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Machine learning techniques, including Gaussian processes (GPs), are expected to play a significant role in meet-
ing speed, accuracy, and functionality requirements in future data-intensive mechatronic systems. This paper aims
to reveal the potential of GPs for motion control applications. Successful applications of GPs for feedforward and
learning control, including the identification and learning for noncausal feedforward, position-dependent snap feed-
forward, nonlinear feedforward, and GP-based spatial repetitive control, are outlined. Experimental results on various
systems, including a desktop printer, wirebonder, and substrate carrier, confirmed that data-based learning using GPs
can significantly improve the accuracy of mechatronic systems.

Keywords: gaussian processes, feedforward control, learning control

1. Introduction

Learning from data has traditionally been at the heart of
mechatronic systems ® and has the potential to achieve fu-
ture requirements regarding speed, accuracy, and functional-
ity. Traditionally, mechatronic systems such as motion sys-
tems sample measurement data and process these in a digital
environment to compute actuator inputs. These data are then
used for learning dynamical models through system identifi-
cation @, direct controller tuning based on data ©, as well as
learning control ©. The necessity to achieve future require-
ments in conjunction with the opportunities provided by a
drastic increase in computation power and data from a large
number of sensors has led to the recent development of new
learning algorithms for motion control in mechatronic sys-
tems.

The accuracy, speed, and flexibility of motion determines
the capabilities and market position of manufacturing equip-
ment and scientific instruments. Examples include lithog-
raphy 7, data-storage systems®, industrial printing®, ad-
vanced manufacturing ', pick-and-place machines such as
wirebonders and diebonders “”, and microscopy "*"¥. Mo-
tion control, including feedforward and learning control, is
a key technology enabling these machines to actually func-
tion, e.g., by realizing precise and fast motions that meet the
demands of the market.

Increasing performance requirements in motion control of
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mechatronic systems lead to a situation where increasingly
complex dynamical behavior needs to be compensated **.
Flexible mechanical behavior leads to a situation where com-
pliance is explicitly compensated for by snap feedforward *,
as well as position-dependent feedback "®. At the same time,
nonlinear friction and hysteresis aspects are being modeled
and compensated for "%,

The use of data has always been key in tuning feedback
and feedforward motion controllers, and had led to a large
range of data-driven control and related system identification
approaches. A large number of data-driven feedback algo-
rithms have been developed, e.g.,”®”, and implemented on
motion systems “"®. At the same time, major improvements
have been made in the learning of dynamical models, i.e.,
system identification, for controller tuning, both nonparamet-
rically ® and parametrically, which is further extended to-
wards position-dependent systems in ®¥. Data-driven feedfor-
ward has been substantially developed, including repetitive
control and learning control ©® % and related disturbance
observers for motion control ®”. These techniques have been
further refined to enable the automated tuning of feedfor-
ward signals for a large class of tasks, including “®®”, which
have been further integrated with system identification algo-
rithms ®°.

In a different line of developments, Gaussian processes
(GPs) have drastically impacted the recent theoretical de-
velopment of system identification and learning to control.
GPs have attracted substantial attention in machine learn-
ing, e.g.,®", see also® for relevant developments towards
reinforcement learning. These have led to new ideas on
the identification of linear models “¥*, frequency domain
identification ®”, integrated identification and learning “¥®”,
data-driven feedback linearization “”, model predictive con-
trol “"“?_ robotic systems“’, wind turbine control “¥, esti-
mation “”, magnetic field mapping using SLAM “®, solving
nonlinear optimal control problems “”, model uncertainty in
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safety-critical controllers “*, etc.

Although important theoretical developments have been
made in the use of GPs in the broad area of identification
and control, its use in advanced motion control of precision
mechatronics has only recently been established. The aim
and main contribution of this paper is to show the broad po-
tential of GPs for motion control applications. In particu-
lar, applications to feedforward and learning control, which
clearly benefit from the use of GPs, are outlined. Specific
cases and an outline follow in Sec. 2.2.

Notation. The considered systems are discrete-time,
single-input, single-output, and linear time-invariant, unless
stated otherwise. Let P(z) denote a transfer function, with z a
complex indeterminate, ¢ is the forward time-shift operator,
i.e., gx(t) = x(t + 1), and P(q) denotes the pulse-transfer op-
erator associated with P(z). The weighted 2-norm of a vector
x is denoted as ||x|ly := VxTWx, where W is a weighting
matrix. Signals are often tacitly assumed of length N.

2. Advanced Motion Control

In this section motion control and feedforward control for
advanced motion control applications is described. More-
over, the potential of GPs for different applications is high-
lighted.

2.1 Motion Control Mechatronic positioning sys-
tems consist of mechanics, actuators, and sensors “”¢”. The
actuators typically generate forces or torques and are consid-
ered as input to the system. The sensors typically measure
position or rotation and are considered outputs of the system.

In the frequency range that is relevant for control, the dy-
namical behavior is mainly determined by the mechanics. In
particular, the mechanics can typically be described as ©”

C,'blT C,'blr

52 2 + 20w;s + w? ’

nRp s

2,

i=1
N———
rigid—body modes

Gm = ) = T ) 5 ( 1)

i=ngp+1

flexible modes

where ngp is the number of rigid-body modes, the vectors
c; € R™, b; € R™ are associated with the mode shapes, and
li,wi € R > 0. Here, ny; € N may be very large and even
infinite ®®. Note that in (1), it is assumed that the rigid-body
modes are not suspended, i.e., the term é relates to Newton’s
law. In the case of suspended rigid-body modes, e.g., in case
of flexures as in %%, (1) can directly be extended.

