

Delft University of Technology

Selections of vine structures and their applications

Zhu, K.

DOI
10.4233/uuid:84ba9f5e-2c5c-4280-9789-35fd650fc617
Publication date
2022
Document Version
Final published version
Citation (APA)
Zhu, K. (2022). Selections of vine structures and their applications. [Dissertation (TU Delft), Delft University
of Technology]. https://doi.org/10.4233/uuid:84ba9f5e-2c5c-4280-9789-35fd650fc617

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:84ba9f5e-2c5c-4280-9789-35fd650fc617
https://doi.org/10.4233/uuid:84ba9f5e-2c5c-4280-9789-35fd650fc617

SELECTIONS OF VINE STRUCTURES AND THEIR
APPLICATIONS

SELECTIONS OF VINE STRUCTURES AND THEIR
APPLICATIONS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Wednesday 6 July 2022 at 15:00 o’clock

by

Kailun ZHU

Master of Science in Financial Engineering,
National University of Singapore, Singapore,

born in Huzhou, Zhejiang, China.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Dr. D. Kurowicka Delft University of Technology, promotor
Dr. ir. G.F. Nane Delft University of Technology, copromotor

Independent members:
Prof. dr. ir. G. Jongbloed Delft University of Technology
Prof. dr. T.J. Bedford University of Strathclyde, Glasgow
Prof. dr. I. van Keilegom Katholieke Universiteit Leuven
Prof. dr. T.W. Nagler Ludwig-Maximilians-Universität München
Prof. dr. A. Papapantoleon Delft University of Technology, reserve member

Copyright © 2022 by Kailun Zhu

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Science is a wonderful thing
if one does not have to earn one’s living at it.

Albert Einstein

CONTENTS

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Copulas . 2

1.2 Vines . 4

1.2.1 Regular Vines . 4

1.2.2 Vine copula model . 6

1.2.3 Estimation . 8

1.2.4 Simplifying assumption . 9

1.3 Importance of vine structure . 10

1.4 Outline of the thesis. 11

1.A Appendix to Chapter 1 . 13

2 Vine representations and structure constructions 15
2.1 Introduction . 16

2.2 Vine representations . 16

2.2.1 Tree-wise representation and vine triangular array. 17

2.2.2 Vine matrix . 18

2.2.3 Vine binomial tree . 19

2.3 Vine structure construction . 22

2.3.1 Through vine matrix . 22

2.3.2 Through vine binomial tree . 22

3 Common sampling orders of regular vines with application to model selec-
tion 31
3.1 Introduction . 32

3.2 Sampling orders. 32

3.2.1 Definition . 32

3.2.2 Sampling orders implied by a vine 33

3.3 Common sampling orders . 37

3.3.1 Finding common sampling orders of two given regular vines 37

3.3.2 Generating vines having a given number of common sampling or-
ders with an initial vine . 41

3.3.3 The number of vines having nComSO common sampling orders
with an initial vine . 47

vii

viii CONTENTS

3.4 Simulation study . 50
3.4.1 Simulation of a 5 dimensional regular vine. 50
3.4.2 Heuristic search of a structure with lower AIC than of the initial

vine . 54
3.4.3 Testing the heuristic search method 55

3.5 Real data analysis . 57
3.6 Conclusion . 58
3.A Appendix to Chapter 3 . 59

3.A.1 Proof . 59
3.A.2 Algorithms . 60
3.A.3 Simulation result by random choice 64

4 Vine copula based generation of synthetic population of acute ischemic stroke
patients 69
4.1 Introduction . 70
4.2 Models . 71

4.2.1 Fully conditional specification . 71
4.2.2 Vine copula approach . 72
4.2.3 Data preparation and performance measures 73

4.3 Data description . 74
4.4 Analysis . 75

4.4.1 Marginal and joint distributions 76
4.4.2 Performance of the methods on the selected variables 77

4.5 Conclusions. 81
4.A Appendix to Chapter 4 . 83

4.A.1 Patients data description. 83
4.A.2 Best VC model selection . 84
4.A.3 M AE and statistics of the synthetic data of 1-dim margins. 86

5 Simplified R-vine based forward regression 89
5.1 Introduction . 90
5.2 Conditional density based on regular vines 91
5.3 Vine regression - forward selection . 93

5.3.1 D-vine forward selection . 94
5.3.2 R-vine forward selection - a heuristic method 95
5.3.3 Analysis of an example data set 97

5.4 Simulation . 103
5.5 Heuristic forward selection for more response variables 106
5.6 Extension study by searching for vines having 2 sampling orders in com-

mon. 112
5.7 Real data analysis . 114

5.7.1 One response variable case . 115
5.7.2 Two response variables case . 116

5.8 Conclusion . 117
5.A Appendix to Chapter 5 . 118

5.A.1 Model specification . 118

CONTENTS ix

6 Regular vines with strongly chordal pattern of (conditional) independence 127
6.1 Introduction . 128
6.2 Background . 129

6.2.1 Graphs . 129
6.2.2 Vines. 130

6.3 Relationship between m-vine and strongly chordal graph. 132
6.3.1 Chordal graph and m-vine . 132
6.3.2 Strongly chordal graph and m-vine 134
6.3.3 Merging vines . 135
6.3.4 Construction of an m-vine corresponding to a strong clique tree . . 138

6.4 Applications of the equivalence between m-vines and strongly chordal
graphs . 140
6.4.1 Simulated examples . 141
6.4.2 Heuristics . 145
6.4.3 Simulation . 147

6.5 Real data analysis . 149
6.6 Conclusion . 152
6.A Appendix to Chapter 6 . 153

6.A.1 Example of merger without overlap 153
6.A.2 Theorem of merger with overlap 153
6.A.3 Example vine triangular array . 154
6.A.4 Non simplified copula example 154
6.A.5 Algorithm . 156
6.A.6 Real data variables specification 156

7 Conclusion 159

Acknowledgements 161

Curriculum Vitæ 163

Bibliography 165

SUMMARY

Copulas are important models that allow to capture the dependence among vari-
ables. There are many types of bivariate parametric copula families, which allow to
model data sets with different properties: symmetric and asymmetric dependence, up-
per (lower) tail dependence. In higher dimensions popular families of copulas, e.g.,
Gaussian, Student-t and canonical Archimedean are not sufficiently flexible in repre-
senting different types of dependence that they can realize. By decomposing the multi-
variate copula into a sequence of bivariate (conditional) copulas, based on a graph called
vine (which is a nested set of trees), one is able to construct a n dimensional copula with
the bivariate copulas that can have different types of dependence (e.g., tail behavior and
asymmetries). The model constructed this way is called the vine copula model.

In order to estimate a vine copula model, it is required to specify 1) a vine struc-
ture; 2) the bivariate copula family for each conditional copula assigned to edges of the
vine; 3) the copula parameters. The estimation is performed tree-by-tree in order to re-
duce computational complexity, and often the vine is considered in the simplified form,
where all the conditional copulas are assumed not to depend directly on the condition-
ing variables. Even if theoretically any vine structure used in the density decomposition
represents the same density, different vine structures will lead to different performance
in practice, due to, the estimation procedure of the vine copula model and the simplify-

ing assumption. There are
(n

2

)
(n −2)!2

(n−2
2

)
vine structures on n variables, hence it is not

possible to estimate all of them in high dimensions.
In this thesis, contributions to the problem of vine structure selection are presented.

At first, different vine representations are discussed in Chapter 2. The tree-wise, the vine
triangular array and the vine matrix representations have been used in the literature. A
new vine representation, called vine binomial tree, is proposed. With this representation
a vine structure can be determined by any given order of variables and a sequence of bi-
nary numbers. Then for the remaining part of the thesis, different ways of vine structure
constructions are proposed in various applications.

The main topic in Chapter 3 is the search for a vine structure with the best perfor-
mance for given data. The most popular heuristic of vine structure construction is the
Dißmann’s heuristic. It constructs the vine structure tree-wise, starting from the first
tree, along with the copula family selection and copula parameter estimation. Each tree
structure is determined by a maximum spanning tree with weights being the absolute
Kendall’s tau. However, there is no guarantee that this heuristic will result in a structure
with the optimal performance. Hence, it is proposed to search for a number of additional
vines that are ’sufficiently’ different from the initial one (the one constructed based on
the heuristic), to see if a better model can be found. The number of common sampling
orders has been shown to be a good proxy to measure the difference between two vine
structures. We proposed to search for better performing structures within vines having 2
common sampling orders with the initial structure. Several algorithms are proposed to

xi

xii SUMMARY

construct vines having 2 sampling orders in common with a given initial vine structure.
They have been applied in synthetic patient data generation in Chapter 4, when mixed
continuous and discrete data set is considered.

For regression problems in estimating a conditional distribution of response vari-
ables given covariates, studied in Chapter 5, vine copula model can be applied by con-
structing a vine structure so that it contains the response variable in the conditioned set
of the top node. Then the conditional distribution is given in analytic form. Additional
constraints for the vine structure should be included when the joint conditional distri-
bution of two response variables is required in analytic form. The vine based regression
approach has been applied in a stress analysis of the manufacturing industry.

A vine is in principle a fully connected graph. It can be simplified by introducing
conditional independence, which is to assign independence copula to edges of the vine.
In Chapter 6, a relationship between an m-saturated vine (a vine with some nodes re-
moved, or assigned with independence copula) and a strongly chordal graph (a special
type of undirected graph) is proved. Several algorithms are proposed to construct an
m-saturated vine corresponding to a strongly chordal graph. Due to the specification of
conditional independence, it becomes possible to assess all vine structures for the sub-
vines in the m-saturated vine and/or estimate non-simplified vines.

SAMENVATTING

Copulas zijn belangrijke modellen voor het vastleggen van afhankelijkheden tussen
variabelen. Er zijn vele soorten bivariate parametrische copula families die het moge-
lijk maken om datasets met uiteenlopende eigenschappen te modelleren. In het bij-
zonder symmetrisch en asymmetrische afhankelijkheid, rechter (linker) staart afhanke-
lijkheid. Voorbeelden van populaire families van copulas in hogere dimensies, zoals de
Gaussische, Student-t en canonieke Archimedes zijn niet voldoende flexibel genoeg in
het weergeven van alle potentieel realiseerbare afhankelijkheden. Door middel van het
ontbinden van de multivariabele copula in een rij van bivariate (conditionele) copulas,
gebaseerd op een graaf genaamd vine (een geneste verzameling van bomen), is men in
staat om een n-dimensionale copula te construeren met de bivariate copulas, met ver-
schillende soort afhankelijkheden (zoals staart en asymmetrische afhankelijkheid). Het
model dat op deze manier is geconstrueerd wordt ookwel het vine copula model ge-
noemd.

Voor het schatten van een vine copula model is het vereist het volgende te specifice-
ren, 1) een vine structuur; 2) de bivariate copula familie voor iedere conditionele copula
toegewezen aan de takken van de vine structuur; 3) de copula parameters. De schatting
is boom per boom uitgevoerd om de computationele complexiteit te reduceren, boven-
dien is de vine meestal beschouwd in z’n meest simplistische vorm, hier wordt aangeno-
men dat alle conditionele copulas niet direct conditioneel afhangen van de variabelen.
Zelfs als theoretisch gezien iedere vine structuur, die gebruikt wordt in de decompositie
van de verdeling, dezelfde dichtheid representeert, kan het zijn dat de vine structuren
leiden tot verschillende prestaties in de praktijk. Reden hiervan is bijvoorbeeld de schat-
tingsprocedure van het vine copula model en de aannames die zijn versimpeld. Er zijn(n

2

)
(n −2)!2

(n−2
2

)
vine structuren op n variabelen, en dus is het niet mogelijk om ze alle-

maal te schatten in hogere dimensies.
In deze scriptie worden de contributies in vine structuur selectie gepresenteerd. Om

mee te beginnen worden de verschillende vine representaties besproken in hoofdstuk
2. The boom methode, de driehoekige matrix en de vine matrix reprensentaties zijn al
eerder gebruik in de bekende literatuur. Een nieuwe vine representatie, genaamd vine
binomiaal boom, wordt voorgesteld. Met behulp van deze representatie kan een vine
structuur bepaald worden door elke willekeurig gegeven volgorde van variabelen en een
rij van binaire getallen. In het resterende deel van de scriptie worden er diverse technie-
ken voorgesteld voor vine structuur constructies op uiteenlopende toepassingen.

Het voornaamste onderwerp, aan bod komend in hoofdstuk 3, is hoe er gezocht moet
worden naar vine structuren met de beste prestaties voor de gegeven data. De meest
populaire heuristiek voor het construeren van vine structuren is de Dißmann heuris-
tiek. De Dißmann heuristiek maakt de vine structuur met per boom, beginnend vanaf
de eerste boom, samen met de copula familie selectie en de copula parameter schatting.
Iedere boom structuur wordt vastgesteld door een maximaal opspannende boom met

xiii

xiv SAMENVATTING

factoren gelijk aan de absolute Kendall tau. Echter is er geen garantie dat deze heuris-
tiek de structuur met optimale prestaties zal verschenken. Daarom is het aangedragen
om te zoeken naar een tal additionele vines die ’genoeg’ verschillen van de initiële (die-
gene geconstrueerd op basis van de heuristiek), om te checken of er een beter presterend
model kan worden gerealiseerd. Het aantal gemeenschappelijke sampling volgordes is
gebleken een goede indicator te zijn voor het aanduiden van de ongelijksoortigheid van
twee vine structuren. We stellen voor om te zoeken naar beter presterende structuren
binnen vines die 2 sampling volgordes gemeen hebben binnen de initiële structuur. Ver-
schillende algoritme worden voorgesteld voor het samenstellen van vines die 2 sampling
volgordes gemeen hebben. Het zoeken naar vines met 2 gemeenschappelijke sampling
volgordes is toegepast voor het genereren van synthetische patiëntgegevens in hoofd-
stuk 4, waar een dataset met zowel continue als discrete data wordt bekeken.

Voor regressie problemen waar de conditionele verdeling van responsvariabelen ge-
geven de covariaten wordt geschat, onderzocht in hoofdstuk 5, kan men een vine co-
pula model toepassen door het samenstellen van de vine structuur zodanig dat de struc-
tuur de responsvariabelen bevat in de geconditioneerd verzameling in de bovenste node.
Dan wordt de voorwaardelijke kansverdeling geven in analytische vorm. Additionele ei-
sen voor de vine structuur moeten worden toegevoegd wanneer de gemeenschappelijke
voorwaardelijke kansverdeling van twee responsvariabelen een analytische vorm heeft.
De op vine gebaseerde regressie methode is al toegepast in stress analyse voor de fa-
brieksindustrie.

Een vine is in principe een complete graaf. Het kan versimpeld worden door het
introduceren van voorwaardelijke onafhankelijkheid, wat betekend het toekennen van
copula onafhankelijk aan de takken van de vine. In hoofdstuk 6, wordt een relatie tus-
sen de m-verzadigde vine (een vine met een aantal takken verwijderd, of met toege-
kende copula onafhankelijkheid) en de sterk chordale graaf (een speciaal soort onge-
richte graaf) bewezen. Diverse algoritmen zijn voorgesteld voor het construeren van een
m-verzadigde vine overeenkomstig met een sterk chordale graaf. Vanwege de specifica-
tie van de voorwaardelijke onafhankelijkheid, wordt het mogelijk om alle vine structuren
te beoordelen voor de subvines in de m-verzadigde vine en of het schatten niet versim-
pelde vines.

1
INTRODUCTION

Dependence modeling can be carried out by applying copula functions, where the de-
pendence is estimated separately from the marginal distributions. However, dependence
structures represented by a single copula family are limited, and this problem becomes
severe in high dimensions. By decomposing the multivariate copula function into a se-
quence of bivariate copulas based on a graph called vine, one is able to capture flexibly
different kinds of dependence structures.

1

1

2 1. INTRODUCTION

1.1. COPULAS
Modeling dependencies is very important in many applications. A simple example

from the area of finance could be an investment problem, where ignoring the depen-
dence among stock returns might lead to a not optimal investment strategy and ulti-
mately loss of money. In health studies, due to legal and privacy restrictions, data of
real patients cannot be disseminated freely. Synthetic data generation provides a way
to allow broad access to patient data. The dependence among patients’ characteristics
have to be modeled correctly so the generated data recovers the properties of real pa-
tients. Finally, in engineering application, one might want to evaluate the safety of a
new car design and evaluate its structural behavior during crashing. In this case, the
dependence among the so called firewall points (metal plates that suppose to protect
passengers when accident happens) is of interest. In all these examples the dependence
structure of the characteristics of interest has to be modeled. Analyzing and modeling
dependence structure can be achieved in many different ways. A good overview can be
found, e.g., in Joe (1997).

More formally the problem to be solved is to specify a joint distribution F12...n for the
observations of n random variables Xi , i = 1, . . . ,n. The most popular approach is to fit
a multivariate Gaussian distribution. Obviously, if one observes from the data proper-
ties as, asymmetry, heavy tails or tail dependence, the normality assumption is violated
and different types of models have to be considered. For example in finance, it has been
observed that the daily log-returns of stocks are heavy-tailed distributed and their de-
pendence exhibits asymmetries and tail dependence (McNeil et al. (2010)). In medicine
similar reasons can also be found for suggesting not to model with multivariate Gaussian
distribution for different characteristics of patients, such as age, weight, sex and etc..

The Sklar’s theorem (Sklar (1959)) below provides a more flexible alternative to model
the joint distribution.

Theorem 1.1.1 (Sklar’s theorem). For n random variables Xi , i = 1, . . . ,n with joint distri-
bution function F12...n and univariate distributions Fi (xi), their joint distribution can be
expressed as

F12...n(x1, x2, . . . , xn) =C12...n(F1(x1),F2(x2), . . . ,Fn(xn)),

where C12...n is a distribution function on the unit hypercube [0,1]n , called a copula.

When all the variables are continuous the copula is unique whereas for discrete vari-
ables the copula is uniquely determined on the support of the variables. Denote the
univariate density of the continuous variable Xi as fi (xi), and the joint density of vari-
ables X1, . . . , Xn as f12...n(x1, x2, . . . , xn). If the copula density c12...n(u1,u2, . . . ,un) (where
ui = Fi (xi)) exists then the joint density is

f12...n(x1, x2, . . . , xn) = c12...n(u1,u2, . . . ,un) f1(x1) f2(x2) · · · fn(xn).

In Figure 1.1 examples of contour plots of six different bivariate copula families with
standard normal margins are shown. Each bivariate copula (except for the indepen-
dence copula) represents the same overall dependence measured by Kendall’s tau equal

1.1. COPULAS

1

3

Figure 1.1: Contour plot of different bivariate copula families (marginal distributions are transformed into
standard normal distribution for the purpose of visualization) where the Kendall’s tau is always 0.5 (except for
the independence copula).

to 0.5, where Kendall’s tau is a rank correlation measure of dependence and can be cal-
culated for the variables with copula C12 as:

τ= 4
∫ ∫

[0,1]2
C12(u1,u2)dC12(u1,u2)−1.

Even if the overall dependence, of the shown copula families, is the same, some of
their properties are different. All the copula families shown in Figure 1.1 capture sym-
metric dependence but the dependence represented by Clayton, Gumbel and Joe cop-
ulas is not radial symmetric. Gumbel copula has upper tail dependence and lower tail
independence, and Clayton copula, in contrast, exhibits lower tail dependence and up-
per tail independence. There are many parametric copula families that are used to cap-
ture different properties observed in data (Nelsen (2006), Joe (2014), Hofert et al. (2018)).
In this thesis we will use the following parametric copulas, Gaussian (N), Student-t (t),
Clayton (C), Gumbel (G), Joe (J), BB1, BB6, BB7 and BB8 copulas, and also their rotated
versions which are referred to using the following convention: G180 represents a Gumbel
copula rotated by 180 degrees in anti-clockwise direction. Hence this copula can capture
lower tail dependence and upper tail independence.

Copulas have been proved to be a useful tool in many applications, e.g. in finance
(Cherubini et al. (2004), McNeil et al. (2010)). In higher dimensions, however, copulas
corresponding to known multivariate distributions are limited in types of dependence
structures that they can represent. For example, the Gaussian copula does not allow
modeling tail dependence or asymmetric dependence. By decomposing the multivari-
ate copula function into a series of bivariate (conditional) copulas one can construct a
multivariate copula with very rich set of properties. This approach is called the pair cop-
ula constructions and was introduced at first in Joe (1997). It became known as a vine
copula model in Cooke (1997), Bedford & Cooke (2001, 2002). This thesis contributes to

1

4 1. INTRODUCTION

the theory and applications of vine copula model. In the next sections the basic defini-
tions and properties of the vine copula model are presented.

1.2. VINES
In Cooke (1997), Bedford & Cooke (2001, 2002), a decomposition based on a graph-

ical structure called regular vine (composed of a set of trees) has been introduced. This
model allows to construct a high dimensional distribution by combining bivariate and
conditional bivariate copulas arranged according to a vine structure. Any type of bivari-
ate copula can be used in this construction and there are no algebraic constrains on the
parameters of these copulas. Moreover, non-parametric copulas are also allowed in the
construction. A detailed introduction to the vine copula model can be found in Kurow-
icka & Joe (2011), Czado (2019), Czado & Nagler (2022). The flexibility of the vine cop-
ula models led to an enormous volume of applications, e.g., in finance (see Aas (2016)
and the reference therein), in engineering (e.g., Kurowicka & Joe (2011), Schepsmeier &
Czado (2016), Li et al. (2021)) and in health studies (e.g., Stöber et al. (2015), Cooke et al.
(2019), Hasler et al. (2018)).

In this section, the main definitions concerning vines and their basic properties are
presented. Then it is explained how a joint distribution is represented with the vine cop-
ula model.

1.2.1. REGULAR VINES
A regular vine on n elements (V (n)) or on element set Vn = {v1, . . . , vn} (V (Vn)), is a

nested set of connected trees V = {T1, ...,Tn−1} where the edges of tree T j are the nodes
of tree T j+1, j = 1, . . . ,n −2 and such that two edges in tree T j are joined by an edge in
tree T j+1 only if these edges share a common node, j = 1, ...,n −2. The formal definition
is as follows.

Definition 1.2.1 (Regular vine). V is a regular vine if

1. V = {T1, . . . ,Tn−1},

2. T1 is a connected tree with nodes N1 = V (T1), and edges E1 = E (T1);
for i = 2, . . . ,n −1 Ti is a tree with nodes Ni = Ei−1.

3. (proximity) For i = 2, . . . ,n − 1, {a,b} ∈ Ei ,#a4b = 2 where 4 denotes the symmetric
difference.

