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onvergence of sequences: A survey✩
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R T I C L E I N F O

eywords:
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A B S T R A C T

Convergent sequences of real numbers play a fundamental role in many different problems in system theory,
e.g., in Lyapunov stability analysis, as well as in optimization theory and computational game theory. In this
survey, we provide an overview of the literature on convergence theorems and their connection with Féjer
monotonicity in the deterministic and stochastic settings, and we show how to exploit these results.
. Introduction

Why Are Convergence Theorems Necessary?
The answer to this ‘‘naive’’ question is not simple.

cit. Boris T. Polyak, 1987 (Polyak, 1987, Section 1.6.2).

While the answer may have become clearer through the years,
ince many problems in applied mathematics rely on convergence
heorems, it is still not simple. Besides the theoretical investigation,
n fact, one fundamental aspect is how convergence theorems can be
f practical use, i.e., if the assumptions are plausible for a variety of
pplications, for instance, in systems theory. Moreover, convergence
heorems may also give qualitative information, e.g., if convergence is
uaranteed for any initial point and in what sense (strongly, weakly,
lmost surely, in probability), which affects the range of application.
he aim of this paper is to collect these results toward a complete
verview, thus to be able to find the one that most suits the application
t hand. In fact, many convergence results find their use in theoretical
pplications, such as Lyapunov stability analysis (Benaim, 1996; Be-
aïm, 1999; Khalil & Grizzle, 2002; Polyak, 1987), variational analysis
Iusem, Jofré, Oliveira, & Thompson, 2017, 2019; Malitsky, 2015,
020; Yousefian, Nedić, & Shanbhag, 2014, 2017) and game equilib-
ium seeking (Facchinei & Pang, 2007; Franci & Grammatico, 2020a;
ranci, Staudigl, & Grammatico, 2020; Koshal, Nedic, & Shanbhag,
013), in automatic control, such as model predictive control (Lee

Nedić, 2015) and network control problems (Shi, Johansson, &
ohansson, 2013), as well as in other engineering areas, e.g., train-
ng and learning in generative adversarial networks (Bot, Sedlmayer
nd Vuong, 2020; Franci & Grammatico, 2020b, 2021b), vehicle flow
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roject COSMOS (802348).
∗ Corresponding author.

E-mail addresses: b.franci@maastrichtuniversity.nl (B. Franci), s.grammatico@tudelft.nl (S. Grammatico).

control in traffic networks (Duvocelle, Meier, Staudigl, & Vuong, 2019)
and in modeling the prosumer behavior in smart power grids (Franci
& Grammatico, 2020a; Franci et al., 2020; Kannan, Shanbhag, & Kim,
2013; Yi & Pavel, 2019).

1.1. Lyapunov decrease and Féjer monotonicity

In the mathematical literature, many convergence results hold for
sequences of numbers while in system and control theory, the state
and decision variables are usually vectors of real numbers. It is therefore
important to understand the deep connection between the two theories.
The bridging idea is to associate a real number to the state vector,
i.e., via a function, and then prove convergence exploiting the prop-
erties of such a function. The most common example of this approach
is that of Lyapunov theory where a suitable Lyapunov function is
shown to be decreasing along the evolution of the state variable, thus
obtaining convergence of the state vector to a target set (Benaim, 1996;
Khalil & Grizzle, 2002; Polyak, 1987). An alternative approach is to
consider the distance from a target set and show that such a distance
vanishes eventually via a suitable technical result on the convergence
of the distance-valued sequence of real numbers.

In this work, we focus mostly on the latter methodology. To explain
our choice, let us note that solving an optimization problem consist
of designing a sequence of vectors that converge to the solution, the
minimum of a given cost function. Similarly, in algorithmic game
theory, one usually aims at constructing a sequence that converge to
an equilibrium, e.g., a Nash equilibrium, the optimum for each player
given the actions of the other players. The key point here is that, in
general, the target set is not known a priori, yet the distance of the
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Table 1
Convergence results for Féjer monotone sequences, deterministic sequences of real numbers and with variable metric (separated by the horizontal lines, respectively). For the
applications, MI stands for Monotone Inclusion, VI for variational inequalities, NE for Nash Equilibrium problems, LYAP for Lyapunov analysis and NC for nonconvex optimization

Result Reference Application Reference

Proposition 3.1 Bauschke et al. (2011, Proposition 5.4)
Theorem 3.2 Combettes (2001b, Theorem 3.8)
Lemma 3.3 Opial et al. (1967) (Opial) MI - Theorem 6.1 Malitsky and Tam (2020, Theorem 2.5)

VI - Theorem 6.4 Malitsky (2020, Theorem 1)

Lemma 3.4 Combettes (2001b, Lemma 3.1) NC - Theorem 6.9 Di Lorenzo and Scutari (2016, Theorem 3)
Corollary 3.5 Scutari and Sun (2019, Lemma 9)
Lemma 3.6 Bauschke et al. (2011, Lemma 5.31) VI - Theorem 6.4 Malitsky (2020, Theorem 1)
Corollary 3.7 Malitsky (2015, Lemma 2.8) VI - Theorem 6.5 Malitsky (2015, Theorem 3.2)

LYAP - Theorem 6.8 Polyak (1987, Theorem 1.4.1)
Corollary 3.8 Polyak (1987, Lemma 2.2.2)
Lemma 3.9 Polyak (1987, Lemma 2.2.3) NE - Theorem 6.7 Kannan and Shanbhag (2012, Theorem 2.4)
Lemma 3.10
Lemma 3.11 Xu (2003, Lemma 2.1)
Lemma 3.12 Extension of Xu (2002, Lemma 2.5) NE - Theorem 6.6 Duvocelle et al. (2019, Theorem 3.1)
Corollary 3.13 Lei, Shanbhag and Chen (2020, Proposition 3)
Corollary 3.14 Qin, Shang, and Su (2008, Lemma 1.1)
Corollary 3.15 Xu (1998, Lemma 3) MI - Theorem 6.3 Dadashi and Postolache (2019, Theorem 3.1)
Proposition 3.16 Alber, Iusem, and Solodov (1998, Proposition 2)
Lemma 3.17 He and Yang (2013, Lemma 7)
Lemma 3.18 Maingé (2008, Lemma 2.2)
Lemma 3.19 Malitsky and Tam (2018, Lemma 2.7) MI - Theorem 6.2 Malitsky and Tam (2020, Theorem 2.9)

Proposition 5.1 Combettes and Vũ (2013, Proposition 3.2) MI - Theorem 8.1 Vũ (2013, Theorem 3.1)
Theorem 5.2 Combettes and Vũ (2013, Theorem 3.3) MI - Theorem 8.1 Vũ (2013, Theorem 3.1)
Corollary 5.3 Combettes and Vũ (2013, Proposition 4.1)
constructed sequence from such set can be analyzed anyways. On the
contrary, in Lyapunov stability analysis, the target set is usually known
a priori.

By exploiting the relation between the iterations and a suitable
distance-like function, we show in this paper that convergence theo-
rems represent a key ingredient for a wide variety of system-theoretic
problems in fixed-point theory, game theory and optimization
(Bauschke, Combettes, et al., 2011; Combettes, 2001b; Eremin & Popov,
2009; Facchinei & Pang, 2007; Polyak, 1987). In many cases, the study
of iterative algorithms allows for a systematic analysis that follows
from the concept of Féjer monotone sequence. The basic idea behind
Féjer monotonicity is that at each step, each iterate is closer to the
target set than the previous one. In a sense, the distance used for Féjer
sequences can be seen as a specific class of Lyapunov function and
Féjer monotonicity shows that it is decreasing along the iterates. The
concept was first introduced in 1922 (Fejér, 1922), but the term Féjer
monotone sequence was first used thirty years later in 1954 (Motzkin &
Schoenberg, 1954) and a huge part of the studies on its properties was
made in the 60s (Eremin, 1968a, 1968b, 1969; Eremin & Popov, 2009)
and still continues (Combettes, 2001a, 2001b; Combettes & Pesquet,
2015; Combettes & Vũ, 2013; Kohlenbach, Leuştean, & Nicolae, 2018).

Unfortunately, Féjer monotonicity is hard to obtain, therefore the
concept is typically relaxed to a quasi-Féjer property, where a vanishing
error must be considered. Such an error term in the distance inequality
is common in many equilibrium problems (Bauschke et al., 2011; Duflo,
2013; Duvocelle et al., 2019; Franci & Grammatico, 2020a; Iusem
et al., 2017; Kannan et al., 2013; Malitsky & Tam, 2020; Polyak,
1987; Van Nguyen, 2017), especially in the stochastic case where
the concept of quasi-Féjer monotone sequence was first introduced
(Ermol’Ev, 1969; Ermoliev & Wets, 1988). However, these properties
are not necessarily enough to ensure convergence, hence, (quasi) Féjer
monotonicity is often used in combination with convergence results
on sequences of real numbers. These technical results have been used
in many theoretical and computational applications that range from
stochastic Nash equilibrium seeking (Franci & Grammatico, 2020a;
Franci et al., 2020; Koshal et al., 2013) to machine learning (Bot,
Sedlmayer et al., 2020; Duvocelle et al., 2019; Franci & Grammatico,
162

2020b).
1.2. What this survey is about

In this survey, we present a number of convergence theorems for
sequences of real (random) numbers. We show how they can be used
in combination with (quasi) Féjer monotone sequences or Lyapunov
functions to obtain convergence of an iterative algorithm, essentially
a discrete-time dynamical system, to a desired solution. Moreover,
we present some applications to show how they can be adopted in a
variety of settings. Specifically, we present convergence results for both
deterministic and stochastic sequences of real numbers and we also
include some results on Féjer monotone sequences and with variable
metric. We show that these results help proving not only convergence
of an iterative algorithm but also the Law of Large Numbers, with
applications in model predictive control (Lee & Nedić, 2015) and
opinion dynamics (Shi et al., 2013) among others.

We report in Tables 1 and 2 the results for deterministic and
stochastic sequences respectively, with the corresponding bibliographic
source and application.

The paper is organized as follows. In the next section, we recall
some preliminary notions on the concept of ‘‘convergence’’ and of
random variables. Section 3 is devoted to deterministic convergence
results while the stochastic case is discussed in Section 4. An extension
with variable metric is considered in Section 5. Sections 6–8 propose
applications of the convergence lemmas for deterministic, stochastic,
and variable metric sequences, respectively.

1.3. What this survey is not about

This is not a survey on solution algorithms for optimization prob-
lems and variational inequalities. Some relevant references on iterative
methods include Bauschke et al. (2011), Combettes and Pesquet (2021),
Doob (1953), Facchinei and Pang (2007), Polyak (1987), Rockafellar
(1970) and the references therein.

We also remark that, despite the notion of Féjer sequence is used
throughout the paper, this is not a survey on the properties of Féjer
monotone sequences. The interested reader may refer to Bauschke et al.
(2011), Berg, Engel, Pazderski, and Stolle (1995), Combettes (2001a,
2001b), Combettes and Pesquet (2015), Combettes and Vũ (2013) and

Kohlenbach et al. (2018).
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Table 2
Convergence results for stochastic sequences of real random variables and stochastic Féjer monotone sequences (separated by double horizontal lines, respectively). For the
applications, VI stands for variational inequalities, NE for Nash Equilibrium problems, MPC for Model Predictive Control, LLN for Law of Large Numbers and NET for Network
control problems.

Result Reference Application Reference

Lemma 4.1 Robbins and Siegmund (1971) (Robbins–Siegmund) VI - Theorem 7.1 Bot, Mertikopoulos, Staudigl and Vuong (2020, Theorem 4.5)
VI - Theorem 7.2 Iusem et al. (2017, Theorem 3.18)
NE - Proposition 7.3 Koshal et al. (2013, Proposition 3)
MPC - Proposition 7.4 Lee and Nedić (2015, Proposition 1)

Corollary 4.2 Polyak (1987, Lemma 2.2.9) (Gladyshev)
Corollary 4.3 Poggio, Voinea, and Rosasco (2011, Theorem B.2)
Corollary 4.4 Duflo (2013, Corollary 1.3.13) LLN - Theorem 7.5 Duflo (2013, Theorem 1.3.15)
Lemma 4.6 Combettes and Pesquet (2019, Lemma 2.1)
Lemma 4.7 Polyak (1987, Lemma 2.2.10) VI - Theorem 7.6

NET - Theorem 7.7 Shi et al. (2013, Theorem 5)

Proposition 4.5 Combettes and Pesquet (2015, Proposition 2.3)
Proposition 5.4 Vu (2016, Proposition 2.4)
‖

a

c

D

p

E
t

m

N
t

2. Notation and preliminaries

We use the nomenclature and notation from Bauschke et al. (2011)
and Rockafellar (1970).

N indicates the set of natural numbers and R (R̄ = R ∪ {∞}) is the
et of (extended) real numbers. ⟨⋅, ⋅⟩ ∶ R𝑛×R𝑛 → R denotes the standard

inner product and ‖ ⋅ ‖ is the associated Euclidean norm. B = {𝑥 ∈ R𝑛 ∣
𝑥‖ ≤ 1} represents the unit ball. Let 𝑑 (𝑥) = min𝑦∈ ‖𝑥 − 𝑦‖ be the
istance between 𝑥 and the set  .

We indicate that a matrix 𝐴 is positive definite, i.e., 𝑥⊤𝐴𝑥 >
0, with 𝐴 ≻ 0. Given a symmetric 𝑊 ≻ 0, the 𝑊 -induced inner
roduct is ⟨𝑥, 𝑦⟩𝑊 = ⟨𝑊 𝑥, 𝑦⟩ and the associated norm is defined as

‖𝑥‖𝑊 =
√

⟨𝑊 𝑥, 𝑥⟩. Id is the identity operator. Given a continuous linear
operator 𝑇 ∶ R𝑛 → R𝑛, the adjoint of 𝑇 is the unique continuous linear
operator 𝑇 ∗ such that ∀𝑥, 𝑦 ∈ R𝑛 ⟨𝑇𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 ∗𝑦⟩. Let 𝑆(R𝑛) be the
set of self-adjoint bounded linear operators of R𝑛 and let the Loewner
partial order be defined for all 𝑇1, 𝑇2 ∈ 𝑆(R𝑛) as 𝑇1 ⪰ 𝑇2 ⇔ ∀𝑥 ∈ R𝑛
⟨𝑇1𝑥|𝑥⟩ ≥ ⟨𝑇2𝑥|𝑥⟩. Let 𝛽 ≥ 0 and 𝛽 = {𝐿 ∈ 𝑆(R𝑛)|𝐿 ⪰ 𝛽Id}. Positive
semidefinite matrices belongs to 𝛽 .

Unless otherwise mentioned, we use 𝑣, 𝑢 and 𝑤 for (real or random)
numbers while we use 𝑥, 𝑦, 𝑧 to indicate vectors (of real numbers
or random variables), i.e., 𝑣, 𝑢,𝑤 ∈ R and 𝑥, 𝑦, 𝑧 ∈ R𝑛, respectively.
Capital letters indicate operators or matrices. Letters from the Greek
alphabet are also used for real numbers but they mostly represent
errors (𝜀), step size sequences (𝛼) or coefficients (𝛿, 𝛾); 𝜉 often indicates
random quantities. Since it may be dependent on the context, when
necessary, the meaning is introduced along with the symbol. In general,
calligraphic capital letters indicate sets,  indicates a convex set and 
a target or solution set. Throughout the survey, we suppose that the
sequence (𝑥𝑘)𝑘∈N belongs to a set  ⊆ R𝑛. Further assumptions will be
made when necessary.

Given a vector 𝑥 ∈ R𝑛, we indicate the maximum entry as 𝑥max =
max1≤𝑖≤𝑁{𝑥𝑖} and, analogously, the minimum entry as 𝑥min =
min1≤𝑖≤𝑁{𝑥𝑖}. Most often, the superscript ∗, e.g., 𝑥∗, indicates a solution
of the problem, while the bar, i.e., 𝑥̄, indicates an accumulation point
of an iterative process.

With reference to the application sections, we use Standing Assump-
tions to state technical conditions that implicitly hold throughout the
paper, while Assumptions are postulated only when explicitly used.

More notation and definitions related to monotone operator theory,
functional to the application sections, are postponed to Appendix.

2.1. Convergence notions

Let us first recall some definitions related to the notion of conver-
gence itself.

Definition 2.1. A sequence (𝑥𝑘)𝑘∈N ⊆ R𝑛 is said to converge weakly
to a point 𝑥̄ ∈  if, for all 𝑦 ∈  ,
𝑘

163

⟨𝑥 , 𝑦⟩ → ⟨𝑥̄, 𝑦⟩ as 𝑘 → ∞. i
A sequence (𝑥𝑘)𝑘∈N ⊆ R𝑛 is said to converge strongly to a point 𝑥̄ ∈ 
if

lim
𝑘→∞

‖𝑥𝑘 − 𝑥̄‖ = 0.

In general, strong convergence implies weak convergence. In finite
dimension, the two notions are equivalent (Bauschke et al., 2011,
Lemma 2.51), hence, in this paper, we generally talk about conver-
gence.

Let us also introduce the concept of linear convergence. While the
study of rates of convergence is not the focus of this survey, we include
a result in this direction for the sake of completeness (Lemma 3.19 in
Section 3.2).

Definition 2.2. A sequence (𝑥𝑘)𝑘∈N ⊆ R𝑛 is said to converge 𝑄-linearly
to a point 𝑥̄ if there exists 𝑐 > 0 such that

lim
𝑘→∞

‖𝑥𝑘+1 − 𝑥̄‖
‖𝑥𝑘 − 𝑥̄‖

= 𝑐.

A sequence (𝑥𝑘)𝑘∈N ⊆ R𝑛 is said to converge 𝑅-linearly to a point 𝑥̄ if
there exists a sequence (𝜀𝑘)𝑘∈N such that

𝑥𝑘 − 𝑥̄‖ ≤ 𝜀𝑘 for all 𝑘 ∈ N

nd the sequence (𝜀𝑘)𝑘∈N converges 𝑄-linearly to zero.

Given the definitions of convergence, let us define the concept of
luster point.

efinition 2.3. A point 𝑥̄ ∈ R𝑛 is said to be a cluster point (or limit
point or accumulation point) of a sequence (𝑥𝑘)𝑘∈N if, for every 𝜖 > 0
and for 𝑘̄ ∈ N there exists 𝑘 ≥ 𝑘̄ such that 𝑥𝑘 ∈ {𝑥̄}+𝜖B. In other words,
there is at least one 𝑘̄ ∈ N such that 𝑥𝑘 lies in a neighborhood of 𝑥̄ for
all 𝑘 ≥ 𝑘̄.

The set of all cluster points is called limit set.
If a sequence (𝑥𝑘)𝑘∈N in R𝑛 has a subsequence that converges to a

oint 𝑥̄ ∈ R𝑛, then 𝑥̄ is called a sequential cluster point of (𝑥𝑘)𝑘∈N.

xample 2.1 (A Cluster Point is Also a Sequential Cluster Point). Consider
he sequence (𝑥𝑘)𝑘∈N ⊆ R2 defined as 𝑥𝑘 = 1

𝑘 (𝑐𝑜𝑠(𝑘
𝜋
2 ), 𝑠𝑖𝑛(𝑘

𝜋
2 )). The

sequence converges to 𝑥̄ = (0, 0) as 𝑘 → ∞, which is a cluster point
and a sequential cluster point, as shown in Fig. 1. The limit set is the
singleton {(0, 0)}.

Example 2.2 (A Sequential Cluster Point is Not Necessarily a Clus-
ter Point). Consider the sequence (𝑥𝑘)𝑘∈N ⊆ R2 defined as 𝑥𝑘 =
𝑘+3
𝑘

(

𝑐𝑜𝑠
(

𝑘 𝜋2
)

, 𝑠𝑖𝑛
(

𝑘 𝜋2
))

. The sequence does not converge but it has
any sequential cluster points (see Fig. 2). For instance, consider 𝑥̄ =

(1, 0) = (𝑐𝑜𝑠(2𝜋), 𝑠𝑒𝑛(2𝜋)). Then, the subsequence (𝑥𝑘𝑛 ) with 𝑘𝑛 = 4𝑛, 𝑛 ∈
converges to 𝑥̄ which in turn is a sequential cluster point. However,

he limit set is given by the circumference {(𝑥1, 𝑥2) ∈ R2 ∶ 𝑥21 +𝑥
2
2 = 1},

n red in Fig. 2.
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Fig. 1. Sequence converging to a cluster point which is also a sequential cluster point
(Example 2.1). The empty dot represents the initial point and the red dot is the cluster
point. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 2. Sequence converging to a set of sequential cluster points where none of them
is a cluster point (Example 2.2). The empty dot represents the initial point and the
red circle is the limit set. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Example 2.3 (𝜔-Limit Set). The concept of limit set reminds that of 𝜔-
limit set (Benaim, 1996; Benaïm, 1999). Given a continuous function
𝑓 ∶ R → R, the 𝜔-limit set is the set of cluster points of the forward
rbit of the iterated function 𝑓 at 𝑥 ∈ R, namely,

𝜔(𝑥, 𝑓 ) =
⋂

{𝑓𝑘(𝑥) ∶ 𝑘 > 𝑛}.
164

𝑛∈N b
In particular, given a dynamical system with flow 𝜙 ∶ R × R → R, 𝑦 is
𝜔-limit point of 𝑥 if there exist (𝑡𝑘)𝑘∈N ⊆ R such that lim𝑘→∞ 𝑡𝑘 = ∞

nd lim𝑘→∞ 𝜙(𝑡𝑘, 𝑥) = 𝑦.

Let us conclude this section with some preliminary results related
o the convergence properties of a given sequence. We consider these
esults common knowledge and we refer to them throughout the paper,
ven without a specific reference.

emma 2.1 (Bauschke et al., 2011, Lemma 2.45). Let (𝑥𝑘)𝑘∈N be a
ounded sequence in R𝑛. Then, (𝑥𝑘)𝑘∈N possesses a convergent subsequence.

emma 2.2 (Bauschke et al., 2011, Lemma 2.46). Let (𝑥𝑘)𝑘∈N be a
equence in R𝑛. Then, (𝑥𝑘)𝑘∈N converges if and only if it is bounded and
ossesses at most one sequential cluster point.

emma 2.3 (Bauschke et al., 2011, Lemma 2.47). Let (𝑥𝑘)𝑘∈N be a
equence in R𝑛 and let  be a nonempty subset of R𝑛. Suppose that, for
very 𝑥 ∈  , (‖𝑥𝑘 − 𝑥‖)𝑘∈N converges and that every sequential cluster
oint of (𝑥𝑘)𝑘∈N belongs to  . Then, (𝑥𝑘)𝑘∈N converges to a point in  .

xample 2.4 (Assumptions of Lemmas 2.1–2.3). Consider the sequence
efined by 𝑥𝑘 = (−1)𝑘 for all 𝑘 ∈ N. Both 1 and −1 are sequential cluster
oints but not cluster points. The sequence does not converge. Let us
se (𝑥𝑘)𝑘∈N to verify Lemmas 2.1–2.3.

The sequence is bounded in [−1, 1] and it has (at least) two conver-
ent subsequences: 𝑥𝑘𝑛 = −1 and 𝑥𝑘𝑚 = 1, 𝑛, 𝑚 ∈ N. Hence, Lemma 2.1
olds. However, the sequence is not convergent. In fact, contrary to
emma 2.2, it has two sequential cluster points. Concerning Lemma 2.3,
e note that the sequence (‖𝑥𝑘 − 𝑥̄‖)𝑘∈N does not converge for any
̄ ∈ [−1, 1] ⧵ {0}. On the other hand, it converges for 𝑥̄ = 0 which is
ot a cluster point of the sequence (𝑥𝑘)𝑘∈N.

.2. Probability theory

Concerning the stochastic case, we focus on almost sure conver-
ence. Let us first introduce the probability space (𝛺, ,P) where 𝛺 is
he sample space,  is the event space, and P is the probability function
efined on the event space. The symbol E is used for the associated
xpected values.

Let us recall that a random variable is a function from the sample
pace to a measurable space (in our case, the set of real numbers),
.e., 𝑥 ∶ 𝛺 → R𝑛. However, for brevity, we omit the dependency on
he sample space and write 𝑥 instead of 𝑥(𝜔), 𝜔 ∈ 𝛺, when it is clear
rom the context.

efinition 2.4. A sequence (𝑥𝑘)𝑘∈N of random variables converges
lmost surely (a.s.) toward 𝑥̄ ∈  if
[

lim
𝑛→∞

𝑥𝑘 = 𝑥̄
]

= 1.

From now on, results involving random variables are supposed to
old almost surely, even if it is not explicitly mentioned.

xample 2.5 (a.s. Convergence). Let 𝛺 = [0, 1] be a continuous sample
pace with the uniform probability distribution. For each element of
he sample space 𝜔 ∈ 𝛺, let us define the sequence of random variables
𝑘(𝜔) ∶= 𝜔 + (𝜔)𝑘 and the random variable 𝑣̄(𝜔) ∶= 𝜔. Then, we have
hat lim𝑘→∞ |𝑣𝑘(𝜔) − 𝑣̄(𝜔)| = 0 for all 𝜔 ∈ [0, 1). Instead, for 𝜔 = 1,
e have 𝑣𝑘(𝜔) = 2 for all 𝑘 ∈ N, thus, 𝑣𝑘(𝜔) does not converge to

𝑣̄(𝜔). However, since P[0 ≤ 𝜔 < 1] = 1, 𝑣𝑘(𝜔) converges a.s. to 𝑣̄(𝜔)
s 𝑘 → ∞. In Fig. 3, we show how the distance from the limit point
oves toward zero with high probability as the number of iterations

ncreases, i.e., P[lim𝑘→∞ |𝑣𝑘(𝜔) − 𝑣̄(𝜔)| = 0] = 1.

