 𝑙-detectable finite-state system for some finite 𝑙 ∈ ℕ, and let 𝑻 be
its incidence matrix. Then, ℎ() = log𝜆1(𝑻). (6.6)

Proof. Let 𝑠B | |. Because of 𝑙-detectability, every (𝑛+ 𝑙)-long external behavior of  gives
a unique 𝑛 internal behavior, hence 𝑁(𝑛 + 𝑙,) ≥ 𝑁 ′(𝑛,). From every external behavior
of length 𝑛, there can be at most 𝑠𝑙 external behaviors of length 𝑛 + 𝑙 (simply concatenate
every possible word in  𝑙 to complete the length). Thus, 𝑠𝑙𝑁(𝑛,) ≥ 𝑁 (𝑛 + 𝑙,). Finally,
since the output map 𝐻 is single-valued, the number of external behaviors can never be
bigger than the number of different internal behaviors: 𝑁(𝑛,) ≤ 𝑁 ′(𝑛,). Combining
these inequalities, the following holds for all 𝑛 > 𝑙:𝑁(𝑛,) ≤ 𝑁 ′(𝑛,) ≤ 𝑠𝑙𝑁(𝑛,).
Now,

limsup𝑛→∞ log(𝑠𝑙𝑁(𝑛,))𝑛 = limsup𝑛→∞ (log(𝑠𝑙)𝑛 + log(𝑁 (𝑛,))𝑛) = limsup𝑛→∞ log(𝑁 (𝑛,))𝑛 .
The sandwich rule and Theorem 6.4 conclude the proof. □

The following results help us apply Theorem 6.5 to the PETC traffic model.

Proposition 6.11. A non-blocking finite-state 𝑙-detectable autonomous transition system 
has zero behavioral entropy if and only if all the strongly connected components (SCCs) of its
associated graph are isolated nodes or simple cycles.
8In [76], the internal behavior from an initial state is called itinerary. The original Theorem states that this
quantity is also the topological entropy of the subshift  , but here we only need the formula relating the limit to
the spectral radius of 𝑻 .

6.5Quantitative analysis: a symbolic approach

6

91

Proof. The spectrum of a digraph is the union of the spectra of its SCCs [78]. Because  is
non-blocking, it must have at least one cycle. The adjacency matrix of an isolated node is[0], thus its spectrum is {0}. Further, all vertices of a simple cycle have only one outgoing
edge, hence the corresponding SCC has a constant outdegree of 1. From [78, Theorem 2.1],
the spectral radius of an SCC is 1 iff it has constant outdegree 1. Hence, the spectral radius
of the whole graph is max(1,0) = 1, whose log is 0. □

Remark 6.6. The 𝑙-complete PETC traffic model 𝑙 is 𝑙-detectable because, by definition,
each 𝑘1𝑘2...𝑘𝑙 ∈ 𝑙 is the unique state that generates the finite behavior ℎ𝑘1,ℎ𝑘2, ...ℎ𝑘𝑙 .
Theorem 6.6. Consider the PETC system (2.2)–(2.4) ( = ℎℕ), its traffic model  and its𝑙-complete traffic model 𝑙 , with 𝑙 ∈ ℕ. The following assertions are true:
i) ℎ() ≤ ℎ(𝑙);
ii) If all SCCs of 𝑙 are simple cycles, then ℎ() = ℎ(𝑙) = 0, i.e.,  is not chaotic.

Proof. Assertion (i): Prop. 2.1 gives that  ⪯ 𝑙 ; then, from Theorem 2.1,  ⪯ 𝑙 ; finally,
Prop. 6.10 concludes the proof. Assertion (ii): 𝑙 satisfies the premises of Prop. 6.11. Hence,ℎ(𝑙) = 0. Using assertion (i) and the fact that ℎ() ≥ 0, we conclude that ℎ() = 0. □

Revisiting Fig. 6.4, it is easy to see that ℎ(1) = log(2) = 1 bit (base 2), while ℎ(2) = 0,
which implies that the example of Fig. 6.3 is not chaotic.

6.5.3 Estimating and computing robust metrics
Now we are equipped with the necessary tools to estimate robust limit metrics using an
abstraction and determine when they are equal to the concrete system’s or simply a lower
bound. Based on the discussion in Section 6.5.1, we define the following robust limit metric
for the abstraction:

Definition 6.12 (Robust metric for 𝑙). Consider a PETC traffic model  and its 𝑙-complete
model 𝑙 . Let ̃𝜔au(𝑙) be the set of behaviors of 𝑙 that are are simple cycles in 𝑙 and are
absolutely unstable in  . We define Rob𝑉 (𝑙) as 𝑉 (𝜔(𝑙) ⧵ ̃𝜔au(𝑙)).
Theorem 6.7. Consider a PETC traffic model  and its 𝑙-complete model 𝑙 . Consider𝑉 ∈ {ILI, ILA}; then Rob𝑉 (′𝑙) ≤ Rob𝑉 (). Moreover, if all SCCs of 𝑙 are simple cycles, and
the minimizing cycle 𝜎 satisfies 𝜎𝜔 ∈ 𝜔(), then Rob𝑉 (𝑙) = Rob𝑉 ().
Proof. Because all behaviors in ̃au are absolutely unstable in  , we have ̃𝜔au(𝑙) ⊆𝜔au(),
and thus ̃𝜔au(𝑙) ⊆ 𝜔u (). From Prop. 2.1, 𝜔(𝑙) ⊇ 𝜔(); hence 𝜔(𝑙) ⧵ ̃𝜔au(𝑙) ⊇𝜔() ⧵𝜔u (). Now, for any behavior set , 𝑉 () = inf{𝑓 (𝑦𝑖) ∣ {𝑦𝑖} ∈ } = inf{𝐹 ({𝑦𝑖}) ∣{𝑦𝑖} ∈},where 𝐹 ({𝑦𝑖}) is either liminf𝑖→∞ 𝑦𝑖 (ILI) or liminf𝑛→∞ 1𝑛+1 ∑𝑛𝑖=0 𝑦𝑖 (ILA). Hence,𝑎 ⊆ 𝑏 implies 𝑉 (𝑎) ≥ 𝑉 (𝑏), and the inequality Rob𝑉 () ≥ Rob𝑉 (𝑙) follows.

For the equality: if 𝑙 contains only simple cycles, then  is not behaviorally chaotic
(Theorem 6.6), and thus 𝜔u () =𝜔au() (all unstable cycles are absolutely unstable). Then,
the minimizing cycle 𝜎 of 𝑙 is by exclusion a stable cycle of  . Since 𝜎𝜔 ∈ 𝜔() ⧵𝜔u (),
we have that Rob𝑉 (𝑙) = 𝐹 (𝜎𝜔) ≥ inf{𝐹 ({𝑦𝑖}) ∣ {𝑦𝑖} ∈ 𝜔() ⧵𝜔u ()} = Rob𝑉 (). Hence,Rob𝑉 (𝑙) = Rob𝑉 (). □

6

92 6 Chaos and Order in Event-Triggered Control

Revisiting Figs. 6.3 and 6.4 one last time, we have trivially that ILI() = ILA() = 1, but
using Theorem 6.7 on 2 we conclude that RobILI() = RobILA() = 2. Nevertheless, by
Prop. 6.8,𝑴(2) must be Schur, and hence a periodic sampling of 2ℎ would also stabilize the
system with the same traffic performance.

Remark 6.7. In the case of RobILI, if the invariant associated to the minimizing cycle 𝜎
can be verified to belong to a chaotic invariant set, under mild assumptions it holds thatRobILI(𝑙) = RobILI(). To see this, first note that RobILI = min(𝜎)C 𝑦 ; denoting by c the
chaotic invariant set, if 𝑦 ∩c has non-empty interior, by the Birkhoff Transitivity Theorem
(see Def. 6.1) almost every solution starting in c visits 𝑦 infinitely often.

Remark 6.8. In case a chaotic invariant set is ergodic, the infinimal limit average is the same
almost everywhere (when restricted to the set), i.e., it is independent of the initial condition (as
a consequence of Birkhoff Ergodic Theorem). As a matter of fact, almost everywhere means
everywhere except the union of periodic orbits. Thus, RobILA(𝑙) can then be a conservative
estimate. Nevertheless, the associated RobILA can be estimated through simulations. Ergod-
icity can be statistically tested using the approach of [79], where one tests whether the two
initially different distributions on  converge to an equal one upon the repeated application
of the map 𝑓 by using a non-parametric hypothesis test such as the Kolmogorov–Smirnov
(KS) test. Alternatively, the test can be performed on the distributions of outputs; because is discrete, an hypothesis test appropriate for discrete supports, such as the Cramér–von
Mises (CvM) test [80]. For this approach to succeed, it is important that the initial distribution
contains only points that are in or lead to the chaotic invariant. The abstraction 𝑙 can be
used as an approximate selector of points on the chaotic invariant set, as its SCCs that are
not simple cycles are related to over-approximations of potential chaotic invariants on the
concrete system  .
6.6 Numerical examples
We have implemented the methods to compute behaviorial entropy and RobILA() using
Theorem 6.7 in ETCetera. We now revisit Example 6.1 to compute robust metrics using
the abstraction approach devised in Section 6.5.

Example 6.2. Consider system (2.2)–(2.4) with

𝑨 = [0 1−2 3] , 𝑩 = [01] ,𝑐(𝑠,𝒙, 𝒙̂) = |𝒙 − 𝒙̂| > 𝑎|𝒙|, (6.2 revisited)

as in Example 6.1. Now we use PETC with ℎ = 0.05 and check the following cases:
1) 𝑲 = [0 −5] ,𝑎 = 0.2, as in Ex. 6.1 case 1
2) 𝑲 = [0 −6] ,𝑎 = 0.2.
3) 𝑲 = [0 −6] ,𝑎 = 0.32, as in Ex. 6.1 case 2, and Fig. 6.2d.

Table 6.1 shows the values of ILA and RobILA for each case, as well as the 𝑙 value at
which the algorithms were terminated (or interrupted) and CPU times. Case 1 shows a
periodic sequence 𝜎𝜔 with |𝜎 | = 27 that is stable and attains both the ILA and the RobILA,

6.6 Numerical examples

6

93

Table 6.1: ILA values for Example 6.2

Case 1 2 3𝑙 (robust) 16 (16) 10 (10) 1 (10*)
ILA (RobILA) 0.137 (0.137) 0.1 (0.25) 0.1 (0.4)

CPU time (robust) [s] 50 (49) 23 (19) 0.81 (5655)

* Algorithm interrupted before finding a verified cycle.

as well as ILI = RobILI = 0.1. In fact, case 1 exhibits only this cycle, and a bisimulation
is found with 𝑙 = 27. Case 2 is different in that an a.u. cycle is attained at 𝑦 = 0.1, but a
stable cycle has 𝑦 = 0.25 (stationary). Upon inspection of 𝑙 , there is another stable cycle at𝑦 = 0.3. Unsurprisingly, we also obtain ILI() = 0.1 and RobILI() = 0.25, which happen at
the same cycles. Finally, Case 3 is a chaotic example; the ILA is found at 𝑦 = 𝜏 = 0.1 in the
first iteration, but RobILA is never confirmed, although a lower bound of 0.4 is obtained,
related to two unstable cycles, (0.4)𝜔 and (0.35,0.45)𝜔 . However, note the CPU time for
obtaining the 10 abstraction of approximately 1.5 hour (compare with the others of less
than a minute): this is the effect of chaos on the refinements: as indicated by the entropy
formula, Eq. (6.4), the number of 𝑙-sized sequences grows exponentially with 𝑙 . In fact, 10
has 9271 states, and an entropy of 1.14 bits. The SCC at which the two cycles belong has
7767 states, a strong indicative of a chaotic invariant set. Figure 6.5 shows the evolution
of ℎ(𝑙) as a function of 𝑙 for the three cases, where it is clear that the entropy seems
to stabilize at a high value in Case 3, whereas it descends to zero in the other cases. By
applying Remark 6.8, two different initial distributions on states related to the large SCC
of 10 where generated with 1000 points each, and after 9 iterations they converged to
the same distribution (CvM test, 𝑝 = 0.998), a good indicative that the chaotic invariant
set is ergodic. The average of the obtained ensemble, which by Birkhoff Ergodic Theorem
is approximately equal to the limit average of any run starting in the invariant, is 0.417,
slightly higher than the 0.4 using Theorem 6.7. It is interesting to see that 0.4 is a slightly
higher limit average than what was obtained in the CETC implementation (Ex. 6.1 Case 3,
and Remark 6.4), of 0.39; more interestingly,𝑴(0.4) is not Schur, which highlights that the
PETC has a larger average sampling period than any stabilizing periodic sampling, at the
cost of seemingly unpredictable traffic. Finally, while ILI() = ILA() = 0.1 (at the same
unstable cycle 0.1𝜔) the best lower bound for RobILI is found to be 0.3, which is witnessed
by the unstable cycle (0.3,0.45,0.4,0.5)𝜔 . By inspection, the associated o-line belongs to
the chaotic invariant, thus by Remark 6.7 this is the correct value of RobILI().
Reproducing the results of this chapter. The abstractions for cases 1, 2, and 3, the
data in Table 6.1, the bisimulation case, and Figure 6.5 can be obtained by running
examples/chaos_abstractions.py in ETCetera. The sample-based method to de-
tect ergodicity and compute RobILA for case 3 can be reproduced by running examples/
chaos_sample_based.py. ****ILI*** Finally, Figures 6.1–6.2d can be obtained by run-
ning examples/chaos_examples.py.

6

94 6 Chaos and Order in Event-Triggered Control

2 4 6 8 10 12 1401
23

𝑙

ℎ()
Case 1
Case 2
Case 3

Figure 6.5: Entropy ℎ(𝑙) as a function of 𝑙 for Example 6.2.

6.7 Discussion and Conclusions
Event-triggered control can exhibit very complex traffic patterns, and this seems to be more
common the more “aggressive” the triggering mechanism towards sampling reduction.
Simple traffic is observed on the opposite case. This is in line with the findings on [25, 73]
for ℝ2, in which for small enough triggering parameters the states behave essentially like
linear systems: two asymptotes, the “slowest” one attracting trajectories from the other,
or a spiral towards the origin when eigenvalues are complex conjugate. This seems to
be the case whenever 𝑓 of the sample system (2.8), projected onto the projective space, is
invertible, which poses the following conjecture:

Conjecture 6.1. Consider system (2.2)–(2.4) with CETC ( = ℝ+) and its sample system
(2.8). Let ℎ ∶ ℝ𝑛x →ℙ𝑛x−1 be the natural projection onto the projective space. If 𝑔 = ℎ◦ 𝑓 ◦ℎ−1
is continuous and invertible, then it is topologically conjugate with 𝑔′ = ℎ ◦ 𝑓 ′ ◦ ℎ−1, where𝑓 ′(𝒙) = 𝑴𝒙 for some𝑴 ∈ ℝ𝑛x×𝑛x .

If proven, this would imply that all periodic o-lines or o-planes of the CETC have
period one and can be obtained using Remark 6.3, enabling one to obtain (robust) limit
metrics in the continuous case. The ETC sample map would be topologically equivalent
to a (discrete-time) linear system, having modes of different speeds, that can be classified
according to the eigenvalues of𝑴 .

A symbolic method for computing robust metrics for PETC was presented in Section
6.5, and while it is an important first step, it suffers from the curse of dimensionality,
particularly when chaotic behaviors are present; to address these issues, one could use
alternative solvers to Z3 as suggested in Chapter 5, but also different abstractions that help
pinpoint the existence of chaotic invariant sets. For the latter, an approach such as in [81]
may be interesting, which can be seen in the framework of [5] as finding an abstraction
that is backwards simulated by the concrete system.

We have also seen an example of CETC whose robust infimal limit average is higher
than any stable periodic sampling strategy, whereas the same cannot happen with PETC
under some generic assumptions. The first case is a concrete example where ETC is more
sampling-efficient than any periodic implementation, but at the same time any practical
implementation of it must rely on periodic checking of triggering times, thus becoming
a PETC, and as such any stable inter-event time sequence it exhibits is stabilizing as a
periodic sampling strategy; the only option for PETC to beat the most sampling-efficient

6.7 Discussion and Conclusions

6

95

periodic implementation would involve chaotic traffic. This is not a problem per se, and
one could speculate that chaotic traffic could help in cyber-security aspects, but it may
nonetheless make scheduling of multiple ETC loops in a network even more challenging.

Finally, it is worth noting two important practical observations, one positive and one
negative, about the work in this chapter. The positive one is that it is not actually limited
to linear systems, using the same arguments as in Chapter 5: limit behavioral properties
such as our metrics, including entropy, are preserved for the linearized model around
the equilibrium. The negative aspect is that we have considered a very simple case, of
state-feedback without disturbances. It is known that doing output-feedback or having
disturbances can severely alter the inter-sample behavior of the closed-loop system, in
some cases leading to Zeno behavior [82], and practical modifications to the triggering
condition are often necessary. It is an open question whether adding these imperfections
change our conclusions drastically, or if there are simple adjustments for these cases. Still,
it is not difficult to extend the symbolic approach to perturbed systems, following the steps
in [30]. Nonetheless, all the conclusions we have obtained for the nominal system bring
new insight and understanding about ETC traffic patterns and its sampling performance.

6

96 6 Chaos and Order in Event-Triggered Control

6.A Proofs
6.A.1 Proof of Corollary 6.2
Proof. The if and only if statement is a straightforward combination of items (i) and (ii) of
Theorem 5.3 and assumption (ii) of this corollary.

To see that  is either an o-line (1-dimensional) or an o-plane (2-dimensional), assume
that it is higher dimensional. By assumption, 𝑴𝜎 is mixed, therefore  is spanned by
o-lines (associated with real eigenvalues) and o-planes (associated with complex conjugate
pairs). Let 𝑽 ∈ ℝ𝑛x×𝑚 be a basis for  with 𝑚 > 2, where the 𝑖-th column of 𝑽 is a real
eigenvector of 𝑴𝜎 or, in case of a complex eigenvector pair 𝒗,𝒗∗, the 𝑖-th and (𝑖 + 1)-th
columns are 𝒗 +𝒗∗ and i𝒗 −i𝒗∗ respectively; these two columns correspond to an invariant
plane of𝑴𝜎 . In the former case, we have𝑽𝑬 𝑖 = 𝒗, (6.7)

and in the latter 𝑽𝑬 𝑖,𝑖+1 = [𝒗 +𝒗∗ i𝒗 − i𝒗∗] , (6.8)

where 𝑬 𝑖 is a row matrix with the 𝑖-th element being 1 and the rest zero, and 𝑬 𝑖,𝑖+1 ∈ ℝ2×𝑚
has the entries (1, 𝑖) and (2, 𝑖 + 1) equal to 1, the rest being zero. These are nothing but
selection matrices.

Since𝜎 is composed of an intersection of sets of the form {𝒙 ∈ ℝ𝑛x ∣ 𝒙T𝑸𝑖𝒙 ∼ 0}, where∼∈ {=,≥,>}, by Prop. 5.5, 𝑽T𝑸𝑖𝑽 ≈ 0 for every such 𝑸𝑖 determining 𝜎 , where ≈∈ {=,⪰,≻},
respectively. Since 𝑨 ≈ 0 ⟹ 𝑩T𝑨𝑩 ≈ 0 for any non-singular 𝑩, we can conclude that𝑽T𝑸𝑖𝑽 ≈ 0 implies (𝑽𝑬 𝑖)T𝑸𝑖(𝑽𝑬 𝑖) ≈ 0 and (𝑽𝑬 𝑖,𝑖+1)T𝑸𝑖(𝑽𝑬 𝑖,𝑖+1) ≈ 0, which imply that the
corresponding o-line or o-plane is also a subset of 𝜎 . □

6.A.2 Proofs of Theorem 6.2 and Proposition 6.7
In these proofs, if 𝑓 is not invertible in the pointwise sense, we treat its inverse in a set-
based manner: 𝑓 −1 ∶  ⇒  , 𝑓 −1(𝑦) = {𝑥 ∈  ∣ 𝑓 (𝑥) = 𝑦}. In addition, here we work on
the real projective space ℙ𝑛x−1, the space of all o-lines in ℝ𝑛x . The real projective space
is the quotient of ℝ𝑛 ⧵ {0} by the relation 𝒙 ∼ 𝜆𝒙,𝜆 ∈ ℝ ⧵ {0}. Therefore, 𝒙 and 𝜆𝒙 are the
same point 𝒑 ∈ ℙ𝑛x−1. We denote the natural projection of a point in ℝ𝑛x onto ℙ𝑛x−1 byℎ ∶ ℝ𝑛x ⧵ {0}→ ℙ𝑛x−1.
Lemma 6.2. Consider system (2.8) and assume 𝑓 (𝒙) ≠ 0 for all 𝒙 ≠ 0. Then 𝑔 B ℎ ◦ 𝑓 ◦ ℎ−1 is
a well-defined function. Moreover, if 𝑓 is continuous, then 𝑔 is also continuous.

Proof. For any 𝒑 ∈ ℙ𝑛x−1, ℎ−1(𝒑) gives a whole o-line 𝒍 ⊂ ℝ𝑛x . From Prop. 6.1, it holds
that 𝑓 (𝒍) = 𝒍′, where 𝒍′ is also an o-line. Hence ℎ(𝒍′) = 𝒑′ ∈ ℙ𝑛x−1, so 𝑔 is well defined.
Continuity is then given by the fact that 𝑓 is also continuous for o-lines, i.e., if 𝒍 is an o-line,lim𝒍′→𝒍 𝑓 (𝒍′) = 𝒍; hence lim𝒑′→𝒑 𝑔(𝒑′) = 𝒑. □

Proof of Theorem 6.2. Every continuous map from the real projective space to itself has a
fixed point if its dimension is even [83, p. 109]. From Lemma 6.2, 𝑔 ∶ ℙ𝑛x−1 →ℙ𝑛x−1 is a
well-defined continuous function; thus, 𝑔 has a fixed point if 𝑛x is odd.

Now we need to show that, if 𝑔 has a fixed point, then 𝑓 has a fixed o-line. If 𝒑 is a
fixed point of 𝑔, then take a point 𝒙 ∈ ℎ−1(𝒑). Then, ℎ(𝑓 (𝒙)) = 𝑔(ℎ(𝒙)) = 𝒑∴𝑓 (𝒙) ∈ ℎ−1(𝒑)

6.A Proofs

6

97

Hence, there exists 𝒙′ ∈ ℎ−1(𝒑) satisfying 𝒙′ = 𝑓 (𝒙), where 𝒙′ = 𝜆𝒙 , for some 𝜆. Since 𝑓 is
homogeneous as per Prop. 6.1, 𝒙′ = 𝑓 (𝒙) is true for any 𝒙 in the o-line containing it. Hence,
this line is fixed by 𝑓 , and the proof is complete. □

Proof of Prop. 6.7. From Lemma 6.2, 𝑔 ∶ ℙ𝑛x−1 →ℙ𝑛x−1 is well defined. Let 𝒑 = ℎ(𝒙) for any𝒙 ∈ 𝒍. We want to show that there is a coordinate system for the tangent space of 𝑔 at 𝒑
such that the Jacobian of 𝑔 at 𝒑 is equal to 1𝜆𝑶𝒙 T𝐽𝑓 (𝒙)𝑶𝒙 .

First, note that the real projective space is locally equal to the unit sphere, hence we can
use the orthogonal subspace to a unitary 𝒙 within 𝒍 as the tangent subspace of 𝒑 embedded
in ℝ𝑛x . Denote it as  (𝒙). Let 𝒅 be a unitary vector orthogonal to 𝒙 . Any point in  (𝒙) can
be described as 𝒙 +𝑎𝒅 . To get the Jacobian of 𝑔, we apply 𝑓 to 𝒙 +ℎ𝒅 and project the result
back to  (𝒙): 𝑓 (𝒙 +ℎ𝒅) = 𝑓 (𝒙) +ℎ𝐽𝑓 (𝒙)𝒅 +(ℎ2) = 𝜆𝒙 +ℎ𝐽𝑓 (𝒙)𝒅 +(ℎ2), whose projection
back to  (𝒙) is simply 𝒙 +ℎ/𝜆 ⋅ 𝐽𝑓 (𝒙)𝒅 +(ℎ2). Thus, the vector of variation of 𝑔 w.r.t. 𝒅
embedded in ℝ𝑛x is

limℎ→0 𝒙 +ℎ/𝜆 ⋅ 𝐽𝑓 (𝒙)𝒅 +(ℎ2) −𝒙ℎ = 1𝜆 𝐽𝑓 (𝒙)𝒅.
Now let 𝒅𝑖 be the 𝑖-th column of 𝑶𝒙 . Every 𝒅𝑖 is unitary and orthogonal to 𝒙 . Setting𝒅1,𝒅2, ...𝒅𝑛x−1 as a coordinate system for the tangent space of 𝑔 at 𝒑, the component of the
derivative of 𝑔 on 𝒅 𝑗 from a variation in 𝒅𝑖 is 𝒅T𝑗 1𝜆 𝐽𝑓 (𝒙)𝒅𝑖 ; putting in matrix form, we arrive
at 𝐽𝑔 (𝒑) = 1𝜆𝑶𝒙 T𝐽𝑓 (𝒙)𝑶𝒙 ,
which implies local attractivity if Schur. □

6.A.3 Proof of Theorem 6.3
We start by introducting the following lemma.

Lemma 6.3. Let 𝑵 ∈ 𝕊𝑛 be a nonsingular symmetric matrix. The following holds:
1) There is a plane through the origin  such that 𝒙 ∈  ⧵ {0} ⟹ 𝒙T𝑵𝒙 > 0 if and only if𝑵 has at least two positive eigenvalues.
2) There is a plane through the origin  such that 𝒙 ∈  ⟹ 𝒙T𝑵𝒙 = 0 if and only if 𝑛 ≥ 4,

and 𝑵 has at least two positive and two negative eigenvalues.

Proof. (1) This is a trivial consequence of Sylvester’s law of inertia (see [84, Chap. XV.4]).
(2) Based on Prop. 5.5, this is equivalent to 𝑽T𝑵𝑽 = 0, for some 𝑽 ∈ ℝ𝑛×2.
Proof of necessity: We assume that some full-rank 𝑽 ∈ ℝ𝑛×2 satisfies 𝑽T𝑵𝑽 = 0 and

prove that 𝑵 has at least two positive and two negative eigenvalues (thus 𝑛 ≥ 4). Using
Sylvester’s law of inertia, we can write𝑵 = 𝑻T𝑺𝑻 , where 𝑺 is diagonal containing only 1 and−1 entries in the diagonal, and 𝑻 is invertible. Thus, 𝑽T𝑵𝑽 =𝑾T1𝑺𝑾 1, where𝑾 1 = 𝑻𝑽 also
has rank 2. Let𝑾 2B 𝑺𝑾 1. Since 𝑺 is invertible,𝑾 2 has rank 2 as well. Because𝑾T1𝑾 2 = 0,
the columns of𝑾 1 are orthogonal to the columns of𝑾 2, hence𝑾 B [𝑾 1 𝑾 2] has rank
4, which implies that 𝑛 ≥ 4. Pre-multiplying𝑾 2 = 𝑺𝑾 1 by 𝑺, we get 𝑺𝑾 2 = 𝑺2𝑾 1 = 𝑾 1
(note that 𝑺2 = I). Thus, we can write𝑺 [𝑾 1 𝑾 2] = 𝑺𝑾 = [𝑾 2 𝑾 1] = 𝑾𝑷,

6

98 6 Chaos and Order in Event-Triggered Control

where 𝑷 B [0 I
I 0] is a permutation matrix. This matrix has two eigenvalues in 1 and two

eigenvalues in -1. Now, take one pair (𝜆,𝒙) such that 𝑷𝒙 = 𝜆𝒙 . Then, 𝑺𝑾𝒙 =𝑾𝑷𝒙 = 𝜆𝑾𝒙,
so 𝜆 is also an eigenvalue of 𝑺. Thus, 𝑺 has at least two eigenvalues equal to 1 and two
equal to −1.

Proof of sufficiency: now we start with a nonsingular matrix 𝑵 with two positive
and two negative eigenvalues, and then construct 𝑽 ∈ ℝ𝑛×2 such that 𝑽T𝑵𝑽 = 0. Take
the Sylvester matrix 𝑺 of 𝑵 and select 4 rows and columns such that the corresponding
submatrix has exactly two values of 1 and two of −1. Denote by this submatrix 𝑺4. We have
that that there exists𝑾 4 ∈ ℝ4×4 such that𝑾−14 𝑺4𝑾 4 = 𝑷, where 𝑷 the same permutation
matrix as in the proof of necessity, so𝑾 4 can be determined by the eigendecomposition of𝑷 . Complete𝑾 ∈ ℝ𝑛×4 from𝑾 4 by padding the remaining rows with zeros, and denote
the first two columns of𝑾 by𝑾 1. Using the same arguments as in the proof of necessity,
the matrix 𝑽 = 𝑻−1𝑾 1 satisfies 𝑽T𝑵𝑽 = 0. □

Proof of Theorem 6.3. Case (i) is trivial, since 𝜏 = 𝜏 implies periodic sampling, so the wholeℝ𝑛x is fixed and isochronous.
For case (ii), suppose 𝑛x < 3; then every isochronous set is composed by quadratic sets

of the form ∩𝑖{𝒙 ∈ ℝ𝑛x ∣ 𝒙T𝑸𝑖𝒙 >(≥) 0}, but by Lemma 6.3 (1) every such 𝑸𝑖 must have two
positive eigenvalues; thus, every 𝑸𝑖 ≻ 0 which implies that 𝜏 = ℝ𝑛x for all 𝑘, hence every
state samples at every possible inter-sample time. Because a state can only sample at one
inter-sample time, this implies 𝜏 is unique, hence 𝜏 = 𝜏 , which is a contradiction.

For case (iii), in the CETC case every set 𝜏 is an interesecion of sets including the set{𝒙 ∈ ℝ𝑛x ∣ 𝒙T𝑸𝜏𝒙 = 0}. Hence, by Lemma 6.3 (2), if 𝑛x < 4 then no plane can belong to 𝜏 ;
thus 𝑛x ≥ 4. □

6.A.4 Proof of Proposition 6.9
First we introduce the following Lemma.

Lemma6.4. Let 𝝃 (𝑘+1) =𝑴𝝃(𝑘) be a linear autonomous system,𝑴 mixed, and let𝒗1,𝒗2, ...,𝒗𝑛
be the unitary eigenvectors of𝑴 ordered from largest-in-magnitude corresponding eigenvalue
to smallest. Denote by  any linear invariant of 𝑴 containing 𝒗1. Then, for every initial
state 𝝃 (0) = 𝑎1𝒗1 +⋯ = 𝑎𝑛𝒗𝑛 where 𝑎1 ≠ 0, it holds that

lim𝑘→∞ 𝝃 (𝑘)|𝝃 (𝑘)| ∈.
Proof. This is consequence of the proof of Lemma 5.3 when 𝑎1 ≠ 0. □

Lemma 6.4 paraphrases the known fact that almost every trajectory of a linear system
converges to its dominant mode.

Proof of Proposition 6.9. Item (I): For contradiction, assume that 𝜎𝜔 is stable, and let 𝑚B|𝜎 |. First, we check 𝒙0 ∈𝜎 . In this case, the samples 𝒙 𝑖 evolve according to 𝒙 𝑖+𝑚 = 𝑴𝜎𝒙 𝑖 .
Let 𝒙0 = 𝑎1𝒗1 +⋯ = 𝑎𝑛𝒗𝑛 where 𝒗 𝑗 are the eigenvectors of𝑴𝜎 ordered as in Lemma 6.4.
For any 𝒙0 ∈ ℝ𝑛 almost all points in its neighborhood satisfy 𝑎1 ≠ 0. Hence, by Lemma
6.4, lim𝑖→∞ 𝒙𝑚𝑖|𝒙𝑚𝑖 | ∈, but  ⊈ cl(𝜎). Thus, {𝒙𝑚𝑖} escapes 𝜎 at a some finite 𝑖, hence{𝑦(𝒙𝑚𝑖)} ≠ 𝜎𝜔 . This contradicts the assumption that 𝜎𝜔 is stable.

6.A Proofs

6

99

We now see that the set of states 𝒙 such that 𝜔𝒙 () = 𝛼𝜎𝜔 , |𝛼 | < ∞ is measure zero.
This is done by induction on the length of 𝛼 . Let 𝑚 be the set of states whose behavior
is if 𝛼𝜎𝜔 with |𝛼 | = 𝑚. If 𝑚 = 0, we have already seen that 0 is a linear invariant of𝑴𝜎 ;
because this linear subspace does not contain 𝒗1, it has zero measure. Now assume 𝑚 has
zero measure. The set 𝑚+1 is the pre-image of 𝑚 , hence, 𝑚+1 ⊆ ∪𝑘𝑘=1𝑴−1𝑘 𝑚 . Because𝑴𝑘 is nonsingular and the union is finite, 𝑚+1 is also measure zero. This concludes the
proof that 𝜎𝜔 is unstable.

Item (II): First, note that 𝑐 must be a multiple of |𝜎 |. Let 𝛼 be any 𝑙-long subsequence
of 𝜎𝜔 . We have already seen that for almost every 𝒙 ∈𝛼 there exists a finite 𝑘 such that
the solution to (2.8) 𝝃𝒙 (𝑐𝑘 −1) ∉𝛼 . To prove absolutely instability, it suffices to check the
behavior from any such 𝝃𝒙 (𝑐𝑘 −1) does not contain 𝜎𝐿 for some 𝐿 large enough. We show
that it is true with 𝐿 = 𝑐/|𝜎 |.

Let  be the simple-cycle SCC formed by {𝑥1, 𝑥2, ..., 𝑥𝑐}. Since 𝛼 ∈ , w.l.o.g., let 𝑥1 = 𝛼,
which is related to 𝒙 . Let 𝒙′ B 𝝃𝒙 (𝑐𝑘) and take 𝑥′ as the unique state in 𝑙 related to 𝒙′,
respectively. We first show that 𝑥′ ∉ : since there is a run from 𝒙 to 𝒙′ with length 𝑐𝑘,
there must be a run segment of length 𝑐𝑘 from 𝑥1 to 𝑥′. Because  is strongly connected,
if 𝑥′ ∈ , the only path would be (𝑥1...𝑥𝑐)𝑘𝑥1, hence 𝑥′ = 𝑥1. But this is a contradiction
because 𝑥′ ≠ 𝛼 since 𝝃𝒙 (𝑐𝑘 −1) ∉𝛼 . Thus, 𝑥′ ∉ .

Now, there is no path in the abstraction connecting 𝑥′ to  (otherwise  would not be a
simple cycle). Therefore, because 𝑙 ⪰  , it is trivial to see that there is also no path from 𝒙′
back to 𝛼 , i.e., 𝝃𝒙′ (𝑘) ∉𝛼 , ∀𝑘 ∈ ℕ. Thus, 𝜔𝒙′ () does not contain 𝜎𝐿 as a subsequence,
concluding the proof. □

7

101

7
Optimizing sampling

performance

ETC is a greedy sampling strategy in the sense that it always maximizes the lateness of the
next sample, irrespective of long term impacts of this choice. We show that PETC is not optimal
in terms of maximizing the smallest average inter-sample time (SAIST) while satisfying its
own triggering condition. For that, we devise an STC based on the same triggering condition
that can sample earlier than the ETC would. We abstract this system and solve a mean-payoff
game to maximize the SAIST, which we show in a numerical example to substantially increase
the performance w.r.t. the reference PETC system. We provide optimality bounds, and how to
further improve the results through abstraction refinement techniques.

This chapter is based on � G. de A. Gleizer, K. Madnani and M. Mazo Jr. “Self-Triggered Control for Near-Maximal
Average Inter-Sample Time”, in 60th IEEE Conference on Decision and Control (CDC’21) [85].

7

102 7 Optimizing sampling performance

7.1 Introduction

Among nearly all existing work on ETC and STC, there is an underlying philosophy
of sampling: it must be as late as possible. Quite often, the triggering condition is a

surrogate of an underlying Lyapunov function condition, either ensuring its decrease in
continuous time [5], its boundedness with respect to a decaying function [7, 14, 86], or its
decrease in average [8]. The sampling happens as soon as the condition is violated, that is,
as late as possible. Posing this sampling strategy as a mechanism to maximize SAIST, this
corresponds to a greedy approach for optimization: one maximizes the short-term reward
hoping that this brings long-term maximization. It is not surprising that this approach is
very rarely optimal, and we have no reason to believe this would be the case with sampling
for control.

Some exceptions to the aforementioned rule exist. Aiming at performance improve-
ments, Antunes et al [87] addressed the problem of co-designing controllers and sampling
strategies that minimize a quadratic control performance while ensuring that the SAIST
is not smaller than some reference periodic controller. Before the ETC era, the problem
of minimizing a weighted sum of quadratic performance and AIST for linear controllers
with random disturbances was addressed in [88], using an elegant dynamic programming
approach; unfortunately, this approach lacks the practicality of its STC successors, as the
mere decision to sample or not requires solving an online recursion involving complicated
operators. Therefore, we choose to focus on the more practical Lyapunov-based ETC and
STC strategies.