The proximity condition can be interpreted using graph theory terminology as fol-
lows: a node in tree Ti that connects two nodes in tree Ti−1 is called a m-parent (parent
in short) node and these two nodes are called the m-children (children in short) of the
parent node or siblings. Since all trees in a vine are connected then each node in Ti ,
2 ≤ i ≤ n − 1 has a sibling, and the proximity condition implies that each node has a
common child with its sibling. The node in tree Ti of the vine is the edge of Ti−1. Hence
for the purpose of completeness the single edge in tree Tn−1 is referred to as a single
node of tree Tn , and V (n) is a set of n trees V (n) = {T1, . . . ,Tn} where Tn is just one node
called the top node of V (n).

1.2. VINES

1

5

Figure 1.2: Regular vines with 5 elements (left - V1(5); right - V2(5)).

Regular vines are used as graphical structures that allow the choice of a set of alge-
braically independent (conditional) bivariate copulas to factorize the joint density. This
is done via conditional bivariate constraints associated with each edge in each tree, by
using constraint, conditioned and conditioning sets, which are defined below.

Definition 1.2.2 (Constraint, Conditioned, and Conditioning sets).

1. For e ∈ Ei , i ≤ n−1, the constraint set associated with e is the complete union U∗
e of e,

that is, the subset of {1, . . . ,n} reachable from e by the membership relation.

2. For i = 1, . . . ,n −1,e ∈ Ei , if e = { j ,k} then the conditioning set associated with e is

De =U∗
j ∩U∗

k

and the conditioned set associated with e is

{Ce, j ,Ce,k } = {U∗
j \ De , U∗

k \ De }.

To illustrate the concepts introduced above, we consider the vine V1(5) in Figure 1.2
(left) with its trees T1, . . . ,T4. T1 has nodes N1 = {1,2,3,4,5} and edges E1 = {(1,5), (2,5), (3,5),
(4,5)}. In tree T2, we can see that N2 = E1. Moreover, the constraint sets of the three edges
of E2 are {1,4,5}, {3,4,5}, {2,4,5}. The conditioning sets are all {5} and the conditioned sets
are {1,4}, {3,4}, {2,4}. Nodes in the third tree are named with the convention used for E2.
Next we see that the constraint sets for two edges in E3 are {1,3,4,5} and {2,3,4,5}, which
gives the conditioning sets for both edges equal to {4,5} and conditioned sets are {1,3}
and {2,3}, respectively. There is always one edge in the last tree, which in the case of V1(5)
has conditioning and conditioned sets equal to {3,4,5} and {1,2}, respectively.

We can see that for node e ∈ N2 the conditioning set is empty. Often a node e in
a regular vine is associated with its conditioned and conditioning sets and write e =
{Ce, j ,Ce,k |De } or simply with its constraint set U∗

e . According to the proximity condi-
tion, the cardinality of the conditioned set is always 2 and Ce, j ,Ce,k are called each other
partners.

1

6 1. INTRODUCTION

The m-descendant/m-ancestor (descendant/ancestor in short) relationship in regu-
lar vine is defined as follows,

Definition 1.2.3 (descendant; ancestor). If a node e is reachable from a node f via the
membership relation: e ∈ e1 ∈ ·· · ∈ f , we say that e is an descendant of f and f is an
ancestor of e.

For V1(5) in Figure 1.2 (left), node 15 is a descendant of node 13|45 and 13|45 is an
ancestor of 15 through node 14|5. However 13|45 is an ancestor of neither node 25 nor
node 2. We can now introduce a notion of a subvine of V (Vn). Given a node e with
constraint set U∗

e in a regular vine V (Vn),U∗
e ⊆ Vn , the regular vine V (U∗

e) is called a
subvine of V (Vn) induced by the elements U∗

e , if it is the case that the top node of V (U∗
e)

is node e and all descendants of e in V (Vn) belong to V (U∗
e).

The following properties of regular vines have been proved (see, e.g., Kurowicka & Joe
(2011)) and can be checked for the two vines in Figure 1.2.

Properties of regular vines:

1. There are n −1 trees and
(n

2

)
edges in a regular vine on n elements.

2. Conditioned sets are doubletons.

3. Each pair appears once as a conditioned set of an edge.

4. There are i−1 and i+1 elements in the conditioning and constraint sets of an edge
of the i th tree, respectively.

5. If two nodes have the same constraint sets, they are the same node.

6. If element i is a member of a conditioned set of an edge e of a regular vine then
i is a member of the conditioned set of exactly one of the children of e and the
conditioning set of an child is a subset of De .

7. If N1 = {x1, y1|A \{y1}} and N2 = {x2, y2|A \{y2}}, where A ⊂ {1,2, ...,n}, x1, x2 ∉ A and
x1 6= x2 are nodes of tree Ti of regular vine on n elements then N1 and N2 have a
common child. Moreover if y1 6= y2 then this child is: {y1, y2|A \ {y1, y2}}.

1.2.2. VINE COPULA MODEL
In Bedford & Cooke (2002), the following representation theorem for the joint density

as the product of bivariate (conditional) copulas assigned to the nodes of a regular vine
on n elements and the marginal densities is proved (arguments of the functions have
been suppressed to simplify the notation):

Theorem 1.2.1. Let (F,V ,B) be a copula vine specification where: F = (F1, . . . ,Fn) and
each Fi has density fi , i = 1, . . . ,n, V (n) = (T1, . . . ,Tn−1) is a regular vine on n elements and
B = {C j k;De | e(j ,k) ∈ ⋃n−1

i=1 Ei , where e(j ,k) is the unique edge with conditioned set { j ,k},
and C j k;De is a copula for {X j , Xk } conditional on variables in De with density c j k;De } .

1.2. VINES

1

7

Then the vine-dependent distribution for (F,V ,B) is uniquely determined and has a den-
sity given by

f1...n = f1 · · · fn

n−1∏
i=1

∏
e(j ,k)∈Ei

c j k;De (C j |De ,Ck|De |De),

where

Ci |A = ∂Ci j ;A\{ j }(Ci |A\{ j },C j |A\{ j }; A \ { j })

∂C j |A\{ j }
.

The conditional distribution Ci |A is called the h-function (introduced in Joe (1997))
and can be denoted as hi | j ;A\{ j }.

Conversely, it has been shown in Czado (2010) that for continuous random variables
X1, . . . , Xn with positive joint density f1,...,n , marginal densities f1, . . . , fn and conditional
densities of the variables Xk |X1, . . . , X j denoted as fk|1,..., j , the standard factorization (not
unique)

f1...n = f1 f2|1 · · · fn−1|1,...,n−2 fn|1,...,n−1

can be further rewritten by repeated application of the recursive formula

fi |A = ci j ;A\{ j }
(
Ci |A\{ j },C j |A\{ j }; A \ { j }

)
f j |A\{ j }.

where A ⊂ {1, ...,n} and i ∉ A, into products of conditional bivariate copulas on a regular
vine.

One usually assumes that the bivariate conditional copula c j k;De (C j |De ,Ck|De |De) does
not depend directly on the variables XDe , hence it becomes c j k;De (C j |De ,Ck|De). This as-
sumption is called the simplifying assumption, which will be explained briefly in Section
1.2.4.

Then, for example, a joint density for five variables can be represented by the vine
V1(5) in Figure 1.2 (left) as follows, where the copula density c j k;De (C j |De ,Ck|De) are ab-
breviated as c j k;De ,

f1...n = f1 f5c15 f4c45c14;5 f3c35c34;5c13;45 f2c25c24;5c23;45c12;345

= f1 f2 f3 f4 f5c15c25c35c45c14;5c34;5c24;5c13;45c23;45c12;345.

For the other vine structure V2(5), in Figure 1.2 (right), one gets a different density
decomposition, which is as follows,

f1...n = f1 f3c13 f5c35c15;3 f4c45c34;5c14;35 f2c24c25;4c23;45c12;345

= f1 f2 f3 f4 f5c13c35c45c24c15;3c34;5c25;4c14;35c23;45c12;345.

There are many decompositions of a positive density and theoretically all are equiva-
lent. In practice, however, due to the estimation errors, simplifying assumption etc., one
decomposition might lead to a better performance. This causes one of the main chal-
lenge of the vine copula models, which is the vine structure selection problem. In the
next section we explain in detail the estimation procedure of the vine copula model.

1

8 1. INTRODUCTION

1.2.3. ESTIMATION

Estimation of the vine copula model requires that the estimation of each univariate
marginal distribution and the dependence structure represented by the sequence of bi-
variate (conditional) copulas. This involves 1) estimation of the marginal distributions;
2) selection of a vine structure; 3) choice of the copula families for each bivariate (con-
ditional) copula; 4) estimation of the copula parameters. First univariate margins are
estimated, then the observations are transformed through probability integral transfor-
mation (PIT) to get pseudo observations. These pseudo observations are then used to
estimate the vine copula model. This estimation procedure is called the inference func-
tions for margins (IFM) method introduced in Joe (1997).

Let us consider N independent and identically distributed realizations of variables
(X1, . . . , Xn), (xm

1 , xm
2 , . . . , xm

n), where m = 1, . . . , N , which we refer to as being in x-scale.
The univariate parametric distributions Fi , i = 1, . . . ,n are fitted or the empirical cumu-
lative distribution functions F̂i (xi) = 1

N+1

∑N
m=11xm

i ≤xi
(other non-parametric methods

e.g. kernel smoothing, splines can also be applied) are used to transform data to uni-
form scale. Non-parametric approach is often preferred Joe (1997), as it reduces esti-
mation errors for parameters of copulas when parametric models of margins are miss-
specified. The data transformed using PIT called pseudo observations (um

1 ,um
2 , . . . ,um

n)
is often referred to as data in the u-scale. Sometimes it is also advantageous to trans-
form the pseudo observations into data following standard normal distribution, which
is referred to as data in z-scale.

The pseudo observations, (um
1 ,um

2 , . . . ,um
n) are used to find parametersθθθ of vine cop-

ula model through the maximum likelihood method. The log-likelihood function is as
follows,

`(uuu;θθθ) =
N∑

m=1
ln(

n−1∏
i=1

∏
e(j ,k)∈Ei

c j k;De (C j |De (um
j |uuum

De
),Ck|De (um

k |uuum
De

)|θθθ)).

To penalize models with larger number of parameters, we use Akaike information crite-
rion (AIC) (Akaike (1998)) and Bayesian information criterion (B IC) (Schwarz (1978)),
which are:

AIC (uuu) = −2`(uuu;θθθ)+2|θθθ|,
B IC (uuu) = −2`(uuu;θθθ)+ ln(N)|θθθ|.

where |θθθ| denotes the number of parameters of the parametric copulas in the vine cop-
ula model. In this thesis, most of the time these two information measures of models’
performance are used. Other options could be the generalized information criterion
(Konishi & Kitagawa (1996)) or the modified B IC (Nagler, Bumann & Czado (2019)).

To test whether one vine copula model performs significantly better than another,
a likelihood ratio type test called the Vuong test Vuong (1989) will be applied. Suppose
two regular vine copula models with densities f A

1,...,n(;θ1θ1θ1) and f B
1,...,n(;θ2θ2θ2), respectively, are

considered. The ratio of log likelihoods of these models on pseudo observations uuum is

1.2. VINES

1

9

pm = ln
f A

1,...,n (uuum ;θ1θ1θ1)

f B
1,...,n (uuum ;θ2θ2θ2)

, then the test statistic of the Vuong test is

v =
1
N

∑N
m=1 pm√∑N

m=1(pm − p̄)2
.

The test statistic v is shown in Vuong (1989) to follow a standard normal distribution
under the null hypothesis that the two models are not significantly different. One can
further correct this statistic (in order to choose a more parsimonious model) by applying

a Schwarz correction ln(N)(|θ1θ1θ1|
2 − |θ2θ2θ2|

2).
Although the IFM approach reduces the complexity of MLE for parameters of copu-

las, optimizing the likelihood over all the parameters θθθ of the bivariate copulas in vine
copula model is still very expensive. Hence, estimation of the vine copula model is im-
plemented tree-by-tree (Aas et al. (2009)). This is to estimate at first each bivariate copula
in the first tree based on the pseudo observations. Then the data is transformed using
conditional distributions computed from the copulas in the first tree and will be used to
estimate the bivariate conditional copulas in the second tree etc.. This iterative proce-
dure is implemented in R in the VineCopula (Nagler, Schepsmeier, Stoeber, Brechmann,
Graeler & Erhardt (2019)) package and in the rvinecopulib (Nagler & Vatter (2021)) pack-
age.

The vine copula model can also be applied in the case of continuous-discrete and
discrete data sets. The adjustments that need to be made when discrete variables are
added to continuous variables are shown in Appendix 1.A.

1.2.4. SIMPLIFYING ASSUMPTION
Vine copulas are applied usually in simplified form (called simplified vine). All con-

ditional copulas are assumed not to depend directly on the variables in the conditioning
set. A detailed discussion of the simplifying assumption can be found in Stöber et al.
(2013), Spanhel & Kurz (2015), Kurz & Spanhel (2017). The problem of using vines with-
out simplifying assumption stems from the difficulty to observe how these conditional
copulas might depend on the conditioning variables. Some attempts to consider non-
simplified vines are to fix the copula family but to allow a relationship between the cop-
ula parameter (or the corresponding conditional Kendall’s tau) and the conditioning
variables. This could be non-parametric relationship (Acar et al. (2011)), or described
with generalized additive models (Nagler & Vatter (2020)). A discussion about the per-
formance of these two methods can be found in Acar et al. (2019).

Testing the simplifying assumption can also be a difficult task. A test introduced
in Kurz (2019), implemented in the pacotest package, provides the way to examine if
simplified vine copula is appropriate for the data. The simplifying assumption for the
whole regular vine copula model is tested by performing separate tests for each con-
ditional copula in this vine. Different partitions of data set based on the condition-
ing variables are considered and the equality of correlations of conditioned variables
on these partitions is checked. For a partition Γ of size L and the pseudo observations
(um

1 ,um
2 , . . . ,um

n),m = 1, . . . , N , the test statistic is

TN (Γ) = N (AR̂Γ)ᵀ(AΣ̂ΓAᵀ)−1(AR̂Γ),

1

10 1. INTRODUCTION

where R̂Γ = (r̂1, . . . , r̂L)ᵀ is the vector of sample correlations in each partition, Σ̂Γ is a L×L
diagonal matrix with elements Σ̂Γ(l , l) = σ̂2(r̂l) (σ̂2(r̂l) is the estimate of the asymptotic
variance

p
N (r̂l−rl)) and A is a (L−1)×L matrix such that (AR̂Γ)ᵀ(AR̂Γ) =∑L−1

l=1 (r̂l−r̂l+1)2.
It has been shown TN (Γ) follows a χ2

L−1 distribution under the null hypothesis that
the correlations in each partition are equal. In this thesis only simplified vine copula
models are considered.

1.3. IMPORTANCE OF VINE STRUCTURE
Any vine structure can be used to decompose a density. Theoretically it does not

matter which vine structure is used. In practice, however, due to the limited choice of
parametric bivariate copula families, tree-wise estimation procedure (explained in Sec-
tion 1.2.3) as well as the simplifying assumption (explained in Section 1.2.4), the perfor-

mance of different vine copula models might vary. There are
(n

2

)
(n −2)!2

(n−2
2

)
vine struc-

tures for n variables, as proved in Nápoles (2010), hence it is not possible to estimate
all vine structures and choose the best one in high dimensions. A heuristic called the
Dißmann’s heuristic introduced in Dißmann et al. (2013) is often used. It constructs the
vine structure tree-wise, starting from the first tree, along with the copula family selec-
tion and copula parameter estimation. Each tree structure is determined by a maximum
spanning tree with weights being the absolute Kendall’s tau.

To illustrate the importance of the choice of vine structure, a 4 dimensional exam-
ple is presented below. In Table 1.1 information about the vine structure is listed (see
conditioning and conditioned sets (column 1), copula families (column 2) and the cor-
responding Kendall’s tau used to compute the parameter of the copula (column 3)). A
sample of 1000 points is simulated from this model. This data set is used to estimate all
possible vine structures (there are 24 structures) in 4 dimensions.

True vine model Dißmann’s heuristic
Structure Copula family τ Structure Copula family τ

Tree-3 Tree-3
32|41 J270 -0.61 42|13 t 0.06

Tree-2 Tree-2
13|4 G 0.32 12|3 t 0.12
42|1 J 0.45 41|3 t -0.07

Tree-1 Tree-1
41 C90 -0.54 32 F -0.59
43 C270 -0.73 31 BB8_180 0.55
12 J90 -0.36 43 C270 -0.72

Table 1.1: The specified vine copula model (True vine model) in dimension 4 with its vine structure, the copula
families and the Kendall’s tau of the copulas; The estimated vine copula model by Dißmann’s heuristic (Diß-
mann’s heuristic) with its vine structure, the estimated copula families and the estimated Kendall’s tau of the
copulas.

In Figure 1.3 a box plot of AIC values for each estimated vine structure (out of 24
vine structures in dimension 4) is shown. Obviously the true vine model has the smallest

1.4. OUTLINE OF THE THESIS

1

11

AIC . The AIC of the vine model obtained using the Dißmann’s heuristic is shown with
the dotted horizontal line. One can compare that its structure is quite different from
the true model (see columns 4,5,6 in Table 1.1 to examine the vine structure, the cho-
sen copula families and the Kendall’s tau corresponding to their estimated parameters).
The performance of the vine chosen by the Dißmann’s heuristic is worse than the per-
formance of 16 other vine structures (significantly worse than 12 of them according to a
Vuong test with 5% significance level). The vine structure used to simulate the data is a
simplified vine, however, when a different structure is taken, namely one obtained with
the Dißmann’s heuristic, the simplified assumption is rejected at 5% significance level in
tree T3.

Figure 1.3: Box plot of AIC for all the vine structures (24 different vine structures) in dimension 4 for the
simulated data. The AIC represented by horizontal line is the AIC of the vine copula model estimated by the
Dißmann’s heuristic.

As can be already observed in the 4 dimensional example the Dißmann’s heuristic
might not perform well, and considering that the number of vine structures grows ex-
ponentially with dimension, there is a need for finding better methods to choose a vine
structure in vine copula models.

1.4. OUTLINE OF THE THESIS
The main focus of this thesis is to propose new methods of vine structure selection.

The thesis is organized as follows,

• In Chapter 2, an introduction to vine structure representation is given. A few ways of
representing regular vines graphically, from the literature, are included. They all have
their merits. Figure 1.2 is the most commonly used representation by listing each tree
structure of a vine. In order to have a clearer visualization of the parent-child relation-
ship between nodes of a vine, a vine triangular array is proposed. In order to have a

1

12 1. INTRODUCTION

more compact representation that can ease programming, a vine matrix representa-
tion can be used. A new vine representation, called the vine binomial tree, is proposed.
Vine binomial tree, in contrast to the vine triangular array, is not very compact but al-
lows the parent-child relationships to be easily manipulated, which is useful when one
wants to construct very different vine structures; in contrast to the vine matrix, vine
structure constructed through vine binomial tree does not rely on the specified order,
which allows more flexible ways of vine structure construction.

• Chapter 3 is based on the paper, Zhu et al. (2020). A new method is proposed to search
for a vine structure with better performance for data than an initial structure. The
initial structure can be any structure from existing vine structure constructions, e.g.,
the Dißmann’s heuristic. The proposed search method will examine a set of structures
that are ’significantly’ different from the initial one. It has been shown that one can
take the number of sampling orders these structures have in common as a proxy indi-
cating the differences between them. This is because vines that have more common
sampling orders will have more common bivariate (conditional) copulas, which will
lead to similar performance. Several algorithms are proposed in Chapter 3 to con-
struct vine structures with any given number of common sampling orders. Finally, it
is suggested to search for vines having 2 sampling orders in common with the initial
structure because, 1) it is known how many vines having 2 common sampling orders
with an initial vine are, and this number is not very large as compared with the number
of all vine structures; 2) it is also relatively easy to construct vines having 2 common
sampling orders with an initial structure.

• Chapter 4 is based on the paper, Zhu et al. (n.d.). The method designed in Chapter 3 to
find an ’optimal’ vine copula model is applied for acute ischemic stroke patients data
set including mixed continuous and discrete variables. This model is built to generate
synthetic patients data. It has been shown that the obtained vine copula model for the
patients data set has a better performance as compared with other method that has
been proposed for this purpose in the literature: the fully conditional specification (by
specifying a sequence of conditional distributions).

• Chapter 5 is based on the paper, Zhu et al. (2021). In this chapter R-vine based forward
selection regression method is discussed. We showed that the vine structure in the
vine based regression does not need to be limited to any particular vine structure. An
algorithm has been proposed to consider all possible vine structures in the process.
When a vine structure is constructed in an appropriate way, the conditional distribu-
tion of the response variable(s) given the covariates can be estimated in analytic form.

• Chapter 6 is based on the paper, Zhu & Kurowicka (2022). The main idea in this chapter
is to consider vine copula models with certain pattern of conditional independence.
This is achieved by working with incomplete vines, called m-saturated vines, where
certain bivariate copulas are fixed to be the independence copula. This assumption re-
duces the complexity of vine copula model. The main result of this chapter is the proof
of an equivalence between m-saturated vines and strongly chordal graphs (which are
undirected graphs with special properties). Due to the specified conditional indepen-
dence, it becomes possible to work with subvines with smaller number of variables.

1.A. APPENDIX TO CHAPTER 1

1

13

This allows to examine all possible structures for the subvines and/or estimate non-
simplified vines.

1.A. APPENDIX TO CHAPTER 1
Vine copula model can also be applied in the case when both continuous and dis-

crete variables exist. Detailed discussion can be found in Panagiotelis et al. (2012), Joe
(2014) and we follow the notation in Joe (2014) and assuming a simplified vine.

Theorem 1.2.1 still holds for mixed variables, but in order to take into account dis-
crete variables, the bivariate copula density c j k;De (C j |De ,Ck|De) is now generalized to
c̃ j k;De (C j |De ,Ck|De). Denote C+

j |De
= C j |De (u j |uuuDe) and C−

j |De
= C j |De (u−

j |uuuDe), where u−
j

is the left-sided limit to u j hence for continuous variable it’s u j and for integer valued
discrete variable it is u j − 1. Conditional density for continuous variable j and condi-
tional probability mass function for discrete variable j given variables in De are both
denoted as f j |De . Then the copula density can be represented as,

• When both variable j and k are continuous, c̃ j k;De (C j |De ,Ck|De) = c j k;De (C j |De ,Ck|De).

• When only variable j is discrete, c̃ j k;De (C j |De ,Ck|De) = C j |k;De (C+
j |De

|Ck|De)−C j |k;De (C−
j |De

|Ck|De)

f j |De
.

• When only variable k is discrete, c̃ j k;De (C j |De ,Ck|De) = Ck| j ;De (C+
k|De

|C j |De)−Ck| j ;De (C−
k|De

|C j |De)

fk|De
.