Let us recall some probabilistic and stochastic definitions that will

e useful later on, starting from the definition of filtration.
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Fig. 3. Graphical representation of a.s. convergence. By increasing the number of
terations, the mass of the probability distribution concentrates on the limit point
Example 2.5).

efinition 2.5. Let (𝜉𝑘)𝑘∈N ⊆ 𝛺 be a sequence of random variables
and let 𝑘, 𝑘 ∈ N be the 𝜎-algebra of 𝛺, generated by the events prior
o 𝑘, that is, 0 = 𝜎

(

𝑋0
)

and 𝑘 = 𝜎
(

𝑋0, 𝜉1, 𝜉2,… , 𝜉𝑘
)

for all 𝑘 ≥ 1.
Then  = (𝑘)𝑘∈N is called a filtration, if 𝑘 ⊆ 𝓁 ⊆ 𝛺 for all 𝑘 ≤ 𝓁.

In words, a filtration is a family of 𝜎-algebras non-decreasingly
ordered that collects the history of 𝜉𝑘. Given a filtration, a subsequent
important concept is that of martingale (Doob, 1953, Chapter 7),
(Chung, Williams, & Williams, 1990, Section 1.9), (Kushner & Yin,
2003, Section 4.1).

Definition 2.6. A sequence of random variables (𝑣𝑘)𝑘∈N is said to be a
martingale adapted to  = (𝑘)𝑘∈N if it is integrable and for all 𝑘 ∈ N,

E
[

𝑣𝑘+1|𝑘
]

= 𝑣𝑘.

It is a supermartingale if for all 𝑘 ∈ N

E
[

𝑣𝑘+1|𝑘
]

≤ 𝑣𝑘,

and a submartingale if for all 𝑘 ∈ N

E
[

𝑣𝑘+1|𝑘
]

≥ 𝑣𝑘.

These notions are the stochastic generalization of the notion of
monotone (decreasing or increasing) sequences. Moreover, we note that
every martingale is a submartingale and a supermartingale, while every
sequence which is both a submartingale and a supermartingale is also
a martingale.

Example 2.6 (Martingales). Let (𝑥𝑘)𝑘∈N be the sequence generated by
the fortune of a gambler after 𝑘 tosses of a fair coin. The gambler
wins 1 if the coin comes up head (with probability 𝑝 = 1

2 ) and loses
1 otherwise. The expected fortune after the next toss is equal to the
present fortune, i.e., E[𝑥𝑘+1] = 𝑥𝑘, hence the sequence is a martingale.

Let us now consider the toss of a biased coin, with head coming
p with probability 𝑝 ≠ 1

2 . If 𝑝 > 1
2 , on average the gambler wins

money, i.e., E[𝑥𝑘+1] ≥ 𝑥𝑘 and the sequence is a supermartingale. On
the other hand, if 𝑝 < 1

2 the gambler loses and the sequence is a
ubmartingale. See Borkar (1995), Doob (1953), Duflo (2013), Polyak
1987) and Stroock (2010) for other examples.

We conclude this section with the following result, due to Borkar
1995, Theorem 3.3.1), Doob (1953, Theorem 7.4.1) and Polyak (1987,
emma 2.2.7), .

heorem 2.4 (Martingale Convergence Theorem). Suppose (𝑥𝑘)𝑘∈N is a
onnegative super-martingale which satisfies sup𝑘∈N E[|𝑥𝑘|] < ∞. Then,

𝑘
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almost surely, there exists 𝑥̄ ≥ 0 such that lim𝑘→∞ 𝑥 = 𝑥̄ and E[|𝑥̄|] < ∞. i
2.3. Properties of sequences

In this section, we collect some properties of sequences of numbers
that are used later on as assumptions to claim convergence. We also
include some examples and establish some relations between such
properties.

The most used assumption involves the summability of a sequence.
A sequence (𝛿𝑘)𝑘∈N of real numbers is summable if ∑∞

𝑘=1 𝛿
𝑘 <∞, i.e., if

he series converges; it is square summable if ∑∞
𝑘=1(𝛿

𝑘)2 < ∞. The
oncept can be generalized to higher powers, but they are not rele-
ant for the sequences we consider here. Moreover, one can consider
bsolute summability of a sequence, i.e., ∑∞

𝑘=1 |𝛿
𝑘
| < ∞, which implies

onvergence of the series, as absolute summability is stronger than
ummability; clearly, the two concepts are equivalent for nonnegative
equences.

xample 2.7 (Summable Sequence). A simple example of summable
equence is

(

1
𝑘2

)

𝑘∈N
. Thus, a square summable is

(

1
𝑘

)

𝑘∈N
. In fact,

∞
𝑘=1

1
𝑘 = ∞ and ∑∞

𝑘=1
1
𝑘2

= 𝜋2

6 .

In light of Example 2.7, let us note that a square summable sequence
is not necessarily summable. However, the vice versa holds, i.e., a
summable sequence is also square summable.

One of the reasons why the summability condition is used in the
convergence lemmas is its relation with the convergence of an infinite
product. In fact, given a positive sequence (𝛿𝑘)𝑘∈N, it holds that ∑∞

𝑘=1 𝛿
𝑘

onverges if and only if ∏∞
𝑘=1(1−𝛿

𝑘) converges. Similarly, the condition
or a sequence being not summable, i.e., ∑∞

𝑘=1 𝛿
𝑘 = ∞, is equivalent to

∞
𝑘=1(1 − 𝛿𝑘) = 0 when 𝛿𝑘 ∈ (0, 1). A proof of these statements can be

found in Knopp (1990, Chapter VII).

Example 2.8 (Summable Sequence Continues). For the sequence
(

1
𝑘2

)

𝑘∈N
e have that ∏𝑛

𝑘=1(1−
1
𝑘2
) = 𝑛+1

2𝑛 → 1
2 as 𝑛→ ∞. Instead, if one considers

the sequence
(

1
𝑘

)

𝑘∈N
it holds that ∏𝑛

𝑘=1(1−
1
𝑘 ) =

1
2 ⋅

2
3 ⋅

3
4 ⋯

𝑛−1
𝑛 = 1

𝑛 → 0
s 𝑛→ ∞.

In some cases, it is assumed that ∑∞
𝑘=1(1 − 𝛿

𝑘) = ∞ with 𝛿𝑘 ∈ [0, 1).
his condition is not very restrictive in terms of (non) summability of
he sequence. In fact, both summable and nonsummable sequences can
e found that satisfy the equation above.

xample 2.9 (Summable Sequence Continues). While all summable se-
uences satisfy ∑∞

𝑘=1(1−𝛿
𝑘) = ∞, a nonsummable sequence is provided

y our usual example,
(

1
𝑘

)

𝑘∈N
. To see this, consider that ∑∞

𝑘=1(1−𝛿
𝑘) =

is equivalent to ∏∞
𝑘=1 𝛿

𝑘 = 0. Then, we have ∏𝑛
1=𝑘

1
𝑘 = 1

𝑛! → 0 as
𝑛→ ∞ (! being the factorial operator).

emark 2.1. Without anticipating the convergence results, let us note
hat the equivalences between infinite sums and infinite products are
nteresting for proving convergence lemmas because of the following
act. The sequences involved must often satisfy an inequality of the
orm 𝑣𝑘+1 ≤ (1 − 𝛿𝑘)𝑣𝑘 + 𝜖𝑘1 , for some positive 𝜖𝑘1 . By iterating such
nequality, one obtains 𝑣𝑘+1 ≤ 𝑣0

∏𝑘
𝑗=1(1 − 𝛿𝑗 ) + 𝜖𝑘2 , where the coeffi-

ient multiplying 𝑣0, ∏𝑘
𝑗=1(1 − 𝛿

𝑗 ), depends on the summability of the
equence (𝛿𝑘)𝑘∈N.

Sometimes we may just use the fact that a sequence is vanishing, in
he sense that lim𝑘→∞ 𝛿𝑘 = 0, which is implied by summability while
he vice versa does not necessarily hold.

To conclude this section, let us remark that the summability of a
equence gives an idea of how fast the sequence is vanishing while such
nformation is lost when just considering the limit.
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2.4. Distance from a target set

The basic idea for proving convergence of a sequence is that the
distance from the solution should vanish or at least decrease at each
iteration. This is particularly important when we consider vectors,
i.e., when convergence results for sequences of real numbers cannot
be applied directly.

The most used concept in this direction is that of Féjer monotone
sequence. The term was coined in Motzkin and Schoenberg (1954) but
the concept was first proposed by Féjer in Fejér (1922). These pro-
cesses have been widely studied in the literature (Bauschke, Borwein,
& Combettes, 2003; Combettes, 2001a, 2001b; Combettes & Pesquet,
2015; Eremin, 1969) since they can be applied in solving classical
problems as systems of equations or inequalities, operator equations
with a priori information, equilibrium problems, and many others (Bot,
Mertikopoulos et al., 2020; Combettes, 2001a, 2001b; Eremin & Popov,
2009; Iusem et al., 2017). The key point is that one can take the
target set to be the solution set of the problem of interest (even if it
is unknown). Then, since the distance from the target decreases, the
sequence will eventually reach (a point close to) the solution.

Definition 2.7. A sequence (𝑥𝑘)𝑘∈N is Féjer monotone with respect to
a target set  ≠ ∅ if for every 𝑥̄ ∈ , it holds that for all 𝑘 ∈ N

‖𝑥𝑘+1 − 𝑥̄‖ ≤ ‖𝑥𝑘 − 𝑥̄‖.

In words, Definition 2.7 states that the distance between the iterates
and any point 𝑥̄ ∈ 𝑆 does not increase.

Example 2.10 (Féjer Monotone Sequence of Numbers). Let us consider
the sequence 𝑣𝑘 = (−1)𝑘

𝑘 . Though the sequence is oscillating, it is
onvergent to 𝑣̄ = 0 and it is Féjer monotone with respect to  = {0}.

xample 2.11 (Féjer Monotone Sequence of Vectors). An example of
Féjer monotone sequence is the one generated by the projection

Definition A.1) onto a nonempty, closed and convex set , which acts
s the target set, Berg et al. (1995), Combettes (2001a, 2001b), Eremin
nd Popov (2009) and Gubin, Polyak, and Raik (1967), i.e.,

𝑘+1 = proj (𝑥𝑘).

he claim follows immediately from the fact that the projection oper-
tor is firmly nonexpansive (Bauschke et al., 2011, Proposition 4.16),
ence nonexpansive (Definition A.3). In fact, any sequence generated
y an iteration of the form 𝑥𝑘+1 = 𝑇 (𝑥𝑘) where 𝑇 is a nonexpansive

operator is Féjer monotone (Combettes, 2001a, Equation (2)).

We remark that the diminishing distance from a target point does
not necessarily imply convergence to such point. Specifically, we note
that a Féjer monotone sequence (𝑥𝑘)𝑘∈N with respect to a nonempty set
 may not converge even if the limit set is not empty.

Example 2.12 (Non-convergent Féjer Monotone Sequence). The sequence
defined as 𝑥𝑘 = (−1)𝑘𝑥0 for all 𝑘 ∈ N is Féjer monotone with respect to
 = {0} but it does not converge for any 𝑥0 ∉  (Combettes, 2001b,
page 9), (Combettes, 2001a, page 1).

The notion of Féjer monotonicity can be extended in various di-
rections (Berg et al., 1995; Combettes, 2001b; Combettes & Pesquet,
2015; Combettes & Vũ, 2013; Eremin, 1969; Lin, Rosasco, Villa, &
Zhou, 2018). Here we recall only the concept of quasi-Féjer monotone
sequence, first introduced in the stochastic case (Ermol’Ev, 1969; Er-
moliev & Wets, 1988) (see also Definition 2.9) and later in several
(deterministic) variants (Berg et al., 1995; Combettes, 2001b, 2004; Lin
et al., 2018).
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Definition 2.8. Let 𝜙 ∶ R≥0 → R≥0. A sequence (𝑥𝑘)𝑘∈N ⊆ R𝑛 is quasi-
éjer monotone with respect to a target set  ≠ ∅ if for every 𝑥̄ ∈ 
here exists a nonnegative sequence (𝜀𝑘)𝑘∈N such that ∑∞

𝑘=0 𝜀
𝑘 <∞ and

t holds that

(‖𝑥𝑘+1 − 𝑥̄‖) ≤ 𝜙(‖𝑥𝑘 − 𝑥̄‖) + 𝜀𝑘 for all 𝑘 ∈ N.

emark 2.2. Definition 2.8 is perhaps the most general definition
f quasi-Féjer monotone sequence, as there are no restrictions on the
unction 𝜙. However, besides some general results (see, e.g., Propo-
ition 5.1 and Theorem 5.2), many convergence theorems hold for a
iven choice of the function, i.e., 𝜙 = | ⋅ | or 𝜙 = | ⋅ |2. For details, see
ection 3.1 or (Alber et al., 1998; Combettes, 2001b; Combettes & Vũ,
013; Ermol’Ev, 1969; Ermoliev & Wets, 1988).

Next, we give a definition of Féjer monotone sequence in the
tochastic case. Stochastic quasi-Féjer monotone sequences were first
ntroduced in Ermol’Ev (1969) and later discussed in Barty, Roy, and
trugarek (2007) and Combettes and Pesquet (2015). The interpre-
ation is that the expected value of the distance from the target set
s non-increasing, which reminds the definition of (super)martingale
Combettes & Pesquet, 2015; Ermol’Ev, 1969).

efinition 2.9. Let 𝜙 ∶ R≥0 → R≥0. A sequence (𝑥𝑘)𝑘∈N of random
ariables is stochastic Féjer monotone with respect to a target set  ≠ ∅
f for every 𝑥̄ ∈  it holds that, for all 𝑘 ∈ N,
[

𝜙(‖𝑥𝑘+1 − 𝑥̄‖)|𝑘
]

≤ 𝜙(‖𝑥𝑘 − 𝑥̄‖).

t is called stochastic quasi-Féjer monotone relative to a target set  ≠ ∅
f for every 𝑥̄ ∈  there exists a nonnegative sequence (𝜀𝑘)𝑘∈N such that
∞
𝑘=0 𝜀

𝑘 <∞ and it holds that, for all 𝑘 ∈ N,
[

𝜙(‖𝑥𝑘+1 − 𝑥̄‖)|𝑘
]

≤ 𝜙(‖𝑥𝑘 − 𝑥̄‖) + 𝜀𝑘.

Definitions 2.8 and 2.9 hold true for any norm of choice, yet other
etrics can be considered (see Remark 2.3). Moreover, variable metrics
ave been considered as well (Combettes & Vũ, 2013; Vũ, 2013).
e report here the definition for deterministic quasi-Fejer monotone

equences relative to a variable metric but it can be also extended to
he stochastic case (Vu, 2016) or to the Bregman distance (Van Nguyen,
016) (Remark 2.3).

efinition 2.10. Let 𝛽 ≥ 0 and 𝜙 ∶ R≥0 → R≥0 and let (𝑊𝑘)𝑘∈N be a
equence in 𝛽 . A sequence (𝑥𝑘)𝑘∈N of random variables is quasi-Féjer
onotone with respect to a target set  ≠ ∅ and relative to (𝑊𝑘)𝑘∈N,

f, given a nonnegative sequence (𝜂𝑘)𝑘∈N such that ∑∞
𝑘=0 𝜂

𝑘 < ∞, for
very 𝑥̄ ∈  there exists a nonnegative sequence (𝜀𝑘)𝑘∈N such that
∞
𝑘=0 𝜀

𝑘 <∞ and for all 𝑘 ∈ N

(‖𝑥𝑘+1 − 𝑥̄‖𝑊𝑘+1
) ≤ (1 + 𝜂𝑘)𝜙(‖𝑥𝑘 − 𝑥̄‖𝑊𝑘

) + 𝜀𝑘.

There are many results on (stochastic, quasi) Féjer monotone se-
uences but they lie outside the scope of this survey. For a deeper
nsight on this topic we refer to Bauschke et al. (2011), Bauschke, Dao,
nd Moursi (2015), Combettes (2001b), Combettes and Pesquet (2015)
nd Combettes and Vũ (2013).

emark 2.3. An important generalization of Féjer monotonicity is
hat of Bregman monotonicity (Bauschke et al., 2003; Bregman, 1967;
acchinei & Pang, 2007; Van Nguyen, 2016, 2017). The concept has
eceived a rising interest recently in the system and control community
Alacaoglu & Malitsky, 2021; Ananduta & Grammatico, 2021; Benning,
etcke, Ehrhardt, & Schönlieb, 2021; Bravo, Leslie, & Mertikopoulos,
018; Mertikopoulos et al., 2018). For the sake of completeness, we
eport here the definition, and later on we recall when some results
old also with the Bregman distance.

Let  ⊆ R𝑛 be a closed convex set and let 𝑓 ∶  → R be a
trictly convex continuous function which is continuously differentiable
n 𝑖𝑛𝑡. The Bregman distance associated with 𝑓 is

(𝑥, 𝑦) = 𝑓 (𝑥) − 𝑓 (𝑦) − ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩ (2.1)
𝑓
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and it has the following geometric interpretation: 𝐷𝑓 (𝑥, 𝑦) is the differ-
ence between 𝑓 (𝑥) and the value at 𝑥 of the linearized approximation
of 𝑓 (𝑥) at 𝑦. 𝐷𝑓 (𝑥, 𝑦) is nonnegative and it is zero if and only if 𝑥 = 𝑦.

We note that in general the Bregman distance is not a ‘‘real" dis-
ance, since it may fail to satisfy, for instance, the triangular inequality.

An example of a Bregman function is 𝑓 = ‖ ⋅ ‖2 whose associated
distance is 𝐷𝑓 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖2∕2. Another example is given by 𝑔(𝑥) =
𝑛
𝑖=1 𝑥𝑖 log 𝑥𝑖 with the convention that 0 log 0 = 0. The associated

istance is 𝐷𝑔(𝑥, 𝑦) =
∑𝑛
𝑖=1(𝑥𝑖 log

𝑥𝑖
𝑦𝑖

+ 𝑦𝑖 − 𝑥𝑖) (Facchinei & Pang,
007, Example 12.7.4), i.e., the Kullback–Leibler divergence (Kullback,
997; Kullback & Leibler, 1951), widely used in machine learning and
enerative adversarial networks (Goodfellow, 2016; Goodfellow et al.,
014).

A sequence (𝑥𝑘)𝑘∈N in  is Bregman monotone with respect to a set
if the following conditions hold:

(i)  ∩  ≠ ∅,
(ii) (𝑥𝑘)𝑘∈N lies in 𝑖𝑛𝑡(),

(iii) for every 𝑥̄ ∈  ∩ , 𝐷𝑓 (𝑥̄, 𝑥𝑘+1) ≤ 𝐷𝑓 (𝑥̄, 𝑥𝑘) for all 𝑘 ∈ N.

3. Convergence of deterministic sequences

In this section, we walk through a number of convergence results
for deterministic sequences of real numbers. When possible, we propose
first the most general result and then show its consequences. We start
with some results on Féjer monotone sequences and then move to
general sequences of real numbers.

3.1. Féjer monotone convergent sequences

The first result we present is related to the concept of Féjer mono-
tone sequences and it was originally proposed in Bauschke et al. (2011).
Parts of this result are also in Berg et al. (1995, Theorems 2.7 and
2.10) while in Combettes (2001a, Propositions 1–4) a distinction be-
tween strong and weak convergence is made. Other properties of Féjer
monotone sequences can be found in Alber et al. (1998), Bauschke et al.
(2011), Berg et al. (1995), Combettes (2001a, 2001b) and reference
therein.

Proposition 3.1 (Proposition 5.4, Bauschke et al., 2011). Let  be a
nonempty subset of R𝑛 and let (𝑥𝑘)𝑘∈N be a sequence in R𝑛. Suppose that
(𝑥𝑘)𝑘∈N is Fejér monotone with respect to  . Then, the following statements
hold:

(i) (𝑥𝑘)𝑘∈N is bounded;
(ii) For every 𝑥̄ ∈  , (‖𝑥𝑘 − 𝑥̄‖)𝑘∈N converges;
(iii) (𝑑 (𝑥𝑘))𝑘∈N is decreasing and converges;
(iv) ‖

‖

𝑥𝑘+𝑚 − 𝑥𝑘‖
‖

≤ 2𝑑 (𝑥𝑘) for all 𝑚, 𝑘 ∈ N;

Proof. The statements follow from the definition of Féjer monotone
sequence (Definition 2.7). □

Remark 3.1. A similar result holds also for quasi-Féjer sequences
(Combettes, 2001b, Proposition 3.3), (Alber et al., 1998, Proposition
1). However, in such a case it is not possible to prove that the distance
from the target set is decreasing as in Proposition 3.1(iii).

Formally, let  ⊆ R𝑛 be nonempty closed convex and let (𝑥𝑘)𝑘∈N be
a sequence in R𝑛. Suppose that (𝑥𝑘)𝑘∈N is quasi-Fejér monotone with
respect to  . Then, the following statements hold:

(i) (𝑥𝑘)𝑘∈N is bounded;
(ii) For every 𝑥̄ ∈  , (‖𝑥𝑘 − 𝑥̄‖)𝑘∈N converges.

We note that having convergence of the sequence as in Propo-
sition 3.1(ii) does not necessarily mean that the sequence (𝑥𝑘)𝑘∈N
converges to a point in  (see Examples 2.12). On the other hand, the
latter result can be obtained under slightly stronger assumptions (see
also Examples 2.4).
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Theorem 3.2 (Theorem 3.8, Combettes, 2001b). Let  be a nonempty set
and let (𝑥𝑘)𝑘∈N be a sequence in R𝑛. Suppose that (𝑥𝑘)𝑘∈N is quasi-Féjer
monotone with respect to  . Then, (𝑥𝑘)𝑘∈N converges to a point in  if and
only if every sequential cluster point of (𝑥𝑘)𝑘∈N belongs to  .

Proof. Necessity is straightforward. Sufficiency follows from Re-
mark 3.1 (specifically from Combettes, 2001b, Proposition 3.3). □

Remark 3.2. Since Theorem 3.2 holds for quasi-Féjer monotone
sequences, it holds also for Féjer monotone ones (Bauschke et al., 2011,
Theorem 5.5). In this case, the proof follows by the fact that for every
𝑥 ∈  the sequence (‖𝑥𝑘 − 𝑥‖)𝑘∈N converges by Proposition 3.1 and
that if every sequential cluster point 𝑥 belongs to  , then the sequence
converges to a point in  by Lemma 2.3. The result in Theorem 3.2
has been obtained many times in the literature, for weak and strong
convergence (Alber et al., 1998; Combettes, 2001a, 2001b; Gubin et al.,
1967), but it seems to originate in Schaefer (1957).

Remark 3.3. Under suitable conditions, convergence results as in
Proposition 3.1 and Theorem 3.2 can be obtained also for Bregman
monotone sequences (Bauschke et al., 2003, Proposition 4.1 and Theo-
rem 4.11).

The following result is known as the Opial Lemma (Opial et al.,
1967) and it can be found in many works and with different appli-
cations (Abbas & Attouch, 2015; Abbas, Attouch, & Svaiter, 2014;
Bauschke et al., 2011; Bot, Sedlmayer et al., 2020; Maingé, 2007; Mal-
itsky, 2020; Malitsky & Tam, 2020), since it often relate to convergence
of sequences generated by nonexpansive operators (Naraghirad, Shi, &
Wong, 2020; Opial et al., 1967; Peypouquet & Sorin, 2010) (see also
Example 2.11). We here show a proof which follows from some results
in Bauschke et al. (2011) and we report the discrete time formulation
(Attouch & Peypouquet, 2019; Boţ & Csetnek, 2016; Csetnek, Malitsky,
& Tam, 2019), but it can be found also in continuous time (Attouch
& Peypouquet, 2019; Bot & Csetnek, 2016; Csetnek et al., 2019). For
a different proof see Opial et al. (1967) and Peypouquet and Sorin
(2010).

Lemma 3.3 (Opial Lemma). Let (𝑥𝑘)𝑘∈N be a bounded sequence and let
 ⊆ R𝑛. If

1. for all 𝑧 ∈  lim𝑘→∞ ‖𝑥𝑘 − 𝑧‖ exists;
2. every sequential cluster point of (𝑥𝑘)𝑘∈N is in  as 𝑘 → ∞;

then, (𝑥𝑘)𝑘∈N is convergent to a point in  .

Proof. Since the sequence (𝑥𝑘)𝑘∈N is bounded, it has at least one
equential cluster point. We show that, under this assumption, there
annot be two. The proof follows by contradiction. Suppose that 𝑥̄ and
𝑦̄ are two sequential cluster points, that is, 𝑥𝑘𝑛 → 𝑥̄ and 𝑥𝑘𝑙 → 𝑦̄, for
, 𝑙 ∈ N. Since 𝑥̄ and 𝑦̄ are sequential cluster points, the sequences
‖𝑥𝑘 − 𝑥̄‖)𝑘∈N and (‖𝑥𝑘 − 𝑦̄‖)𝑘∈N converge. Moreover, it holds that, for
ll 𝑘 ∈ N

⟨𝑥𝑘, 𝑥̄ − 𝑦̄⟩ = ‖𝑥𝑘 − 𝑦̄‖2 − ‖𝑥𝑘 − 𝑥̄‖2 + ‖𝑥̄‖2 − ‖𝑦̄‖2.

herefore, ⟨𝑥𝑘, 𝑥̄− 𝑦̄⟩ converges to some point 𝑤. Taking the limit along
𝑘𝑛 and 𝑥𝑘𝑙 we have

= ⟨𝑥̄, 𝑥̄ − 𝑦̄⟩ = ⟨𝑦̄, 𝑥̄ − 𝑦̄⟩.

t follows that ‖𝑥̄ − 𝑦̄‖2 = 0 hence 𝑥̄ = 𝑦̄. □

emark 3.4. The Opial Lemma provides a powerful tool to derive con-
ergence of an iterative process. In fact, condition 2. has been already
entioned in many previous results in this survey. Interestingly, similar

esults can be extended to the Bregman distance (Huang, Jeng, Kuo, &
ong, 2011; Naraghirad et al., 2020; Naraghirad, Wong, & Yao, 2014).
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Table 3
Convergence results for deterministic sequences of real numbers divided by their form.
In the first line, the most general inequality is presented. NN stands for a sequence of
nonnegative real numbers, while ✓(✗) indicates if the inequality in the corresponding
emma contains (or not) a term of that column type. 𝐶𝑘 is a general ‘‘coefficient",
hose specific form can be retrieved from the column.