In traditional positioning systems, the number of actuators
n, and sensors 1, equals ngp, and are positioned such that the
matrix Z:’j‘f cibiT is invertible. In this case, matrices 7, and
T, can be selected such that

1
G=T,G,T, = S_ZI"RB d Glagy ccerrrerrreeeeeeens )

where T, is typically selected such that the transformed out-
put y equals the performance variable.

The main goal in motion control is a servo task, i.e., let the
output y follow a reference trajectory r, see Fig. 1. In partic-
ular, the goal is to minimize

€= ST —SGf = Sveeereereeie (3)
where
S=(+GC) e 4)
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Fig. 1.

Traditional motion control architecture

Typically, the reference is designed such that it is realizable
without violating actuator constraints ®®. Throughout, it is
assumed that the feedback controller C is fixed.

In many advanced motion control applications, the feed-
forward has by far the largest contribution ®®, i.e., the signal
f in Fig. 1 ensures e in (3) is small. The optimal tracking
error in the sense of zero reference-induced tracking error,
ie., S(r— Gf) =0, is obtained for a feedforward signal con-
structed by F = G~!. Hence, feedforward control requires
an accurate model of the inverse system. Next, it is high-
lighted where data-driven modeling using GPs contributes in
feedforward control design.

2.2 The Potential of Gaussian Processes for Motion
Control Applications The main focus in this paper is on
the application of GPs for accurate motion control. Several
different control applications are considered where feedfor-
ward plays a major role. In these examples, the application
of a GP fits perfectly in the control scheme and leads to an
increase in performance compared to traditional methods in
advanced motion control applications. The examples consid-
ered in this paper are the following.

(1) The design of a feedforward f = Fr, see Fig. 1, where
GPs arc employed to represent the feedforward filter
F in an appropriate manner. Both identification from
input and output data and learning approaches ® are
covered, as well as extensions to nonlinear systems
(Sec. 4).

The design of a position-dependent feedforward
where the GP models the dependency of the sys-
tem parameters as a continuous function of position
(Sec. 5).

The design of feedforward signal f for certain classes
of nonlinear systems where GPs are employed to rep-
resent the nonlinear inverse system based on input and
output data (Sec. 6).

The design of a repetitive control approach to com-
pensate spatial disturbances that are not necessarily
periodic in time. A GP is used to model a periodic
position-domain function used to generate a compen-
satory signal (Sec. 7).

In Sec. 3, GPs are defined in view of their use in motion con-
trol.

(2)

(3)

(4)

3. Gaussian Processes for Motion Control Appli-
cations

GPs are at the heart of a very convenient mathematical
framework for function estimation and interpolation. Func-
tion estimation is necessary when a model of a system con-
tains some unknown function gy : X — R, defined on some
arbitrary domain X, about which an accurate model g must
be obtained from measurements. The function gy could,

IEEJ Journal IA, Vol. 11, No.3, 2022
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e.g., represent the input of a system as a function of its out-
put, the dependence of system parameters as a function of
position, and periodic disturbances in a system as a function
of position.

Such function estimation can be performed at least theo-
retically with a process called Bayesian inference: an initial
guess of the unknown function is encoded as a probability
distribution over functions, called the prior distribution, af-
ter which a few outcomes, or measurements, of the function
are observed, and finally the prior distribution is conditioned
on these outcomes to obtain the so-called posterior distribu-
tion. This a posterior distribution gives an estimate on the
actual function in the system. In practice, however, it is often
very difficult to compute the posterior distribution and often
requires approximations ©”.

Bayesian inference becomes practical when the prior dis-
tribution is required to be determined by a GP. Then, the pos-
terior distribution is determined by a GP as well, and it is
actually easy to compute the properties of this distribution.
Moreover, the class of GPs is still rich enough so that in prac-
tice all kinds of unknown functions can successfully be mod-
eled.

3.1 Definitions A GP is a collection of real-valued
random variables g(x) that are indexed by values x in some
set X, such that any finite number of them follows a multi-
variate Gaussian distribution. Here X can be just any set, for
example R.

A GP is fully specified by its mean m : X — R given by

m(x) := Blg(x)], fOrx € X-eeeoeeemereinenn (5)
and the covariance function, or kernel, k : X X X - R
k(x, x") := Cov(g(x),g(x")), forx,x" € X.------ (6)
The notation
G(X) ~ GP (M), (X, X)) oo vvveemmeemeeeennn (7

indicates that (g(x)),ex is a GP with mean function m and
covariance function k.

3.2 Noisy Measurements  Next, noisy measurements
are obtained on the system to get more information about the
unknown function g : X — R. A sequence

X = [0y ey ] (8)
of training inputs in X is selected, and a sequence
Y = (Y1, Y] 9)

of noisy measurements is obtained of the GP at those input
points. In the simplest case, this forms the basis of the com-
putations below,

Yp =gxp)+6€, formn=1,...,Ny-eevreereens

where €, are i.i.d. normally distributed with mean 0 and stan-
dard deviation . Note that the whole framework can be gen-
eralized to a situation where the random variables g(x) and
y, all together form a GP. One relevant example in relation to
kernel-based regularization is where

Yn = Ln(g) + €&

for linear operators L,.