• When both variable j and k are discrete,

c̃ j k;De (C j |De ,Ck|De) = C j k;De (C+
j |De

,C+
k|De

)−C j k;De (C−
j |De

,C+
k|De

)−C j k;De (C+
j |De

,C−
k|De

)+C j k;De (C−
j |De

,C−
k|De

)

f j |De fk|De
.

where the condition distribution C j |k;De or Ck| j ;De is differentiated by the corresponding
variable in C j k;De and the argument C j |De or Ck|De is computed recursively from copulas
in lower trees. Both of them can be represented similarly as follows,

C j |De∪{k} =
 C j |k;De (C j |De |Ck|De), Xk continuous,

C j k;De (C+
k|De

,C j |De)−C j k;De (C−
k|De

,C j |De)

F+
k|De

−F−
k|De

, Xk discrete.

2
VINE REPRESENTATIONS AND

STRUCTURE CONSTRUCTIONS

As explained in Chapter 1, different vine structures might have better or worse perfor-
mance on given data set. In this chapter a few ways of representing vine structures are
shown. Each one of them has its advantages and disadvantages. We present in detail the
vine binomial tree representation, which has been shown very useful in the vine structure
construction.

Parts of this chapter have been published in Zhu et al. (2020, 2021).

15

2

16 2. VINE REPRESENTATIONS AND STRUCTURE CONSTRUCTIONS

2.1. INTRODUCTION

There are
(n

2

)
(n −2)!2

(n−2
2

)
vine structures on n elements (Nápoles (2010)). Theoreti-

cally, each one of these structures can be used to represent a density. However, when vine
copulas are estimated from data, due to the tree-wise estimation, the limited choice of
copula families and the simplifying assumption, some vine structures might have bet-
ter performance than others. Different heuristic methods to choose the ’best’ structure
have been introduced in the literature. The most popular one is the Dißmann’s heuris-
tic, presented in Dißmann et al. (2013). The idea of this method is to start building a
vine structure from the first tree that is chosen to maximize the dependence. Copulas
in the first tree are estimated and data is transformed using these estimated copulas,
so the second tree structure can be constructed similarly, and etc.. Originally, Kendall’s
tau measure of dependence was used as weights in Dißmann’s heuristic. Other choices
have been also considered, for example, p-value of goodness-of-fit tests for the bivariate
copulas (Czado et al. (2013)), or combination of Kendall’s tau and p-value of test of sim-
plifying assumption (Kraus & Czado (2017b)). Simulation studies in these papers show
that these methods often lead to improved vine models. In Kurowicka (2011), the au-
thor proposes to construct a vine structure starting from the top node of the vine, which
is chosen as the one with the smallest absolute partial correlation estimated from data.
The idea is quite similar to the Dißmann’s heuristic, namely one wants to capture the
least dependence in higher level trees, hence most dependence in lower levels. This
heuristic, however, has not been studied so extensively. In Brechmann & Joe (2014), the
authors propose to search for tree structures based on so called 1-neighbor trees. An-
other approach is to examine random trees obtained through a Monte Carlo simulation
Chang et al. (2019). This method is computationally expensive and can only be applied
in lower dimensions. Bayesian approaches to vine structure selection are proposed in
Gruber & Czado (2015, 2018).

Instead of considering each tree separately in a vine, Cooke et al. (2015) proposes to
search for vine structures having 0 common sampling orders with an initial estimated
vine structure. This is a very different idea as compared to the previous attempts. The
proposal in Cooke et al. (2015) is based on the intuition that the number of common
sampling orders might be used as a measure of similarity of vine structures. This intu-
ition was not supported by extensive investigation. An extension of this idea is worked
out in Zhu et al. (2020), where the authors show that the number of common sampling
orders is a good proxy to measure similarity of vine structures. However, they decided to
search for vines having 2 common sampling orders with the initial structure. This is the
topic discussed in Chapter 3.

This chapter gives an overview of different representations of vine structures, which
will be used throughout this thesis. Then we illustrate how a vine structure can be con-
structed using each of these representations.

2.2. VINE REPRESENTATIONS
In this section four different vine representations are discussed. These include tree

by tree representation which we have already used in Chapter 1, vine triangular array
which first appeared in Cooke et al. (2015), vine matrix representation introduced in

2.2. VINE REPRESENTATIONS

2

17

Nápoles (2010) and finally, vine binomial tree (VBT) introduced in (Zhu et al. (2020)) is
explained. Compared with the first three existing representations, VBT provides a more
flexible way of vine structure construction.

2.2.1. TREE-WISE REPRESENTATION AND VINE TRIANGULAR ARRAY

A vine is a set of trees hence the most intuitive representation for a vine structure is
the tree by tree representation shown in Figure 2.1 for two vines on 5 elements.

Figure 2.1: Tree by tree representation of two vines V1(5) (left) and V2(5) (right).

These vines are two special types of vine structures. V1(5) is called a C-vine. This vine
has a root node (one node connected to all remaining nodes in this tree) in every tree.
In Figure 2.1 (left), node 2 is the root node in the first tree, node 23 is the root node in
the second tree and node 34|2 is the root node in the third tree. In the fourth tree there
are only two nodes 14|23, 45|23 so each can be chosen as a root node; V2(5) is called a
D-vine. For this type of vine, all nodes in the first tree have degree at most two (where
degree of a node is the number of edges connected to this node). Its structure is thus
determined by the order of nodes in the first tree, as due to proximity, there are no more
choices for nodes in higher trees.

In order to emphasize the parent-child relationship of nodes in a vine structure, an-
other representation called vine triangular array was introduced in Cooke et al. (2015).
Figure 2.2 shows the vine triangular array representations for the two vines V1(5) and
V2(5) in Figure 2.1.

2

18 2. VINE REPRESENTATIONS AND STRUCTURE CONSTRUCTIONS

Figure 2.2: Triangular array representation for V1(5) (left) and V2(5) (right) in Figure 2.1

From properties of regular vines we know that each node in tree Ti has two children
in tree Ti−1. Note that the conditioned and conditioning sets of a given node are already
sufficient to determine which two nodes have been combined in the lower tree. However,
in the vine triangular array, we draw lines joining children and parents to make them
immediately visible. Then, starting from the top node we can follow one of two lines
leading to its children in tree Tn−1 and again we choose one of two lines until we reach a
node in T1. Then we can refer to a path 1 in the vine triangular array.

Both tree by tree and triangular array are not so easy and compact to be used in com-
puter implementations. In the next two sections vine matrix and vine binomial tree rep-
resentations are introduced.

2.2.2. VINE MATRIX
Vine matrix representation introduced in Nápoles (2010) is very popular (note that

in Dißmann et al. (2013) slightly adjusted vine matrix approach was used) and compact
way to store information needed to represent a vine structure. The structure of a vine on
n elements is stored in a lower triangular n by n matrix. Additional matrices are be used
to store information about copula family and copula parameters. This is implemented in
the VineCopula package (using lower triangular matrix) and in the rvinecopulib pack-
age (using upper triangular matrix). In our presentation we follow the result in Nápoles
(2010), hence the vine matrix is shown in the form of a lower triangular matrix.

The matrix representation requires the specification of a natural order of variables. A
natural order NO is a permutation of elements {1, . . . ,n}, which is determined as follows:
we start with either element in the conditioned set of the top node, and the remaining
elements j , j = 2, . . . ,n −1 in NO are then determined such that j −1, j is a conditioned
set of a node in tree Tn− j+2 (Joe et al. (2011)). Then the matrix representation of a vine is
defined as follows:

Definition 2.2.1 (regular vine matrix). A regular vine matrix M(V (n)) = {mi , j } for i , j =
1, . . . ,n and i ≤ j is a lower triangular matrix with mi ,i equals the element in position i in
NO and mi+1,i equals to the element in position i +1 in NO. Furthermore, it represents a

1We do not allow a path in the vine triangular array to go up and down. Hence, in this sense the defined path
is directional.

2.2. VINE REPRESENTATIONS

2

19

regular vine V (n) if and only if for all i ≥ n −1, element mi , j = mh,h or mi , j = mi+1,h for
some h such that j < h ≤ i and {m j , j , . . . ,mi−1, j }∩ {mi+1,h , . . . ,mn,h} =;.

There are always two natural orders for a regular vine. For the regular vine V1(5) in
Figure 2.2 (left), the natural order NO = (1,5,4,3,2) leads to the matrix M1(V1(5)) and the
vine matrix M2(V1(5)) is obtained when NO = (5,1,4,3,2) is used.

M1(V1(5)) =

1
5 5
4 4 4
3 3 3 3
2 2 2 2 2

 M2(V1(5)) =

5
1 1
4 4 4
3 3 3 3
2 2 2 2 2

Observing that a natural order forms elements on the diagonal of each matrix, and

conditioned and conditioning sets of nodes in a vine are represented in the vine matrix
by m j , j ,mk, j |mk+1, j , . . . ,mn, j , j < k ≤ n. For instance, when we look at M1(V1(5)), we can
see nodes that have element 1 in the conditioned set are coded in the first column. First,
element 1 and 5 form a conditioned set of a node whose conditioning set is composed
of elements lying in the first column underneath 5, hence is {4,3,2}. Then, element 1 is
in the conditioned set of a node together with element 4, and the conditioning set lies
underneath 4 which is {3,2}, and etc..

In Section 2.3.1 we show how a vine structure V (n) can be constructed for a given
NO by using a binary sequence of length

(n−2
2

)
.

2.2.3. VINE BINOMIAL TREE
We will now present a vine binomial tree (VBT) representation of regular vines, which

has been introduced in Zhu et al. (2020). Although VBT is not, strictly speaking, a bino-
mial tree since it does not have a root and in the last split each node has only one child,
most of the concepts used in binomial trees, such as sub-trees, depth, path (root-to-leaf
path) are inherited by VBT. Depth-i , for i = 1, . . . ,n represents the level of the binomial
split. It is in principle not necessary to list the last split in depth-n. For completeness,
however, we show it in Figure 2.3. Each node of the VBT is referred to as an element in
VBT and is denoted by VBT[i][j], where i < n is the depth of this element and j = 1, . . . ,2i

represents its position in depth-i , from left to right.
VBT is just another representation of information contained in the vine triangular

array. A pair of elements (VBT[i][2k −1], VBT[i][2k]), k = 1, ...,2i−1 represents the con-
ditioned set of a node in tree Tn−i+1 in the vine triangular array. We call VBT[i][2k] a
partner element of VBT[i][2k −1]. Furthermore, the conditioning set of the node in the
vine triangular array contains elements that have not yet appeared on the paths in VBT
through this pair of elements up to and including depth-i . For example in Figure 2.3, the
conditioned set of node 43|2 in V1(5) appears in (VBT[3][1], VBT[3][2]), where 4 and 3 are
partner elements and element 2 that has not appeared on the paths up to and including
this pair of elements is the conditioning set. Note that the same sub-trees appear under-
neath the elements VBT[2][1] and VBT[2][3], which is because 34|2 is the common child
of 54|23 and of 14|23. The corresponding elements in VBT of the element in the condi-
tioned set of a node in the vine triangular array can be found in the pair of elements in

2

20 2. VINE REPRESENTATIONS AND STRUCTURE CONSTRUCTIONS

VBT representing this node, e.g. corresponding elements of 4 in node 43|2 are VBT[3][1]
and VBT[3][5]. The part of VBT in the shaded area denotes a common subvine, where
the top node of this subvine is represented by the same pair of elements (the order of the
elements can be different).

The proximity condition is also encoded in the elements of VBT. If we consider a
pair of elements in depth-i , this node needs to have two children, which are nodes
represented by the pair of elements in depth-(i + 1). For example in Figure 2.3, the
pair of elements (VBT[2][1],VBT[2][2])=(5,4) representing node 54|23 whose two children
are (VBT[3][1], VBT[3][2])=(4,3) and (VBT[3][3], VBT[3][4])=(5,3) representing nodes 43|2
and 53|2, respectively. Moreover, since the initial segments of paths through VBT[1][1],
VBT[2][1] and VBT[1][2], VBT[2][3] contain the same elements, the sub-trees underneath
VBT[2][1] and VBT[2][3] are the same (see the shaded elements in Figure 2.3).

Figure 2.3: VBT representation of V1(5). The dashed area denotes a substructure and the order is represented
in red squares. The shaded area denotes a common subvine in dimension three.

One path in the vine triangular array gives us a substructure in corresponding VBT.
The root-to-leaf path in VBT is given and partner elements to elements of this path are
easily found. Moreover, we define the ordering (l1, . . . , ln) of elements in substructure by
taking li to be an element in the pair of elements in the substructure in depth-(n− i +1),
but not in depth-(n − i +2) for i > 2 and l2, l1 are the most left elements in the pairs of
elements in depth-(n −1) and depth-n, respectively. For example, a path through nodes
15|234, 14|23, 13|2 and 12 in triangular array of V1(5) corresponds to the substructure in
dashed area in Figure 2.3 and the ordering (2,1,3,4,5) is obtained. This ordering is just
a sampling order of regular vine which will be introduced in Chapter 3. In Chapter 5 a
different order is used, referred to as order of elements in VBT. Elements are ordered
by choosing always the right elements in the pair of elements (from the last depth to
depth-1) in this substructure, hence order (1,2,3,4,5) is obtained. Since we can always
exchange the first two elements in the order, these two approaches are the same.

2.2. VINE REPRESENTATIONS

2

21

The reverse NO in the vine matrix representation is a special order in VBT. One NO of
the vine matrix is determined in the substructure constituting pair of elements (VBT[1][1],
VBT[1][2) in depth-1, (VBT[2][1], VBT[2][2]) in depth-2, . . ., (VBT[i][1], VBT[i][2]) in depth-
i , . . . (VBT[n][1], VBT[n][2]) in depth-n; the other NO is then determined in the sub-
structure of pair of elements (VBT[1][1], VBT[1][2) in depth-1, (VBT[2][3], VBT[2][4])
in depth-2, . . ., (VBT[i][2i−1 + 1], VBT[i][2i−1 + 2]) in depth-i , . . ., (VBT[n − 1][2n−2 + 1],
VBT[n−1][2n−2 +2]) in depth-n−1 and (VBT[n][2n−2 +1], VBT[n][2n−2 +2]) in depth-n.

To represent a regular vine, a VBT needs to satisfy conditions presented in Proposi-
tion 2.2.1.

Proposition 2.2.1. VBT represents a regular vine if and only if it satisfies conditions (1,2,3,4).

1. Each path in VBT is a unique permutation of {1, ...,n}.

2. All partner elements in VBT are distinct. That is, VBT[i][2k − 1] 6= VBT[i][2k], for
i = 1, . . . ,n −1, k = 1, . . . ,2i−1.

3. For i = 1, . . . ,n−2 and j = 1, . . . ,2i if j is odd then VBT[i][j] is either VBT[i+1][2 j+1]
or VBT[i +1][2 j +2], and if j is even VBT[i][j] is either VBT[i +1][2 j −3] or VBT[i +
1][2 j −2].

4. If the initial segments of i (i ≥ 2) elements of two paths contain the same elements
(irrespective the order) and VBT[i][j] and VBT[i][k] are the i -th element in each
path respectively, 1 ≤ j ,k ≤ 2i , then the sub-trees underneath root VBT[i][j] and
underneath root VBT[i][k] are the same.

Proof. By construction, a VBT representing a regular vine satisfies conditions (1,2,3,4).
Conversely, by property (2), elements in (VBT[i][2k−1], VBT[i][2k]), for each i = 1, . . . ,n,
with k = 1, ...,2i−1 are distinct and they constitute the conditioned set of one node in
echelon-(n − i + 1) in the vine triangular array. Since the VBT inherits properties of a
binomial tree, then the initial segments up to depth-i of paths through (VBT[i][2k −1],
VBT[i][2k]) are the same. Hence, by properties (1) and (3), the common elements of
paths in subtrees underneath roots VBT[i][2k −1] and VBT[i][2k] form the conditioning
set of the node in echelon-(n − i +1) of vine triangular array.

To conclude the proof, we show that, under conditions (1,2,3,4), the proximity con-
dition is preserved. Consider the nearby pairs of elements (VBT[i][4l −3], VBT[i][4l −2])
and (VBT[i][4l −1], VBT[i][4l]), with i ≥ 2 and l = 1, . . . ,2i−2. By conditions (1,2,3), the
symmetric difference of these two pairs contains 2 elements, that is VBT[i − 1][2l − 1]
and VBT[i − 1][2l]. Thus they are children of node in echelon-(n − i + 2) with condi-
tioned set (VBT[i −1][2l −1], VBT[i −1][2l]) (they are siblings). Because condition (3),
VBT[i−1][2l−1] will be either VBT[i][4l−1] or VBT[i][4l] and VBT[i−1][2l] will be either
VBT[i][4l −3] or VBT[i][4l −2]. Hence by condition (4) these two nodes have a common
child.

It is possible to formalize a standard form of a VBT as follows,

Definition 2.2.2 (Standard form of VBT). VBT is in its standard form if VBT[i +1][2 j +1]
is equal to VBT[i][j], when j is odd, and VBT[i +1][2 j −3] is equal to VBT[i][j] otherwise,
for i = 1, . . . ,n −2 and j = 1, . . . ,2i .

2

22 2. VINE REPRESENTATIONS AND STRUCTURE CONSTRUCTIONS

The VBT in Figure 2.3 is a standard VBT. Note that there are two standard VBT rep-
resentations for one regular vine structure, which depend on the order of elements in
depth-1.

In the next section we show how VBT is used to construct a vine structure for a given
order.

2.3. VINE STRUCTURE CONSTRUCTION
There are different ways of constructing a vine structure. According to the definition

of regular vine, an intuitive way is to construct the vine structure tree-wise as proposed
in Dißmann et al. (2013) following the so called bottom-up approach, or using top-down
approach advised in Kurowicka (2011). Rather than applying tree-wise construction, in
this section we show that a vine structure can be determined by an order (a permutation
of elements {1, . . . ,n}) and a sequence of binary number of length

(n−2
2

)
.

It has been discussed in Brechmann & Schepsmeier (2013) that a C-vine can be de-
termined by an order (l0, l1, · · · , lk), where l1 is the root node in the first tree, node l1l2 is
the root node in the second tree, node li−1li |l1 . . . li−2 is the root node in tree-i for i > 3
and finally we have an edge l0lk |l1 . . . lk−1 in the last tree. This leads to order of the C-
vine V1(5) in Figure 2.1 (left) equals to (1,2,3,4,5). For a D-vine, when the first tree is
l0 − l1 − l2 −·· ·− lk , then the order can be taken as (l0, l1, . . . , lk) (or reverse order), which
for the vine in Figure 2.1 (right) is (1,2,3,4,5). These types of vines correspond to a par-
ticular choice of the binary sequence, which will be discussed later on in this section.

2.3.1. THROUGH VINE MATRIX

In Joe et al. (2011), it is explained how a regular vine can be constructed in the form
of a vine matrix for a given natural order NO = {l1, . . . , ln} and a binary sequence (which
is placed in a lower triangular matrix B = {bi , j }, i , j = 1, . . . ,n and i ≤ j . Matrix B satis-

fies additionally that elements bn, j = 1, bi ,i = 1 and bi+1,i = 1. In total there are
(n−2

2

)
elements in matrix B that can be specified. Algorithm 1 describes this procedure.

When all elements that can be chosen in matrix B are set to be equal to 0, the con-
structed vine is a D-vine. In contrast if all elements in B are 1 then the constructed vine
is a C-vine. In this sense D-vine and C-vine are the most ’extreme’ structures of vines.
Other combinations of numbers in B lead to different types of vines, which has been
discussed by the notion of vine equivalence class (Joe et al. (2011)).

The algorithm to construct a vine structure can also be presented as a combination
of extensions of V (j) by extra element j ; as shown in Nápoles (2010) there are always
2 j−2 possible extensions.

2.3.2. THROUGH VINE BINOMIAL TREE

We show in this section how a vine structure can be constructed based on VBT. This
lays the foundation of methods introduced in Chapter 3 and Chapter 5. An example is
given at first. Suppose the given order of elements is (l0, l1, l2, l3, l4).

The construction is done by the successive extension by next element in the given
order. The extension process starts with extending the vine with order (l0, l1, l2) by l3.
This is due to the fact that the vine structure in dimension 3 is fully determined by the

2.3. VINE STRUCTURE CONSTRUCTION

2

23

Algorithm 1 Generation algorithm of regular vine structure on vine matrix.

Input: A natural order NO and lower triangular matrix B .
Output: A regular vine matrix M .

1: Initialize a lower triangular matrix M = {mi , j } for i , j = 1, . . . ,n and i ≤ j .
2: Assign elements mi ,i with li in NO and mi+1,i with li+1.
3: Assign mn,n−2 with ln .
4: for j = n −3 to 1 do
5: Initialize ac (active column) being j +2.
6: for i = j +2 to n do
7: if bi , j = 1 then
8: Assign mi , j with mac,ac .
9: ac is updated by k(j < k ≤ i) where lk is the first element in NO which

doesn’t appear in column j .
10: else
11: Assign mi , j with mi+1,ac .
12: end if
13: end for
14: end for

given order. Two possible extensions for the vine structure with given order (l0, l1, l2, l3)
are shown in Figure 2.4. They depend on the choice of element VBT[2][2] (indicated by
the black circle). According to Proposition 2.2.1 parts 3) and 4), this element can be taken
as either VBT[3][5] or VBT[3][6] (marked by red circle in both figures). Once its value is
determined, the remaining elements in VBT (red elements) can be filled by following the
properties of VBT. Since there are two choices available for VBT[2][2], we assign to it an
indicator, where 1 denotes that its value is given by the left element VBT[3][5] and 0 de-
notes the right element VBT[3][6] in this pair of elements. By the properties of standard
VBT, if indicator is 1 then the root in the first tree (element l1) will remain unchanged
and this leads to the C-vine in Figure 2.4 (left). By contrast, element l1 loses the status of
the root node in tree 1 when indicator is 0 and the first tree is now l0 − l1 − l2 − l3. Hence
a D-vine is obtained, as shown in Figure 2.4 (right).

Once a choice of indicator is made for the vine structure with order (l0, l1, l2, l3), we
can extend this vine by l4, as depicted in Figure 2.5. The subvine on elements (l0, l1, l2, l3)
gives the right hand side of the VBT and the elements in the left side need to be filled in.
Two choices are available for VBT[2][2] (see the black circle), either element VBT[3][5]
or VBT[3][6]. Next, the choice for element VBT[3][4] (shown in black circle) depends on
the choice for VBT[2][2]. If the indicator for VBT[2][2] is 1 then the value of VBT[3][4]
can be taken to be equal to either VBT[4][9] or VBT[4][10], otherwise its value is either
VBT[4][11] or VBT[4][12]. Note that in every step this process finds a partner element of
the newly added element, whose value is determined by an indicator. Hence the final
vine structure for a given order can be determined by a sequence of indicators.