Seq(𝑘 + 1) Coeff. Seq(𝑘) Negative Noise
𝑣𝑘+1 ≤ 𝐶𝑘 𝑣𝑘 −𝜃𝑘 +𝜀𝑘

Lemma 3.4 NN 𝛾 ✓ ✓

Lemma 3.6 NN (1 + 𝛿𝑘) ✓ ✓

Corollary 3.7 NN 1 ✓ ✗

Corollary 3.8 NN (1 + 𝛿𝑘) ✗ ✓

Lemma 3.9 Real 𝛾𝑘 ✗ ✓

Lemma 3.10 NN (1 − 𝛿𝑘) ✓ ✓

Lemma 3.11 NN (1 − 𝛿𝑘) ✗ 𝛿𝑘𝛽𝑘

Lemma 3.12 NN (1 − 𝛿𝑘) ✗ 𝛿𝑘𝛽𝑘 + 𝜀𝑘

Corollary 3.13 NN (1 − 𝛿𝑘) ✗ 𝛿𝑘(𝛽𝑘 + 𝜂𝑘)
Corollary 3.14 NN (1 − 𝛿𝑘) ✗ ✓

Corollary 3.15 NN (1 − 𝛿𝑘) ✗ 𝜂𝑘 + 𝜀𝑘

Proposition 3.16 NN 1 ✗ 𝑎𝛽𝑘

Lemma 3.17 NN (1 − 𝛿𝑘) ✗ 𝛿𝑘𝛾𝑘 + 𝛽𝑘

1 ✓ ✓

Lemma 3.18 Real (1 + 𝛿𝑘) 𝛿𝑘𝑣𝑘−1 ✓

Lemma 3.19 NN 1∕𝛾 𝛽𝑘+1∕𝛾 𝛽𝑘∕𝛾

3.2. Convergent sequences of real numbers

We now introduce a number of results on sequences of real numbers.
We note that even if the following results are for general sequences of
real numbers, their importance for system theory lies on the fact that
they can be paired with (quasi) Féjer monotonicity (see Remark 3.5).
In Table 3, we summarize the results presented in this section, with
emphasis on the auxiliary sequences that may affect convergence.

Let us note that, in the first line of Table 3, 𝐶𝑘 is a coefficient which,
epending on the form, represents the level of expansion or contraction,
𝑘 can be seen as an additive noise and 𝜃𝑘 is a ‘‘negative term", because
f the minus sign, which decreases the value of the sequence 𝑣𝑘. For a
raphical interpretation of the effects of those sequences, we also refer
o Fig. 4 later on, which is specifically related to Lemma 3.6.

The first lemma that we report is widely used and it has a number of
onsequences that are widely used as well. We do not include the proof
ince it is very similar to the proof of the forthcoming Lemma 3.10.

emma 3.4 (Lemma 3.1, Combettes, 2001b). Let 𝛾 ∈ (0, 1] and let (𝑣𝑘)𝑘∈N,
𝜃𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N be nonnegative sequences such that ∑∞

𝑘=0 𝜀
𝑘 <∞ and

𝑣𝑘+1 ≤ 𝛾𝑣𝑘 − 𝜃𝑘 + 𝜀𝑘 for all 𝑘 ∈ N. (3.1)

Then, the following statements hold:

(i) (𝑣𝑘)𝑘∈N is bounded;
(ii) (𝑣𝑘)𝑘∈N converges;
(iii) ∑∞

𝑘=0 𝜃
𝑘 < ∞;

(iv) If 𝛾 ≠ 1, then ∑∞
𝑘=0 𝑣

𝑘 < ∞.

emark 3.5. If 𝑣𝑘 = ‖𝑥𝑘 − 𝑥̄‖, for some sequence (𝑥𝑘)𝑘∈N and a given
̄ ∈  , having that (𝑣𝑘)𝑘∈N satisfies the inequality (3.1) implies that
(𝑥𝑘)𝑘∈N is a quasi-Féjer monotone sequence relative to the set  .

We also note that the function 𝑉 (𝑥𝑘) = ‖𝑥𝑘 − 𝑥̄‖ = 𝑣𝑘 can also be
seen as a decreasing Lyapunov function associated to the sequence that
tends toward zero when 𝜀𝑘 = 0 for all 𝑘 ∈ N (Polyak, 1987, Section 2.2).

Remark 3.6. The case where (𝑣𝑘)𝑘∈N can be a negative sequence and
with 𝛾 = 1 is addressed in Bertsekas and Tsitsiklis (2000, Lemma 1).
There, it is also pointed out that if 𝑣𝑘 is negative and satisfies (3.1), it
may diverge to −∞ when (𝜃𝑘)𝑘∈N is not summable.

For a specific choice of the noise term instead, the following result
can be proven (Kannan & Shanbhag, 2012, Lemma 3.3). Suppose

𝑣𝑘+1 ≤ 𝛾𝑣𝑘 + 𝜂𝑘𝛽, for all 𝑘 ∈ N
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s

where 𝛾 ∈ (0, 1), (𝜂𝑘)𝑘∈N is a decreasing positive sequence such that
∑∞
𝑘=0(𝜂

𝑘)2 < ∞, and let 0 ≤ 𝑣𝑘 ≤ 𝑣̄ < ∞ for all 𝑘 ∈ N. Then,
∑∞
𝑘=1 𝜂

𝑘𝑣𝑘 <∞.

With the same arguments as for Lemma 3.4, the following corollary
can be proven. Interestingly, this result concerns the finite sum of the
sequence.

Corollary 3.5 (Lemma 9, Scutari & Sun, 2019). Let (𝑣𝑘)𝑘∈N be a real
sequence and let (𝜃𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N be nonnegative sequences such that
∑∞
𝑘=0 𝜀

𝑘 <∞ and such that
𝑁−1
∑

𝑛=0
𝑣𝑘+𝑁+𝑛 ≤

𝑁−1
∑

𝑛=0
𝑣𝑘+𝑛 −

𝑁−1
∑

𝑛=0
𝜃𝑘+𝑛 +

𝑁−1
∑

𝑛=0
𝜀𝑘+𝑛.

for 𝑁 ∈ N. Then, either ∑𝑁−1
𝑛=0 𝑣𝑘+𝑛 → −∞, or ∑𝑁−1

𝑛=0 𝑣𝑘+𝑛 converges to a
finite value and ∑∞

𝑘=0 𝜃
𝑘 <∞.

Proof. It suffices to set 𝑣𝑘1 =
∑𝑁−1
𝑛=0 𝑣𝑘+𝑛, 𝜃𝑘1 =

∑𝑁−1
𝑛=0 𝜃𝑘+𝑛 and 𝜀𝑘1 =

𝑁−1
𝑛=0 𝜀𝑘+𝑛 and then apply Lemma 3.4. □

The next lemma is a consequence and a generalization of
emma 3.4. It has its stochastic counterpart in the well know Robbins–
iegmund Lemma ( Lemma 4.1) (Robbins & Siegmund, 1971). It is
aken from Bauschke et al. (2011) yet here we provide a different proof.
or a graphical interpretation, we refer to Fig. 4.

emma 3.6 (Lemma 5.31, Bauschke et al., 2011). Let (𝑣𝑘)𝑘∈N, (𝜃𝑘)𝑘∈N,
𝜀𝑘)𝑘∈N and (𝛿𝑘)𝑘∈N be nonnegative sequences such that ∑∞

𝑘=0 𝜀
𝑘 < ∞ and

∞
𝑘=0 𝛿

𝑘 < ∞ and

𝑘+1 ≤ (1 + 𝛿𝑘)𝑣𝑘 − 𝜃𝑘 + 𝜀𝑘, for all 𝑘 ∈ N. (3.2)

hen, ∑∞
𝑘=0 𝜃

𝑘 <∞ and (𝑣𝑘)𝑘∈N is bounded and converges to a nonnegative
ariable.

roof. Define 𝛽𝑘 =
∏𝑘

𝑖=1(1 + 𝛿
𝑖) and note that 𝛽𝑘 converges to some 𝛽

ince (𝛿𝑘)𝑘∈N is summable. Moreover, it holds that

+ 𝛿𝑘 =
𝛽𝑘

𝛽𝑘−1

nd, for all 𝑘 ∈ N

𝑘+1 ≤ 𝛽𝑘

𝛽𝑘−1
𝑣𝑘 + 𝜀𝑘 − 𝜃𝑘.

Since 𝛽𝑘 > 0 for all 𝑘 ∈ N, we have

𝑣𝑘+1

𝛽𝑘
≤ 𝑣𝑘

𝛽𝑘−1
+ 𝜀𝑘

𝛽𝑘
− 𝜃𝑘

𝛽𝑘
.

ow, let

𝑣̃𝑘 = 𝑣𝑘

𝛽𝑘−1
, 𝜀̃𝑘 = 𝜀𝑘

𝛽𝑘
, 𝜃𝑘 = 𝜃𝑘

𝛽𝑘

and rewrite the inequality as

𝑣̃𝑘+1 ≤ 𝑣̃𝑘 + 𝜀̃𝑘 − 𝜃𝑘.

ote that 𝑣̃𝑘, 𝜀̃𝑘 and 𝜃𝑘 are nonnegative and ∑∞
𝑘=1 𝜀̃

𝑘 ≤
∑∞
𝑘=1 𝜀

𝑘 < ∞,
ence we can apply Lemma 3.4. It follows that 𝑣̃𝑘 is bounded by 𝛼̄ and
onvergent to some 𝑣̄ and that ∑∞

𝑘=1 𝜃
𝑘 <∞. Therefore 𝑣𝑘 is convergent,

.e.,

𝑘 = 𝑣𝑘

𝛽𝑘−1
𝛽𝑘−1 = 𝑣𝑘1𝛽𝑘1 → 𝛼̄𝛽 as 𝑘→ ∞,

nd bounded
𝑣𝑘

𝛽𝑘−1
< 𝐴⇒ 𝑣𝑘 < 𝐴𝛽𝑘−1 → 𝐴𝛽∞ as 𝑘 → ∞.

ince 𝜃𝑘 = 𝜃𝑘𝛽𝑘 < 𝜃𝑘𝛽∞ for all 𝑘 ∈ N, we conclude that (𝜃𝑘)𝑘∈N is

ummable. □
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Fig. 4. Influence of the auxiliary sequences of Lemma 3.6 in the behavior of the convergent sequence (𝑣𝑘)𝑘∈N. If the sequences are non-summable (green lines in the first three
plots, green and magenta in the last), then convergence does not necessarily hold. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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We note that there is a slight difference between Lemmas 3.4 and
3.6. Specifically, in the former, the sequence converges if the coefficient
𝛾 is in the interval (0, 1] while in Lemma 3.6 the coefficient can be taken
larger than 1 and time varying.

The following results are immediate consequences of Lemmas 3.4
and 3.6. Let us start with removing the noise term and noticing that
summability of a sequence implies that its limit goes to zero (Sec-
tion 2.3).

Corollary 3.7 (Lemma 2.8, Malitsky, 2015). Let (𝑣𝑘)𝑘∈N and (𝜃𝑘)𝑘∈N be
nonnegative sequences such that

𝑣𝑘+1 ≤ 𝑣𝑘 − 𝜃𝑘, for all 𝑘 ∈ N.

Then, (𝑣𝑘)𝑘∈N is bounded and lim𝑘→∞ 𝜃𝑘 = 0.

Proof. It follows from Lemmas 3.4 and 3.6 by taking 𝛿𝑘 and 𝜀𝑘 equal
to 0. □

This result from Polyak (1987) instead can be obtained as a conse-
quence of Lemma 3.6 by removing the negative term.

Corollary 3.8 (Lemma 2.2.2, Polyak, 1987). Let (𝑣𝑘)𝑘∈N, (𝜀𝑘)𝑘∈N and
(𝛿𝑘)𝑘∈N be nonnegative sequences such that

𝑣𝑘+1 ≤
(

1 + 𝛿𝑘
)

𝑣𝑘 + 𝜀𝑘, for all 𝑘 ∈ N

and ∑∞
𝑘=0 𝛿

𝑘 < ∞, ∑∞
𝑘=0 𝜀

𝑘 <∞. Then 𝑣𝑘 converges to some 𝑣̄ ≥ 0.

Proof. It follows from Lemma 3.6 by taking 𝜃𝑘 = 0 for all 𝑘 ∈ N. See
Polyak (1987) for a different proof. □

Concerning the coefficient sequence, other options can be consid-
ered. In the next result, the coefficient should be strictly smaller than
1, compared to Lemma 3.6, but need not be constant as in Lemma 3.4.

Lemma 3.9 (Lemma 2.2.3, Polyak, 1987). Let (𝑣𝑘)𝑘∈N be a sequence of
real numbers such that

𝑣𝑘+1 ≤ 𝛾𝑘𝑣
𝑘 + 𝜀𝑘, for all 𝑘 ∈ N,

𝑘
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where (𝜀 )𝑘∈N and (𝛾𝑘)𝑘∈N are nonnegative sequences such that c
1. 0 ≤ 𝛾𝑘 < 1
2. ∑∞

𝑘=0(1 − 𝛾𝑘) = ∞,
3. lim𝑘→∞

𝜀𝑘

1−𝛾𝑘
= 0.

hen, lim𝑘→∞ 𝑣𝑘 = 𝑣̄ ≤ 0. Moreover, if 𝑣𝑘 > 0 then lim𝑘→∞ 𝑣𝑘 = 0.

roof. By definition, given 𝜀 > 0 there exists 𝑘0 ∈ N such that

𝜀𝑘

(1 − 𝛾𝑘)
≤ 𝜀 for all 𝑘 ≥ 𝑘0.

Then
𝑣𝑘+1 ≤ 𝛾𝑘𝑣

𝑘 + 𝜀𝑘

≤ 𝛾𝑘𝑣
𝑘 + (1 − 𝛾𝑘)𝜀

≤ 𝛾𝑘𝛾𝑘−1𝑣
𝑘−1 +

[

𝛾𝑘(1 − 𝛾𝑘−1) + (1 − 𝛾𝑘)
]

𝜀

≤
𝑘
∏

𝑖=𝑘0

𝛾𝑖𝑣
𝑘0 + 𝜀

(

1 −
𝑘
∏

𝑗=𝑘0

𝛾𝑖

)

.

Note that ∑∞
𝑘=0

(

1 − 𝛾𝑘
)

= ∞ implies that ∏∞
𝑘=0 𝛾𝑘 = 0 therefore taking

the lim sup as 𝑘 → ∞ leads to lim sup 𝑣𝑘 ≤ 𝜀, which proves the claim. □

Remark 3.7. In Kannan and Shanbhag (2012, Lemma 2.1), the result
in Lemma 3.9 is proven also for a different condition than 1., i.e.,

1.* there exists 𝑘̄ ∈ N such that 0 < 𝛾𝑘 < 1 for all 𝑘 ≥ 𝑘̄ and 𝑞𝑘 < ∞
for all 𝑘 ≤ 𝑘̄.

The proof follows considering the shifted process starting from 𝑘̄ and
using Lemma 3.9 on the resulting sequence.

Many of the previous results have the coefficient (1+ 𝛿𝑘), therefore,
we now consider what happens if we change it to (1 − 𝛿𝑘) (see also
ig. 5 for a graphical interpretation). This might be a special case
f Lemma 3.4 but, in some cases, it allows to study convergence to
ero (see Remark 3.8), which relates to the standard Lyapunov based
pproach for stability analysis. In fact, we have already had a glimpse
f the effect of a coefficient smaller than 1 in Lemma 3.4(iv) and
emma 3.9 and its connection with Lyapunov analysis (Remark 3.5).

The first result of this type extends the previous lemmas to this
ase. This result is new as we provide a proof that does not follow
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Fig. 5. Influence of the coefficient (1− 𝛿𝑘) in the behavior of the convergence of a sequence 𝑣𝑘+1 = (1− 𝛿𝑘)𝑣𝑘 − 𝜃𝑘 + 𝜀𝑘. We note that if the sequence 𝛿𝑘 is summable (green lines in
the plots), the convergence to zero is not guaranteed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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from previous results. Let us note that in the following lemma, we do
not assume any condition on the coefficient sequence 𝛿𝑘 besides being
smaller that 1.

Lemma 3.10. Let (𝑣𝑘)𝑘∈N, (𝜃𝑘)𝑘∈N, (𝜀𝑘)𝑘∈N and (𝛿𝑘)𝑘∈N be nonnegative
sequences such that ∑∞

𝑘=0 𝜀
𝑘 < ∞, 𝛿𝑘 ∈ [0, 1) for all 𝑘 ∈ N and

𝑣𝑘+1 ≤ (1 − 𝛿𝑘)𝑣𝑘 + 𝜀𝑘 − 𝜃𝑘 for all 𝑘 ∈ N.

Then, (𝑣𝑘)𝑘∈N is bounded and converges to some 𝑣̄ ≥ 0 and ∑∞
𝑘=0 𝜃

𝑘 < ∞.

Proof. To prove that (𝑣𝑘)𝑘∈N is bounded, let 𝜀 = ∑∞
𝑘=0 𝜀

𝑘. Then,

0 ≤ 𝑣𝑘+1 ≤
𝑘
∏

𝑖=0
(1 − 𝛿𝑖)𝑣0 +

𝑘
∑

𝑖=0

𝑘−𝑖
∏

𝑗=0
(1 − 𝛿𝑗 )𝜀𝑖 ≤ 𝑣0 + 𝜀.

Therefore 𝑣𝑘 ∈ [0, 𝑣0 + 𝜀] and the first claim is proven. Now we prove
convergence. Let 𝑣̄ = lim inf𝑘→∞ 𝑣𝑘 ∈ [0, 𝑣0 + 𝜀]. Then there exists a
subsequence 𝑣𝑘𝑛 such that lim𝑘→∞ 𝑣𝑘𝑛 = 𝑣̄. Then, for every 𝜂 > 0 there
exists 𝑛0 ∈ N such that 𝑣𝑘𝑛0 ≤ 𝑣̄ + 𝜂∕2. Since ∑∞

𝑘=0 𝜀
𝑘 < ∞, there exists

𝑛1 such that ∑

𝑚>𝑛1
𝜀𝑚 ≤ 𝜂∕2. Set 𝑛 = max{𝑛0, 𝑛1}, then, iterating, for

every 𝑘 ≥ 𝑘𝑛

𝑣𝑘 ≤ 𝑣𝑘𝑛 +
∑

𝑚≥𝑛
𝜀𝑚 ≤ 𝜂

2
+ 𝑣̄ +

𝜂
2
= 𝑣̄ + 𝜂.

Hence, lim sup𝑘→∞ 𝑣𝑘 ≤ lim inf𝑘→∞ 𝑣𝑘 + 𝜂 and, since 𝜂 can be arbitrarily
small, (𝑣𝑘)𝑘∈N converges to 𝑣̄. Lastly, we show that (𝜃𝑘)𝑘∈N is summable.
Since

𝜃𝑘 ≤ (1 − 𝛿𝑘)𝑣0 − 𝑣𝑘+1 + 𝜀𝑘,

we can do a telescopic sum to obtain
∞
∑

𝑘=1
𝜃𝑘 ≤ (1 − 𝛿0)𝑣0 − 𝑣𝑘+1 +

∞
∑

𝑘=1
𝜀𝑘 ≤ 𝑣0 + 𝜀. □

The following lemmas are taken from various works (Qin et al.,
008; Xu, 1998, 2002, 2003) and they are quite similar to each other.
e here establish the relations and difference between them. Let us

emark that in the following results, the sequence 𝛿𝑘 in the coefficient
is not summable, i.e., from now on ∑∞

𝑘=1 𝛿
𝑘 = ∞. The advantage of this

choice is that convergence to zero can be obtained, as shown in Fig. 5.
Hence, the result in Lemma 3.10 can be improved.

The first result considers real (not only positive) noise sequences
𝜀𝑘 and it also provides two alternative conditions on the auxiliary
sequences.

Lemma 3.11 (Lemma 2.1, Xu, 2003). Let (𝑣𝑘)𝑘∈N be a sequence of
nonnegative real numbers such that

𝑣𝑘+1 ≤
(

1 − 𝛿𝑘
)

𝑣𝑘 + 𝛿𝑘𝛽𝑘, for all 𝑘 ∈ N

where (𝛿𝑘)𝑘∈N and (𝛽𝑘)𝑘∈N are sequences of real numbers such that:

1. 𝛿𝑘 ∈ [0, 1] and ∑∞ 𝛿 = ∞, or equivalently, ∏∞ (

1 − 𝛿𝑘
)

= 0,
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𝑘=0 𝑘 𝑘=0
2a. lim sup𝑘→∞ 𝛽𝑘 ≤ 0,
2b. ∑∞

𝑘=0 𝛿
𝑘𝛽𝑘 <∞.

Then, lim𝑘→∞ 𝑣𝑘 = 0.

Proof. If 1. and 2𝑎. hold, then the result can be proven with the same
arguments as the proof of Lemma 3.9 by setting 𝜀𝑘 = 𝛿𝑘𝛽𝑘. On the other
hand, if 1. and 2𝑏. hold, we have for all 𝑘 > 𝑚

𝑣𝑘+1 ≤ (1 − 𝛿𝑘)𝑣𝑘 + 𝛿𝑘𝛽𝑘

≤
𝑘
∏

𝑖=𝑚
(1 − 𝛿𝑖)𝑣𝑚 +

𝑘
∑

𝑖=𝑚
𝛿𝑖𝛽𝑖.

aking the limit for 𝑘→ ∞ and 𝑚→ ∞ we have lim sup 𝑣𝑘 ≤ 0. □

We note that if we set 𝛾𝑘 = 1 − 𝛿𝑘 and 𝜀𝑘 = 𝛿𝑘𝛽𝑘, we obtain the
ame statement as Lemma 3.9. Moreover, condition 2𝑏. provides an
lternative assumption, similar to most results in the literature.

emark 3.8. Convergence to zero is of particular interest in combi-
ation with a Féjer-like property. Specifically, if 𝑣𝑘 = ‖𝑥𝑘− 𝑥̄‖ for some
equence (𝑥𝑘)𝑘∈N and 𝑥̄ ∈  , Lemma 3.11 states that lim𝑘∈N ‖𝑥𝑘−𝑥̄‖ = 0,
.e., lim𝑘→∞ 𝑥𝑘 = 𝑥̄. We note, however, that the sequence is not quasi-
éjer monotone because of the term 𝛿𝑘 which cannot be 0 (contrary to
emark 3.5). We refer to Section 6 for more details.

Assumption 2𝑎. in Lemma 3.11 is used in a previous paper by the
ame authors (Xu, 2002, Lemma 2.5). Since also Assumption 2𝑏. in
emma 3.11 can be used to prove the following result, let us extend
Xu, 2002, Lemma 2.5) next.

emma 3.12 (Extension of Lemma 2.5, Xu, 2002). Let (𝑣𝑘)𝑘∈N be a
equence of nonnegative real numbers satisfying

𝑘+1 ≤
(

1 − 𝛿𝑘
)

𝑣𝑘 + 𝛿𝑘𝛽𝑘 + 𝜀𝑘, for all 𝑘 ∈ N

here (𝛿𝑘)𝑘∈N, (𝛽𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N satisfy the following conditions:

1. 𝛿𝑘 ∈ [0, 1], ∑∞
𝑘=0 𝛿

𝑘 = ∞, or equivalently, ∏∞
𝑘=1(1 − 𝛿

𝑘) = 0,
2a. lim sup𝑘→∞ 𝛽𝑘 ≤ 0,
2b. ∑∞

𝑘=0 𝛿
𝑘𝛽𝑘 <∞,

3. 𝜀𝑘 ≥ 0 and ∑∞
𝑘=0 𝜀

𝑘 <∞.

hen, lim𝑘→∞ 𝑣𝑘 = 0.

roof. The proof is similar to the proof of Lemma 3.11. Since 𝜀𝑘 is
ummable, ∑∞

𝑘=𝑘0
𝜀𝑘 < 𝜀 for some 𝑘0 ∈ N and 𝜀 > 0 arbitrarily small,

nd

𝑘+1 ≤
𝑘
∏

𝑖=𝑘0

(1 − 𝛿𝑖)𝑣𝑘0 + 𝜀

(

1 −
𝑘
∏

𝑖=𝑘0

(1 − 𝛿𝑖)

)

+
𝑘
∑

𝑖=𝑘0

𝜀𝑖
□

≤ 2𝜀.
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A particular case of Lemma 3.12 is proposed in Lei, Shanbhag and
Chen (2020) as a consequence of Chen (2006, Theorem 3.3.1). Let
us note that the assumptions in the following result imply those in
Lemma 3.12 which is, in turn, more general.

Corollary 3.13 (Proposition 3, Lei, Shanbhag and Chen, 2020). Let
𝑣𝑘)𝑘∈N be a nonnegative sequence such that
𝑘+1 ≤ (1 − 𝛿𝑘)𝑣𝑘 + 𝛿𝑘(𝛽𝑘 + 𝜂𝑘)

here (𝛿𝑘)𝑘∈N, (𝛽𝑘)𝑘∈N, (𝜂𝑘)𝑘∈N are nonnegative sequences such that

1. ∑∞
𝑘=1 𝛿

𝑘 = ∞ and lim𝑘→∞ 𝛿𝑘 = 0
2. lim𝑘→∞ 𝛽𝑘 = 0
3. ∑∞

𝑘=1 𝛿
𝑘𝜂𝑘 <∞

Then, lim𝑘→∞ 𝑣𝑘 = 0.

roof. The sequence satisfies the assumptions of Lemma 3.12, hence
he result holds. □

A very recent result of this type is a consequence of both Lemmas 3.9
nd 3.11.

orollary 3.14 (Lemma 1.1, Qin et al., 2008). Assume that (𝑣𝑘)𝑘∈N is a
equence of nonnegative real numbers such that
𝑘+1 ≤

(

1 − 𝛿𝑘
)

𝑣𝑘 + 𝜀𝑘, for all 𝑘 ∈ N

here (𝛿𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N are sequences such that

1. 𝛿𝑘 ∈ (0, 1) and ∑∞
𝑘=1 𝛿

𝑘 = ∞,
2a. lim sup𝑘→∞

𝜀𝑘

𝛿𝑘 ≤ 0,
2b. ∑∞

𝑘=1 |𝜀
𝑘
| < ∞.

hen, lim𝑘→∞ 𝑣𝑘 = 0.

roof. Suppose that 2𝑎. holds. Then, the proof follows from Lemma 3.9
y setting 𝛾𝑘 = (1 − 𝛿𝑘). When 2𝑏. holds instead, the proof follows
pplying Lemma 3.11 by defining 𝜀𝑘 = 𝛿𝑘 𝜀

𝑘

𝛿𝑘 = 𝛿𝑘𝛽𝑘. □

A consequence of Corollary 3.14 is the following result that presents
a slightly different notation.