398

3.3 Conditioning After obtaining noisy measure-
ments y, . . ., Yy, the process g is conditioned on these obser-
vations. Here, the GP (g(x)).cx after conditioning becomes a
model for the real unknown function go(x).

The key reasons for the broad success of GPs is the fact
that the new mean and covariance function of this condi-
tioned process can actually be computed easily. In particular,
when conditioning a collection of jointly Gaussian random
variables on a subset of them, the conditioned distribution is
again Gaussian with tractable mean and covariance.

To describe the conditioned process, the conditioned
(Gaussian) distribution of the conditioned variables g(x) for
x € X, must be described for every finite subcollection of test
inputs X.. If the GP has covariance function k : X X X — R,
and

X, = [x*,17~ R

is some finite collection of inputs in X, then the conditioned
distribution for (g(x)).cx, is multivariate Gaussian with mean

e + KX, X)VKX,X) + 02D N Y = pr)eeeeeeees (13)
and covariance
KX, X)) - KXo, X\)(K(X, X) + o2 ' K(X, X..)
................... (14)
where
e =EL(G(X) 1 X EX)], cvvrervvereeeeeannns (15)
n= E[(g(_x) X € X)] .......................... (16)

For Y and Z finite sequences in X, the matrix K(Y, Z) is de-
fined by

K(Y,Z)ij i= k(s 2j). e veeemeeeeeeeeeeeeees (17

The prior distribution, i.e., the GP before conditioning, is
obtained for (7) with x € X.. An example of 3 samples from
this distribution with zero mean and the resulting posterior
distribution after conditioning on 3 data points is shown in
top row of Fig. 2.

3.4 Kernels The choice of kernel in the prior distri-
bution is relevant as it can encode prior information such as
the smoothness of the random function g. The quality of GP
regression dependents on the user-selected selected kernel
and hyper-parameters. As an example, see the bottom row
of Fig. 2 where the hyper-parameter is selected less smooth.
The latter can be optimised using Empirical Bayes, also re-
ferred to as marginal likelihood optimization, see, e.g., ®"®>.

3.5 Gaussian Processes and Kernel-based Regulariza-
tion  GPs are intimately related to kernel-based regulariza-
tion ®®. For kernels k which satisfy a condition called positive
definiteness, an associated reproducing kernel Hilbert space
H with corresponding norm ||.|lzs can be constructed. If the
prior of the GP has zero mean, the solution ., found in (13)
corresponds to g(X.) where g : X — R is the minimizer of
the functional

J(g) = lgX) = YI5 + o>liglla,

see e'g‘ (58, Prop. 3.6) and (31, Sec. 6.2 and 6.2.2)'
More generally, the mean of the posterior distribution of a

IEEJ Journal IA, Vol. 11, No.3, 2022
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Fig.2. Top left: 3 samples (—, —, —) drawn from the
prior distribution with prior mean of zero (—) and uncer-
tainty bounds (B ). Top right: posterior mean (—) of
(13) after conditioning on 3 observations (0). The bot-
tom row is the same as the top row except for a slight
change in the kernel hyper-parameter related to smooth-
ness. Note that the uncertainty of the posterior distribu-
tion (14) is low near the data points and that it heavily
depends on the hyper-parameters

GP given measurements as in (11) is given by the minimum
of

N
J(g) = Y (La(g) = ) + TPl

n=1

which can be proven with similar methods as in ¢,

Conversely, a reproducing kernel Hilbert space H, and a
reproducing kernel k£ : X X X — R always induce a GP on X.
So starting with an optimization problem (18) or (19), there
is always a GP that belongs to it, see, e.g., .

3.6 Uncertainty Estimation One of the benefits of
Bayesian inference with GPs is that the framework gives an
uncertainty estimate on the function value go(x) for every x
in the domain X. This uncertainty estimate is encoded in
the standard deviation of the random variable g, after it is
conditioned on the observations g. In summary, not only an
estimate on the function gy is obtained, but it is also known
for which input the estimate is likely accurate, and for which
input the estimate is likely to be inaccurate.

3.7 Summary In summary, the above mechanics de-
scribe a continuous function estimation procedure using GPs.
First, an appropriate prior is selected, where after it is condi-
tioned on the measurement data to obtain the posterior dis-
tribution. Next, GPs are applied to relevant continuous func-
tions in advanced motion control.

4. Gaussian Processes for Noncausal Feedfor-
ward

In this section, the design of a noncausal feedforward is de-
scribed where GPs are employed to represent the inverse sys-
tem dynamics. First, the problem setting for noncausal feed-
forward control is described. Second, a system identification
approach using input and output data with noncausal kernels
is presented, followed by an iterative learning approach with
extensions to nonlinear systems. Third, experimental results
are presented.

4.1 Problem Setting Consider Fig.1 with the
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closed-loop tracking error defined in (3). Here, the goal is
to design the feedforward controller F to reduce the track-
ing error. Recall from Sec. 2.1 that zero reference-induced
tracking error is obtained for F = G~!. Hence, feedforward
control requires models of the inverse system.