The detailed algorithm is given as follows by specifying the elements that need to be
filled in as 0 elements (to be consistent with the notation in Chapter 3) during extension,
and the extension procedure is implemented from depth-(n −2) to depth-2.

2

24 2. VINE REPRESENTATIONS AND STRUCTURE CONSTRUCTIONS

Figure 2.4: Standard form of VBTs and possible extensions where two choices of VBT[2][2] (in black circle) lead
to the C-vine (left) and the D-vine (right) with order (l0, l1, l2, l3). (Elements in black are already known or
can be filled in using definition of the standard form of a VBT, whereas elements in red depend on previous
choices.) The shaded area denotes a common subvine.

Figure 2.5: VBT with given order (l0, l1, l2, l3, l4) in the extension process where the sub-tree underneath
VBT[1][2] is already filled. The elements where choices are possible are indicated by a black circle. The shaded
area denotes a common subvine.

2.3. VINE STRUCTURE CONSTRUCTION

2

25

Algorithm 2 Generation algorithm of regular vine structure on VBT.

Input: A given order and a sequence of binary indicators.
Output: A fully specified VBT representing a regular vine.

1: Specify a substructure in VBT for the given order according to the definition of the
ordering in VBT.

2: Fill in 0 elements in VBT that can be determined by the definition of a standard VBT.
3: for i = n −2 to 2 do
4: Find the 0 element in depth-i .
5: Find the pair of elements in depth-(i +1) according to Proposition 2.2.1 parts 3)

and 4).
6: if Indicator 1 is given then
7: The 0 element in depth-i is filled by the left element in the found pair of ele-

ments.
8: else
9: The 0 element in depth-i is filled by the right element in the found pair of

elements.
10: Exchanging the orders of the pairs of elements in the sub-tree underneath the

partner element of the 0 element in depth-i , such that the VBT is always in its stan-
dard form.

11: end if
12: Repeat the above procedures (Steps 4-11) for the 0 elements in depth- j for j = i+1

to n −2.
13: end for
14: Fill in 0 elements in VBT that can be determined by the definition of a standard VBT.

Following the example above and the Algorithm 2, we notice that if in every step of
the extension process indicators are chosen to be 1, the partner element of the newly
added element l j (j = 3,4) in depth-i (2 ≤ i ≤ j) is equal to l j−i+1. By choosing always el-
ements corresponding to 1, a C-vine is obtained. In the case when each time 0 is picked,
the partner of the newly added element in depth-i is li−1 and we get a D-vine struc-
ture. This relationship holds true for a general order (l0, l1, · · · , lk) which is presented in
Proposition 2.3.2.

We start with the proof of one step of the extension process.

Proposition 2.3.1. During extension when a new element is added, the partner element
of the newly added element in depth-i (2 ≤ i), VBT[i][2i−1], is VBT[i +1][2i +1] if all in-
dicators in the extension are chosen to be 1, or is VBT[i + 1][3 · 2i−1] if indicators are all
0.

Proof. The proof is by induction on the depth in VBT. In depth-2, VBT[2][2] is the first
partner element where choice can be made when a new element is added. Due to the
definition of the standard form of a VBT, the initial segment of the path through VBT[1][1]
and VBT[2][1] contains the same elements as the one through VBT[1][2] and VBT[2][3].
Then by Proposition 2.2.1 parts 3) and 4), the element VBT[2][2] can be chosen to be one
element in the pair of elements (VBT[3][5], VBT[3][6]).

2

26 2. VINE REPRESENTATIONS AND STRUCTURE CONSTRUCTIONS

If indicator 1 is chosen, then VBT[2][2] = VBT[3][5]. Assume that our claim holds
for any partner element up to depth- j , hence that the partner element VBT[l][2l−1] =
VBT[l +1][2l +1] (l ≤ j) when all indicators are 1. In depth-(j +1), the partner element is
VBT[j +1][2 j]. By the definition of the standard form of a VBT, the initial segments of the
paths through VBT[1][1], VBT[2][2], VBT[3][4], . . . , VBT[j][2 j−1], VBT[j + 1][2 j − 1] and
VBT[1][2], VBT[2][3], VBT[3][5], . . . , VBT[j +1][2 j +1] contain the same elements. Thus
according to Proposition 2.2.1 part 3) and 4), the value of VBT[j + 1][2 j] can be one of
the pair of elements (VBT[j +2][2 j+1 +1], VBT[j +2][2 j+1 +2]). If indicator is 1, then this
partner is VBT[j +2][2 j+1 +1].

Similarly if indicator is chosen as 0, VBT[2][2] = VBT[3][6]. Assume the proposi-
tion holds for any partner element up to depth- j , which means the partner element
VBT[l][2l−1] in depth-l (l ≤ j) is VBT[l +1][3 ·2l−1] when all indicators are 0. In depth-
(j + 1), the value of the partner element VBT[j + 1][2 j] can be chosen from the pair
of elements (VBT[j + 2][3 · 2 j − 1], VBT[j + 2][3 · 2 j]) as the initial segment on the path
through VBT[1][1], VBT[2][2], VBT[3][4], . . . , VBT[j][2 j−1], VBT[j +1][2 j −1] is the same
as (irrespective the order) the initial segment on the path through VBT[1][2], VBT[2][3],
VBT[3][6], . . . , VBT[j +1][3·2 j−1−1]. Since the indicator is chosen to be 0, VBT[j +1][2 j −
1] = VBT[j +2][3 ·2 j].

Using the above proposition we show how the C-vine and D-vine for a given order
can be obtained through two special sequences of indicators.

Proposition 2.3.2. Suppose a VBT with given order (l0, l1, · · · , lk), (k ≥ 3) is constructed
through the extension process. If at every step of the extension indicator 1 is chosen, the
partner element of the newly added element l j (3 ≤ j ≤ k) in depth-i (2 ≤ i ≤ j) is l j−i+1

and a C-vine with the given order is obtained. If every choice is determined by indicator
0 then the partner element of the newly added element l j in depth-i is li−1 and a D-vine
with this given order is constructed.

Proof. The proof is by induction following the extension process for a VBT with given
order (l0, l1, · · · , lk). The extension process starts in dimension 4 (k = 3) where the VBT
with order (l0, l1, l2) is given and l3 is added. The partner element of l3, VBT[2][2], is the
only element where choice can be made. Its value can be taken as l2 when indicator is 1
which gives us a C-vine with order (l0, l1, l2, l3) or l1 when indicator is 0 which leads to a
D-vine with the same order. We have discussed this case in detail in the example above.

Assume the proposition is true for k = n, hence all indicators are 1 and a C-vine with
order (l0, l1, · · · , ln) is constructed. The partner element of l j (3 ≤ j ≤ n) in depth-i (2 ≤
i ≤ j) is l j−i+1. Similarly, a D-vine with order (l0, l1, · · · , lk) is obtained when all indicators
are chosen to be 0 and the partner element of the newly added element l j in depth-i is
li−1.

When ln+1 is added then by Proposition 2.3.1, the partner element in depth-i , the el-
ement VBT[i][2i−1], is equal to VBT[i +1][2i +1] if all indicators are 1. Elements VBT[i +
1][2i +1] in the current VBT (the VBT extended by ln+1) are equal to VBT[i][1] in the VBT
before extension that represents a C-vine with order (l0, l1, · · · , ln). The value of elements
VBT[i][1] in the VBT before extension is already known. The first one is VBT[2][1] = ln

and its partner element is VBT[2][2] = ln−1 in the VBT before extension. Element ln−1 will

2.3. VINE STRUCTURE CONSTRUCTION

2

27

appear in VBT[3][1] according to the definition of the standard form of a VBT. Then the
partner element VBT[3][2] = ln−2 as ln−1ln−2|De is the root node in tree-(n−1). The value
of VBT[4][1] is ln−2 and its partner element VBT[4][2] = ln−3 which is equal to VBT[5][1]
because ln−2ln−3|De is the root node in tree-(n−2). Similarly we then have VBT[i][1] be-
ing ln , ln−1, . . . , l2 which are the partner elements of ln+1 up to depth-n in the current VBT.
In depth-(n +1) the partner element is l1 according to Proposition 2.2.1 part 1) and 2).
Thus the claim follows and the current VBT keeps the root nodes of the C-vine with order
(l0, l1, · · · , ln) unchanged. This leads to an extended C-vine with order (l0, l1, · · · , ln , ln+1).

As for the D-vine case, by Proposition 2.3.1, the partner element of ln+1 in depth-i is
equal to VBT[i+1][3·2i−1] if all indicators are 0. Elements VBT[i+1][3·2i−1] in the current
VBT (the VBT extended by ln+1) are the same as VBT[i][2i−1] in the VBT before extension
representing a D-vine with order (l0, l1, · · · , ln). Notice that these elements are just the
partner elements of ln in each depth in the VBT before extension hence they are li−1 in
depth-i . Then the partner elements of ln+1 up to depth-n are l1, l2, . . . , ln−1. According to
Proposition 2.2.1 part 1) and 2), the partner element in depth-(n+1) is then ln . Thus the
new edge in the first tree of the extended by ln+1 vine is ln+1ln , which gives us a D-vine
with order (l0, l1, · · · , ln , ln+1).

Proposition 2.3.2 generates a C-vine or a D-vine on VBT similarly with the way of how
they are constructed on vine matrix as explained in Section 2.3.1. However if the given
order is not set to be the natural order in VBT, then different C-vine or D-vine is gener-
ated. The elements are permuted but general type of structure might be unchanged.

APPLICATIONS

29

3
COMMON SAMPLING ORDERS OF

REGULAR VINES WITH APPLICATION

TO MODEL SELECTION

The selection of vine structure to represent dependencies in a data set with a regular vine
copula model is still an open question. Up to date, the most popular heuristic to choose
the vine structure is to construct consecutive trees by capturing largest correlations in lower
trees. However, this might not lead to the optimal vine structure. A new heuristic based on
sampling orders implied by regular vines is investigated. The idea is to start with an initial
vine structure, that can be chosen with any existing procedure and search for a regular
vine copula representing the data better within vines having 2 common sampling orders
with this structure. Several algorithms are proposed to support the new heuristic. Both
in the simulation study and real data analysis, the potential of the new heuristic to find a
structure fitting the data better than the initial vine copula model, is shown.

Parts of this chapter have been published in Zhu et al. (2020).

31

3

32
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

3.1. INTRODUCTION
In this chapter, an extension of the idea proposed in Cooke et al. (2015) is discussed.

In Cooke et al. (2015), the authors introduce the concept of sampling orders implied
by a regular vine and notice that vines having more sampling orders in common have
more common elements in their density decomposition. The idea proposed in Cooke
et al. (2015) is that, if one wants to find a better fitting structure than the initial one,
for a given data, the most promising way is to search for structures having none or a
small number of common sampling orders with the initial vine. However, this claim has
been evaluated only on one 4-dimension example. We extend their work and examine
whether this heuristic search for a vine structure based on common sampling orders is a
valuable method, also in higher dimensions.

This chapter is organized as follows. In Section 3.2, we briefly review and discuss
sampling orders implied by a regular vine. Main contribution of this chapter, where
algorithms allowing generation of all regular vines having given number of common
sampling orders with the initial structure is shown in Section 3.3; Then we propose our
heuristic search method and test its performance via simulation study in Section 3.4;
In Section 3.5, our new heuristic is applied to real data sets to see if we can find a vine
structure that performs better than ones obtained so far; Finally, we give conclusions in
Section 3.6. Algorithms are presented in Appendix 3.A.2.

3.2. SAMPLING ORDERS
In this section, the definition of sampling orders will be introduced and algorithms

to find the sampling orders implied by a vine will be explained.

3.2.1. DEFINITION
Sampling orders are related to density decomposition. There are many possibilities

to factorize a density as introduced in Section 1.2.2 in Chapter 1. To give an example for
5 random variables X1, . . . , X5, one possibility for the density f12345 is

f12345 = f5 f4|5 f3|45 f2|345 f1|2345 (3.2.1)

which can be further decomposed as

f12345 = f5 ·
c45 · f4 ·
c34;5 · c35 · f3 ·
c23;45 · c24;5 · c25 · f2 ·
c12;345 · c13;45 · c14;5 · c15 · f1

Notice that f12345 is decomposed according to the vine V1(5) represented by vine tri-
angular array shown in Figure 3.1 1. Moreover, the decomposition above includes in each

1Note that the first tree in the vine triangular array does not need to be listed, hence in this chapter we do not
show T1 in vine triangular array for simplicity. The ordering of nodes in each tree is different in Cooke et al.
(2015). We will introduce a standard form of vine triangular array later on in Section 3.2.2.

3.2. SAMPLING ORDERS

3

33

row, the five factors in Equation (3.2.1). The product over densities in the first four rows
gives the density f2345. If one removes all densities involving variable 1 from the decom-
position, one gets margin of f12345, f2345. This process is referred to as marginalization
with respect to variable 1.

Figure 3.1: Vine triangular arrays for two regular vines on 5 elements (left - V1(5); right - V2(5))

Factorization (3.2.1) implies the sampling order X5 → X4 → X3 → X2 → X1, which
we simplify to (5,4,3,2,1). The regular vine specification of V1(5) can be also obtained
from another standard factorization, for example based on (5,3,4,1,2). The following
definition of a sampling order implied by a regular vine has been introduced in Cooke
et al. (2015).

Definition 3.2.1. (Sampling order implied by a Regular Vine) A sampling order for n
variables is a sequence of conditional densities in which the first density is unconditional,
and the density for other variables is conditioned on the preceding variables in the order-
ing. A sampling order is implied by a regular vine representation of the density if each
conditional density can be written as a product of copula densities in the vine and one
dimensional margins.

We denote a sampling order as (p1, p2, ..., pn), where pi ∈ {1, . . . ,n} in this chapter.
There exist sampling orders which are not implied by a given regular vine. For ex-

ample, vine V1(5) in Figure 3.1 will not imply the sampling order (1,2,3,4,5), since rep-
resenting the conditional density f5|1234 would require, amongst others, variable 5 to be
in the conditioned set of the top node in its triangular array.

In the next section, we will explain how all the sampling orders implied by a vine can
be found.

3.2.2. SAMPLING ORDERS IMPLIED BY A VINE
Sampling orders implied by a regular vine are not difficult to find. We will at first

generate them using vine triangular array, and extend slightly the terminology for this
representation.

Since a node in tree Ti is an edge in tree Ti−1 for i > 1, it is sometimes more effective
to talk about echelon-i that denotes the set of nodes whose constraint sets have cardi-
nality i , where i = 1, . . . ,n (see, for example Cooke et al. (2015)). For a vine on n elements

3

34
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

there are n echelons. Nodes of the first tree {1, ...,n} belong to echelon-1 and are omit-
ted in Figure 3.1. The top echelon, echelon-n, containing the single edge in tree Tn−1 is
referred to as the top node of vine V (n). Later on in this chapter, the reference to nodes
of regular vine V (n) means the nodes in the triangular array of this vine. We call the two
nodes in each echelon whose conditioned set contains element in the conditioned set of
the top node as the outside nodes (these nodes are also called the leaf nodes in Chang &
Joe (2019)).

It is possible to define a standard form of vine triangular array as follows. The marginal-
ization by variable 1 in vine triangular array requires to remove all outside nodes whose
conditioned set contains variable 1. This process is graphically represented in Figure 3.2.
A subvine representing f2345 with top node 23|45 emerges from the marginalization and
will be denoted as V1(4). Using concept of marginalization allows us to specify the stan-
dard form of vine triangular array. In the top node either element can be set to be the
left element (thus there are always two standard forms for one vine). Then the elements
of the conditioned sets of other nodes are ordered through consecutive marginalization
with respect to the left element in the conditioned set of current node and setting the left
element in the conditioned set of child node (after marginalization) as the right element
in its conditioned set.

Figure 3.2: Graphical representation of marginal-
ization for V1(5) by variable 1 to get V1(4).

Figure 3.3: Number of subvines in triangular array
of V1(5).

To find sampling orders two algorithms, bottom-up and top-down algorithms, have
been proposed by Cooke et al. (2015). In this chapter the top-down algorithm will be
considered. It starts by choosing the last element, pn in the sampling order and per-
forms successive marginalization steps. pn is chosen from one of the elements in the
conditioned set of the top node in vine triangular array. When the last element of the
sampling order is chosen, say n, one can remove fn|1,2,...,n−1 from the standard factoriza-
tion, which is equivalent with marginalizing f1,...,n by n to get f1,...,n−1 and removing all
outside nodes in the triangular array representation of regular vine whose conditioned
set containing variable n.

For V1(5) in Figure 3.1 the top-down algorithm will start by choosing an element from
the conditioned set 12 of the top node. If we choose p5 = 1, marginalization by variable

3.2. SAMPLING ORDERS

3

35

1 gives the subvine V1(4) with top node 23|45. Succeedingly, p4 can be either 2 or 3.
Setting p4 = 2 and marginalizing V1(4) by 2 we obtain V1(3) with top node 34|5 and p3

can be either 3 or 4. If p3 is chosen to be 3, V1(2) is obtained which has top node 45 and
p2 is either 4 or 5. The first element p1 in the sampling order is equal to the variable
not chosen so far. This gives the sampling order (5,4,3,2,1). The Top-down algorithm is
presented in Algorithm 3.

Algorithm 3 Top-down algorithm

Input: a given regular vine V (n)
Output: a sampling order of V (n)

1: Set i = n. Choose one variable in the conditioned set of the top node of V (n), say k,
pn = k.

2: repeat
3: Marginalize V (i) by pi to obtain a subvine V (i −1).
4: Choose one variable in the conditioned set of top node of V (i − 1) and set it as

pi−1.
5: i ← i −1.
6: until Reach echelon-3, i = 3.
7: Choose one of two remaining variables as p2 and assign the other to p1.

Note that, at every step in echelon-i of the top-down algorithm, we have two choices
for the value of pi , thus the following remark holds:

Remark 3.2.1. There are 2 possible values for pn , 22 choices for (pn−1, pn),. . . , 2n−2 possi-
bilities for (p3, p4, . . . , pn) and 2n−1 ways of choosing (p2, p3, . . . , pn).

This is, in fact, the main idea of the proof of the next theorem, which is presented in
Cooke et al. (2015).

Theorem 3.2.1. Any regular vine on n elements implies 2n−1 sampling orders.

The following remark holds.

Remark 3.2.2. For a particular choice of (pn−i+1, . . . , pn), with 1 ≤ i ≤ n − 2, there are
2n−1/(2i) sampling orders that end with (pn−i+1, . . . , pn).

The graphical representation of the number of subvines with given top node ob-
tained by consecutive marginalization has been introduced in Cooke et al. (2015) and
is depicted in Figure 3.3. There is just one vine with the top node 12|345 in V1(5), hence 1
in the top node. After marginalizing with respect to variable 1 (see Figure 3.2), we get one
subvine in echelon-4 with the top node 23|45. Similarly the marginalization with respect
to variable 2 gives one subvine with the top node 13|45, hence both nodes in echelon-4
in Figure 3.3 are assigned value 1. Furthermore, if we marginalize first with respect to 1
and then with respect to 2, or the other way around, we obtain the same subvine with
the top node 34|5 in echelon−3, which leads to value 2. The other nodes are quantified
similarly, e.g., the subvine with top node 45 can be obtained by marginalizing first by 1,
then by 2 and by 3. However, three other options are also available, these are marginal-
izing by {1,3,2}, {2,1,3} and {2,3,1}. We observe that the number of subvines with node

3

36
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

node j in echelon-i as top node after marginalization, denoted as nsv j , is equal to the
sum of the number of subvines with top nodes corresponding to the parents of node
node j . The number of sampling orders can then be read from the number of subvines
in the triangular array (see Figure 3.3), by doubling the sum over all values in echelon-2.

Sampling orders implied by a vine can also be easily found on VBT. Below is the VBT
of V1(5).

Figure 3.4: Standard VBT representation of V1(5). The dashed area denotes a substructure representing a path
in the vine triangular array.

Note that the sampling orders found by Algorithm 3 are just paths in reverse order
in the VBT in Figure 3.4, where element VBT[i][j] in one path is equal to pn−i+1 in the
sampling order. The VBT thus depicts all the sampling orders and we see immediately
that vine V1(5) entails 16 sampling orders. The VBT of V2(5) reveals also 16 sampling
orders, and, by comparing the two VBTs, we see that 10 of those sampling orders are
common.

Obviously, if for any two vines all sampling orders are the same then we are dealing
with the same vine. The more sampling orders two vines have in common the more their
vine triangular array representation looks alike. This similarity can be observed from the
density decomposition of these two vines. If we expand the density according to the
factorization (5,4,3,2,1), for vine V1(5) we get

f12345 = f1 f2 f3 f4 f5c45c35c34|5c25c24|5c23|45c15c14|5c13|45c12|345 (3.2.2)

while for V2(5), the decomposition is

f12345 = f1 f2 f3 f4 f5c45c35c34|5c24c25|4c23|45c13c15|3c14|35c12|345, (3.2.3)

where common terms of the density are printed bold.
Theoretically, it does not matter which vine structure we select, since all structures

represent the same density. However, in practice, the structure might play a crucial role.

3.3. COMMON SAMPLING ORDERS

3

37

For example, in the estimation process described e.g. in Dißmann et al. (2013), the lim-
ited choice of copula families, the errors due to tree-wise estimation and the simplifying
assumption, lead to differences in performance of estimated vines with different struc-
tures for given data set. In Cooke et al. (2015), the authors proposed to search for vines
that have none or a small number of common sampling orders with an initial structure,
in order to improve the data fit. The main contribution of this chapter is to extend and
test the performance of this heuristic, in simulations, as well as for real data sets.

3.3. COMMON SAMPLING ORDERS
In this section, we will show two algorithms, one to find only common sampling or-

ders of two given regular vines and the other to generate all regular vines having a given
number of common sampling orders with an initial regular vine.

3.3.1. FINDING COMMON SAMPLING ORDERS OF TWO GIVEN REGULAR VINES

We can find the common sampling orders of two vines by listing all sampling orders
of each of the two vines and inspecting how many of those are common. This is however
not efficient as the number of sampling orders grows exponentially with the dimension
of the vine. Hence in this section, we present an algorithm to find only common sam-
pling orders of two given regular vines.

Since paths in the VBT depict all sampling orders, finding common sampling orders
requires choosing only common paths in VBTs. These common paths also appear in the
vine triangular array, hence finding common sampling orders can also be carried out by
finding common paths in the vine triangular array by comparing, echelon by echelon,
elements in the conditioned set of corresponding nodes (with the same constraint set)
of these vines. These common paths are then retained in VBT. If the conditioned sets in
both triangular arrays representing two vines are the same, all paths through this node
in one vine triangular array can be common, otherwise some paths are blocked, where
a blocked path is represented by a 0 indicator of a line from the node in vine triangular
array.