Corollary 3.15 (Lemma 3, Xu, 1998). Let (𝑣𝑘)𝑘∈N, (𝜂𝑘)𝑘∈N, (𝜀𝑘)𝑘∈N and
(𝛿𝑘)𝑘∈N be nonnegative real sequences such that

𝑣𝑘+1 ≤ (1 − 𝛿𝑘)𝑣𝑘 + 𝜂𝑘 + 𝜀𝑘 for all 𝑘 ∈ N

and such that

1. 𝛿𝑘 ∈ [0, 1] and ∑∞
𝑘=0 𝛿

𝑘 = ∞,
2. 𝜀𝑘 = 𝑜(𝛿𝑘),
3. ∑∞

𝑘=0 𝜂
𝑘 < ∞.

Then, lim𝑘→∞ 𝑣𝑘 = 0.

Proof. We note that 𝜀𝑘 = 𝑜(𝛿𝑘) is equivalent to lim𝑘→∞ 𝜀𝑘∕𝛿𝑘 = 0. Then,
the result follows by applying Corollary 3.14 and Lemma 3.12. □

Remark 3.9. A result similar to the last corollaries where the bound-
edness of the sequence is shown, is presented also in Cholamjiak,
Cholamjiak, and Suantai (2018, Lemma 2.5) and reads as follows.

Let (𝑣𝑘)𝑘∈N and (𝜂𝑘)𝑘∈N be sequences of nonnegative real numbers
such that ∑∞

𝑘=1 𝜂
𝑘 <∞ and such that

𝑣𝑘+1 ≤ (1 − 𝛿𝑘)𝑣𝑘 + 𝜂𝑘 + 𝜀𝑘, for all 𝑘 ∈ N

where (𝛿𝑘)𝑘∈N ⊆ (0, 1) and (𝜀𝑘)𝑘∈N is a sequence of real numbers. Then,
the following results hold:

𝑘 𝑘 𝑘
171

(i) If 𝜀 ≤ 𝛿 𝑀 for some 𝑀 ≥ 0, then (𝑣 ) is a bounded sequence.
(ii) If ∑∞
𝑘=1 𝛿

𝑘 = ∞ and lim sup𝑛→∞
𝜀𝑘

𝛿𝑘 ≤ 0, then lim𝑛→∞ 𝑣𝑘 = 0.

We note that (ii) is a consequence of Lemma 3.12 or Corollaries 3.14
and 3.15.

We now consider three results whose conditions for convergence are
more involved than the results proposed until now (Alber et al., 1998;
Cholamjiak et al., 2018; He & Yang, 2013; Maingé, 2008). The first one
is proposed in Alber et al. (1998). It allows for non-summable additive
noise but requires a condition that couple the sequences involved.

Proposition 3.16 (Proposition 2, Alber et al., 1998). Let (𝑣𝑘)𝑘∈N and
𝛽𝑘)𝑘∈N be two nonnegative sequences such that ∑∞

𝑘=0 𝛽𝑘 = ∞ and
∞
𝑘=0 𝛽𝑘𝑣

𝑘 <∞. Then:

(i) there exists a subsequence (𝑣𝑘𝑛 ), 𝑛 ∈ N such that lim𝑘→∞ 𝑣𝑘𝑛 = 0.
(ii) Moreover, if there exists 𝑎 > 0 such that

𝑣𝑘+1 ≤ 𝑣𝑘 + 𝑎𝛽𝑘, for all 𝑘 ∈ N

then lim𝑘→∞ 𝑣𝑘 = 0.

roof. Both claims can be proven by contradiction. See Alber et al.
1998) for more details. □

In the next result, the sequence should satisfy two interdependent
nequalities (Cholamjiak et al., 2018; He & Yang, 2013).

emma 3.17 (Lemma 7, He & Yang, 2013). Let (𝑣𝑘)𝑘∈N and (𝜂𝑘)𝑘∈N be
onnegative sequences of real numbers, let (𝛿𝑘)𝑘∈N ⊆ (0, 1) and let (𝛾𝑘)𝑘∈N,
𝜀𝑘)𝑘∈N, and (𝛽𝑘)𝑘∈N be three sequences of real numbers such that
𝑘+1 ≤(1 − 𝛿𝑘)𝑣𝑘 + 𝛿𝑘𝛾𝑘 + 𝛽𝑘, and,
𝑘+1 ≤𝑣𝑘 − 𝜂𝑘 + 𝜀𝑘, for all 𝑘 ∈ N

(3.3)

nd such that

1. ∑∞
𝑘=0 𝛿

𝑘 = ∞
2. lim𝑘→∞ 𝜀𝑘 = 0
3. lim𝑘→∞ 𝜂𝑘𝑛 = 0 implies that lim sup𝑘→∞ 𝛾𝑘𝑛 ≤ 0 for any subsequence

(𝑘𝑛) ⊂ (𝑘)
4. lim sup𝑛→∞

𝛽𝑘

𝛿𝑘 ≤ 0.

hen, lim𝑛→∞ 𝑣𝑘 = 0.

Proof. The proof is divided in two cases.
Case 1: (𝑣𝑘)𝑘∈N is eventually decreasing and the result follows from

Lemma 3.12.
Case 2: (𝑣𝑘)𝑘∈N is not eventually decreasing. Then, there exists 𝑘0

such that 𝑣𝑘0 ≤ 𝑣𝑘0+1. Let 𝐽𝑘 = {𝑘0 ≤ 𝑛 ≤ 𝑘 ∶ 𝑣𝑛 ≤ 𝑣𝑛+1}, 𝑘 > 𝑘0 and let
(𝑘) = max 𝐽𝑘. Then, 𝜏(𝑘) → ∞ as 𝑘 → ∞ by definition. It follows that
𝑘 ≤ 𝑣𝜏(𝑘)+1. Then, using (3.3) and the assumptions it follows that

𝜏(𝑘) ≤ 𝛾𝜏(𝑘) +
𝛽𝜏(𝑘)

𝛿𝜏(𝑘)
,

and limsup𝑘→∞ 𝑣𝜏(𝑘) ≤ 0. Hence, lim𝑘→∞ 𝑣𝑘 = 0. For more details we
efer to He and Yang (2013). □

emark 3.10. By removing 𝛽𝑘 in Eq. (3.3), the result holds as a
articular case of Lemma 3.17 and can be proven similarly, using
emma 3.11 instead of Lemma 3.12.

The next result, instead, uses the sequence at two steps backwards.

emma 3.18 (Lemma 2.2, Maingé, 2008). Let (𝑣𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N be
onnegative sequences such that:
𝑘+1 − 𝑣𝑘 ⩽ 𝛿𝑘(𝑣𝑘 − 𝑣𝑘−1) + 𝜀𝑘, for all 𝑘 ∈ N (3.4)

nd such that

1. ∑∞ 𝜀𝑘 < ∞
𝑘=1
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Table 4
Convergence results for stochastic sequences of real numbers divided by their form. In
the first line, the most general inequality is presented. NN stands for a sequence of
nonnegative real numbers, while ✓(✗) indicates if the inequality in the corresponding
emma contains (or not) a term of that column type. 𝐶𝑘 is a general ‘‘coefficient",
hose specific form can be retrieved from the column.

Seq(𝑘 + 1) Coeff. Seq(𝑘) Negative Noise
E[𝑣𝑘+1] ≤ 𝐶𝑘𝑣𝑘 −𝜃𝑘 +𝜀𝑘

Lemma 4.1 NN (1 + 𝛿𝑘) ✓ ✓

Corollary 4.2 NN (1 + 𝛿𝑘) ✗ ✓

Corollary 4.3 NN 1 ✓ ✗

Corollary 4.4 NN 1 ✓ ✓

Lemma 4.6 NN 𝛾𝑘 ✓ ✓

Lemma 4.7 NN (1 − 𝛿𝑘) ✗ ✓

2. (𝛿𝑘) ⊂ [0, 𝛿], where 𝛿 ∈ [0, 1).

hen (𝑣𝑘)𝑘∈N converges and ∑∞
𝑘=1[𝑣

𝑘+1−𝑣𝑘]+ <∞, where [𝑡]+ ∶= max{𝑡, 0}
(for any 𝑡 ∈ R).

Proof. Let 𝑢𝑘 = 𝑣𝑘 − 𝑣𝑘−1. Then, [𝑢𝑘+1]+ ≤ 𝛿[𝑢𝑘]+ + 𝜀𝑘 and ([𝑢𝑘]+)𝑘∈N
is bounded. It follows that the sequence (𝑤𝑘 = 𝑣𝑘 −

∑𝑘
𝑗=1[𝑢𝑗 ]+)𝑘∈N

is bounded and non increasing, hence, convergent. Hence, (𝑣𝑘)𝑘∈N is
convergent. □

Remark 3.11. The result can be extended to the case with a negative
term, namely, Eq. (3.4) becomes

𝑣𝑘+1 − 𝑣𝑘 ⩽ 𝛿𝑘(𝑣𝑘 − 𝑣𝑘−1) + 𝜀𝑘 − 𝜃𝑘, for all 𝑘 ∈ N

where 𝜃𝑘 is a nonnegative sequence. The conclusions are the same as
Lemma 3.18 and, moreover, it holds that ∑∞

𝑘=1 𝜃
𝑘 < ∞ (Boţ & Csetnek,

2016, Lemma 2).

Remark 3.12. The inequality in Eq. (3.4) can be rewritten as

𝑣𝑘+1 ≤ (1 + 𝛿𝑘)𝑣𝑘 − 𝛿𝑘𝑣𝑘−1 + 𝜀𝑘, for all 𝑘 ∈ N

which is similar to the form of the results presented until now. How-
ever, we note that in Lemma 3.18, the sequence 𝑣𝑘 need not be
nonnegative.

We conclude this section with the following result on the conver-
gence rate which guarantees convergence to zero. However, the study
of the convergence rates lays outside the scopes of this survey. For
similar results, we refer to Lei and Shanbhag (2018, Lemma 3), Malitsky
(2015, Lemma 2.9) and, more generally, to Polyak (1987).

Lemma 3.19 (Lemma 2.7, Malitsky & Tam, 2018). Let (𝑣𝑘)𝑘∈N and
(𝛽𝑘)𝑘∈N be two nonnegative sequences of real numbers. Suppose there exist
constants 𝛾 > 1 and 𝛿 > 0 such that

𝛾𝑣𝑘+1 + 𝛽𝑘+1 ≤ 𝑣𝑘 + 𝛽𝑘 and 𝛿𝛽𝑘 ≤ 𝑣𝑘 for all 𝑘 ∈ N

Then (𝑣𝑘)𝑘∈N and (𝛽𝑘)𝑘∈N converge to zero with 𝑅-linear rate.

4. Convergence of stochastic sequences

In this section, we report the convergence results available for
sequences of random variables, summarized in Table 4. We recall that
the probability space is (𝛺, ,P) where 𝛺 is the sample space,  is
the event space, and P is the probability function defined on the event
space. The symbol E indicates the associated expected values. We also
172

recall that  = (𝑘)𝑘∈N is a filtration.
4.1. Convergent sequences of random variables

Firstly, we recall some results on convergent random sequences.
We start with a result by Robbins and Siegmund, first appeared in
Robbins and Siegmund (1971), which is the most used in the stochastic
literature. In Fig. 6, we provide a graphical interpretation.

Lemma 4.1 (Robbins–Siegmund Lemma). Let (𝑣𝑘)𝑘∈N, (𝜃𝑘)𝑘∈N, (𝜀𝑘)𝑘∈N
and (𝛿𝑘)𝑘∈N be nonnegative sequences such that ∑∞

𝑘=0 𝜀
𝑘 < ∞, ∑∞

𝑘=0 𝛿
𝑘 <∞

and

E[𝑣𝑘+1|𝑘] ≤ (1 + 𝛿𝑘)𝑣𝑘 + 𝜀𝑘 − 𝜃𝑘 a.s., for all 𝑘 ∈ N (4.1)

Then, ∑∞
𝑘=0 𝜃

𝑘 < ∞ and (𝑣𝑘)𝑘∈N converges a.s. to a nonnegative random
variable.

Proof. The proof follows by rewriting the sequence as in Lemma 3.6.
Then, it is possible to show that the sequence

𝑦𝑛 = 𝑣̃𝑘 −
𝑛−1
∑

𝑘=0
(𝜀̃𝑘 − 𝜃𝑘)

is a supermartingale. The claim then follows by the Martingale Conver-
gence Theorem (Theorem 2.4). See Robbins and Siegmund (1971) for
technical details. □

Remark 4.1. Besides the convergence of the sequence (𝑣𝑘)𝑘∈N, it is of
particular interest also the fact that the sequence (𝜃𝑘)𝑘∈N is summable.
Specifically, this result can be used to obtain more information once
related with a (quasi-)Féjer property. In the stochastic case, this term
is particularly useful, compared to the deterministic case, because there
are not as many results on stochastic Féjer monotone sequences and the
techniques available for the deterministic case cannot be used here.
We refer to the application sections to see how the negative term is
exploited.

The following results are consequences of Robbins–Siegmund
Lemma. The first one is attributed to Gladyshev (Ljung, Pflug, &
Walk, 2012; Polyak, 1987). In fact, it came implicitly in a work by
Gladyshev (Gladyshev, 1965) in which the author provides a proof
of the convergence of Robbins–Monro algorithm (Ljung et al., 2012;
Robbins & Monro, 1951). Even if it was published prior than the result
by Robbins–Siegmund, it is a particular case of Lemma 4.1 (Robbins &
Siegmund, 1971, Application 2).

Corollary 4.2 (Gladyshev Gladyshev, 1965, Lemma 2.2.9,
Polyak, 1987). Let (𝑣𝑘)𝑘∈N be a nonnegative sequence of random variables.
Let E[𝑣0] < ∞, and let (𝛿𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N be such that ∑∞

𝑘=0 𝛿
𝑘 < ∞ and

∑∞
𝑘=0 𝜀

𝑘 <∞

E[𝑣𝑘+1|𝑘] ≤ (1 + 𝛿𝑘)𝑣𝑘 + 𝜀𝑘 for all 𝑘 ∈ N (4.2)

Then lim𝑘→∞ 𝑣𝑘 = 𝑣̄ ≥ 0 a.s. where 𝑣̄ is a random variable.

Proof. It follows from Lemma 4.1 letting 𝜃𝑘 = 0. Different proofs can
be found in Borkar (1995, Theorem 3.3.6), Polyak (1987, Lemma 2.2.9)
or Robbins and Siegmund (1971, Application 2). □

Remark 4.2. In Barty et al. (2007, Lemma 2.2), it is shown that if
Eq. (4.2) holds, then the sequence (𝑣𝑘)𝑘∈N is bounded.

Similarly to Lemmas 3.4 and 3.6 in the deterministic case, many
results can be obtained removing or changing the sequences in (4.1).
In fact, the next corollary is straightforward from Lemma 4.1.

Corollary 4.3 (Theorem B.2, Poggio et al., 2011). Let (𝑣𝑘)𝑘∈N and (𝜃𝑘)𝑘∈N
be positive sequences adapted to  = (𝑘)𝑘∈N and let

E[𝑣𝑘+1|𝑘] ≤ 𝑣𝑘 − 𝜃𝑘 for all 𝑘 ∈ N.

Then, (𝑣𝑘) converges a.s. to a finite random variable 𝑣̄ and ∑∞ 𝜃𝑘 < ∞.
𝑘∈N 𝑘=0
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Fig. 6. The big plot shows how the average distance from a cluster point of the sequence E[𝑣𝑘+1|𝑘] = (1 + 𝛿𝑘)𝑣𝑘 + 𝜀𝑘 − 𝜃𝑘, generated by Robbins–Siegmund Lemma (Lemma 4.1),
oes to zero as the number of iterations increases. The small plots show how the distribution of the distance from a cluster point varies with the iteration toward a probability
istribution centered at 0, i.e., the sequence converges a.s.
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roof. It follows from Robbins–Siegmund Lemma by taking 𝜀𝑘 = 0. For
different proof, see Poggio et al. (2011). □

Interestingly, we note that besides convergence of the sequence,
here is additional information to be derived from Robbins–Siegmund
emma. For instance, the next corollary is used in Duflo (2013) to
rove the Law of Large Numbers for martingales (Duflo, 2013, Theorem
.3.15) (see also Section 7).

orollary 4.4 (Corollary 1.3.13, Duflo, 2013). Let (𝑣𝑘)𝑘∈N, (𝜃𝑘)𝑘∈N and
𝜀𝑘)𝑘∈N be positive sequences adapted to  = (𝑘)𝑘∈N and let (𝑎𝑘)𝑘∈N be a
trictly positive, increasing sequence adapted to  such that

[𝑣𝑘+1|𝑘] ≤ 𝑣𝑘 + 𝜀𝑘 − 𝜃𝑘 for all 𝑘 ∈ N.

hen, if ∑∞
𝑘=1 𝑎

−1
𝑘 𝜀𝑘 < ∞ the following hold a.s.:

(i) ∑∞
𝑘=1 𝑎

−1
𝑘 (𝑣𝑘+1 − 𝑣𝑘) converges and ∑∞

𝑘=1 𝑎𝑘𝜃
𝑘 < ∞;

(ii) (𝑣𝑘)𝑘∈N converges if (𝑎𝑘)𝑘∈N is convergent;
(iii) lim𝑘→∞ 𝑎−1𝑘 𝑣𝑘 = 0 and lim𝑘→∞ 𝑎−1𝑘 𝑣𝑘+1 = 0 if (𝑎𝑘)𝑘∈N is divergent.

roof. Let

𝑘 =
𝑘
∑

𝑖=1
𝑣𝑖
(

𝑎−1𝑖−1 − 𝑎
−1
𝑖
)

+ 𝑣𝑘𝑎−1𝑘 .

hen we can apply Robbins–Siegmund Lemma to the inequality
[

𝑢𝑘+1|𝑘
]

≤ 𝑢𝑘 + 𝑎−1𝑘 (𝜀𝑘 − 𝜃𝑘)

nd conclude the proof. For technical details, we refer to
uflo (2013). □

The following proposition explicitly connects stochastic quasi-Féjer
onotone sequences to Robbins–Siegmund Lemma.

roposition 4.5 (Proposition 2.3, Combettes & Pesquet, 2015). Let  ⊆
R𝑛 be nonempty and closed, let 𝜙 ∶ R≥0 → R≥0 be a strictly increasing
function such that lim 𝜙(𝑡) = ∞, and let (𝑥𝑘) be a sequence of
173

𝑡→∞ 𝑘∈N s
random variables. Let (𝑥𝑘) be the set of sequential cluster points of (𝑥𝑘)𝑘∈N.
Suppose that, for every 𝑥̄ ∈  , there exist (𝛿𝑘)𝑘∈N, (𝜃𝑘)𝑘∈N, and (𝜀𝑘)𝑘∈N
ositive sequences such that ∑∞

𝑘=0 𝛿
𝑘 <∞, ∑∞

𝑘=0 𝜀
𝑘 <∞ and

(𝜙(‖𝑥𝑘+1 − 𝑥̄‖)|𝑛) + 𝜃𝑘(𝑥̄)

≤ (1 + 𝛿𝑘(𝑥̄))𝜙(‖𝑥𝑘 − 𝑥̄‖) + 𝜀𝑘(𝑥̄) a.s. for all 𝑘 ∈ N

hen the following hold:

(i) ∑∞
𝑘=1 𝜃

𝑘 <∞ a.s.;
(ii) (𝑥𝑘)𝑘∈N is bounded a.s.;
(iii) (‖𝑥𝑘 − 𝑥̄‖)𝑘∈N converges a.s.;
(iv) Let (𝑥𝑘) ⊂  a.s., then (𝑥𝑘)𝑘∈N converges a.s.

roof. (i) It follows from Lemma 4.1.
(ii) Let 𝑣𝑘 = ‖𝑥𝑘 − 𝑥̄‖. Then, lim𝑘→∞ 𝜙(𝑣𝑘) = 𝑣̄ ∈ R≥0 by Lemma 4.1.

ince lim𝑡→∞ 𝜙(𝑡) = ∞, 𝑣𝑘 is bounded and, therefore, also 𝑥𝑘 is bounded.
(iii) It follows from (ii), for more details see Combettes and Pesquet

2015, Proposition 2.3).
(iv) Let 𝑥̄, 𝑦̄ ∈ (𝑥𝑘). Then, there exist two subsequences (𝑥𝑘𝑛 ) and

𝑥𝑘𝑚 ) such that 𝑥𝑘𝑛 → 𝑥̄ and 𝑥𝑘𝑚 → 𝑦̄ as 𝑘 → ∞. By (iii) the sequences
‖𝑥𝑘−𝑥̄‖)𝑘∈N and (‖𝑥𝑘−𝑦̄‖)𝑘∈N converge and it holds that ⟨𝑥𝑘, 𝑥̄−𝑦̄⟩ → 𝜌
or some 𝜌 ∈ R𝑛. Then, ⟨𝑥̄, 𝑥̄ − 𝑦̄⟩ = 𝜌, ⟨𝑦̄, 𝑥̄ − 𝑦̄⟩ = 𝜌 and

= ⟨𝑥̄, 𝑥̄ − 𝑦̄⟩ − ⟨𝑦̄, 𝑥̄ − 𝑦̄⟩ = ‖𝑥̄ − 𝑦̄‖2.

herefore, 𝑥̄ = 𝑦̄ and lim𝑘→∞ 𝑥𝑘 = 𝑥̄. □

emark 4.3. A specific case of Proposition 4.5 was also presented in
arty et al. (2007, Lemma 2.3) without the negative term 𝜃𝑘, using
= | ⋅ |2 and setting 𝛿𝑘 = 0.
More generally, an analogous result holds with 𝜙 = | ⋅ |𝑝, 𝑝 > 0

Combettes & Pesquet, 2019, Lemma 2.2).

Analogously to the deterministic case, also for sequences of random
ariables, we can find results for sequences with a coefficient strictly
maller than 1. This is the case of the following results.
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Lemma 4.6 (Lemma 2.1, Combettes & Pesquet, 2019). Let (𝑣𝑘)𝑘∈N,
𝜃𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N be sequences of nonnegative random variables and sup-
ose that there exists a nonnegative sequence (𝛾𝑘)𝑘∈N such that lim𝑘→∞ 𝛾𝑘 <
and

[𝑣𝑘+1 ∣ 𝑘] ≤ 𝛾𝑘𝑣𝑘 + 𝜀𝑘 − 𝜃𝑘 for all 𝑘 ∈ N.

oreover, let E[𝑣0] < ∞ and ∑∞
𝑘=1 E[𝜀

𝑘] < ∞. Then ∑∞
𝑘=1 E[𝑣

𝑘] < ∞ and
∑∞
𝑘=1 E[𝜃

𝑘] <∞.

Proof. The proof follows with arguments similar to Lemmas 3.12 and
3.10 but it can be proven also as a consequence of Lemma 4.1. For
technical details we refer to Combettes and Pesquet (2019). □

We conclude this section with a lemma that is quite popular in the
literature (Koshal et al., 2013; Polyak, 1987; Yousefian et al., 2017)
and cited along with Robbins–Siegmund Lemma. It is the stochastic
counterpart of Lemma 3.9 even if it has a slightly different notation.

Lemma 4.7 (Lemma 2.2.10, Polyak, 1987). Let (𝑣𝑘)𝑘∈N be a sequence of
nonnegative random variables such that E[𝑣0] < ∞ and let (𝛿𝑘)𝑘∈N and
(𝜀𝑘)𝑘∈N be deterministic nonnegative sequences such that 0 ≤ 𝛿𝑘 ≤ 1 for all
𝑘 ∈ N, ∑∞

𝑘=0 𝛿
𝑘 = ∞, ∑∞

𝑘=0 𝜀
𝑘 <∞, lim𝑘→∞

𝜀𝑘

𝛿𝑘 = 0 and

[𝑣𝑘+1|𝑘] ≤ (1 − 𝛿𝑘)𝑣𝑘 + 𝜀𝑘 a.s., for all 𝑘 ∈ N.

Then, lim𝑘→∞ 𝑣𝑘 = 0 a.s.

roof. The proof follows by applying Lemma 3.9 to

[𝑣𝑘+1] ≤ (1 − 𝛿𝑘)E[𝑣𝑘] + 𝜀𝑘 (4.3)

and showing that

𝑢𝑘 = 𝑣𝑘 −
∞
∑

𝑖=𝑘
𝜀𝑖

is a supermartingale. Then, the claim follows by the Martingale Con-
vergence Theorem (Theorem 2.4). See Polyak (1987) for technical
details. □

Remark 4.4. To retrieve the same form of Lemma 3.9, one can refer to
Lei, Shanbhag, Pang and Sen (2020, Lemma 1(a)) where the following
statement is provided.