IfG = % is a rational system, the exact feedforward con-
troller F = % is rational ®”. For non-minimum phase (NMP)
systems, i.e., systems with zeros outside the unit circle, and
for systems in the form of (1) feedforward signals are non-
causal for exact tracking.

Independent of possible noncausality, identification of
these noncausal systems is crucial in feedforward control and
requires careful selection of model structure and order. Of-
ten, the model structure and order are selected based on phys-
ical insight, including mass and snap feedforward ™, or with
regularization techniques to promote low-order models, see,
e.g.,”.

The key idea in this section is to design noncausal feedfor-
ward signals, where the complexity is specified in a funda-
mentally different way through a noncausal impulse response
representation based on a GP, as specified next.

4.2 Gaussian Processes for Open-loop Inverse Model
Identification of Linear Systems In this section, the in-
verse model G™! is represented by a noncausal impulse re-
sponse. In particular, G! admits a bilateral z-transform, de-
fined by two-sided formal Laurent series

where 6 = {6;}72, is the impulse response, see ™" ". Note
that (20) is bi-infinite due to the bilateral z-transform, which
implies that G™! is a noncausal and bounded operator, hence,
F = G7! is noncausal. For noncausal feedforward the entire
reference trajectory r must be known, which is often the case.

The key idea is to model the impulse response parameters
6 of (20) as a zero-mean GP, using the relationship between
kernel-based regression and GPs as described in Sec. 3.5. In
fact, the starting point for the estimation of the impulse re-
sponse parameters is the choice of an appropriate reproducing
kernel Hilbert space H with positive definite kernel k. The
kernel k specifies the underlying model complexity and regu-
larizes the parameters, which can be exploited to impose prior
knowledge and constraints, e.g., noncausality, stability, and,
smoothness. See “”“" for noncausal kernels and their relative
performance for system identification and feedforward con-
trol.

As measurements, we consider the data-set D
{y(), u(t)}fi |» where the input is y(#) and the output u(z). The
optimization analogous to the minimization of (19) is then
given by

N (o) 2
A_ . _ _ 210112
6= argl(;lé'l]}{l ; u(t) T;m Oyt —1)| + o6l

The minimizer of (21) follows from the representer theorem,
see, e.g., ™™,
Under certain assumptions’, the noncausal inverse model

 Care should be taken in order for the series in (22) to converge.

IEEJ Journal IA, Vol. 11, No.3, 2022
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G, interpreted as a function from fz(Z) X Z to R, can itself
be viewed as a GP g : (*(Z) x Z — R. The GP is then given
by

gy, 1) == Z Orf(f = T)orvovmemmnmeneneneeen

T=—00

This links to Sec. 6 where the GP model for the inverse sys-
tem is taken as a starting point.

In (20), only LTI and possibly noncausal feedforward is
considered. In addition, the approach here, see®”, only al-
lows for open-loop systems, i.e., C = 0 in Fig. 1. Extensions
to nonlinear elements and closed-loop systems are investi-
gated next.

4.3 Kernel-based ILC Approach for Systems with
Nonlinearities Kernel-based ILC (KILC) approach ex-
ploits the use of noncausal kernels to regularize the non-
causal impulse response parameters and learns these simulta-
neously with prescribed nonlinear basis functions in closed-
loop. This is relevant for motion systems with linear mechan-
ics subjected to friction, e.g., nonlinear Coulomb friction.

To this end, a feedforward parameterization for flexible
noncausal feedforward for nonlinear systems is developed
and is specified as

Fi=W()0), e (29)
= > O =)+ ) iy (30)
T=—Nge i=1

where 6; = [0}, 0,417 € R"*! with ng = nge + 1 +n, + ny,, and
P(r) € RV containing two distinct parts: a noncausal FIR
parameterization part describing the LTI system as in (20),
and the part with nonlinear basis functions ¢;(r) containing,
for example, Coulomb friction by including sign(i-). Note
that traditional ILC © is recovered as a special case by setting
Y = Iy, hence, f; = 0;.

The feedforward parameters 6 € R™ are learned in closed-
loop using ILC. Recall (3), the error for trial, or iteration, j,
under assumption of r = r; = rj,, the error for trial j + 1 is
derived,

eir1 =¢;—SGY(Tr)(0j41 —0)) —Sjs1 —vj), -+ (31)

where S G is the impulse response matrix of the process sen-
sitivity. The objective of feedforward control in the ILC con-
text is to minimize the tracking error of the next trial, e;,; of
(31), by designing 6;,; based on measured data of the pre-
vious ftrial, i.e., e¢; and 6;. Since the measurement noise is
unknown and only a model SG of SG is known, the actual
optimization is defined as the minimization of

J(051) = llej = SGY(r)(Oj41 — O)I3 + VIOl %,

where y|ll[z = y8TK~'6 is the user-defined regularization
term with positive definite matrix K € R"*" and positive
weight v € R. Here, K can serve as a prior on the param-
eters and y balances the penalty on the feedforward param-
eters with the error signal, i.e., the prior with respect to the
data. The regularization enforces model complexity and non-
causality to deal with NMP systems. The minimization in