As an example, we show the procedure of finding common sampling orders between
V1(5) and V2(5) in Figure 3.1. The top nodes of V1(5) and V2(5) are the same, which means
we can marginalize them by either variable 1 or 2 (p5 can be either 1 or 2 in common
sampling orders), so the lines connecting the top node with its children are available.
In echelon-4 the node 23|45 is the same in both vines hence both lines leading to m-
children are available.

However, in the conditioned set for 13|45 of V1(5) and 14|35 of V2(5) only variable 1 is
common thus variable 1 has to be fourth (p4) in common sampling orders that ends with
p5 = 2. Other paths in V1(5) where p4 = 3 are blocked. This is illustrated in Figure 3.5,
where 3 is replaced by 0 and the indicator of the line connecting the child whose condi-
tioned set contains 1 is set to 0. If all paths through a node in the next echelon are blocked
then 0 is assigned to that node to indicate that this node does not need to be compared
anymore. This procedure is called the re-evaluation of the vine triangular array. Sim-
ilarly, the number of subvines in triangular array can also be re-evaluated, as shown in
Figure 3.6. For node j in echelon-i , the number of subvines with this node as top node,

3

38
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

Figure 3.5: The triangular array of V1(5) after re-
evaluation when comparing with V2(5).

Figure 3.6: The number of subvines in triangular
array of V1(5) after re-evaluation when compar-
ing with V2(5).

nsv j , is now the sum of numbers assigned to the parents of this node in echelon-(i +1)
but without those parents whose one line connecting this node is assigned 0 indicator.

In echelon-3, the nodes not assigned 0 till now are compared. Hence, as both ele-
ments in the conditioned sets of V1(5) and V2(5) for node 34|5 are the same both lines
from node 34|5 stay available, and we block line between 25 and 24|5 as variable 2 has to
be p3 in the common paths crossing this node. We replace 4 by 0 in node 24|5, assign 0
to node 25 by re-evaluation.

The procedure is reflected in VBT, where corresponding elements in VBT of zero el-
ements in the conditioned sets in vine triangular array are replaced by 0 thus each path
in VBT through these elements is blocked and we can set all elements in sub-trees with
these elements as root to be 0. This is graphically presented in Figure 3.7 where we can
see directly how many and which common sampling orders V1(5) and V2(5) have by all
paths in VBT that do not contain 0.

In general, when comparing the conditioned sets of corresponding nodes in echelon-
i in triangular arrays representing two vines, V1(n) and V2(n), we distinguish three cases
which will be of importance in the description of a general algorithm for finding vine
with given number of common sampling orders.

Case1: No common element in the conditioned set.
This implies that the two vines cannot have a common value for pn−i+1 in paths
through this node in triangular array. Thus all paths crossing this node are blocked
and the indicators for both lines from this node are set to 0.

Case2: There is one common element in the conditioned set.
In this case the common element has to be chosen as pn−i+1 in paths through this
node in triangular array. The other element cannot be pn−i+1 so the indicator of
lines connecting the child whose conditioned set containing the common element
is 0.

3.3. COMMON SAMPLING ORDERS

3

39

Figure 3.7: VBT representation of V1(5), when compared with V2(5).

Case3: Both elements of the conditioned sets are the same.
We have two choices for the value of pn−i+1 in paths through this node in triangu-
lar array.

We can observe that due to proximity few simple results can be stated about possible
cases that can happen when two regular vines are compared. These results are presented
below.

Proposition 3.3.1. When nodes of two regular vines are compared the following proper-
ties are satisfied:

a) Nodes in echelon-3 cannot be Case1.

b) The child of a node in Case3 cannot be in Case1.

c) For a node with a parent in Case3, the line to its child whose conditioned set does
not include any element in the conditioned set of its parent, cannot be assigned 0.

d) There is at most one node in Case1. A Case1 node can appear if and only if these
vines have 0 common sampling orders.

Proof. Parts a), b) and c) follow immediately from the proximity condition.
Part d) follows from the observation that if in a vine with top node in Case3 there is

one node in Case1 in echelon-i , 3 < i < n −1, then all paths, that are not blocked up to
echelon-i , go through that Case1 node.

We prove this claim via induction on the dimension of the vine. When n = i +2 the
only situation in which we can get Case1 node in echelon-i , according to b) and c), is
the case when the two children of the top node are in Case2 and the Case1 node is their

3

40
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

common child. This means the two paths in the triangular array will go through this
Case1 node and are then blocked.

Assume that the claim is true for n ≤ k, k ≥ i +2. We will show that the claim is true
for n = k +1. We consider the following situations:

1) Assume that the top node is the only Case3 node, then its two children in echelon-
k are in Case2 and their common child and other nodes in lower echelons are also Case2,
thus the two paths from the top node will intersect in the only one node in echelon-
(k −1), due to c). So after in echelons lower than (k −1) there is only one path which will
be blocked after crossing the Case1 node in echelon-i .

2) Suppose that there are more nodes in Case3 and assume that the highest echelon
containing a node in Case3 is echelon- j , i +2 ≤ j ≤ k, then

i) if j < k, then all nodes in echelons higher than j but lower than k +1 are in Case2.
Hence both paths from the top node will go through the Case3 node in echelon-
j , as in part 1). Since j < k applying inductive step all paths in that subvine in
dimension j will be blocked after the Case1 node.

ii) if j = k and there is only one node out of two in echelon-k that is Case3, which
means the other node is Case2. By c), the path through that Case2 node will go
through the common child in echelon-k −1 and this common child is in the sub-
vine with the Case3 node in echelon-k as top node. Applying induction, all paths
in that sub-vine will finally be blocked after the Case1 node.

iii) if j = k and both nodes in echelon-k are in Case3, due to c, the Case1 node can
only be in the common part of these two k-dimensional subvines. Applying the
inductive step proves the result.

Part d) follows from the above by noticing that if there were two different nodes in
Case1, then paths through the nodes should meet in these nodes (since there must be
one subvine that has Case3 top node and includes these two Case1 nodes). Then these
two nodes will either be the same node or one of them is not Case1 but is assigned to 0.
The second part of d) is immediate.

Another simple result for vines having 2 sampling orders in common is proved below.

Proposition 3.3.2. Let V1(n) and V2(n), with n ≥ 3, be two regular vines with 2 common
sampling orders. Then all nodes compared in the procedure of finding common sampling
orders are in Case2.

Proof. By Proposition 3.3.1(d), all nodes in the triangular array are either Case3 or Case2.
If all nodes are Case2, then one path remains available in the re-evaluation of the trian-
gular array, which results in 2 common sampling orders. Assume there is one node in
Case3. If this node is in echelon-3, then there are at least 4 common sampling orders. If
this node is in a higher echelon, then two lines from this node to its children would be
available hence there is an extra path through the triangular array, which would lead to
more common sampling orders.

3.3. COMMON SAMPLING ORDERS

3

41

The general algorithm to find the common sampling orders is presented in Algorithm
4 in Appendix 3.A.2.

If we denote the indicators for lines that are not 0 as 1, accounting for these indica-
tors in a descending order of echelons, from left node to right in one echelon and from
left to right line for the same node, leads to a sequence of indicators. The sequence of in-
dicators of V1(5), when compared to V2(5) in the above example is I = (11|0111|111110),
where consecutive echelons are separated by vertical line |. As we have explained in
this section the common sampling orders are determined by this sequence of indicators
which is in fact the main idea how to generate all regular vines having given number of
common sampling orders with the initial vine presented in Section 3.3.2.

3.3.2. GENERATING VINES HAVING A GIVEN NUMBER OF COMMON SAM-
PLING ORDERS WITH AN INITIAL VINE

We denote the number of common sampling orders of two vines V1(n) and V2(n) as
nComSO, where nComSO ∈ [0,2n−1]. Recall that nComSO can be determined from the
re-evaluation of the number of subvines in the triangular array of V1(5), when compared
with V2(5) shown in Figure 3.6. More specifically, nComSO is twice the sum of values in
echelon-2. Finding all possible vine triangular arrays after re-evaluations of V1(n) leads
to finding all possible vines having nComSO common sampling orders with V1(n). This
will be carried out in three main steps.

Step 1) find all possible indicator sequences and apply re-evaluation in vine triangular
array;

Step 2) choose values for zero elements in the conditioned sets of the non 0 nodes in tri-
angular array after re-evaluation;

Step 3) choose values for the 0 nodes in triangular array after re-evaluation.

The choices in all above steps have to be made such that the proximity condition is
satisfied.

FINDING ALL POSSIBLE INDICATORS

Indicators assigned to lines in the triangular array determine the number of com-
mon sampling orders two regular vines will have. They uniquely determine which nodes
are assigned 0 and which cases appear in nodes that are not 0. Not all assignments of
indicators to lines in the triangular array, however, are consistent. Constraints on the
assignments follow from Proposition 3.3.1.

The number of sampling orders is related to the number of paths in the triangular
array. The number of paths crossing a given node, node j , in echelon-i is equal to the
product 2i−1 and the number, nsv j , of subvines with this node as top node obtained
by marginalization (as explained in Section 3.2.2 this information is contained in Figure
3.3).

Suppose that we want to generate indicator sequences of vines on n elements that
have nComSO sampling orders in common with the initial vine. This means that we
have to assign some 0 indicators to lines in the triangular array to remove An = 2n−1 −

3

42
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

nComSO sampling orders. The assignment of 0 indicator to a line from node j , in vine
triangular array, blocks half of paths through this node. As shown in Remark 3.2.2, the
number of sampling orders that we remove by assigning 0 indicator to one line from
node j in echelon-i is equal to 2i−1/2 times nsv j , which we call the product correspond-
ing to node j . Assigning both lines 0 indicators blocks all paths leads to double the prod-
uct. However, this option is available only if vines with nComSO = 0 common sampling
orders with the initial vine are required according to Proposition 3.3.1 (d).

The algorithm of finding possible indicator sequences is recursive and starts by find-
ing a node in the highest echelon of the triangular array, whose product is smaller than
or equal to An . We will subtract from An the number of sampling orders that can be re-
moved by different assignments of 0 indicators to lines from this node. If we assign one
line in node j to 0 then

L = 2i−2 ·nsv j (3.3.1)

sampling orders could be removed. However, if we were to assign none of the lines 0 the
upper bound on the possible removals later on in the algorithm, denoted as U , can be
set as

U = {the sum of the products over non 0 nodes not considered in echelon-i

with one line assigned 0 and products of all non 0 nodes in

echelon-(i −1) after re-evaluation with both lines assigned 0.}

(3.3.2)

Note that when algorithm is in echelon-4, nodes in echelon-3 can be assigned only
one 0 indicator. If at any step of the procedure An ≥U then option of not assigning any
0 to lines from this node is not available. Each choice of the assignments of 0 indicators
has to be consistent with Proposition 3.3.1.

The example of generating indicator sequences of vines having 10 sampling orders
in common with V1(5) is as follows: since nComSO = 10, assigning both lines 0 is not
possible. Initially An = 24 −10 = 6. The product of the node 13|45 is equal to 22 ·1 which
is the first one smaller than 6, hence we start the algorithm in this node. In this case
L = 22 · 1 = 4 and only the line to node 14|5 can be assigned 0 indicator due to Propo-
sition 3.3.1 (c). An = 6−L = 2 and re-evaluation is required to include assignment of 0
which is shown in Figure 3.6. The next node in the highest echelon with largest product
smaller than 2 is 24|5. We can only set 0 indicator to line to node 25, where L = 2 and get
An = 2−L = 0. This choice is consistent with Proposition 3.3.1 and leads to the indicator
sequence I (10)

1 = (11|0111|111110). If we consider not assigning any 0 to lines from the
node 25, we get U = 0 < An which means that this choice is not available.

At node 13|45 we could have considered not assigning 0. To decide if not assigning
any 0 would be possible we compute U = 22 · 1+ 2 · 1+ 2 · 1+ 2 · 1 = 10. Since U > An ,
there are enough possibilities to remove sampling orders later on in the process. Hence
not assigning any 0 is possible and we choose not to assign 0. The algorithm leads us
to the next node in echelon-4 with product equal to L = 4 < An , hence to node 23|45.
Assigning one 0 to line to node 24|5, leads to An = 2 and 0 can be assigned to line
connecting 14|5 and 15 to get An = 2− 2 = 0 which gives another indicator sequence

3.3. COMMON SAMPLING ORDERS

3

43

I (10)
2 = (11|1110|011111). Similarly last two indicator sequences can be obtained I (10)

3 =
(11|1111|011011) and I (10)

4 = (11|1111|111010).
Having a possible indicator sequence allows us to see directly which case happens

in which node in vine triangular array. For example, I (10)
1 = (11|0111|111110) denotes

Case2 happens in the node 13|45 and 24|5, thus they become 10|45 and 20|5. The rest of
nodes in echelons larger than 3 are in Case3. Together with re-evaluation this leads to
the triangular array in Figure 3.5.

A general algorithm to find possible indicators is presented in Algorithm 5 in 3.A.2.
Following the algorithm, we can get that all possible indicator sequences for regular
vines having 0 sampling orders in common with V1(5) are: I (0)

1 = (01|1100|111111), I (0)
2 =

(10|0011|111111) and I (0)
3 = (00|1111|111111). Sequence I (0)

1 will be used later on in the
following subsections when we introduce an extra example.

CHOICE FOR THE ZERO ELEMENTS IN THE CONDITIONED SETS OF THE NON 0 NODES IN

TRIANGULAR ARRAY AFTER RE-EVALUATION

In this subsection we show how to replace the zero elements in the conditioned sets
of non 0 nodes by the elements in the conditioning set. The procedure starts with nodes
in Case2 from lowest echelons where fewer choices for zero elements are possible. Then
it considers the zero elements in the Case1 node if such node exists. All choices are made
such that proximity condition is satisfied. We present the idea using two examples and
then proceed with the general algorithm.

The zero element in node 20|5 in Figure 3.5 can only be 5 thus we will get 25|4,
whereas we have two choices for the zero element in node 10|45, one is 4 and the other
is 5. However, due to proximity, the chosen element must appear in the conditioned set
of node 34|5, hence the node can only be 14|35. All nodes with Case2 have been han-
dled and there is no node in Case1 in this example, the procedure stops and the result is
shown in Figure 3.8. Note that possible choices of zero elements in the conditioned sets
of the nodes lead to 14|35 and 25|4 as in case when V1 is compared with V2. However,
V2 is not the only vine that has 10 common sampling orders with V1 for this indicator
sequence. There are still some choices for 0 nodes in the triangular array. They will be
considered in the next subsection.

Figure 3.8: The triangular array of V1(5) after re-evaluation with choices of zero elements in the conditioned
sets satisfying proximity.

3

44
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

Next, we present one more example, where vines with 0 common sampling orders
with V1(5) are of interest. We consider the indicator sequence I (0)

1 = (01|1100|111111)
that denotes Case2 in the top node and Case1 in node 23|45, which are set to 10|345 and
00|45 and the triangular array after re-evaluation is shown in Figure 3.9 (left). The zero
element in 10|345 can be chosen out of elements of its conditioning set {3,4,5} and has
to be in the conditioned set of its child by marginalization with 1. This child is a node
with Case1. Its zero elements can only be chosen as {4,5} and it becomes 45|23. This
means that, in order to replace zero in the top node, only two choices are available, that
is {4,5}. When 4 is chosen, we get a triangular array as in Figure 3.9 (right).

Figure 3.9: The triangular array of V1(5) with indicators I (0)
1 after re-evaluation (left); with choices of zero

elements in the conditioned sets satisfying the proximity condition (right).

A general algorithm to choose for the zero elements in the conditioned sets of the
triangular array is presented in Algorithm 6 in Appendix 3.A.2.

CHOICE OF THE 0 NODES IN TRIANGULAR ARRAY AFTER RE-EVALUATION

The procedure of this subsection basically follows Algorithm 2 in Chapter 2. How-
ever, in this section, we will introduce another algorithm that is a bit different. This
is because the largest completely specified subvine in VBT may not always be the sub-
structure determined by a given order as in Algorithm 2 in Chapter 2.

Nodes assigned to 0 in the triangular array after re-evaluation are nodes that can be
simply chosen such that the proximity condition is satisfied. The main idea is similar
to extending regular vines based on natural order presented in Nápoles (2011). It uses
properties of regular vines which ensure that two vines on 1, . . . , i and 2, . . . , i+1 elements,
denoted by V ([1, i]) and V ([2, i+1]), respectively, can be combined into a vine on 1, . . . , i+
1 elements, denoted by V ([1, i +1]), with top node 1, i +1|2, ..., i and the overlapping part
which is V ([2, i]). Hence if V ([1, i]) is the largest completely specified (has no 0 node)
and there are some unspecified elements (0 nodes) in V ([1, i +1]) then these elements
can be only in the part of V ([1, i + 1]) that is not common with V ([1, i]). Since node
1, i +1|2, ..., i is specified then unspecified elements are in V ([2, i +1]) but not in V ([2, i]).
If the top node of V ([2, i +1]) is unspecified, since top nodes of V ([1, i]) and V ([2, i +1])

3.3. COMMON SAMPLING ORDERS

3

45

are siblings, then one element in the conditioned set of the top node of V ([2, i +1]) has
to be in the conditioned set of the top node of V ([1, i +1]) (has to be i +1) and the other
element should be either elements in the conditioned set of the common child with its
sibling. Similarly choices can be made if top nodes of smaller subvines of V ([2, i +1]) are
unspecified.

A vine triangular array contains implicit parent/child relationships of the initial vine,
which complicates the discussion of possible vine structures having nComSO sampling
orders in common. VBT contains all information in the vine triangular array, as 0 nodes
in the triangular array become subtrees of 0 elements in VBT, and the idea of choosing
unspecified elements of a vine, as explained above can be presented more naturally in
VBT.

Figure 3.10: Standard VBT corresponding to the triangular array in Figure 3.8.

Our procedure requires an ordering of elements of the vine, which will be used to
perform consecutive extensions of vines. We are considering first the situation when
nComSO > 0, whereas vines having 0 common sampling orders with the initial vine will
be handled later on. If nComSO > 0, there exist paths in the vine triangular array and
we start with one such path. This path, as we mentioned in Section 2.2.3 in Chapter
2, corresponds to a substructure in VBT. For instance the path through nodes: 12|345,
23|45, 34|5 and 45 in the triangular array in Figure 3.5 corresponds to the substructure in
VBT in Figure 3.10, indicated by pair of elements in the dashed area. This path gives us
an ordering of variables {5,4,3,2,1} (elements in red squares).

We see that the largest completely specified subvine in Figure 3.10 is on elements
{5,4,3,2}. The procedure will extend this vine with the next element in the ordering.
When using the VBT representation, the algorithm starts in VBT[2][1] = 2, the most left
element in pair of elements that represents the top node of the completely specified
vine, and makes an Ascend step to VBT[1][1] = 1 in order to find a subvine on elements
{5,4,3,1}, whose top node is a sibling of the top node of the vine on {5,3,4,2}. In VBT

3

46
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

the top nodes of these subvines are nearby pairs of element (VBT[2][1], VBT[2][2]) and
(VBT[2][3], VBT[2][4]). The algorithm makes then a Descend step to the subvine corre-
sponding to the top node (VBT[2][3],VBT[2][4]). Due to (4) in Properties of VBT, sub-trees
underneath VBT[2][1] = 2 and VBT[2][3] = 1 are the same, except possible ordering to
keep the VBT in the standard form (see shaded nodes in Figure 3.10). Element VBT[2][4]
is not 0 then the descend step is followed to VBT[3][7], the most left element in pair of
elements represents top node of vine on {1,3,5}, where another subvine on {3,4,5} has
no 0 elements. Due to property (4), the sub-tree underneath VBT[3][5] = 4 is the same as
the sub-tree underneath VBT[3][7] = 1 and according to property (3), VBT[3][8] can be
chosen to be equal to VBT[4][13] = 3 or VBT[4][14] = 5. We choose VBT[3][8] to be equal
to 3 and other elements in VBT can be filled in according to VBT properties (1,2). The
resulting VBT is shown in Figure 3.11 and the corresponding triangular array is in Figure
3.14. Notice that the vine we obtained is not V2(5).

Figure 3.11: VBT of a vine with 10 common sampling orders with V1(5), where the choice made in the algorithm
is shown in the black circle.

In order to specify vines having 0 sampling orders in common with an initial vine,
an extra step is needed to start the algorithm presented above. This step involves the
construction of a substructure in VBT. The example shown in the triangular array after
re-evaluation in Figure 3.9(right) will be used to introduce the idea. We start with the
longest specified path, one that contains the most specified nodes (in the example this
is a path containing nodes 14|235, 45|23). We get an incompletely specified substructure
on elements 5,4,1 in red squares in Figure 3.12. The remaining elements of the substruc-
ture can be chosen such that the VBT satisfies the properties and is in standard form.
The ordering required for consecutive extensions can be {3,2,5,4,1} as shown in Figure
3.12, or {2,3,5,4,1}.

3.3. COMMON SAMPLING ORDERS

3

47

Figure 3.12: Standard VBT with chosen substructure of a vine with 0 common sampling orders with V1(5).

We can observe that the largest fully specified part of the VBT is a subvine on {5,2,3}
and, in order to extend it by element 4, an ascend step from VBT[3][1] = 5 to VBT[2][1] = 4
is performed. We find another subvine on {4,2,3}. We make a descend step to the vine
on {4,2,3} and since VBT[3][4] = 0, we can choose it to be equal to 2 or 3. When 2 is
chosen, by applying property (1), we then have a completely specified vine on {4,5,2,3}.
Next, another ascend step from VBT[2][1] = 4 to VBT[1][1] = 1 is performed to extend
the subvine by 1. The subvine where there are 0 elements is on {3,2,5,1}. Performing a
descend step, the sub-tree underneath VBT[2][3] = 1 is the same as sub-tree underneath
VBT[2][1] = 4 (with possibly different ordering). The element VBT[2][4] can be chosen to
be either 2 or 5 and we set VBT[2][4] = 2. From VBT[2][3] = 1, the next descend step is
made to the subvine on {3,5,1}, where element VBT[3][8] can be chosen to be equal to 5
or 3. The result is shown in Figure 3.13 and the corresponding triangular array in Figure
3.15. The general algorithm is presented in Algorithm 7 in Appendix 3.A.2.

3.3.3. THE NUMBER OF VINES HAVING nComSO COMMON SAMPLING OR-
DERS WITH AN INITIAL VINE

In the previous subsections we have shown how to generate vines with nComSO
sampling orders in common with the initial vine. We have followed three steps to gen-
erate such vines: generating indicator sequences, choosing zero elements in the condi-
tioned sets of non 0 nodes and making choices for 0 nodes in the triangular array after
re-evaluation. In this section, a few results about the number of regular vines having
different nComSO sampling orders in common are presented.