In this chapter, we address the problem of synthesizing a self-triggered mechanism
for state feedback of linear systems to maximize its SAIST, while ensuring the same
control performance as a reference PETC. The improvement over PETC’s SAIST is attained
by considering predicted PETC triggering times as deadlines: sampling earlier always
ensures equal or better control performance, and done in the right way it can provide
long-term benefits in terms of average sampling. To determine when these long-term
rewards are attained, we build on the weighted abstractions of Chapter 5, augmented with
early sampling actions as done for scheduling in Chapter 3. In this case, the weights become
the sampling actions, but instead of maximizing the next IST as ETC and STC do, we solve
a a mean-payoff game on the abstraction to optimize the average weight, getting a strategy
that approximately maximizes the concrete system’s SAIST; the value of the abstraction
game is in fact a lower bound to the optimal early-triggering strategy, while computing
a modified cooperative maximum SAIST of the abstraction gives an upper bound. Our
approach is based on 𝑙-complete abstractions, which gives a state-dependent sampling
strategy (SDSS) that requires predicting the next 𝑙 inter-sample times that the reference
PETCwould generate. As wewill see in a numerical example, even 𝑙 = 1 can provide massive
improvements to the closed-loop system’s AIST by simply using the strategy obtained
from the mean-payoff game. The computational cost of this prediction is proportional to 𝑙,
making our approach implementable on hardware with limited capabilities or time-critical
applications. In addition, a major benefit of using abstractions is that the methodology is
general in the sense that it can be used for more complex control specifications; and while
we focus on the control of a single linear system, extensions to multiple controllers sharing
a network (Chapter 3) and nonlinear systems [30] are possible using existing abstraction
methods.

7.2 Problem Formulation

7

103

7.2 Problem Formulation
Consider a system (2.2) with sample-and-hold as described in Section 2.4. We are interested
in constructing an STC strategy, i.e., using available information at time 𝑡𝑖 to determine
the next sampling time 𝑡𝑖+1. Because the system of interest is time-invariant, it suffices to
determine the next inter-sample time (IST) 𝜏𝑖 B 𝑡𝑖+1 − 𝑡𝑖 . In general terms, when full-state
information is available, STC is a controller composed with a state-dependent sampling
strategy (SDSS) 𝑠 ∶ (ℝ𝑛x)𝑖 →ℝ+ that can consider the first 𝑖 state samples to determine 𝜏𝑖 .
As we consider mean-payoff objectives, which admit positional (or static) strategies [27],
we focus on the particular case of static state-dependent sampling strategies, which have
the form 𝑠 ∶ 𝑅𝑛x →ℝ+. The algorithm that dictates 𝜏𝑖 must guarantee given performance
specifications while being fast enough to execute in real time, depending on the application.

Given system (2.2), and an initial state 𝒙 B 𝝃 (0), an SDSS determines a unique state
trajectory 𝝃𝒙 (𝑡), as well as the sequence of ISTs 𝜏𝑖 , since 𝜏0 = 𝑠(𝒙) and the following
recursion on 𝑖 holds, similarly to the sample map (2.8):𝝃𝒙 (𝑡) = 𝑴(𝑡 − 𝑡𝑖)𝝃𝒙 (𝑡𝑖), ∀𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1]𝑡𝑖+1 = 𝑡𝑖 +𝜏𝑖 ,𝜏𝑖 = 𝑠(𝝃𝒙 (𝑡𝑖)), (7.1)

where as usual 𝑴(𝑡)B 𝑨d(𝑡) +𝑩d(𝑡)𝑲 B e𝑨𝑡 + ∫ 𝑡0 e𝑨𝜏d𝜏𝑩𝑲 is the state transition matrix
under the held control input. Thus, for convenience, we denote the unique IST sequence of
a given SDSS 𝑠 from a given initial condition 𝒙 by {𝜏𝑖(𝒙; 𝑠)}. With this, we can proceed in
a similar way to Chapter 5 to define the average IST (AIST) from 𝒙 as

AIST(𝒙; 𝑠)B liminf𝑛→∞ 1𝑛 +1 𝑛∑𝑖=0 𝜏𝑖(𝒙; 𝑠),
and the smallest AIST (SAIST) across all initial states as

SAIST(𝑠)B inf𝒙∈ℝ𝑛x AIST(𝒙; 𝑠). (7.2)

The SAIST of a given SDSS gives its sampling performance, which we are interested in
maximizing.

A standard approach to SDSS design is predicting the last moment in time such that
the a companion ETC triggering condition (2.3) is still met:𝑡𝑖+1 = sup{𝑡 ∈ ℎℕ ∣ 𝑡 > 𝑡𝑖 and 𝑐(𝑡 − 𝑡𝑖 , 𝝃 (𝑡), 𝝃̂ (𝑡))}, (7.3)

where ℎ is the resolution of the line search involved in this check.
Clearly, the ETC and STC strategies described in (2.3) and (7.3), respectively, are greedy

sampling strategies: they maximize the next IST while ensuring the triggering condition is
not violated.1 Therefore, we can use the ETC-generated IST as a state-dependent deadline𝑑 ∶ ℝ𝑛x →  of an SDSS: 𝑑(𝒙)Bmax{𝜏 ∈  ∣ 𝑐(𝜏 ,𝝃𝒙 (𝜏),𝒙)}, (7.4)
1In the PETC case, the triggering condition can be violated for over up to ℎ time units, but one can use a predictive
approach as in [86] to prevent violations.

7

104 7 Optimizing sampling performance

where  = {ℎ,2ℎ, ..., 𝜏} is the set of possible inter-sample times, and 𝜏 = ℎ𝐾, with 𝐾 ∈ ℕ.
The question that naturally arises is whether sampling earlier than this deadline can provide
long-term benefits in terms of average inter-sample time. This possibility is exactly what
we exploit in this chapter. Hereafter, we shall refer to an SDSS 𝑠∗ ∶ ℝ𝑛x →  that respects
the deadlines in Eq. (7.4) as an early-triggering SDSS.

Objective of this chapter. For a given system (7.1), denote the reference PETC
strategy by 𝑠; our main objective is to design an early-triggering SDSS 𝑠∗ that ensures a
strict improvement in SAIST; i.e., SAIST(𝑠∗) ≥ SAIST(𝑠) +𝑣, where 𝑣 > 0. In addition, we
want to estimate how far 𝑠∗ is from the optimal strategy, i.e., find 𝜖 such that SAIST(𝑠∗) ≥
SAIST(𝑠′) − 𝜖 for all early triggering SDSSs 𝑠′.
7.3 Finding an SDSS through abstractions
As we have stated, our approach is to abstract a reference PETC system, compute a strategy
for the abstraction aiming at maximizing SAIST, and verifying how this strategy performs
as a concrete SDSS for an LTI system. Since the strategy design problem is a quantitative
one, we need some adaptations to the framework presented in Section 2.2.3.

7.3.1 Weight-based abstractions
Because we are interested in a control design problem, normal simulation relations as in
Section 2.2.1 are not sufficient. Instead, [17] proposes the use of alternating simulation
relations [43] for this end. Here we adapt the definition of Tabuada for a relation that
implies matching weights:

Definition 7.1 (Weight-based alternating simulation relation). Consider two weighted
systems (Def. 2.7) 𝑎 and 𝑏 with 𝑎 ⊆𝑏 and 𝛾𝑎(𝑎) = 𝛾𝑏(𝑏). A relation  ⊆ 𝑎 ×𝑏 is
a weight-based alternating simulation relation (WBASR) from 𝑎 to 𝑏 if the following
conditions are satisfied:
i) for every 𝑥𝑏0 ∈ 𝑏0, there exists 𝑥𝑎0 ∈ 𝑎0 with (𝑥𝑎0, 𝑥𝑏0) ∈;
ii) for every (𝑥𝑎 , 𝑥𝑏) ∈, it holds that 𝑈𝑎(𝑥𝑎) ⊆ 𝑈𝑏(𝑥𝑏);
iii) for every (𝑥𝑎 , 𝑥𝑏) ∈ ,𝑢 ∈ 𝑈𝑎(𝑥𝑎),𝑥′𝑏 ∈ Post𝑢(𝑥𝑏), there exists 𝑥′𝑎 ∈ Post𝑢(𝑥𝑎) such that𝛾𝑎(𝑥𝑎 ,𝑢,𝑥′𝑎) = 𝛾𝑏(𝑥𝑏 ,𝑢,𝑥′𝑏) and (𝑥′𝑎 , 𝑥′𝑏) ∈ 𝑅.

This definition is useful for using strategies for 𝑎 on 𝑏 : for any initial state in 𝑏0,
we can initialize the abstraction 𝑎 with a related state. Then, any action 𝑢 available at𝑥𝑎0 is also available in 𝑏 thanks to condition (ii). Finally, whatever transition (𝑥𝑏 ,𝑢,𝑥′𝑏)
system 𝑏 takes, we can pick a transition with same weight in 𝑎 that again leads to related
states (𝑥′𝑎 , 𝑥′𝑏), and both systems can continue progressing. The main difference in our
definitions from those in [17], apart from the weighted aspect, is that we are concerned
with an “output map” on transitions rather than on states; this is more convenient for our
intended application, but not fundamentally different as one could convert a system with
weights on transitions to one with weights on states. In this chapter we focus on Def. 7.1
instead of Def. 2.9. Hence we shall call a WBASR simply ASR; also, when a ASR from𝑎 to 𝑏 exists, we say that 𝑏 is simply an alternating simulation of 𝑎 , denoting it by𝑎 ⪯AS 𝑏 . The following results are useful for our application:

7.3 Finding an SDSS through abstractions

7

105

Proposition 7.1. Consider two systems 𝑎 and 𝑏 and an alternating simulation relation ⊆𝑎 ×𝑏 from 𝑎 to 𝑏 . If ∀(𝑥𝑎 , 𝑥𝑏) ∈,𝑈𝑎(𝑥𝑎) = 𝑈𝑏(𝑥𝑏), then−1 is a simulation relation
from 𝑏 to 𝑎 .
Proof. Condition (i) of Def. 2.2 is the flipped version of Def. 7.1 (i). Now assume Def. 2.2 (ii)
is false for some (𝑥𝑏 , 𝑥𝑎) ∈−1; then there is (𝑥𝑏 ,𝑢𝑏 , 𝑥′𝑏) without a matching transition in𝑎 . However, by assumption, 𝑢𝑏 ∈ 𝑈𝑎(𝑥𝑎); hence, from Def. 7.1 (iii), every 𝑥′𝑏 ∈ Post𝑢𝑏 (𝑥𝑏)
has a matching 𝑥′𝑎 ∈ Post𝑢𝑏 (𝑥𝑎) s.t. (𝑥′𝑎 , 𝑥′𝑏) ∈, which is a contradiction. □

Now, denote by  |𝑠 the system  controlled by strategy 𝑠; the following result is very
similar to other results on alternating simulations (e.g., [17]):
Proposition 7.2. Let 𝑎 and 𝑏 be two non-blocking systems such that 𝑎 ⪯AS 𝑏 . Let ∗ ⊆ 𝜔(𝑏) be a set of value traces. If there exists a strategy 𝑠 ∶ 𝑋+𝑏 →  such that𝜔(𝑏 |𝑠) ⊆  ∗, then there exists a strategy 𝑠′ ∶ 𝑋+𝑎 → such that 𝜔(𝑎 |𝑠′) ⊆  ∗.
Proof. (Sketch) Consider the alternating simulation relation ⊆ (𝑋𝑎 ,𝑋𝑏). Take any state𝑥𝑏 ∈ 𝑋𝑏0 ∶ we can pick a related 𝑥𝑎 (Def. 7.1 (i)). Choose 𝑢 = 𝑠(𝑥𝑎); then ∀(𝑥𝑎 ,𝑢,𝑥′𝑎) ∈ 𝑎 ,𝛾𝑎(𝑥𝑎 ,𝑢,𝑥′𝑎) is the first element of some sequence in  ∗. From Def. 7.1 (ii), we can use𝑢 from 𝑥𝑏 . From (iii), for any (𝑥𝑏 ,𝑢,𝑥′𝑏) ∈ 𝑏 there exists (𝑥𝑎 ,𝑢,𝑥′𝑎) ∈ 𝑎 with (𝑥′𝑎 , 𝑥′𝑏) ∈,
with matching weights. Since all such (𝑥𝑎 ,𝑢,𝑥′𝑎) have valid weights, so does any (𝑥𝑏 ,𝑢,𝑥′𝑏).
Hence, from any 𝑥′𝑏 we can pick a related 𝑥′𝑎 and choose 𝑢 = 𝑠(𝑥𝑎𝑥′𝑎) for the next iteration.
Repeating the same arguments recursively concludes the proof. □

The proof of Prop. 7.2 gives a way to use a strategy from an abstraction on the concrete
system: run the abstraction in parallel with the concrete system: from any state 𝑥𝑏 , pick the
winning action 𝑢 from a related state 𝑥𝑎 and move the abstraction forward. If the strategy𝑠 is static, running the abstraction in parallel is unnecessary: the alternating simulation
relation alone suffices, as long as the relation satisfies |{𝑥𝑎 ∣ (𝑥𝑎 , 𝑥𝑏) ∈}| = 1 for all 𝑥𝑏 ∈𝑏 ,
i.e., every concrete state has a single related abstract state. This is the case for quotient
systems, which we employ here. Hereafter we assume this is true; then, given a static
strategy 𝑠𝑎 ∶ 𝑎 →𝑎 ⊆𝑏 , we call 𝑠𝑏 ∶ 𝑏 →𝑏 a refined strategy to 𝑏 , or simply a
refinement of 𝑠𝑎 , by setting 𝑠𝑏(𝑥𝑏) = 𝑠𝑎(𝑥𝑎), 𝑥𝑎 being the unique state satisfying (𝑥𝑎 , 𝑥𝑏) ∈.
7.3.2 Abstractions for optimal average weight
A transition system according to Def. 2.7 can be regarded as a game, where player 0 picks
the action and player 1 antagonistically picks the transition. The problem of finding a
strategy for a finite-state weighted transition system in order to maximize the average
weight is known as mean-payoff game, a quantitative game. Quantitative games are games
on weighted transition systems where a value function Val ∶ 𝜔() → ℝ is defined on
runs, and one wants to find a strategy 𝑠 for player 0 that
i) ensures a minimum value 𝑣, i.e, Val(𝜈) ≥ 𝑣 for all 𝜈 ∈ 𝜔( |𝑠), or, if possible,
ii) maximizes the value, i.e., finds 𝑣̄ such that Val(𝜈) ≥ 𝑣̄ for all 𝜈 ∈ 𝜔( |𝑠) and that, for

any 𝑣 > 𝑣̄, there is no strategy 𝑠′ s.t. Val(𝜈′) ≥ 𝑣 for all 𝜈′ ∈ 𝜔( |𝑠′).
In the case ofmean-payoff objectives, the value function is LimAvg(𝜈).There exist positional
(i.e., static) optimal strategies for mean-payoff games [27],2 which implies that every 𝑥 ∈ 
2Solving the optimal value and strategy of a mean-payoff game has pseudo-polynomial complexity, with the
best known bound of (| |2 | |𝑊) due to [89], where𝑊 is the maximum weight. Weights are assumed to be

7

106 7 Optimizing sampling performance

admits an optimal value 𝑉 (𝑥) that is the smallest value obtained from every run starting at 𝑥
when both players 0 and 1 play optimally. By considering that we cannot control the initial
state, i.e., player 1 picks it, we have that the game value is 𝑉 ()B 𝑣̄ = inf{𝑉 (𝑥) ∣ 𝑥 ∈ 0}.
Once a strategy 𝑠 has been decided for a system  ,  |𝑠 becomes a 1-player game, containing
only the (antagonistic) environment. In the case of a 1-player game, where the environment
chooses initial states and transitions, the value of the game can be taken as a function of its
weight behaviors, i.e., 𝑉adv( |𝑠) = inf{Val(𝜈) ∣ 𝜈 ∈ 𝜔( |𝑠)}. We also define a cooperative
value from a given initial condition 𝑉 𝑥coop() B sup{Val(𝜈) ∣ 𝜈 ∈ 𝜔𝑥 ()}, where player
0 has control of transitions and actions for any given initial state 𝑥 ; furthermore, let𝑉U() B inf𝑥∈0 𝑉 𝑥coop(): essentially, player 1 picks the initial state, but player 0 can
choose the run from it. The following result, very similar to what was done in [90] for
time-optimal control, gives that a strategy from an abstraction, refined to the concrete
system, ensures that at least the abstraction value is attained in the concrete case, while an
upper bound can be obtained from 𝑉U:
Proposition 7.3. Let 𝑎 ⪯AS 𝑏 ⪯ 𝑎 . Then, 𝑉 (𝑏) ≤ 𝑉U(𝑎). Moreover, let 𝑠𝑎 be a strategy
for 𝑎 such that 𝑉adv(𝑎 |𝑠𝑎) ≥ 𝑣. Then, if 𝑠𝑏 is a refinement of 𝑠𝑎 , it holds that 𝑉adv(𝑏 |𝑠𝑏) ≥ 𝑣.
Proof. (Sketch) The first inequality comes from 𝑉 (𝑏) ≤ 𝑉U(𝑏) ≤ 𝑉U(𝑎); the first holds by
definition of 𝑉U, where player 1 is more powerful than in the original game; and the second
inequality holds from (weight) behavioral inclusion. For the last statement, it can be seen
using similar arguments as [17, Sec. 8.2] that 𝑏 |𝑠𝑏 ⪯ 𝑎 |𝑠𝑎; hence, 𝜔(𝑏 |𝑠) ⊆ 𝜔(𝑎 |𝑠),
which implies that 𝑉adv(𝑎 |𝑠𝑎) ≥ 𝑣 ⟹ 𝑉adv(𝑏 |𝑠𝑏) ≥ 𝑣. □

Prop. 7.3 implies that one can use an abstraction 𝑎 to find a near-optimal strategy
for the concrete system 𝑏 , then estimate its optimality gap by computing 𝜖 = 𝑉U(𝑎) −𝑉adv(𝑎 |𝑠𝑎).3
7.3.3 SDSS design
Now that we have the relevant notions of abstraction in place, we can proceed to apply
them towards an SDSS design for System (2.2). For that, we fix the PETC traffic model
early triggering of Def. 2.17 as  . Note the peculiarities of this transition system: (i) the
input set of a given state is determined by the state’s output, which is its deadline; and, (ii)
the weight is solely a function of the chosen input. These characteristics simplify the job
of finding an abstraction that is alternatingly weight simulated by  . As we show, this can
be achieved by simply enhancing the 𝑙-complete models from Def. 5.3 with early-sampling
transitions. To do so, note that a transition from some state in 𝜎 to a state in 𝜎 ′ exists if∃𝒙 ∈ ℝ𝑛x such that 𝒙 ∈𝜎 and𝑴(ℎ𝑢)𝒙 ∈𝜎 ′ , (7.5)

for every 𝑢 respecting the deadline, i.e., 𝑢 ≤ 𝜎(1). We can now define the following abstrac-
tion:
integers for complexity analysis; since we assume weights to be in ℚ, this can always be done by appropriate
normalization.

3The 1-player-game values can be obtained for finite systems using Karp’s algorithm [41], whose complexity,(| || |), is much smaller than that for optimal mean-payoff games; for 𝑉U, a combination of Karp’s algorithm
and reachability on graphs can be used, retaining the same complexity.

7.4 Numerical example

7

107

Definition 7.2 (𝑙-predictive ETC traffic model with early sampling). Given an integer𝑙 ≥ 1, the 𝑙-predictive traffic model with early sampling of  is 𝑙 B (𝑙 ,𝑙 , ,𝑙 , ,𝐻𝑙 , 𝛾𝑙),
where

• 𝑙 B 𝜋𝑙 (),
• 𝑙 B {(𝜎,𝑢,𝜎 ′) ∈ 𝑙 × ×𝑙 ∣ 𝑢 ≤ 𝜎(1), ∃𝒙 ∈ ℝ𝑛x ∶ Eq. (7.5) holds},
• 𝐻𝑙 (𝑘1𝑘2...𝑘𝑙)B 𝑘1.
• 𝛾𝑙 (𝜎 ,𝑢,𝜎 ′)B ℎ𝑢.

Proposition 7.4. The relation𝑙 from Def. 5.2 is a simulation relation from  to 𝑙 , and−1𝑙 is a alternating simulation relation from 𝑙 to  .
Proof. The proof of alternating simulation is obtained by checking the conditions of Def 7.1:
(i) is trivially satisfied, and so is (ii) with 𝑈𝑙 (𝑘1𝑘2...𝑘𝑙) = 𝑈 (𝒙) = {1,2, ..., 𝑘𝑙}. Condition (iii) is
ensured by construction of 𝑙 and thanks to the fact that 𝛾(𝒙,𝑢,𝒙′) = 𝛾𝑙 (𝜎 ,𝑢,𝜎 ′) = ℎ𝑢. The
simulation then follows from Prop. 7.1. □

Obtaining the strategy and 𝜖. Now that we have a method to abstract  into a finite
system, we can use the methods from Section 7.3.2 to build a near-optimal SDSS for the
abstraction 𝑙 , then refine it for  . The main question is how to define 𝑙. Given the
results in [70], we suggest the following approach: (i) use the methods of Chapter 5 to
compute the exact PETC SAIST, or a close enough under-approximation of it; denote this
value by 𝑉 (𝑙 |𝑠PETC). Set 𝑙 = 1; Then, (ii) compute 𝑙 (Def. 7.2) and solve the mean-payoff
game for it, obtaining the strategy 𝑠𝑙 and the game value estimate 𝑣𝑙 . After that, with 𝑠′𝑙
being a refinement of 𝑠𝑙 to  , (iii) compute 𝑉U(𝑙) and verify, using a similar approach to
Chapter 5, (a sufficiently close under-approximation of) 𝑉adv( |𝑠′𝑙) 4 Finally, (iv) compute𝜖 = 𝑉U(𝑙) −𝑉 (𝑙) and (v) if the improvement 𝑉adv( |𝑠′𝑙) −𝑉 (𝑙 |𝑠PETC) is large enough, 𝜖
is small enough, or 𝑙 is too large,5 stop; otherwise, increment 𝑙 and redo steps (ii) to (v).

7.4 Numerical example
Let us revisit the numerical example of Chapter 4, which has a triggering condition that is
very aggressive in sampling reductions, but consider a small modification: instead of 𝑘 = 6,
which could arguably limit the SAIST of the PETC, we set 𝑘 = 20, which is high enough so
that the system in fact exhibits a maximal IST of 11.

First, we compute the PETC’s nominal performance using Algorithm 3: a SACE sim-
ulation is found with 𝑙 = 8, giving a SAIST of approximately 0.233. Interestingly, this is
smaller than the value of 0.395 that was obtained when we had limited 𝑘 to 6 — already
showing how sub-optimal ETC can be. Second, we compute a strategy following the steps
in Section 7.3.3 with 𝑙 = 1, which already gives massive improvements: it increases SAIST
to 𝑉adv( |𝑠′1) = 0.5, which is more than twice the PETC’s SAIST. Essentially, the obtained
4Even though Chapter 5 was proposed for the PETC strategy, the same approach can be used for any fixed
sampling strategy, as its essential feature is verifying cycles in the concrete system. We have implemented this
modified algorithm in ETCetera [34].

5The complexity of the online part of the algorithm value is proportional to 𝑙, as the controller must predict
the next 𝑙 deadlines of the current state 𝒙 under PETC. This involves simulating the PETC forward 𝑙 steps,
which takes at most 𝑙𝐾 operations of quadratic inequalities. Hence, a maximum 𝑙 may be needed given online
computational constraints.

7

108 7 Optimizing sampling performance

0 2 4 6 8 10 12 14 16 18 200.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Time 𝑡

IS
T

Deadline Our SDSS (𝑙 = 2) PETC

Figure 7.1: Comparison between simulated traces of our SDSS (𝑙 = 2) and of the PETC, both with the same initial
state.

0 2 4 6 8 10 12 14 16 18 200
0.2
0.4
0.6

Time 𝑡

IS
T
ru
nn

in
g
av
er
ag
e

PETC
Our SDSS (𝑙 = 2)

Figure 7.2: Running average of the ISTs generated from 10 different initial conditions under PETC and our
near-optimal SDSS using 𝑙 = 2.
strategy simply limits 𝑠(𝒙) to 5 for any 𝑘 ≥ 5 satisfying (𝒙,𝑘) ∈ 1. This is yet another
example on how limiting the maximum IST can actually have long-term benefits. With𝑙 = 2, the SAIST is improved further to 0.6; a simulation comparing this strategy and PETC
is depicted in Fig. 7.1. One can see that only around 𝑡 = 2.5 the SDSS samples before the
deadline for the first time; doing so prevents the bursts of IST equal to 0.1 that happen
recurrently with the PETC. The difference in (simulated) running averages between PETC
and our SDSS is displayed in Fig. 7.2. The SAIST for 𝑙 = 3 does not improve, and the upper
bounds are 𝑉U(1) = 𝑉U(2) = 𝑉U(3) = 𝜏 = 1.1.
Reproducing the results of this chapter. The algorithms proposed here have been
implemented in ETCetera. To reproduce the results above, run the following scripts:

• examples/optsample_abstractions.py to compute the abstractions needed
to generate the SAIST of the nominal PETC system and strategies, SAISTs and𝑉U values for 𝑙 = 1,2,3. This is a time consuming process that saves the obtained
abstractions in files for later use;

• examples/optsample_plots.py for Figures 7.1 and 7.2, as well as reporting
the numbers presented herein.

7.5 Discussion and conclusions

7

109

7.5 Discussion and conclusions
In this chapter we have presented an abstraction-based approach to build aperiodic sampling
strategies for LTI systems in order to maximize their average inter-sample time. For this
we rely on the properties of ETC strategies, which ensure stability and performance of the
closed loop whenever their “deadlines” are respected. This makes our abstraction inherently
safe from a control perspective, but one could relax this condition by allowing “late”
samplings as long as the abstraction can incorporate some information about the control
performance. Multiple ideas can be explored in this direction: e.g, further partitioning
the state-space with Lyapunov level sets and add reachability and safety specifications; or
adding a Lyapunov-based cost to the transitions of the abstraction. In the latter case, one
can either have a safety or reachability objective to the Lyapunov function (e.g., maximize
AIST subject to 𝑉 (𝝃 (𝑡)) ≤ 𝑟 for all 𝑡 > 𝑇), or play a multi-objective quantitative game [91]
(e.g., find the Pareto-optimal set of strategies that maximize AIST and control performance).

One open question is whether our methodology gives 𝑉 (𝑙) → 𝑉 () as 𝑙 →∞, or if
this is possible to obtain in general at all. We speculate that our method does not attain such
asymptotic property, because of our abstraction approach: the state-space is partitioned
based on a quotient-based method designed for verification, and later we enrich it with
early actions. This is not how the standard bisimulation refinement in games operates (see
[17, 92]). Abstracting the way we have proposed has benefits for the complexity of online
operations, as to find the related abstract state one needs to simulate an autonomous system
(the reference PETC) instead of a tree exploration involving all possible inter-sample times.
However, this approach cannot (generally) eliminate the nondeterminism associated with
sampling earlier than the deadline.

As seen in our numerical example, the gap 𝜖 is still very large after a few refinements.
We have discussed that our method may give far-from-optimal strategies, but it can also be
that 𝑉U provides an excessively conservative upper bound. In fact, the example we have
considered exhibits chaotic traffic, and upon inspection of its traffic model, it does have
an unstable cycle (11)𝜔 , which is exhibited in a behaviorally chaotic invariant set. Hence,
no matter how large 𝑙 is, it always holds that 𝑉U(𝑙) = 11. At the same time, given the
results from Chapter 6, it is impossible to obtain a strategy that gives 𝑉 ( |𝑠) = 11; that
would require by Proposition 6.8 that𝑴11 is Schur, which is not true. It may be possible,
we speculate, to obtain a SAIST arbitrarily close to 11.

Finally, our method suffers (as in all previous chapters) from the curse of dimensionality.
In the specific case of this chapter, solving the mean-payoff game is itself also a very
computationally intensive process: obtaining the strategy for 3 took a couple of hours,
even though the system has only 334 states and 1591 transitions. Being able to reduce
abstractions getting a similar (alternating-simulation-wise) system would be important for
the applicability of this method, as well as for other related control-design problems such
as scheduling. This is the topic of the next chapter.

8

111

8
Minimizing transition

systems modulo alternating
simulation eqivalence

This chapter studies the reduction of finite-state transition systems for control synthesis
problems. We revisit the notion of alternating simulation equivalence (ASE), a more relaxed
condition than alternating bisimulations, to relate systems and their abstractions. As with
alternating bisimulations, ASE preserves the property that the existence of a controller for the
abstraction is necessary and sufficient for a controller to exist for the original system. Moreover,
being a less stringent condition, ASE allows for further reduction of systems to produce smaller
abstractions. We provide an algorithm that produces minimal AS equivalent abstractions.
The theoretical results are then applied to obtain (un)schedulability certificates of periodic
event-triggered control systems sharing a communication channel. A numerical example
illustrates the results.

This chapter is based on � G. de A. Gleizer, K. Madnani and M. Mazo Jr. “A simpler alternative: minimizing
transition systems modulo alternating simulation equivalence”, in Proc. of the 25th Int’l Conf. on Hybrid Systems:
Computation and Control (HSCC ’22) [93].

8

112 8 Minimizing transition systems modulo alternating simulation eqivalence

8.1 Introduction

Control synthesis for finite transition systems (FTS), the problem of finding a con-
troller (or strategy) that enforces specifications on a closed-loop system, is a long

investigated problem [94]. Supervisory control, as it is often also referred to, has many
applications in e.g. automation of manufacturing plants, traffic control, scheduling and
planning, and control of dynamical and hybrid systems [17, 95]. The clearest advantage of
using finite transition systems to model a control problem is that a large class of control
problems in finite transition systems are decidable, meaning that the controller can be
obtained automatically through an algorithm, or that a definitive answer that no controller
can enforce the specifications is obtained. The disadvantage is often a very practical one:
the problem may be too large to be solved with existing computational resources, owing
to the large number of states and transitions the control problem may have. In particular,
this is the case of scheduling the transmissions of ETC, the problem we have addressed in
Chapter 3. As we have seen, it is often impossible to synthesize schedulers for more than a
handful of ETC systems, due to the state explosion of the composed system. This state-
space explosion problem is pervasive in the formal methods literature, and thus significant
attention has been devoted to reducing transition systems. The reduction requires a formal
relation between original and reduced system; for verification purposes, the most well-
known relation is that of simulation. Algorithms to reduce systems modulo simulations
soon emerged: the first being a reduction modulo bisimulation, where algorithms using
quotient systems are often used [39]; later, minimization modulo simulation equivalence
was devised in [96]. Simulation equivalence is a weaker relation than bisimulation but
allows to verify most of the same properties; in particular, any linear temporal logic (LTL)
property that can be verified on a system also holds for a simulation-equivalent system.1

For control synthesis, reducing the system using mere simulation notions is not enough.
As we have seen in Chapters 2 and 7, the natural notion for control synthesis is that of
alternating simulations. In fact, control synthesis amounts to solving a game where the
controller plays against an antagonistic environment, and standard simulations preserve
all possible moves from both players, including moves that are irrational for the game.
Surprisingly, though, there has been little investigation of the problem of reducing systems
modulo alternating bisimulations or alternating simulation equivalence. Reducing systems
using alternating simulation notions has many practical benefits: not only the synthesis
problems become smaller, and by extension the obtained controllers, making them easier
to implement in limited hardware; but it becomes even more important, we argue, when
solving control synthesis problems on a parallel composition of systems, one classic example
being scheduling. In this case, the size of the game grows exponentially with the number
of systems to be scheduled, hence any reduction on the individual systems results in an
exponential reduction of the size of the composed game.

In this chapter we present a novel algorithm to reduce systems w.r.t. alternating-
simulation equivalence (ASE), a different and relaxed notion than the more popular relative,
alternating bisimulation. ASE is stronger than alternating simulation relations, as it guar-
antees not only that controllers can be transferred from abstraction to concrete system,
but also that non-existence of a controller in the abstraction implies non-existence of a
1Larger classes of logic properties can be verified, such ACTL*, ECTL*, ECTL, ACTL as its sublogics, see [96]. For
control, we are typically interested in LTL specifications.

8.1 Introduction

8

113

controller for the concrete system. Hence the reduction via ASE is sound and complete for
control synthesis. We prove that our algorithm in fact obtains a minimal system that is
alternating-simulation equivalent to the original, and this minimal system is unique up
to a special type of isomorphism. The algorithm is composed of five steps: (i) computing
the maximal alternating simulation relation from the system to itself; (ii) forming the
quotient system; (iii) eliminating irrational and/or redundant actions from the controller;
(iv) eliminating irrational transitions from the environment; and (v) deleting states which
are inaccessible from any of the initial states. The complexity of the algorithm is 𝑂(𝑚2),
where 𝑚 is the number of transitions in the system to be reduced. This result is a very
interesting theoretical contribution on its own right, generalizing the results in [96]. Be-
cause these simulation relations are closed under composition, the presented algorithm
has a strong practical relevance for synthesis over composed systems. We demonstrate
these benefits in the ETC scheduling problem (Chapter 3) as a case study. The insights
from our algorithm allow to prove that, under some conditions, ETC and STC are equally
schedulable. Additionally, we use our algorithm on a numerical case study, obtaining in the
best case a system 50x smaller than the original one. This resulted in a reduction in CPU
time of the scheduling problem of several orders of magnitude in some cases. Furthermore,
the reduced systems also provide important insights to the user, as the reduced system
somehow indicates the bottlenecks that must be addressed to improve schedulability.

8.1.1 Related Work
Algorithms for reducing state space preserving bisimulation using quotient systems have
been extensively studied [97, 98], see [39, 99] for an overview. For many practical results,
simulation equivalence, a coarser equivalence relation, is preferable. Various algorithms to
obtain quotients based on simulation equivalence have been proposed,e.g., [100, 101], as
well as their associated quotients [102]. However, unlike bisimulation, creating quotients
based on simulation equivalence does not result in minimization [96]. Our algorithm and
results are akin to those of [96]; we have here a generalization of its results, as alternating
simulation reduces to simulations if one of the players has only one choice in every state.

The reduction of systems using alternating simulation equivalence has been addressed
in [92, 103]. Different from the current work, Majumdar et al. propose a semi-algorithm that
aims at reducing infinite systems into finite systems (not necessarily minimal); instead, here
we want to minimize finite systems by reducing the number of states and transitions. These
two approaches are complimentary and can be used in combination to obtain minimal
finite realizations of certain classes of infinite systems (namely, class 2 systems as per [92]).

Reduction of other types of finite transition systems has been addressed, as in, e.g., [104]
for alternating Büchi automata modulo different notions of simulations, namely direct, fair,
and delayed simulations. Although such automata also represent games, they are defined
differently than what is usual for control: an alternating Büchi automaton accepts a word
if the controller can ensure it by playing against the environment; every such word forms
the language of the automaton, and simulations must preserve this language in some sense.
This is fundamentally different than most control problems, where one is not interested in
specific words, but rather that the set of all words generated by the system satisfies some
specifications. In addition, [104] does not contain results on minimality.

8

114 8 Minimizing transition systems modulo alternating simulation eqivalence

8.1.2 A case for alternating simulation eqivalence
Let us revisit the definitions of alternating bisimulation and alternating simulation equiva-
lence (ASE), from Section 2.2.3:
Definition (Alternating bisimulation). Two transition systems 𝑎 and 𝑏 are said to be
alternatingly bisimilar, denoted by 𝑎 ≅AS 𝑏 , if there is an alternating simulation relation
(ASR)  from 𝑎 to 𝑏 such that its inverse −1 is an ASR from 𝑏 to 𝑎 .
Definition (Alternating simulation equivalence (ASE)). Two transition systems 𝑎 and 𝑏
are said to be alternating-simulation equivalent, denoted by 𝑎 ≃AS 𝑏 , if there is an ASR 
from 𝑎 to 𝑏 and an ASR ′ from 𝑏 to 𝑎 .

Clearly, ASE reduces to bisimulation when ′ = −1; nevertheless, it preserves by
definition the if-and-only-if property we are interested in: if a controller for 𝑎 exists,
then it exists for 𝑏 (from 𝑎 ⪯AS 𝑏); and if a controller for 𝑏 exists, then it exists for 𝑎
(from 𝑏 ⪯AS 𝑎). Moreover, a second relation′ is an extra degree of freedom to find a
reduced system that is ASE to the original—in other words, there exist more systems ASE
to a given  than alternatingly bisimilar to it. There is a price to pay for this freedom: the
controller designed for the reduced system will not be as permissive as the best controller
that could be created by the original system; that is, it may contain fewer actions available
to pick from at any point in the system’s run. Nonetheless, this can be regarded as a
benefit, considering the sheer size that the strategies for large FTSs can have; in addition,
in practical implementations the strategies need to be determinized anyway.