400

Iterative Learning Control

Iterative learning control (ILC) can learn optimal com-
mand inputs for repetitive tasks. Extensions include ILC
with basis functions (ILCBF), that allow for learning un-
der varying motion tasks. For elaboration on ILC and its
applications, see, e.g., 1?9,

Consider the closed-loop scheme of Fig. 1. Now, an ex-
periment, also called trial or iteration, is denoted with index
j, and has length N € N with reference r; € RV. For exper-
iment j, the tracking error is given by

ej=Sr/_Sij, ............................ (23)

where S = (I + GC)™!, as defined in (4). The objective
in ILC is to minimize the tracking error of the next experi-
ment,

€je1 = STjut = SG fjyqurevrrrrrennaiin,
For the assumption that rj,; = r; = r, i.e., r is constant, Sr
is eliminated from (23) and (24), yielding the error propa-
gation from trial j to trial j + 1, i.e.,

ej+l = ej +SGJ"]_ ..................

To allow for flexibility in the motion task, the feedfor-
ward signal is parameterized by a set of basis functions,
denoted by W(r;) € R, and feedforward parameters
feR™, ie.,

VI {07) )RR TR LT PP PP P PPRPRPRRRPRRRR (26)

By selection of ¥(r;) as a function of the reference, the
feedforward signal becomes invariant under the motion
task, i.e., if the reference changes the feedforward signal
changes accordingly, see (23).

The objective in ILC is to minimize the predicted error
of the next experiment j+ 1, denoted by &;,,, and is defined
by the following cost function:

T = es + 560 - ¥,

%0001

2
+ e - £, @
W /

2
v,
where W, > 0, W, Wa; = 0, &1 = e; + SG(f; —
W(r;+1)8;.1) the predicted error for trial j+ 1 based on mea-
surement ¢; and f;, and S G a model of the real system SG.
The optimal feedforward parameters (-)?ftl minimizing this
cost function, i.e., that minimize the error for the next ex-
periment, are given by

opt
6j+l

= argryi?jj(ejﬂ).
Jt

Note that the solution can be computed analytically since
(27) is quadratic in 6;,,. Additionally, traditional ILC is re-
covered as a special case: ¥ = Iy, hence, fi.| = 6;,;.

Fig.3. Iterative Learning Control

(32) relates to (19) and therefore the optimization can also be
linked to Gaussian process inference.

A key step in the developed kernel structure is making the
kernel K block-diagonal consisting of two distinct parts, as

K o
K‘[o Kn,]

where K; is a prior on the FIR parameters and K,; a part

IEEJ Journal IA, Vol.11, No.3, 2022



Gaussian Processes for Advanced Motion Control (Maurice Poot et al.)

Fig.4. Printer motion system with: motor, drive belt,
slide guide, and carriage with printhead

(=]

Feedforward [V]

0.5 1 1.5 2 2.5 3
Time [s]

3.5 4

'
no

o

4.5

Fig.5. Time-domain error and feedforward signals for
the scaled reference (- -) of KILC using an OBF kernel
(—) compared to ILCBF (—)

regularizing the nonlinear feedforward parameters, as de-
scribed in (29). Note that norm-optimal ILC with basis func-
tions (ILCBF) is recovered from KILC as a special case by
setting K = I,.

4.4 Experimental Results and Conclusion Initial
results for positioning of a consumer printer, see Fig. 4, sub-
ject to nonlinear friction demonstrate the superior perfor-
mance of KILC with 201 noncausal impulse response pa-
rameters and a noncausal orthogonal basis function (OBF)
kernel ® with pre-specified poles of the inverse system com-
pared with ILCBF with acceleration as basis. Both methods
also have a nonlinear Coulomb friction component. In Fig. 5,
the time-domain error and feedforward signals are presented.
The feedforward signal of KILC shows that it automatically
identifies impulse response parameters to compensate higher-
order dynamics, e.g., the snap parameter to compensate for
the low-frequency contributions of the flexible dynamics *.

In conclusion, noncausal kernels enforce model complex-
ity and noncausality on the impulse response parameters to
deal with NMP systems. Extension to iterative learning con-
trol and nonlinear basis functions allow accurate feedforward
control in closed-loop for precision mechatronics.

5. Gaussian Processes for Position-dependent Pa-
rameterized Feedforward

This section describes the use of GPs to design
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position-dependent feedforward tuning, such as position-
dependent snap feedforward. First, the problem for position-
dependent feedforward is defined. Second, a method for
parametrizing the feedforward signal in terms of the posi-
tion using GPs and additionally an automated experiment
design procedure using mutual information optimization are
presented. Finally, results of both a simulation and experi-
mental setup are shown.

5.1 Problem Setting Consider the dynamics seen in
(1), i.e., a rigid-body mass with flexible connections. For the
case at hand, the terms c¢; and b; are position-dependent, i.e.,
ci(x) and b;(x), where x is the position. The term c;(x)b; (x)
is approximated by a position-dependent compliance term
D(x). This term is a continuous function of position due to,
for example, parameter-varying resonance modes . Typ-
ically, the term D(x) or the structure thereof is unknown
but smooth. To achieve zero reference-induced tracking er-
ror, i.e., ¢ = —Sv, for position-dependent systems, the feed-
forward signal must be position-dependent, as follows from
combining (1) and (3) and substituting c;(x) and b;(x).