In general the number of vines having nComSO sampling orders with initial vine
depends on the structure of the initial vine. However, we show below two cases in which
nComSO does not depend on the initial structure.

Proposition 3.3.3. The number of vines on n elements having 2n−1 −2 sampling orders

3

48
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

Figure 3.13: VBT of a vine with 0 common sampling orders with V1 where choices made are indicated by black
circles.

Figure 3.14: Vine triangular array of a vine hav-
ing 10 common sampling orders with V1(5), cor-
responding to VBT in Figure3.11.

Figure 3.15: Vine triangular array of a vine hav-
ing 0 common sampling orders with V1(5), corre-
sponding to VBT in Figure3.13.

3.3. COMMON SAMPLING ORDERS

3

49

in common with an initial vine is equal to 2.

Proof. We consider the three steps to generate regular vines having nComSO = 2n−1 −2
sampling orders in common with an initial vine. In the first step, since An = 2n−1−(2n−1−
2) = 2, there are only two nodes in the triangular array whose product is smaller than or
equal to An . These are the outside nodes in echelon-3. To obtain An finally equal to 0, we
have to assign 0 indicator to one line from either of these two nodes by Proposition 3.3.1
(c). This leads to only two possible indicator sequences. For each indicator sequence,
the zero element in the conditioned set can only be the element in the conditioning set
since the node is in echelon-3. There is no node assigned to 0, so the triangular array
can be fully specified by the first two steps. Thus the number of vines having 2n−1 − 2
sampling orders in common is always equal to 2.

Proposition 3.3.4. The number of vines on n elements having 2 sampling orders in com-

mon with an initial vine is equal to 2 ·3n−3 ·2
(n−2

2

)
.

Proof. According to Proposition 3.3.2 for vines having 2 common sampling orders, Case2
has to happen in each node during comparison. Thus one line from each Case2 node is
assigned 0 indicator and re-evaluation is applied such that all remaining nodes are set to
0. This gives us particular choices for the possible indicator sequences which together
with the choices for the zero elements in the conditioned sets of Case2 nodes will allow
us to count the number of ways one path through the triangular array can be obtained
in steps 1) and 2) discussed in Section 3.3.2.

We have 2 choices for the element to be common in the top node. The other one
will be set to 0 and we can choose this zero element, due to proximity condition, to be
either element in the conditioned set of its child. However, if the common element in
the conditioned set of its child is the non-common element in its conditioned set, then
we only have one choice (otherwise we get the same node). Moreover, there is only one
choice for the Case2 node in echelon-3. Hence, our path through the triangular array can
be such that for all n −3 nodes (except the node in echelon-3) on this path there are two
choices for the zero element in the conditioned set: one such a path with 2n−3 choices.
Or there can be one node out of n−3 with only one choice and the rest with two choices:(n−3

n−4

)
paths with 2n−4 choices, or two such nodes etc., which gives

n−3∑
j=0

(
n −3

j

)
2 j = 3n−3

choices for the path. A path in the triangular array after one of these choice corresponds
to a substructure in VBT. By Proposition 3.3.4 in Appendix 3.A.1, we can see that step 3 in

our algorithm corresponds to consecutive extensions of vines and leads to 2
(n−2

2

)
regular

vines after step 3).
Combining all above we get: 2 choices of common element in the top node, 3n−3

ways to form a path through the triangular array and 2
(n−2

2

)
choices in step 3), which

gives that the total number of vines with 2 sampling orders in common with an initial

vine is equal to 2 ·3n−3 ·2
(n−2

2

)
.

3

50
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

From simulations we observe that the number of vines having 0 common sampling
orders does not depend on the initial structure but we are not able to provide a proof.
In Proposition 3.3.5 we show a lower bound for the number of vines having 0 common
sampling orders with an initial vine.

Proposition 3.3.5. A lower bound for the number of vines on n elements having 0 sam-

pling orders in common with an initial vine is
(n−2

2

) · (n −2)! ·2
(n−2

2

)
.

Proof. Consider the situation where Case1 occurs in the top node. This means that any
2 variables out of n −2 in the conditioning set, hence

(n−2
2

)
possibilities, can be chosen.

To construct the substructure in VBT, any permutation of remaining variables is avail-

able, which gives (n − 2)! choices. Moreover, we can generate 2
(n−2

2

)
regular vines from

each substructure. Hence the lower bound for the number of vines having 0 common

sampling orders is
(n−2

2

) · (n −2)! ·2
(n−2

2

)
.

Using this crude lower bound we can observe that the proportion of vines having 0
sampling orders in common with given initial vine and the number of all regular vines
converges to 1 as n goes to infinity.

3.4. SIMULATION STUDY
As we have explained in the end of Section 3.2, the number of common sampling or-

ders of two vines indicates ’similarity’ in the density decomposition of these vine struc-
tures. In this section, we will test how this ’similarity’ relates to the performance of dif-
ferent vine structures on a data set in terms of the Akaike Information Criterion (AIC).
We start with a detailed discussion of an example using a 5 dimensional regular vine
where we will explore the differences in AIC s in various modeling setups and for dif-
ferent number of common sampling orders with an initial structure. Furthermore, we
propose a heuristic search procedure, which starts with an initial structure and searches
for a vine structure with an AIC lower than that of the initial one.

3.4.1. SIMULATION OF A 5 DIMENSIONAL REGULAR VINE
An accurate estimation of a vine copula requires specification of the vine structure,

as well as a good fit of the (conditional) copulas. We want firstly to investigate how
a misspecification of the vine structure, as well as of copula (families) does affect the
goodness of fit of the model. The goodness of fit of models will be evaluated in terms
of the AIC and a goodness-of-fit test based on probability integral transformation (PIT)
test 2. A structure is hence randomly selected using the function RVineMatrixSample
in the VineCopula package, with copula families chosen randomly out of Gumbel(G)
and Clayton(C) copulas, as well as their rotated versions. Note that, for consistency rea-
sons, we keep the same notation of families of copula as in the VineCopula package.
Kendall’s correlations, chosen to find parameters of these copulas, were simulated from
a Beta(2,2) distribution, and are allowed to take negative values with probability 0.5. The

2PIT test is introduced in Breymann et al. (2003) which is based on the Rosenblatt’s probability integral trans-
form Rosenblatt (1952). It is known to perform very well when data does not need to be ranked (as is the case
in our simulation study)

3.4. SIMULATION STUDY

3

51

chosen structure, as well as the chosen set of copula families, is denoted by C0, and the
corresponding Kendall’s correlations τ0 are depicted in Table 3.1.

This regular vine, with uniform margins will be denoted by V0. Furthermore, 1000
observations are sampled from vine V0 and two cases will be considered. The data is
firstly fitted using the same vine structure and fixing copula families C0. We denote this
fitted vine as V1, and the estimated Kendall’s correlations (τ̂1), as well as goodness of
fit measures (AIC1 and p1) are reported in Table 3.1. Finally, we keep fixed vine struc-
ture of V0, but choose copula families that minimize AIC over all available copulas in
the VineCopula package. The copula families might not coincide with C0 and will be
denoted by C2. This provides a regular vine denoted as V2, and the estimated Kendall’s
correlations (τ̂2) and measures of fit (AIC2 and p2) are also reported in Table 3.1.

Vine V0 V1 V2

Structure C0 τ0 τ̂1 AIC1 p1 C2 τ̂2 AIC2 p2

echelon-5
54|123 G270 -0.74 -0.71 -1725.60 0.956 G270 -0.70 -1661.86 0.903

echelon-4
34|12 G270 -0.49 -0.47 -651.72 0.960 G270 -0.48 -654.03 0.945
25|13 G 0.69 0.68 -1526.08 0.438 G 0.68 -1497.84 0.454

echelon-3
24|1 C270 -0.56 -0.56 -1071.77 0.902 C270 -0.56 -1070.78 0.841
35|1 C270 -0.13 -0.13 -59.6726 0.401 BB8_90 -0.13 -63.22 0.702
32|1 C 0.57 0.57 -1129.16 0.409 C 0.57 -1129.16 0.409

echelon-2
14 C180 0.80 0.80 -2570.13 0.947 J 0.80 -2570.35 0.921
15 C90 -0.79 -0.80 -2560.66 0.743 J270 -0.80 -2561.96 0.819
12 G 0.40 0.42 -495.39 0.399 G 0.42 -495.39 0.399
13 C180 0.41 0.43 -616.08 0.308 C180 0.43 -616.08 0.308
AICV1 =−12406.26 AICV2 =−12320.65

Table 3.1: An example of a 5 dimensional regular vine, V0, represented via a vine triangular array, echelon by
echelon, along with copula families C0 and Kendall’s correlations τ0. 1000 observations are sampled from V0,
and data are fitted using the same vine structure and the same copula families C0, (V1), and by using the fixed
structure and different copula families C2, which minimize AIC over all available families in the VineCopula
package, (V2). Kendall’s correlation estimates and goodness of fit measures for bivariate copulas in V1 (τ1,
AIC1 and p1) and V2 (τ2, AIC2 and p2) are presented. The AIC for regular vine in V1 and V2 are AICV1 and
AICV2 , respectively.

We further explore how the misspecification of the structure affects the goodness of
fit of the vine. The data generated from V0 are now fitted using the heuristic method
presented in Dißmann et al. (2013). A vine structure is chosen, tree by tree, by maxi-
mizing the sum of absolute values of Kendall’s correlations for pairs of variables, and we
denote this vine structure as VDi ss . This heuristic has been implemented into the built
in function RVineStructureSelect. Table 3.2 reports the results of fitting.

3

52
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

Vine Copula PIT test
Structure Family τ̂Di ss AICDi ss pDi ss

echelon-5
42|153 t 0.59 -419.20 0.585

echelon-4
12|53 BB1 0.61 -1159.29 0.0822
34|51 Tawn90 -0.74 -1947.66 0.186

echelon-3
52|3 BB8 0.10 -46.61 0.740
54|1 Tawn90 -0.06 -31.01 0.740
13|5 Tawn2_180 0.04 -16.62 0.375

echelon-2
32 BB1 0.66 -1431.90 0.640
14 J 0.80 -2570.35 0.921
53 BB7_270 -0.46 -655.23 0.620
51 J90 -0.80 -2561.96 0.957

AICDi ss =−10839.81

Table 3.2: Vine triangular array, echelon by echelon, of a regular vine VDi ss , obtained by using the method in
Dißmann et al. (2013) to fit the 1000 observations sampled from V0 in Table 3.1. Kendall’s correlations (τ̂Di ss),
along with goodness of fit measures (AIC and pDi ss). The AICDi ss depicts the overall goodness of fit of VDi ss .

We can draw a few conclusions from the results presented in Table 3.1 and Table 3.2.

• When the structure and the copula families are fixed (V1), the quality of Kendall’s
correlation estimates deteriorates slightly for nodes in higher echelons. This is
caused by the tree-wise estimation.

• When the structure is kept fixed and the copula families are chosen such that they
minimize the AIC over all available copula families in the VineCopula package
(V2), different copula families than the ones used for simulation might be chosen.
These copulas have smaller AIC and they fit the data well according to the PIT
goodness-of-fit test(e.g. p-values for copulas 15 and 14 are 0.743 and 0.947, when
copula families are fixed and 0.819 and 0.921 when they are chosen to minimize
AIC , respectively). Additionally, we checked that we cannot reject the hypothe-
sis that V2 is a simplified vine for the data at 5% significance level by using the
pacotest (or called CCC test) in pacotest package (Kurz (2019)). However, V1

is significantly better than V2 according to Vuong test (Vuong (1989)) at 5% level.
Hence, this example illustrates that choosing copula families by minimizing AIC
cannot ensure the global minimum AIC for the whole regular vine.

• When the vine structure is chosen by constructing trees having the largest sum
of absolute empirical Kendall’s τ, a different structure is selected to best fit the
data. Even though the sum of AIC for the first tree is much larger than the cor-
responding value for the true structure, the overall fit is much worse. Note that
AICDi ss = −10839.81, as compared to AICV1 = −12406.26. Moreover, note that
the p-values of PIT test for copulas 32 and 53 which are not directly specified in

3.4. SIMULATION STUDY

3

53

the true structure are 0.640 and 0.620, respectively, which implies these bivariate
margins are well modeled by the available parametric copulas in the package. We
cannot reject the hypothesis that VDi ss is a simplified vine with pacotest at 5%
level. Even though we can fit the bivariate margins by a parametric copulas well
according to the PIT test and this vine structure is a simplified vine by pacotest,
the final AIC is significantly larger than the initial vine according to the Vuong test.
This emphasizes the importance of choosing a proper regular vine structure.

To compare the performance of different vine structures in fitting this data set, we
fitted all 480 vine structures in dimension 5 and computed their AIC s. The vine struc-
tures can be grouped by the number of common sampling orders nComSO with VDi ss .
Recall that nComSO for a 5 dimensional vine can be 0,2,4, . . . ,16. Figure 3.16 shows the
box plots of the differences in AIC between all 5 dimensional regular vines and VDi ss

with respect to nComSO sampling orders in common with VDi ss .

Figure 3.16: Boxplot of differences of AIC s of vines having different nComSO common sampling orders with
VDi ss in Table 3.2 where positive difference mean higher AIC than of VDi ss .

The maximum number of common sampling orders with VDi ss is 16 and only one
vine has such many sampling orders with VDi ss , that is VDi ss itself. Thus the difference
in AIC is 0. Additionally, there are 2 regular vines that have 14 sampling orders in com-
mon, 6 regular vines having 12 common sampling orders and 6 regular vines having 10

3

54
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

sampling orders in common with VDi ss . We can observe that the performance, in terms
of AIC , of vines having a large number of common sampling orders with VDi ss is quite
similar. This confirms the claim in Cooke et al. (2015) that vines having more common
sampling orders will behave similarly in terms of AIC . Hence, regular vines having none
or a small number of common sampling orders might behave differently in terms of AIC ,
and could therefore give improvements in terms of AIC , as compared to the initial struc-
ture.

Out of 208 vines that have 0 sampling orders in common with VDi ss , 51 have lower
AIC . From these 45 have significantly lower AIC , according to the Vuong test at 5%
significance level. From the 144 vines with 2 sampling orders in common with VDi ss , 27
have better AIC , out of which 20 have significantly better AIC .

Obviously, if the initial structure is already close to the true structure, there will not
be much room for improvement. However, if the initial structure is not yet optimal, as
in our example, we will be able to find better performing vine structures by considering
vines with none or a small number of sampling orders in common with the initial vine.
By closely examining the vine structures with low and high AIC in the subset of the vines
with none or small nComSO with VDi ss , we can identify two reasons for large AIC : i)
a bad fit of copulas in lower trees that are specified in the true structure via conditional
copulas (e.g., 25 with p-value 0.00977, according to the PIT test) and ii) the assumption of
simplified vine structure including conditional copula, e.g., for 34|2,25|3 and 13|2, which
is rejected by using the pacotest at the significance level of 5%. There could be other
factors that will affect the estimation.

3.4.2. HEURISTIC SEARCH OF A STRUCTURE WITH LOWER AIC THAN OF

THE INITIAL VINE
As observed in Figure 3.16 vines having 0 sampling orders in common with a given

structure might perform better (have smaller AIC) when compared to the initially cho-
sen structure. Searching for a better vine in the set of vines having 0 common sampling
orders with the initial vine was advocated in Cooke et al. (2015). However, we showed in
Section 3.3.3, the set of vines having 0 common sampling orders with the initial struc-
ture is very large indeed. So we adapt the heuristic method in Cooke et al. (2015) and
propose to search for vine structures with possible improved performance in the set of
vines having 2 sampling orders in common with the initial structure. As shown in Sec-
tion 3.3.3, the size of this set does not depend on the initial structure and is equal to

2 ·3n−3 ·2
(n−2

2

)
. Moreover, these vines can be easily randomly sampled with Algorithm 8

in Appendix 3.A.2 (Note that this algorithm is only asymptotically uniform as explained
in Appendix 3.A.2). We outline our proposed heuristic below.

Heuristic
To find a vine structure with a smaller AIC than that of an initial vine, generate and fit k
random vines having 2 sampling orders in common with the initial vine. Choose the vine
structure with the smallest AIC .

To decide how large k could be set to in our heuristic, we will investigate computa-
tional complexity of fitting and generating vines for different dimensions and data size.

3.4. SIMULATION STUDY

3

55

We consider data sets in dimension 5, 10, 15 and 20, and evaluate sample size 300 and
1000. For each data set we obtain an initial vine according to Dißmann’s algorithm in
Dißmann et al. (2013), generate one random vine structure having 2 common sampling
orders with it by Algorithm 8 and fit this random vine to the data. This process is re-
peated 100 times and the average time needed to generate a random vine structure and
to fit it is reported in Table 3.3.

Sample size 300 Sample size 1000
Dimension genTime fitTime Dimension genTime fitTime
5 0.00053 4.7575 5 0.00051 15.5065
10 0.00328 22.6965 10 0.00331 74.8740
15 0.0744 56.1900 15 0.0790 182.9340
20 3.6771 106.5196 20 3.4869 349.7468

Table 3.3: Average generating time (genTime), in seconds, of one random vine having 2 sampling orders in
common with the initial vine using Algorithm 8. Average fitting time (fitTime) of one vine, in seconds, for
sample sizes of 300 and 1000.

From the results in Table 3.3, we observe that generating vines having 2 sampling or-
ders in common with the initial structure is quite fast up to dimension 15. As compared
to the estimation, the time for generating structures is negligible. However, it increases
significantly in higher dimensions. This concern can certainly be answered with profes-
sional implementation which can be naturally carried out in parallel environment.

3.4.3. TESTING THE HEURISTIC SEARCH METHOD
The simulation study to test the performance of the proposed heuristic is similar to

the one proposed in Kraus & Czado (2017b). We generate 100 times data with sample size
300 and 1000 from a randomly chosen regular vine copula model in dimensions 5, 10, 15
and 20, denoted by Vtr ue . Vine structures are obtained using RVineMatrixSample in the
VineCopula package. The copula families are restricted in Clayton (C) and Gumbel (G)
copulas and their rotated versions. The copula parameters are obtained from Kendall’s
tau simulated from a Beta(2,2) distribution, multiplied by −1 with probability 0.5, as in
the previous section.

An initial vine structure VDi ss is obtained by using the method in Dißmann et al.
(2013)3. Due to computational concerns, we only choose k linearly increasing with di-
mension. Thus k = 10 regular vines that have 2 sampling orders in common with VDi ss

in dimension 5, k = 20 regular vines in dimension 10, k = 30 in dimension 15 and k = 40
in dimension 20 are randomly sampled and fitted, and the AIC of each of these vines is
obtained. In case we have found a structure with smaller AIC , a Vuong test is applied
to see whether this improvement is significant, at the significance level of 5%. The vine
with the smallest AIC , if it is significant, will be denoted by Vmi n . Furthermore, we apply
an out of sample validation for our result when our heuristic finds any improvement. In

3In this part of the simulation study we used vinecop in rvinecopulib package where the heuristic in Dißmann
et al. (2013) is implemented. In this implementation computations are much faster but smaller number of
copula families are available. The fitTime is now approximately 8 times smaller than the results shown in
Table 3.3 which were obtained on a computer with Intel Core i5-6500 3.2GHz (4 cores)

3

56
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

this case we generate another sample with the same size from the true vine model and
calculate AIC for VDi ss and the vine having the smallest AIC in sample. If the out of
sample AIC is still smaller than of VDi ss , we recognize this vine as an improvement and
apply a Vuong test. In Table 3.4, the results of the simulation study are shown.

Sample size 300
Dim k ∆AIC (i ni) #i mp ∆AIC (i mp) ∆AIC (si m) proportion

In Sample

5 10 258.17 68(54) 236.95 130.26 181.91%
10 20 1426.35 86(77) 449.94 1039.90 43.27%
15 30 2418.53 73(63) 543.09 1909.75 28.44%
20 40 3655.65 67(61) 687.40 3046.90 22.56%

Out of Sample

5 388.22 63(48) 332.52 172.90 192.32%
10 1844.74 82(73) 645.96 1270.40 50.85%
15 2966.55 64(53) 867.62 2155.55 40.25%
20 4434.31 61(48) 1208.32 3236.12 37.34%

Sample size 1000
Dim k ∆AIC (i ni) #i mp ∆AIC (i mp) ∆AIC (si m) proportion

In Sample

5 10 1109.64 73(70) 832.87 537.27 155.02%
10 20 6152.95 87(84) 1824.15 4457.53 40.92%
15 30 10823.41 77(77) 2045.96 9059.54 22.58%
20 40 16683.22 65(59) 2313.61 14604.09 15.84%

Out of Sample

5 1489.05 72(70) 954.49 688.00 138.73%
10 7784.70 87(83) 2235.44 5519.68 40.50%
15 13612.53 76(74) 2685.56 10950.72 24.52%
20 20652.11 64(59) 3005.77 17541.24 17.14%

Table 3.4: Results of performance of the proposed heuristic for 100 data sets of size 300 and 1000, from vines
in dimensions 5, 10, 15 and 20. Average difference of AIC between the initial VDi ss and Vtr ue is denoted as
∆AIC (i ni). Average difference of AIC between the VDi ss and the vine chosen by our heuristic Vmi n is denoted
as ∆AIC (i mp) and average difference of AIC between Vmi n and the true vine Vtr ue structure is ∆AIC (si m).
The number of times an improvement in terms of AIC with respect to VDi ss has been obtained is shown in
column #i mp, additionally the number of times the improvement was statistically significant, according to

Vuong test at 5% significance level is shown in brackets. The proportion is calculated as
∆AIC (i mp)
∆AIC (si m) ∗100%.

.

We can see that the heuristic procedure works well in improving the AIC of a given
initial vine structure, VDi ss . Out of 100 data sets, about 70 lead to a significantly better
vine copula as compared to VDi ss . Since our heuristic is based on randomly generated
vine structures having 2 common sampling orders, the number of obtained improve-
ments changes from simulation to simulation4. We compare the result of our heuristic
with randomly selecting k structures out of possible vine structures in Appendix 3.A.3.
That validates that our heuristic can beat the random choice.

Moreover, the average improvement in AIC is quite good. However, there is still
much more room for improvement. When considering the proportion in Table 3.4, we
see that this proportion becomes smaller as dimension grows (from 155.02% in dimen-
sion 5 to 15.84% in dimension 20 for 1000 sample size). By randomly choosing k vine

4We have repeated these simulations few times and observed that the number of improvements stays stable
around 70 out of 100.

3.5. REAL DATA ANALYSIS

3

57

structures from vines having 2 sampling orders in common there is no guarantee that we
can always choose those vines which result in an improvement in model fitting. This be-
comes worse when dimension becomes larger since the number of vines having 2 com-
mon sampling orders increases exponentially with dimension, whereas we allowed k to
grow only linearly. More testing is needed to determine the optimal in terms of compu-
tation time and accuracy number of k.