8.2 Main result
Let the size of a finite transition system (FTS), denoted by | |, be given by the triplet (| |, |0|,| |). This induces a partial order amongst systems sizes using the natural extension of≤ on numbers, i.e., |( ,0, , , ,𝐻)| ≤ |( ′, ′0, ′, ′, ′,𝐻 ′)| iff | | ≤ | ′|, |0| ≤ | ′0|,
and | | ≤ | ′|. In this section, we present our main result:2 given an FTS  , there exists a
polynomial time algorithm that constructs a minimal FTS min equivalent to  modulo
alternating simulation (AS). That is, min ≃AS  and |min| ≤ |′| for any ′ satisfying′ ≃AS  . (i) We first provide an overview of the algorithm to obtain such a minimal
system. (ii) We then provide the details of the each step of the algorithm and prove its
correctness by showing that all steps preserve alternating simulation equivalence. (iii)
We show that the output of the algorithm is indeed the unique minimum FTS (up to
isomorphism) alternating-simulation equivalent to the input FTS  . This, in turn, implies
that for every FTS there is a unique minimum FTS equivalent modulo AS system that can
be constructed using our algorithm. As we explain the algorithm, we use as a running
example the FTS from Fig. 8.1, which is a simple discrete-clock PETC traffic model (see
Model 3.5).

8.2.1 Overview of the algorithm
The algorithm can be summarized as follows. For a system  B ( ,0, , , ,𝐻), we
denote by TranSize() ∶= | | + |0|, a measure for number of transitions in the system 3.
2When a proof is not right after the result statement, see it in the Appendix.
3We add the cardinality of 0 to total number of transitions because in principle the results we use from [105]
assumes that there is a unique initial state. Multiple initial states can be simulated by adding silent transitions

8.2 Main result

8

115

𝑞0,1
T

start
𝑞0,2
W

𝑞1,1
T

start
𝑞1,2
W

𝑞1,3
W

𝑞1,4
W

w

s

w,s
w,s
w

s

s

w w

w,s
w,s

Figure 8.1: A finite LTS representing a PETC traffic model with
scheduler actions. Node labels are states (top) and their outputs
(bottom), and edge labels are actions.

𝑞0,1 𝑞1,1 𝑞0,2 𝑞1,3 𝑞1,2𝑞1,4
Figure 8.2: Maximal alternating simu-
lation relation max for the system in
Fig. 8.1: 𝑞 −→ 𝑞′ means that (𝑞,𝑞′) ∈max. Self-loops and relations implied
from transitivity are omitted.

Let | | = 𝑛 and TranSize() = 𝑚.
Step 0: Construct the maximal alternating simulation relation, denoted bymax,

from  to itself. This can be constructed using fixed-point algorithms as in [43] or the
more efficient algorithm presented in [105], whose complexity is 𝑂(𝑚2).

Step 1: Create a quotient system using max of  by combining all the equivalent
states (and hence all their incoming transitions and outgoing transitions) to get a quotient
of the systemmodulo AS. This requires𝑂(𝑛+𝑚) computations given the partition (which
can be constructed while building max) as constructing the quotient transition relation
from  requires taking the union of all the outgoing transitions from any state in the given
partition.

Recall that, if (𝑞,𝑞′) ∈max then if the controller can meet a specification from the
state 𝑞 then it will definitely meet it from state 𝑞′. Moreover, if the controller fails to meet
the specification from 𝑞′ it will definitely fail from 𝑞. In other words, 𝑞′ (resp. 𝑞) is more
advantageous position for the controller (resp. environment) as compared to 𝑞 (resp. 𝑞′).
This intuition is central to the next two steps.

Step 2: Remove irrational choices and redundant choices for the controller:
For every 𝑥 ∈  and every 𝑎,𝑏 ∈ 𝑈 (𝑥),𝑎 ≠ 𝑏 if for every 𝑥𝑏 ∈ Post(𝑥,𝑏) there exists an𝑥𝑎 ∈ Post(𝑥,𝑎) such that (𝑥𝑎 , 𝑥𝑏) ∈ max, then delete all transitions from 𝑥 on 𝑎. In other
words, remove 𝑎 from 𝑈 (𝑥). This is because, for every possible environment move on
taking an action 𝑏 leads to a more (or equally) advantageous state for the controller as
compared to any possible state the system can end up on action 𝑎 by controller. To check
this, every transition is compared with every other transition at most once. Hence, the
complexity of this step in the worst case is bounded by 𝑂(𝑚2).

Step 3: Remove sub-optimal irrational choices for the environment: For every
pair 𝑥1, 𝑥2 ∈ 0, if (𝑥1, 𝑥2) ∈max, then the choice of environment to start from 𝑥2 will be
irrational as 𝑥1 is more advantageous position for the environment to start with. Hence, we
remove 𝑥2 from the initial state set (which is clearly an irrational move for the environment).
Similarly, if (𝑥1, 𝑥2) ∈ max, then for every 𝑎 ∈  if 𝑥′ ∈ Pre(𝑥1, 𝑎) ∩ Pre(𝑥2, 𝑎), remove

from a dummy initial state to all the states in 0 which requires |0 | extra transitions

8

116 8 Minimizing transition systems modulo alternating simulation eqivalence

𝑞0,1
T

start
𝑞0,2
W

𝑞1,1
T

start
𝑞1,2
W

𝑄
W

w

s

w, s

w, s

w

s

s

w

w, s

(a) Step 1: quotient system.

𝑞0,1
T

start
𝑞0,2
W

𝑞1,1
T

start
𝑞1,2
W

𝑄
W

w

s

s

s

w

s

s

w

s

(b) Step 2: redundant actions removed (affected transitions in
red).

𝑞0,1
T

start
𝑞0,2
W

𝑞1,1
T

𝑞1,2
W

𝑄
W

w

s

s

w

s

s

w

s

(c) Step 3: irrational transitions removed.

𝑞0,1
T

start
𝑞0,2
W

w

s

s

(d) Step 4: inaccessible states removed. This is a minimal
system modulo ASE.

Figure 8.3: System of Fig. 8.1 after steps 1 (top left), 2 (top right), 3 (bottom left), and 4 (bottom right), where𝑄 = {(𝑞1,3), (𝑞1,4)}.
transition (𝑥′, 𝑎,𝑥2) from  . This is because, if the system is at 𝑥′, and if the controller
chooses an action 𝑎, the choice of moving to 𝑥2 instead of 𝑥1 is irrational for the environment
as 𝑥1 is more advantageous state for the environment. hence, we delete the transition(𝑥′, 𝑎,𝑥2). Similarly to step 3, before its deletion (or not), any transition is compared with
all other transitions at most once. Hence, the worst case complexity is bounded by 𝑂(𝑚2).

Step 4: Remove inaccessible states: Finally remove all the states that are not accessi-
ble from any initial state. This is a routine step with complexity 𝑂(𝑛 +𝑚). Note that while
it seems that Steps 3 and 4 only remove transitions, this does not mean that they do not
contribute in the reduction of number of states. Due to the removal of transitions, it could
happen that a large fraction of the graph becomes unreachable. This is the step that cashes
in the benefit of steps 3 and 4 in terms of reduction in state size.

The maximal alternating simulation relation from our working example (Fig. 8.1) is
depicted in Fig. 8.2. Figure 8.3 illustrate the successive application of each step 1–4 on it.

8.2.2 Preserving eqivalence modulo AS: correctness results
In this section, we formally present the construction/reduction mentioned in each step
1–4 and show that those reductions preserve equivalence modulo AS. These proofs are

8.2 Main result

8

117

available in the appendix for readability reasons. We also present results on the dimension
reduction resulting from each step. We fix  B ( ,0, , , ,𝐻) for this section as a
given FTS and apply our reduction steps. For any 𝑖 ∈ {1,2,3,4} the system resulting of
applying step 𝑖, 𝑆𝑖(), is denoted by 𝑖 .

Step 1: Creating a quotient system. First, a quotient system 1 of  is created usingmax as follows.
Definition 8.1 (Alternating simulation quotient). The system 1 B (1,0,1,1,1, ,𝐻1)
is called the alternating simulation quotient of  w.r.t. max iff 1 =  , 0,1 = {𝑄 ∣ 𝑄 ∈ ∧∃𝑞 ∈ 𝑄. 𝑞 ∈0},1 = , 1 = {(𝑄,𝑢,𝑄′) ∣ ∃𝑞 ∈ 𝑄. ∃𝑞′ ∈ 𝑄. (𝑞,𝑢,𝑞)′ ∈ }, ∀𝑄 ∈1.𝐻1(𝑄) =𝐻(𝑞) for any 𝑞 ∈ 𝑄 (𝐻1 is well-defined as ∀𝑞,𝑞′ ∈ 𝑄. 𝐻(𝑞) = 𝐻(𝑞′)).

This construction is similar to the celebrated quotient systems used for simulation and
bisimulation; here we just make use of the already existing maxinstead of performing
a refinement algorithm, like it has been done for simulation equivalence [96]. Step 1
preserves equivalence modulo AS:

Lemma 8.1.  ≃AS 1.
Let Part ∶  → 1 be the function that maps every state to its corresponding partition,

and max1 ⊆ 1 ×1 be the smallest relation satisfying (I) ∀(𝑝,𝑞) ∈max.(Part(𝑝),Part(𝑞)) ∈max1 and, (II) ∀(𝑃,𝑄) ∈max1 .∃𝑝 ∈ 𝑃.∃𝑞 ∈ 𝑄.(𝑝,𝑞) ∈max. Note that ∀𝑃,𝑄 ∈ 1.∃𝑝 ∈ 𝑃.∃𝑞 ∈𝑄.(𝑝,𝑞) ∈max ⇒∀𝑝′ ∈ 𝑃.∀𝑞′ ∈ 𝑄.(𝑝′, 𝑞′) ∈max. This is because every 𝑃,𝑄 ∈ 1 are sets
containing states of  which are equivalent modulomax. Hence, if any element of 𝑃 is
related to any element 𝑄 with respect tomax, then by transitivity ofmax all elements
of 𝑃 are related to all elements of 𝑄. Hence, (II) implies (III) ∀(𝑃,𝑄) ∈max1 .∀𝑝 ∈ 𝑃.∀𝑞 ∈𝑄.(𝑝,𝑞) ∈max. The following fact holds:
Lemma 8.2. (1) max1 is the maximal ASR from 1 to itself. Moreover, (2) max1 is a partial
order.

In fact, if max is a partial order (i.e., (𝑝,𝑞) ∈max ⟹ (𝑞,𝑝) ∉max for every 𝑝 ≠ 𝑞),
then step 1 does not affect  .
Proposition 8.1. |1| ≤ | | and TranSize(1) ≤ TranSize(), and no pair 𝑃,𝑄 of 1 is equiv-
alent modulo AS. Moreover, ifmax is not antisymmetric, then |1| < | |.

Step 2: Removing irrational and redundant controller
choices. We construct 2 B (2,0,2,2,2,2,𝐻2) from  as follows. 2 =  , 0,2 = 0,2 =  , 2 =  , 𝐻2 = 𝐻 . Before defining 2, we define an ordering ⊑ on elements of × : (𝑝′,𝑢′) ⊑ (𝑝,𝑢) ⟺ 𝑢 ∈ 𝑈 (𝑝) ∧ ∀(𝑝,𝑢,𝑞) ∈  . ∃(𝑝′,𝑢′, 𝑞′) ∈  . (𝑞′, 𝑞) ∈max. Note
that ⊑ is a transitive relation. We say that an action 𝑢′ is an irrational move at a state 𝑝
of an FTS  iff ∃𝑢.(𝑝,𝑢) ⊑ (𝑝,𝑢′) ∧¬((𝑝,𝑢′) ⊑ (𝑝,𝑢)). State 𝑝 in this case is said to have
irrational moves. Similarly, we say that 𝑢,𝑢′ are equally rational at a state 𝑝 of an FTS iff(𝑝,𝑢) ⊑ (𝑝,𝑢′) ∧ ((𝑝,𝑢′) ⊑ (𝑝,𝑢)). Moreover, if 𝑢 and 𝑢′ are distinct then the state 𝑝, in this
case, is said to have redundant moves. We construct 2 by removing all the transitions on
irrational actions at 𝑝. Followed by this, we make available only one of the equally rational
actions. This procedure preserves equivalence modulo AS. Let  ∶  →  be the identity
function.

8

118 8 Minimizing transition systems modulo alternating simulation eqivalence

Lemma 8.3. 2 ⪯  ⪯max 2. Hence,  ≃AS 2.
Proposition 8.2. |2| = | |, TranSize(2) ≤ TranSize(), and for every state 𝑞 ∈ 2, 2(𝑞)
only contains non-redundant rational actions. Moreover, if there are irrational or redundant
actions available from any state 𝑞 in  , then TranSize(2) < TranSize().

Step 3: Eliminating Irrational Choices for Environment. We construct 3 B(3,0,3,3,3,3,𝐻3) from  as follows. 3 =  , 3 = , 3 =  , 𝐻3 = 𝐻 . Before the
construction of 0,3 and 3 we define a new relation amongst transitions: any transition(𝑝,𝑢,𝑞′) in  is called a younger sibling of a transition (𝑝,𝑢,𝑞) in  with respect to  iff(𝑞,𝑞′) ∈max ∧ (𝑞′, 𝑞) ∉max. Similarly, an initial state 𝑞′0 is called a younger sibling of
yet another initial state 𝑞0 with respect to  iff (𝑞0, 𝑞′0) ∈ max ∧ (𝑞′0, 𝑞0) ∉ max. Then,0,3 and 3 are constructed from 0 and  by deleting all the younger siblings. In other
words, given any state 𝑝 and 𝑢 ∈ 𝑈 (𝑞), if there are two transitions (𝑝,𝑢,𝑞′) and (𝑝,𝑢,𝑞)
in  and if 𝑞 ⪯AS 𝑞′ but not vice-versa (i.e., 𝑞 is strictly more advantageous position for
the environment as compared to 𝑞′) then delete the transition (𝑝,𝑢,𝑞′) from  , as the
environment has no reason to choose 𝑞′ over 𝑞. Note that this definition is similar to the
younger brother definition of [96], but here we need to take the label of the transitions into
account while defining the “sibling” relationship due to the definition of AS.

Lemma 8.4.  ⪯ 3 ⪯max  . Thus, 3 ≃AS  .
Proposition 8.3. |3| = | |,TranSize(3) ≤ TranSize(), and 3 contains no transitions or
initial states that are younger siblings of another transition or initial state, respectively.
Moreover, if there is any younger sibling transition or initial state in  , then TranSize(3) <
TranSize().

Step 4: Removing states inaccessible from initial state set 0 in  . Let ∞ be the
set of such states inaccessible from any initial state in 0. Then 4 B (4,0, ,4, ,𝐻),
where 4 =  ⧵∞, 4 =  ∩ (4 ×4 ×4).
Lemma 8.5. 4 ≅𝐴𝑆 
Proposition 8.4. |4| ≤ | |, TranSize(4) ≤ TranSize(), and all states in 4 are accessible
from 0,4. Moreover, if ∞ is non-empty then |4| < | |.

The combination of Lemmas 8.1, 8.3, 8.4 and 8.5 gives our main correctness result:

Theorem 8.1.  ≃AS 𝑆4(𝑆3(𝑆2(𝑆1()))).
8.2.3 Optimality results
We have seen that our algorithm generates a system that is equivalente modulo ASE to its
input system. Here we present the results showing that its output has minimal size, and in
fact this minimal system is unique up to a special notion of isomorphism.

Theorem 8.2 (Necessary condition for minimality modulo ASE). Given any FTS  , a
minimal FTS min B (𝑚𝑖𝑛 ,0,𝑚𝑖𝑛 ,𝑚𝑖𝑛𝑚𝑖𝑛 ,𝑚𝑖𝑛 ,𝐻𝑚𝑖𝑛) equivalent to the former modulo
AS necessarily satisfies the following conditions:

8.2 Main result

8

119

𝑁1 For any 𝑝,𝑞 ∈ 𝑚𝑖𝑛 , (min(𝑝) ≃AS min(𝑞)) ⇒ 𝑝 = 𝑞. That is, no two distinct states are
equivalent modulo AS to each other.𝑁2 For any 𝑝 ∈ 𝑚𝑖𝑛 , 𝑝 does not have any irrational or redundant moves.𝑁3 ∄ 𝑡1, 𝑡2 ∈ 𝑚𝑖𝑛 , 𝑥1, 𝑥2 ∈ 0,𝑚𝑖𝑛 such that 𝑡1 is a younger sibling of 𝑡2 or 𝑥1 is a younger
sibling of 𝑥2.𝑁4 All the states in 𝑚𝑖𝑛 are connected from some 𝑥0 ∈ 0,𝑚𝑖𝑛 .

Proof. This theorem is a consequence of Propositions 8.1, 8.2, 8.3, 8.4. If any condition𝑁𝑖 , 𝑖 ∈ {1,2,3,4}, is violated by min, Step 𝑖 can be applied to get a strictly smaller system
preserving equivalence modulo AS which contradicts that min is minimal. □

We call any FTS satisfying the conditions in Theorem 8.2 as potentially minimal systems.
Our algorithm satisfies such conditions:

Lemma 8.6. 𝑜𝑢𝑡 = 𝑆4(𝑆3(𝑆2(𝑆1()))), satisfies the necessary conditions in Theorem 8.2.

By Proposition 8.1, we know that after step 1 we get a 𝑆1() that satisfies 𝑁1. The proof
(see Section 8.A) then shows that after performing each step 𝑖, we get a system satisfying𝑁𝑖 . Moreover, if the input to the system satisfied any of the previous properties, they will
continue to respect them.

In the following we show that the conditions in Theorem 8.2 are also sufficient for
minimality modulo ASE. In fact, we prove something stronger: such a minimal system
is unique up to a variant of isomorphism which we introduce as bijective alternating
bisimulation isomorphism (BABI). We show this by proving that any two potentially
minimum systems 1 and 2 such that 1 ≃AS 2 implies that they are BABI to each other.
It is important to note that for two structures to be connected via a BABI implies the
existence of a bijective alternating bisimulation relation, but the converse is not necessarily
true. Hence, the former is stricter than the latter. In fact, the existence of a bijective
alternating bisimulation does not necessarily preserve the transition size 4.

Definition 8.2 (Bijective alternating bisimulation isomorphism). Given any two systems𝑗 B (𝑗 ,0,𝑗 ,𝑗𝑗 ,𝑗 ,𝐻𝑗), 𝑗 ∈ {1,2}, we say that 1 ≅is 2 iff there exists a bijective function ∶ 1 → 2 such that ∀𝑝 ∈ 1.(𝑝) = 𝑞 implies:
(1) 𝑝 ∈ 0,1 ⟺ 𝑞 ∈ 0,2.
(2) 𝐻1(𝑝) = 𝐻2(𝑞). Output maps are preserved.
(3) There exists a bijection 𝐺𝑝,𝑞 ∶ 1(𝑝) → 2(𝑞) such that ∀𝑎 ∈ 1(𝑝).Post2 (𝑞,𝑏) ={(𝑝′) ∣ 𝑝′ ∈ Post1 (𝑝,𝑎)} where 𝑏 = 𝐺𝑝,𝑞(𝑎). That is, input labels can be renamed

on a per-state basis, as long as the renaming is one-to-one and reversible.

Clearly, 1 ≅is 2 implies |0| = |1| (implied by the existence of the bijection ),|0,1| = |0,2| (implied by item (1) and bijectivity of), total number of transitions are equal
in both 1,2 (implied by item (3)). Hence, |1| = |2| and TranSize(1) = TranSize(2).
Lemma 8.7. Let 1 and 2 be any potentially minimal systems. Then, 1 ≃AS 2 implies1 ≅is 2.
4As a counterexample, consider two single state systems, one with self loop on 𝑎 and other with two self loops
each on 𝑎 and 𝑎̃.

8

120 8 Minimizing transition systems modulo alternating simulation eqivalence

Lemmas 8.6 and 8.7 imply our main optimality result:

Theorem 8.3. The system 𝑜𝑢𝑡 = 𝑆4(𝑆3(𝑆2(𝑆1()))) is the unique (up to BABI) minimal
system that is ASE to  .
8.3 Case Study: scheduling PETC systems
Let us now revisit the problem of scheduling multiple PETC systems in a shared network
using finite transition systems (Section 3.6), taking a slightly more general version of it. We
consider a network containing 𝑝 PETC control-loops and 𝐶 < 𝑝 communication channels
with channel occupancy time ℎ, which is also the shared checking time of all PETC loops
in the network. Our main goal here is to determine whether there exists a strategy that, at
every time 𝑡 ∈ ℎℕ, given the history of sampled states from all plants, determines which
(if any) loops must send their samples to the controller. The number of loops sending
their samples must be no greater than 𝐶 , and, as usual, the PETC triggering times must
be respected (only early triggers are allowed to be requested). That is, no controller can
miss its PETC-given deadline. If a scheduler can be found, we also want to retrieve one
such scheduling strategy for real-time implementation. For simplicity and without loss
of generality, we again assume for the rest of this chapter that the time units are selected
such that ℎ = 1.

In the models from the previous chapters, we have relied of the fact that the ETC
system is applied on a disturbance-free LTI system; this allows the quotient models (and
refinements thereof) that we have proposed. However, when disturbances are present
[23] or when considering nonlinear systems [30], it is not possible or computationally
feasible to obtain such quotient systems. As, a state in the abstraction 𝑞 is associated to
a region in the state-space 𝑞 ⊆ ℝ𝑛x whose inter-sample time lies in a known interval{𝜏 low𝑞 , 𝜏 low𝑞 +1, ...𝜏high𝑞 }. This effectively constitutes a power simulation, which attains the
same properties as approximate simulations (see [21] for details). In the cases presented
in the previous chapters, it turns out that we can build the abstraction in such a way that𝜏 low𝑞 = 𝜏high𝑞 for all 𝑞. Nonetheless, like in our case, the abstraction process returns the
state set abs and a transition relation abs ⊂ abs ×abs ×abs, where abs = {1,2, ..., 𝑘},
where (𝑞, 𝜏 ,𝑞′) ∈ abs means that 𝑞′ can be reached from 𝑞 if the chosen inter-sample time
is 𝜏 . From this, we derive the following generalized definition of PETC traffic model with
discrete clocks, after Model 3.5:

Definition 8.3 (Generalized PETC traffic model with discrete clocks). Given a maximum
initial discrete-time delay 𝑑 ∈ ℕ, the generalized discrete-clock PETC traffic model with early
triggers is the transition system PETC B ( ,0, {w,s},wait ∪sched ∪trigger ∪0,𝐻) where

•  = {(𝑞, 𝑐) ∣ 𝑞 ∈ abs, 𝑐 ∈ {1,2, ..., 𝜏high𝑞 }}∪{𝐼1, 𝐼2,… , 𝐼𝑑},
• 0 = {𝐼1},
• wait = {(𝑞, 𝑐),w, (𝑞, 𝑐 + 1) ∣ (𝑞, 𝑐) ∈ abs and 𝑐 < 𝜏high𝑞 },
• sched = {(𝑞, 𝑐),s, (𝑞′, 0) ∣ (𝑞, 𝑐) ∈ abs and (𝑞, 𝑐,𝑞′) ∈ abs,
• trigger = {(𝑞, 𝑐),w, (𝑞′, 0) ∣ (𝑞, 𝑐) ∈ abs and 𝑐 ≥ 𝜏 low𝑞 and (𝑞, 𝑐,𝑞′) ∈ abs,
• 0 B {𝐼𝑖 ,s, (𝑞,0) ∣ 𝑖 ∈ ℕ≤𝑑 , (𝑞,0) ∈ }∪{𝐼𝑖 ,w, 𝐼𝑖+1 ∣ 𝑖 ∈ ℕ<𝑑−1},
• 𝐻(𝑞,𝑐) = T if 𝑐 = 0, or W otherwise.

8.3 Case Study: scheduling PETC systems

8

121

As in Section 3.6, the actions w (for wait) and s (for sample) are the scheduler actions;
because the spontaneous trigger of a given loop is out of the control of the scheduler, these
transitions are considered (adversarial) nondeterminism for the scheduler. This is why the
set trigger is a set of sampling transitions, but they occur when the action w is chosen. The
output T represents when a transmission has just occurred, while W means that the loop
has instead waited. The states 𝐼𝑖 represent initialization states.

Our running example, Fig. 8.1, depicts such a simple PETC traffic model with only two
regions, disregarding the initial states.5 This example contains only two regions0 and1, mapped into 𝑞0 and 𝑞1, respectively, with 𝜏 low𝑞0 = 𝜏high𝑞0 = 2, and 𝜏 low𝑞1 = 3 and 𝜏high𝑞1 = 4.
The states (𝑞1, 3) and (𝑞1, 4) represent the triggering phase of place 𝑞1: even if the scheduler
decide to wait, the sampling can occur in any of these states. This reflects the added
uncertainty of these models when a quotient-based abstracion is not possible.

8.3.1 A general result on ETC scheduling
Using the reduction in Section 8.2, a first general result can be derived for scheduling of
PETC.

Definition 8.4 (Reduced PETC traffic model). The reduced PETC traffic model of  in
Def. 8.3 is the transition system ′PETC B ( ′,0, {w,s}, ′

wait ∪ ′
sched ∪ ′0,𝐻) where

•  ′ B {(𝑞, 𝑐) ∣ 𝑞 ∈ 𝑄,𝑐 ∈ {1,2, ..., 𝜏 low𝑞 }},
• E′wait B {(𝑞, 𝑐),w, (𝑞, 𝑐 + 1) ∣ (𝑞, 𝑐) ∈ 𝑋 ′ and 𝑐 < 𝜏 low𝑞 },
• E′sched B {(𝑞, 𝑐),s, (𝑞′, 0) ∣ (𝑞, 𝑐) ∈ 𝑋 ′ and (𝑞, 𝑐,𝑞′) ∈ Δ},
•  ′0{𝐼𝑖 ,s, (𝑞,0) ∣ 𝑖 ∈ ℕ≤𝑑 , (𝑞,0) ∈  ′}∪{𝐼𝑖 ,w, 𝐼𝑖+1 ∣ 𝑖 ∈ ℕ<𝑑−1},
• 𝐻(𝑞,𝑐) = T if 𝑐 = 0, or W otherwise.
The difference between Def. 8.4 and Def. 8.3 is that, in the former, the sampling always

happens at most at 𝜏 low𝑞 for every 𝑞, and that this point in time it is a scheduled sampling.
In other words, there is no event-based sampling anymore, but the scheduler may decide to
sample at the first moment in which it knows that an event trigger could occur. This is very
similar in spirit to self-triggered control, where the controller chooses the sampling time by
predicting a worst-case situation in which the event-triggered control would occur. Thus,
Def. 8.4 can also be regarded as a traffic model for STC systems, again with the addition of
optional early sampling. Fig. 8.4 shows the reduced model from Fig. 8.1. The interesting
fact is that these two approaches are equivalent from a schedulability perspective:

Proposition 8.5. The PETC traffic model from Def. 8.3 and its reduced model from Def. 8.4
are alternating-simulation equivalent.

Proof. Consider the identity relation  B {(𝑥,𝑥) ∣ 𝑥 ∈ } as a trivial ASR from PETC to
itself. Take any state 𝑥 = (𝑞,𝜏 low𝑞). Then Post(𝑥,s) ⊂ Post(𝑥,w), where this subset relation
is strict. Therefore, the action w is an irrational action on 𝑥 , thus we can remove it from𝑥 , preserving ASE by Lemma 8.3. This removal renders (𝑞, 𝑐) inaccessible for all 𝑐 > 𝜏 low𝑞 .

5All states of the form (𝑞,0) are unavoidable by the controller from the initial state 𝐼1. That is, after 𝑑 steps, the
controller cannot prevent that one such state (𝑞,0) has been visited; hence, for all effects of system reduction,
the system as described in Def. 8.3 is the same as the examples depicted in Fig. 8.1 and subsquent figures, where
all states of the form (𝑞,0) are marked as initial.

8

122 8 Minimizing transition systems modulo alternating simulation eqivalence

𝑞0,1
T

start
𝑞0,2
W

𝑞1,1
T

start
𝑞1,2
W

𝑞1,3
W

w

s

s

s

w

s

s

w

s

Figure 8.4: Reduced PETC traffic model of Fig. 8.1.

Thus, these states are removed by applying step 4, again preserving ASE by Lemma 8.5.
The obtained system is as in Def. 8.4. □

The interpretation of this result is simple: the choice of waiting at time 𝜏 low𝑞 has no
advantage over sampling, because in the worst case the environment may choose to sample
anyway. Hence, from a schedulability perspective, ETC brings no benefit over a STC-like
sampling strategy that chooses to trigger on the earliest ETC triggering time. Naturally, this
general result does not give the minimal system, which depends on the structure of the
particular abstraction, as will be illustrated in the next section.

Remark 8.1. Prop. 8.5 can also be extended to CETC traffic models as those of [21, 30], where
the times associated to a region 𝑞 are an interval subset of ℝ+ of the form [𝜏 low𝑞 , 𝜏high𝑞].
The reason is that the results on correctness from Section 8.2 do not rely on finiteness of the
transition system (only the ones on optimality do).

8.3.2 Numerical example
Consider 𝑝 PETC systems of the form (2.2)–(2.4) with

𝑨 = [0 1−2 3] , 𝑩 = [01] ,𝑲 = [1 −4]𝑐(𝑠,𝒙, 𝒙̂) = |𝒙 − 𝒙̂| > 𝜎|𝒙|, (8.1)

with ℎ = 0.05,𝑘 = 50 and 𝜎 = 0.7. Since all systems have the same model, only one traffic
abstraction is needed. We use the 𝑙-complete models from Chapter 5 for increasing values
of 𝑙 and enhance them with early triggers as in Chapter 7. For a given 𝑙 , denote the resulting
PETC traffic model (Def. 8.3) by 𝑙 . We consider the problem of scheduling on a single
channel, and set for each plant 𝑑 = 10 initial time steps for the first sample to be requested.

We implemented our minimization algorithm in Python and ran it on 𝑙 , 𝑙 = 1,2,3. The
statistics of the traffic model before and after minimization modulo ASE are displayed
in Table 8.1. The additional reduction w.r.t. only step 1 (alternating quotient system) is
evident in all cases. The most interesting phenomenon is the striking reduction of the traffic
models for 𝑙 = 1,2 to a system with only 11 states and 21 transitions, which is depicted

8.3 Case Study: scheduling PETC systems

8

123

Table 8.1: Size of abstractions before and after minimization, and CPU time to minimize the system (in all cases|𝑋0 | = 1).
Original Quotient Minimal CPU|𝑋 | | | |𝑋 | | | |𝑋 | | | time𝑙 1 153 832 118 571 11 21 657 ms

2 518 1879 405 1566 11 21 8.24 s
3 683 2412 604 2262 587 2126 15 s

Wstart W W W W W W W W W T

Figure 8.5: Minimized system for the numerical example, 𝑙 ∈ {1,2}. State labels are their outputs, dashed lines are
w actions and full lines are s actions.

in Fig. 8.5. Not only this is a massive reduction which greatly simplifies the scheduling
problem, it also informs the user that refining the traffic model by increasing 𝑙 from 1 to 2
is irrelevant when it comes to schedulability. As Fig. 8.5 suggests, these traffic models reduce
to a single task with recurring deadline of five steps, after the initial phase. Only with𝑙 = 3 more complex behavior can be enforced by the scheduler, which becomes apparent
by the fact that the minimization is not so impacting: 14% in states and 12% in transitions.
This is to be expected because the original systems we abstract are deterministic, and
higher values of 𝑙 reduce the nondeterminism of the abstraction, giving less room for
transition elimination in our algorithm. In all cases, the CPU times are within seconds,
with an approximately quadratic dependence on the size of the original system. It is worth
noting that our Python implementation uses the naive fixed-point algorithm to get the
MAS relation, and this step dominated the CPU time of the reduction. Since the times were
satisfactory, no performance optimizations were attempted.

Because of the refinement properties of the abstractions 𝑙 (namely 𝑙+1 ⪯AS 𝑙 ⪯ 𝑙+1),
scheduling with these abstractions is sound but not complete: if 𝑝 ETC plants are detected
to be unschedulable for 𝑙, one may still find a schedule using a higher value of 𝑙. Thus,
we employed the following scenario: first, set 𝑙 = 1 and 𝑝 = 2 and increase 𝑝 until the
systems are unschedulable; then, increase 𝑙 and try again. We used ETCetera to solve
the scheduling problem.

Our first attempt used a Python implementation of the composition and safety game
solution, where the transitions are encodedwith Python dictionaries. Withoutminimization
and with 𝑝 = 2, the scheduling problem took only 801 ms to be concluded, a number close to
the 657 ms taken to minimize each system; this is expected, given the quadratic complexity
of the minimization algorithm. Impressively, with only 𝑝 = 3 the scheduling problem without
reduction crashed due to memory overflow.6After performing the minimization, we were able
to compute a scheduler for 𝑝 = 5, a process that took 28.7 min to conclude. With 𝑝 = 6,
memory overflow also occurred with the minimal systems.
6The experiments were performed in a Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz with 31 GB RAM.

8

124 8 Minimizing transition systems modulo alternating simulation eqivalence

Table 8.2: Scheduler size and CPU time using BDDs.

Original Minimal𝑝 𝑙 Schedule size CPU time Schedule size CPU time
2 1 3 kB 3 ms 894 B 498 µs
3 1 7.6 kB 8 ms 1.9 kB 783 µs
4 1 19 kB 16 ms 4.2 kB 1.4 ms
5 1 47 kB 36 ms 9.5 kB 2.5 ms
6 1 None 7.35 s None 101 ms
6 2 None 15.4 min None 84 ms
6 3 None 35.5 min None 28.1 min

Our second attempt to solve the scheduling problem used BDDs to encode the transition
systems. Table 8.2 summarizes the results of this experiment. As expected, for all cases
in 𝑙 ∈ {1,2} the problem was solved significantly faster with the minimized systems. The
difference is much more significant in the non-schedulable cases, which is to be expected
because it often requires more iterations in the fixed-point algorithm to detect that no
schedule is viable. The difference is particularly massive for 𝑙 = 2, owing to the immense
reduction of the system dimensions in this case. For the case with 𝑙 = 3 the time reduction
was not as significant as in the aforementioned cases, which is in par with the smaller
system size reduction that was obtained in this case.
Reproducing these results. The following Python scripts within ETCetera can be
executed to reproduce the results presented above:

• examples/altsim_casestudy_abstractions.py to generate the traffic ab-
stractions, which are saved as “pickle” files in the folder /saves/; this process
takes about 30 minutes;

• examples/altsim_casestudy_reductions.py to run the minimization al-
gorithm on the different abstractions (𝑙 = 1,2,3) and generate Table 8.1;

• examples/altsim_casestudy_scheduling_fpiter_min.py and
examples/altsim_casestudy_scheduling_fpiter_min.py to generate
schedulers on original and minimal systems, respectively, using the naive fixed point
iteration; this can take hours and both scripts should be terminated by the operating
system due to excessive memory usage as reported above;

• examples/altsim_casestudy_scheduling_bdd.py and examples/
altsim_casestudy_scheduling_bdd_min.py to generate schedulers on orig-
inal and minimal systems, respectively, using BDDs, and generating the data reported
in Table 8.2.

8.4 Conclusion and Future Work
We have revisited the notion of alternating simulation equivalence, and argued about
the benefits it can bring for size reduction of finite transition systems in the context of
controller synthesis. An algorithm was devised to produce minimal abstractions modulo
alternating simulation equivalence. The applicability of these theoretical developments

8.4 Conclusion and Future Work

8

125

was then illustrated in the context of scheduling, providing interesting insights for the
analysis of schedulability of event triggered systems.

This work opens the door to several further investigations, in particular: (i) extending
the ASE notion to weighted transition systems to produce abstractions preserving quantita-
tive properties; (ii) extensions of these same ideas to timed games; (iii) designing on-the-fly
versions of the proposed reduction algorithm; and (iv) implementing symbolically the
abstraction algorithm employing binary decision diagrams.

8

126 8 Minimizing transition systems modulo alternating simulation eqivalence

8.A Correctness and reduction proofs
Proof of Lemma 8.1. We first observe that if any pair of states (𝑝,𝑞) ∈ max then for all
states 𝑝′ equivalent to 𝑝 and 𝑞′ equivalent to 𝑞 modulo AS, we have that (𝑝′, 𝑞′) ∈max (by
transitivity of max). Hence ∀(𝑝,𝑞) ∈ max ⟺ ∀𝑝′ ∈ Part(𝑝),𝑞′ ∈ Part(𝑞)(𝑝′, 𝑞′) ∈max,
where Part ∶  → 1 is the function that maps every state to its corresponding partition.