In the remainder of this section, a feedforward parameteri-
zation, similar to (26), is considered. Here, it is assumed that
the motion task r is short with respect to the position depen-
dency, such that the position-dependent dynamics are excited
primarily due to the initial position, i.e., considering frozen
position-dependent dynamics. Next, the methods for using
GPs to model feedforward parameters is presented.

5.2 Gaussian Processes for Position-dependent Snap
Feedforward The compliance term D(x), which is a con-
tinuous function of position, is compensated for by using
snap feedforward *”, i.e., f = %05. To achieve position-
dependent snap feedforward, the snap parameter 8° is now
modeled as a function of position using a GP, g(x), as in (7),
ie., 8°(x) = g(x), see ® for the original idea of modeling
snap as a GP. In contrast to (26), the feedforward parameter
6°(x) is now described by the GP as continuous function of
the frozen position x. Hence, the feedforward signal for trial
Jj and the frozen position x can be determined using

Fi0) = W) () v veeeeeeeeeeee
with appropriate selection of ¥(r;) that includes % for snap
feedforward. The GP of the snap feedforward parameter
9‘;.(x) that compensates for the position-dependent compli-
ance (D(x)).cx, for all given frozen positions X, is given by
(13) after conditioning on the data.

The observations, or data points, (6;(x,))x,ex to condition
the GP on, described by (10) can be obtained as follows. For
different initial positions x, the optimal feedforward parame-
ter 6;(x) can be learned using, for example, ILCBF of Fig. 3.
Note that a separate GP can be constructed for each position-
dependent feedforward parameter, hence, for each feedfor-
ward parameter the resulting data-set is D = {x,, Hj(xn)}nN:l.
A difficulty is the selection of the initial positions X for con-
ditioning, since these should be distributed optimally to iden-
tify the position-dependency with the least amount of data.
To select the observation positions to reduce the estimation
error, an approach based on mutual information (MI) opti-
mization is proposed to position the observations near opti-
mal .

Next, GPs for position-dependent feedforward is developed
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Fig.6. Commercial wirebonder from ASMPT consist-
ing of an xyz-stage
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Fig.7. Snap feedforward parameter 6° of the x-axis
modeled as a function of x, y-position by a GP in a sim-
ulation. The observations (A) are determined using IL-
CBF and distributed near-optimally using MI optimiza-
tion

for an experimental setup and compared with a position-
independent feedforward, i.e., ignoring the position depen-
dency.

5.3 Experimental Results and Perspectives on Position-
dependent Motor Constant Calibration Position-
dependent feedforward using GPs is tested on a commercial
wirebonder manufactured by ASMPT, consisting of three in-
puts and three outputs, i.e., x, y and z, see > for initial exper-
imental results in this direction.

An example of a snap feedforward parameter as a func-
tion of the position in a simulation environment of a xy-stage
of a wirebonder, can be seen in Fig. 7. The data points are
determined using ILCBEF, see Fig. 3, and show a clear depen-
dency on the y position. The data points are near-optimally
distributed over the xy-plane by optimization using mutual
information optimization.

The feedforward parameters are modeled as a function of
X,y position using a GP. Again, the observations are deter-
mined using ILCBF and MI optimization. The position-
dependent snap feedforward parameter for the z-axis can be

Normalized FF parameter [-]

05 0.5
Normalized x position [-] 11 Normalized y position [-]

Fig.8. Snap feedforward parameter ¢ of the z-axis
modeled as a function of x, y-position by a GP for the
experimental setup seen in Fig. 6. The observations (A)
are determined using ILCBF. Note that the GP models the
position dependency as a smooth function of position and
enables accurate interpolation

C1.08
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§ 1.06 4 \\\\\\\\\\\\?\‘\&\\\\\\\\\\\\‘ \\\\\\\\\\ \‘\\i\‘;j‘/)llllllffgfllf
e
L AN st
=, | W o
5 102, I;;;II/I/II/II/
g
g 1.
Z
on 0.5
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Fig.9. Acceleration feedforward parameter 6 of the x-
axis modeled as a function of x, y-position by a GP for the
experimental setup seen in Fig. 6. The observations (A)
are determined using ILCBF. The periodic effect of this
feedforward parameter can be explained due to changing
magnetic flux densities in the actuator

seen in Fig. 8. This method is also suitable for modeling other
position-dependent effects, such as a position-dependent mo-
tor force constant or other feedforward parameters, illustrated
by Fig. 9. Related experimental results are obtained in *?, yet
in sharp contrast these variations are encoded as a prior.

Significant performance improvements are achieved com-
pared to the traditional case when ignoring the position-
dependent feedforward parameters, e.g. using a constant set
of feedforward parameters, determined in the center position.
This is illustrated by Fig. 10, which shows the error 2-norm
for several different test positions for the x-axis and y-axis.