Let (𝑣𝑘)𝑘∈N and (𝜀𝑘)𝑘∈N be sequences of nonnegative random vari-
bles such that

[𝑣𝑘+1 ∣ 𝑘] ≤ 𝛾𝑘𝑣𝑘 + 𝜀𝑘 for all 𝑘 ∈ N,

[𝑣0] < ∞, 0 ≤ 𝛾𝑘 < 1, ∑∞
𝑘=0(1 − 𝛾𝑘) = ∞, ∑∞

𝑘=0 𝜀
𝑘 < ∞, and

im𝑘→∞
𝜀𝑘

1−𝛾𝑘 = 0. Then, lim𝑘→∞ 𝑣𝑘 = 0 a.s.

Remark 4.5. Convergence to zero in Lemma 4.7 can also be derived
from Lemma 4.1 by exploiting the properties of the negative term
in Eq. (4.3). In fact, from Lemma 4.1 and Eq. (4.3) we have that
∑∞
𝑘=1 𝛿

𝑘𝑣𝑘 <∞ and since 𝛿𝑘 is not summable, it must be lim𝑘→∞ 𝑣𝑘 = 0.

5. Convergence with variable metric

Let us consider in this section the more general setting with variable
metric, i.e., cases in which the metric is allowed to change at each
iteration. Applications of these results involve theoretical problems as
monotone inclusions (Combettes & Vũ, 2014; Vũ, 2013), as well as
inverse problems (Combettes & Vũ, 2013), convex feasibility problems
(Combettes & Vũ, 2013; Van Nguyen, 2016) and constrained convex
minimization (Cui, Tang, & Zhu, 2019). All the results in this section
concern Féjer properties and we consider mostly the deterministic case.
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The first result that we propose is an extension of Proposition 3.1.
Proposition 5.1 (Proposition 3.2, Combettes & Vũ, 2013). Let 𝛽 > 0 and
let (𝑊𝑘)𝑘∈N be in 𝛽 . Let 𝜙 ∶ R≥0 → R≥0 be strictly increasing and such
that lim𝑡 𝜙(𝑡) = ∞. Let  ⊆ R𝑛 be nonempty, and (𝑥𝑘)𝑘∈N be a quasi-Féjer

onotone sequence in R𝑛 with respect to  relative to (𝑊𝑘)𝑘∈N. Then the
ollowing hold:

(i) (𝑥𝑘)𝑘∈N is bounded;
(ii) Let 𝑥̄ ∈ . Then (‖𝑥𝑘 − 𝑥̄‖𝑊𝑘

)𝑘∈N converges.

roof. (i) follows by the fact that (𝑊𝑘)𝑘∈N is in 𝛽 . (ii) follows
rom Corollary 3.8 and by showing that there cannot be two cluster
oints. □

emark 5.1. A similar result holds also for quasi-Bregman monotone
equences and it can be proven analogously by applying Corollary 3.8
Van Nguyen, 2016, 2017).

Analogously to Section 3, under stronger assumptions, we can ob-
ain stronger convergence results. In fact, the next result is a general-
zation of Theorem 3.2.

heorem 5.2 (Theorem 3.3, Combettes & Vũ, 2013). Let 𝛽 > 0 and let
𝑊𝑘)𝑘∈N and W be operators in 𝛽 such that 𝑊𝑘 → 𝑊 pointwise. Let
∶ R≥0 → R≥0 be strictly increasing and such that lim𝑡 𝜙(𝑡) = ∞. Let
⊆ R𝑛 be nonempty and let (𝑥𝑘)𝑘∈N be a quasi-Féjer monotone sequence

n R𝑛 with respect to  and relative to (𝑊𝑘)𝑘∈N. Then, (𝑥𝑘)𝑘∈N converges
o a point in  if and only if every sequential cluster point of (𝑥𝑘)𝑘∈N is in
.

roof. Necessity is straightforward while sufficiency follows by Propo-
ition 5.1 and Lemma 2.2. □

Let us conclude this section with a result that is particularly inter-
sting for the conditions on the sequence that induce the metric. The
esult is a particular case of Proposition 5.1.

orollary 5.3 (Proposition 4.1, Combettes & Vũ, 2013). Let 𝛽 > 0. Let
𝜂𝑘)𝑘∈N be a nonnegative sequence such that ∑∞

𝑘=1 𝜂
𝑘 <∞, and let (𝑊𝑘)𝑘∈N

e a sequence in 𝛽 such that

= sup
𝑘∈N

‖

‖

𝑊𝑘
‖

‖

< ∞ and

1 + 𝜂𝑘)𝑊𝑘 ⪰ 𝑊𝑘+1 for all 𝑘 ∈ N.
(5.1)

et  ⊆ R𝑛 be nonempty, closed and convex and let (𝑥𝑘)𝑘∈N be a quasi-Fejér
onotone sequence with respect to  relative to (𝑊𝑘)𝑘∈N with 𝜙 = ‖ ⋅ ‖2,

.e.,

𝑥𝑘+1 − 𝑥̄‖2𝑊𝑘+1
≤ (1 + 𝜂𝑘) ‖𝑥𝑘 − 𝑥̄‖2𝑊𝑘

+ 𝜀𝑘 for all 𝑘 ∈ N.

hen, for every 𝑥̄ ∈ , the sequence (‖𝑥𝑘 − 𝑥̄‖𝑊𝑘
)𝑘∈N converges.

roof. It follows from Corollary 3.8 and Proposition 5.1. For technical
etails we refer to Combettes and Vũ (2013). □

The condition in (5.1) is not hard to check on the problem data and
t can be helpful for application purposes.

We conclude this section with an adaptation of Proposition 4.5
o the variable metric setup, i.e., an extension of Robbins–Siegmund
emma (Lemma 4.1) to variable metric stochastic quasi-Fejer monotone
equences.

roposition 5.4 (Proposition 2.4, Vu, 2016). Let  ⊆ R𝑛 be a non-empty
losed set and let 𝜙 ∶ R≥0 → R≥0. Let 𝛽 > 0, let 𝑊 and (𝑊𝑘)𝑘∈N be
perators in 𝛽 such that 𝑊𝑘 → 𝑊 pointwise. Let (𝑥𝑘)𝑘∈N be a sequence
f random vectors. Suppose that, for every 𝑥̄ ∈  , there exist (𝛿𝑘)𝑘∈N and
𝜀𝑘)𝑘∈N nonnegative sequences such that ∑∞

𝑘=0 𝛿
𝑘 < ∞ and ∑∞

𝑘=0 𝜀
𝑘 < ∞

nd such that,

[𝜙(∥𝑥𝑘+1 − 𝑥̄∥𝑊𝑘+1
) ∣ 𝑘]
≤ (1 + 𝛿𝑘(𝑥̄))𝜙(‖𝑥𝑘 − 𝑥̄‖𝑊𝑘
) + 𝜀𝑘(𝑥̄) a.s., for all 𝑘 ∈ N
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Suppose that 𝜙 is strictly increasing and lim𝑡→∞ 𝜙(𝑡) = +∞. Then, the
following hold.

(i) (‖𝑥𝑘 − 𝑥̄‖𝑊𝑘
)𝑘∈N is bounded and converges a.s.;

(ii) (𝑥𝑘)𝑘∈N converges a.s. to random vector in  if and only if every
cluster point is in  a.s.

Proof. (i) follows from Lemma 4.1 and by the fact the 𝜙 is strictly
increasing.

(ii) Necessity is straightforward while sufficiency follows from the
properties of a cluster point and Lemma 2.2. For more details we refer
to Vu (2016). □

6. Applications of convergent deterministic sequences

Since variational inequalities are the mathematical foundations
of optimization-related problems, such as Nash equilibrium seeking
(Facchinei & Pang, 2007; Franci & Grammatico, 2020a; Yi & Pavel,
2019), convex optimization (Bauschke et al., 2011; Facchinei & Pang,
2007; Jofré & Thompson, 2019) and machine learning (Franci &
Grammatico, 2020b; Gidel, Berard, Vignoud, Vincent, & Lacoste-Julien,
2018), many works in the literature rely on the results presented in
the previous sections to prove convergence of a given algorithm to
a solution of a variational equilibrium problem. Specifically, they are
applied to prove that a given algorithm converges to the solution of a
variational inequality or to a zero of the sum of (monotone) operators.
Thus, let us first describe the variational problem, starting by the
definition of variational inequality (Bauschke et al., 2011; Facchinei
& Pang, 2007).

Definition 6.1. Given a set  ⊆ R𝑛 and a mapping 𝐹 ∶  → R𝑛, a
variational inequality, denoted VI( , 𝐹 ), is the problem

find 𝑥∗ ∈  such that ⟨𝐹 (𝑥∗), 𝑦 − 𝑥∗⟩ ≥ 0, for all 𝑦 ∈  (6.1)

The set of solutions to this problem is denoted by SOL( , 𝐹 ).

The geometric interpretation of (6.1) is that a point 𝑥∗ ∈  is a
solution of VI( , 𝐹 ) if and only if 𝐹 (𝑥∗) forms an acute angle with every
vector of the form 𝑦 − 𝑥∗ for all 𝑦 ∈  . In other words, (6.1) also says
that a vector 𝑥 ∈  solves VI( , 𝐹 ) if and only if −𝐹 (𝑥∗) is a vector in
the normal cone of  at 𝑥∗ (see Appendix for the definition), i.e.,

0 ∈ 𝐹 (𝑥∗) + N (𝑥∗). (6.2)

Sometimes, instead of problem (6.1), a more general definition is
proposed:

find 𝑥∗ ∈  s.t. ⟨𝐹 (𝑥∗), 𝑦 − 𝑥∗⟩ + 𝑔(𝑦) − 𝑔(𝑥∗) ≥ 0, for all 𝑦 ∈  (6.3)

where 𝑔 is a proper lower semi-continuous and convex function. Exam-
ples for the function 𝑔 are indicator functions to enforce the set con-
straints, or penalty functions that promote sparsity, or other desirable
structure.

Similarly to (6.1) and (6.2), problem (6.3) can be rewritten as

find 𝑥∗ ∈  s.t. 0 ∈ (𝐹 + 𝜕𝑔)(𝑥∗), (6.4)

where 𝜕𝑔 is the subdifferential of 𝑔 (definition in Appendix). In fact, if
in (6.3) we take 𝑔 as the indicator function, i.e., 𝑔(𝑥) = 𝜄 (𝑥), we obtain
the standard variation inequality (6.1), and instead of (6.4) we obtain
the inclusion in (6.2) since 𝜕𝑔 = 𝜕𝜄 = N (Combettes & Pesquet, 2021,
Equation (14)).

Problems of the form (6.2) and (6.4) are usually called (monotone)
inclusion problems, which aim, in the general form, at finding 𝑥∗ ∈ 
such that 0 ∈ 𝑇 (𝑥∗) with 𝑇 ∶ R𝑛 → R𝑛. Moreover, in many cases it
is possible to write a mapping as the summation of two (monotone)
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operators through an operator splitting technique (Bauschke et al., 0
2011; Ryu & Boyd, 2016). In this case, the problem of finding a zero
of a monotone operator 𝑇 = 𝐴 + 𝐵 can be rewritten as

find 𝑥∗ ∈  such that 0 ∈ (𝐴 + 𝐵)(𝑥∗). (6.5)

Usually, 𝐴 ∶ R𝑛 ⇉ R𝑛 and 𝐵 ∶ R𝑛 → R𝑛 are a set valued and a
single valued monotone operator, respectively. Inclusions as the above
arise systematically in convex optimization (Bot, Sedlmayer et al.,
2020; Csetnek et al., 2019; Malitsky, 2015; Malitsky & Tam, 2020)
and generalized Nash equilibrium problems in convex-monotone games
(Franci & Grammatico, 2020a; Franci et al., 2020; Gadjov & Pavel,
2019, 2020; Pavel, 2019; Yi & Pavel, 2019).

Example 6.1 (Inclusion Problem). Consider the minimization problem

min
𝑥∈

𝑓 (𝑥) + 𝑔(𝑥) (6.6)

where 𝑔 ∶  → R̄ is proper, lower semicontinuous and convex and
𝑓 ∶  → R is convex with Lipschitz continuous gradient. The solutions
of the minimization problem in (6.6) are the points 𝑥 ∈  such that

0 ∈ (∇𝑓 + 𝜕𝑔)(𝑥). (6.7)

where 𝜕𝑔 denotes the subdifferential of 𝑔 and ∇𝑓 is the gradient of 𝑓 .
Eq. (6.7) is a monotone inclusion and it is equivalent to the generalized
VI in (6.3) with 𝐹 = ∇𝑓 .

We are now ready to present some algorithms where the lemmas
of Section 3 are used. The algorithms often rely on the monotonicity
properties of the operators involved (see Definitions A.2 and A.3) and,
unless otherwise mentioned, we suppose the following assumption to
hold.

Standing Assumption 6.1. The solution set of VI( , 𝐹 ) is not empty,
i.e., SOL( , 𝐹 ) ≠ ∅, and 𝑥0 ∈  , i.e., the sequence starts in the set  which
s closed and convex.

For every algorithm, we also propose a sketch of the convergence
roof to show how the lemmas are used. A schematic representation
f the necessary steps is provided in Fig. 7. The main idea to prove
onvergence of an algorithm is to obtain a (quasi) Féjer inequality
ith respect to the solution set and then apply one of the lemmas

o the sequence 𝑣𝑘 = ‖𝑥𝑘 − 𝑥∗‖2 where 𝑥∗ ∈ SOL( , 𝐹 ) (see also
emark 3.8). Analogously, one can show that a suitable Lyapunov

unction asymptotically goes to zero.
We list the application depending on the type of problem but we

ame them after the convergence result that is used. We start with
onotone inclusions, then move to VIs and Nash equilibrium problems,

nd finally consider an example of Lyapunov decrease.

.1. Applications to monotone inclusions

pplication of Lemmas 3.3 and 3.19. Lemma 3.3 is used in Malitsky and
am (2018, 2020) to prove convergence in the inclusion problem:

ind 𝑥 ∈  such that 0 ∈ (𝐴 + 𝐵)(𝑥)

here 𝐴 ∶  ⇉  and 𝐵 ∶  →  are monotone operators. The
equence (𝑥𝑘)𝑘∈N, generated by the algorithm, is defined according to
𝑘+1 = 𝐽𝛼𝑘𝐴

(

𝑥𝑘 − 𝛼𝑘𝐵(𝑥𝑘) − 𝛼𝑘−1(𝐵(𝑥𝑘) − 𝐵(𝑥𝑘−1))
)

(6.8)

here 𝐽𝛼𝑘𝐴 = (𝐼 + 𝛼𝑘𝐴)−1 is the resolvent of A (Definition A.1). The
lgorithm is named forward-reflected-backward splitting and it is proven
o converge to a zero of 𝐴 + 𝐵.

heorem 6.1 (Theorem 2.5, Malitsky & Tam, 2020). Let 𝐴 ∶  ⇉ 
e maximally monotone and 𝐵 ∶  →  be monotone and 𝓁-Lipschitz
ontinuous. Let 𝜖 > 0 and suppose 𝛼𝑘 ∈

[

𝜖, 1−2𝜖2𝓁

]

for all 𝑘 ∈ N. Then, the
sequence (𝑥𝑘)𝑘∈N generated by (6.8) converges to a point 𝑥∗ ∈  such that
∈ (𝐴 + 𝐵)(𝑥∗).
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Fig. 7. Schematic representation of how the convergence lemmas for sequences can
be used. Given the iterative process, a suitable nonnegative function (Lyapunov or
distance-like) should be designed. Then, exploiting the properties of the application at
hand, an inequality involving the iterates at times 𝑘+1 and 𝑘 can be retrieved. Hence,
ne should check if the inequality corresponds to a known result (Table 3 for sequences
f real numbers) and use the corresponding result to prove convergence. The whole
rocess may take repeated steps to find a suitable function and/or inequality. The same
easoning applies to the stochastic case, in which one should have an expected valued
nequality (with E[𝑣𝑘+1]) and refer to Table 4 for a convergence result on stochastic
equences. See also Fig. 8 for an example.

roof. Let 𝑥∗ ∈ (𝐴 + 𝐵)−1(0). It is possible to show, by using
onotonicity and some norm properties, that the following inequality
olds:
𝑥𝑘+1 − 𝑥∗‖2 + 2𝛼𝑘⟨𝐵(𝑥𝑘+1) − 𝐵(𝑥𝑘), 𝑥∗ − 𝑥𝑘+1⟩+

+
( 1
2
+ 𝜖

)

‖𝑥𝑘+1 − 𝑥𝑘‖2

≤ ‖𝑥𝑘 − 𝑥∗‖2 + 2𝛼𝑘−1⟨𝐵(𝑥𝑘) − 𝐵(𝑥𝑘−1), 𝑥∗ − 𝑥𝑘⟩

+ 1
2
‖𝑥𝑘 − 𝑥𝑘−1‖2.

(6.9)

Then, by doing a telescopic sum, using Lipschitz continuity and the
properties of the parameters involved, the inequality in (6.9) can be
rewritten as

1
2
‖𝑥𝑘+1 − 𝑥∗‖2 + 𝜀

𝑘
∑

𝑖=0
‖𝑥𝑖+1 − 𝑥𝑖‖2

≤ ‖𝑥0 − 𝑥∗‖2 + 2𝜆−1⟨𝐵(𝑥0) − 𝐵(𝑥−1), 𝑥∗ − 𝑥0⟩ +
1
2
‖𝑥0 − 𝑥−1‖2

rom which we deduce that (𝑥𝑘)𝑘∈N is bounded and that lim𝑘→∞ ‖𝑥𝑘 −
𝑥𝑘+1‖ = 0. Now, let 𝑥̄ be a cluster point of (𝑥𝑘)𝑘∈N. From the definition
of the algorithm in (6.8) and the properties of 𝐴 + 𝐵, it follows that
0 ∈ (𝐴 + 𝐵)(𝑥̄). Using again (6.9) and Lipschitz continuity it can be
proven that lim𝑘→∞ ‖𝑥𝑘− 𝑥̄‖2 exists. Then, by Lemma 3.3, the sequence
is convergent. □

The authors propose in the same paper also a variant of the algo-
rithm with line search and a second one with inertia, but the conver-
gence proof does not change its essence; in the first case, the authors
use locally Lipschitz continuity (Malitsky & Tam, 2020, Theorem 3.4),
while in the second they exploit the 1∕𝓁-cocoercivity of the operator 𝐵
(Malitsky & Tam, 2020, Theorem 4.3). Moreover, under the assumption
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of strong monotonicity of the operator 𝐴, they also prove convergence
with linear rate, using Lemma 3.19.

Theorem 6.2 (Theorem 2.9, Malitsky & Tam, 2020). Let 𝐴 ∶  ⇉ 
be maximally monotone and 𝜇-strongly monotone and 𝐵 ∶  →  be
monotone and 𝓁-Lipschitz continuous. Suppose 𝛼 ∈

(

0, 1
2𝓁

)

. Then, the
sequence (𝑥𝑘)𝑘∈N generated by (6.8) converges R-linearly to the unique point
̄ ∈  such that 0 ∈ (𝐴 + 𝐵)(𝑥̄).

Proof. Similarly to the proof of Theorem 6.1 but using strong mono-
tonicity, one obtains the inequality

(1 + 2𝜇𝛼)‖𝑥𝑘+1 − 𝑥∗‖2 + 2𝛼⟨𝐵(𝑥𝑘+1) − 𝐵(𝑥𝑘), 𝑥∗ − 𝑥𝑘+1⟩

+ (1 − 𝛼𝓁)‖𝑥𝑘+1 − 𝑥𝑘‖2

≤‖𝑥𝑘 − 𝑥∗‖2 + 2𝛼⟨𝐵(𝑥𝑘) − 𝐵(𝑥𝑘−1), 𝑥∗ − 𝑥𝑘⟩

+ 1
2
‖𝑥𝑘 − 𝑥𝑘−1‖2.

(6.10)

Setting 𝛾 = (1 + 2𝜇𝛼) > 1, 𝑣𝑘 ∶= 1
2‖𝑥

𝑘 − 𝑥∗‖2 and 𝛽𝑘 ∶= 1
2‖𝑥

𝑘 − 𝑥∗‖2 +
2𝛼⟨𝐵(𝑥𝑘)−𝐵

(

𝑥𝑘−1
)

, 𝑥∗−𝑥𝑘⟩+ 1
2‖𝑥

𝑘−𝑥𝑘−1‖2, one can apply Lemma 3.19
o conclude that the sequence (𝑥𝑘)𝑘∈N converges to the unique solution
̄ and with a linear rate. □

pplication of Corollary 3.15. As an application of Corollary 3.15, let us
onsider the inertial forward–backward algorithm proposed in Dadashi
nd Postolache (2019) for approximating a zero of an inclusion problem
∈ (𝐴 + 𝐵)−1(0):

{

𝑦𝑘 = 𝐽𝛼𝑘𝐴
(

𝑥𝑘 − 𝛼𝑘𝐵𝑥𝑘
)

𝑥𝑘+1 = 𝜈𝑘𝑥𝑘 + 𝛽𝑘𝑦𝑘 + 𝛾𝑘𝑒𝑘
(6.11)

here 𝐽𝛼𝑘𝐴 is the resolvent of 𝐴 (Definition A.1) and 𝑒𝑘 is an error
ector. By using Corollary 3.15 the authors prove the following result.

heorem 6.3 (Theorem 3.1, Dadashi & Postolache, 2019). Let 𝐵 be 𝛼-
ocoercive and let 𝐴 be maximally monotone. Let 𝜈𝑘, 𝛽𝑘, 𝛾𝑘 ∈ (0, 1) be such
hat 𝜈𝑘 + 𝛽𝑘 + 𝛾𝑘 = 1 and

1. lim𝑘→∞ 𝛾𝑘 = 0, and ∑∞
𝑘=1 𝛾𝑘 = ∞,

2. lim𝑘→∞ 𝑒𝑘 = 0,
3. 0 < 𝑎 ≤ 𝜈𝑘 ≤ 𝑏 < 1 and 0 < 𝑐 ≤ 𝛽𝑘 ≤ 𝑑 < 1,
4. 0 < 𝑐 ≤ 𝛼𝑘 < 2𝛼 and lim𝑘→∞

(

𝛼𝑘 − 𝛼𝑘+1
)

= 0.

hen, the sequence (𝑥𝑘)𝑘∈N generated by (6.11) converges to the point
∗ ∈ (𝐴 + 𝐵)−1(0), where 𝑥∗ = proj(𝐴+𝐵)−1(0)(0).

roof. Using the nonexpansiveness of the resolvent of a maximally
onotone operator (Bauschke et al., 2011, Corollary 23.9) and the

ocoercivity of the mapping 𝐵, one can prove that the sequence (𝑥𝑘)𝑘∈N
s bounded. Then, using some properties of the resolvent (Dadashi

Postolache, 2019, Lemma 2.6) and of the convex combination of
ounded sequences (Dadashi & Postolache, 2019, Lemma 2.8) and
sing the monotonicity of 𝐴, the following inequality hold:

𝑥𝑘+1 − 𝑥∗‖2 ≤ ‖𝑥𝑘 − 𝑥∗‖2 − 𝛿𝑘,

here 𝛿𝑘 is a quantity depending on the error 𝑒𝑘 and on 𝑥∗ and
uch that the assumption of Corollary 3.15 are satisfied. Therefore,
onvergence holds. □

.2. Applications to variational inequalities

pplication of Lemmas 3.3 and 3.6. The authors in Malitsky (2020)
onsider the general variational inequality problem in (6.3) where
∶  → R̄ is a proper convex lower semicontinuous function and
∶ dom 𝑔 →  is monotone. They propose the Golden Ratio Algorithm

GRAAL) whose iterations are given by

𝑥̃𝑘 = (𝜑−1)𝑥𝑘+𝑥̄𝑘−1
𝜑

𝑘+1 𝑘 𝑘
(6.12)
𝑥 = prox𝛼𝑔(𝑥̃ − 𝛼𝐹 (𝑥 ))
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where 𝜑 =
√

5+1
2 is the golden ratio, i.e., 𝜑2 = 1 + 𝜑. To prove

convergence, they use Lemmas 3.3 and 3.6.

Theorem 6.4 (Theorem 1, Malitsky, 2020). Let F be 𝓁-Lipchitz continuous
nd monotone that 𝑔 be lower semicontinuous and let 𝛼 ∈

(

0, 𝜑2𝓁
]

. Then the
sequences (𝑥𝑘)𝑘∈N and (𝑥̃𝑘)𝑘∈N, generated by (6.12), converge to a solution
of the VI in (6.3).

Proof. Using the fact that 𝐹 is Lipschitz continuous and monotone and
that the proximal operator is firmly nonexpansive, it holds that

(1 + 𝜑)‖𝑥̃𝑘+1 − 𝑥∗‖2 +
𝜑
2
‖𝑥𝑘+1 − 𝑥𝑘‖2

≤ (1 + 𝜑)‖𝑥̃𝑘 − 𝑥∗‖2 +
𝜑
2
‖𝑥𝑘 − 𝑥𝑘−1‖2 − 𝜑‖𝑥𝑘 − 𝑥̃𝑘‖2.

(6.13)

Then, (𝑥̃𝑘)𝑘∈N is bounded and lim𝑘→∞ ‖𝑥𝑘 − 𝑥̃𝑘‖ = 0 by Lemma 3.6.
Hence, (𝑥𝑘)𝑘∈N has at least one cluster point. Then, using the properties
of 𝑔, all cluster points of 𝑥̃𝑘 are solutions of VI( , 𝐹 ). Since the sequence
on the right hand side is non increasing, it is also convergent to a
point in the solution set SOL( , 𝐹 ). Therefore, using the fact that
lim𝑘→∞ ‖𝑥𝑘 − 𝑥̃𝑘‖ = 0 and the definition of 𝑥̃𝑘 in (6.12), Lemma 3.3 can
be applied to conclude that (𝑥𝑘)𝑘∈N converges to a solution of (6.3). □

Remark 6.1. Interestingly, in a preliminary version of the paper
(Malitsky, 2018), the authors use Theorem 3.2 to prove convergence.
In fact, given Eq. (6.13) and using the properties of the mapping 𝑔,
they obtain that (𝑥𝑘)𝑘∈N has a cluster point and they can directly apply
Theorem 3.2 to conclude convergence.