To prove the lemma we show that (A)1B {(𝑝,Part(𝑞)) ∣ (𝑝,𝑞) ∈max} is an ASR from to 1 and (B)2 B {(Part(𝑝),𝑞) ∣ (𝑝,𝑞) ∈max} is an ASR from 1 to  .
For (A) to be true, 1 must satisfy requirements (i), (ii) and (iii) from Def. 2.9. Note

that 1 contains the set {(𝑝,Part(𝑝) ∣ 𝑝 ∈ }. By construction, for every state 𝑞 ∈ 0,
Part(𝑞) ∈0,1 and for every 𝑞 ∈ ,𝐻(𝑞) = 𝐻1(Part(𝑞)), so requirements (i) and (ii) are satisfied.
Assume that 1 does not satisfy requirement (iii), i.e., 𝜓 B ∃𝑞 ∈  . ∃𝑢 ∈ 𝑈 (𝑞). 𝜑(𝑞,𝑢)
where 𝜑(𝑞,𝑢)B ∀𝑢1 ∈ 𝑈1(Part(𝑞)). ∃𝑄′ ∈ Post1 (Part(𝑞),𝑢1). ∀𝑞′ ∈ Post (𝑞,𝑢). (𝑞′,𝑄′) ∉1.
Now, for any such 𝑄′, note that by construction of 1, (Part(𝑞), 𝑢1,𝑄′) ∈ 1 implies that∃𝑝 ∈ Part(𝑞),𝑝′ ∈ 𝑄′. (𝑝,𝑢1, 𝑝′) ∈  . However, notice that (𝑞′,𝑄′) ∉1 ⟹ ∀𝑝′ ∈ 𝑄′ (𝑞′, 𝑝′) ∉max. Therefore, 𝜑(𝑞,𝑢) implies 𝜑′(𝑞,𝑢)B ∀𝑢1 ∈ 𝑈1(Part(𝑞)). ∃𝑄′ ∈ Post1 (Part(𝑞),𝑢1), ∃𝑝′ ∈𝑄′. ∀𝑞′ ∈ Post (𝑞,𝑢). (𝑞′, 𝑝′) ∉max.

Now let us inspect the set 𝑈1(Part(𝑞)). By definition of 1, 𝑈1(Part(𝑞)) B {𝑢 ∣ 𝑢 ∈𝑈 (𝑝), (𝑞,𝑝) ∈max, (𝑝,𝑞) ∈max}Hence, ∀𝑢1 ∈𝑈1(Part(𝑞)) ∃𝑄′ ∈ Post1 (Part(𝑞),𝑢1), ∃𝑝′ ∈𝑄′
can be replaced by ∀𝑝.(𝑝,𝑞)(𝑞,𝑝) ∈max ∀𝑢1 ∈ 𝑈 (𝑝). ∃𝑝′ ∈ Post (𝑝,𝑢1). Applying this and𝜑′ we obtain 𝜑′′ B ∀𝑝. (𝑝,𝑞), (𝑞,𝑝) ∈max. ∀𝑢1 ∈ 𝑈 (𝑝). ∃𝑝′ ∈ Post (𝑝,𝑢1)∀𝑞′ ∈ Post (𝑞,𝑢).(𝑞′, 𝑝′) ∉max. The formula 𝜓 then implies ∃𝑞 ∈  . ∃𝑢 ∈ 𝑈 (𝑞).∀𝑝. (𝑝,𝑞), (𝑞,𝑝) ∈max ∀𝑢1 ∈𝑈 (𝑝). ∃𝑝′ ∈ Post (𝑝,𝑢1). ∀𝑞′ ∈ Post (𝑞,𝑢) (𝑞′, 𝑝′) ∉ max. Finally, we particularize ∀𝑝 to𝑝 = 𝑞 (which is a sound step as max has all reflexive entries, i.e., (𝑞,𝑞) ∈ 𝑀𝐴𝑆), change
Part(𝑞) to 𝑞 (this is implied by transitivity of ⪯AS and ≃AS) and rearrange the initial ex-
istential quantifiers to get ∃𝑞. ∃𝑢 ∈ 𝑈 (𝑞).∀𝑢1 ∈ 𝑈 (𝑞). ∃𝑝′ ∈ Post (𝑞,𝑢1). ∀𝑞′ ∈ Post (𝑞,𝑢).(𝑞′, 𝑝′) ∉max. This implies thatmax(that contains all the reflexive pairs) fails to satisfy
requirement (iii) of for system  to itself, which is a contradiction.

For (B), conditions (i) and (ii) also hold trivially. We use contradiction again for condition
(iii): suppose 𝜙B ∃(𝑃,𝑞) ∈2. ∃𝑢1 ∈𝑈1(𝑃)∀𝑢 ∈𝑈 (𝑞)∃𝑞′ ∈ Post (𝑞)∀𝑃 ′ ∈ Post1 (𝑃 ,𝑢1). (𝑃 ′, 𝑞′)∉2. By construction of 1, the underlined subformula is equivalent to ∀𝑝∗ ∈ 𝑃.𝑢1 ∈𝑈 (𝑝∗)∀𝑝′ ∈ Post (𝑝∗,𝑢1). (Part(𝑝′),𝑞′) ∉2. By construction of2, and because all states
in Part(𝑝′) are equivalent, (Part(𝑝′),𝑞′) ∉2 ⟹ (𝑝′, 𝑞′) ∉max. Hence, the underlined
subformula implies ∀𝑝∗ ∈ 𝑃.𝑢1 ∈ 𝑈 (𝑝∗)∀𝑝′ ∈ Post (𝑝∗,𝑢1). (𝑝′, 𝑞′) ∉max. Substituting in𝜙, it implies 𝜙′ B ∃(𝑃,𝑞) ∈2. ∃𝑢1 ∈ 𝑈1(𝑃)∀𝑢 ∈ 𝑈 (𝑞)∃𝑞′ ∈ Post (𝑞)∀𝑝∗ ∈ 𝑃.𝑢1 ∈ 𝑈 (𝑝∗)∀𝑝′ ∈Post (𝑝∗,𝑢1). (𝑝′, 𝑞′) ∉max.

Now, note that by construction of2, (𝑃 ,𝑞) ∈2 ⟹ ∃𝑝 ∈ 𝑃. (𝑝,𝑞) ∈max. Using this
fact and particularizing ∀𝑝∗.𝑢1 ∈ 𝑈 (𝑝∗) by 𝑝, (which is sound because 𝑢1 ∈ 𝑈 (𝑝)) 𝜙′ implies∃(𝑝,𝑞) ∈max. ∃𝑢1 ∈ 𝑈1(𝑃)∀𝑢 ∈ 𝑈 (𝑞)∃𝑞′ ∈ Post (𝑞)∀𝑝′ ∈ Post (𝑝,𝑢1) . (𝑝′, 𝑞′) ∉max. This
is a contradiction to the fact that max is a maximal ASR from  to itself. □

Proof of Lemma 8.2. (1)max1 is an ASR from1 to itself: We show thatmax1 satisfies all
3 requirements to be an ASR from 1 to itself. By definition, ∀𝑃 ∈ 1, (𝑃 ,𝑃) ∈max1 . Hence,
Requirement 1, trivially holds. As maxis an AS, ∀(𝑝,𝑞) ∈max.𝐻 (𝑝) = 𝐻(𝑞). Moreover,
by definition of 1, ∀𝑃 ∈ 1.∀𝑝 ∈ 𝑃.𝐻 (𝑝) = 𝐻 ′(𝑃). By definition (III), (𝑃 ,𝑄) ∈max1 implies∀𝑝 ∈ 𝑃,𝑞 ∈ 𝑄.(𝑝,𝑞) ∈max1 , which implies 𝐻 ′(𝑃) = 𝐻 ′(𝑄) (Requirement 2). As max is an

8.A Correctness and reduction proofs

8

127

AS from  to itself. Hence, ∀(𝑝,𝑞) ∈max.∀𝑢1 ∈ 𝑈 (𝑝).∃𝑢2 ∈ 𝑈 (𝑞).∀(𝑞,𝑢2, 𝑞′) ∈  .∃(𝑝,𝑢1, 𝑝′) ∈ .(𝑝′, 𝑞′) ∈max. This along with (I), (II) and (III) implies ∀(𝑝,𝑞).(Part(𝑝),Part(𝑞)) ∈max1 ⇒[∀𝑢1 ∈𝑈1(Part(𝑝)).∃𝑢2 ∈𝑈1(Part(𝑞))∀𝑞′.(Part(𝑞),𝑢2,Part(𝑞′)) ∈ ∃𝑝′.(Part(𝑝),𝑢1,Part(𝑝′)) ∈ 1.(Part(𝑝′),Part(𝑞′)) ∈max1 which is equivalent to requirement 3.max1 is Maximal: Suppose max1 is not maximal. Hence, ∃𝑃,𝑄 ∈ 1 such that1(𝑃) ⪯AS 1(𝑄) but (𝑃 ,𝑄) ∉max1 . Note that (𝑃 ,𝑄) ∉max1 implies ∃𝑝 ∈ 𝑃.∃𝑞 ∈ 𝑄(𝑝,𝑞) ∉max. But 1(𝑃) ⪯AS (𝑝) and 1(𝑄) ⪯AS (𝑞). By transitivity of ⪯AS, (𝑝) ⪯AS (𝑞). This
implies, max is not a maximal AS from  to itself which is a contradiction. (2) Asmax1
is a maximal alternating simulation relation from 1 to itself, ∀𝑃,𝑄 ∈ 11(𝑃) ⪯AS 1(𝑄)
implies (𝑃 ,𝑄) ∈max1 . The relation ⪯AS is reflexive and transitive which impliesmax1 is
also reflexive and transitive. Supposemax1 is not anti-symmetric. There exists a distinct
pair of states 𝑃,𝑄 ∈ 1 such that (𝑃 ,𝑄) ∈max1 ∧ (𝑄,𝑃) ∈max1 . This, along with the defini-
tion ofmax1 implies, ∃𝑝 ∈ 𝑃.∃𝑞 ∈ 𝑄.(𝑝,𝑞) ∈max ∧ (𝑞,𝑝) ∈max. But this implies, 𝑝 and 𝑞
lie in the same partition. Hence, 𝑃 = 𝑄, which is a contradiction. □

Proof of Prop. 8.1. If max is not anti-symmetric, it has at least one pair of states 𝑝,𝑞 such
that (𝑝,𝑞) ∈max and (𝑞,𝑝) ∈max. While creating the quotient, these states are combined
together reducing the number of states by at least 1. Moreover, we never add a new
transition in this reduction. □

Proof of Lemma 8.3. To prove (A) the identity map  ∶  →  is an ASR from 2 to  and
(B)max is an ASR from  to 2.

(A) Requirements (i) and (ii) are trivially satisfied as 0 = 0,2, and 𝐻 = 𝐻2. To
prove that requirement (iii). Suppose it does not. Then, ∃𝑞. ∃𝑢 ∈ 𝑈2(𝑞). ∀𝑢′ ∈ 𝑈 (𝑞).∃𝑞′′ ∈Post (𝑞,𝑢′).∀(𝑞′ ∈ Post1 (𝑞,𝑢) 𝑞′ ≠ 𝑞′′ holds. By definition of 2, for all 𝑞 ∈ , 𝑈 (𝑞) ⊇ 𝑈2(𝑞)
and ∀𝑢 ∈ 𝑈2(𝑞).𝑞′ ∈  Post2 (𝑞,𝑢) = Post2 (𝑞,𝑢). Just substituting 𝑢′ = 𝑢 (in which case
we can substitute Post1 = Post) (iii) implies I is not an AS from 𝑆2 to itself which is a
contradiction.

(B) Requirements (i) and (ii) are trivially satisfied as 0 = 0,2, and 𝐻 = 𝐻2. To show
that requirement (iii) is satisfied, we need to show that ∀(𝑝,𝑞). ∈max. ∀𝑢1 ∈ 𝑈 (𝑃). ∃𝑢2 ∈𝑈2(𝑞). ∀(𝑞,𝑢2, 𝑞′) ∈ 2. ∃(𝑝,𝑢1, 𝑝′) ∈  . (𝑝′, 𝑞′) ∈ max. Note that (𝑞,𝑢2, 𝑞′) ∈ 2 condition
is within the scope of ∃𝑢2.𝑢2 ∈ 𝑈2(𝑞). By construction, (𝑞,𝑢2, 𝑞′) ∈ 2 is equivalent to(𝑞,𝑢2, 𝑞′) ∈  when 𝑢2 ∈ 𝑈2(𝑞). Hence, we need to show ∀(𝑝,𝑞). ∈ max. ∀𝑢1 ∈ 𝑈 (𝑃).∃𝑢2 ∈ 𝑈2(𝑞). ∀(𝑞,𝑢2, 𝑞′) ∈  . ∃(𝑝,𝑢1, 𝑝′) ∈  .(𝑝′, 𝑞′) ∈ max. In other words, we need to
show 𝜅 B ∀(𝑝,𝑞) ∈ max. ∀𝑢1 ∈ 𝑈 (𝑃). ∃𝑢2 ∈ 𝑈2(𝑞).(𝑝,𝑢1) ⊑ (𝑞,𝑢2). We know that max
is an ASR from  to itself. Hence, it satisfies 𝜙 B ∀(𝑝,𝑞). ∈ max∀𝑢1 ∈ 𝑈 (𝑝). ∃𝑢2 ∈𝑈 (𝑞). ∧ (𝑝,𝑢1) ⊑ (𝑞,𝑢2). Now observe that 𝑢2 ∈ 𝑈 (𝑞) ⟺ 𝑢2 ∈ 𝑈2(𝑞) ∨ 𝑢2 ∈ 𝑈 (𝑞) ⧵ 𝑈2(𝑞).
By using this identity in the formula 𝜙, we get 𝛾 = ∀(𝑝,𝑞) ∈ max.∀𝑢1 ∈ 𝑈 (𝑝).∃𝑢2.[𝑢2 ∈𝑈2(𝑞) ∧ (𝑝,𝑢1) ⊑ (𝑞,𝑢2)] ∨ [𝑢2 ∈ 𝑈 (𝑞) ⧵𝑈2(𝑞) ∧ (𝑝,𝑢1) ⊑ (𝑞,𝑢2)]. We analyze the underlined
sub formula. Note that, by construction of 2, 𝑢2 ∈ 𝑈 (𝑞) ⧵𝑈2(𝑞) implies ∃𝑢′2 ∈ 𝑈2(𝑞)(𝑞,𝑢2) ⊑(𝑞,𝑢′2). Using this implication in the underlined formula, we get 𝜑(𝑝,𝑢1, 𝑞,𝑢2) = [∃𝑢′2 ∈𝑈2(𝑞). (𝑞,𝑢2) ⊑ (𝑞,𝑢′2) ∧ (𝑝,𝑢1) ⊑ (𝑞,𝑢2)]. Recall that ⊑ is a transitive relation. Hence,𝜑 ≡ 𝜑′(𝑝,𝑢1, 𝑞) = [∃𝑢′2 ∈ 𝑈2(𝑞).(𝑝,𝑢1) ⊑ (𝑞,𝑢′2)]. Note that 𝜑′ no longer contains 𝑢2 as free
variable. Hence, substituting the underlined formula with 𝜑′(𝑝,𝑢1, 𝑞) we get: ∀(𝑝,𝑞) ∈max. ∀𝑢1 ∈ 𝑈 (𝑝). ∃𝑢2. [𝑢2 ∈ 𝑈2(𝑞)∧ (𝑝,𝑢1) ⊑ (𝑞,𝑢2)] ∨ [∃𝑢′2.𝑢′2 ∈ 𝑈2(𝑞)(𝑝,𝑢1) ⊑ (𝑞,𝑢′2)]. Re-
naming 𝑢′2 as 𝑢2, we get 𝜅. Hence, 𝜙 ⟹ 𝜅, which proves the result. □

8

128 8 Minimizing transition systems modulo alternating simulation eqivalence

Proof of Prop. 8.2. If there exists a state 𝑞 ∈  and distinct 𝑢,𝑢′ ∈  such that (𝑞,𝑢) ⪯max(𝑞,𝑢′) then either 𝑢 is an irrational action or, both 𝑢 and 𝑢′ are equally rational at
state 𝑞. In both the cases the transitions outgoing from 𝑞 labelled 𝑢′ will be removed.
Hence | ′| < | |. Note that removing irrational and redundant actions do not introduce new
irrational or redundant actions. As 2 is constructed from  by removing all the transitions
corresponding to irrational and redundant actions the former contain only rational moves
at every state. □

Proof of Lemma 8.4. Let 𝑄𝑦𝑠 and 𝑦𝑠 be set of all the initial states and transitions, respec-
tively, which are younger siblings. Hence, 0,2 = 0 ⧵ 𝑄𝑦𝑠 and 2 =  ⧵ 𝑦𝑠 . We show
(A)Identity map  ∶  →  is an AS from  to 2 (B)max is an AS from 2 to  . (A)
As 0,2 ⊆ 0, Requirement 1 is trivially satisfied. The state set  and the output map 𝐻
are same in both 2 and  implying satisfaction of requirement 2. Suppose requirement 3
is not satisfied. ∃(𝑝,𝑝) ∈ . ∃𝑢1 ∈ 𝑈 (𝑝). ∀𝑢2 ∈ 𝑈 (𝑝). ∃(𝑝,𝑢2, 𝑝′) ∈ 2. ∀(𝑝,𝑢1, 𝑝′′) ∈  . 𝑝′ ≠ 𝑝′′.
But 2 ⊆  . This leads to a contradiction (as it implies that a transition exists in 2 but not
in  ⊇ 2).

(B)We now show thatmax is an AS from2 to . We need to show that for every initial
state 𝑞 ∈0 there exists an initial state 𝑞′ ∈0 such that (𝑞′, 𝑞) ∈max. Asmax is reflexive,
we have that for every initial state 𝑞 ∈ 0 ⧵𝑄𝑦𝑠 there exists an initial state 𝑞 ∈ 0 such that𝑞,𝑞 ∈max. For 𝑞 ∈ 𝑄𝑦𝑠 there exists a 𝑞′ ∈ 0 (the “elder sibling”) such that (𝑞′, 𝑞) ∈max.
Requirement 2 trivially holds as the set of states and output map is identical in both 2 and . For proving requirement 3, recall thatmax is an AS from  to itself. Hence, 𝜑 = ∀(𝑝,𝑞) ∈max. ∀𝑢1 ∈ 𝑈 (𝑝). ∃𝑢2 ∈ 𝑈 (𝑞). ∀𝑞′. (𝑞,𝑢2, 𝑞′) ∈  → ∃𝑝′.(𝑝,𝑢1, 𝑝′) ∈  ∧ (𝑝′, 𝑞′) ∈max. As2 =  ⧵ 𝑦𝑠 , ∃𝑝′. (𝑝,𝑢1, 𝑝′) ∈  is equivalent to {∃𝑝′. (𝑝,𝑢1, 𝑝′) ∈ 𝑦𝑠} ∨ {∃𝑝′. (𝑝,𝑢1, 𝑝′) ∈2}. Thus, we get, 𝜑′ = ∀(𝑝,𝑞) ∈ max. ∀𝑢1 ∈ 𝑈 (𝑝). ∃𝑢2 ∈ 𝑈 (𝑞). ∀𝑞′. (𝑞,𝑢2, 𝑞′) ∈  →[{∃𝑝′. (𝑝,𝑢1, 𝑝′) ∈ 2 ∧(𝑝′, 𝑞′) ∈max}∨{∃𝑝′. (𝑝,𝑢1, 𝑝′) ∈ 𝑦𝑠 ∧(𝑝′, 𝑞′) ∈max)}]. (𝑝,𝑢1, 𝑝′) ∈𝑦𝑠 ∧ (𝑝′, 𝑞′) ∈max implies(by existence of “elder brother” for 𝑝,𝑢1, 𝑝′) ∃𝑝′′. (𝑝,𝑢1, 𝑝′′) ∈2 ∧ (𝑝,𝑢1, 𝑝′) ∈ 𝑦𝑠 ∧ (𝑝′′, 𝑝′) ∧ (𝑝′, 𝑞′) implies(by transitivity of ⪯AS) {∃𝑝′′.(𝑝,𝑢1, 𝑝′′) ∈ 2 ∧(𝑝′′, 𝑞′)}. Finally substituting this implication in 𝜑′ we get:∀(𝑝,𝑞) ∈ max. ∀𝑢1 ∈ 𝑈 (𝑝). ∃𝑢2 ∈ 𝑈 (𝑞). ∀𝑞′.(𝑞,𝑢2, 𝑞′) ∈  . [{∃𝑝′. (𝑝,𝑢1, 𝑝′) ∈2 ∧ (𝑝′, 𝑞′) ∈max}∨ {∃𝑝′. ∃𝑝′′. (𝑝,𝑢1, 𝑝′′) ∈ 2 ∧ (𝑝′′, 𝑞′)}].

Removing ∃𝑝′ from the underlined formula as there is no reference to 𝑝′ in the formula
within this quantifier,∀(𝑝,𝑞) ∈max.∀𝑢1 ∈ 𝑈 (𝑝). ∃𝑢2 ∈ 𝑈 (𝑞). ∀𝑞′. (𝑞,𝑢2, 𝑞′) ∈  → [{∃𝑝′. (𝑝,𝑢1, 𝑝′) ∈2 ∧ (𝑝′, 𝑞′) ∈max}∨{∃𝑝′′. (𝑝,𝑢1, 𝑝′′) ∈ 2 ∧ (𝑝′′, 𝑞′) ∈max)}].

Renaming 𝑝′′ to 𝑝′ in the underlined subformula and applying idempotent (𝜙 ∨𝜙 ≡ 𝜙),
we get∀(𝑝,𝑞) ∈ max. ∀𝑢1 ∈ 𝑈 (𝑝). ∃𝑢2 ∈ 𝑈 (𝑞). ∀𝑞′. (𝑞,𝑢2, 𝑞′) ∈  → ∃𝑝′. (𝑝,𝑢1, 𝑝′) ∈2 ∧ (𝑝′, 𝑞′) ∈max,
which is Requirement 3. □

8.A Correctness and reduction proofs

8

129

Proof of Prop. 8.3. If there exists a transition (or an initial state) that is a younger sibling,
we remove that transition from  (or make the state non-initial) reducing TranSize(𝑆) by at
least 1. Note that we do not add or remove any states. Hence, the state size is not affected.
By construction, we eliminate all the transitions or initial states which are younger siblings
of another transition or initial state, respectively. Note that, removing a younger sibling
does not add new younger siblings. □

Proof of Lemma 8.5. We show that the identity map  ∶ 4 → 4 satisfies all the require-
ments for being an ASR from  to 4 and vice-versa (note that  = {(𝑥,𝑥) ∣ 𝑥 ∈ 4} is
a subset of both  ×4 and 4 × , hence it is a valid relation in both directions). Re-
quirement (i) trivially holds (for both directions) as the initial state sets are the same.
Requirement (ii) holds (for both directions) as the output map is the same and  is an iden-
tity function. Suppose requirement (iii) does not hold. That is, ∃(𝑝,𝑝) ∈ .∃𝑢1 ∈ 𝑈 (𝑝).∀𝑢2 ∈𝑈4(𝑝).∃(𝑝,𝑢2, 𝑝′) ∈ 4.∀(𝑝,𝑢1, 𝑝′′) ∈  .𝑝′ ≠ 𝑝′′. This is a contradiction since 4 ⊆  (by con-
struction) and the statement implies that there exists a transition in 4 not present in . For the inverse direction, assume again that requirement (iii) does not hold. That is,∃(𝑝,𝑝) ∈ . ∃𝑢1 ∈ 𝑈4(𝑝). ∀𝑢2 ∈ 𝑈 (𝑝). ∃(𝑝,𝑢2, 𝑝′) ∈  . ∀(𝑝,𝑢1, 𝑝′′) ∈ 4. 𝑝′ ≠ 𝑝′′. If 𝑝′ ∈ 4, it
leads to a contradiction (with 𝑢2 = 𝑢1) since 4 contains all elements of  where the source
and the target states are in 4. If 𝑝′ ∉ 4, then by definition 𝑝 is not reachable from any
state in 4 which again is a contradiction as 𝑝 ∈ 4. □

Lemma 8.8. Let  ,′ be any two FTSs with the same state set  . Let max be the maximal
ASR from  to itself, and  ∶  →  be an identity function. If ′ ⪯  ⪯max ′ (or ⪯ ′ ⪯𝑀𝐴𝑆 ), thenmax is the maximal ASR from ′ to itself.
Proof. Given ′ ⪯  ⪯𝑀𝐴𝑆 ′. Hence, ∀(𝑝,𝑞) ∈ 𝑀𝐴𝑆.′(𝑃) ⪯AS (𝑃) ⪯AS (𝑄). This
implies (1) ′ ⪯max1 ′ (by transitivity). As max is also a maximal relation from  to
itself, it contains all the reflexive pairs i.e. pairs of the form (𝑝,𝑝). Hence, ∀𝑝 ∈  .′(𝑝) ⪯AS(𝑝) ⪯AS ′(𝑝). Hence, (2) ∀𝑝 ∈  .(𝑝) ≃AS ′(𝑝). We now show thatmax is the maximal
relation satisfying (1). Suppose it is not. Then, there exists (𝑝′, 𝑞′) ∉ max1 such that′(𝑝′) ⪯AS ′(𝑞′). By (2) (𝑝′) ≃AS ′(𝑝′) ⪯AS ′(𝑞′) ≃AS (𝑞′). This implies (𝑝′) ⪯AS(𝑞′). But this is a contradiction as (𝑝′, 𝑞′) ∉max and max is a maximal ASR from  to
itself. (3) Hence,max is the maximal ASR from ′ to itself.

Similar arguments as above prove that, if ⪯ ′ ⪯𝑀𝐴𝑆  is satisfied,max is a maximal
alternating simulation from ′ to itself. □

Proof of Lemma 8.6. Let 0 =  and 𝑖 = 𝑆𝑖(𝑖−1). Let 𝑖 B (𝑖 ,0,𝑖 ,𝑖 ,𝑖 ,𝑖 ,𝐻𝑖). By con-
struction of 2,3. 1 = 2 = 3. Let  = 1. Moreover, recall that 1 = 2 = 3.

By Proposition 8.1, we know that 𝑆1() satisfies 𝑁1 and has a maximal alternating
simulation relation max1 to itself which is anti-symmetric. Note that former is equivalent
to latter.

By Proposition 8.1 𝑆2(𝑆1()) satisfies 𝑁2 and By Lemma 8.3, 𝑆2(𝑆1()) ⪯ 𝑆1() ≺max1𝑆2(𝑆1()). By Lemma 8.8, latter implies max1 is the maximal alternating relation from𝑆2(𝑆1()) to itself. This implies that it satisfies condition 𝑁1 too.
By Prop. 8.3, 3 satisfies 𝑁3. By Lemma 8.4, 𝑆2(𝑆1()) ⪯ 𝑆3(𝑆2(𝑆1()) ⪯max1 𝑆2(𝑆1().

By Lemma 8.8, max1 is a maximal alternating simulation from 𝑆3(𝑆2(𝑆1()) to itself;

8

130 8 Minimizing transition systems modulo alternating simulation eqivalence

moreover, max1 is already shown to be anti-symmetric. Hence, 3 = 𝑆3(𝑆2(𝑆1()) satisfies𝑁1. We now show that 3 satisfies 𝑁2. We only delete non-deterministic transitions on
each action to get 3 from 2 Hence, (1) ∀𝑝 ∈  𝑈2(𝑝) = 𝑈3(𝑝). Moreover, to get 3 we only
delete transitions which are younger siblings. Hence, (2) ∀𝑝 ∈  .∀𝑎 ∈ 𝑈2(𝑝) every state 𝑝′ ∈Post2 (𝑝,𝑎) alternately simulates some state 𝑝′′ ∈ Post3 (𝑝,𝑎) (where 𝑝′′ = 𝑝′ if (𝑝,𝑎,𝑝′′)was
not deleted in 3 else 𝑝′′ is such that (𝑝,𝑎,𝑝′′) is an elder sibling to (𝑝,𝑎,𝑝′)). Suppose 3 has
either an irrational action or redundant action at state 𝑝. This implies (3) there exist distinct𝑢,𝑢′ such that (𝑝,𝑢′) ⊑3 (𝑝,𝑢). In other words, every state 𝑞 ∈ Post3 (𝑝,𝑢) alternately
simulates a state 𝑞′′ ∈ Post3 (𝑝,𝑢′). Moreover, by construction, (4)∀𝑝 ∈  .∀𝑏 ∈ 𝑈3(𝑝) every
state 𝑝′ ∈ Post3 (𝑝,𝑏) alternately simulates some state 𝑝′′ ∈ Post3 (𝑝,𝑏). Combining (2),(3),
(4) by substituting 𝑎 = 𝑢 in (2) and 𝑏 = 𝑢′ in (4), distinct 𝑢,𝑢′ imply (𝑝,𝑢′) ⊑2 (𝑝,𝑢). This
implies 2 does not satisfy 𝑁2 which results in a contradiction.

Finally, note that, deletion of inaccessible states cannot affect the equivalence modulo
alternating simulation equivalence. Moreover, trivially, removing these states do not
add new states equivalent to an existing state, add irrational or redundant moves or, add
younger siblings to the transition system, hence preserving𝑁1,𝑁2,𝑁3. And by construction,𝑜𝑢𝑡 = 𝑆4(𝑆3(𝑆2(𝑆1())) satisfies 𝑁4. Hence, 𝑜𝑢𝑡 , the output of our algorithm, satisfies all
the above mentioned conditions. □

Proof of Lemma 8.7. Given potentially minimal systems 𝑗 B (𝑗 ,0,𝑗 , ,𝑗 ,𝑗 ,𝑗 ,𝐻𝑗), 𝑗 ∈{1,2}, such that 1 ≃AS 2 we show that 1 ≅is 2. As 1 ≃AS 2, denote the maximal
ASR from 1 to 2 by max1 and that from 2 to 1 by max2 . Let  ⊆ 1 ×2 such thatB {(𝑝,𝑞) ∣ (𝑝,𝑞) ∈max1 ∧(𝑞,𝑝) ∈max2 } =max1 ∩(max2)−1. Note that any pair (𝑝,𝑞) ∈
iff 1(𝑝) ≃AS 2(𝑞). We prove the result by showing that  is a bijection satisfying all the
3 conditions of the Def. 8.2. Condition 2 is straightforward: every pair of states occurring
in  are equivalent modulo Alternating Simulation and hence have identical labels.

Now let us focus on Condition 3. We show that is a relation satisfying condition 3 of
Def. 8.2. For that, we construct a relation 𝐺𝑝,𝑞 satisfying condition 3; then we see it is a
bijection. Note that any (𝑝,𝑞) ∈ implies (C1) (𝑝,𝑞) ∈max1 ∧ (C2) (𝑞,𝑝) ∈max2 .

Construct a candidate relation 𝐺′𝑝,𝑞 satisfying the consequent of condition 3
of Def. 8.2. The former implies (C1.1) for every 𝑎 ∈ 𝑈1(𝑝) we can choose a 𝑏 ∈ 𝑈2(𝑞) such
that for every state 𝑞′ ∈ Post2 (𝑞,𝑏) we can find a state 𝑝′ ∈ Post1 (𝑝,𝑎) such that 𝑝′ ⪯AS𝑞′ ((𝑝′, 𝑞′) ∈max1). (C2) and (C1.1) together imply (C2.1) for the 𝑏 chosen in previous step
(C1.1) we can find an 𝑎′ ∈ 𝑈1(𝑝) such that for every state 𝑝′′ ∈ Post1 (𝑝,𝑎′) we can find a
state 𝑞′′ ∈ Post2 (𝑞,𝑏) such that 𝑞′′ ⪯AS 𝑝′′ ((𝑞′′, 𝑝′′) ∈max2 .

Combining (C1.1 and C2.1) we get (C3.1)∀𝑎 ∈ 𝑈1(𝑝).∃𝑏 ∈ 𝑈2(𝑞). ∃𝑎′ ∈ 𝑈1(𝑝) such that
for every state 𝑝′′ ∈ Post1 (𝑝,𝑎′) there exists a state 𝑞′′ ∈ Post2 (𝑞,𝑏) such that (𝑞′′, 𝑝′′) ∈max2 . Moreover, for this 𝑞′′ we can find a state 𝑝′ ∈ Post1 (𝑝,𝑎) such that (𝑝′, 𝑞′′) ∈max1 (𝑝′ ⪯AS 𝑞′′). Hence, by transitivity of alternating simulation pre-order, for every
state 𝑝′′ ∈ Post1 (𝑝,𝑎′) there exists a state 𝑝′ ∈ Post1 (𝑝,𝑎) such that 𝑝′′ ⪯AS 𝑝′. Hence,(𝑝,𝑎) ⊑1 (𝑝,𝑎′). Thus, if 𝑎 ≠ 𝑎′ then 𝑎 is either redundant or an irrational choice for the
controller at state 𝑝 in FTS 1. This contradicts the assumption that 1 satisfies condition𝑁2. Hence, (C4)𝑎 = 𝑎′.

Thus combining (C3.1) and (C4) we get (C3) for any 𝑎 ∈ 𝑈1(𝑝)we can find 𝑏 ∈ 𝑈2(𝑞) such
that for every state in 𝑝′ ∈ Post1 (𝑝,𝑎) we can find 𝑞′ ∈ Post2 (𝑞,𝑏) such. that 𝑞′ ⪯AS 𝑝′

8.A Correctness and reduction proofs

8

131

((𝑞′, 𝑝′) ∈max2); at the same time, by (C1.1), for every state 𝑞′′ ∈ Post2 (𝑞,𝑏) there exists a
state in 𝑝′′ ∈ Post1 (𝑝,𝑎) such that 𝑝′′ ⪯AS 𝑞′′ ((𝑝′′, 𝑞′′) ∈max1).

Note that (C3) is equivalent to 𝜓(𝑝,𝑞) B ∀𝑎 ∈ 𝑈1(𝑝). ∃𝑏 ∈ 𝑈2(𝑞). 𝜑(𝑝,𝑞,𝑎,𝑏), where𝜑(𝑝,𝑞,𝑎,𝑏)B 𝜑1(𝑝,𝑞,𝑎,𝑏) ∧ 𝜑2(𝑝,𝑞,𝑎,𝑏), 𝜑1 B ∀𝑝′ ∈ Post1 (𝑝,𝑎).∃𝑞′ ∈ Post2 (𝑞,𝑏).(𝑞′, 𝑝′) ∈max2 , and 𝜑2 B ∀𝑞′′ ∈ Post2 (𝑞,𝑏).∃𝑝′′ ∈ Post1 (𝑝,𝑎).(𝑝′′, 𝑞′′) ∈max1 . Let 𝐺′𝑝,𝑞 ⊆ 𝑈1(𝑝) ×𝑈2(𝑞) such that (𝑎,𝑏) ∈ 𝐺′𝑝,𝑞 iff 𝜑(𝑝,𝑞,𝑎,𝑏) holds.
Verify that 𝐺′𝑝,𝑞 satisfies the consequent of condition 3. Note that for every(𝑎,𝑏) ∈ 𝐺′𝑝,𝑞 we have that every state in 𝑝′ ∈ Post1 (𝑝,𝑎) some state in 𝑞′ ∈ Post2 (𝑞,𝑏) such

that 𝑞′ ⪯AS 𝑝′ ((𝑞′, 𝑝′) ∈max2 , due to 𝜑1), which in turn, due to 𝜑2, satisfies 𝑞′ ⪯AS 𝑝′′ for
some state 𝑝′′ ∈ Post1 (𝑝,𝑎) (i.e, (𝑝′′, 𝑞′) ∈max1).

Nowwe prove that 𝑝′ = 𝑝′′ by contradiction. Suppose that 𝑝′ ≠ 𝑝′′. Then, by transitivity
of alternating simulation, 𝑝′ ⪯AS 𝑝′′. Hence, transition (𝑝,𝑎,𝑝′′) is a younger sibling of
transition (𝑝,𝑎,𝑝′) which contradicts the assumption that 𝑁3 is satisfied by 1. Hence (C5)𝑝′ = 𝑝′′.

Thus, (C5.1) for any (𝑎,𝑏) ∈ 𝐺′𝑝,𝑞 , for each 𝑝′ ∈ Post1 (𝑝,𝑎) there is a state 𝑞′ ∈ Post2 (𝑞,𝑏)
such that 𝑝′ ⪯AS 𝑞′ (by 𝜑1). Moreover, this 𝑞′ is in turn alternately simulates 𝑝′ (by C5 and𝜑2). Hence, (𝑝′, 𝑞′) ∈. Now we prove that there is a unique 𝑞′ such that (𝑝′, 𝑞′) ∈. (C5.2)
Suppose there exists a 𝑝′ ∈ Post1 (𝑝,𝑎) that ⪰ two distinct states 𝑞′, 𝑞′′ ∈ Post2 (𝑞,𝑏), then by
(C5.1) (𝑝′, 𝑞′) ∈ and (𝑝′, 𝑞′′) ∈. This would imply that 𝑞′ and 𝑞′′ are equivalent modulo
AS. This contradicts the assumption that 2 satisfies 𝑁1. Hence, for every 𝑝′ ∈ Post1 (𝑝,𝑎)
there exists a unique 𝑞′ ∈ Post2 (𝑞,𝑏) such that (𝑝′, 𝑞′) ∈. By symmetry of condition 𝜑,
for every 𝑞′ ∈ Post2 (𝑞,𝑏) there exists a unique 𝑝′ ∈ Post1 (𝑝,𝑎) such that (𝑝′, 𝑞′) ∈.

This implies (C6) Post2 (𝑞,𝑏) = {𝑞′ ∣ (𝑝′, 𝑞′) ∈ and 𝑝′ ∈ Post1 (𝑝,𝑎)}. Hence, by 𝜓(𝑝,𝑞)
we have (C7) i.e.For any 𝑎 ∈ 𝑈1(𝑝) we can find 𝑏 ∈ 𝑈2(𝑞) such that (𝑎,𝑏) ∈ 𝐺′𝑝,𝑞 .