In summary, GPs enable the parameterization of feedfor-
ward parameters in terms of the position to reduce tracking
errors due to position-dependent dynamics such as a position-
dependent compliance or motor force constants. Mutual in-
formation is employed to automate experiment design by
computing near-optimal data points such that the uncertainty
and error of estimation of the feedforward parameters are re-
duced.
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Fig.10. Error 2-norm for several test positions for both
GP position-dependent feedforward parameters ()
and the feedforward parameters determined in the center
position (= ). Clearly, a reduction in error 2-norm for
multiple test positions is obtained using the GP position-
dependent feedforward parameters

6. Gaussian Processes for Nonlinear Feedfor-
ward

In this section, the synthesis of feedforward signals for
nonlinear systems, e.g., motion control systems with un-
known nonlinearity, is considered by modeling the inverse
system as a GP. In contrast to other GP-based feedforward
approaches that learn a linear model G~' ® or learn a lin-
ear model with some pre-specified nonlinearity as seen in
Sec. 4.3, the method described here requires no knowledge
about the nonlinearity in the system. Moreover, the proposed
method solely uses input and output data in contrast to the
required Euler-Lagrange structure with known states in “*.

First, the problem setting is defined. Second, it is explained
how GPs can be employed to construct feedforward signals
from input-output data. Finally, the approach is applied to
a consumer printer to demonstrate its ability to capture un-
known nonlinear dynamics.

6.1 Problem Setting Here, a setting is assumed
where G in Figure 1 is SISO and nonlinear. In particular,
G~ is assumed to be a noncausal nonlinear finite impulse re-
sponse (NFIR) system, hence, nonlinear systems that require
noncausal feedforward for perfect tracking are considered,
see Sec. 4 for the motivation on noncausal feedforward. The
NFIR is of the form

Yru) =gy + e

where y; := [y(t+nyc), ..., y(t—n.)]", g is an unknown nonlin-
ear function, and ¢, are i.i.d. normally distributed with mean
0 and standard deviation o, see also “” for a related approach.
The scalars n,. and n,. denote the number of anti-causal and
causal samples, respectively. Note that (35) is equivalent to
(10). Recall from Sec. 2.1 that zero reference-induced track-
ing error e = r — y is achieved for y = r, i.e., f(¢) = g(r)
in (35). The aim is then to obtain a model of g from data

= {y(0), u(n}Y |, such that f(r) = g(r,) yields the feedfor-
ward signal required to realize reference r.

6.2 Approach The function g(y) that describes the

t=1,...
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unknown nonlinear dynamics between input and output is
now regarded as a GP, as defined in (7) with k a covariance
function defining the smoothness of the function g. Con-
sequently, by definition of g in (35), the kernel determines
the smoothness of the required feedforward signal f for ref-
erence r. For instance, the Matérnsz;, covariance function
can describe non-smooth nonlinear input-output behaviour
accurately. The Materns,, covariance function ®"** is con-
structed as

k(. y') = o1 + V3p)exp(- V3p),

with p = (g —y) A1 (y -y, 0% = Var(f(y) and A =

diag ([1, ..., Cnins1])-
Next, the closed loop measurement data-set D = {Y, U} is
Y = [Y1yee s Y], cveeree e (37)
U = [y ooyl ]y erreeerremmeeeeeeaeeeens (38)

where u; = u(f) and y; = [y(t +ngc), ..., y(t—n.)]". The feed-
forward signal f € RV required to realize reference r with
length N, can be computed from the GP after conditioning
on the data-set. The feedforward signal is then given by the
posterior mean of (13) using X, = R where R = [ry,...,rn,]
is a Toeplitz matrix constructed from r € RN, with r, :
[r(t+ngu),. .., r(t—n)]". Thus, the GP enables interpolation
from Y to R.

Since a Mateérns;, covariance function parameterizes a
model in terms of distance to observations, see definition of
p in (36), observations of y, € D close to r, € R are required,
where proximity is defined by the distance p. These observa-
tions of y and u are collected using closed-loop experiments.
These experiments require careful selection of several exci-
tation references, as well as a feedback controller C and the
best available feedforward controller F, such that interpola-
tion from Y to R in n, + n,. + 1 dimensions is possible. An
example of this approach to a printer setup with nonlinear
friction is demonstrated next.

6.3 Experimental Results Consider the printer in
Figure 4. A feedback controller C is already implemented,
as well as an existing feedforward F' in the form of (26), with
velocity and acceleration feedforward. Data is collected in
11 closed-loop experiments, during which the excitation ref-
erences are chosen as scaled variations of the reference, see
Fig. 11. The GP is conditioned on the data-set and is used to
construct a feedforward signal with (13). The kernel hyper-
parameters oy, {; and o are found by optimization of the
marginal likelihood, see Sec. 3.4. The resulting error and
feedforward signal are shown in Fig. 12, compared with the
results of the original feedforward controller F. The 2-norm
of the error is reduced by a factor 2.5 as a result of nonlinear
GP-based feedforward. Indeed, by viewing G™! as a GP in
the form of (7), unknown nonlinear dynamics such as static
friction can learned from input-output data.