3.5. REAL DATA ANALYSIS
To further test our heuristic method, we implement it for few real data sets, that

are available and have been already analyzed in Kraus & Czado (2017b). We will exam-
ine whether using our heuristic method provides a structure with better performance
in terms of AIC than that of the initial structure VDi ss . We use two non financial data
sets: uranium Cook & Johnson (1986) and concrete Yeh (1998) and four financial data
sets: 20 country portfolio monthly returns (from 01-1991 to 12-2017) and industry port-
folio daily returns in dimension 5, 10 and 17 (all from 02-01-1997 to 31-01-2017), from
K enneth R.F r ench −Dat al i br ar y 5.

We apply an ARM A(1,1)−G ARC H(1,1) filter, with student-t residual for the finan-
cial data sets to remove the time dependence. Then all data sets are transformed by
probability integral transformation based on re-scaled empirical distribution function.

As in the simulation study, the initial structure VDi ss for each data set has been cho-
sen using the heuristic in Dißmann et al. (2013). To see if we can find a better performing
structure, we employ our heuristic search method.

Data concrete uranium industry5 industry10 industry17 country20
Dim 4 7 5 10 17 20
Data size 1030 655 5054 5054 5054 324
k 5 10 10 20 30 40
AICDi ss -522.87 -1759.98 -23056.49 -47805.99 -89399.42 -6372.86
#i mp 2(0) 2(1) 1(0) 2(0) 0(0) 0(0)
∆AIC 13.33 50.12(50.12) 18.65 29.81 N .A. N .A.

Table 3.5: Results of performance of the proposed heuristic method for real data sets. ∆AIC denotes the largest
difference in AIC of the structure obtained by our heuristic, Vmi n , as compared to VDi ss . #i mp is the number
of times the structure obtained by our heuristic leads to lower AIC than VDi ss . The number of significant
improvements is shown in the brackets.

The following can be observed from Table 3.5:

• Our heuristic finds 2 structures that have smaller AIC than VDi ss both for the
uranium and concrete data sets. However, only one significantly better structure
is found for the uranium and none for the latter data according to Vuong test. It
has been shown the simplifying assumption doesn’t hold for the initial vine struc-
ture from these data sets in Kurz & Spanhel (2017). In Kraus & Czado (2017b), two
algorithms have been applied to this data sets to find vine structure that is better

5ht t p : //mba.tuck.d ar tmouth.edu/pag es/ f acul t y/ken. f r ench/d at al i br ar y.html

3

58
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

than VDi ss . The final structure obtained in Kraus & Czado (2017b) has lower AIC
than the one obtained by our heuristic (with∆AIC equal to 28.7 for concrete data
and 57.3 for uranium data set). We examined all (24) possible vine structures for
the concrete data set, we found that the structure found in Kraus & Czado (2017b)
is the best simplified vine. This structure has 4 sampling orders in common with
VDi ss which explains why our heuristic was not able to discover this structure.

• For the financial data sets our heuristic does not lead to any (significant) improve-
ments especially in high dimensions. It has been observed that this kind of data
obtained by applying ARM A−G ARC H filter can be modeled well by t-copula and
the simplifying assumption holds (see Kurz & Spanhel (2017)). This might be the
reason why for financial data the effect of the choice of the structure is weaker and
we can hardly improve the performance of VDi ss in terms of AIC 6. Another reason
might be our choice of k. As we mentioned before, the number of vines having 2
sampling orders in common grows exponentially as dimension becomes higher,
thus we might need to have larger k in higher dimensions in order to increase the
probability of finding a better structure.

3.6. CONCLUSION
In this chapter we presented theoretical background for the introduction and test of

a heuristic process for structure selection of vine copula model. The idea of this method
is to pick randomly and evaluate few structures which are not ’similar’ to the initial struc-
ture. To measure this ’similarity’, we adopt the idea in Cooke et al. (2015) to use number
of common sampling orders. We build a procedure including Algorithm 5, 6 and 7 to gen-
erate all regular vines having given number of common sampling orders with an initial
vine. Both in the simulation and real data study we have chosen to search for a structure
performing better in terms of AIC 7 than the structure chosen by Dißmann et al. (2013),
VDi ss , in the subset of vines having 2 common sampling orders with VDi ss . This choice
was motivated both by theoretical and practical considerations. Our new heuristic is
shown to perform well in the simulation study. Its performance, however, on the real
data is not overwhelming. We can hardly make any improvement using our heuristic es-
pecially for the financial data set after filtering. This may be due to too small number of
(k) random regular vines we choose, or because the initial structure is already very good.
Certainly one can consider to generate more random vines having 2 common sampling
orders with the initial structure but this has to be supported with more efficient imple-
mentation of generating algorithm.

6It is also observed that in financial data sets mostly positive correlations are present. To test if the results of
our heuristic would not change if only positive dependencies were allowed in the simulation study performed
in Section 3.4.3, we have conducted the simulation for 5 dimensional vines again with only one difference that
the correlations are all positive sampled from a Beta(2,2) distribution. We showed that also in this setup about
70 out of 100 simulated vines can be improved using the heuristic.

7On the request of the reviewer of this chapter we have compared performance of our heuristic based on
improvements of AIC with one using KL divergence between two fitted vines for 5 dimensional vines. The
conclusions did not change but the differences in computation efficiency (KL divergence computed with
Monte Carlo with 106 samples) are prohibitive to perform simulation study for of performance of our heuristic
using KL distance in higher dimensions.

3.A. APPENDIX TO CHAPTER 3

3

59

The choice of VDi ss as an initial structure is not necessary. Whatever algorithm is
used to find an initial vine our heuristic can be applied to obtain possibly better per-
forming structure for the data.

3.A. APPENDIX TO CHAPTER 3
3.A.1. PROOF

Proposition 3.A.1. There are 2
(n−2

2

)
regular vines corresponding to one completely speci-

fied substructure in VBT.

Proof. This can be proven by observing that a substructure gives an ordering of variables
that is in fact the natural order in Nápoles (2011) where it has been proven that there are

2
(n−2

2

)
regular vines with this natural order.

However, similarly the proof can be shown following choices in VBT. If we only have
a substructure, the largest known subvine is in dimension 3, thus we need to do n − 3
ascend steps to fill in 0 elements in VBT following the ordering given by substructure.
For each ascend step, we have to do descend steps until depth-(n −2). In each descend
step we have zero element which can be taken to be one of 2 choice. Thus we have 2
choice for the first extension (to extend into a 4 dimension subvine), 22 for the second
extension and 2n−3 for the last extension. In total, we have

∑n−3
i=1 2i = 2

(n−2
2

)
choices which

gives the number of possible regular vines.

3

60
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

3.A.2. ALGORITHMS

The algorithms used in Chapter 3 are presented.

Algorithm 4 Finding common sampling orders of two vines V1(n) and V2(n)

Input: two given regular vines V1(n) and V2(n).
Output: VBT form of V1(n) compared to V2(n).

1: Draw VBT form of V1(n) and set i = n
2: while i > 2 do
3: repeat
4: For corresponding nodes of V1(n) and V2(n) in echelon-i in vine triangular

array,

• if Case1 then the indicators of both lines are 0, both elements in condition set
become 0,

• if Case2 then the indicator of the line to the child containing common variable
is 0, the other variable is replaced by 0,

• if Case3 then nothing changes in conditioned set.

5: until We exhaust all nodes in echelon-i that are not set to be 0.
6: if indicator of any line is set to be 0 then
7: Reflect those changes to the corresponding elements in depth-(n−i+1) in VBT

by setting these elements and all elements in sub-trees with these elements as root
to be 0.

8: Perform Re-evaluation of vine triangular array.
9: end if

10: i = i −1
11: end while

3.A. APPENDIX TO CHAPTER 3

3

61

Algorithm 5 Finding all possible indicator sequences for nComSO and initial vine

Input: Initial vine and nComSO.
Output: All possible indicator sequence.

1: Set indicators of all lines to 1.
2: Set An = 2n−1 −nComSO
3: Find the first node in highest echelon whose product is smaller than or equal to An .
4: repeat
5: Find L and U using (3.3.1) and (3.3.2), respectively.
6: Three possible options of assignments of 0 to lines from this node due to different

conditions,

• If nComSO = 0 and An −2L = 0, assign both lines 0 indicators.

• If U > An , assign neither of lines 0 indicator.

• Assign 0 indicator to one line such that Proposition 3.3.1 is satisfied and set
An = An −L.

7: Choose the first option that meets condition.
8: if any 0 indicator has been assigned then
9: Do Re-evaluation of the number of subvines in triangular array.

10: end if
11: if An = 0 then
12: Store the current indicator sequence.
13: Choose the next option for current node if it’s possible. Otherwise go back

to previous considered nodes in the recursive process and choose next possible op-
tions.

14: else
15: Find the next non 0 node in highest echelon whose product is smaller or equal

to An .
16: end if
17: until no more non 0 nodes in vine triangular array

3

62
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

Algorithm 6 Choice of zero elements in conditioned sets of nodes that are not 0 in vine
triangular array

Input: triangular array of initial vine and indicator sequence.
Output: triangular array with 0 nodes.

1: i = n
2: while i > 2 do
3: repeat
4: if indicator of any line 0 then
5: Set the element in the conditioned set of node to be 0
6: end if
7: until We exhaust all indicators in echelon-i
8: Re-evaluation of vine triangular array if there is 0 indicator in this echelon
9: i = i −1

10: end while
11: for j = 2 to 1 do
12: Start from the lowest echelon node to the highest one where (Case j) happens
13: Choose variable from conditioning set for the zero element in conditioned set if

this choice satisfies proximity condition
14: end for

3.A. APPENDIX TO CHAPTER 3

3

63

Algorithm 7 Choice of nodes that are 0 in vine triangular array

Input: vine triangular array after choice for zero elements in conditioned set of non
0 nodes.

Output: vine triangular array without zero elements that represents a regular vine.

1: Construct VBT corresponding to input vine triangular array.
2: Choose or construct a substructure in VBT and set the order of vine extensions.
3: Start from the largest fully specified subvine in VBT.
4: for Each Ascend step to extend subvine do
5: Find the nearby pair of elements, which constitutes the conditioned set of a sub-

vine.
6: if there are still 0 elements in this subvine before depth-(n −1) then
7: Do consecutive Descend steps until depth-(n −2)
8: for Each time we do Descend step do
9: Duplicate common sub-tree without root if there are 0 elements.

10: if there is 0 in the nearby pair of elements then
11: Choose one value for this element by property (3).
12: Keep VBT to be in standard form
13: end if
14: end for
15: end if
16: end for
17: Fill in remaining 0 elements in depth-(n −1) and n by property (1,2)
18: Get vine triangular array from the VBT.

According to the proof in Proposition 3.3.4, we need to generate a binary sequence
with length (n − 2)+ (n − 3)+ (n−2

2

)
to sample one regular vine having 2 common sam-

pling orders with the given initial vine structure. The first n −2 binary numbers are to
determine which nodes are in Case2 in vine triangular array and which elements in their
conditioned set are set to be 0. The middle n−3 binary numbers are to assign those zero
elements in conditioned set of Case2 nodes according to proximity. The last

(n−2
2

)
binary

numbers are to fill in 0 elements in VBT.

3

64
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

Algorithm 8 Randomly generating one regular vines having 2 common sampling orders

Input: initial structure
Output: one random regular vines having 2 sampling orders in common.

1: Generating one random binary sequences I with length (n −2)+ (n −3)+ (n−2
2

)
.

2: for i = 1 to (n −2) do
3: from the top node to node in echelon-3,

• If I [i] is 0, assign the left line 0 indicator.

• If I [i] is 1, assign the right line 0 indicator.

4: end for
5: Set zero elements and 0 nodes in triangular array according to the indicator se-

quence.
6: for i = (n −1) to (2n −5) do
7: for non 0 nodes in echelon-4 to echelon-n, the zero element in the conditioned

set becomes,

• If choice possible and I [i] is 0, the zero element is chosen as the left element in
the conditioned set of its child.

• If choice possible and I [i] is 1, the zero element is chosen as the right element
in the conditioned set of its child.

• If no choice, fill in the value for the zero element and move to next element of I .

8: end for
9: for i = (2n −4) to

(n−2
2

)
do

10: in each descend step, the 0 element in VBT becomes,

• If I [i] is 1, zero element of VBT is the left element in pair of elements.

• If I [i] is 0, zero element of VBT is the right element in pair of elements.

11: After each assignment for 0 element in VBT, keep VBT in its standard form.
12: end for
13: Get vine triangular array from VBT.

Since we may ignore elements in the random binary sequences I in line 7 in Algo-
rithm 8, we will get the same vine structure if only these elements are different for two
binary sequences. However the number of possible ignored elements is small as com-
pared to the total length of the binary sequence (at most n−3

2n−5+(n−2
2

)) as dimension be-

comes larger. Thus we can regard Algorithm 8 as an asymptotically uniform sampling
procedure.

3.A.3. SIMULATION RESULT BY RANDOM CHOICE

We compare performance of our heuristic with results obtained by sampling k vine
structures chosen uniformly from the set of possible regular vines and present the results
in Table 3.6.

3.A. APPENDIX TO CHAPTER 3

3

65

Sample size 300

Dim k ∆AIC (i ni) #i mpr nd ∆AIC (i mp)r nd ∆AIC (si m)r nd proportion

In Sample

5 10 258.17 73(63) 194.50 154.65 125.77%
10 20 1426.35 62(58) 440.09 1166.80 37.72%
15 30 2418.53 55(42) 478.64 2118.51 22.59%
20 40 3655.65 59(49) 530.41 3199.69 16.58%

Out of Sample

5 10 388.22 68(56) 268.00 209.60 127.86%
10 20 1844.74 60(56) 599.76 1413.20 42.44%
15 30 2966.55 52(43) 820.94 2368.12 34.67%
20 40 4434.31 51(39) 1127.52 3413.37 33.03%

Sample size 1000

Dim k ∆AIC (i ni) #i mpr nd ∆AIC (i mp)r nd ∆AIC (si m)r nd proportion

In Sample

5 10 1109.64 77(72) 772.80 595.62 129.75%
10 20 6152.95 80(78) 1646.71 4825.00 34.13%
15 30 10823.41 67(61) 2062.20 9286.02 22.21%
20 40 16683.22 57(56) 2343.68 15134.95 15.48%

Out of Sample

5 10 1489.05 71(67) 952.21 726.88 131.00%
10 20 7784.70 77(74) 2046.57 6020.40 33.99%
15 30 13612.53 63(58) 2699.06 11195.33 24.11%
20 40 20652.11 56(53) 3243.98 17867.82 18.16%

Table 3.6: Results of performance by randomly choosing k random vines for 100 data sets of size 300 and 1000,
from vines in dimensions 5, 10, 15 and 20. Average difference of AIC between the initial VDi ss and Vtr ue is
denoted as∆AIC (i ni). Average difference of AIC between the VDi ss and the vine by random choice having the
best improvement in AIC V r nd

mi n is denoted as ∆AIC (i mp)r nd and average difference of AIC between V r nd
mi n

and the true vine Vtr ue structure is ∆AIC (si m)r nd . The number of times an improvement in terms of AIC
with respect to VDi ss has been obtained is shown in column #i mpr nd , additionally the number of times the
improvement was statistically significant, according to Vuong test at 5% significance level is shown in brackets.

The proportion is calculated as
∆AIC (i mp)r nd

∆AIC (si m)r nd

We observe (see Table 3.6, Figure 3.17 and Figure 3.18) that our heuristic behaves
better than randomly choosing k vine structures in aspect of the frequency and amount
of improvement in AIC . This confirms that our heuristic to search in the space of vines
having 2 common sampling orders is a good choice.

3

66
3. COMMON SAMPLING ORDERS OF REGULAR VINES WITH APPLICATION TO MODEL

SELECTION

Figure 3.17: Comparison of AIC improvement to VDi ss in different dimensions for 300 sample size.
∆AIC (i mp) means the improvement of our heuristic whereas∆AIC (i mp)r nd is the improvement by random
choosing vines. If no structures having improvement were found, we denote the improvement by 0.

3.A. APPENDIX TO CHAPTER 3

3

67

Figure 3.18: Comparison of AIC improvement to VDi ss in different dimensions for 1000 sample size.
∆AIC (i mp) means the improvement of our heuristic whereas∆AIC (i mp)r nd is the improvement by random
choosing vines. If no structures having improvement were found, we denote the improvement by 0.

4
VINE COPULA BASED GENERATION

OF SYNTHETIC POPULATION OF

ACUTE ISCHEMIC STROKE PATIENTS

Synthetic data generation provides a way to allow broad access of patient data for re-
searchers and public without violating the patients’ privacy. Such generated data has
to recover the properties of the real patients, hence distributions and statistics like mean,
variance, range etc. of patients’ characteristics as well as dependencies among them should
be well represented. Various methods have been applied in the literature for this purpose.
The vine copula model is used to fit the real patient data and to generate synthetic cohorts
of patients. Furthermore, the vine copula model is compared with a popular approach in
synthetic data generation, called the fully conditional specification. The data set of acute
ischemic stroke patients from the MR CLEAN Registry collected in the INSIST project is
used to perform the comparison of these models. We show, that on this data set, the vine
copula model outperforms the fully conditional specification approach.

Parts of this chapter have been published in Zhu et al. (n.d.).

69

4

70
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

4.1. INTRODUCTION
There is a growing interest in the use of synthetic patient data within health care sys-

tems. Since the introduction of General Data Protection Regulation (Goodman & Flax-
man (2017)) the access to real patient data sets is hindered by legal, privacy and intellec-
tual property restrictions. The use of synthetic patient populations allows researchers,
industry, policy makers to get access to large patient cohorts free of protected health in-
formation and personally identifiable information constraints. However, these synthetic
populations should capture all distributions and dependencies observed in real-patient
populations (Walonoski & et al. (2018), Buczak & Gifford (2010)).

In this study, we used data from the MR CLEAN Registry, the largest nationwide Reg-
istry of ischemic stroke patients in the Netherlands to generate synthetic cohorts. Stroke
is the second leading cause of disability and death worldwide, affecting over 12.2 mil-
lion patients each year (GBD 2019 Stroke Collaborators (2021)). Approximately 85% of
all strokes are ischemic strokes, caused by a thrombus occluding an intracranial artery,
in turn causing a sudden interruption of blood flow and therefore brain ischemia. Acute
treatment of ischemic stroke is vital, since every hour of delay in treatment is associated
with a 3−5% decreased probability of achieving functional independence (Saver & et al.
(2016), Mulder & et al. (2018)).

The data consists of 15 continuous and discrete variables, including continuous pa-
rameters: age, baseline National Institutes of Health Stroke Scale (NIHSS)1, systolic blood
pressure on hospital admission, diastolic blood pressure on hospital admission, time
between stroke onset and arrival at the first hospital, time between arrival at the first
hospital and start of EVT; dichotomous parameters: medical history of ischemic stroke,
diabetes mellitus, and atrial fibrillation, presence of hyperdense artery sign on base-
line NCCT; ordinal parameters: pre-stroke modified Ranking Scale score (mRS), Alberta
Stroke Program Early Tomography Score at baseline (ASPECTS), location of occlusion,
and collateral score.

The synthetic stroke population will be integrated in the in silico framework as part
of the INSIST project. INSIST-In Silico trials for treatment of acute ischemic stroke,
www.insist-h2020.eu) is a European project which aims to develop a platform that en-
ables the execution of in silico trials for acute ischemic stroke. The proposed in silico trial
platform aims to be a proof-of-concept to assess the extent to which in silico modeling
can accurately simulate stroke treatment and estimate outcome for a synthetic cohort of
ischemic stroke patients.

There are several methods in the literature to generate a synthetic population of pa-
tients. In Teutonico & et al. (2015) the authors propose a bootstrap procedure to ran-
domize the real patient data. Using this method, however, one is not able to generate
any combinations of patients’ characteristics that have not been observed in the data. A
parametric approach introduced in Tannenbaum & et al. (2006) requires fitting a mul-
tivariate Gaussian distribution to the data. Similarly, in Tucker et al. (2020) a Gaussian
Bayesian network is constructed based on the observed patients data. Both these meth-
ods might not represent data well when Gaussian assumption is not satisfied. More-
over they can lead to unrealistic samples in simulated population of synthetic patients.

1NIHSS is not a continuous variable (having 43 categories) but it will be treated as such in this chapter.

www.insist-h2020.eu

4.2. MODELS

4

71

Rather than specifying a parametric joint distribution, the authors in Smania & Jons-
son (2021) propose to estimate a sequence of conditional distributions. This method
was originally developed to perform missing data imputation introduced in van Buuren
(2012), and is referred to as fully conditional specification. The comparison study therein
shows that when the assumption of multivariate Gaussian distribution does not hold the
fully conditional specification approach works better in capturing properties of the data.

In this chapter we consider a vine copula based approach to estimate the joint dis-
tribution. The vine structure is chosen based on the method in Chapter 3. Furthermore,
we will compare the vine copula model with the fully conditional specification method
to find out which one is better in generating synthetic data of acute ischemic stroke pa-
tients.

The chapter is organized as follows. In Section 4.2 the models used to generate syn-
thetic data are shortly introduced and compared, and the performance measures used
for comparison are presented. In Section 4.3 the data set is introduced. The performance
of the compared models on the real patient data is shown in Section 4.4, and finally con-
clusions are included in Section 4.5.

4.2. MODELS
Simulating virtual patients’ population requires sampling from a joint distribution of

variables X = (X1, . . . , Xn). This joint distribution can be specified in different ways and
in this chapter, we will compare two approaches: 1) through a sequence of conditional
distributions of Xi |X−i , where X−i denotes the conditional distribution of all variables
except Xi ; 2) through estimating each marginal distributions Fi , i = 1, . . . ,n and a vine
copula representing the dependence among variables.

In this section we shortly introduce two methods based on conditional distributions:
a fully conditional specification (FCS), which is the method of multiple imputation by
chained equations, and a conditional distribution method, denoted as CA, which is a
special case of the FCS satisfying assumptions of monotone missing data pattern. We
also introduce a copula based approach called vine copula (VC).

4.2.1. FULLY CONDITIONAL SPECIFICATION

Different models can be used to specify the conditional distributions 2. In this chap-
ter, we present the model based on multiple imputation by chained equations (van Bu-
uren (2012), Gravesteijn & et al. (2021)), referred to as FCS. This model is constructed by
successive specification of the conditional distributions in the t th iteration,

F (t)(xmi s,t
i |X (t)

1 , X (t)
2 , . . . , xobs

i , X (t−1)
i+1 , . . . , X (t−1)

n),

where xmi s
i and xobs

i are the set of missing and observed values for the i th variable re-
spectively, and the conditional distributions are estimated following the imputation or-
der from X1 to Xn . Since the data, which needs to be simulated, can be regarded as
missing then FCS can be applied for synthetic data generation.