By symmetry, repeating all steps starting from (C2), we get (C8) for any (𝑝,𝑞) ∈ we
can construct a relation 𝐺′′𝑞,𝑝 ⊆ 𝑈2(𝑞)×𝑈1(𝑝) such that Post1 (𝑝,𝑎) = {𝑝′|(𝑞′, 𝑝′) ∈−1 ∧𝑞′ ∈Post1 (𝑞,𝑎)}, reading (9) ∀𝑏 ∈ 𝑈2(𝑞).∃𝑎 ∈ 𝑈1(𝑝).(𝑏,𝑎) ∈ 𝐺′′𝑞,𝑝 .

Building the bijection 𝐺𝑝,𝑞 . We now prove that 𝐺𝑝,𝑞 B 𝐺′𝑝,𝑞 ∩𝐺′′−1𝑞,𝑝 is a well-defined
bijective function such that for any 𝑎 ∈ 𝑈1(𝑝),𝑏 ∈ 𝑈2(𝑞), 𝑏 = 𝐺𝑝,𝑞(𝑎) implies Post2 (𝑞,𝑏) ={𝑞′ ∣ (𝑝′, 𝑞′) ∈ and 𝑝′ ∈ Post1 (𝑝,𝑎)}. This proves that  satisfies the required condition
3.

(10) For 𝐺𝑝,𝑞 to be a well-defined function, we need to show that for any 𝑎 ∈ 𝑈1(𝑝),
there is (A) at least 1 and (B) at most 1 𝑏 ∈ 𝑈2(𝑞) such that (𝑎,𝑏) ∈ 𝐺𝑝,𝑞 ; (A) is implied by
(C7).

For (B), assume that for distinct 𝑏1, 𝑏2 ∈ 𝑈2(𝑞) (𝑎,𝑏1), (𝑎,𝑏2) ∈ 𝐺𝑝,𝑞 . By (C6), we get thatPost2 (𝑞,𝑏1) = {𝑞′ ∣ (𝑝′, 𝑞′) ∈ and 𝑝 ∈ Post1 (𝑝,𝑎)} = Post2 (𝑞,𝑏2). But this implies that𝑏1 is a redundant controller choice at state 𝑞 in FTS 2 which contradicts 𝑁2 for system 2.
Hence, 𝐺𝑝,𝑞 is a well-defined function. Applying the same reasoning on 𝐺−1𝑞,𝑝 = 𝐺−1𝑝,𝑞 ∩𝐺′′𝑞,𝑝 ,
we get that 𝐺−1𝑞,𝑝 is also a well-defined function, proving that 𝐺𝑝,𝑞 is a bijection.

As 𝐺𝑝,𝑞 contains elements from 𝐺′𝑝,𝑞 , any (𝑎,𝑏) ∈ 𝐺𝑝,𝑞 satisfies (C6). Hence 𝐺𝑝,𝑞 is the
required bijection for condition 3 in Def. 8.2.

 is a bijection and satisfies condition 1: First we show that every initial state is
related to a unique initial state. That is, (C11) 0 B∩ (0,1 ×0,2) is a bijection between

8

132 8 Minimizing transition systems modulo alternating simulation eqivalence

0,1 and 0,2. We first show by contradiction that (C11.1) 0 is a well-defined function. If
it is not, then there exists a state 𝑝 ∈ 0,1 such that (C11.2) either 𝑝 is not related to any
state 𝑞 in 0 or, (C11.3) ∃𝑞,𝑞′ ∈ 0,2.(𝑝,𝑞) ∈0 ∧ (𝑝,𝑞′) ∈0 ∧ 𝑞 ≠ 𝑞′. Note that max2 is
an ASR from 2 to 1, hence from condition (1) of Def. 2.9, 𝑝 being an initial state of 1
implies ∃𝑞′.(𝑞′, 𝑝) ∈max2 . Now, (due to similar restrictions imposed by condition (1) formax1 being an ASR from 1 to 2) this 𝑞′ is related with some initial state 𝑝′ of 1. Hence,∃𝑝′.(𝑝′, 𝑞′) ∈ max1 . Now note that if 𝑝′ = 𝑝, then (𝑝,𝑞′) should be in 0 (by definition)
which contradicts the assumption that (C11.2) holds. If 𝑝′ ≠ 𝑝, we have 1(𝑝) ⪯AS 2(𝑞′)∧ 1(𝑞′) ⪯AS 2, (𝑝) ∧ 𝑝 ≠ 𝑝′. Hence, by transitivity of ⪯AS, 𝑝 ⪯AS 𝑝′, 𝑝 ≠ 𝑝′ and both are
initial states. This implies that 𝑝 is an initial state which is younger sibling of 𝑝′, which
contradicts the assumption that 1 satisfies condition 𝑁3. Note that to prove 0 is a
bijection, it suffices to show that−10 is a well-defined function, which is a symmetrical
proof to that of 0.

Now we show that (C12) is a partial function. That is, every 𝑝 ∈ 1 is mapped
to a unique 𝑞 ∈ 2 via . Suppose it is not, i.e., there exists a state 𝑝 ∈ 1 which is related
to two distinct states 𝑞,𝑞′ ∈ 2. Hence, (𝑝,𝑞), (𝑝,𝑞′) ∈. By definition of, we have that(𝑞,𝑝) ∈max2 and (𝑝,𝑞′) ∈max1 , implying (by transitivity) that 𝑞 ⪯AS 𝑞′; symmetrically,(𝑝,𝑞) ∈ max1 and (𝑞′, 𝑝) ∈ max2 , implying that 𝑞′ ⪯AS 𝑞. Thus, 𝑞 and 𝑞′ are equivalent
modulo AS which is a contradiction as 2 satisfies 𝑁1. Symmetrically, −1 is a partial
function relation.

Note that by (C11.1) every initial state is mapped to some initial state. By (C12), every
state is mapped to a unique state. Hence, every initial state can only be mapped to a unique
initial state.

We now show that  (and by symmetry −1) is a well-defined function. We
already showed that (and−1) are partial functions (C12). It remains to be proved that a
state in 1 can be mapped to at least one state in 2 under  (and vice-versa under−1).
We already showed the latter for states in 0; we now show it for the remaining states. We
prove this using contradiction. Assume that there exists a state in 1 that is not mapped
to any state in 2 under . Let  be the set of all such states. As 1 is a finite set, so is . Note that by assumption 𝑁4, 1 does not contain any inaccessible state. Hence, every
state in 𝑝 ∈ 1 can be reached from some initial state in 𝑝0 ∈ 0,1 in |1| or less steps. Let 𝑐
be the minimum number of steps required to reach the state 𝑝′ ∈  that is the nearest to
the initial state set. That is, no state in  can be reached in 𝑐 − 1 or less steps and there
is at least 1 state 𝑝′ ∈  that is reachable from initial state in 𝑐 steps. Consider a state𝑝 ∈ Pre(𝑝′, 𝑎) for some 𝑎 ∈ 𝑈1. Because 𝑝 is reachable in 𝑐 −1 steps, there exists a 𝑞 ∈2 such
that (𝑝,𝑞) ∈. Now we recover (C5.2): for every 𝑎 ∈ 𝑈1(𝑝).∃𝑏 ∈ 𝑈2(𝑞).∀𝑝′′ ∈ Post1 (𝑝,𝑎)
there exists a unique 𝑞′′ ∈ Post2 (𝑞,𝑏) such that (𝑝′′, 𝑞′′) ∈. This implies that for 𝑝′ too
there exists a unique 𝑞′ ∈ Post2 (𝑞,𝑏) such that (𝑝′, 𝑞′) ∈. This leads to the contradiction,
thus is a well-defined function. By symmetry, the same holds for−1. This implies is
a bijection. □

9

133

9
Self-triggered

output-feedback control of
LTI systems

This work addresses the problem of predicting the ISTs on a more general control setting,
where the controller has partial state information and the system is subject to disturbances.
First, we prove that additive noise does not hinder stability of output-feedback PETC of linear
time-invariant (LTI) systems. Then we build an STC strategy that estimates PETC’s worst-case
triggering times. To accomplish this, we use set-based methods, more specifically ellipsoidal
sets, which describe uncertainties on state, disturbances and noise. Ellipsoidal reachability is
then used to predict worst-case triggering condition violations, ultimately determining the next
communication time. The ellipsoidal state estimate is recursively updated using guaranteed
state estimation (GSE) methods. The proposed STC is designed to be computationally tractable
at the expense of some added conservatism. It is expected to be a practical STC implementation
for a broad range of applications; in addition, it is a stepping stone to problems involving ETC
traffic prediction, such as scheduling.

This chapter is based on � G. de A. Gleizer and M. Mazo Jr. “Self-triggered output-feedback control of LTI systems
subject to disturbance and noise”, in Automatica vol. 120, 2020 [106], and partially on� G. de A. Gleizer and M. Mazo
Jr. “Self-triggered output feedback control for perturbed linear systems”, presented in IFAC NecSys 2018 [107].

9

134 9 Self-triggered output-feedback control of LTI systems

9.1 Introduction

Most of this dissertation is dedicated to understanding, measuring, and controlling
the timing of ETC systems in the ideal case where disturbances are absent and there

is perfect state information available. This chapter is the exception. Here we want to
predict the ETC timing behavior of an LTI system in a much more general and realistic
setting, where the system is subject to disturbances, measurement noise, and the controller
is dynamic, input-feedback. The first step to predicting ISTs of an ETC system is simply
one-step-ahead: given the existing information (history of plant’s inputs and outputs),
when can a given triggering mechanism fire? In particular, what is the earliest it can fire?
As argued in Chapters 1 and 2, early sampling with respect to ETC is typically a safe choice
for control stability and performance. If we are able to predict a worst-case IST from a
given ETC, we can build an STC mechanism. This is what is presented in this chapter.

The effects of disturbances, noise, and presence of dynamic controllers with incomplete
state information are well studied in ETC [4, 11, 13, 82, 108], but the combined effect of all
these characteristics, in particular measurement noise, has received little attention. For
STC, these effects are largely unaddressed. One of the earliest works in STC is [14], where
perfect state feedback is considered but exogenous disturbances may be present. Cleverly,
in [14] Manuel et al do not consider the disturbance in the event prediction, and show
that doing so guarantees stability and a finite ∞-gain; however, its disturbance rejection
is poorer than ETC’s, since event-triggering naturally takes disturbances into account.
When the control system is not assumed to be a static state-feedback regulator, but take
output feedback form, the literature is scarcer. In [109], an observer was developed for
self-triggered state-feedback control of LTI systems. For general dynamic output-feedback
controllers, the problem was unaddressed until our contribution.

This work has twomain contributions: first, we prove that, if a PETC or STC closed-loop
LTI system is globally exponentially stable, then it is input-to-state stable with respect to
disturbances, measurement noise, and additive perturbations in the triggering condition;
second, we devise a method to build self-triggered implementations of controllers subject
to unknown but bounded disturbances and measurement noise. The stability results make
use of the notion of homogeneous hybrid systems from [110]. The STC design consists of
computing a lower bound to the triggering times of the PETC strategy from [11]. Here we
use set-theoretic methods for control, namely set-valued reachability (SVR) and guaranteed
state estimation (GSE). The state estimator keeps track of a set that contains all possible
states in which the plant and controller could be. Reachable sets from the observer state set
are then computed for a given sequence of elapsed time instants. At each of these instants,
an algorithm checks if there is a point in the reachable set that violates a designed triggering
condition. Such a check is conservative but computationally efficient. We hereafter refer
to this method as preventive self-triggered control (PSTC), since it is designed to prevent
triggers later than the reference PETC. The separation properties of linear systems allow for
most of the computations to be carried out offline. We choose ellipsoids for the description
of sets, even though other descriptions have been shown to be more effective for general-
purpose SVR and GSE (e.g., constrained zonotopes in [111]). One reason for our choice is
that the considered triggering functions are quadratic, which simplifies computations when
ellipsoids are used. In any case, efficient ellipsoidal SVR and GSE methods are available
for linear systems: for SVR we use [112] and [113]; for GSE, we adapt the results from

9.2 Preliminaries

9

135

[114], [115] and [111]. The final algorithm attains similar control performance as PETC,
while keeping the advantages of STC and reasonably small computational costs; thus, it is
likely to fit most linear control applications. In addition, it is an important first step to the
abstraction of ETC/STC systems under this more general case.
Related work. Set-based methods have also been employed for ETC and STC on recent
works, such as observer-based state feedback ETC in [116], and ETC and STC for discrete-
time systems subject to disturbances and noise in [117]. Conceptually, the latter is the
most similar to our work, because of the usage of set-based methods for the disturbance
reachability. The major differences are the following: (i) their stability results are for
discrete-time systems, which do not immediately provide guarantees for continuous-time
systems; (ii) they invoke the novel notion of 𝜃-uniform global asymptotic stability (𝜃-
UGAS), a system theoretic property weaker than input-to-state stability, which is what we
use in this paper; (iii) their output-feedback controllers are restricted to observer-based
state feedback; and (iv) they introduce new set-based events, while in this work we employ
well-established event-triggering mechanisms. In addition, our work is particularly focused
on implementation and computational efficiency, aspects that are very briefly touched
upon in [117]. In summary, to the best of our knowledge, no available STC strategy takes
measurement noise into account for continuous-time systems, nor is it prepared for general
forms of output-feedback controllers.
Notation. We denote 𝑨|, the sub-matrix of 𝑨 indexed by the row index set  ⊆ {1, ...,𝑛}
and the column index set  ⊆ {1, ...,𝑚}. If  = {1,…,𝑛} or  = {1,…,𝑚} we use 𝑨|∙, or𝑨|,∙, respectively. The set (𝑟) denotes a ball of radius 𝑟 ≥ 0. For two sets 1 and 2 we
denote their Minkowski sum as 1 +2 B {𝒙1 +𝒙2 ∣ 𝒙1 ∈ 1, 𝒙2 ∈ 2}. The (Minkowski)
sum of a set  and a point 𝒙 is naturally  +{𝒙}.
9.2 Preliminaries
9.2.1 Hybrid Dynamical Systems
For stability results, we will model the STC closed-loop system as a hybrid system under the
framework of jump–flow systems [118, 119], which allows states to flow on continuous time
and/or to jump instantly. In this modeling framework, solutions are defined on the hybrid
time domain, which is a subset of ℝ+ ×ℕ0 that can be written as ∪𝑖∈{0,...,𝐽 }([𝑡𝑖 , 𝑡𝑖+1] × {𝑖}),
where 𝐽 ∈ ℕ and 0 = 𝑡0 ≤ 𝑡1 ≤ ... ≤ 𝑡𝐽+1, with 𝐽 and/or 𝑡𝐽+1 possibly ∞. A hybrid signal 𝝌 is a
function defined on a hybrid domain. A hybrid system is described as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝝌̇ = 𝒇 (𝝌 ,𝜹), (𝝌 (𝑡, 𝑗),𝜹(𝑡, 𝑗)) ∈ 𝝌+ = 𝒈(𝝌 ,𝜹), (𝝌 (𝑡, 𝑗),𝜹(𝑡, 𝑗)) ∈𝝍 = 𝒉(𝝌 ,𝜹), (9.1)

where 𝝌(𝑡, 𝑗) ∈ ℝ𝑛 is the state vector, 𝜹(𝑡, 𝑗) ∈ ℝ𝑛d is an exogenous input, 𝝍(𝑡, 𝑗) ∈ ℝ𝑛y is the
output vector, 𝒇 ,𝒈 𝑖 and 𝒉 are continuous functions with inputs and outputs of appropriate
dimensions, and  ⊆ ℝ𝑛+𝑛d and 𝑖 ⊆ ℝ𝑛+𝑛d are closed sets. Following [120] and [110], we
say that a pair (𝝌 ,𝜹) is a solution to (9.1) if dom𝝌 = dom𝜹 and

• for all 𝑗 ∈ℕ and almost all 𝑡 such that (𝑡, 𝑗) ∈ dom𝝌, the pair satisfies (𝝌 (𝑡, 𝑗),𝜹(𝑡, 𝑗)) ∈ 
and 𝝌̇ (𝑡, 𝑗) = 𝒇 (𝝌(𝑡, 𝑗),𝜹(𝑡, 𝑗));

9

136 9 Self-triggered output-feedback control of LTI systems

• for all (𝑡, 𝑗) ∈ dom𝝌 such that (𝑡, 𝑗 + 1) ∈ dom𝝌 , the pair satisfies (𝝌 (𝑡, 𝑗),𝜹(𝑡, 𝑗)) ∈𝑖
and 𝝌(𝑡, 𝑗 + 1) = 𝒈 𝑖(𝝌 (𝑡, 𝑗),𝜹(𝑡, 𝑗)).

Definition 9.1 (𝑝 norm, [110]). For a hybrid signal 𝝍, with domain dom𝝍, and a scalar𝑇 ∈ ℝ+, the 𝑇 -truncated 𝑝-norm of 𝝍 is given by1

‖𝝍[𝑇]‖𝑝 B(𝑗(𝑇)∑𝑖=1 |𝝍(𝑡𝑖 , 𝑖 − 1)|𝑝 +𝑗(𝑇)∑𝑖=0 ∫ 𝜎𝑖𝑡𝑖 |𝝍(𝑠, 𝑖)|𝑝 d𝑠)
1𝑝, (9.2)

where 𝑗(𝑇) B max{𝑘 ∶ (𝑡,𝑘) ∈ dom𝝍,𝑡 + 𝑘 ≤ 𝑇}, and 𝜎𝑖 B min(𝑡𝑖+1,𝑇 − 𝑖). From (9.2), the𝑝-norm of 𝝍 is defined as ‖𝝍‖𝑝 B lim𝑇→𝑇 ∗ ‖𝝍[𝑇]‖𝑝 , (9.3)

where 𝑇 ∗ = sup{𝑡 + 𝑗 ∶ (𝑡, 𝑗) ∈ dom𝝍} (possibly infinity). The ∞ norm is taken by replacing
the sums (integrals) in (9.2) by the (essential) suprema.

Definition 9.2. (Global Exponential ISS, [110]) System (9.1) is exponentially finite-gain
input-to-state stable from 𝜹 if there exist positive scalars 𝑘,𝑎, and 𝛾 such that, for any initial
condition 𝒙 and any 𝜹 ∈ ∞, all solutions to (9.1) satisfy|𝝌 (𝑡, 𝑗)| ≤ max{𝑘e−𝑎(𝑡+𝑗)|𝒙|, 𝛾 ‖𝜹‖∞} (9.4)

for all (𝑡, 𝑗) ∈ dom𝝌 . Moreover, the origin is globally exponentially stable (GES) if (9.4) holds
with 𝜹 ≡ 0.

Definition 9.3 (𝑝 stability, [110]). Given 𝑝 ∈ [1,+∞), system (9.1) is 𝑝 stable from 𝜹 to 𝝍
with gain (upper bounded by) 𝑘𝑝 ≥ 0 if there exists a scalar 𝛽 ≥ 0 such that any solution to
(9.1) satisfies ‖𝝍‖𝑝 ≤ 𝛽|𝒙| + 𝑘𝑝‖𝜹‖𝑝 (9.5)

for any initial condition 𝒙 ∈ ℝ𝑛 and any 𝜹 ∈ 𝑝 .
The last definition we need is that of homogeneous hybrid systems of degree zero:

Definition 9.4. (Homogeneous hybrid system, [110]) The system (9.1) is homogeneous
of degree zero if, for any scalar 𝜆 > 0, we have𝒇 (𝜆𝝌 ,0) = 𝜆𝒇 (𝝌 ,0),∀𝝌(𝑡, 𝑗) ∈ 0,𝒈(𝜆𝝌 ,0) = 𝜆𝒈(𝝌 ,0),∀𝝌(𝑡, 𝑗) ∈0, (9.6)𝝌 ∈ 0 ⟹ 𝜆𝝌 ∈ 0,𝝌 ∈0 ⟹ 𝜆𝝌 ∈0, (9.7)

where closed sets 0,0 are the projections of  and  when 𝜹 ≡ 0.

We are particularly interested in homogeneous systems that satisfy the following
assumption:
1As a convention,∑0𝑖=1 𝑓 (𝑖) = 0.

9.2 Preliminaries

9

137

Assumption 9.1. (Flow and jump sets, [110]) For system (9.1), there exist scalars 𝐿C
and 𝐿D such that, for all (𝒙,𝒅) ∈ ℝ𝑛+𝑛d ,(𝒙,𝒅) ∈  ⟹ 𝒙 ∈ 0 +𝐿C(|𝒅|) (9.8a)(𝒙,𝒅) ∈ ⟹ 𝒙 ∈0 +𝐿D(|𝒅|). (9.8b)

Homogeneous systems satisfying Assumption 9.1 have a powerful stability property:

Theorem 9.1 ([110]). Let system (9.1) be homogeneous in the sense of Definition 9.4 and
Assumption 9.1 hold; then, the following statements are equivalent:

• the origin of system (9.1) is GES if 𝜹 ≡ 0;
• system (9.1) is globally exponentially ISS;
• system (9.1) is 𝑝 stable from 𝜹 to 𝝍.

9.2.2 Recursive Guaranteed State Estimator
Consider an LTI system of the form:̇𝝃p(𝑡) = 𝑨p𝝃p(𝑡) +𝑩p𝝊̂(𝑡) +𝑬𝝎(𝑡),𝝍(𝑡) = 𝑪p𝝃p(𝑡) +𝝂(𝑡),𝝃p(0) = 𝒙p, (9.9)

where the sub-index p is used to denote plant variables, with 𝝃p(𝑡) ∈ ℝ𝑛p as its state,𝝊̂(𝑡) ∈ ⊂ ℝ𝑛u as its received control input, 𝝎(𝑡) ∈ ⊂ ℝ𝑛w as the unknown disturbances,𝝍(𝑡) ∈ ℝ𝑛y as the measured output, 𝝂(𝑡) ∈  ⊂ ℝ𝑛y as the unknown measurement noise, and𝒙p ∈ 0 ⊂ ℝ𝑛p as its initial state. The following assumptions hold:

Assumption 9.2. Sets  , , and  are compact, and the pair (𝑨p,𝑪p) is observable.2
Let  (resp. ) be the set of essentially bounded piecewise continuous functions

from ℝ+ to  (resp. ). We denote a solution of system (9.9) for initial state 𝒙p, input𝝊̂ ∈  , and disturbance 𝝎 ∈  by

𝝃𝒙p𝝊̂𝝎(𝑡) = e𝑨p𝑡𝒙p +∫ 𝑡0 e𝑨p(𝑡−𝜏)(𝑩p𝝊̂(𝜏) +𝑬𝝎(𝜏))d𝜏 .
We are interested in computing the set of possible solutions to system (9.9) for sets of

initial states, control input trajectories and disturbance trajectories. For that, the following
definitions are necessary.

Definition 9.5 (Reachability operator). Given an initial time 𝑡1, a final time 𝑡2, an ini-
tial state set  and the sets  and  , the reachability operator reach(⋅) is defined asreach(𝑡1, 𝑡2, , ,)B{𝝃𝒙p𝝊̂𝝎(𝑡2) ∶ 𝝃𝒙p𝝊̂𝝎(𝑡1) ∈  ,𝝊 ∈  ,𝝎 ∈ }. Moreover, the output
of this operator is denoted as the reachable set.

A recursive GSE is a set-valued version of a general recursive state estimation and, as
such, it follows the same principles. A GSE requires that bounds to input, disturbance and
noise signals are known in the form of sets:
2(𝑨p,𝑪p) could be relaxed to be detectable. The unobservable but stable subspace does not affect the controller,
thus one should only consider the observable subspace when implementing the results in this paper.

9

138 9 Self-triggered output-feedback control of LTI systems

Assumption 9.3. There exist known compact sets ̃ ,̃ and ̃ such that  ⊆ ̃ , ⊆ ̃
and  ⊆ ̃ .
Definition 9.6. (Recursive GSE, [121, Chap. 11]) Let ̃(𝑡1|𝑡1) ∋ 𝝃p(𝑡1) be an available
set estimate of the current state at time 𝑡1. Let 𝒚 B 𝝍(𝑡2) be an output measurement obtained
at 𝑡2. A recursive GSE has the form

̃(𝑡2|𝑡1) = reach(𝑡1, 𝑡2, ̃(𝑡1|𝑡1),̃ ,̃), (9.10a)
y(𝑡2) = {𝒙p ∈ ℝ𝑛p ∣ ∃𝒗 ∈ ̃ ∶ 𝑪p𝒙p +𝒗 = 𝒚}, (9.10b)

̃(𝑡2|𝑡2) = ̃(𝑡2|𝑡1) ∩y(𝑡2). (9.10c)

Eq. (9.10a) is the prediction step, simply a reachability operation. Eq. (9.10c) is the
update step, where the predicted set is intersected with y(𝑡2), the set of all possible states
that are coherent with the measurement. By construction, ̃(𝑡2|𝑡2) ∋ 𝝃p(𝑡2). The sets above
can have arbitrary complexity. Hence, it is common to replace the equations above with
inclusions, then restricting the set families to computationally tractable ones.

Throughout this paper, the aforementioned sets will be (outer-approximated by) el-
lipsoids. This idea dates back to 1968 [114], when possibly the first GSE was proposed.
Ellipsoids are described by few parameters – one vector and one symmetric matrix – and
are bounded. Since they may be described as quadratic inequalities, they also harmonize
well with the quadratic triggering functions generally employed for ETC of LTI systems.
Some definitions follow:

Definition 9.7. (Ellipsoid, [112, Chap. 2]) Let𝒎 ∈ ℝ𝑛 and𝑴 ∈ 𝕊𝑛+. An ellipsoid is defined
in terms of its support function:

(𝒎,𝑴)B{𝒙 ∈ ℝ𝑛 ∣ 𝒍T𝒙 ≤ 𝒍T𝒎+(𝒍T𝑴𝒍)1/2, ∀𝒍 ∈ ℝ𝑛}.
Remark 9.1. In case the ellipsoid is not degenerate (𝑴 ≻ 0), it can be described in the well-
known inequality form (𝒎,𝑴) = {𝒙 ∈ ℝ𝑛 ∶ (𝒙 −𝒎)T𝑴−1(𝒙 −𝒎) ≤ 1}. The degenerate case
is flat on some of its semi-axes.

A closely related set is the elliptical cylinder. The following definition comes from
[115], with a small change in notation:

Definition 9.8 (Elliptical Cylinder). Let 𝑴 ∈ 𝕊𝑚++, 𝑪 ∈ ℝ𝑚×𝑛 ,𝑚 ≤ 𝑛, and rank(𝑪) = 𝑚. An
Elliptical Cylinder is defined as

(𝒚,𝑴,𝑪)B {𝒙 ∈ ℝ𝑛 ∣ (𝑪𝒙 −𝒚)T𝑴−1(𝑪𝒙 −𝒚) ≤ 1}.
Remark 9.2. If 𝑚 < 𝑛, the elliptical cylinder is unbounded. If 𝑚 = 𝑛, it trivially resolves to
the ellipsoid (𝑪−1𝒚,𝑪−1𝑴𝑪−T).

We use some operations on ellipsoids, namely affine transformations, intersections and
Minkowski sums. An affine transformation on an ellipsoid is also an ellipsoid: 𝑨(𝒎,𝑴)+𝒃 = (𝑨𝒎+𝒃,𝑨𝑴𝑨T). Even though ellipsoids are not closed under Minkowski sums and

9.2 Preliminaries

9

139

intersections, there are methods to tightly outer-approximate themwith ellipsoids. Here we
use trace-optimal outer-approximations. For the Minkowski sum, one has [112, Chap. 2]:

(𝒎∗,𝑴∗) ⊇ (𝒎1,𝑴1) +(𝒎2,𝑴2)𝒎∗ B𝒎1 +𝒎2𝑴∗ B (1+𝑝−1)𝑴1 + (1+𝑝)𝑴2𝑝 B √Tr(𝑴1)Tr(𝑴2)−1.
(9.11)

If not empty, the intersection may be outer-approximated by a fusion (see below). We
particularly need to compute the intersection between an ellipsoid and an elliptical cylinder.

Definition 9.9 (Fusion). (Adapted from [115]) A fusion between the ellipsoid (𝒎1,𝑴1) and
the elliptical cylinder(𝒚,𝑴2,𝑪) is the ellipsoid 𝜆(𝒎,𝑴) defined over a parameter 𝜆 ∈ [0,1),
such that: 𝜆(𝒎,𝑴) ⊇ (𝒎1,𝑴1) ∩(𝒚,𝑴2,𝑪)𝑴 = 𝑧𝒁−1𝒁 = 𝜆𝑴−11 + (1−𝜆)𝑪T𝑴−12 𝑪𝒆 = 𝒚 −𝑪𝒎1𝑧 = 1−𝜆(1−𝜆)𝒆T(𝜆𝑴2 + (1−𝜆)𝑪𝑴1𝑪T)−1𝒆𝒎 = 𝒁−1(𝜆𝑴−11 𝒎1 + (1−𝜆)𝑪T𝑴−12 𝒚).

(9.12)

The parameter 𝜆 controls how close the output ellipsoid is to either of its inputs.
For 𝜆 = 1, 0(𝒎,𝑴) = (𝒎1,𝑴1); when 𝜆 gets close to 0, the output tends to be close to(𝒚,𝑴2,𝑪).
Remark 9.3. The trace of the matrix𝑴 is convex over 𝜆, since the trace of the inverse is a
convex function [52] and 𝑧 ∈ [0,1] provided the intersection is not empty [115]. This allows
the use of bisection or golden search methods to compute 𝜆 that minimizes the fusion trace.

Ellipsoidal reachability
For linear systems with ellipsoidal descriptions of  , , , and  , ellipsoidal reachability
can be used. The concept and techniques are thoroughly explained in [112, Chap. 3]. Its
authors developed the Ellipsoidal Toolbox [113], which contains operations to compute
reachable sets. In this paper we use the reachable set for the disturbance response w(𝑡)Breach(0, 𝑡,0,0,). The Ellipsoidal Toolbox has the tools to compute outer-approximations
of w(𝑡), denoted by ̄w(𝑡, 𝒍), that are tight along the ray supported by a given vector𝒍 ∈ ℝ𝑛p , i.e., ∀𝛼 ∈ ℝ,𝛼𝒍 ∈ ̄w(𝑡, 𝒍) ⟺ 𝛼𝒍 ∈ w(𝑡). Overall tighter over-approximations can
be obtained by computing ̄w(𝑡, 𝒍𝑖) for different input vectors 𝒍𝑖 and taking an ellipsoidal
outer-approximation of the intersection. Let  be a pre-specified set of the said vectors.
We denote by ̃w(𝑡) such an outer-approximation satisfying ̃w(𝑡) ⊇ ∩𝒍∈̄w(𝑡, 𝒍). Figure
9.1 depicts the sets w(𝑡) and ̃w(𝑡) for a given instant. Methods such as the ones available
in the Ellipsoidal Toolbox can be used to compute the intersection outer-approximation.

9

140 9 Self-triggered output-feedback control of LTI systems

𝑥1
𝑥2̃w(𝑡)

w(𝑡)
Figure 9.1: Illustration of a reachable set of the disturbance responsew(𝑡) and an ellipsoidal outer-approximation̃w(𝑡).
9.3 Problem definition and stability results
Consider a controller for system (9.9) of the form𝝃 c(𝑘 +1) = 𝑨c𝝃 c(𝑘) +𝑩c𝝍̂(𝑘),𝝊(𝑘) = 𝑪c𝝃 c(𝑘) +𝑫c𝝍̂(𝑘), (9.13)

where 𝝃 c(𝑘) ∈ ℝ𝑛c is the controller state, 𝝊(𝑘) ∈ ℝ𝑛u is the computed control command and𝝍̂(𝑘) ∈ ℝ𝑛y is the available plant output measurement. The controller runs with periodℎ, so that 𝑡 = ℎ𝑘. The feedback loop is of sample-and-hold form. For two consecutive
sampling times 𝑘𝑏 and 𝑘𝑏+1, 𝝊̂(𝑡) = 𝝊(𝑘𝑏),∀𝑡 ∈ [ℎ𝑘𝑏 ,ℎ𝑘𝑏+1) and 𝝍̂(𝑘) = 𝝍(ℎ𝑘𝑏),∀𝑘 ∈ {𝑘𝑏 , 𝑘𝑏 +1, ..., 𝑘𝑏+1 −1}. The closed-loop system is depicted in Fig. 9.2. We pose the PSTC problem as
follows:

Plant (9.9)

STC Algorithm

Controller (9.13)

𝝂(𝑡)𝝎(𝑡)
ZOH

+ 𝝍(𝑡)

𝝍̂(𝑘𝑏)𝝊(𝑘)

𝝊̂(𝑡)
𝝃 c(𝑘)

𝝊(𝑘𝑏)

Figure 9.2: Block diagram of a plant controlled with STC. ZOH stands for zero-order hold.

Problem 9.1. Let the plant (9.9) and controller (9.13) models be known and suppose that
(conservative estimates of) the sets 0, , are known. Design an algorithm that computes𝜅𝑏 B 𝑘𝑏+1 −𝑘𝑏 at time 𝑘𝑏 based on (historical values of) 𝝊̂, 𝝍̂ and other available informa-
tion, e.g., 𝝃 c(𝑘𝑏). The closed-loop system must be globally exponentially ISS w.r.t. bounded
disturbances and noise.

9.3 Problem definition and stability results

9

141

Remark 9.4. A compact set 0 is required for the STC strategy we develop in Sec. 9.4. A
large enough set may be easily estimated in most applications. For 0 = ℝ𝑛p , we provide an
initialization algorithm in the Appendix, Section 9.C.

9.3.1 Triggering mechanism and stability results
Our PSTC approach is to design an algorithm that computes worst-case triggering times of
PETC. For compactness of expressions, denote the auxiliary vectors

𝜻(𝑡)B [𝝍(𝑡)𝝊(⌊𝑡/ℎ⌋)] and 𝜻̂ (𝑡)B [𝝍̂(⌊𝑡/ℎ⌋)𝝊̂(𝑡)]
as the updated output/input and the held output/input, respectively. We start with a
centralized output-based PETC triggering mechanism from [11], which for STC means that
all inputs and outputs are updated at the same time:

𝑡𝑏+1 = inf𝑡∈𝑏 𝜂(𝜻(𝑡), 𝜻̂ (𝑡)) > 𝜖2, (9.14a)𝜂(𝜻(𝑡), 𝜻̂ (𝑡))B |𝜻 (𝑡) − 𝜻̂ (𝑡)|2 −𝜎2 |𝜻 (𝑡)|2 , (9.14b)

where 𝑏 = {𝑡𝑏 +ℎ𝑘, 𝑡𝑏 +2ℎ𝑘, ..., 𝑡𝑏 +ℎ𝜅̄}, 0 ≤ 𝜎 < 1 is the designed triggering parameter, 𝜅̄ is
a specified maximum inter-event discrete time, and 𝜖 ≥ 0 is a margin parameter.3

Unfortunately, there are no results in the literature for whether the closed-loop PETC
system is ISS w.r.t. measurement noise or a positive value of 𝜖. Thus, first we prove that
this is the case; i.e., when the PETC (or any mechanism that triggers earlier) is GES, then it
is ISS and 𝑝 stable w.r.t. additive disturbances, measurement noise, and the 𝜖 parameter.
These results are relevant not only for the current STC work, but also for PETC.

We first model the plant (9.9) controlled with (9.13) under the PETC triggering rule
(9.14) with 𝜅̄ = ∞ as a hybrid system (9.1) equipped with a timer, with 𝝌TB [𝝃T𝑝 𝝃T𝑐 𝝍̂T 𝝊̂T]
and 𝜹TB [𝝎T 𝝂T 𝜖]; the model is

[𝝌̇̇𝜏] = [𝑨̄𝝌 + 𝑩̄𝝎1] , 𝜏 ∈ [0,ℎ], (9.15a)

[𝝌+𝜏+]=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[𝑱 1𝝌+𝑳𝝂0], 𝜏 =ℎ,(𝑭̄𝝌+𝑮̄𝝂)T𝑸̄(𝑭̄𝝌+𝑮̄𝝂)≥𝜖2 (9.15b)

(9.15c)

[𝑱 2𝝌0], 𝜏 = ℎ,(𝑭̄𝝌 + 𝑮̄𝝂)T𝑸̄(𝑭̄𝝌 + 𝑮̄𝝂) ≤ 𝜖2 (9.15d)
(9.15e)𝝍 = 𝑪̄𝝌 +𝝂, (9.15f)

3When 𝜖 > 0, Eq. (9.14) is called mixed-triggering [82], which is often used in practice to improve sampling
performance around the origin. When 𝜎 = 0, it is known as Lebesgue sampling [3].