7. Gaussian Processes for Position-dependent
Disturbances

In this section, a disturbance rejection problem during con-
tinuous operation is considered, which is in contrast to the
previously introduced tracking problems in batch-to-batch
operation. More specifically, a GP-based spatial internal
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Fig.12. Time-domain error and feedforward signals for
the scaled reference (- -) using nonlinear GP-based feed-
forward (—), compared to ILCBF with acceleration and
velocity as basis (—). The error is significantly reduced
as a result of nonlinear GP-based feedforward

model for Repetitive Control (RC) is developed to compen-
sate for disturbances that are repeating in the position do-
main, see ™ for preliminary results in this direction.
7.1 Position-domain Disturbance Rejection Problem
Consider the setting in Fig. 1 with F = 0, i.e., without
feedforward, and where an input disturbance d(¢) is present
that is given by

d(t) = d,(p(1)),

where p(f) € R is an exogenous position signal, and Jp is a
periodic position-domain function, i.e.,

fori e N,

Jp(p) = Jp(p +i pper)’

with pyer € R the spatial period. Depending on the evolu-
tion of p(¢) the disturbance (39) may appear periodic or non-
period in time.

Traditional RC employs the internal model principle to en-
able the asymptotic rejection of time-domain periodic distur-
bance with a fixed and known period time, see, e.g., .
However, the spatial disturbance d(7) is not necessarily peri-
odic in time if the velocity changes, consequently traditional
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Spatial GP RC

(k) ya(k) D(k)

T

Fig.13. GP-based repetitive controller

p(k)l
B

L gpP

Fig. 14. Substrate carrier setup

temporal RC is not directly applicable. In the following sec-
tion, a spatial internal model for RC is developed by model-
ing the function (40) as a GP, consequently, spatial RC can
asymptotically compensate for d(f) independent of the evolu-
tion of p(?).

7.2 Spatial GP RC Approach The GP-based spatial
RC is depicted in Fig. 13, where L is a learning filter, and 8 a
buffer that generates the data-set D = {p,, yd,,,}i:':l that in gen-
eral is non-equidistantly distributed in the position domain.
The GP-based disturbance model used for compensation is
represented by GP.

The position-domain periodic disturbance d,(p) is mod-
eled as a GP of the form (7) where x = p with zero mean and
with a periodic covariance function

) SinZ(K(P;P') )

5 ), ............ (41)

k(p,p') =03 eXP(
where A is ideally equal to the period pper, [ is the character-
istic length scale defining smoothness, and o2 a gain.

To compensate for the disturbance at time #(k), the GP is
conditioned on the data-set D with p(k) € X. to determine
the compensation signal f(k) that is given by the posterior
mean as in (13).

7.3 Experimental Results Spatial RC is validated
on the experimental substrate carrier setup in Fig. 14 which
is used for accurate transportation of various substrates for
printing. The setup consists of a steel belt that rotates around
two rollers, and each roller contains three segments for lateral
belt positing. The imperfections in the rollers induce distur-
bances that are repeating in the roller-position domain. This
can be seen in the cumulative power spectrum (CPS) of the
error in the r,-direction as a function of the spatial frequency,
see Fig. 15 in (—), where a clear contribution is observed at
1[1/rev] and 3 [1/rev].

By employing GP-based spatial RC with period A = 2n,
these contributions are completely removed from the error,
see (—) in Fig. 15. In addition, the 2-norm of the error is
shown in Fig. 16, where the roller velocity is changes indi-
cated by the gray area ( mm ). This shows the error with spatial
RC (x) is not influenced by the changing velocity, in contrast
to traditional RC (x) where the error significantly increases if
the velocity is changed.
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Fig. 15. Cumulative power spectrum (CPS) of the error
as function of the spatial frequencies for PD control (—)
indicating clear contributions at the 1 and 3 roller revo-
lutions. Using GPRC these contributions are completely
removed (—), whereas traditional RC even amplifies the
spatial disturbance (- -) if the velocity changes
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Fig. 16. 2-norm of the error scaled with the /N for the
PD controller (x) Spatial RC (x) and traditional RC ().
The gray area () indicates where the belt velocity
changes, showing the benefit of spatial RC where the per-
formance is unaffected, whereas the traditional RC per-
formance degrades due to inadequate buffer size after the
velocity change

8. Conclusion and Outlook

Future data-intensive mechatronic systems benefit greatly
from techniques that can fully exploit the information present
in these data. Gaussian processes are one example of algo-
rithms that are nonparametric and highly successful in the
area of machine learning. It is shown that Gaussian processes
are at the heart of a very convenient mathematical framework
for function estimation and interpolation. The benefits are the
inclusion of prior knowledge in a prior distribution and the in-
ference on observations to obtain a posterior distribution with
uncertainty estimate. The wide variety of use cases of Gaus-
sian processes presented in this paper confirm that Gaus-
sian processes significantly improve the accuracy of mecha-
tronic systems by learning from data in a user-friendly man-
ner. Successful applications include noncausal and nonlinear
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feedforward on a printer system, position-dependent feedfor-
ward on a wirebonder, and spatial repetitive control of a sub-
strate carrier setup, and result in significant improvement in
terms of accuracy.

Current research focuses on several aspects. First, Gaus-
sian processes are being further deployed towards industrial
applications. Second, fundamental developments include
the use Gaussian processes in control techniques, includ-
ing new repetitive control algorithms 7. Third, other tech-
niques that are at the intersection of control, machine learn-
ing, and mechatronics are being developed, including para-
metric techniques such as physics-guided neural networks 7,
sparse optimisation for subset selection in feedforward and
learning ®”, and reinforcement learning for model-free learn-
ing in mechatronics ™.
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