In Malitsky (2018), the authors prove convergence of the explicit
GRAAL, a variation of algorithm (6.12) with an adaptive step size rule.
In this case, they only use locally Lipschitz continuity and conclude
convergence via Lemma 3.3 (Malitsky, 2020, Theorem 2).

The algorithm has been recently extended to the stochastic case
and for stochastic generalized Nash equilibrium problems (Franci &
Grammatico, 2021a) and generative adversarial networks (Franci &
Grammatico, 2021b) with a proof that relies on Lemma 4.1 on the same
line of Section 7.1.

Application of Corollary 3.7. Corollary 3.7 is used in Malitsky (2015)
to prove convergence of the projected reflected gradient method for
variational inequalities as in (6.1). In details, the algorithm reads as

𝑥𝑘+1 = proj (𝑥𝑘 − 𝛼𝐹 (2𝑥𝑘 − 𝑥𝑘−1)) (6.14)

and they show that the following result holds.

Theorem 6.5 (Theorem 3.2, Malitsky, 2015). Let 𝐹 be monotone and
𝓁-Lipschitz continuous and 𝛼 ∈ (0,

√

2−1
𝓁

). Then the sequence (𝑥𝑘)𝑘∈N
enerated by (6.14) converges to a solution of VI( , 𝐹 ) in (6.1).

roof. Using the firmly nonexpansiveness of the projection, the fact
hat the mapping is monotone and 𝓁-Lipschitz continuous and the
ound on the step sizes, the following inequality holds:

𝑥𝑘+1 − 𝑥∗‖2+𝛼𝓁‖𝑥𝑘+1 − 𝑦𝑘‖2 + 2𝛼⟨𝐹 (𝑧), 𝑥𝑘 − 𝑥∗⟩

≤‖𝑥𝑘 − 𝑥∗‖2 + 𝛼𝓁‖𝑥𝑘 − 𝑦𝑘−1‖2

+ 2𝛼⟨𝐹 (𝑥∗), 𝑥𝑘−1 − 𝑥∗⟩

− (1 − 𝛼𝓁(1 +
√

2))‖𝑥𝑘 − 𝑥𝑘−1‖2,

where 𝑥∗ ∈ SOL( , 𝐹 ). Now, by letting
𝑘 = ‖𝑥𝑘 − 𝑥∗‖2 + 𝛼𝓁‖𝑥𝑘 − 𝑦𝑘−1‖2 + 2𝛼⟨𝐹 (𝑥∗), 𝑥𝑘−1 − 𝑥∗⟩
𝜃𝑘 = (1 − 𝛼𝓁(1 +

√

2))‖𝑥𝑘 − 𝑥𝑘−1‖2,

it follows that 𝑣𝑘+1 ≤ 𝑣𝑘−𝜃𝑘 as in Corollary 3.7, from which it is possible
to deduce that (𝑥𝑘)𝑘∈N is bounded and has at least one cluster point 𝑥̄
and that lim ‖𝑥𝑘 − 𝑥𝑘−1‖ = 0. By Minty Theorem (Malitsky, 2015,
177

𝑘→∞ (
Lemma 2.2) one have that any cluster point 𝑥̄ is also a solution of the
VI. By contradiction, it is possible to prove that (𝑥𝑘)𝑘∈N cannot have
two cluster points, therefore lim𝑘→∞ 𝑥𝑘 = 𝑥̄ ∈ SOL( , 𝐹 ). □

Since the constant 𝓁 can be hard to compute, to avoid using 𝓁-
ipschitz continuity, in the same paper, the authors also propose a
ariant of the algorithm in (6.14) that includes a prediction–correction
echnique to select the step sizes. The convergence result (Malitsky,
015, Theorem 4.4) is proved similarly to the original result, using
orollary 3.7. Moreover, they also provide an estimation of the con-
ergence rate when the mapping 𝐹 is strongly monotone (similarly
o Theorem 6.2) using a result similar to Lemma 3.19 (Malitsky,
015, Lemma 2.9). This algorithm has been recently extended to the
tochastic case (Cui & Shanbhag, 2016, 2021) and proved similarly, by
xploiting Lemma 4.7.

.3. Applications to Nash equilibrium problems

pplication of Lemma 3.12. The fact that Lemma 3.12 guarantees con-
ergence to zero (Remark 3.8) is used in Duvocelle et al. (2019)
o compute a Nash equilibrium in traffic networks. In a dynamic
raffic assignment problem, travelers participate in a non-cooperative
ame choosing a departure time and a route. The authors propose a
orward–backward–forward algorithm (inspired by Tseng (2000)), i.e.,
𝑘 = proj [𝑥𝑘 − 𝛼𝐹 (𝑥𝑘)]
𝑘 = 𝑧𝑘 + 𝛼(𝐹 (𝑥𝑘) − 𝐹 (𝑧𝑘))
𝑘+1 = (1 − 𝜈𝑘 − 𝛾𝑘)𝑥𝑘 + 𝛾𝑘𝑧𝑘,

(6.15)

o solve the associated variational problem. The convergence result is
tated next and it shows convergence to the solution of the VI associated
o the Nash equilibrium problem (Facchinei & Pang, 2007, Proposition
.4.2).

heorem 6.6 (Theorem 3.1, Duvocelle et al., 2019). Let F be pseudomono-
one and 𝓁-Lipschitz continuous. Let (𝜈𝑘)𝑘∈N and (𝛾𝑘)𝑘∈N be sequences in
0, 1), such that (𝛾𝑘)𝑘∈N ⊂

(

𝜈, 1 − 𝜈𝑘
)

for some 𝜈 > 0, and let lim𝑘→∞ 𝜈𝑘 =
and ∑∞

𝑘=1 𝜈𝑘 = ∞. Then, the sequence (𝑥𝑘)𝑘∈N generated by (6.15)
onverges to 𝑥∗ ∈ SOL( , 𝐹 ) where 𝑥∗ = argmin {‖𝑧‖ ∶ 𝑧 ∈ SOL( , 𝐹 )}.

roof. Using the definition of the algorithm in (6.15) and some
reliminary inequalities (Duvocelle et al., 2019, Lemma 4.1), it holds
hat (Duvocelle et al., 2019, Lemma 4.3)

𝑥𝑘+1 − 𝑥∗‖2 ≤ (1 − 𝜈𝑘)‖𝑥𝑘 − 𝑥∗‖2+

𝑘[2𝛾𝑘‖𝑥𝑘 − 𝑦𝑘‖ ⋅ ‖𝑥𝑘+1 − 𝑥∗‖ + 2⟨𝑥∗, 𝑥∗ − 𝑥𝑘+1⟩]
(6.16)

o apply Lemma 3.12 to the sequence 𝑣𝑘 = ‖𝑥𝑘+1 − 𝑥∗‖2, the authors
heck the conditions on 𝛽𝑘 = 2𝛾𝑘‖𝑥𝑘−𝑦𝑘‖ ⋅‖𝑥𝑘+1−𝑥∗‖+2⟨𝑥∗, 𝑥∗−𝑥𝑘+1⟩.
irst, note that since  is closed and convex, there exists a unique
∗ ∈ SOL( , 𝐹 ) such that 𝑥∗ = projSOL( ,𝐹 )(0). Now, suppose that there
xists 𝑘0 ∈ N such that ‖𝑥𝑘+1 − 𝑥∗‖2 ≤ ‖𝑥𝑘 − 𝑥∗‖2 for all 𝑘 ≥ 𝑘0.
hen, lim𝑘→∞ ‖𝑥𝑘 − 𝑥∗‖2 exists. Then, exploiting the properties of the
tep size and using monotonicity and Lipschitz continuity, it can be
roven that lim𝑘→∞ ‖𝑥𝑘 − 𝑧𝑘‖2 = 0 and that, by the definition of 𝑦𝑘,
im𝑘→∞ ‖𝑦𝑘 − 𝑥𝑘‖2 = 0. Therefore, lim𝑘→∞ ‖𝑥𝑘+1 − 𝑥𝑘‖2 = 0. Since the
equence is bounded (Duvocelle et al., 2019, Lemma 4.2), there exists
subsequence (𝑥𝑘𝑗 ) such that 𝑥𝑘𝑗 → 𝑦̄ and lim sup𝑘→∞⟨𝑥∗, 𝑥∗ − 𝑥𝑘⟩ =
𝑥∗, 𝑥∗ − 𝑦̄⟩ ≤ 0, by the definition of 𝑥∗. Therefore, by Duvocelle et al.
2019, Lemma 4.4), also for a subsequence (𝑧𝑘𝑗 ) it holds 𝑧𝑘𝑗 → 𝑦̄.
hen, lim𝑘→∞⟨𝑥∗, 𝑥∗ − 𝑥𝑘+1⟩ = ⟨𝑥∗, 𝑥∗ − 𝑦̄⟩ ≤ 0 and by Lemma 3.12,
im𝑘→∞ ‖𝑥𝑘 − 𝑥∗‖2 = 0. For more details, we refer to Duvocelle et al.

2019). □
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Application of Lemma 3.9. An instance of how Lemma 3.9 can be
sed to prove convergence is given in Kannan and Shanbhag (2012)
here the authors propose a Nash equilibrium seeking algorithm via
Tikhonov regularization. The iterations, for each agent 𝑖 ∈  =

{1,… , 𝑁}, read as

𝑥𝑘+1𝑖 = proj𝑖 (𝑥
𝑘
𝑖 − 𝛾

𝑘
𝑖 (𝐹𝑖(𝑥

𝑘) + 𝜖𝑘𝑖 𝑥
𝑘
𝑖 )) (6.17)

where 𝛾𝑘 = (𝛾𝑘𝑖 )
𝑁
𝑖=1 and 𝜖𝑘 = (𝜖𝑘𝑖 )

𝑁
𝑖=1 are the step size and regularization

sequences, respectively, and 𝑖 is the local feasible set for each player
𝑖. Then, the following result holds.

Theorem 6.7 (Theorem 2.4, Kannan & Shanbhag, 2012). Suppose 𝐹 is
monotone and 𝓁-Lipschitz continuous over a closed convex set  and let
(𝛾𝑘)𝑘∈N and (𝜖𝑘)𝑘∈N be such that

1. ∑∞
𝑘=1 𝛾

𝑘
𝑗 𝜖

𝑘
𝑗 = ∞

2. lim𝑘→∞
(𝛾𝑘max)

2

𝛾𝑘min𝜖
𝑘
min

= 0

3. ∑∞
𝑘=1(𝛾

𝑘
𝑗 )

2 <∞

4. ∑∞
𝑘=1(𝜖

𝑘
𝑗 𝛾

𝑘
𝑗 )

2 <∞

5. lim𝑘→∞
𝜖𝑘−1max−𝜖

𝑘
min

𝜖𝑘min(𝛾
𝑘
min)

2 = 0

6. lim𝑘→∞
𝛾𝑘max𝜖

𝑘
max−𝛾

𝑘
min𝜖

𝑘
min

𝛾𝑘min𝜖
𝑘
min

= 0

7. lim𝑘→∞ 𝜖𝑘𝑗 = 0 for all 𝑗 = 1,… , 𝑁 .

Then, the sequence (𝑥𝑘)𝑘∈N generated by (6.17) converges to a Nash
equilibrium as 𝑘→ ∞.

Proof. Since the classic Tikhonov relaxation, i.e., the iterative process
where 𝑦𝑘+1 solves VI( , 𝐹 𝑘) and 𝐹 𝑘(𝑦) = 𝐹 (𝑦) + 𝜖𝑘𝑦, is convergent
(Bauschke et al., 2011; Tikhonov, 1963), the authors first show that
(Kannan & Shanbhag, 2012, Proposition 2.3)

‖𝑧𝑘+1 − 𝑦𝑘‖ ≤ 𝑞𝑘‖𝑧
𝑘 − 𝑦𝑘−1‖ +

𝑞𝑘𝑀
√

𝑁(𝜖𝑘−1max − 𝜖
𝑘
min)

𝜖𝑘min

,

here 𝑞2𝑘 = (1 − 𝛾𝑘min𝜖
𝑘
min)

2 + (𝛾𝑘max)
2𝓁2 + 2(𝛾𝑘max𝜖

𝑘
max − 𝛾𝑘min𝜖

𝑘
min)𝓁. Then,

nce they have 𝑣𝑘+1 ≤ 𝑞𝑘𝑣𝑘 + 𝜀𝑘 with 𝑣𝑘 = ‖𝑥𝑘 − 𝑦𝑘−1‖, they prove that
here exists a 𝑘̄ such that 𝑞𝑘 < 1 for all 𝑘 ≥ 𝑘̄ (as in Remark 3.7). Thus,
emma 3.9 can be applied to conclude convergence. □

.4. Application to Lyapunov decrease

pplication of Corollary 3.7. In this application, we show how the
onvergence results can be used in combination with a Lyapunov
unction. Let us consider the classic gradient method (Bauschke et al.,
011; Polyak, 1987)
𝑘+1 = 𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘) (6.18)

to find the minimum of a function 𝑓 ∶  ⊆ R𝑛 → R, 𝑓 ∗, and let us
onsider 𝑉 (𝑥) = 𝑓 (𝑥) − 𝑓 ∗ as a Lyapunov function candidate for the
iscrete time system in (6.18).

heorem 6.8 (Theorem 1.4.1, Polyak, 1987). Let 𝑓 (𝑥) be differentiable on
R𝑛 and bounded from below, i.e., 𝑓 (𝑥) ≥ 𝑓 ∗ > −∞. Let ∇𝑓 be 𝓁-Lipschitz
continuous and let 𝛾 ∈

(

0, 2
𝓁

)

. Then, in method (6.18) the gradient tends

to zero, i.e., lim𝑘→∞ ∇𝑓 (𝑥𝑘) = 0 and the function 𝑓 (𝑥) monotonically
ecreases, i.e., 𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘).

roof. Using differentiability and Lipschitz continuity, we obtain

𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘) − 𝛾
(

1 −
𝓁𝛾

)

‖∇𝑓 (𝑥𝑘)‖2,
178

2 i
and, equivalently,

𝑉 (𝑥𝑘+1) ≤ 𝑉 (𝑥𝑘) − 𝛾
(

1 −
𝓁𝛾
2

)

‖∇𝑉 (𝑥𝑘)‖2

see also Polyak, 1987, Section 2.2). Then, the claim follows by apply-
ng Corollary 3.7. □

6.5. Application to nonconvex optimization

Application of Lemma 3.4 and Corollary 3.5. Some of the lemmas in-
troduced in Section 3 find application in nonconvex and nonsmooth
problems as well (Di Lorenzo & Scutari, 2016; Facchinei, Lampariello, &
Scutari, 2017; Scutari & Sun, 2019). In particular, let us consider the in-
network successive convex approximation algorithm (NEXT) proposed
in Di Lorenzo and Scutari (2016) for the optimization problem

min
𝑥∈

𝑈 (𝑥) = 𝐹 (𝑥) + 𝐺(𝑥) (6.19)

where 𝐹 (𝑥) = ∑𝑛
𝑖=1 𝑓𝑖(𝑥). In this model, 𝑛 agents cooperate to solve a

minimization problem while knowing only their own cost function 𝑓𝑖,
𝑖 ∈  = {1,… , 𝑛}, possibly nonconvex, the common function 𝐺 and
the feasible set  . The agents are connected over a graph  = (, 𝑘)

hose edge set may be time varying (𝑘 ∈ N) and whose weight
atrix is indicated by 𝑊 𝑘 = [𝑤𝑘𝑖𝑗 ]𝑖,𝑗∈ for all 𝑘 ∈ N. The graph

s assumed to be strongly connected and 𝑊 𝑘 to be row and column
tochastic. The goal is to find a stationary solution of the problem
ia a distributed algorithm. Since the agents communicate with their
eighbors only, each of them keeps an estimate, 𝑥̃𝑖, of the optimization
ariable. Moreover, since 𝑓𝑖 is possibly nonconvex, it is replaced by
strongly convex approximation 𝑓𝑖(⋅, 𝑥̃𝑘𝑖 ). With the aim of minimizing
(𝑥) = 𝑓𝑖(𝑥) +

∑

𝑗≠𝑖 𝑓𝑗 (𝑥), the part corresponding to the other agents is
inearized around the estimate 𝑥̃𝑘𝑖 . Thus, at each iteration, each agent
olves the following:

̄ 𝑖(𝑥̃𝑘𝑖 ) = argmin
𝑥𝑖∈

𝑓𝑖(𝑥𝑖; 𝑥̃𝑘𝑖 ) + 𝜋𝑖(𝑥̃
𝑘
𝑖 )
⊤(𝑥𝑖 − 𝑥̃𝑘𝑖 ) + 𝐺(𝑥𝑖)

here 𝜋𝑖(𝑥̃𝑘𝑖 ) =
∑

𝑗≠𝑖 ∇𝑥𝑓𝑗 (𝑥
𝑘
𝑖 ). However, this quantity requires the

nowledge of the functions 𝑓𝑗 , for 𝑗 ≠ 𝑖, therefore it is replaced by
local estimate 𝜋̃𝑘𝑖 :

̂ 𝑖(𝑥̃𝑘𝑖 ) = argmin
𝑥𝑖∈

𝑓𝑖(𝑥𝑖; 𝑥̃𝑘𝑖 ) + 𝜋̃
⊤
𝑖 (𝑥𝑖 − 𝑥̃

𝑘
𝑖 ) + 𝐺(𝑥𝑖)

= argmin
𝑥𝑖∈

𝑈̃ (𝑥𝑖, 𝑥̃𝑖, 𝜋̃𝑖)

o update 𝜋̃𝑘𝑖 an auxiliary variable 𝑦𝑘𝑖 is introduced, to track the average
radient ∇𝑓 (𝑥̃) =

∑𝑛
𝑖=1 ∇𝑓𝑖(𝑥̃𝑖). Moreover, to force asymptotic agree-

ent, a consensus update of the estimated variables is used. Therefore,
he algorithm reads as follows:

𝑥̂𝑘𝑖 = argmin
𝑥𝑖∈

𝑈̃𝑖(𝑥𝑖, 𝑥̃𝑘𝑖 , 𝜋̃
𝑘
𝑖 )

𝑧𝑘𝑖 = 𝑥𝑘𝑖 + 𝛼
𝑘(𝑥̂𝑘𝑖 − 𝑥̃

𝑘
𝑖 )

𝑥̃𝑘+1𝑖 =
𝑛
∑

𝑗=1
𝑤𝑘𝑖𝑗𝑧

𝑘
𝑗

𝑦𝑘+1𝑖 =
𝑛
∑

𝑗=1
𝑤𝑘𝑖𝑗𝑦

𝑘
𝑗 + (∇𝑓𝑖(𝑥̃𝑘+1𝑖 ) − ∇𝑓𝑖(𝑥̃𝑘𝑖 ))

𝜋̃𝑘+1 = 𝑛𝑦𝑘+1𝑖 − ∇𝑓𝑖(𝑥̃𝑘+1𝑖 )

(6.20)

where the first two iterates represent the optimization step while the
last three are the consensus updates.

Theorem 6.9 (Theorem 3, Di Lorenzo & Scutari, 2016). Let (𝑥̃𝑘)𝑘∈N
be the sequence generated by (6.20), and define avg(𝑥̃𝑘) = 1

𝑛
∑𝑛
𝑖=1 𝑥̃

𝑘
𝑖 .

Suppose that each 𝑓𝑖 is continuously differentiable and each ∇𝑓𝑖 is Lipschitz
ontinuous with constant 𝐿𝑖, respectively. Suppose that ∇𝐹 is bounded,
.e., there exists 𝐿𝐹 > 0 such that sup𝑥̃∈ ‖∇𝐹 (𝑥̃)‖ ≤ 𝐿𝐹 and that 𝐺
s a convex function with bounded subgradients, i.e., there exists 𝐿 > 0
𝐺



Annual Reviews in Control 53 (2022) 161–186B. Franci and S. Grammatico

𝑥

T
t
r
a

S
f



q
c

s
s

l
e

𝜖

w
t
(

m
G

such that sup𝑥̃∈ sup𝑔∈𝜕𝐺(𝑥̃) ‖𝑔‖ ≤ 𝐿𝐺. Suppose that 𝑈 is coercive on  ,
i.e., lim𝑥̃∈ ,‖𝑥̃‖→∞ 𝑈 (𝑥̃) = ∞ and let the step size sequence (𝛼𝑘)𝑘∈N ⊆
(0, 1] be such that ∑∞

𝑘=0 𝛼
𝑘 = ∞ and ∑∞

𝑘=0 𝛼
2
𝑘 < ∞. Then, the sequence

(avg(𝑥̃𝑘))𝑘∈N is bounded and all its limit points are stationary point of
(6.19).

Proof. Given some preliminary results (Di Lorenzo & Scutari, 2016,
Proposition 9, Section C) and introducing the quantities 𝑥̂𝑘𝑖,av =
argmin 𝑈̃ (𝑥𝑖, avg(𝑥̃𝑘), 𝜋𝑘𝑖,av), 𝜋̃

𝑘
𝑖,av = 𝑛𝑦𝑘𝑖,av − ∇𝑓𝑖(avg(𝑥̃𝑘)) and 𝑦𝑘𝑖,av =

∑

𝑗≠𝑖 𝑛
𝑘
𝑖𝑗𝑦

𝑘
𝑗,av + (∇𝑓𝑖(avg(𝑥̃𝑘+1)) − ∇𝑓𝑖(avg(𝑥̃𝑘𝑖 ))), it holds that

𝑈 (avg(𝑥̃𝑘+1)) ≤ 𝑈 (avg(𝑥̃𝑘)) − 𝑐1𝛼𝑘
𝑛
∑

𝑖=1
‖𝑥̄𝑖(avg(𝑥̃𝑘)) − avg(𝑥̃𝑘)‖2

+ 𝑐2𝛼
𝑘

𝑛
∑

𝑖=1
‖𝑥̂𝑘𝑖,av − 𝑥̄𝑖(avg(𝑥̃𝑘))‖ + 𝑐2𝛼𝑘

𝑛
∑

𝑖=1
𝜀𝑘𝑖

+ 𝑐2𝛼
𝑘

𝑛
∑

𝑖=1
‖𝑥̂𝑘𝑖 − 𝑥̂

𝑘
𝑖,av‖ + 𝑐3𝛼

2
𝑘

where the constants 𝑐1, 𝑐2, 𝑐3 > 0 depend on the Lipschitz constants.
Then, by Lemma 3.4, since 𝑈 is coercive, 𝑈 (avg(𝑥̃𝑘)) converges to
a finite value and lim𝑘→∞ sup𝑖∈ ‖𝑥̄𝑖(avg(𝑥̃𝑘)) − avg(𝑥̃𝑘)‖ = 0. Since
(avg(𝑥̃𝑘))𝑘∈N is bounded, it has at least one cluster point 𝑤 ∈  , hence
̄ 𝑖(𝑤) = 𝑤 for all 𝑖 ∈ . It follows that 𝑤 is a stationary point (Di Lorenzo
& Scutari, 2016, Proposition 5). □

The algorithm in (6.20) has been improved in Scutari and Sun
(2019) where Corollary 3.5 is used to prove convergence.

6.6. Other applications

Opial Lemma (Lemma 3.3) is widely used for deterministic prob-
lems, in discrete (Boţ & Csetnek, 2016; Csetnek et al., 2019) and
continuous time (Bot & Csetnek, 2016; Csetnek et al., 2019). Moreover,
another application of Lemma 3.3 can be found in Bot, Sedlmayer et al.
(2020) where the authors propose a forward–backward–forward algo-
rithm (Bot, Mertikopoulos et al., 2020; Tseng, 2000) with an applica-
tion to generative adversarial networks (Goodfellow, 2016; Goodfellow
et al., 2014).

Concerning inclusion problems, the interested reader may find an
application of Lemma 3.18 in Boţ and Csetnek (2016) while, for a
different iterative scheme, Corollary 3.14 is used in Dadashi and Pos-
tolache (2019); finally, an application of Lemma 3.17 can be found in
Cholamjiak et al. (2018).

Lemma 3.17 is used also for a variational problem in He and Yang
(2013), along with Lemma 3.11. Moving to Nash equilibrium problems,
Lemma 3.9 is used in Kannan and Shanbhag (2012) and Lei, Shanbhag,
Pang et al. (2020) while Lemma 3.12 is used in Lei, Shanbhag and Chen
(2020).

7. Applications of convergent stochastic sequences

Similarly to the deterministic case, many applications of the lemmas
for random sequences concern the study of convergent algorithms
for stochastic variational inequalities. Most of the literature relies on
Robbins–Siegmund Lemma and on the monotone and Lipschitz proper-
ties of the operator (see Definitions A.2 and A.3 in Appendix A.2).

Before entering the details on how the lemmas are applied, we recall
some preliminary notions on stochastic VIs (SVIs). For an extensive
overview, we refer to Shanbhag (2013) and reference therein. More
precisely, we are interested in solving SVI( ,F), where F is an expected
value function F(𝑥) = E[𝑓 (𝑥, 𝜉(𝜔))], for some measurable mapping
𝑓 ∶  × R𝑑 → R. 𝜉 ∶ 𝛺 → R𝑑 is a random variable and (𝛺, ,P) is the
probability space. For brevity, 𝜉 is used to denote 𝜉(𝜔). Analogously to
(6.1), we say that 𝑥∗ ∈  solves the SVI( ,F) if

∗ ∗
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⟨F(𝑥 ), 𝑦 − 𝑥 ⟩ ≥ 0, for all 𝑦 ∈  , (7.1)
and analogously to the deterministic case, we can consider the general
variational inequality as in (6.3)

find 𝑥∗ ∈  s.t. ⟨F(𝑥∗), 𝑦 − 𝑥∗⟩ + 𝑔(𝑦) − 𝑔(𝑥∗) ≥ 0 for all 𝑦 ∈ 

or a monotone inclusion as in (6.5), i.e., find 𝑥∗ ∈  such that 0 ∈
(F + 𝜕𝑔)(𝑥∗). We do not consider the case of stochastic functions 𝑔.