9

142 9 Self-triggered output-feedback control of LTI systems

where

𝑨̄ = ⎡⎢⎢⎢⎣
𝑨p 0 0 𝑩p
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ , 𝑩̄ = ⎡⎢⎢⎢⎣
𝑬
0
0
0

⎤⎥⎥⎥⎦ , 𝑪̄ = [𝑪p 0 0 0] , (9.16)

𝑱 1 = ⎡⎢⎢⎢⎣
I 0 0 0𝑩c𝑪p 𝑨c 0 0𝑪p 0 0 0𝑫c𝑪p 𝑪c 0 0

⎤⎥⎥⎥⎦ , 𝑱 2 =
⎡⎢⎢⎢⎣
I 0 0 0
0 𝑨c 𝑩c 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎥⎦ , 𝑳 = ⎡⎢⎢⎢⎣
0𝑩c
I𝑫c
⎤⎥⎥⎥⎦

𝑸̄ = [(1−𝜎2)I −I−I I] , 𝑭̄ = ⎡⎢⎢⎢⎣
𝑪p 0 0 0𝑫c𝑪p 𝑪c 0 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎥⎦ , 𝑮̄ = ⎡⎢⎢⎢⎣
I𝑫c
0
0

⎤⎥⎥⎥⎦ ,
where 𝑸̄ is partitioned according to (𝜻 , 𝜻̂). The jump map matrices represent the update
of input and output (𝑱 1) or no update except for the controller state (𝑱 2). The quadratic
inequalities represent the triggering condition (9.14a), where condition (9.15c) is present
for the PETC, but absent for an STC that triggers no later than PETC.

Remark 9.5. The choice of non-strict inequalities in Eq. (9.15c) and Eq. (9.15e) renders the
system non-deterministic. This choice was made for mathematical convenience: the proofs
using Eq. (9.15) are valid across the non-determinism, and thus cover both choices of making
strict either inequality. This approach has also benefits with respect to robustness, see [118].

If we design an STC logic that triggers no later than the PETC, we need a slight
modification on the stability theorems of [11] for PETC to prove that stability also holds
when sampling earlier than the moment the triggering is fired.4 For absent noise (𝝂 ≡ 0)
and 𝜖 = 0, we can adapt the LMI conditions for verifying stability in [11] for PETC for STC.
The following is an adaptation of [11, Theorem V.2]:

Theorem 9.2. Consider the Hamiltonian matrix and its matrix exponential below

𝑯 B [𝑨̄+𝜌I 𝑩̄𝑩̄T−𝛾 2𝑪̄T𝑪̄ −(𝑨̄ +𝜌I)T] ,𝑮(𝑡)B e−𝑯𝑡 = [𝑮11(𝑡) 𝑮12(𝑡)𝑮21(𝑡) 𝑮22(𝑡)] . (9.17)

Assume 𝑮11(𝑡) in invertible for all 𝑡 ∈ [0,ℎ], which always holds for sufficiently small ℎ [11].
Let 𝑮̄11 B𝑮11(ℎ), 𝑮̄12 B𝑮12(ℎ) and 𝑮̄21 B𝑮21(ℎ). Suppose there exists a symmetric matrix

4This is often not needed for CETC as argued in the previous chapters, and some special designs of PETC such as
[86] prevent by design the violation of the triggering condition, hence also not requiring special stability results.
However, the best techniques to establish stability and performance of PETC controllers are available in [11]
and derived work, hence we demonstrate here that a small adaptation of their LMI conditions ensures the same
properties for early-sampling approaches.

9.3 Problem definition and stability results

9

143

𝑷ℎ ≻ 0 and a scalar 𝜇 ≥ 0 such that⎡⎢⎢⎣
𝑷ℎ 𝑱T1𝑮̄−T11𝑷ℎ𝑺̄ 𝑱T1𝚽(𝑷ℎ)⋆ I− 𝑺̄T𝑷ℎ𝑺̄ 0⋆ ⋆ 𝚽(𝑷ℎ)

⎤⎥⎥⎦ ≻ 0,⎡⎢⎢⎣
𝑷ℎ +𝜇𝑭̄T𝑸̄𝑭̄ 𝑱T2𝑮̄−T11𝑷ℎ𝑺̄ 𝑱T2𝚽(𝑷ℎ)⋆ I− 𝑺̄T𝑷ℎ𝑺̄ 0⋆ ⋆ 𝚽(𝑷ℎ)

⎤⎥⎥⎦ ≻ 0,
(9.18)

with 𝚽(𝑷ℎ)B 𝑮̄−T11𝑷ℎ𝑮̄−111 + 𝑮̄21𝑮̄−111 and 𝑺̄ satisfying 𝑺̄𝑺̄T= −𝑮̄−T11𝑮̄12. Then the set {[𝝌T 𝜏] ∣𝝌 = 0} is GES with decay rate 𝜌 when 𝝎(𝑡) ≡ 0 and has an 2-gain from 𝝎 to 𝝍 smaller or
equal than 𝛾 . Moreover, any logic that triggers no later than such a PETC logic has the
same stability and 2-gain properties.

Proof. (Sketch) We kindly refer the reader to the proof of the original theorem in [11,
Theorem V.2], where a similar set of linear matrix inequalities (LMIs) are derived as
sufficient conditions for the stability and 2-gain properties of the PETC. From that,
consider a centralized version of the output feedback, constraining the 𝑱 matrices to 𝑱 1
and 𝑱 2 in (9.16). The main change with respect to the original Theorem is to consider
that triggering may happen earlier, so the triggering function 𝝌T(𝑡)𝑭̄T𝑸̄𝑭̄𝝌 (𝑡) may still be
smaller than zero. Therefore, we allow the jumps in (9.15) according to 𝐽1 at any situation,
not only when the triggering function is positive. Then, while the second LMI in (9.18)
uses the S-procedure to encode the triggering function being non-positive, the first LMI
assumes nothing related to the triggering function, and the term 𝑷ℎ comes alone in the
upper-left block.5 □

For analysis purposes, even though 𝜖 is typically a design parameter, we can treat it
as an external disturbance on the jump set. The main result of this Section is that the
PETC system (9.15) is homogeneous in the sense of Definition 9.4, which implies that it is
input-to-state and 𝑝 stable w.r.t. noise and the 𝜖 parameter.

Lemma 9.1. System (9.15) is homogeneous in the sense of Definition 9.4 and satisfies As-
sumption 9.1.

The proof is found in Appendix, Section 9.A. The following result follows from Theorem
9.1 and Lemma 9.1.

Theorem 9.3. If the system (9.9) with controller (9.13), using triggering mechanism (9.14)
(or triggering earlier) is GES when 𝝎 ≡ 0, 𝝂 ≡ 0 and 𝜖 = 0, then it is ISS and 𝑝-stable if𝝎 ≠ 0, 𝝂 ≠ 0 and 𝜖 ≠ 0.
Remark 9.6. Lemma 9.1 and Theorem 9.3 are valid for any quadratic triggering function

of the form 𝜂(𝜻(𝑡), 𝜻̂ (𝑡)) = [𝜻(𝑡)T 𝜻̂ (𝑡)T]𝑸̄[𝜻(𝑡)𝜻̂ (𝑡)], as long as 𝑸̄ renders the closed-loop GES.
We focus on the triggering function (9.14b) because for this case there are design procedures
available (e.g., [11]).
5Note that the first LMI is a sufficient condition for the periodic controller to have such stability and 2-gain
properties; it is also stricter than the first LMI in [11, Theorem V.2]; hence this theorem gives that the STC
ensures the performance of both PETC and the periodic implementation, which is to be expected.

9

144 9 Self-triggered output-feedback control of LTI systems

9.4 Self-triggered control implementation
In this section, we devise a method to compute a lower bound of the PETC triggering time𝑡𝑏+1 from the available information at 𝑡𝑏 . This lower bound becomes the STC triggering
time. Throughout this section, we denote 𝒛 B 𝜻(𝑡𝑏) and 𝒖 B 𝝊(𝑡𝑏). A way of computing
such worst-case (earliest) time is by checking, for increasing values of 𝜅 ∈ℕ,𝜅 ≤ 𝜅̄, whether𝜂(𝜻(𝑡𝑏 +ℎ𝜅),𝒛) can be greater than 𝜖2 given the available information. This leads to the
following subproblem:

Subproblem 9.1. Let (supersets of) (𝑡𝑏) and  be known. For a given 𝜅 ∈ {1, ..., 𝜅̄},
determine, in a conservative but computationally efficient way, if there exist 𝒙′p ∈ reach(𝑡𝑏 , 𝑡𝑏 +ℎ𝜅,(𝑡𝑏),𝒖,) and 𝒗 ∈ (0,𝑽) such that 𝜂([𝑪p𝒙′p +𝒗 𝝊(𝑡𝑏 +ℎ𝜅)]T, 𝒛) > 𝜖2.

In the subproblem above, conservative means that, if the exact answer cannot be
established, the answer is assumed to be true. Note that it requires the state set (𝑡𝑏),
which ideally would be a single point. The larger this set is, the more conservative our
solution is. This brings us the following subproblem:

Subproblem 9.2. Given a superset of 0, historical values of 𝜻̂ , and 𝝃 c(𝑘), determine a small
outer-approximation of (𝑡𝑏).

In order to use ellipsoidal methods, we assume initial set estimates to be ellipsoids:

Assumption 9.4. Matrices 𝑿0 ∈ 𝕊𝑛p++, 𝑾̄ ∈ 𝕊𝑛w++ , and 𝑽 ∈ 𝕊𝑛y++ are known, such that ̃0 =(0,𝑿0) ⊇ 0,̃ = (0, 𝑾̄) ⊇ , and ̃ = (0,𝑽) ⊇  .
Let us solve Subproblems 9.1 and 9.2 recursively. Suppose that, at time 𝑘𝑏 , an ellipsoid̃(𝑘𝑏 |𝑘𝑏−1)B (𝝃̃p(𝑘𝑏−1),𝑿𝑏|𝑏−1) ∋ 𝝃 𝑝(ℎ𝑘𝑏) is known. First the state estimate ̃ is updated

with the newly acquired information 𝒚. That is achieved through the intersection operation
in (9.10c), which returns ̃(𝑘𝑏 |𝑘𝑏): in this case, y(𝑡𝑏) = (𝒚,𝑽 ,𝑪p) and therefore the
trace-optimal Fusion in Eq. (9.12) is used.6 From this point, denote the center of the state
estimate as 𝒙̃p ∈ ℝ𝑛p and its shape matrix as 𝑿 ∈ 𝕊𝑛p++; thus, ̃(𝑘𝑏 |𝑘𝑏) = (𝒙̃p,𝑿).

We can now compute the reachable sets for the controller and plant states. First define
the transition matrices:

𝚽p(𝜅)B e𝑨pℎ𝜅 , 𝚪p(𝜅)B∫ ℎ𝜅0 e𝑨p𝑠𝑩pd𝑠, (9.19a)

𝚽c(𝜅)B 𝑨𝜅c , 𝚪c(𝜅)B 𝜅−1∑0 𝑨𝜅c𝑩c, (9.19b)

6Only a scalar parameter needs to be optimized and, since the function is convex, a golden search can be used up
to a given precision. Nonetheless, this may be computationally too expensive depending on the application. In
that case, a fixed 𝜆 can be picked, improving computation speed at the expense of larger ellipsoids and more
frequent triggering.

9.4 Self-triggered control implementation

9

145

Due to linearity, we can separate the reachable set (𝑡𝑏 +ℎ𝜅|𝑡𝑏) between the contribution
of state and control input, and that of the unknown disturbances:

̃(𝑡𝑏+ℎ𝜅|𝑡𝑏)=𝚽p(𝜅)̃(𝑘𝑏 |𝑘𝑏)+𝚪p(𝜅)𝒖+̃w(𝜅), (9.20a)

̃w(𝜅) ⊇ w(𝜅) = ⋃𝝎∈
∫ ℎ𝜅0 e𝑨p(ℎ𝜅−𝑠)𝑬𝝎(𝑠)d𝑠. (9.20b)

Remark 9.7. The computation of supersets ̃w(𝜅) ⊇ w(𝜅) can be done off-line for all𝜅 ∈ {1, ..., 𝜅̄} using the method described in Section 9.2.2.

We are ready to solve Subproblem 9.1. Denote𝑾(𝜅) as the shape matrix of ̃w(𝜅), i.e.,̃w(𝜅)B (0,𝑾(𝜅)); also, let 𝒑TB [𝒙Tp 𝒙Tc 𝒚T] and𝑪E B [0 0 I
0 𝑪c 𝑫c],𝑵 𝜅 B [𝑪p𝚽p(𝜅) 𝑪p𝚪p(𝜅)𝑪c 𝑪p𝚪p(𝜅)𝑫c

0 𝑪c𝚽c(𝜅) 𝑪c𝚪c(𝜅) +𝑫c] .
Note that, if there exists 𝒛′ yielding 𝜂(𝒛′, 𝒛) > 𝜖2, then max𝒛′ 𝜂(𝒛′, 𝒛) > 𝜖2. This means that
we can pose Subproblem 9.1 as an optimization problem:

Subproblem 9.3. From existing information on the controller, determine the worst-case
triggering function value at a given time instant. That is, given 𝒙̃p,𝑿 ,𝒙c and 𝒚, determine,
for a given 𝜅, max𝒛′,𝒛,𝒙p,𝒅,𝒗′ 𝜂(𝒛′, 𝒛) = [𝒛′T 𝒛T]𝑸̄ [𝒛′𝒛] (9.21a)

subject to 𝒛′ = 𝑵 𝜅𝒑 +[𝒗′
0]+[𝑪p𝒅

0], (9.21b)𝒛 = 𝑪E 𝒑, (9.21c)(𝒙p − 𝒙̃p)T𝑿−1(𝒙p − 𝒙̃p) ≤ 1, (9.21d)𝒅T𝑾(𝜅)−1𝒅 ≤ 1, (9.21e)𝒗′T𝑽 −1𝒗′ ≤ 1, (9.21f)

The decision variables are 𝒛′ representing the possible values of 𝜻(𝑡𝑏 +ℎ𝜅); 𝒛; 𝒙p which
is the unknown value of 𝝃p(𝑡𝑏); 𝒅 as the contribution from the unknown disturbances to
states at 𝑡𝑏 +ℎ𝜅; and 𝒗′ as the unknown future noise 𝝂(𝑡𝑏 +ℎ𝜅). The objective function
(9.21a) is the triggering function and the constraints are: (9.21b) for the dynamics of 𝜻 ;
(9.21c) as its initial condition; and (9.21d), (9.21e) and (9.21f) as the ellipsoidal constraints
for the state estimate, 𝒅 and 𝒗′, respectively. This problem is solved for increasing values
of 𝜅 ∈ {1, ..., 𝜅̄}, until one yields a value greater than 𝜖.
Remark 9.8. Subproblem 9.3 is a non-convex quadratically constrained quadratic program-
ming (QCQP) problem. Its constraints are convex but the objective function is non-convex
since 𝑸̄ is not definite. Nevertheless, it is always feasible: one solution is obtained by taking𝒅 = 0,𝒗 = 0, 𝒙p = 𝒙̃p, and using these values to determine 𝒛′ and 𝒛 in Eqs. (9.21b) and (9.21c).

9

146 9 Self-triggered output-feedback control of LTI systems

The remark above discourages solving the actual optimization problem. Instead, we
propose computing a conservative upper bound for it. Let 𝒑̃TB [𝒙̃Tp 𝒙Tc 𝒚T] be the vector of
available information,  B {1,2, ...,𝑛p}, and𝑸(𝜅)B [𝑵 𝜅𝑪E]T𝑸̄ [𝑵 𝜅𝑪E] , 𝑪w B [𝑪p

0] , 𝑪v B [I0] ,𝑭w(𝜅)B [𝑵T𝜅 𝑪TE]𝑸̄𝑪w, 𝑭v(𝜅)B [𝑵T𝜅 𝑪TE]𝑸̄𝑪v,𝑹w(𝜅)B 𝑭w(𝜅)𝑾(𝜅)𝑭w(𝜅)T, 𝑹v(𝜅)B 𝑭v(𝜅)𝑽𝑭v(𝜅)T,𝑸w B 𝑪Tw𝑸̄𝑪w, 𝑸v B 𝑪Tv𝑸̄𝑪v, 𝑐v B 𝜆max(𝑽𝑸v),𝑐vw(𝜅)B √𝜆max(𝑪Tv𝑸̄𝑪w𝑾(𝜅)𝑪Tw𝑸̄𝑪v𝑽). (9.22)

Note that all of the matrices and scalars above can be computed off-line for 𝜅 ∈ {1, ..., 𝜅̄}.
Define the estimate of the triggering function𝜂̄(𝜅, 𝒑̃,𝑿)B 𝒑̃T𝑸(𝜅)𝒑̃ + 2√𝒑̃T𝑸(𝜅)|∙,𝑿𝑸(𝜅)|T∙,𝒑̃ + 𝜆max(𝑿𝑸(𝜅)| ,) + 2√𝒑̃T𝑹v(𝜅)𝒑̃+ 2√𝜆max(𝑹v(𝜅)|,𝑿)+2√𝒑̃T𝑹w(𝜅)𝒑̃ + 2√𝜆max(𝑹w(𝜅)|,𝑿)+2𝑐vw(𝜅) + 𝑐v +𝜆max(𝑾(𝜅)𝑸w).
All eigenvalues in Eq. (9.22) and in 𝜂̄ are real, because their arguments are either symmetric
matrices or products of symmetric matrices. We have the following result, whose proof is
found in the appendix, Section 9.B.
Theorem 9.4. 𝜂̄(𝜅, 𝒑̃,𝑿) provides an upper bound for the solution of Subproblem 9.3. That is,𝜂̄(𝜅, 𝒑̃,𝑿) ≥ 𝜂(𝒛′, 𝒛)
for all 𝒛′, 𝒛,𝒙p,𝒅,𝒗′ satisfying constraints (9.21b)–(9.21f).

The controller selects 𝜅∗ = inf𝜅 𝜂̄(𝜅, 𝒑̃,) > 𝜖2, if 𝜂̄ > 𝜖2 for some 𝜅 ≤ 𝜅̄, or 𝜅∗ = 𝜅̄ otherwise.
Finally, step (9.10a) of the observer is executed using Eq. (9.20a). Its operations are the
affine transformation 𝚪p(𝜅∗)̃(𝑡𝑏 |𝑡𝑏) +𝚽p(𝜅∗)𝒖 followed by a Minkowski sum with ̃w(𝜅∗),
which is outer-approximated through Eq. (9.11).

Algorithm 4 summarizes the steps performed at every instant 𝑘𝑏 for both updating the
state estimate and computing 𝜅∗. The operations “fusion” and “minksum” represent the
ellipsoidal outer-approximations from Eqs. (9.12) and (9.11), respectively. The ellipsoidal
GSE (steps 2, 11 and 12) is depicted in Fig. 9.3.
Remark 9.9. For the noiseless case (𝑽 = 0), we need to modify step 2 of Alg. 4, because in this
case the elliptical cylinder (𝒚,𝑽 ,𝑪p) degenerates to a hyperplane. The intersection between
an ellipsoid and a hyperplane has an exact ellipsoidal solution (see [114, Appendix IV]).

Remark 9.10. The complexity of Algorithm 4 is(𝜅̄max(𝑛p, 𝑛w, 𝑛y)3). It is dominated by the
iterative procedure to compute 𝜂̄ (line 6), which involves matrix multiplications and eigenvalue
computations on matrices whose sizes depend on 𝑛p, 𝑛w and 𝑛w.7
7Computing eigenvalues has been proven to have the same big-O complexity as matrix multiplication in [122].
The actual complexity of the matrix multiplication is unknown, the best known being (𝑛2.37). We chose to use
the exponent of 3 because most practical algorithms for small matrices have this complexity.

9.4 Self-triggered control implementation

9

147

Algorithm 4 PSTC Algorithm
Input: 𝒙c, 𝒚
Output: 𝒖,𝜅∗

1: 𝒖←𝑪c𝒙c +𝑫c𝒚
2: (𝒙̃p,𝑿)← fusion((𝒙̃p,𝑿),(𝒚,𝑽 ,𝑪p)) (Eq. 9.12)
3: 𝒑̃ ← [𝒙̃Tp 𝒙Tc 𝒚T]T
4: 𝜅∗ ←1
5: while 𝜅∗ < 𝜅̄ do
6: if 𝜂̄(𝜅∗, 𝒑̃,𝑿) > 𝜖2 then
7: break
8: end if
9: 𝜅∗ ←𝜅∗ +1
10: end while
11: (𝒙̃p,𝑿)← 𝚽p(𝜅∗)(𝒙̃p,𝑿)+𝚪p(𝜅∗)𝒖
12: (𝒙̃p,𝑿)←minksum((𝒙̃p,𝑿),(0,𝑾𝜅∗)) (Eq. 9.11)

𝑥1
𝑥2 ̃(𝑡𝑏 |𝑡𝑏)

𝑥1
𝑥2𝚽p(𝜅∗)(𝒙̃p,𝑿)+𝚪p(𝜅∗)𝒖

𝑥1
𝑥2 ̃w(ℎ𝜅∗)̃(𝑡𝑏+1|𝑡𝑏)

𝑥1
𝑥2 y(𝑡𝑏+1)

̃(𝑡𝑏+1|𝑡𝑏+1)
Figure 9.3: Steps of the ellipsoidal GSE in Alg. 4: step 11 (top right), step 12 (bottom left) and step 2 (bottom right).

9

148 9 Self-triggered output-feedback control of LTI systems

9.5 Numerical example
In the following we describe a numerical example to illustrate our approach, which can
be reproduced using the code in https://github.com/ggleizer/pstc. Consider the
perturbed, unstable linearized batch plant with a PI controller taken from [123]8:

𝑨p = ⎡⎢⎢⎢⎣
1.38 −0.208 6.715 −5.676−0.581 −4.29 0 0.6751.067 4.273 −6.654 5.8930.048 4.273 1.343 −2.104

⎤⎥⎥⎥⎦,
𝑩p = ⎡⎢⎢⎢⎣

0 05.679 01.136 −3.1461.136 0
⎤⎥⎥⎥⎦, 𝑪c = [1 0 1 −10 1 0 0], 𝑬 = ⎡⎢⎢⎢⎣

1000
⎤⎥⎥⎥⎦ ,𝑨c = [1 00 1], 𝑩c = [0 ℎℎ 0], 𝑪c = [−2 00 8], 𝑫c = [0 −25 0],

with ℎ = 0.01, 𝝃p(0) = 10[1 −1 −1 1]T and 𝝃 c(0) = 0. The triggering parameter was set to𝜎 = 0.1. We set 𝜅̄ = 25 and computed 𝑾(𝜅) using the procedure described in Sec. 9.2.2,
with w(0) = (0, 10−4I) and  = {𝒄𝑖 |𝑖 ∈ {1,2, ...,𝑛p}}. The simulated disturbance was𝜔(𝑡) = 0.1, if 𝑡 ≤ 5;0 otherwise. Simulations were run using Matlab R2018a on a MacBook
Pro with a 3.1 GHz Intel Core i5 and 8 GB, 2133 MHz LPDDR memory. Noise was simulated
through pseudo-random numbers between -0.01 and 0.01, which were pre-generated for all
simulation steps with seed 1907. The optimal fusions from Eq. (9.12) were computed with
the function fminbnd with default options. We set𝑾 = 0.12 and 𝑽 = 2 ⋅ 0.0112I, with the
observer starting with ̃0 = ℝ𝑛p .

We first simulated the closed-loop STC without noise with 𝜖 = 0, comparing its control
and sampling performances PETC (Fig. 9.4). The state norms of both cases converge to
zero at virtually the same rate, while, during the first five time units, PSTC gives similar
inter-sample times as PETC. However, the PSTC triggering times tend to 1 as the state
approaches the origin because 𝜂̄(𝜅,0,𝑿) > 0 for any 𝜅,𝑿 .

We then simulated a scenario with measurement noise: Fig. 9.5 (top) displays the
evolution of the state norm under PSTC, while the middle and bottom plots show the inter-
sample times from the PSTC. To inspect whether our PSTC indeed computes lower bounds
of PETC ISTs, we compare the PSTC-generated ISTs to those obtained by using the PETC
logic (9.14b) at each PSTC step — this way we ensure that both triggering mechanisms are
applied from the same initial conditions at all times. As seen in Fig. 9.5, indeed the PSTC
ISTs succeed in being lower bounds for the PETC ones. It is also clear how the sampling
performances of both PSTC and PETC are affected by the noise: with 𝜖 = 0, as the inputs
get close enough to zero, noise alone can provoke a trigger. With 𝜖 = 0.1, depicted in the
bottom plot of Fig. 9.5, the resulting ISTs got significantly higher at a small cost in steady
state error (as highlighted in Fig. 9.5, top).

The on-line CPU time statistics of Alg. 4 are displayed in Table 9.1. These numbers were
obtained for the case with noise with 𝜖 = 0, after ten consecutive runs of the main script to
8The controller was discretized using forward-Euler.

https://github.com/ggleizer/pstc

9.5 Numerical example

9

149

0 2 4 6 8 1005
1015
20

St
at
e
no

rm
|𝝃(𝑡)| PSTC

PETC

0 2 4 6 8 100
10
20

𝑡

𝜅∗ (sam
pl
es
) PSTC

PETC

Figure 9.4: Simulation results without noise for PSTC and PETC: state norm |𝝃 (𝑡)| (top) and inter-event times 𝜅∗
(bottom).

0 2 4 6 8 1005
1015
20

St
at
e
no

rm
‖𝝃‖ PSTC 𝜖 = 0

PSTC 𝜖 = 0.1
2 ⋅ 10−24 ⋅ 10−2

0 2 4 6 8 100
10
20 𝜖 = 0

𝜅∗ (sam
pl
es
) PSTC

PETC

0 2 4 6 8 100
10
20 𝜖 = 0.1

𝑡

𝜅∗ (sam
pl
es
)

Figure 9.5: Simulation results with noise. State norm |𝝃 (𝑡)| with PSTC with 𝜖 ∈ {0,0.1} (top); inter-event times 𝜅∗
from PSTC and PETC with 𝜖 = 0 (middle) and 𝜖 = 0.1 (bottom).

9

150 9 Self-triggered output-feedback control of LTI systems

Table 9.1: CPU times of Alg. 4 for the numerical example.

Time (ms)
Phase (line(s) in Alg. 4) Min. Mean Max.

Fusion (line 2) 0.39 0.49 1.71
Calculation of 𝜂̄ (line 6) 0.50 0.60 1.90

Prediction (lines 11 and 12) 0.02 0.02 0.08
Full PSTC cycle 1.01 1.27 8.49

mitigate the overhead from, e.g., just-in-time compilation and process management of the
operating system. The initialization step time (Section 9.C) was 0.03 ms. The figures show
that the computations are fast, despite involving an optimization step for the fusion. The
most expensive step was the calculation of 𝜂̄, mainly due to the computation of eigenvalues
and matrix multiplications. The off-line computations totaled 623.46 ms, out of which
609.26 ms were spent on the reachability (𝑾(𝜅)) and 14.19 ms on the remaining matrices
and scalars ((9.22) and the operations in Section 9.C).

Remark 9.11. Qualitatively comparing with [117], the issue of eventually triggering always
when 𝜖 = 0 also happens with 𝜃 = 1 and 𝛾 = 1 in their STC. In this setting, one would achieve
UGAS of the minimal robustly positive invariant subset associated with periodic control with
disturbances. Increasing 𝜃 and 𝛾 enlarges the terminal set, in a similar way 𝜖 > 0 does.
9.6 Conclusions
We have presented a self-triggered strategy for output-feedback control of linear systems
subject to bounded disturbances and noise, named PSTC. It is, to our knowledge, the first
self-triggered implementation of such a general control structure. We first proved that the
introduction of noise or mixed triggering does not hinder stability of neither PETC nor
PSTC, then developed an algorithm that uses set-based methods for a viable self-triggered
implementation. PSTC achieves virtually the same control performance as PETC, with
slightly smaller inter-sample times. It is expected to be fast enough for most applications, as
each step CPU time averaged 1 ms for the simulated four-state plant; and it scales well with
the state-space dimension, since the few online optimization and line search operations
are done on scalars, while higher-dimension computations are handled with basic linear
algebra.

PSTCwas developed for linear plants with linear controllers, which presents a limitation
to its applicability. Some classes of nonlinearities could be handled by considering them
as disturbances; since we assume that they are bounded, one would have to determine a
compact set on which the states lie in order to compute the proper bounds. For locally
linearizable systems, other types of unknown-but-bounded uncertainty descriptions are
more suitable, such as parametric model uncertainty. In this case, the ellipsoidal estimator in
[124] could be used as a starting point. There are also opportunities for improving the PSTC
performance for linear systems. Aiming at a small computational complexity, we chose
ellipsoids as set descriptors and devised simple upper bounds to the solution of online non-
convex QCQP problems; however, these choices probably bring additional conservatism
and hence increased communication frequency. From our simulations, this seems to

9.6 Conclusions

9

151

be particularly relevant when the state approaches the origin and when disturbances
are significantly smaller than their estimated bounds. A few alternatives might reduce
conservativeness: for example, (constrained) zonotopes [111] could replace ellipsoids;
note, however, that this would require reformulating the optimization problem. Another
possibility would be deriving tighter bounds for the non-convex QCQP.

Finally, the prediction of inter-sample times is a fundamental step for other problems
that have been addressed in this dissertation, such as scheduling and formal sampling
performance computation. The use of the methods presented in this chapter for these
problems is an interesting direction for future work.

9

152 9 Self-triggered output-feedback control of LTI systems

9.A Proof of Lemma 9.1
Before approaching the proof, one remark must be made: system (9.15) is equipped with a
timer, with jumps only occurring after a certain time; this specializes it to what is defined in
[110, Section 5] as a system with average dwell time, with 𝑁 = 1,𝛿 = 1/ℎ, and 𝜁 arbitrarily
small. This actually relaxes the Lyapunov stability conditions presented therein [110,
Proposition 2]. Theorem 2 of [110] states that homogeneous systems with average dwell
time satisfy Theorem 9.1 with 𝝍 = 𝝌. Remark 16 of [110] argues that the same Propositions
that build the proof of [110, Theorem 2] can be derived with 𝝍 ≠ 𝝌 . Thus, the timer does
not play a significant role in our proofs; as an additional benefit, the results without timer
can be applied to continuous ETC.

Let 𝑛B 𝑛p+𝑛c+𝑛u+𝑛y and the collected vector of exogenous signals𝒅TB [𝒘T 𝒗T 𝜖],
giving 𝑛d B 𝑛w +𝑛y +1. The flow sets is  = ℝ𝑛+𝑛d with projection 0 = ℝ𝑛 , and the jump
set is  =1 ∪2 where

1 = {𝒙 ∈ ℝ𝑛 , [𝒘T𝒗T 𝜖]T ∈ ℝ𝑛d ∣ (𝑭̄𝒙 + 𝑮̄𝒗)T𝑸̄(𝑭̄𝒙 + 𝑮̄𝒗) ≥ 𝜖2}, (9.23)
2 = {𝒙 ∈ ℝ𝑛 , [𝒘T𝒗T 𝜖]T ∈ ℝ𝑛d ∣ (𝑭̄𝒙 + 𝑮̄𝒗)T𝑸̄(𝑭̄𝒙 + 𝑮̄𝒗) ≤ 𝜖2}, (9.24)

and their projections with 𝒅 = 0 are

10 = {𝒙 ∈ ℝ𝑛 ∣ 𝒙T𝑭̄T𝑸̄𝑭̄𝒙 ≥ 0},
20 = {𝒙 ∈ ℝ𝑛 ∣ 𝒙T𝑭̄T𝑸̄𝑭̄𝒙 ≤ 0}.

Since the flow map in (9.15) is linear, properties (9.6) and (9.7) hold for flows; also, condition
(9.8a) is trivially satisfied because  and 0 are the entire Euclidean space. In addition, since
sets𝑖0 are conic and 𝒈 is piecewise linear, it is easy to see that 𝒈(𝜆𝝌 ,0) = 𝜆𝒈(𝝌 ,0),∀𝝌(𝑡, 𝑗) ∈0𝑖 , ∀𝑖 ∈ {1,2}. Hence, homogeneity of 𝒈 is also verified.

What remains to be verified is condition (9.8b). Note that the only components of 𝒅
that enter the jump sets are 𝒗 and 𝜖. Rewriting the set sum on the LHS of (9.8b) gives

𝑖0 +𝐿D(|𝒅|) = {𝒙′ +𝒙′′ ∣ 𝒙′ ∈𝑖0, 𝒙′′ ∈ 𝐿D(|𝒅|)}= {𝒙 ∣ (𝒙 −𝒙′′)T𝑭̄T𝑸̄𝑭̄ (𝒙 −𝒙′′) ∼𝑖 0,𝒙′′T𝒙′′ ≤ 𝐿2D(𝒗T𝒗 +𝜖2)},
where ∼1 is ≥ and ∼2 is ≤. Thus, (9.8b) can be restated as

∀𝒙 ∈ ℝ𝑛 ,𝒗 ∈ ℝ𝑛v, 𝜖 ∈ ℝ ∶ (𝑭̄𝒙 + 𝑮̄𝒗)T𝑸̄(𝑭̄𝒙 + 𝑮̄𝒗) ∼𝑖 𝜖2,∃𝒙′′ ∈ ℝ𝑛 ∶ (𝒙 −𝒙′′)T𝑭̄T𝑸̄𝑭̄ (𝒙 −𝒙′′) ∼𝑖 0,𝒙′′T𝒙′′ ≤ 𝐿2D(𝒗T𝒗 +𝜖2). (9.25)

Since the pair (𝑨p,𝑪p) is observable, we can assume system (9.9) is in its canonical observ-
able form; thus, taking 𝑪p = [I 0], we can partition 𝑭̄ as

𝑭̄ = ⎡⎢⎢⎢⎣
I 0 0 0 0𝑫c 0 𝑪c 0 0
0 0 0 I 0
0 0 0 0 I

⎤⎥⎥⎥⎦ = [𝑮̄ 𝑯̄] ,

9.A Proof of Lemma 9.1

9

153

where 𝒙T is partitioned accordingly as [𝒚T 𝒙̄T], with 𝒙̄ containing all the remaining state
components, obtaining 𝑭̄𝒙 = 𝑮̄𝒚 + 𝑯̄ 𝒙̄ . We now divide the proof in two parts: 𝑖 = 1 and𝑖 = 2.

To show (9.25) for 𝑖 = 1, let us construct one 𝒙′′ that satisfies it for every 𝒙,𝒗,𝜖 ∶ take𝒙′′T= [−𝒗T 0]. Then obviously 𝒙′′T𝒙′′ = 𝒗T𝒗 ≤ 𝐿2D(𝒗T𝒗 +𝜖2) with 𝐿𝐷 = 1 and
(𝒙 −𝒙′′)T𝑭̄T𝑸̄𝑭̄ (𝒙 −𝒙′′) = (𝑭̄ (𝒙 −𝒙′′))T𝑸̄𝑭̄ (𝒙 −𝒙′′) = (𝑭̄ [𝒚 +𝒗𝒙̄])T𝑸̄ (𝑭̄ [𝒚 +𝒗𝒙̄])= (𝑮̄(𝒚 +𝒗)+ 𝑯̄ 𝒙̄)T𝑸̄(𝑮̄(𝒚 +𝒗)+ 𝑯̄ 𝒙̄) = (𝑭̄𝒙 + 𝑮̄𝒗)T𝑸̄(𝑭̄𝒙 + 𝑮̄𝒗) ≥ 𝜖2 ≥ 0.
Showing (9.25) for 𝑖 = 2 is slightly more involved. First, notice the following fact:𝜆min(𝑭̄T𝑸̄𝑭̄) < 0. (9.26)

This is true because 𝒙T𝑭̄T𝑸̄𝑭̄𝒙 is just another representation of the triggering function
(9.14b); thus, it can be expressed as |𝒛 − 𝒛̂|2 −𝜎2|𝒛|2 for some 𝒛, 𝒛̂ ∈ ℝ𝑛y+𝑛u . This expression
is negative if, e.g., 𝒛 = 𝒛̂ ≠ 0. Thus, 𝑭̄T𝑸̄𝑭̄ cannot be positive semi-definite, hence its minimal
eigenvalue is negative.

Again, let us construct one 𝒙′′ that satisfies (9.25) for every 𝒙,𝒗,𝜖. This is 𝒙′′T =[−𝒗T 0]+𝒒T, where 𝒒 is the vector along the eigendirection corresponding to 𝜆min(𝑭̄T𝑸̄𝑭̄),
i.e. , 𝑭̄T𝑸̄𝑭̄𝒒 = 𝜆min(𝑭̄T𝑸̄𝑭̄)𝒒, satisfying(𝑮̄(𝒚 +𝒗)+ 𝑯̄ 𝒙̄)T𝑸̄𝑭̄𝒒 ≥ 0, (9.27)|𝒒|2 = |||𝜆min(𝑭̄T𝑸̄𝑭̄)|||−1 𝜖2. (9.28)

One can always find such 𝒒: (9.28) determines its norm; and, if (9.27) is not satisfied, −𝒒
satisfies it. This gives 𝒒T𝑭̄T𝑸̄𝑭̄𝒒 = 𝜆min(𝑭̄T𝑸̄𝑭̄)|||𝜆min(𝑭̄T𝑸̄𝑭̄)||| 𝜖2 = −𝜖2, (9.29)

where the negative sign comes from Eq. (9.26). Therefore, the second inequality in (9.25)
satisfies(𝒙 −𝒙′′)T𝑭̄T𝑸̄𝑭̄ (𝒙 −𝒙′′)= (𝑮̄(𝒚 +𝒗)+ 𝑯̄ 𝒙̄)T𝑸̄(𝑮̄(𝒚 +𝒗)+ 𝑯̄ 𝒙̄) − 2(𝑮̄(𝒚 +𝒗)+ 𝑯̄ 𝒙̄)T𝑸̄𝑭̄𝒒+𝒒T𝑭̄T𝑸̄𝑭̄𝒒

(9.24)≤ 𝜖2 −2(𝑮̄(𝒚 +𝒗)+ 𝑯̄ 𝒙̄)T𝑸̄𝑭̄𝒒+𝒒T𝑭̄T𝑸̄𝑭̄𝒒 (9.27),(9.29)≤ 𝜖2 −𝜖2 = 0.
Additionally, the norm of 𝒙′′ satisfies|||𝒙′′||| ≤ |𝒗| + |𝒒| = |𝒗| + |||𝜆min(𝑭̄T𝑸̄𝑭̄)− 12 ||| |𝜖| ≤ 𝐿(|𝒗| + |𝜖|),
for 𝐿Bmax(1, |||𝜆min(𝑭̄T𝑸̄𝑭̄)|||− 12). Now, it is easy to see that

(|𝒗| + |𝜖|)2 ≤ 2𝒗T𝒗 +2𝜖2.
Hence, 𝒙′′T𝒙′′ ≤ 𝐿2D(𝒗T𝒗 +𝜖2) holds with 𝐿𝐷 = √2𝐿.

9

154 9 Self-triggered output-feedback control of LTI systems

9.B Proof of Theorem 9.4
First, we introduce the following Lemma:

Lemma 9.2. Let 𝑴 ∈ 𝕊𝑛+. For any 𝒙 ∈ ℝ𝑛 such that 𝒙 ∈ (0,𝑴), there exist a vector 𝒔 with|𝒔| ≤ 1 and a matrix 𝑺 such that 𝒙 = 𝑺𝒔 and 𝑺𝑺T= 𝑴 .

Proof. Since𝑴 is symmetric, it admits the singular value decomposition

𝑴 = 𝑼T[𝑫 0
0 0]𝑼 ,

with 𝑼 invertible and 𝑫 ∈ 𝕊++ diagonal. From Definition 9.7, it must hold that, for all𝒍 ∈ ℝ𝑛 , 𝒍T𝒙 ≤ (𝒍T𝑴𝒍)1/2 = (𝒍T𝑼T[𝑫 0
0 0]𝑼 𝒍)1/2 . (9.30)

Take 𝒍′ B 𝑼𝒍 and 𝒔′ B 𝑼 −T𝒙. Then, (9.30) becomes

𝒍′T𝒔′ ≤ (𝒍′T[𝑫 0
0 0]𝒍′)1/2= (𝒍′1T𝑫𝒍′1)1/2, (9.31)

where 𝒍′ is partitioned into [𝒍′1T 𝒍′2T]T according to [𝑫 0
0 0]. Likewise, partition 𝒔′ into[𝒔′1T 𝒔′2T]T. Then, (9.31) becomes𝒍′1T𝒔′1 + 𝒍′2T𝒔′2 ≤ (𝒍′1T𝑫𝒍′1)1/2,

which, to hold for all 𝒍′1 and𝒍′2, requires that 𝒔′2 = 0. As 𝒍′1T𝒔′1 ≤ (𝒍′1T𝑫𝒍′1)1/2 is the definition
of the ellipsoid (0,𝑫), we also conclude that 𝒔′1T𝑫−1𝒔′1 ≤ 1. Finally, the choice 𝒔 = 𝑫−1/2𝒔′1
satisfies 𝒔T𝒔 ≤ 1. Moreover,𝑼 −T𝒙 = [𝒔′1𝒔′2] = [𝑫1/2

0]𝒔 ⟺ 𝒙 = 𝑼T[𝑫1/2
0]𝒔,

so, 𝑺 = 𝑼T[𝑫1/2
0] gives 𝒙 = 𝑺𝒔 and 𝑺𝑺T= 𝑴. □

With the result above, the following Lemma introduces some useful bounds:

Lemma 9.3. Let𝑴 𝑖 ∈ 𝕊𝑛+, 𝑖 ∈ {1,2}, 𝒑 ∈ ℝ𝑚 , 𝑭 ∈ ℝ𝑛×𝑚 , and 𝑸 ∈ 𝕊𝑛 . For any 𝒙 𝑖 ∈ ℝ𝑛 such that𝒙 𝑖 ∈ (0,𝑴 𝑖), the following inequalities hold:𝒑T𝑭𝒙 𝑖 ≤ √𝒑T𝑭𝑴 𝑖𝑭T𝒑, (9.32a)𝒙T𝑖𝑸𝒙 𝑖 ≤ 𝜆max(𝑴 𝑖𝑸), (9.32b)𝒙T1𝑭𝒙2 ≤ √𝜆max(𝑭𝑴2𝑭T𝑴1). (9.32c)

Proof. Using Lemma 9.2, take 𝒔𝑖 , 𝑺𝑖 satisfying 𝑺𝑖𝑺T𝑖 = 𝑴 𝑖 and 𝒙 𝑖 = 𝑺𝑖𝒔𝑖 such that |𝒔𝑖 | ≤ 1.
Thus, 𝒑T𝑭𝒙 𝑖 = 𝒑T𝑭𝑺𝑖𝒔𝑖 ≤ ||𝒑T𝑭𝑺𝑖 ||; 𝒙T𝑖𝑸𝒙 𝑖 = 𝒔T𝑖𝑺T𝑖𝑸𝑺𝑖𝒔𝑖 ≤ 𝜆max(𝑺T𝑖𝑸𝑺𝑖); and 𝒙T1𝑭𝒙2 = 𝒔T1𝑺T1𝑭𝑺2𝒔2 ≤|𝑺T1𝑭𝑺2| = √𝜆max(𝑺T1𝑭𝑺2𝑺T2𝑭T𝑺1). Using the fact that 𝜆(𝑨𝑩) = 𝜆(𝑩𝑨) for any 𝑨,𝑩 ∈ ℝ𝑛×𝑛 and
replacing 𝑺𝑖𝑺T𝑖 with𝑴 𝑖 provides (9.32). □

9.C Observer Initialization

9

155

Now we can proceed to the proof of Theorem 9.4:

Proof of Theorem 9.4. Let 𝒆B 𝒙p − 𝒙̃p. Hence,𝒑 = 𝒑̃ + [𝒆T 0 0]T (9.33)

and, from (9.21d), 𝒆T𝑿−1𝒆 ≤ 1. Rewrite Eq. (9.21a) as a function of 𝒑̃, 𝒆,𝒅, and 𝒗′ by replacing𝒛′, 𝒛 and 𝒑 from Eqs. (9.21b), (9.21c) and (9.33):𝜂(𝒛′, 𝒛) = 𝜂′(𝜅, 𝒑̃, 𝒆,𝒗′,𝒅) =⎛⎜⎜⎝𝒑̃ +
⎡⎢⎢⎣
𝒆
0
0

⎤⎥⎥⎦
⎞⎟⎟⎠
T𝑸(𝜅) ⎛⎜⎜⎝𝒑̃ +

⎡⎢⎢⎣
𝒆
0
0

⎤⎥⎥⎦
⎞⎟⎟⎠ + 2

⎛⎜⎜⎝𝒑̃ +
⎡⎢⎢⎣
𝒆
0
0

⎤⎥⎥⎦
⎞⎟⎟⎠
T𝑭v(𝜅)𝒗′ +2⎛⎜⎜⎝𝒑̃ +

⎡⎢⎢⎣
𝒆
0
0

⎤⎥⎥⎦
⎞⎟⎟⎠
T𝑭w(𝜅)𝒅

+2𝒗′T𝑪Tv𝑸̄𝑪w𝒅 +𝒗′T𝑸v𝒗′ +𝒅T𝑸w𝒅,
which results in𝜂′(𝜅, 𝒑̃, 𝒆,𝒗′,𝒅) = 𝒑̃T𝑸(𝜅)𝒑̃ + 2𝒑̃T𝑸(𝜅)|∙, 𝒆+𝒆T𝑸(𝜅)| , 𝒆 +2𝒑̃T𝑭v(𝜅)𝒗′ +2𝒆T𝑭v(𝜅)| ,∙𝒗′ +2𝒑̃T𝑭w(𝜅)𝒅 +2𝒆T𝑭w(𝜅)| ,∙𝒅+2𝒗′T𝑪Tv𝑸̄𝑪w𝒅 +𝒗′T𝑸v𝒗′ +𝒅T𝑸w𝒅. (9.34)

Now Lemma 9.3 is used. The only known term in Eq. (9.34) is the first. Eq. (9.32a) is used
for second, fourth and sixth terms; Eq. (9.32b) for the third, ninth and tenth; and Eq. (9.32c)
for the fifth, seventh and eighth terms. Mere replacement provides 𝜂̄(𝜅, 𝒑̃,𝑿). □

9.C Observer Initialization
For Assumption 9.4 to hold, we need to construct a bounded set ̃ containing the initial
state. Fortunately, this can be achieved for our class of systems in a finite number of steps,
as detailed in this Section. During these first few steps, the PSTC must trigger periodically
with 𝜅∗ = 1. The construction of ̃ requires the following:

Assumption 9.5. The matrix 𝚽p(1) is invertible and the pair (𝚽p(1),𝑪p) is observable.
This is not a limiting assumption: one can always find ℎ such that 𝚽p(1) = e𝑨pℎ is

invertible.9 Likewise, since the pair (𝑨p,𝑪p) is observable, so is (𝚽p(1),𝑪p) with the proper
selection of ℎ.10 For compactness of expressions, denote 𝚽p(1) as 𝚽p and 𝚪p(1) as 𝚪p
throughout the rest of this Appendix.

Instead of following the standard recursive GSE, which would require Minkowski sums
of unbounded sets,11 we collect sets relating the current state to each specific measurement
9For ℎ = 0, e𝑨pℎ = I; from continuity, e𝑨pℎ ≈ I for small enough values of ℎ, hence it is invertible.
10See [125, Sec. 6.8] for the pathological selections of ℎ for which it does not hold.
11There are tools for that, but it is both unnecessary and computationally inefficient to do so. During the
initialization, the STC has to trigger periodically, hence there is no advantage in keeping track of the best state
estimate.

9

156 9 Self-triggered output-feedback control of LTI systems

up to a certain instant, then compute an intersection outer-approximation. Let 𝑶(𝑘) be the
observability matrix for 𝑘 +1 instants:

𝑶(𝑘)B ⎡⎢⎢⎢⎣
𝑪p𝑪p𝚽p⋮𝑪p𝚽𝑘p

⎤⎥⎥⎥⎦ .
Denote 𝑘B inf𝑘∈ℕ0 rank(𝑶(𝑘)) = 𝑛p. This is the number of steps needed to reconstruct the
initial state on linear systems. We will see that it is also the minimum number of steps for
getting a bounded set estimate from measurements with bounded noise. For now, denote𝜹(𝑘1, 𝑘2)B ∫ ℎ𝑘2ℎ𝑘1 e𝑨p(ℎ𝑘2−𝑠)𝑬𝝎(𝑠)d𝑠 as the contribution of disturbances to state from 𝑘1 to𝑘2, and let 𝝍̃(𝑘,𝑘)B 𝝍(ℎ𝑘)+𝑪p∑𝑘−1𝑗=𝑘 𝚽𝑘−1−𝑗p 𝚪p𝝊̂(ℎ𝑗) be the prediction of the output at time𝑘 from the output at 𝑘 and inputs from 𝑘 to 𝑘 −1. The following holds:

Lemma 9.4. Consider system (9.9),(9.13) with 𝑏 = 𝑘 (periodic triggering), and let Assumption
9.4 hold. Then, for all 𝑘 ≤ 𝑘,𝑪p𝚽𝑘−𝑘p 𝝃p(ℎ𝑘) ∈ (𝝍̃(𝑘,𝑘),𝑽)+𝑪p𝚽𝑘−𝑘p ̃w(𝑘 −𝑘).
Proof. We can assess the contribution of the information 𝝍(ℎ𝑘),𝑘 ≤ 𝑘 to the instant 𝑘 in a
similar manner to Eq.(9.20):

𝝃p(ℎ𝑘) = 𝚽𝑘−𝑘p 𝝃p(ℎ𝑘)+ 𝑘−1∑𝑗=𝑘𝚽𝑘−1−𝑗p 𝚪p𝝊̂(ℎ𝑗) +𝜹(𝑘,𝑘),
which implies, if 𝚽p is invertible,

𝑪p𝚽𝑘−𝑘p 𝝃p(ℎ𝑘) = 𝑪p𝝃p(ℎ𝑘)+𝑪p 𝑘−1∑𝑗=𝑘𝚽𝑘−1−𝑗p 𝚪p𝝊̂(ℎ𝑗) +𝑪p𝚽𝑘−𝑘p 𝜹(𝑘,𝑘). (9.35)

Since 𝑪p𝝃p(ℎ𝑘) = 𝝍(ℎ𝑘)−𝝂(ℎ𝑘), it belongs to the input uncertainty set (𝝍(𝑘ℎ),𝑽), which
after summingwith the contribution from inputs𝑪p∑𝑘−1𝑗=𝑘 𝚽𝑘−1−𝑗p 𝚪p𝝊̂(ℎ𝑗) yields (𝝍̃(𝑘,𝑘),𝑽).
The remaining term is the contribution from disturbances after 𝑘 −𝑘 steps, which belongs
to ̃w(𝑘 −𝑘), followed by the linear transformation through 𝑪p𝚽𝑘−𝑘p . □

Denote the outer-approximation (Eq. 9.11) of the Minkowski sum in Lemma 9.4 as
(𝝍̃(𝑘,𝑘),𝑽̃ (𝑘)). From Definition 9.8, if 𝑪p𝚽𝑘−𝑘p 𝝃p(ℎ𝑘) ∈ (𝝍̃(𝑘,𝑘),𝑽̃ (𝑘)), then 𝝃p(ℎ𝑘) ∈
(𝝍̃(𝑘,𝑘),𝑽̃ (𝑘),𝑪p𝚽𝑘−𝑘p) = ̃(𝑘|𝑘). That is, we have found the elliptical cylinder that con-
tains 𝝃p(ℎ𝑘) given information at 𝑘. Since this is true for all 𝑘 ∈ {0,1, ..𝑘}, we have that

𝝃p(ℎ𝑘) ∈ 𝑘≤𝑘⋂𝑘=0 ̃(𝑘|𝑘). (9.36)

An ellipsoidal outer-approximation of this intersection of elliptical cylinders can be derived
with the following:

9.C Observer Initialization

9

157

Lemma 9.5. Let 𝑪𝑖 ∈ ℝ𝑚×𝑛 ,𝑴 𝑖 ∈ 𝕊𝑛++, 𝒚𝑖 ∈ ℝ𝑚 , 𝑖 ∈ {1, ..., 𝑞}. Denote 𝑪̄ B [𝑪T1 𝑪T2 ⋯ 𝑪T𝑞]
and assume rank(𝑪̄) = 𝑛. Denote 𝒚̄TB [𝒚T1 𝒚T2 ⋯ 𝒚T𝑞] and

𝑴̄ B ⎡⎢⎢⎢⎢⎣
1𝜇1𝑴1 0 ⋯ 0
0 1𝜇2𝑴2 ⋯ 0⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1𝜇𝑞𝑴𝑞

⎤⎥⎥⎥⎥⎦ ,
with ∑𝑞𝑖=1 𝜇𝑖 = 1. Then, ∩𝑖(𝒚𝑖 ,𝑴 𝑖 ,𝑪𝑖) ⊆ (𝑪̄†𝒚̄, 𝑪̄†𝑴̄𝑪̄†T).
Proof. The intersection means that (𝑪𝑖𝒙 −𝒚𝑖)T𝑴−1𝑖 (𝑪𝑖𝒙 −𝒚𝑖) ≤ 1 for all 𝑖; thus, it holds that∑𝑞𝑖=1 𝜆𝑖(𝑪𝑖𝒙 −𝒚𝑖)T𝑴−1𝑖 (𝑪𝑖𝒙 −𝒚𝑖) ≤ ∑𝑞𝑖=1 𝜆𝑖 for any 𝜆𝑖 > 0. Divide both sides by ∑𝑞𝑖=1 𝜆𝑖 and
denote 𝜇𝑖 = 𝜆𝑖/(∑𝑞𝑖=1 𝜆𝑖). Putting in matrix form,

(𝑪̄𝒙 − 𝒚̄)T⎡⎢⎢⎢⎣
𝜇1𝑴−11 0 ⋯ 0

0 𝜇2𝑴−12 ⋯ 0⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜇𝑞𝑴−1𝑞

⎤⎥⎥⎥⎦ (𝑪̄𝒙 − 𝒚̄) ≤ 1.
The middle matrix is 𝑴̄−1. Hence, 𝑪̄𝒙 ∈ (𝒚̄, 𝑴̄). Since 𝑪̄ is full rank, then 𝑚𝑞 ≥ 𝑛,
which implies that 𝑪̄†𝑪̄ = I. Therefore, 𝒙 = 𝑪̄†𝑪̄𝒙 ∈ 𝑪̄†(𝒚̄, 𝑴̄). Finally, applying the linear
transformation on the latter ellipsoid gives 𝒙 ∈ (𝑪̄†𝒚̄, 𝑪̄†𝑴̄𝑪̄†T). □

Finally, using the fact that 𝑶(𝑘) is full-rank, we apply Lemma 9.5 with 𝜇𝑖 = 𝑘 + 1 to
Eq. (9.36), obtaining the main initialization step:

Theorem 9.5. Let 𝑶̄(𝑘)B 𝑶(𝑘)𝚽−𝑘p and𝝍̄(𝑘)TB [𝝍̃(0,𝑘)T 𝝍̃(1,𝑘)T ⋯ 𝝍(𝑘)T] ,
𝑽̄ (𝑘)B ⎡⎢⎢⎢⎣

(𝑘 +1)𝑽̃ (0) 0 ⋯ 0
0 (𝑘 +1)𝑽̃ (1) ⋯ 0⋮ ⋮ ⋱ ⋮
0 0 ⋯ (𝑘 +1)𝑽̃ (𝑘)

⎤⎥⎥⎥⎦ .
Then 𝝃p(ℎ𝑘) ∈  (𝑶̄(𝑘)†𝝍̄(𝑘), 𝑶̄(𝑘)†𝑽̄ (𝑘)𝑶̄(𝑘)†T).

Matrices 𝑶̄(𝑘)†, 𝑽̄ (𝑘), 𝑶̄(𝑘)†𝑽̄ (𝑘)𝑶̄(𝑘)†T and 𝚽−𝑘p , 𝑘 ∈ {1, ..., 𝑘} can be computed offline.
Online, 𝜓(𝑘,𝑘) are calculated and, at 𝑘 = 𝑘, the center of the state estimate ̃ , 𝑶̄(𝑘)†𝝍̄(𝑘)
is computed. The main loop with Algorithm 4 then follows.

10

159

10
Conclusion

Throughout this disseration, we have addressed a wide range of topics concerning
the modeling of the timing of transmissions in event-triggered control systems, as

well as their applications on scheduling, evaluating, and improving such ETC systems.
The methods presented herein have strong relevance to the ETC community, as they
shed light on surprisingly overlooked aspects of ETC: how relevant ETC communications
savings actually are, and how to benefit from this reduction when implementing ETC
systems in shared networks. Answering these questions is paramount in determining
ETC’s practical relevance over the well-established periodic sampling, and this dissertation
provides preliminary answers, but perhaps most importantly it suggests a methodology to
address them.

As a positive byproduct of this research, there were many interesting insights that
we have gained about ETC/STC systems, their sampling behavior and their potential on
real-life cyber–physical applications. We summarize these key learning points in Section
10.1. Nevertheless, despite how much we have learned, there is much work to be done
before having more concrete and general answers to our main questions. Some of these
answers may benefit from possible improvements to this work, which we discuss in Section
10.2. Finally, some interesting directions for future work in connected topics are discussed
in Section 10.3.

10.1 Key learning points
Nominal linear PETC traffic models admit exact abstractions. As we have seen
in Chapters 3–5, every linear PETC system of the form (2.2)–(2.4) (i.e., static linear state
feedback, zero-order control, quadratic triggering conditions) admits 𝑙-complete abstrac-
tions that are exact in the sense that every abstract state is related to a concrete state and
vice-versa, and their outputs are the same. This is not true for CETC systems, because their
output space is infinite, and it is unclear whether it is true for systems subject to bounded
disturbances (see Section 10.2).

The “computability” of our exact abstractions rely on the decidability of the first-order
theory over the reals (known as Tarksi’s Theorem [67, 126]), which allows one to decide

10

160 10 Conclusion

whether or not a boolean formula over polynomial inequalities admits a real solution. The
reason why we put quotes around the word computability is because, to arrive at the main
quadratic constraint problems (e.g., (5.2)), we first compute the matrix exponential, which
(i) typically has transcendental numbers as entries and (ii) is not exactly computable for a
dimension larger than 4.1 Hence, the precise answer of computability of such models is
more complex than what we have discussed; nevertheless, as we have seen in Chapter 5,𝑙-complete PETC abstractions are in general robust to sufficiently small perturbations in
the system’s matrices, hence exact computability may play a lesser role in this theoretical
inquiry. Clearly, computability of 𝑙-complete ETC traffic models of discrete-time linear
systems has a simpler positive answer, as long as the matrices have algebraic entries,
because matrix powers are used instead of matrix exponentials.

It is easy to see that 𝑙-complete traffic models can be obtained if one considers (i) other
control update methods instead of sample-and-hold, such as to-zero [127] and model-based
[128]; (ii) other polynomial triggering conditions (including those based on 1-norm and
infinity-norm of the state); and (iii) linear dynamic controllers, even output-based. Of
course, for the latter case the abstraction relies on full-state information.
ETC scheduling is hard when ETC is needed. The heavy machinery required to build
traffic abstractions and solve the scheduling problems in Chapters 3 and 8 may give the
wrong impression that ETC scheduling is always hard. In fact this is not the case: consider
a network in which each transmission occupies the channel for Δ time units with 𝑝 ETC
systems whose MISTs are equal or larger than Δ𝑝. In this case, one can see that Round
Robin effectively ensures that all systems meet their ETC-related deadlines, and it is by
design conflict-free. However, this strategy executes the transmissions of each system
periodically with period Δ𝑝 each. Hence, one could argue that ETC is not necessary at
all given the network capacity in this scenario. Only if the user is further interested in
reducing the number of transmissions (see next learning point below) it is worth using our
machinery; or if the network capacity does not actually allow for such a trivial scheduling
solution. We argue that these situations are the ones that ETC is in fact needed.

Still, without sufficient refinement, it seems that our the abstractions are often reducible
(as per our minimization algorithm in Chapter 8) to simple periodic traffic models admitting
early sampling as Fig. 8.5. In fact, one can see that this reduction always happens if the
abstraction has a state 𝑘𝜎 such that (𝑘𝜎, 𝑖,𝑘𝜎) ∈  for all 𝑖 ∈ {1,2, ...𝑘}, where 𝑘 is the
MIST of the system. In other words, there is a state whose deadline is the MIST and
sampling before or at the deadline leads back to this state. If this holds, then the abstraction
includes in it the model of a periodic task with deadline 𝑘 admitting early executionsP = ({𝑥},{𝑥},{1,2, ...𝑘},{(𝑥,1,𝑥), (𝑥,2,𝑥), ..., (𝑥,𝑘,𝑥)},{𝑘},𝑥 ↦ 𝑘). Intuitively, this state
becomes the bottleneck for scheduling: no strategy can leave it, and the choice of sampling
actions is the most restrictive of all. Unsurprisingly, applying the algorithm of Chapter 8
to a system with these conditions ends up with the W-T representation of P alone. This
would also be the case for the numerical example of Chapter 3.
ETC and STC are particularly relevant when sampling or transmitting is costly.
As we have discussed in the introduction, reducing the number of samples required for
1This is because its exact methods rely on diagonalization or Jordan factorization, which relies on finding its
eigenvalues, which needs computing the exact roots of a polynomial of degree equal to the matrix dimension,
which is famously impossible in general for polynomials of degree 5 or more.

10.2 Opportunities for improvements

10

161

control is not only important to accommodate more control loops in a shared network.
Reducing the number of transmissions in a network is useful to, e.g., accommodate control-
unrelated traffic such as configuration and diagnostics data, or reduce radio energy in
wireless networks. With the results we have obtained in Chapters 5, ETC can substantially
reduce the average IST compared to periodic control, and this performance can be further
improved using early-sampling and look-ahead (Chapter 7). Nonetheless, in the particular
case where radio energy reduction is aimed at, this reduction in transmissions has little
value if the controller has to continuously listen for sensor packets. Our traffic models can
be used in this context to inform the controller of the next transmission time(s), finally
realizing this energy reduction. In practice, though, with perturbed systems, this prediction
can be very inaccurate as the system approaches equilibrium (Chapter 9). This is one of
the reasons why we have in parallel worked on a tailor-made network stack, the Wireless
Control Bus [37], which schedules listening times in very short time windows leveraging
the power of concurrent transmissions, making it particularly useful for turning PETC
transmission savings into effective energy savings.
ETC can exhibit complex traffic behavior. While most of the ETC literature has
observed traffic patterns that eventually converge to some fixed value or exhibit well-
behaved oscillatory, quasi-periodic patterns, we have shown in Chapter 6 that ETC’s traffic
pattern is much richer than this. In fact, it seems that complex and chaotic patterns arise
when the triggering condition is more relaxed, i.e., it is designed to significantly reduce the
amount of transmissions.
ETC is by far not optimal in resource usage minimization. As we have seen in
Chapter 7, ETC is a greedy approach to sampling reduction, and by employing look ahead
and early triggers one can come up with substantially better sampling strategies; one way
of obtaining them is by solving mean-payoff games on our traffic abstractions.

10.2 Opportunities for improvements
10.2.1 Computational complexity
Throughout the discussion sections of each chapter in this dissertation, computational
complexity was a recurring topic. To recap, there are two main layers of computational
complexity: generating the abstractions and solving the scheduling or optimal strategy
synthesis problem. We believe we have made a significant contribution to the latter with
Chapter 8, although extensions for quantitative automata are yet to be explored. For the
former, let us recap the complexities of our abstraction methods.

The number of states |𝑙 | of an 𝑙-complete PETC abstraction is in (𝑘𝑙), but as we
have seen in Chapter 6, this exponential increase in the abstraction state-space is only
observed in behaviorally chaotic systems. The size of the transition set is in (|𝑙 |2) for
verification and in (|𝑙 |2𝑘) for synthesis, i.e., when augmenting the models with early
triggers. The overall computational complexity of building an 𝑙-complete abstraction is
thus (𝑘| |2)𝐶 , where 𝐶 is the complexity of verifying a single transition (𝑥,𝑢,𝑥′). 𝐶 is
polynomial in 𝑛x when using semi-definite relaxations (Chapter 3) and exponential in 𝑛x
when using an exact nonlinear SMT solver such as z3 — more precisely, (𝑙|𝑘|)𝑛x2(𝑛x) by
adapting the result from Prop. 4.3. Because checking each transition from an 𝑙-complete
model is independent of checking any other transition, the abstraction process is highly

10

162 10 Conclusion

parallelizable. The dominating factor, one could argue, is thus the complexity of verifying
a single transition, 𝐶 .

Clearly, the SDR approach fromChapter 3 is on one end of the computational complexity
spectrum, and the Z3 approach is on the other end (with the respective trade-offs in
precision). Exploiting other approaches in the middle may be worthwhile, such as sum-of-
squares programming and 𝛿-SMT [69]. The latter seems particularly promising given the
general robustness of 𝑙-complete models to small errors in the system model presented in
Chapter 5. If one can work the actual bounds better, e.g., what is the value of 𝛿(𝑙) such that
a 𝛿(𝑙) perturbation in the system’s matrices retain the same 𝑙-complete model, this may be
a very promising approach.

In addition, as discussed in previous chapters, other triggering conditions may allow for
the use of specialized solvers. With triggering conditions based on 1-norm or infinity-norm,
the isosequential subsets are finite unions and intersections of polyhedra; therefore, the
satisfiability problem involved in verifying an inter-sample sequence or transition relation
may be cast as, e.g., a mixed-integer linear programming (MILP) problem. While MILPs are
also known to have exponential complexity on the number of variables, there is a multitude
of well-established solvers that perform very well in practice.

Finally, notice the strong dependence of the complexity numbers on 𝑘 and 𝑙 . For 𝑘, this
basically implies that it is easier and faster to abstract systems with large checking timesℎ, but there is not much to be done on that front. When it comes to 𝑙, the best approach
we have found for improving computations on a practical side is to (i) avoid construct-
ing an 𝑙-complete abstraction starting at a large value of 𝑙, but instead incrementing 𝑙
starting at 1 and only verifying the domino-consistent sequences of length 𝑙 + 1, and (ii)
for SAIST computation, avoiding the full 𝑙-complete model by using some sort of lazy
abstraction technique [129] that was briefly discussed in Section 5.6.2. This is what we
have implemented in ETCetera. This lazy abstraction approach could further be explored
for schedulability purposes, by iterating over an abstract-minimize-refine cycle using the
minimization technique of Chapter 8.

10.2.2 Specialized abstractions for perturbed systems
When external bounded disturbances are present, the IST from a given state generally
depends on the disturbance realization (Chapter 9). Approximate abstractions using power
simulations [22] can be obtained using reachability analysis as we do in Chapter 9 for
STC and was already done for general nonlinear systems in [30]. Specializing [30] for
linear systems has the main advantage that the partitioning of the state-space can be better
guided by, e.g., combining the cones obtained in the nominal quotient/𝑙-complete systems
with the proximity of the state to the origin (similarly to [23]).

To obtain exact abstractions, one could consider a traffic model in which the state is
the pair (𝒙 𝑖 , 𝑘𝑖−1), i.e., the current sample and the previously observed inter-sample time,
and the output is 𝑘𝑖−1 instead of 𝑘𝑖 — this trick was applied for abstracting linear systems
subject to stochastic disturbances in [31]. For bounded non-deterministic disturbances,
though, it is unclear at this point whether constructing the quotient model of such a system
without spurious states is possible; for continuous-time systems, this requires verifying
whether there is a point in ℝ𝑛x such that there is a disturbance realization rendering its
IST equal to 𝑘𝑖−1 and its reached point being 𝒙 𝑖 . This depends in part on the decidability

10.2 Opportunities for improvements

10

163

of time-bounded, input-bounded reachability for continuous-time linear systems, which
is just recently being investigated [130]: what is known so far is that it is decidable for
hyper-cube-bounded inputs depending on the truth of Schanuel’s conjecture, a conjecture
in transcendence theory. For energy-bounded (2) disturbances, ellipsoidal reachability
may again be the best tool to use, as the reachable set is also an (approximately computable,
at least) ellipsoid.

10.2.3 Other opportunities
Improved abstractions for synthesis. Our refinement approach (moving from an 𝑙
to an (𝑙 + 1)-complete model) is based on abstraction and refinement methods used for
verification problems. In essence, our approach is not fundamentally different from the
bisimulation algorithm from [17] for verification, where a region  ⊂  is split into ∩ Pre(′) and  ⧵ Pre(′), with Pre()B {𝒙 ∈  ∣ (𝒙,𝒙′) ∈  for some 𝒙′ ∈ }. Only
after the refinements are concluded we augment them with the early-sampling actions.
This is different than the bisimulation algorithm for control, in which the Pre operator
is CPre()B {𝒙 ∈  ∣ (𝒙,𝑢,𝒙′) ∈  for some 𝑢 ∈ , 𝒙′ ∈} (sometimes called controlled
Pre). Note that using CPre changes how the regions are refined: in fact, CPre gives a larger
set than using Pre on the autonomous system. The results based on existence of finite
alternating bisimulation or simulation equivalence for infinite systems rely on the CPre
operator (see, e.g., [92]); thus, there is no guarantee that our refinement approach can
generate finite bisimulations of the control system — it may end with a finite bisimulation
for the autonomous system, but after early-sample actions are added this property may be
lost.

One reason we did not use CPre is that, for typical control synthesis, the chosen control
action is irrelevant as long as it ensures the trace satisfies the given specifications. This is
not the case for our scheduling / sampling strategy problems: the control action (when to
trigger) matters; in fact, it would be more natural to define an output map on the transition
rather than on the state, which is a common thing in the automata literature (notably
the difference between Mealy and Moore machines). We did this somewhat implicitly
in Chapter 7, but admittedly we only noticed this nuance late in the project. A natural
next step is thus to investigate how to either adapt the traffic model so that the actual
chosen inter-sample time is the output map, rather than a deadline, or using a version
of the bisimulation algorithm for systems with output maps on transitions. The main
operations involved in the abstraction process, namely verifying conjunctions of quadratic
inequalities, should remain the same, and this approach should yield tighter abstractions
for synthesis.
Lower entropy bounds. While we have provided a method to compute upper bounds
on a PETC system’s behavioral entropy, getting lower bounds would be very useful. Not
only it provides the theoretically interesting answer that a system is in fact chaotic (when
the lower bound is positive), it also informs the abstraction process that it is in some
sense worthless to keep refining the abstraction further. In Chapter 6 we have discussed
some ideas on how to do it, but the vast recent literature on abstractions can be further
explored. One example is [131], which provides a bisimulation-like algorithm whose output
abstraction’s infinite traces are equivalent to those of the concrete system in some cases,
even when a finite bisimulation is not available.

10

164 10 Conclusion

Linear CETC abstractions. Our abstractions have been mostly focused on PETC, both
due to its practicality and because it is more amenable to abstracting thanks to its finite
output space. Nevertheless, a similar approach to what we use in PETC can be done to
create the quotient state-space of CETC in the special case where the CETC system satisfies
the conditions of Proposition 6.3, i.e., its associated 𝑓 map is continuous. One can see
that, in this case, the set [𝜏1,𝜏2] of points whose IST is in [𝜏1, 𝜏2] is the set {𝒙 ∈ ℝ𝑛x ∣𝒙T𝑵(𝜏1)𝒙 ≥ 0,𝒙T𝑵(𝜏2)𝒙 ≤ 0}, i.e., it is defined by a simple pair of quadratic inequalities.
This effectively creates the power quotient state-set, which can be defined with arbitrary
precision (depending on the division of the time interval [𝜏 , 𝜏]. Building the transition set,
however, requires more sophisticated reachability analysis than our approach for PETC,
but a natural first step is to use the same LMI approach as in [21].
The scheduling problem without late triggers is too stringent. Take a PETC system
with MIST equal to 𝑘 and take 𝑘 as its corresponding isochronous set. It is often the
case that, using only early triggers, it takes many samples before the system leaves 𝑘 if𝒙0 ∈ 𝑘 . Suppose the maximum number of samples is 𝐿. This means that for any 𝑙 < 𝐿,
the transitions 𝑘𝑙 𝑖−−→ 𝑘𝑙 , for all 𝑖 ∈ ℕ≤𝑘 , will be present in the corresponding 𝑙-complete
PETC traffic model with early triggering. It is possible to see that, regardless of the other
states in the abstraction, applying the minimization algorithm of Chapter 8 on the derived
discrete-clock model gives a trivial solution as in Fig. 8.5: a systemwith a recurring deadline
of 𝑘 time units. This reasoning not only indicates that often one needs to have sufficiently
refined abstractions to obtain scheduling problems that do not reduce to simple periodic
deadlines (equivalent as such to periodic sampling), but also that PETC systems may indeed
persist in behaving like periodically sampled systems until sufficient time has passed. In
these situations, PETC is indeed not much better to liberate network capacity as its periodic
sampling counterpart, if all the scheduler can do is trigger early. Allowing occasional late
samples, however, may allow for a quicker escape from 𝑘 , getting faster to a region of
the state space where PETC performs sufficiently better.

However, as we have seen, early samples guarantee by design control stability and
performance given by the triggering condition. This is not the case with late triggers,
hence they must be used wisely. One approach that ensures stability but ignores transient
behaviors is to allow finitely many late triggers in every infinite run, turning the scheduling
problem in essence a Büchi safety game. Other approaches may have higher computational
complexity but attain better control performance, such as posing the scheduling problem as
a quantitative safety game, where the weight map on a transition represents the Lyapunov
function decay (or increase) by taking that choice. These approaches are currently subject
of investigation in the group.