If the expected value of 𝑓 (𝑥, 𝜉) is known, then the stochastic vari-
ational inequality can be solved with a standard solution technique
for deterministic variational problems. However, the operator F(𝑥) is
usually not directly accessible, due to the computational burden or lack
of information on the distribution of the random variable. Therefore, in
general the focus is on 𝐹 (𝑥, 𝜉), an approximation of F(𝑥), given some
realizations 𝜉 of the random variable.

There are two main methodologies available: stochastic approxima-
tion (SA) and sample average approximation (SAA). In the first case,
F(𝑥) is approximated by considering only one (or a finite number of)
realization, at each iteration, of the random variable 𝜉 (Cui & Shanbhag,
2021; Iusem et al., 2017; Koshal et al., 2013; Kushner & Yin, 2003;
Robbins & Monro, 1951). In the second approach, instead, an infinite
number of samples is taken at each iteration, then the approximation
is given by the average over all the samples. The SAA scheme is mostly
used to study existence of a solution (Kleywegt, Shapiro, & Homem-de
Mello, 2002; Shapiro, 2003; Shapiro & Xu, 2008), and it is essentially
a deterministic problem, therefore, in this work, we focus on the SA
scheme. Hence, let us formalize it. If only one sample is available, the
expected value mapping is approximated at each iteration as

𝐹 SA(𝑥𝑘, 𝜉𝑘) = 𝑓 (𝑥𝑘, 𝜉𝑘), (7.2)

where 𝜉𝑘 is a realization of the random variable at time 𝑘. This
approach is computationally cheap, but it requires, in general, stronger
assumptions on the monotonicity of the mappings involved. Therefore,
sometimes it is used in combination with the so-called variance reduc-
tion (VR). In this case, at each iteration, the approximation of F(𝑥) has
the form

𝐹VR(𝑥, 𝜉𝑘) = 1
𝑘

𝑘
∑

𝑖=1
𝑓 (𝑥, 𝜉𝑘𝑖 )

= 1
𝑘

𝑘
∑

𝑖=1
𝐹 SA(𝑥, 𝜉𝑘𝑖 ) for all 𝑥 ∈  .

(7.3)

he batch size sequence (𝑘)𝑘∈N determines the number of samples
aken at each iteration. The sequence 𝜉𝑘 = (𝜉𝑘1 ,… , 𝜉𝑘𝑘

) is an i.i.d.
andom sequence. We suppose that 𝑘 satisfy the following assumption
ny time the approximation scheme in (7.3) is used.

tanding Assumption 7.1. The batch size sequence (𝑘)𝑘≥1 is such that,
or some 𝑐, 𝑘0, 𝑎 > 0,

𝑘 ≥ 𝑐(𝑘 + 𝑘0)𝑎+1, for all 𝑘 ∈ N. (7.4)

It follows from Standing Assumption 7.1 that the batch size se-
uence is summable and this is fundamental to control the error
ommitted in the approximation (see also Lemma A.2).

From now on, whenever we refer to an approximation without
pecifying the type, we use the symbol 𝐹 , while if it is one of the two
chemes we explicitly use 𝐹 SA or 𝐹VR.

Since we study an approximation (independently on the scheme),
et us indicate the stochastic error, that is, the distance between the
xpected value and its approximation, with
𝑘 = 𝐹 SA(𝑥𝑘, 𝜉𝑘) − F(𝑥𝑘),

here 𝜉𝑘 is a (vector of) realization of the random variable at itera-
ion 𝑘 ∈ N. Sometimes this term is also called martingale difference
Definition 2.6) (Kushner & Yin, 2003; Ljung et al., 2012).

Standard assumptions on the stochastic error 𝜖𝑘 are that it has zero
ean and bounded variance (Bot, Mertikopoulos et al., 2020; Franci &
rammatico, 2020a; Iusem et al., 2017; Lei & Shanbhag, 2018).
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Standing Assumption 7.2. The stochastic error is such that

E
[

𝜖𝑘|𝑘
]

= 0 a.s., for all 𝑘 ∈ N.

Moreover, for all 𝑥 ∈  and 𝑝 ≥ 1 let

𝑝(𝑥) = E
[

‖𝐹 SA(𝑥, 𝜉) − F(𝑥)‖𝑝
]

1
𝑝 .

There exist 𝑝 ≥ 2, 𝜎0 ≥ 0 and a measurable locally bounded function
𝜎 ∶ SOL( ,F) → R such that for all 𝑥 ∈  and all 𝑥∗ ∈ SOL( ,F)

𝑠𝑝(𝑥) ≤ 𝜎(𝑥∗) + 𝜎0‖𝑥 − 𝑥∗‖. (7.5)

In the following, for ease of reading, we use a stronger condition
than that in (7.5), namely,

E
[

‖𝐹 SA(𝑥, 𝜉) − F(𝑥)‖𝑝
]

1
𝑝 ≤ 𝜎. (7.6)

While Condition (7.5) is known in the literature as variance reduction,
the stronger formulation (7.6) is called uniform bounded variance.
Assumption (7.5) is more realistic in those cases where the feasible
set  is unbounded, and it is always satisfied when the mapping 𝑓
s Carathéodory and random Lipschitz continuous (Bot, Mertikopoulos
t al., 2020, Example 1). Since in many realistic examples the feasible
et is bounded, we use (7.6) as a variance control assumption. We also
emark that many of the following results hold also in the more general
ase given by Assumption 7.2 and using the 𝐿𝑝 norm for any 𝑝 ≥ 2.
e refer to Bot, Mertikopoulos et al. (2020), Iusem et al. (2017) and

eferences therein for a more detailed insight on this general case.

emark 7.1. When we use the SA scheme with variance reduction,
he following relation between the stochastic error and the batch size
equence holds (see Lemma A.2): for all 𝑘 ≥ 0, 𝑐 > 0, 𝜎 as in (7.6) and
𝑘 as in (7.4),
[

‖𝜖𝑘‖2|𝑘
]

≤ 𝑐𝜎2

𝑘
𝑎.𝑠.. (7.7)

Essentially, Lemma A.2 says that the second moment of the error de-
creases with the increasing number of samples of the random variable.

Sometimes more general results hold for the bound in (7.7) (see,
e.g., Bot, Mertikopoulos et al., 2020; Franci & Grammatico, 2020a;
Iusem et al., 2017) but they lie outside the scopes of the survey.

We are now ready to describe how the lemmas are used. The first ap-
plications that we present are all related to Robbins–Siegmund Lemma
(Lemma 4.1). We differentiate the applications on how the negative
term −𝜃𝑘 is exploited (Remark 4.1). Nonetheless, in all of them, the
summability of the term is used differently to obtain convergence. For
the first application we also provide a scheme (inspired by Fig. 7)
of the step that should be taken to use a lemma for sequences of
random numbers (Fig. 8). The section ends with an application of
Lemma 4.7. As the reader may note, the forthcoming applications rely
on the existence of a martingale, associated to the process, that the
lemmas prove to be convergent (Benaim, 1996).

7.1. Applications of Robbins–Siegmund Lemma

Application of Lemma 4.1 with residual. In Bot, Mertikopoulos et al.
(2020) and Iusem et al. (2017), the residual (𝑟𝛼(𝑥)) is used to prove con-
vergence (see Appendix for a definition and Remark A.1). Specifically,
in Bot, Mertikopoulos et al. (2020), the authors formulate a stochastic
forward–backward–forward algorithm, inspired by Tseng (2000), given
by the following updating rule:

𝑦𝑘 = proj (𝑥𝑘 − 𝛼𝑘𝐹VR(𝑥𝑘, 𝜉𝑘))

𝑥𝑘+1 = 𝑦𝑘 + 𝛼𝑘(𝐹VR(𝑥𝑘, 𝜉𝑘) − 𝐹VR(𝑦𝑘, 𝜂𝑘))
(7.8)

where 𝜉𝑛 and 𝜂𝑘 are i.i.d. random variables and 𝐹VR is as in (7.3).
Robbins–Siegmund Lemma is used for concluding that the sequence

(𝑥𝑘)𝑘∈N converges a.s. to a solution of the SVI in (7.1), proving that the
residual goes to zero (Remark A.1). A scheme of the proof and of how
180

Lemma 4.1 is used can be found in Fig. 8. a
Fig. 8. Schematic representation of Theorem 7.1. First, a distance like function is
defined, to obtain a quasi-Fejer inequality. Since the inequality correspond to Robbins–
Siegmund Lemma, Lemma 4.1 can be applied. Not only convergence is proved, but also
the fact that the negative term is summable contributes to showing that, asymptotically,
a solution is reached. For general guidelines, see also Fig. 7.

Theorem 7.1 (Theorem 1, Bot, Mertikopoulos et al., 2020). Let 𝑓 be a
arathéodory map and let F be pseudomonotone and 𝓁-Lipschitz continuous
ith 𝓁 > 0. Let 0 < inf𝑘≥0 𝛼𝑘 ≤ 𝛼𝑘 ≤ sup𝑘≥1 𝛼𝑘 <

1
√

2𝓁
. Then, the sequence

(𝑥𝑘)𝑘∈N generated by (7.8) converges a.s. to a limit random variable 𝑥∗ ∈
OL( ,F), and lim𝑘→∞ E[𝑟𝛼𝑘 (𝑥

𝑘)2] = 0.

roof. Using monotonicity and Lipschitz continuity of the mapping
and the definition of the algorithm in (7.8), it is possible to prove
recursion (Bot, Mertikopoulos et al., 2020, Lemma 5) that, taking

he expected value (Bot, Mertikopoulos et al., 2020, Proposition 1) and
sing some bounds on the stochastic error (Bot, Mertikopoulos et al.,
020, Lemma 6) (see also Lemma A.2), reads as

[‖𝑥𝑘+1 − 𝑥∗‖2|𝑘] ≤ ‖𝑥𝑘 − 𝑥∗‖2 −
𝜌𝑘
2
𝑟𝛼𝑘 (𝑥

𝑘)2 +
𝜅𝑘𝜎2

𝑘
, (7.9)

where 𝜌𝑘 = 1−2𝓁2𝛼2𝑘 and 𝜅𝑘 is a constant that depends on the Lipschitz
constant and on the step size. To use Lemma 4.1, let 𝑣𝑘 = ‖𝑥𝑘 − 𝑥∗‖2,
𝜃𝑘 = 𝜌𝑘

2 𝑟𝛼𝑘 (𝑥
𝑘)2 and 𝜀𝑘 =

𝜅𝑘𝜎20
𝑘

. Then the claim follows using the fact
that 𝜃𝑘 is summable and therefore the residual tends to zero. □

The use of the residual to prove convergence to the solution of
the SVI in (7.1) was previously introduced in Iusem et al. (2017)
where the authors propose a stochastic extragradient method inspired by
Korpelevich (1976). The iterations are given by

𝑧𝑘𝑖 = proj
[

𝑥𝑘𝑖 − 𝛼
𝑘𝐹VR

𝑖 (𝑥𝑘, 𝜉𝑘𝑖 )
]

𝑥𝑘+1𝑖 = proj
[

𝑥𝑘𝑖 − 𝛼
𝑘𝐹VR

𝑖 (𝑧𝑘, 𝜂𝑘𝑖 )
]

,
(7.10)

where (𝜉𝑘)𝑘∈N and (𝜂𝑘)𝑘∈N are i.i.d. samples of the random variable
uch that (𝜉𝑘)𝑘∈N and (𝜂𝑘)𝑘∈N are independent of each other. They have
ssumptions on the parameters similar to Bot, Mertikopoulos et al.
2020) and the variance reduction hypothesis. The main result is the
symptotic convergence of the algorithm.
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Theorem 7.2 (Theorem 3.18, Iusem et al., 2017). Let 𝑓 be a
Carathéodory map such that E[‖𝑓 (𝑥, 𝜉)‖] < ∞. Let F be pseudomonotone
and 𝓁-Lipschitz continuous mapping. Let 0 < inf𝑘∈N 𝛼𝑘 ≤ 𝛼𝑘 ≤ sup𝑘∈N 𝛼𝑘 <
1

√

6𝓁
for all 𝑘 ∈ N. Then, the sequence (𝑥𝑘)𝑘∈N generated by (7.10) is

bounded, lim𝑘→∞ 𝑑(𝑥𝑘,SOL( ,F)) = 0 and 𝑟𝛼𝑘 (𝑥
𝑘) converges to 0. In

particular, any cluster point of (𝑥𝑘)𝑘∈N belongs to SOL( ,F).

Proof. Given the properties of the operator F (Iusem et al., 2017,
Lemma 3.11) and of the parameters involved (Iusem et al., 2017,
Lemma 3.12), it holds that Iusem et al. (2017, Proposition 3.15)

E
[

‖𝑥𝑘+1 − 𝑥∗‖2|𝑘
]

≤
(

1 +
𝐶(𝜎2, 𝑥∗)

𝑘

)

‖𝑥𝑘 − 𝑥∗‖2

−
𝜌𝑘
2
𝑟𝛼𝑘 (𝑥

𝑘)2 +
𝐶(𝜎2, 𝑥∗)

𝑘

where 𝜌𝑘 = (1−6𝓁2𝛼2𝑘), 𝐶(𝜎
2, 𝑥∗) is a bounded quantity that depends on

the solution 𝑥∗ and on the variance (Iusem et al., 2017, Remark 3.17),
and 𝑟𝛼𝑘 (𝑥

𝑘) is the residual of 𝑥𝑘. Then the claim follows as in the proof
f Theorem 7.1, using Robbins–Siegmund Lemma. □

Application of Lemma 4.1 with strict monotonicity. Robbins–Siegmund
emma can also be used to prove the convergence of the partially
oordinated iterative proximal point scheme to a Nash equilibrium (Koshal
t al., 2013). The possibility to reach a Nash equilibrium in a game
heoretic framework is related to the fact that they can be obtained as
he solution of a suitable (S)VI (Facchinei & Pang, 2007, Proposition
.4.2). The updating rule of the algorithm is given by:
𝑘+1 = proj [𝑥𝑘 − 𝛼𝑘(𝐹 (𝑥𝑘, 𝜉𝑘) + 𝜇𝑘(𝑥𝑘 − 𝑥𝑘−1))] (7.11)

where 𝛼𝑘 ∈ R𝑛 and 𝜇𝑘 ∈ R𝑛 are the step size and the centering
parameters, respectively, and 𝑛 is the number of agents in the Nash
equilibrium problem.

Proposition 7.3 (Proposition 3, Koshal et al., 2013). Let F ∶  → R𝑛

be strictly monotone and 𝓁-Lipschitz continuous over  . Let the following
conditions hold:

1. 𝛼𝑘,max𝜇𝑘,max ≤ (1 + 2𝛼2𝑘,max𝓁
2)⋅ 𝛼𝑘−1,min𝜇𝑘−1,min for all 𝑘 ∈ N;

2. lim𝑘→∞
𝛼2𝑘,max𝜇

2
𝑘,min

𝛼𝑘,min𝜇𝑘,min
= 𝑐 with 𝑐 ∈

[

0, 12
)

;

3. ∑∞
𝑘=0 𝛼𝑘,𝑖 = ∞ and ∑∞

𝑘=0 𝛼
2
𝑘,𝑖 <∞ for all 𝑖 ≤ 𝑛;

4. ∑∞
𝑘=0

(

𝛼𝑘,max − 𝛼𝑘,min
)

<∞;
5. ∑∞

𝑘=0 𝛼
2
𝑘,maxE[‖𝜖𝑘‖

2
|𝑘] < ∞ a.s.

Then, the sequence (𝑥𝑘)𝑘∈N generated by (7.11) converges a.s. to a solution
of SVI( ,F).

Proof. Using the nonexpansiveness of the projection and some norm
properties, one can obtain

E[‖𝑥𝑘+1 − 𝑥∗‖2|𝑘] + 𝛼𝑘,min𝜇𝑘,min‖𝑥
𝑘 − 𝑥∗‖2

≤(1 + 𝛿𝑘)(‖𝑥𝑘 − 𝑥∗‖2 + 𝛼𝑘−1,min𝜇𝑘−1,min‖𝑥
𝑘−1 − 𝑥∗‖2)

− 𝛼𝑘,min𝜇𝑘,min(1 − 𝑑)‖𝑥𝑘 − 𝑥𝑘−1‖2 + 𝛼2𝑘,maxE[‖𝜖𝑘‖
2
|𝑘]

− 2𝛼𝑘,min(𝑥𝑘 − 𝑥∗)𝑇 (F(𝑥𝑘) − F(𝑥∗)),

where 𝑥∗ ∈ SOL( ,F), 𝛿𝑘 depends on the Lipschitz constant and on
the step sizes and 𝑑 ∈ (0, 1). To apply Lemma 4.1, let 𝑣𝑘 = ‖𝑥𝑘 −
𝑥∗‖2 + 𝛼𝑘−1,min𝜇𝑘−1,min‖𝑥𝑘−1 −𝑥∗‖2, 𝜃𝑘 = 𝛼𝑘,min𝜇𝑘,min(1− 𝑑)‖𝑥𝑘 −𝑥𝑘−1‖2 +
2𝛼𝑘,min⟨𝑥𝑘 − 𝑥∗,F(𝑥𝑘) − F(𝑥∗)⟩ and 𝜀𝑘 = 𝛼2𝑘,maxE[‖𝜖𝑘‖

2
|𝑘]. Then, it

follows that (𝑥𝑘)𝑘∈N is bounded and has a cluster point 𝑥̄. Since 𝜃𝑘

is summable, ⟨𝑥𝑘 − 𝑥∗,F(𝑥𝑘) − F(𝑥∗)⟩ → 0 and taking the limit for
𝑘 → ∞, ⟨𝑥̄ − 𝑥∗,F(𝑥̄) − F(𝑥∗)⟩ = 0. Since the mapping is strictly
monotone (Definition A.2) and the solution set is not empty (Standing
Assumption 6.1), there is only one solution 𝑥∗ (Facchinei & Pang, 2007,

∗
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Theorem 2.3.3), and we have that 𝑥̄ = 𝑥 . □ c
7.2. Applications of Robbins–Siegmund Lemma to specific problems

Application of Lemma 4.1 to model predictive control. An interesting
application of Robbins–Siegmund Lemma is provided in Lee and Nedić
(2015), where the authors propose the gossip-based random projections
(GRP) algorithm for distributed robust model predictive control (MPC).
In their problem, 𝑚 private facilities aim at finding an optimal control
law 𝑢 = col(𝑢(1),… , 𝑢(𝑇 )) of a dynamic system such that the resulting
trajectory 𝑥(𝑡), for 𝑡 = 1,… , 𝑇 , remains close to the locally known
facilities and the terminal state 𝑥(𝑇 ) is inside some uncertain box with
minimum control effort. Formally, the distributed MPC optimization
problem is given by

min
𝑢

𝑓 (𝑢) =
𝑚
∑

𝑖=1
𝑓𝑖(𝑢)

𝑠.𝑡. 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑢 ∈ 

max
𝓁=1,2,3,4

{(𝑎𝓁 + 𝑐𝓁)⊤𝑥(𝑇 ) − 𝑏𝓁} ≤ 0

where 𝑢 ∈  represent the uncertain input constraint and the last in-
equality describe the random terminal constraint ( from now on). We
refer to Lee and Nedić (2015) for a specific choice of 𝑓 , 𝐴 and 𝐵. The
algorithm is based on random projections and a gossip communication
protocol inspired by Boyd, Ghosh, Prabhakar, and Shah (2006). At each
time 𝑘, only an agent 𝐼𝑘 ∈  and its neighbor 𝐽𝑘 ∈  wake up. They
draw a sample of one of the linear inequality terminal constraints and
they update their estimate while the other agents do nothing. Then,
they project their current iterate on the selected constraint  and on
 . The GRP algorithm reads, for 𝑖 ∈ {𝐼𝑘, 𝐽𝑘}, as

𝑤𝑘𝑖 =
𝑢𝑘−1𝐼𝑘

+ 𝑢𝑘−1𝐽𝑘
2

𝑢𝑘𝑖 = proj∩ [𝑤𝑘𝑖 − 𝛼
𝑘
𝑖 ∇𝑓𝑖(𝑤

𝑘
𝑖 )]

(7.12)

where {𝛼𝑘𝑖 }𝑘∈N is the step size sequence, defined such that 𝛼𝑘𝑖 = 1∕𝛤 𝑘𝑖 ,
where 𝛤 𝑘𝑖 is the number of updates 𝑖 has performed until time 𝑘.

Let us denote 𝑧𝑘𝑖 = proj (𝑤𝑘𝑖 ) and let 𝑤̃ = 1
𝑚
∑𝑚
𝑖=1𝑤𝑖 (analogously 𝑧̃).

Then, convergence of the algorithm is proven as follows.

Proposition 7.4 (Lee & Nedić, 2015, Proposition 1). Let the communi-
cation graph be connected and let the set  be closed and convex. Let the
functions 𝑓𝑖 ∶ R𝑑 → R be convex and differentiable and let their gradients
∇𝑓𝑖 be Lipschitz continuous and bounded over  , i.e., ‖∇𝑓𝑖(𝑢)‖ ≤ 𝐺𝑓 for
ll 𝑢 ∈  and all 𝑖 ∈ . Let ∗ be a nonempty optimal set. Then, the
equences {𝑢𝑘𝑖 }𝑘∈N, 𝑖 ∈ , generated by (7.12) converge to some random
oint 𝑢∗ ∈ ∗ a.s., i.e., lim𝑘→∞ 𝑢𝑘𝑖 = 𝑢∗ a.s. for all 𝑖 ∈ .

roof. First, it is possible to show (by using Lemma 4.1) that 𝑤𝑘𝑖 ap-
roaches  (Lee & Nedić, 2015, Lemma 3), and that any two sequences
𝑤𝑘𝑖 }𝑘∈N and {𝑤𝑘𝑗 }𝑘∈N have the same limit points a.s. Lee and Nedić
2015, Lemma 4). Then, it holds by Lee and Nedić (2015, Lemma 2)
nd some properties of the projection, of the norms and of the mappings
nvolved, that
𝑚

𝑖=1
E[‖𝑢𝑘𝑖 − 𝑢

∗
‖

2 ∣ 𝑘−1]

≤

(

1 +
𝑎4

𝑘
3
2 − 𝑞

) 𝑚
∑

𝑗=1
‖𝑢𝑘−1𝑗 − 𝑢∗‖2

− 2
𝑘
E
[

𝑓 (𝑧̃𝑘) − 𝑓 ∗ ∣ 𝑘−1
]

+
4𝐺𝑓
𝑘

𝑚
∑

𝑖=1
E[‖𝑤𝑘𝑖 − 𝑤̃

𝑘
‖ ∣ 𝑘−1] +

𝑎2𝑚

𝑘
3
2 − 𝑞

(7.13)

here 𝑞, 𝑎2 and 𝑎4 are constants. Eq. (7.13) satisfies the conditions from
emma 4.1 (Lee & Nedić, 2015, Lemma 4). Hence, {‖𝑢𝑘𝑖 − 𝑢

∗
‖

2}𝑘∈N is
onvergent a.s. for any 𝑖 ∈  and 𝑢∗ ∈ ∗. Moreover, by Lemma 4.1,
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lim inf𝑘→∞ 𝑓 (𝑧̃𝑘) − 𝑓 ∗ = 0 a.s. and by Lee and Nedić (2015, Lemma
3) lim𝑘→∞ ‖𝑤𝑘𝑖 − 𝑧𝑘𝑖 ‖ = 0 for all 𝑖 ∈  a.s. Hence also the se-
uences {‖𝑤𝑘𝑖 − 𝑢∗‖2}𝑘∈N and {‖𝑧𝑘𝑖 − 𝑢∗‖2}𝑘∈N and their averages

{‖𝑤̃𝑘 − 𝑢∗‖2}𝑘∈N and {‖𝑧̃𝑘 − 𝑢∗‖2}𝑘∈N are convergent and the sequences
𝑤̃𝑘}𝑘∈N and {𝑧̃𝑘}𝑘∈N are bounded and have an accumulation point in
∗. Since lim inf𝑘→∞ ‖𝑤𝑘𝑖 − 𝑤̃𝑘‖ = 0 for all 𝑖 ∈  a.s., it follows that

im𝑘→∞ ‖𝑤𝑘𝑖 − 𝑢
∗
‖ = 0 for all 𝑖 ∈  a.s. Finally, by Lee and Nedić (2015,

emma 3), lim𝑘→∞ ‖𝑢𝑘𝑖 − 𝑤𝑘𝑖 ‖ = 0 for all 𝑖 ∈  a.s., which leads to,
im𝑘→∞ 𝑢𝑘𝑖 = 𝑢∗ for all 𝑖 ∈  a.s. □

pplication of Corollary 4.4 to the Law of Large Numbers. Remarkably,
he convergence results for sequences can be used also for others scopes
eside convergence of an algorithm. This is the case of Corollary 4.4
hich is used to prove the Law of Large Numbers. To introduce this
pplication, let us define the notion of increasing process associated to
martingale (Chung et al., 1990; Duflo, 2013).

Let 𝑦𝑘 be a martingale such that E[𝑦2𝑘] < ∞ for all 𝑘 ∈ N. Then,
ts increasing process is the sequence (⟨𝑦⟩𝑘)𝑘∈N defined by ⟨𝑦⟩0 = 0
nd ⟨𝑦⟩𝑘+1 − ⟨𝑦⟩𝑘 = E[𝑦2𝑘+1 − 𝑦

2
𝑘 ∣ 𝑘] (Duflo, 2013, Proposition 1.3.7).

or instance, if (𝑧𝑘)𝑘∈N is a sequence of identically distributed random
ariables with mean 𝜇 and variance 𝜎2 then 𝑦𝑘 = 𝑧1 + ⋯ + 𝑧𝑘 − 𝑘𝜇
atisfies E[𝑦2𝑘] < ∞ and is such that ⟨𝑦⟩𝑘 = 𝑘𝜎2. Then, the following

generalization of the Law of Large Numbers for martingales holds.