10.3 Future research directions
Can ETC actually increase control network capacity? In the examples we have
explored for PETC scheduling, in all cases where the safety game had a winning strategy,
there was also a trivial periodic schedule available (this was verified case by case, but made
clearer after the case study of Chapter 8). In all cases where we added an extra control
loop such that this trivial solution was not possible, we failed to obtain a scheduler. We
have no reason to believe that this is always true, and it would be interesting to find a

10.3 Future research directions

10

165

counterexample; this would show that the transmission reductions provided by PETC can
indeed enable larger networks of control systems. We suspect that one can find such an
example with the scheduling approach we proposed, but this will certainly be easier when
allowing late triggers.
Solving the scheduling problem (and others) with disturbances and partial infor-
mation. The combination of our scheduling methods for the nominal case and the observer-
based STC of Chapter 9 requires overcoming many challenges, beyond the abstraction-
related discussed in Section 10.2. As we have seen in Chapter 9, when measurement noise
is present, it is never possible to have the exact state information, but instead a bounded set
containing it. If this set overlaps two different abstract states, the state-based scheduling
strategies we design may not be able to find a coherent action. In fact, the scheduling
problem becomes a partial-information safety game, which is in general undecidable. Nev-
ertheless, there are many approaches in the literature of discrete-event systems dealing
with partial information synthesis which can be explored (e.g., see [95]). The full solution
envisioned, involving set-based observers combined with automata-based observers, is
substantially more complex than the already not simple ETC scheduling problem we have
addressed, but definitely possible to devise.
Other metrics derived from the traffic models. Even though we have built our abstrac-
tions for predicting, evaluating, and manipulating PETC traffic, they contain much more
information than the mere IST behaviors of the system. One also gets how trajectories
can traverse the state space, which gives information about control performance as well.
One can leverage those models to derive improved Lyapunov functions yielding tigher
bounds on the GES decay rate of the system, expanding on what we have briefly done in
Chapter 4 — a potential way to do so is exploring path-complete Lyapunov functions [68].
Alternatively, other metrics can be obtained by choosing the appropriate weight function
in the abstractions, such as Lyapunov decay rates; these metrics could be combinations of
traffic and control performance indicators.
Connection with piecewise-affine systems. The PETC traffic model from Definition
2.15 can be seen as a piecewise-affine (PWA) discrete-time system, with the particularity
that the regions for each affine mode are complicated cone intersections as opposed to the
typically convex polyhedra often consider in the PWA literature. This connection has not
been explored in this dissertation, but it may be a fruitful one.
Exploiting chaotic traffic. Chaotic traffic patterns may be bad from a predictability
standpoint, with potential negative effects in schedulability, but they may be interesting
from a cyber-security perspective: it may become more difficult for an external observer
to detect whether the seemingly random traffic is of important control data or not, or to
inject destructive information if the listening times from the controller / actuator are timed
precisely (as in the case of STC).
ETC for shared actuators. This dissertation started with an admittedly awkward intro-
duction to event-based mechanisms for control, by explaining how we manage multiple
control tasks with our pair of actuators called arms. Still, it is interesting to see that
the main practical motivation for ETC has been reduction in computation and network
resources, but the problem of shared actuators has not been discussed (to the best of the
author’s knowledge). The most likely reason is that engineered control systems are often

10

166 10 Conclusion

over-actuated — not in the classical control-theoretic notion of over- and under-actuation —
but in the sense that every component of the input space has a dedicated actuator. However,
one could envision a scenario where, for example, a single robotic arm is responsible for
operating several valves (like in our cooking scenario); this is particularly interesting as
we consider control applications where the whole system cannot be simply overhauled
with smart actuators, either because its too costly or impractical, hence requiring a moving
robot to execute the several control tasks. One clear example is agriculture, where an
autonomous vehicle may be responsible for controlling crops in a large area.

167

Bibliography

References
[1] “HART Technology Explained | FieldComm.” [Online]. Available: https://www.

fieldcommgroup.org/technologies/hart/hart-technology-explained

[2] R. E. Hufnagel, “Analysis of cyclic-rate sampled-data feedback-control systems,”
Transactions of the American Institute of Electrical Engineers, Part II: Applications and
Industry, vol. 77, no. 5, pp. 421–425, 1958.

[3] K. J. Åström and B. Bernhardsson, “Comparison of riemann and lebesgue sampling
for first order stochastic systems,” in Proceedings of the 41st IEEE Conference on
Decision and Control, 2002, vol. 2. IEEE, 2002, pp. 2011–2016.

[4] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered
and self-triggered control,” in Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on. IEEE, 2012, pp. 3270–3285.

[5] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE
Transactions on Automatic Control, vol. 52, no. 9, pp. 1680–1685, 2007.

[6] E. Sontag, “Input to state stability,” in The Control Systems Handbook: Control System
Advanced Methods, Second Edition., W. S. Levine, Ed. Boca Raton: CRC Press, 2011,
pp. 45.1–45.21 (1034–1054).

[7] X. Wang and M. D. Lemmon, “Event design in event-triggered feedback control
systems,” in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE,
2008, pp. 2105–2110.

[8] A. Girard, “Dynamic triggering mechanisms for event-triggered control,” IEEE Trans-
actions on Automatic Control, vol. 60, no. 7, pp. 1992–1997, 2015.

[9] M. Mazo and P. Tabuada, “On event-triggered and self-triggered control over sen-
sor/actuator networks,” in Decision and Control, 2008. CDC 2008. 47th IEEE Conference
on. IEEE, 2008, pp. 435–440.

[10] M. Mazo Jr. and P. Tabuada, “Decentralized event-triggered control over wireless
sensor/actuator networks,” Automatic Control, IEEE Transactions on, vol. 56, no. 10,
pp. 2456–2461, 2011.

[11] W. P. M. H. Heemels, M. C. F. Donkers, and A. R. Teel, “Periodic event-triggered
control for linear systems,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp.
847–861, 2013.

https://www.fieldcommgroup.org/technologies/hart/hart-technology-explained
https://www.fieldcommgroup.org/technologies/hart/hart-technology-explained

168 Bibliography

[12] M. Mazo Jr and A. Fu, “Decentralized event-triggered controller implementations,”
Event-Based Control and Signal Processing, p. 121, 2015.

[13] V. Dolk, D. P. Borgers, and W. Heemels, “Output-based and decentralized dynamic
event-triggered control with guaranteed lp-gain performance and zeno-freeness,”
IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 34–49, 2017.

[14] M. Mazo Jr., A. Anta, and P. Tabuada, “An ISS self-triggered implementation of linear
controllers,” Automatica, vol. 46, no. 8, pp. 1310–1314, 2010.

[15] M. Velasco, J. Fuertes, and P. Marti, “The self triggered task model for real-time
control systems,” in Work-in-Progress Session of the 24th IEEE Real-Time Systems
Symposium (RTSS03), vol. 384, 2003.

[16] A. Anta and P. Tabuada, “Self-triggered stabilization of homogeneous control sys-
tems,” in American Control Conference, 2008. IEEE, 2008, pp. 4129–4134.

[17] P. Tabuada, Verification and control of hybrid systems: a symbolic approach. Springer
Science & Business Media, 2009.

[18] T. Moor and J. Raisch, “Supervisory control of hybrid systems within a behavioural
framework,” Systems & control letters, vol. 38, no. 3, pp. 157–166, 1999.

[19] K. Chatterjee, L. Doyen, and T. A. Henzinger, “Quantitative languages,” ACM Trans-
actions on Computational Logic (TOCL), vol. 11, no. 4, pp. 1–38, 2010.

[20] J. C. Willems, “Paradigms and puzzles in the theory of dynamical systems,” IEEE
Transactions on automatic control, vol. 36, no. 3, pp. 259–294, 1991.

[21] A. S. Kolarijani and M. Mazo Jr, “A formal traffic characterization of LTI event-
triggered control systems,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 1, pp. 274–283, 2016.

[22] M. Mazo Jr, A. S. Kolarijani, D. Adzkiya, and C. Hop, “Abstracted models for schedul-
ing of event-triggered control data traffic,” in Control Subject to Computational and
Communication Constraints. Springer, 2018, pp. 197–217.

[23] A. Fu and M. Mazo Jr., “Traffic models of periodic event-triggered control systems,”
IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3453–3460, 2018.

[24] B. Demirel, V. Gupta, D. E. Quevedo, and M. Johansson, “On the trade-off between
communication and control cost in event-triggered dead-beat control,” IEEE Transac-
tions on Automatic Control, vol. 62, no. 6, pp. 2973–2980, 2017.

[25] R. Postoyan, R. G. Sanfelice, and W. P. M. H. Heemels, “Inter-event times analysis
for planar linear event-triggered controlled systems,” in Decision and Control, 2019.
CDC 2019. 58th IEEE Conference on, 2019.

[26] A. Rajan and P. Tallapragada, “Analysis of inter-event times for planar linear systems
under a general class of event triggering rules,” in 2020 59th IEEE Conference on
Decision and Control (CDC). IEEE, 2020, pp. 5206–5211.

References 169

[27] A. Ehrenfeucht and J. Mycielski, “Positional strategies for mean payoff games,”
International Journal of Game Theory, vol. 8, no. 2, pp. 109–113, 1979.

[28] G. Delimpaltadakis and M. Mazo Jr, “Traffic abstractions of nonlinear homogeneous
event-triggered control systems,” in 2020 59th IEEE Conference on Decision and Control
(CDC), 2020, pp. 4991–4998.

[29] G. Delimpaltadakis and M. Mazo Jr., “Isochronous partitions for region-based self-
triggered control,” IEEE Transactions on Automatic Control, vol. 66, no. 3, pp. 1160–
1173, 2020.

[30] G. Delimpaltadakis and M. Mazo Jr., “Abstracting the traffic of nonlinear event-
triggered control systems,” 2021.

[31] G. Delimpaltadakis, L. Laurenti, andM.Mazo Jr., “Abstracting the sampling behaviour
of stochastic linear periodic event-triggered control systems,” in 60th IEEE Conference
on Decision and Control (accepted), 2021, https://arxiv.org/abs/2109.14391.

[32] C. Peng and T. C. Yang, “Event-triggered communication and h-∞ control co-design
for networked control systems,” Automatica, vol. 49, no. 5, pp. 1326–1332, 2013.

[33] M. Donkers, P. Tabuada, and W. Heemels, “Minimum attention control for linear
systems,” Discrete Event Dynamic Systems, vol. 24, no. 2, pp. 199–218, 2014.

[34] G. Delimpaltadakis, G. de A. Gleizer, I. van Straalen, and M. Mazo Jr.,
“ETCetera: beyond event-triggered control,” in 25th ACM International Conference
on Hybrid Systems: Computation and Control, ser. HSCC ’22. New York,
NY, USA: Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3501710.3519523

[35] I. van Straalen, “Efficient scheduler synthesis for periodic event triggered control
systems: An approach with binary decision diagrams,” Master’s thesis, Delft
University of Technology, 2021. [Online]. Available: http://resolver.tudelft.nl/uuid:
f9764019-e908-45e7-a053-0f6fbc8a7792

[36] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Uppaal
tiga user-manual,” Aalborg University, 2007.

[37] M. Trobinger, G. A. Gleizer, T. Istomin, M. Mazo Jr, A. L. Murphy, and G. P. Picco,
“The wireless control bus: Enabling efficient multi-hop event-triggered control with
concurrent transmissions,” ACM Transactions on Cyber-Physical Systems (TCPS),
vol. 6, no. 1, pp. 1–29, 2021.

[38] R. Milner, “An algebraic definition of simulation between programs,” in Proceedings
of the 2nd international joint conference on Artificial intelligence, 1971, pp. 481–489.

[39] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[40] A.-K. Schmuck, P. Tabuada, and J. Raisch, “Comparing asynchronous l-complete
approximations and quotient based abstractions,” in 2015 54th IEEE Conference on
Decision and Control (CDC). IEEE, 2015, pp. 6823–6829.

https://arxiv.org/abs/2109.14391
https://doi.org/10.1145/3501710.3519523
http://resolver.tudelft.nl/uuid:f9764019-e908-45e7-a053-0f6fbc8a7792
http://resolver.tudelft.nl/uuid:f9764019-e908-45e7-a053-0f6fbc8a7792

170 Bibliography

[41] R. M. Karp, “A characterization of the minimum cycle mean in a digraph,” Discrete
mathematics, vol. 23, no. 3, pp. 309–311, 1978.

[42] M. Chaturvedi and R. M. McConnell, “A note on finding minimum mean cycle,”
Information Processing Letters, vol. 127, pp. 21–22, 2017.

[43] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi, “Alternating refinement
relations,” in International Conference on Concurrency Theory. Springer, 1998, pp.
163–178.

[44] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and tools,” in
Advanced Course on Petri Nets. Springer, 2004, pp. 87–124.

[45] K. J. Åström and B. Wittenmark, Computer-controlled systems: theory and design.
Courier Corporation, 2013.

[46] G. de A. Gleizer and M. Mazo Jr., “Scalable traffic models for scheduling of linear
periodic event-triggered controllers,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 2726–2732,
2020.

[47] R. Postoyan, A. Anta, W. P. M. H. Heemels, P. Tabuada, and D. Nešić, “Periodic
event-triggered control for nonlinear systems,” in 52nd IEEE conference on decision
and control. IEEE, 2013, pp. 7397–7402.

[48] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,”
Theoretical computer science, vol. 138, no. 1, pp. 3–34, 1995.

[49] T. A. Henzinger and P. W. Kopke, “Undecidability results for hybrid systems,” Cornell
University, Tech. Rep., 1995.

[50] A. S. Kolarijani, D. Adzkiya, and M. Mazo Jr., “Symbolic abstractions for the schedul-
ing of event-triggered control systems,” in IEEE 54th Annual Conference on Decision
and Control (CDC). IEEE, 2015, pp. 6153–6158.

[51] J. Park and S. Boyd, “General heuristics for nonconvex quadratically constrained
quadratic programming,” arXiv preprint arXiv:1703.07870, 2017.

[52] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[53] A. S. Kolarijani and M. Mazo Jr, “Traffic characterization of lti event-triggered control
systems: a formal approach,” arXiv preprint arXiv:1503.05816, 2015.

[54] M. Donkers, “Networked and event-triggered control systems,” Ph.D. dissertation,
TU Eindhoven, 2011.

[55] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for
convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5,
2016.

References 171

[56] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “SCS: Splitting conic solver, version
2.1.1,” https://github.com/cvxgrp/scs, Nov. 2017.

[57] A. David, P. G. Jensen, K. G. Larsen, M. Mikučionis, and J. H. Taankvist, “Uppaal
stratego,” in International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2015, pp. 206–211.

[58] E. Asarin, O.Maler, A. Pnueli, and J. Sifakis, “Controller synthesis for timed automata,”
IFAC Proceedings Volumes, vol. 31, no. 18, pp. 447–452, 1998.

[59] P. Schalkwijk, “Automating scheduler design for networked control systems with
event-based control: An approach with timed automata,” Master’s thesis, Delft
University of Technology, 2019. [Online]. Available: http://resolver.tudelft.nl/uuid:
6ae619f2-9247-4c30-9710-b1ddf362896d

[60] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-decision dia-
grams,” ACM Computing Surveys (CSUR), vol. 24, no. 3, pp. 293–318, 1992.

[61] P. Bouyer, T. Brihaye, and N. Markey, “Improved undecidability results on weighted
timed automata,” Information Processing Letters, vol. 98, no. 5, pp. 188–194, 2006.

[62] A. A. Samant, “Scheduling strategies for event-triggered control using
timed game automata over CAN networks,” Master’s thesis, Delft Univer-
sity of Technology, 2020. [Online]. Available: http://resolver.tudelft.nl/uuid:
2dccaa3b-dbff-428e-a5d3-d46ada57504d

[63] G. de A. Gleizer and M. Mazo Jr., “Towards traffic bisimulation of linear periodic
event-triggered controllers,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 25–30,
2021.

[64] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in International conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2008,
pp. 337–340.

[65] E. Le Corronc, A. Girard, and G. Goessler, “Mode sequences as symbolic states in
abstractions of incrementally stable switched systems,” in 52nd IEEE Conference on
Decision and Control. IEEE, 2013, pp. 3225–3230.

[66] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in real algebraic geometry. Springer,
2006.

[67] ——, “On the combinatorial and algebraic complexity of quantifier elimination,”
Journal of the ACM (JACM), vol. 43, no. 6, pp. 1002–1045, 1996.

[68] A. A. Ahmadi, R. M. Jungers, P. A. Parrilo, and M. Roozbehani, “Joint spectral
radius and path-complete graph Lyapunov functions,” SIAM Journal on Control and
Optimization, vol. 52, no. 1, pp. 687–717, 2014.

[69] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver for nonlinear theories over
the reals,” in International conference on automated deduction. Springer, 2013, pp.
208–214.

https://github.com/cvxgrp/scs
http://resolver.tudelft.nl/uuid:6ae619f2-9247-4c30-9710-b1ddf362896d
http://resolver.tudelft.nl/uuid:6ae619f2-9247-4c30-9710-b1ddf362896d
http://resolver.tudelft.nl/uuid:2dccaa3b-dbff-428e-a5d3-d46ada57504d
http://resolver.tudelft.nl/uuid:2dccaa3b-dbff-428e-a5d3-d46ada57504d

172 Bibliography

[70] G. de A. Gleizer and M. Mazo Jr., “Computing the sampling performance of event-
triggered control,” in Proc. of the 24th Int’l Conf. on Hybrid Systems: Computation and
Control, ser. HSCC ’21. ACM, 2021.

[71] G. A. Gleizer and M. Mazo Jr., “Computing the average inter-sample time of event-
triggered control using quantitative automata,” 2021, https://arxiv.org/abs/2109.14391.
Under review at Nonlinear Analysis: Hybrid Systems.

[72] S. Linsenmayer and F. Allgöwer, “Performance oriented triggering mechanisms with
guaranteed traffic characterization for linear discrete-time systems,” in 2018 European
Control Conference (ECC), 2018, pp. 1474–1479.

[73] R. Postoyan, R. G. Sanfelice, and W. Heemels, “Explaining the “mystery” of
periodicity in inter-transmission times in two-dimensional event-triggered con-
trolled system,” IEEE Transactions on Automatic Control, 2022, early access. DOI:
10.1109/TAC.2022.3147009.

[74] W. de Melo and S. van Strien, One-Dimensional Dynamics, ser. Ergebnisse der Mathe-
matik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.
Springer Berlin Heidelberg, 2012.

[75] G. A. Gleizer and M. Mazo Jr, “Chaos and order in event-triggered control,” arXiv
preprint arXiv:2201.04462, 2022.

[76] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos,
ser. Studies in Advanced Mathematics. CRC-Press, 1999. [Online]. Available:
https://books.google.nl/books?id=px5gUpPfww8C

[77] A. Anta and P. Tabuada, “Exploiting isochrony in self-triggered control,” IEEE Trans-
actions on Automatic Control, vol. 57, no. 4, pp. 950–962, 2011.

[78] R. A. Brualdi, “Spectra of digraphs,” Linear Algebra and its Applications, vol. 432,
no. 9, pp. 2181 – 2213, 2010. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0024379509001232

[79] I. Domowitz and M. A. El-Gamal, “A consistent test of stationary-ergodicity,” Econo-
metric Theory, vol. 9, no. 4, pp. 589–601, 1993.

[80] T. B. Arnold and J. W. Emerson, “Nonparametric goodness-of-fit tests for discrete
null distributions.” R Journal, vol. 3, no. 2, 2011.

[81] S. Day, R. Frongillo, and R. Trevino, “Algorithms for rigorous entropy bounds and
symbolic dynamics,” SIAM Journal on Applied Dynamical Systems, vol. 7, no. 4, pp.
1477–1506, 2008.

[82] D. Borgers and W. Heemels, “Event-separation properties of event-triggered control
systems,” IEEE Transactions on Automatic Control, vol. 59, no. 10, pp. 2644–2656, 2014.

[83] A. Granas and J. Dugundji, Fixed Point Theory, ser. Monographs in Mathematics.
Springer, 2003. [Online]. Available: https://books.google.nl/books?id=4_iJAoLSq3cC

https://arxiv.org/abs/2109.14391
https://books.google.nl/books?id=px5gUpPfww8C
http://www.sciencedirect.com/science/article/pii/S0024379509001232
http://www.sciencedirect.com/science/article/pii/S0024379509001232
https://books.google.nl/books?id=4_iJAoLSq3cC

References 173

[84] S. Lang, Algebra, ser. Graduate Texts in Mathematics. Springer New York, 2005.
[Online]. Available: https://books.google.nl/books?id=Fge-BwqhqIYC

[85] G. de A. Gleizer, K. Madnani, and M. Mazo Jr., “Self-triggered control for near-
maximal average inter-sample time,” in 60th IEEE Conference on Decision and Control
(accepted), 2021.

[86] A. Szymanek, G. A. Gleizer, and M. Mazo Jr., “Periodic event-triggered control with
a relaxed triggering condition,” in 2019 IEEE 58th Conference on Decision and Control
(CDC). IEEE, 2019, pp. 1656–1661.

[87] D. Antunes, W. Heemels, and P. Tabuada, “Dynamic programming formulation of
periodic event-triggered control: Performance guarantees and co-design,” in 2012
IEEE 51st IEEE conference on decision and control (CDC). IEEE, 2012, pp. 7212–7217.

[88] Y. Xu and J. P. Hespanha, “Optimal communication logics in networked control
systems,” in 2004 43rd IEEE Conference on Decision and Control (CDC), vol. 4. IEEE,
2004, pp. 3527–3532.

[89] C. Comin and R. Rizzi, “Improved pseudo-polynomial bound for the value problem
and optimal strategy synthesis in mean payoff games,” Algorithmica, vol. 77, no. 4,
pp. 995–1021, 2017.

[90] M. Mazo Jr. and P. Tabuada, “Symbolic approximate time-optimal control,” Systems
& Control Letters, vol. 60, no. 4, pp. 256–263, 2011.

[91] Y. Velner, K. Chatterjee, L. Doyen, T. A. Henzinger, A. Rabinovich, and
J.-F. Raskin, “The complexity of multi-mean-payoff and multi-energy games,”
Information and Computation, vol. 241, pp. 177–196, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0890540115000164

[92] R. Majumdar, Symbolic algorithms for verification and control. University of Califor-
nia, Berkeley, 2003.

[93] G. A. Gleizer, K. Madnani, and M. Mazo Jr., “A simpler alternative: Minimizing
transition systems modulo alternating simulation equivalence,” in 25th ACM
International Conference on Hybrid Systems: Computation and Control, ser. HSCC
’22. New York, NY, USA: Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3501710.3519534

[94] P. J. Ramadge andW.M.Wonham, “The control of discrete event systems,” Proceedings
of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[95] C. G. Cassandras, S. Lafortune et al., Introduction to discrete event systems. Springer,
2008, vol. 2.

[96] D. Bustan and O. Grumberg, “Simulation-based minimization,” ACM Transactions on
Computational Logic (TOCL), vol. 4, no. 2, pp. 181–206, 2003.

https://books.google.nl/books?id=Fge-BwqhqIYC
https://www.sciencedirect.com/science/article/pii/S0890540115000164
https://doi.org/10.1145/3501710.3519534

174 Bibliography

[97] P. C. Kanellakis and S. A. Smolka, “Ccs expressions, finite state processes, and three
problems of equivalence,” Information and computation, vol. 86, no. 1, pp. 43–68,
1990.

[98] D. Lee andM. Yannakakis, “Online minimization of transition systems,” in Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, 1992, pp. 264–
274.

[99] J. A. Bergstra, A. Ponse, and S. A. Smolka, Handbook of process algebra. Elsevier,
2001.

[100] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing simulations on finite
and infinite graphs,” in Proceedings of IEEE 36th Annual Foundations of Computer
Science. IEEE, 1995, pp. 453–462.

[101] F. Ranzato and F. Tapparo, “A new efficient simulation equivalence algorithm,” in
22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), 2007, pp.
171–180.

[102] R. Cleaveland and O. Sokolsky, “Equivalence and preorder checking for finite-state
systems,” Handbook of Process Algebra, pp. 391–424, 2001.

[103] T. A. Henzinger, R. Majumdar, and J.-F. Raskin, “A classification of symbolic transition
systems,” ACM Transactions on Computational Logic (TOCL), vol. 6, no. 1, pp. 1–32,
2005.

[104] C. Fritz and T. Wilke, “State space reductions for alternating büchi automata quo-
tienting by simulation equivalences,” in International Conference on Foundations of
Software Technology and Theoretical Computer Science. Springer, 2002, pp. 157–168.

[105] K. Chatterjee, S. Chaubal, and P. Kamath, “Faster algorithms for alternating refine-
ment relations,” Computer Science Logic 2012, p. 167, 2012.

[106] G. de A. Gleizer andM.Mazo Jr., “Self-triggered output-feedback control of lti systems
subject to disturbances and noise,” Automatica, vol. 120, 2020, article no. 109129.

[107] ——, “Self-triggered output feedback control for perturbed linear systems,” IFAC-
PapersOnLine, vol. 51, no. 23, pp. 248–253, 2018.

[108] M. Donkers andW. Heemels, “Output-based event-triggered control with guaranteed-
gain and improved and decentralized event-triggering,” Automatic Control, IEEE
Transactions on, vol. 57, no. 6, pp. 1362–1376, 2012.

[109] J. Almeida, C. Silvestre, and A. M. Pascoal, “Self-triggered output feedback control
of linear plants in the presence of unknown disturbances.” IEEE Transactions on
Automatic Control, vol. 59, no. 11, pp. 3040–3045, 2014.

[110] D. Nešić, A. R. Teel, G. Valmorbida, and L. Zaccarian, “Finite-gain lp stability for
hybrid dynamical systems,” Automatica, vol. 49, no. 8, pp. 2384–2396, 2013.

References 175

[111] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz, “Constrained zonotopes:
A new tool for set-based estimation and fault detection,” Automatica, vol. 69, pp.
126–136, 2016.

[112] A. B. Kurzhanskiı̆ and I. Vályi, Ellipsoidal calculus for estimation and control.
Birkhäuser, 1997.

[113] ——, “Ellipsoidal toolbox,” 2006, technical Report.

[114] F. Schweppe, “Recursive state estimation: Unknown but bounded errors and system
inputs,” IEEE Transactions on Automatic Control, vol. 13, no. 1, pp. 22–28, 1968.

[115] L. Ros, A. Sabater, and F. Thomas, “An ellipsoidal calculus based on propagation and
fusion,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 32, no. 4, pp. 430–442, 2002.

[116] L. G. Moreira, S. Tarbouriech, A. Seuret, and J. M. G. da Silva Jr, “Observer-based
event-triggered control in the presence of cone-bounded nonlinear inputs,” Nonlinear
Analysis: Hybrid Systems, vol. 33, pp. 17–32, 2019.

[117] F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, “Event-triggered and self-
triggered control for linear systems based on reachable sets,” Automatica, vol. 101,
pp. 15–26, 2019.

[118] R. Goebel, R. G. Sanfelice, and A. Teel, “Hybrid dynamical systems,” Control Systems,
IEEE, vol. 29, no. 2, pp. 28–93, 2009.

[119] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: modeling,
stability, and robustness. Princeton University Press, 2012.

[120] C. Cai and A. R. Teel, “Characterizations of input-to-state stability for hybrid systems,”
Systems & Control Letters, vol. 58, no. 1, pp. 47–53, 2009.

[121] F. Blanchini and S. Miani, Set-theoretic methods in control. Springer, 2008.

[122] J. Demmel, I. Dumitriu, and O. Holtz, “Fast linear algebra is stable,” Numerische
Mathematik, vol. 108, no. 1, pp. 59–91, 2007.

[123] G. C. Walsh and H. Ye, “Scheduling of networked control systems,” Control Systems,
IEEE, vol. 21, no. 1, pp. 57–65, 2001.

[124] L. El Ghaoui and G. Calafiore, “Robust filtering for discrete-time systems with
bounded noise and parametric uncertainty,” IEEE Transactions on Automatic Control,
vol. 46, no. 7, pp. 1084–1089, 2001.

[125] M. Gopal, Modern control system theory. New Age International, 1993.

[126] A. Tarski, “A decision method for elementary algebra and geometry,” Journal of
Symbolic Logic, vol. 17, no. 3, 1952.

176 Bibliography

[127] L. Schenato, “To zero or to hold control inputs with lossy links?” IEEE Transactions
on Automatic Control, vol. 54, no. 5, pp. 1093–1099, 2009.

[128] E. Garcia and P. J. Antsaklis, “Model-based event-triggered control for systems with
quantization and time-varying network delays,” IEEE Transactions on Automatic
Control, vol. 58, no. 2, pp. 422–434, 2012.

[129] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstraction,” in Proceedings
of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
2002, pp. 58–70.

[130] M. Dantam and A. Pouly, “On the decidability of reachability in continuous
time linear time-invariant systems,” in Proceedings of the 24th International
Conference on Hybrid Systems: Computation and Control, ser. HSCC ’21. New
York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3447928.3456705

[131] A. J. Wagenmaker and N. Ozay, “A bisimulation-like algorithm for abstracting control
systems,” in 2016 54th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 2016, pp. 569–576.

https://doi.org/10.1145/3447928.3456705

177

Glossary

AIST Average inter-sample time (Section 5.2).

AS Alternating simulation, a relation between transition systems for control (Definition
2.9).

ASE Alternating simulation equivalence, an equivalence relation between two transition
systems (Definition 2.11).

ASR Alternating simulation relation (Definition 2.9).

BABI Bijective alternating bisimulation isomorphism, an isomorphism on labeled graphs
(or finite transition systems) allowing renaming of labels following certain rules
(Def. 8.2).

CETC Continuous event-triggered control: ETC in which the triggering condition is
checked in continuous time.

ETC Event-triggered control.

FTS Finite transition system, a generalized transition system (Def. 2.1) with finite state,
input, output, and transition sets.

GSE Guaranteed state estimator, a set-based state estimation method for bounded uncer-
tainties (Section 9.2.2).

ISS Input-to-state stability.

IST Inter-sample time, the time between two consecutive sampling instants in a sample-
based control system.

LMI Linear matrix inequalities.

MIST Minimum inter-sample time, the smallest time between two consecutive samples
being transmitted in a sampled-based controller.

MPETC Mixed periodic-event-triggered control, a modified PETC proposed in Chapter 4.

NCS Networked control system, a system where control devices, sensors, and actuators
share information via computer networks.

178 Glossary

NTGA Network of timed game automata.

PETC Periodic event-triggered control: ETC in which the triggering condition is checked
periodically.

PSTC Preventive self-triggered control, an STC strategy where the IST is calculated to be
early enough to prevent an associated ETC condition of triggering (Chapter 9).

QCQP Quadratically constrained quadratic programming, a class of mathematical pro-
gramming where the objective function and constraints are quadratic functions.

SAC Smallest-in-average cycle, a cycle that attains minimal average weight among all
cycles of a weighted graph.

SACE Smallest average-cycle equivalence, when two systems share a cyclic behavior in
common that minimal average value (Definition 5.1).

SAIST Smallest average inter-sample time, smallest AIST across initial states, Eq. (5.1).

SCC Strongly connected component.

SDR Semi-definite relaxation.

SDSS State-dependent sampling strategy, a type of STC in which the sampling time is a
function of the previously sampled state of the plant (Section 7.2).

SMT Satisfiability modulo theories.

STC Self-triggered control.

TGA Timed game automaton (Definition 2.13).

TSA Timed safety automaton (Definition 2.12).

WTS Weighted transition system, Definition 2.7.

ZOH Zero-order hold.

179

Curriculum Vitæ

Gabriel de Albuqerqe Gleizer

05-10-1987 Born in Rio de Janeiro, Brazil.

Education
2005–2010 Control and Automation Engineering

Federal University of Rio de Janeiro
Grade: 9.1/10.0
Thesis: Multi-objective optimization applied to the mobility

control of an articulated robot on irregular terrains
Supervisors: Prof. dr. Alexandre P. A. da Silva and Dr. Fernando

Lizarralde

2010–2012 M.Sc. Electrical Engineering — Control, Automation and Robotics
Federal University of Rio de Janeiro
Grade: 3.0/3.0
Thesis: Optimal task scheduling for fieldbuses applied to

FOUNDATION™ Fieldbus
Supervisors: Prof. dr. Liu Hsu and Dr. Danielle Zyngier

2018–2022 Ph.D. Systems and Control
Delft University of Technology
Grade: 9.6/10.0 (DISC average grade, certificate awarded)
Thesis: Timing is everything: Analysis and synthesis of traffic

patterns in event-triggered control
Promotor: dr. Manuel Mazo Jr.
Promotor: Prof. dr. ir. Bart De Schutter

Awards
2010 A3P UFRJ Best Student Award

180 Curriculum Vitæ

Work Experience
2010–2012 Control and Instrumentation Engineer

LEAD – Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

2012–2017 Control Engineer / Lead Control Engineer
GE Global Research Center
Rio de Janeiro, Brazil

181

List of Publications

As a doctoral candidate
� 1. G. de A. Gleizer and M. Mazo Jr., “Self-triggered output feedback control for perturbed linear

systems,” IFAC-PapersOnLine, vol. 51, no. 23, pp. 248–253, 2018.

2. A. Szymanek, G. de A. Gleizer, and M. Mazo Jr., “Periodic event-triggered control with a relaxed
triggering condition,” in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019,
pp. 1656–1661.

� 3. G. de A. Gleizer and M. Mazo Jr., “Self-triggered output-feedback control of lti systems subject
to disturbances and noise,” Automatica, vol. 120, 2020, article no. 109129.

� 4. G. de A. Gleizer and M. Mazo Jr., “Scalable traffic models for scheduling of linear periodic
event-triggered controllers,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 2726–2732, 2020.

� 5. G. de A. Gleizer andM. Mazo Jr., “Towards traffic bisimulation of linear periodic event-triggered
controllers,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 25–30, 2021.

� 6. G. de A. Gleizer and M. Mazo Jr., “Computing the sampling performance of event-triggered
control,” in Proc. of the 24th Int’l Conf. on Hybrid Systems: Computation and Control, ser. HSCC
’21. ACM, 2021.

7. M. Trobinger, G. de A. Gleizer, T. Istomin, M. Mazo Jr, A. L. Murphy, and G. P. Picco, “The
wireless control bus: Enabling efficient multi-hop event-triggered control with concurrent
transmissions,” ACM Transactions on Cyber-Physical Systems (TCPS), vol. 6, no. 1, pp. 1–29,2021.

� 8. G. de A. Gleizer, K. Madnani, and M. Mazo Jr., “Self-triggered control for near-maximal average
inter-sample time,” in 60th IEEE Conference on Decision and Control (accepted), 2021.

� 9. G. de A. Gleizer and M. Mazo Jr., “Computing the average inter-sample time of event-triggered
control using quantitative automata,” 2021, https://arxiv.org/abs/2109.14391. Un-
der review at Nonlinear Analysis: Hybrid Systems.

10. G. Delimpaltadakis, G. de A. Gleizer, I. van Straalen, and M. Mazo Jr., “ETCetera: beyond
event-triggered control,” in Proc. of the 25th Int’l Conf. on Hybrid Systems: Computation and
Control, ser. HSCC ’22. ACM, 2022.

� 11. G. de A. Gleizer, K. Madnani, and M. Mazo Jr., “A simpler alternative: Minimizing transition
systems modulo alternating simulation equivalence,” in Proc. of the 25th Int’l Conf. on Hybrid
Systems: Computation and Control, ser. HSCC ’22. ACM, 2022.

� 12. G. de A. Gleizer and M. Mazo Jr, “Chaos and order in event-triggered control,” arXiv preprint
arXiv:2201.04462, 2022.

� Included in this thesis.

https://arxiv.org/abs/2109.14391

182 List of Publications

Previous work
1. G. de A. Gleizer, C. Gonzaga, L. Vargas, A. Menon, D. Dai, and H. K. Matthews Jr. “System

for controlling or monitoring a vehicle system along a route”, November 27 2018. US Patent
10,137,912.

2. J. D. Brooks, H. K. Mathews Jr., D. Dai, R. S. Chandra, G. de A. Gleizer, B. P. Leao, and C. Gonzaga.
“System and method for determining operational restrictions for vehicle control”, June 13 2017.
US Patent 9,676,403.

3. J. D. Brooks, H. K. Mathews Jr., G. de A. Gleizer, and L. Vargas. “System and method for
asynchronously controlling brakes of vehicles in a vehicle system”, June 6 2017. US Patent
9,669,811.

4. L. Vargas, H. K. Mathews Jr., B. N. Meyer, G. de A. Gleizer, and C. Gonzaga. “Power control
system for a vehicle system”, March 17 2017. US Patent App. 15/461,548.

5. J. D. Brooks, H. K. Mathews Jr., and G. de A. Gleizer. “System and method for monitoring
coupler fatigue”, November 30 2015. US Patent 9,937,936.

6. B. P. Leao, J. K. Klooster, G. de A. Gleizer. “Method and apparatus for generating or updating
an aviation simulation scenario”, July 9 2013. US Patent App. 13/938,034.

7. G. de A. Gleizer. “Optimal task scheduling for fieldbuses applied to foundation™ fieldbus” (in
portuguese). Master’s thesis, Universidade Federal do Rio de Janeiro, 2013.

8. A. L. Silva, L. P. Orenstein, F. Lizarralde, A. C. Leite, and G. de A. Gleizer. “Hardware and
software update for an industrial robot (in portuguese).” In Brazilian Conference of Automatics,
volume 18, pages 4403–4410, 2010.

9. G. Freitas, G. de A. Gleizer, F. Lizarralde, and L. Hsu. “Multi-objective optimization for
kinematic reconfiguration of mobile robots.” In Automation Science and Engineering (CASE),
2010 IEEE Conference on, pages 686–691. IEEE, 2010.

10. G. Freitas, G. de A. Gleizer, F. Lizarralde, and L. Hsu. “Reconfiguration of mobile robots
on irregular terrains based on multiple objective optimization.” In Brazilian Conference of
Automatics, 2010.

11. G. Freitas, G. de A. Gleizer, F. Lizarralde, L. Hsu, and N. R. S. dos Reis. “Kinematic reconfigura-
bility control for an environmental mobile robot operating in the amazon rain forest.” Journal
of Field Robotics, 27(2):197–216, 2010.