Theorem 7.5 (Theorem 1.3.15, Duflo, 2013). Let (𝑦𝑘)𝑘∈N be a martingale
such that E[𝑦2𝑘] <∞ for all 𝑘 ∈ N and let (⟨𝑦⟩𝑘)𝑘∈N be its increasing process.
Then, a.s. lim𝑘→∞

𝑦𝑘
⟨𝑦⟩𝑘

= 0.

roof. To apply Corollary 4.4, let 𝑣𝑘 = 𝑦2𝑘, 𝜀𝑘 = ⟨𝑦⟩𝑘+1 − ⟨𝑦⟩𝑘
and 𝑎𝑘 = ⟨𝑦⟩𝑘+1(ln(⟨𝑦⟩𝑘+1))1+𝛾 . Then, if ⟨𝑦⟩𝑘0 > 1, ∑∞

𝑘=𝑘0
𝑎−1𝑘 𝜀𝑘 < ∞,

lim𝑘→∞ 𝑎−1𝑘 𝑣𝑘 = 0 and the claim follows. □

Remark 7.2. We note that, even if it does not involve an algorithm,
Theorem 7.5 is in agreement with Figs. 7 and 8. In fact, we have an
iterative process ((𝑦𝑘)𝑘∈N), to which we assign a sequence (𝑣𝑘 = 𝑦2𝑘) to
obtain an inequality as in Corollary 4.4, retrieved from Table 4, and
prove the result.

7.3. Applications of Lemma 4.7

Application of Lemma 4.7 to a variational problem. In Yousefian et al.
(2014), a smoothing extragradient scheme with stochastic approximation,
similar to (7.10), is proposed. The iterations read as

𝑦𝑘+1 = proj [𝑥𝑘 − 𝛾𝑘𝐹 (𝑥𝑘 +𝑤𝑘, 𝜂𝑘)]

𝑥𝑘+1 = proj [𝑥𝑘 − 𝛾𝑘𝐹 (𝑦𝑘+1 + 𝑧𝑘, 𝜉𝑘)]
(7.14)

where (𝛾𝑘)𝑘∈N is the step size sequence, 𝜂𝑘 and 𝜉𝑘 are i.i.d. samples
of the random variable and the sequences (𝑤𝑘)𝑘∈N and (𝑧𝑘)𝑘∈N are also
i.i.d. random variables drawn from an uniform distribution on

[

− 𝛿𝑘
2 ,

𝛿𝑘
2

]

where 𝛿𝑘 is the smoothing sequence. Let 𝛿 =  + 𝐶𝑛(0, 𝛿) where 𝐶𝑛 is
a 𝑛-dimensional cube centered at the origin and 𝛿 is an upper bound
on 𝛿𝑘. Then, the following holds.

Theorem 7.6 (Theorem 2, Yousefian et al., 2014). Let  ⊆ R𝑛 be closed,
onvex, and 𝑀-bounded. Let F be strictly monotone over  and bounded on
𝛿 for some 𝐶 > 0. Suppose the sequence (𝛾𝑘)𝑘∈N is such that ∑∞

𝑘=1 𝛾
2
𝑘 <∞

and ∑∞
𝑘=1 𝛾

𝑘 = ∞ that the sequence 𝛿𝑘 is diminishing according to Yousefian
et al. (2014, Equation 19). Then, the sequence (𝑥𝑘)𝑘∈N generated by (7.14)
converges to a solution 𝑥∗ of SVI( ,F) a.s. as 𝑘→ ∞.

Proof. Using the assumptions, from Yousefian et al. (2014, Lemma 4)
the following inequality holds:

E[‖𝑥𝑘+1 − 𝑥∗‖2 ∣  ] ≤
(

1 −
𝛼𝛾𝑘 )

‖𝑥𝑘 − 𝑥∗‖2 + 𝑞𝛾2
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𝑘 𝑀 𝑘
where 𝑞 is a constant that depends on the constant 𝐶 and on the
variance of the stochastic error and 𝑀 is the bound on the set  . Then,
onvergence follows applying Lemma 4.7 to 𝑣𝑘 = ‖𝑥𝑘 − 𝑥∗‖2, 𝜖𝑘 = 𝑞𝛾2𝑘
nd 𝛿𝑘 = 𝛼𝛾𝑘

𝑀 . □

Application of Lemma 4.7 to opinion dynamics. The fact Lemma 4.7
provides convergence to zero is used in Shi et al. (2013) to prove
agreement in an opinion dynamics model. Let us consider the spreading
of true or false information over a communication network or faults
propagations in large scale control systems. In these models, there are
𝑛 nodes and each of them (node 𝑖) activates with a probability 1∕𝑛, then
it picks a neighbor 𝑗 with probability 𝑎𝑖𝑗 . The probabilities are collected
in the interaction matrix 𝐴 = [𝑎𝑖𝑗 ]𝑛𝑖,𝑗=1. The dynamics is described as
follows, given 𝛼 + 𝛽 + 𝛾 = 1:

(i) (Attraction) With probability 𝛼, node 𝑖 updates its opinion toward
that of its neighbor 𝑗,

𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 + 𝑇𝑘(𝑥
𝑘
𝑗 − 𝑥

𝑘
𝑖 ),

where 0 < 𝑇𝑘 ≤ 1 is the trust level;
(ii) (Neglect) With probability 𝛽, node 𝑖 keeps its own opinion,

𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 ;

(iii) (Repulsion) With probability 𝛾, node 𝑖 moves away from 𝑗, i.e., it
updates with a negative coefficient,

𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 − 𝑆𝑘(𝑥
𝑘
𝑗 − 𝑥

𝑘
𝑖 )

where 𝑆𝑘 > 0.

The authors propose in Shi et al. (2013) some conditions on the quanti-
ties involved under which agreement or disagreement can be obtained
with a time-invariant trust level. As a measure of disagreement, let
𝐿𝑘 =

∑𝑛
𝑖=1 ‖𝑥

𝑘
𝑖 − 𝑥ave‖

2, where 𝑥ave =
∑𝑛
𝑖=1

𝑥0𝑖
𝑛 is the average of the

initial values. Then, the following result holds.

Theorem 7.7 (Shi et al., 2013, Theorem 5). Let the communication graph
be weakly connected and suppose that the updates are symmetric. Let 𝜆∗2 be
the second smallest eigenvalue of 𝐷−(𝐴+𝐴⊤) with 𝐷 = diag

(

𝑑1 … 𝑑𝑛
)

, 𝑑𝑖 =
𝑛
𝑗=1

(

𝑎𝑖𝑗 + 𝑎𝑗𝑖
)

. Let 𝑇𝑘 ≡ 𝑇 ∗ ∈ [0, 1] and 𝑆𝑘 ≡ 𝑆∗ > 0. Then

𝐷∗ = 𝑆∗ (1 + 𝑆∗) 𝛾 − 𝑇 ∗ (1 − 𝑇 ∗) 𝛼

is a critical convergence measure regarding the state convergence of the con-
sidered network. Specifically, if 𝐷∗ < 0, then global agreement convergence
is achieved, i.e., lim𝑘→∞ E[𝐿𝑘] = 0 a.s.

Proof. Given some preliminary results (Shi et al., 2013, Proposition
3), it holds that

E[𝐿𝑘+1 ∣𝑘] ≤
(

1 − 2
𝑛
𝐷∗𝜆∗2

)

𝐿𝑘

then lim𝑘→∞ E[𝐿𝑘] = 0 a.s. by Lemma 4.7. □

7.4. Other applications

Other applications of Robbins–Siegmund Lemma (Lemma 4.1) can
be found in Alacaoglu and Malitsky (2021), Cui and Shanbhag (2021),
Iusem et al. (2017, 2019), Jiang and Xu (2008), Kannan and Shanbhag
(2019) and Wang and Bertsekas (2015) for variational problems and
monotone inclusions. Concerning Nash equilibrium problems, it is used
in Franci and Grammatico (2020a, 2021a) and Koshal et al. (2013). In
the specific case of generative adversarial networks, Lemma 4.1 is used
in Franci and Grammatico (2020b, 2021b). For an application of this
stochastic result to a deterministic problem, we refer to Koshal, Nedić,
and Shanbhag (2016). Regarding dynamic systems and Lyapunov anal-
ysis, other utilizations of Robbins–Siegmund Lemma are in Benaim
(1996, Section 3), Bharath and Borkar (1999) and Ljung et al. (2012,

Section I.1).
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For other applications of Lemma 4.7 instead, the interested reader
may refer to Cui and Shanbhag (2021), Iusem et al. (2019), Kannan
and Shanbhag (2019, 2019), Koshal et al. (2013), Lei, Shanbhag, Pang
et al. (2020) and Yousefian et al. (2017).

8. Applications of convergent sequences with variable metric

The variable metric framework is not studied as much as the classic
setting. We refer to Combettes and Vũ (2013), Vũ (2013) and Cui et al.
(2019) for some applications. Next, we illustrate the application to a
monotone inclusion problem.

Application of Proposition 5.1 and Theorem 5.2. A study of the forward–
backward–forward algorithm (Bot, Mertikopoulos et al., 2020; Tseng,
2000) with variable metric is considered in Vũ (2013). There, the
authors consider the splitting of a sum of a maximally monotone
operator 𝐴 and a monotone, Lipschitz continuous operator 𝐵 of the
form (6.5) and they suppose that multiple errors (sequences 𝑎𝑘, 𝑏𝑘 and
𝑘) can be made at each iteration. Formally, their proposed algorithm
eads as
𝑘 = 𝑥𝑘 − 𝛾𝑘𝑊𝑘(𝐵𝑥𝑘 + 𝑎𝑘)
𝑘 = (Id+𝛾𝑘𝑊𝑘𝐴)−1𝑦𝑘 + 𝑏𝑘

𝑢𝑘 = 𝑦𝑘 + 𝛾𝑘𝑊𝑘(𝐵𝑣𝑘 + 𝑐𝑘)

𝑥𝑘+1 = 𝑥𝑘 − 𝑦𝑘 + 𝑢𝑘

(8.1)

where (𝑊𝑘)𝑘∈N is the sequence of operators used to induce the metric.
Then, the following convergence result holds true.

Theorem 8.1 (Theorem 3.1, Vũ, 2013). Let 𝛽,𝓁 > 0, let (𝜂𝑘)𝑘∈N be a
nonnegative sequence such that ∑∞

𝑘=1 𝜂
𝑘 <∞ and let (𝑊𝑘)𝑘∈N be a sequence

in 𝛽 such that

𝜇 = sup
𝑘∈N

‖𝑊𝑘‖ < +∞

(1 + 𝜂𝑘)𝑊𝑘+1 ⪰ 𝑊𝑘, for all 𝑘 ∈ N.

Let 𝐴 ∶ R𝑛 ⇉ R𝑛 be maximally monotone, let 𝐵 ∶ R𝑛 → R𝑛 be monotone
and 𝓁-Lipschitz continuous. Let (𝑎𝑘)𝑘∈N, (𝑏𝑘)𝑘∈N and (𝑐𝑘)𝑘∈N be such that
∑∞
𝑘=1 |𝑎

𝑘
| < ∞, ∑∞

𝑘=1 |𝑏
𝑘
| < ∞ and ∑∞

𝑘=1 |𝑐
𝑘
| < ∞. Let 𝑥0 ∈ R𝑛,

𝜀 ∈ (0, 1∕(𝓁𝜇 + 1)) and let (𝛾𝑘)𝑘∈N be a sequence in [𝜀, (1 − 𝜀)∕(𝓁𝜇)]. Let
𝑥∗ ∈ zer(𝐴 + 𝐵) and let (𝑥𝑘)𝑘∈N be the sequence generated by (8.1). Then,
the following hold:

(i) ∑∞
𝑘=1 ‖𝑥

𝑘 − 𝑣𝑘‖2 < +∞,
(ii) lim𝑘→∞ 𝑥𝑘 = 𝑥∗.

Proof. After using some results from Combettes and Vũ (2013) to guar-
antee that the sequences are well defined and that the monotonicity
properties of the operators 𝑊𝑘𝐴 and 𝑊𝑘𝐵 hold, a quasi-Féjer inequality
can be proven, i.e.,

‖𝑥𝑘+1 − 𝑥∗‖2
𝑊 −1
𝑘+1

≤ (1 + 𝜂𝑘)‖𝑥𝑘 − 𝑥∗‖2
𝑊 −1
𝑘

− 𝜇−1(1 − 𝛾2𝑘𝓁
2𝜇2)‖𝑥𝑘 − 𝑣𝑘‖2 + 𝜀𝑘,

(8.2)

where (𝜀𝑘)𝑘∈N is a summable sequence depending on the error se-
quences (𝑎𝑘)𝑘∈N, (𝑏𝑘)𝑘∈N and (𝑐𝑘)𝑘∈N. Then, from Proposition 5.1, it
holds that (‖𝑥𝑘−𝑥∗‖𝑊 −1

𝑘
)𝑘∈N is bounded and from Lemma 3.4, it follows

that ∑∞
𝑘=1 ‖𝑥

𝑘 − 𝑣𝑘‖2 < ∞. Convergence holds as a consequence of
Theorem 5.2 by letting 𝑥̄ be a cluster point. □

9. Conclusion

By trying to answer the question posed by Polyak in 1987, this
survey highlights the importance of convergence theorems for mathe-
matical system theory, in a variety of mathematical applications areas.

Thanks to the notions of Lyapunov decrease and (quasi) Féjer mono-
tonicity, results showing the convergence of sequences of (random)
real numbers can be exploited in game equilibrium problems, machine
learning and optimization, where these results are key to analyze and
183

design iterative processes with guaranteed convergence.
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Appendix. Auxiliary notions

A.1. Preliminaries

In this section, we recall some notions from operator theory
(Bauschke et al., 2011; Facchinei & Pang, 2007; Ryu & Boyd, 2016).
Let us start with some notation.

𝜄 is the indicator function of the set  , that is, 𝜄 (𝑥) = 0 if 𝑥 ∈ 
and 𝜄 (𝑥) = ∞ otherwise. The set-valued mapping N ∶ R𝑛 → R𝑛

denotes the normal cone operator of the set  , i.e., N (𝑥) = ∅ if 𝑥 ∉  ,
N (𝑥) =

{

𝑣 ∈ R𝑛| sup𝑧∈ ⟨𝑣, 𝑧 − 𝑥⟩ ≤ 0
}

otherwise. Given 𝜓 ∶ R𝑛 → R,
dom(𝜓) ∶= {𝑥 ∈ R𝑛|𝜓(𝑥) <∞} is the domain of 𝜓 and its subdifferential
is the set-valued mapping 𝜕𝜓(𝑥) ∶= {𝑣 ∈ R𝑛|𝜓(𝑧) ≥ 𝜓(𝑥)+⟨𝑣, 𝑧−𝑥⟩, ∀𝑧 ∈
om(𝜓)}.

Let us now provide the definition of projection, proximal operator
and resolvent which are used in many algorithms.

Definition A.1. Let 𝑥 ∈ R𝑛 and let  ⊆ R𝑛 be nonempty closed and
convex.

• The projection operator onto  is the operator defined as

proj (𝑥) = argmin
𝑧∈

‖𝑧 − 𝑥‖2.

The point proj (𝑥) is the closest point to 𝑥 in . It always exists
and it is unique.

• Given a proper lower semicontinuous convex function 𝑓 ∶ R𝑛 →

R̄, the proximity operator of f is the operator defined as

prox𝑓 (𝑥) = argmin
𝑦∈R𝑛

(

𝑓 (𝑦) + 1
2
‖𝑥 − 𝑦‖2

)

• Given 𝐴 ∶ R𝑛 ⇉ R𝑛, the resolvent of 𝐴 is the operator defined as

𝐽𝐴 = (Id+𝐴)−1

where Id is the identity function.

The notions discussed until now are related by the following exam-
le.

xample A.1 (Example 23.4, Bauschke et al., 2011). Let 𝑓 = 𝜄 to be the
ndicator function of the set  ⊆ R𝑛, then

N
=
(

Id + N
)−1 = prox𝜄 = proj

where N is the normal cone of .

Given a closed and convex set  ⊆ R𝑛, 𝐹 ∶  → R𝑛 and 𝛼 > 0, let
res𝛼(𝑥) = ‖𝑥 − proj (𝑥 − 𝛼𝐹 (𝑥))‖ be the residual function.

Remark A.1. Let 𝐹 ∶  → R𝑛 and  ⊆ R𝑛 be closed and convex. Then,
Facchinei and Pang (2007, Proposition 1.5.8)

res(𝑥∗) = 0 if and only if 𝑥∗ ∈ SOL(, 𝐹 ).

Moreover, it holds that

∗ ∗ ∗ ∗
𝑥 ∈ SOL(, 𝐹 ) if and only if 𝑥 = proj (𝑥 − 𝛼𝐹 (𝑥 )).
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A.2. Operator theory

The convergence properties of the algorithms proposed for VIs
or monotone inclusions are strictly related to the properties of the
operators, to its monotonicity in particular. For this reason, here we
recall some definition that are useful for the applications.

Definition A.2. Let gra(𝐹 ) = {(𝑥, 𝑢) ∶ 𝑢 ∈ 𝐹 (𝑥)} be the graph of
∶  ⊆ R𝑛 → R𝑛. Then, F is said to be

(a) pseudomonotone on  if ⟨𝐹 (𝑦), 𝑥 − 𝑦⟩ ≥ 0 ⇒ ⟨𝐹 (𝑥), 𝑥 − 𝑦⟩ ≥
0 for all 𝑥, 𝑦 ∈  ;

(b) monotone on  if ⟨𝐹 (𝑥) − 𝐹 (𝑦), 𝑥 − 𝑦⟩ ≥ 0, for all 𝑥, 𝑦 ∈  ;
(c) strictly monotone on  if ⟨𝐹 (𝑥) − 𝐹 (𝑦), 𝑥 − 𝑦⟩ > 0, for all 𝑥, 𝑦 ∈

 and 𝑥 ≠ 𝑦;
(e) 𝜇-strongly monotone on  if there exists a constant 𝜇 > 0 such

that ⟨𝐹 (𝑥) − 𝐹 (𝑦), 𝑥 − 𝑦⟩ ≥ 𝜇‖𝑥 − 𝑦‖2, for all 𝑥, 𝑦 ∈  ;
(f) maximally monotone (or maximal monotone) if there exists no

monotone operator 𝐺 ∶  → R𝑛 such that gra𝐺 properly contains
gra𝐹 , i.e., (𝑥, 𝑢) ∈ gra𝐹 ⇔ for all (𝑦, 𝑣) ∈ gra𝐹 it holds ⟨𝑥 − 𝑦|𝑢 −
𝑣⟩ ≥ 0;

(g) uniformly monotone at 𝑦 if there exist an increasing function
𝜙 ∶ R≥0 → R≥0 vanishing only at 0 such that ⟨𝐹 (𝑥)−𝐹 (𝑦), 𝑥−𝑦⟩ ≥
𝜙(‖𝑥 − 𝑦‖).

The weakest assumption is pseudomonotonicity while strong mono-
tonicity implies all the other notions. Strictly monotone operators are
widely used in variational inequalities problems since this is the weaker
assumption that guarantees uniqueness of the solution (Facchinei &
Pang, 2007, Theorem 2.3.3). It implies monotonicity that, in turn,
implies pseudomonotonicity.

Many results are also related to the Lipschitz and cocoercivity
constants of the operator.

Definition A.3. A mapping 𝐹 ∶  ⊆ R𝑛 → R𝑛 is said to be

(a) 𝓁-Lipschitz continuous with constant 𝓁 > 0 if for all 𝑥, 𝑦 ∈  it
holds ‖𝐹 (𝑥) −𝐹 (𝑦)‖ ≤ 𝓁‖𝑥− 𝑦‖; if 𝓁 < 1, F is called a contraction;

(b) nonexpansive if it is 1-Lipschitz continuous, i.e., ‖𝐹 (𝑥) − 𝐹 (𝑦)‖ ≤
‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈  ;

(c) firmly nonexpansive if ‖𝐹 (𝑥)−𝐹 (𝑦)‖2+‖(Id−𝐹 )(𝑥)−(Id−𝐹 )(𝑦)‖2 ≤
‖𝑥 − 𝑦‖2, for all 𝑥, 𝑦 ∈ 

(d) 𝛽-cocoercive on  if there exists a constant 𝛽 > 0 such that
⟨𝐹 (𝑥) − 𝐹 (𝑦), 𝑥 − 𝑦⟩ ≥ 𝛽‖𝐹 (𝑥) − 𝐹 (𝑦)‖2, for all 𝑥, 𝑦 ∈  .

It follows (using Cauchy–Schwartz inequality) that if a map is 𝛽-
cocoercive, it is also 1∕𝛽-Lipschitz continuous. Moreover, cocoercivity
implies monotonicity.

Sometimes, in the stochastic case, we mention that the map is
Carathéodory.

Definition A.4. A mapping 𝐹 ∶ R𝑑 × 𝛯 → R𝑛 is a Carathéodory map
if 𝑥 ↦ 𝐹 (𝑥, 𝜉) is continuous for almost every 𝜉 ∈ 𝛯, and 𝜉 ↦ 𝐹 (𝑥, 𝜉) is
measurable for all 𝑥 ∈ R𝑑 where 𝜉 is a random variable with values in

, defined on a probability space (𝛺, ,P).

A.3. Auxiliary results

Let us recall some results on martingales as this property for 𝐿𝑝
norms, known as Burkholder–Davis–Gundy inequality (Kushner & Yin,
2003; Stroock, 2010).

Lemma A.1 (Burkholder–Davis–Gundy Inequality). Let (𝑘)𝑘∈N be a filtra-
tion and {𝑢𝑘}𝑘≥0 a vector-valued martingale relative to this filtration. Then,
for all 𝑝 ∈ [1,∞), there exists a universal constant 𝑐𝑝 > 0 such that for
every 𝑘 ≥ 1

E
[(

sup
0≤𝑖≤𝑁

‖

‖

𝑢𝑖‖‖

)𝑝] 1
𝑝
≤ 𝑐𝑝E

⎡

⎢

⎢

( 𝑁
∑

‖

‖

𝑢𝑖 − 𝑢𝑖−1‖‖
2
)

𝑝
2 ⎤
⎥

⎥

1
𝑝

.
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⎣

𝑖=1
⎦

We also recall the Minkowski inequality: for given functions 𝑓, 𝑔 ∈
𝐿𝑝(𝛯, ,P),  ⊆  and 𝑝 ∈ [0;∞]

E
[

‖𝑓 + 𝑔‖𝑝|
]
1
𝑝 ≤ E

[

‖𝑓‖𝑝|
]
1
𝑝 + E

[

‖𝑔‖𝑝|
]
1
𝑝 .

When combined with the Burkholder–Davis–Gundy inequality, it leads
to the fact that for all 𝑝 ≥ 2, there exists a constant 𝑐𝑝 > 0 such that,
for every 𝑘 ≥ 1,

E
[(

sup
0≤𝑖≤𝑁

‖𝑢𝑖‖
)𝑝] 1

𝑝
≤ 𝑐𝑝

√

√

√

√

𝑁
∑

𝑘=1
E
(

‖𝑢𝑖 − 𝑢𝑖−1‖𝑝
)
2
𝑝 .

The following result is presented for uniformly bounded variance
but holds also for more general assumptions. For similar results, one
can refer to Bot, Mertikopoulos et al. (2020), Franci and Grammatico
(2020a) and Iusem et al. (2017).

Lemma A.2. Let 𝑐 > 0. Let 𝜎 be as in Eq. (7.6) and 𝑘 as in Standing
Standing Assumption 7.1. Then, it holds a.s. that

E
[

‖𝜖𝑘‖2|𝑘
]

≤ 𝑐𝜎2

𝑘
, for all 𝑘 ∈ N.

Proof. We first prove that

E
[

‖𝜖𝑘‖2|𝑘
]

1
2 ≤

𝑐2𝜎
√

𝑘

then the claim follows immediately. To this aim, let us first notice
that 𝐹VR(𝑥, 𝜉) = 1


∑
𝑘=1 𝐹

SA(𝑥, 𝜉𝑘). Then, let us define the process
𝑀𝑆

𝑆 (𝑥)}
𝑆
𝑖=0 as 𝑀0(𝑥) = 0 and for 1 ≤ 𝑖 ≤ 𝑆

𝑀𝑆
𝑖 (𝑥) =

1
𝑆

𝑖
∑

𝑗=1
𝐹 SA(𝑥, 𝜉𝑗 ) − F(𝑥).

Let 𝑖 = 𝜎(𝜉1,… , 𝜉𝑖). Then {𝑀𝑆
𝑖 (𝑥),𝑖}

𝑆
𝑖=1 is a martingale starting at 0.

et
𝑀𝑆

𝑖−1(𝑥) =𝑀𝑆
𝑖 (𝑥) −𝑀

𝑆
𝑖−1(𝑥)

= 1
𝑆
(𝐹 SA(𝒙, 𝜉𝑖) − F(𝒙)).

Then, by Eq. (7.6), we have

E
[

‖𝛥𝑀𝑆
𝑖−1‖

2]
1
2 = 1

𝑆
E
[

‖𝐹 SA(𝑥, 𝜉𝑖) − F(𝑥)‖2
]

1
2 ≤ 𝜎

𝑆
.

y applying Lemma A.1, we have

[

‖𝑀𝑆
𝑆 (𝑥)‖

2]
1
2 ≤ 𝑐2

√

√

√

√

𝑁
∑

𝑖=1
E
[

‖

𝐹 SA(𝒙, 𝜉𝑖) − F(𝑥)
𝑆

‖

2
]

≤ 𝑐2

√

√

√

√
1
𝑆2

𝑁
∑

𝑖=1
E
[

‖𝐹 SA(𝒙, 𝜉𝑖) − F(𝑥)‖2
]

≤
𝑐2𝜎
√

𝑆
.

We note that 𝑀𝑆
𝑆 (𝑥

𝑘) = 𝜖𝑘, hence by taking the square we conclude
that

E
[

‖𝜖𝑘‖2|𝑘
]

≤ 𝑐𝜎2

𝑘
. □
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