2Note that the specifications have to be consistent. In general, however, there is no guarantee that such a joint
distribution with sequentially specified conditional distributions exists.

4

72
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

The FCS method is easy to implement and it allows different regression type methods
to specify the conditional distributions. Some disadvantages and model setting in this
method are listed below (also discussed in van Buuren (2012), Li et al. (2012)):

• Mis-specification of the conditional distributions. For large number of variables it is not
possible to specify each conditional distribution in detail. In this chapter we restrict
the conditional distributions in the FCS model to be as follows: for continuous vari-
ables Bayesian linear regression is chosen, for binary variables the logistic regression is
used and for ordinal data polytomous regression is taken. FCS method is implemented
in the mice package.

• Slow convergence. A large number of iterations, t , might be needed for the good perfor-
mance of this method when large number of missing data is presented. In van Buuren
(2012), the authors concluded that the rather small number of iterations is enough to
get good results and proposed to use as default 5 iterations in the mice package). In
the synthetic data generation, because the number of simulated data is usually larger
than the observed data the issue of slow convergence may be present. We follow sug-
gestions in Samuels & et al. (n.d.) and increase the number of iterations to t = 20 in
this chapter.

• Order of conditional distributions. The order of specified conditional distributions
matters (see, e.g., in Goncalves & et al. (2020)). The default order in the mice package
is from the left to the right of the input data in a dataframe. We will consider several
different orders when data is analyzed and choose the best one.

In synthetic data generation, since we are generating new data, it then follows mono-
tone missing data pattern (Drechsler (2011)). In this case the FCS method can be simpli-
fied by estimating the conditional distributions of variable i +1 conditional only on the
variables estimated earlier in the order, which is denoted as Fi+1|1,...,i . Moreover, in this
setup, one iteration is sufficient for the model. The conditional distributions for different
types of variables are specified the same way as in the FCS method.

4.2.2. VINE COPULA APPROACH

As mentioned in Section 1.2.3 in Chapter 1, the estimation of VC model requires to
determine 1) the vine structure (graph); 2) the copula families for each bivariate cop-

ula; 3) the copula parameters. For n variables, there are n!
2 2

(n−2
2

)
vine structures (Nápoles

(2010)), hence it is not possible to estimate all of them and choose the best one. In prac-
tice a heuristic introduced in Dißmann et al. (2013) is used, which suggests to construct
a vine structure that captures most dependence in lower trees of the vine. The copula
families along with their parameters are selected from a set of copula families according
to a given criterion (in this chapter we consider information metric AIC (Akaike (1998))).
This approach is implemented in the rvinecopulib package (Nagler & Vatter (2021)).

VC has been shown to be a flexible tool to capture dependence in high dimensions.
This model also allows an efficient simulation process to generate synthetic data, but
one should be aware of some issues that can affect the performance of the VC model:

4.2. MODELS

4

73

• Choice of vine structures. The number of possible vine structures grows exponentially
with dimension. In practice the heuristic in Dißmann et al. (2013) is applied and works
well in general, but there is no guarantee that it will lead to the best model. In Zhu
et al. (2020) the authors suggest to search for several extra vine structures having 2
sampling orders in common with the initial vine structure. This allows to search for
a better model that is sufficiently different from the initial choice. In this chapter we
follow this approach to select the vine structure for the VC model.

• Choice of bivariate copula families. In this chapter we use parametric copula fami-
lies implemented in the rvinecopulib package: Gaussian, Student-t, Clayton, Gumbel,
Frank, Joe, BB1, BB6, BB7, BB8 copulas and their rotated versions. A nonparametric
approach is also considered (see e.g Nagler & Czado (2016)).

• The simplifying assumption. In practice to make estimation efficient it is assumed
that the bivariate conditional copulas in the vine decomposition (assigned to higher
level trees in the vine graph) do not directly depend on the conditioning variables (a
detailed discussion about this assumption can be found in Stöber et al. (2013), Spanhel
& Kurz (2015), Kurz & Spanhel (2017)). This assumption might not be satisfied by the
data. In this chapter we only consider simplified VC model.

4.2.3. DATA PREPARATION AND PERFORMANCE MEASURES

To fit the VC, FCS and CA models, data needs to be pre-prepared. The marginal cu-
mulative distribution function (cdf) are estimated by the empirical cumulative distribu-
tion function (edf), defined as F̂i (xi) = 1

N+1

∑N
m=11xm

i ≤xi
for variable Xi on the observa-

tions xm
i ,m = 1, . . . , N . Then the data is transformed into pseudo observations by PIT.

The VC model is estimated based on the pseudo observations. The conditional distribu-
tions in the FCS and the CA models are estimated through a regression method, hence
the pseudo observations of each variable are transformed further into z-scale before es-
timating FCS and CA models.

To compare the performance of the three models the following measures will be
used:

• Univariate margins. The absolute difference between the chosen statistics computed
from the observed data and those from the generated samples from a model. The cho-
sen statistics are: the mean, the standard deviation (sd), the range, the 5% 50% and
95% quantiles of each continuous variable. For discrete variables the χ2 test statistic

is computed as follows, χ2 = ∑
i

(Oi−Ei)2

Ei
where for category i , Oi is the observed fre-

quency from the generated data and Ei is the expected frequency from the observed
data.

• Marginal and joint distribution. The mean absolute error between the marginal (joint)
cdf of the simulated data and the cdf of the observations, evaluated on N observations
(xxxm ,m = 1, ..., N). This measure can be defined for any subset of variables. Let A ⊂
{1, . . . ,n}, and F s yn

A and F obs
A are the cdf of the simulated and of the observed data over

variables in the set A, respectively. The M AE A for the variables in set A is denoted as,

4

74
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

M AE A = 1

N

N∑
m=1

|F s yn
A (xxxm

A)−F obs
A (xxxm

A))|. (4.2.1)

The cdf F s yn
A and F obs

A are estimated by empirical distributions. For dimension larger
than one, the edf of variables X A is estimated by using the function F.n in the copula
package (Hofert et al. (2020)).

In this chapter we will generate 10 synthetic data sets for each estimated model, com-
pute the performance measures listed above for each generated data set and present the
average results (Rubin (1987)).

4.3. DATA DESCRIPTION
The data used in this chapter is from the MR CLEAN Registry, a prospectively col-

lected database including all patients treated with EVT in the Netherlands. More infor-
mation about the data set can be found in Jansen et al. (2018), Compagne & et al. (n.d.).
We selected patients’ and imaging characteristics obtained before the start of EVT that
are expected to interact with stroke treatment or to predict outcome after stroke, based
on expert opinion. This resulted in a set of 15 mixed variables. These characteristics
are required as input for the in silico stroke treatment models developed and validated
within the INSIST project (Venema & et al. (2017)).

• Continuous variables 3,
Age: age of the patient in years;
Systolic BP: systolic blood pressure measured on hospital admission (emergency de-
partment) in mmHg (millimeters of mercury);
Diastolic BP: diastolic blood pressure measured on hospital admission (emergency
department) in mmHg;
NIHSS: National Institutes of Health stroke scale (NIHSS, indicating stroke severity
based on scoring neurologic symptoms) on hospital admission, ranging from 0 = no
symptoms to 42 = severe neurologic deficit); 4

Time to ER: time between stroke onset and arrival hospital (in minutes);
Time ER groin: time between arrival hospital and start of EVT (in minutes).

• Dichotomous variables,
Sex: sex of the patient (Male:M /Female:F);
Prev stroke: Medical history of stroke (Yes:Y /No:N);
Prev diabetes: Medical history of diabetes mellitus (Yes:Y /No:N);
Prev fibril: Medical history of atrial fibrillation (Yes:Y /No:N);
HAS: Presence of hyperdense artery sign on non-contrast computed tomography scan
performed on hospital admission (Yes:Y /No:N).

3Variables Systolic BP, Diastolic BP, NIHSS, Time to ER, Time ER groin include only integer values hence they
are in principle not continuous variables. In this chapter we treat them as continuous variables as in Samuels
& et al. (n.d.).

4This variable has only finite number of levels but will be treated as continuous in our analysis.

4.4. ANALYSIS

4

75

• Ordinal variables,
Premrs: Modified Rankin Scale (mRS) score indicating the level of functional depen-
dence in daily life before the stroke happened, assessed on hospital admission (rang-
ing from 0, no symptoms to 5, severe disability) (6 levels);
Collaterals: collateral status assessed with computed tomography angiography scan
performed on hospital admission. The collateral circulation refers to the subsidiary
network of vascular channels that stabilize cerebral blood flow when principal con-
duits fail (alternative route to provide blood to the affected brain region). The score
ranges from 0 = absent collaterals [unfavorable], 1 = filling < 50% of occluded area, 2
= filling > 50% but less < 100% of occluded area, to 3 = filling 100% of occluded area
[favorable] (4 levels);
Occlusion loc: Intracranial artery occlusion location causing the stroke on computed
tomography angiography scan performed on hospital admission (listed from proxi-
mal= in a vessel closer to the heart, most often a larger brain vessel to distal= further
away from the heart, most often a smaller brain vessel: 1 = Other:M3,A1,A2; 2 = in-
tracranial ICA; 3 = ICA-T; 4 = M1; 5 = M2;) (5 levels);
ASPECTS: Alberta Stroke Program Early Tomography Score (ASPECTS) at baseline (hos-
pital admission) non-contrast CT scan (ranging from 10 = no early ischemic changes
in the brain [favorable] to 0 = early ischemic changes in all 10 brain regions [unfavor-
able]; 1 point is subtracted from the score of 10 for early ischemic change for each of
the defined regions) (11 levels).

This patient data set consists of 3082 data points and the detailed description about
the data set can be found in Appendix 4.A.1.

In the next section, we will show how the synthetic data is generated by the VC, FCS
and CA models, and a comparison of performances for these methods is presented.

4.4. ANALYSIS

In this section we apply the VC, the FCS and the CA methods to the acute ischemic
stroke patients data to see which method has better performance in synthetic data gen-
eration.

We divide the observations randomly into an evaluation data and a test data set. The
evaluation data consists of two thirds (2055) of data points and the test data contains
1027 data points. The synthetic data size is chosen to be 10000 and the generation pro-
cess is repeated 10 times.

We show, in Section 4.4.1, at first how the three models are estimated. Then the com-
parison of the results for the marginal and the joint distributions of the variables is per-
formed based on the measures in Section 4.2.3. The M AE is calculated between the
marginal (joint) cdf of the observations (the evaluation data or the test data) and the cdf
of the generated data, evaluated on the observations. In Section 4.4.2 we select four most
important variables (according to experts) and present a detailed comparison study of
the three models based on these four variables.

4

76
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

4.4.1. MARGINAL AND JOINT DISTRIBUTIONS
As discussed in Section 4.2 the continuous variables are at first transformed into

pseudo observations using PIT, and the cdf of each margin is estimated by the empirical
distribution. The pseudo observations are then further transformed into their z-scale in
order to satisfy the Gaussian assumption required by both FCS and CA methods.

The estimation of the VC model requires to specify a vine structure. For 15 dimen-
sional data set it is not possible to estimate all structures. Hence, the vine structure for
the data is chosen by evaluating an initial vine constructed by the heuristic in Dißmann
et al. (2013) and then examining 50 extra vines having 2 sampling orders in common
with the initial structure (as explained in Chapter 3). The VC model is then chosen to be
the best performing structure. The detailed discussion of how to choose a proper vine
structure for the VC model is presented in Appendix 4.A.2.

The FCS and the CA model require a choice of the order of variables. There are 15!
orders, hence as in the case of vine structures, it is not possible to verify all of them. One
option is to order variables according to their medical importance as judged by experts,
which in this study has been: (Age, Occlusion loc, NIHSS, ASPECTS, Premrs, Collaterals,
Prev stroke, Prev diabetes, Prev fibril, Sex, HAS, Systolic BP, Diastolic BP, Time to ER, Time
ER groin). We can further randomly generate extra 20 orders 5 for the FCS and the CA
model and pick one with the best performance. The best order for the FCS model is
different than the best order for the CA model. For the FCS model the order is (Prev fibril,
Sex, Prev stroke, Premrs, Time ER groin, NIHSS, Time to ER, ASPECTS, Collaterals, Prev
diabetes, Age, Systolic BP, HAS, Diastolic BP, Occlusion loc), whereas for the CA model it
is (Age, Time to ER, Systolic BP, Prev diabetes, Prev stroke, Prev fibril, HAS, Diastolic BP,
Premrs, NIHSS, Sex, ASPECTS, Occlusion loc, Collaterals, Time ER groin).

The M AE (averaged M AE for the 10 simulated data sets) for the joint cdf for each of
the three methods is shown in Table 4.1 for the evaluation data set and the test data set.

eval test
VC FCS CA VC FCS CA

100×MAE 0.0807 0.0781 0.07740.07740.0774 0.1191 0.11560.11560.1156 0.1162

Table 4.1: The M AE (multiplied by 100) between the joint cdf of the observations (evaluation data (eval) and
test data (test)) and the cdf of the synthetic data generated with VC, FCS and CA model, respectively.

The differences in M AE are quite small for all the three methods. For the evaluation
data set the CA method performs the best, while for the test data set the FCS method has
the best performance. The larger M AE of the VC model can be caused by the lack of fit
of the parametric bivariate copula families available in the software or the simplifying
assumption we used when estimating the VC model.

Although the VC model does not outperform the other two methods according to
the M AE when all variables are considered, it might still perform better for some sub-
sets of variables. In Table 4.11 in the Appendix 4.A.3, M AE for 1-dimensional margins is
presented. In Table 4.12 and Table 4.13 in the Appendix 4.A.3, mean absolute difference
between the chosen statistics discussed in Section 4.2.3 is presented. We can observe

5Note that the number of possible vine structures is larger than the number of possible orders. Hence we
decided to examine 20 orders (which is comparable to the 50 vine structures we searched for the VC model.

4.4. ANALYSIS

4

77

that the VC model outperforms the other two models in estimating the univariate distri-
butions of all continuous variables according to both the M AE and the chosen statistics.
Furthermore, VC model gives better results than the other two methods in modeling
tails of distributions (high and low quantiles) for almost all the continuous variables (ex-
ceptions are, in the evaluation data set for variables Time ER groin and NIHSS, the CA
method has the best performance at 5% quantile; in the test data for Systolic BP the FCS
is the best at 5% quantile and for Diastolic BP the FCS model outperforms other two at
95% quantile). Since margins are handled separately from the dependence in VC model,
its performance on the univariate margins is very good.

For higher dimensional distributions, due to computational complexity, the analysis
is performed only in dimension two and three. In Table 4.2 the results indicates the
number of times a given method outperforms the others according to M AE .

eval test
Dim #OPF Dim #OPF Dim #OPF Dim #OPF

VC FCS CA VC FCS CA VC FCS CA VC FCS CA
2 VC 13 9 3 VC 35 39 2 VC 1 0 3 VC 11 4

FCS 92 66 FCS 420 328 FCS 104 63 FCS 444 308
CA 96 39 CA 416 127 CA 105 42 CA 451 147

Table 4.2: Result of M AE for high dimensional marginal distributions, where #OPF - the number of times the
model in the column outperforms the model in the row; eval - the evaluation data set and test - the test data
set.

The results presented in Table 4.2 reveal that the VC model has the best performance
in most of the bivariate and trivariate marginal distributions. It is not possible to analyze
relationships between all variables in detail, hence in the next section we concentrate on
four selected variables.

4.4.2. PERFORMANCE OF THE METHODS ON THE SELECTED VARIABLES
This section presents a detailed analysis of the VC, FCS and CA methods in generating

samples from the four important variables (as judged by experts): X1 = Age, X2 = NIHSS,
X3 = Occlusion loc and X4 = Collaterals. First M AE for all subsets of these variables is
presented in Table 4.3.

Except for the marginal distributions of variables X3 (Occlusion loc) and X4 (Collat-
erals) and their joint distribution, the VC model is always the best model according to
the M AE both on the evaluation and the test data. The M AE of the VC method for X3

and X4 is larger than the M AE of the FCS and CA methods on the evaluation data but
smaller on the test data. This can indicate the tendency of overfitting for the FCS and the
CA methods.

Next in Table 4.4 we examine the performance of all three methods in realizing the
chosen statistics on the evaluation and the test data.

The performance of all the three models on the statistics of variable X1 (Age) and X2

(NIHSS) is quite comparable. This result coincides with the conclusions from the M AE
of the 1-dimensional marginal distribution of continuous variables. For the discrete vari-
ables, the VC model works better than the others according to the χ2 test statistic. This is

4

78
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

100×M AE
F1 F2 F3 F4 F12 F13 F14 F23 F24 F34

eval VC 0.32590.32590.3259 0.33930.33930.3393 0.4491 0.3816 0.36800.36800.3680 0.44490.44490.4449 0.30720.30720.3072 0.40120.40120.4012 0.42290.42290.4229 0.4537
FCS 0.5614 0.8289 0.27940.27940.2794 0.32600.32600.3260 0.6454 0.5285 0.5812 0.7056 0.7423 0.32420.32420.3242
CA 0.6645 0.7897 0.4538 0.3403 0.6637 0.6049 0.5653 0.6485 0.6120 0.5322

F123 F124 F134 F234 F1234
VC 0.37080.37080.3708 0.36940.36940.3694 0.36190.36190.3619 0.40160.40160.4016 0.33310.33310.3331

FCS 0.5922 0.6040 0.5179 0.6677 0.5543
CA 0.5464 0.5406 0.5363 0.5587 0.4841

F1 F2 F3 F4 F12 F13 F14 F23 F24 F34
test VC 0.32670.32670.3267 0.33950.33950.3395 0.50680.50680.5068 1.08991.08991.0899 0.44400.44400.4440 0.51830.51830.5183 0.77160.77160.7716 0.44000.44000.4400 0.52870.52870.5287 0.97690.97690.9769

FCS 0.5699 0.8190 0.8472 1.5548 0.6950 0.7451 1.2687 0.7334 1.0846 1.2083
CA 0.6662 0.7941 0.9119 1.4656 0.7441 0.8335 1.1609 0.7539 0.8133 1.2694

F123 F124 F134 F234 F1234
VC 0.45230.45230.4523 0.49090.49090.4909 0.66460.66460.6646 0.50920.50920.5092 0.42710.42710.4271

FCS 0.6791 0.8053 1.0221 0.8802 0.6565
CA 0.6852 0.6944 0.9987 0.7356 0.5953

Table 4.3: M AE (the M AE is multiplied by 100) for marginal and joint cdfs for the selected variables, X1 = Age,
X2 = NIHSS, X3 = Occlusion loc and X4 = Collaterals.

eval mean sd range 5% 50% 95% χ2

X1 VC 0.11540.11540.1154 0.1091 0.19820.19820.1982 0.27100.27100.2710 0.15250.15250.1525 0.12480.12480.1248 X3 VC 14.629714.629714.6297
FCS 0.2145 0.1873 0.2050 0.4653 0.2128 0.3622 FCS 34.7652
CA 0.3130 0.09720.09720.0972 0.2724 0.5043 0.3822 0.2571 CA 18.3822

X2 VC 0.05280.05280.0528 0.03290.03290.0329 0.1000 0.3000 0.1000 0.10000.10000.1000 X4 VC 6.1441
FCS 0.1562 0.1010 0.1000 0.3000 000 0.10000.10000.1000 FCS 7.3615
CA 0.1617 0.1234 000 0.20000.20000.2000 0.4000 0.3000 CA 5.38835.38835.3883

test mean sd range 5% 50% 95% χ2

X1 VC 0.11260.11260.1126 0.1221 0.5303 0.25970.25970.2597 0.14860.14860.1486 0.17720.17720.1772 X3 VC 22.481322.481322.4813
FCS 0.2169 0.1659 0.9564 0.3539 0.1727 0.6730 FCS 56.7458
CA 0.3088 0.08660.08660.0866 0.43220.43220.4322 0.5193 0.3425 0.3494 CA 52.5757

X2 VC 0.05190.05190.0519 0.03680.03680.0368 000 0.1000 0.1000 000 X4 VC 35.945635.945635.9456
FCS 0.1478 0.0862 0.2000 0.1000 000 0.1000 FCS 203.2500
CA 0.1574 0.1052 0.1000 000 0.3000 0.3000 CA 73.5746

Table 4.4: Mean absolute difference between the observations (evaluation (eval) and test data set) and the
synthetic data of the statistics (mean, sd, range, 5%, 50% and 95% quantile for continuous variables and the
χ2 test statistic for the discrete variables.) for the VC, FCS and CA methods on the selected variables, X1 = Age,
X2 = NIHSS, X3 = Occlusion loc and X4 = Collaterals.

4.4. ANALYSIS

4

79

in contrast to the results obtained by M AE , which can be explained on the distributions
of these variables X3 (Occlusion loc) and X4 (Collaterals) shown in Table 4.5.

level-1 level-2 level-3 level-4 level-5 level-1 level-2 level-3 level-4
X3 Obseval 0.0068 0.0564 0.2151 0.5742 0.1474 X4 Obseval 0.0608 0.3572 0.3830 0.1990

Obstest 0.0097 0.0380 0.2132 0.5852 0.1538 Obstest 0.0604 0.3710 0.3934 0.1753
VC 0.0075 0.0495 0.2140 0.5781 0.1510 VC 0.0597 0.3605 0.3878 0.1920

FCS 0.0113 0.0564 0.2141 0.5696 0.1486 FCS 0.0650 0.3521 0.3823 0.2006
CA 0.0094 0.0585 0.2160 0.5661 0.1499 CA 0.0642 0.3549 0.3806 0.2003

Table 4.5: The frequency table of variable X3 (Occlusion loc) and X4 (Collaterals) for the observations (Obseval
on the evaluation data, Obstest on the test data), the stacked simulated data from the VC, FCS and CA models.

We can see that the VC model recovers the best the frequencies of levels with small
probabilities, e.g. level-1 of X3 (Occlusion loc) and level-1 of variable X4 (Collaterals).
For some levels with larger frequencies, e.g. level-2 of X3 and level-4 of X4, the difference
between the observed and simulated frequencies of the FCS and CA models is smaller.
Since M AE is a measure on the absolute error whereas χ2 test statistic is a measure on
the relative error, one can explain a smaller M AE for the FCS model (or the CA model)
than the one for the VC model, but a larger χ2 test statistic.

To explain the better performance of the VC model on bivariate marginal distribu-
tions, we show the quantile-quantile plot (Q-Q plot) of X1 (Age) given that X4 (Collater-
als) is in level-4 (category "100% of occluded area") in Figure 4.1 (left) and the Q-Q plot
of X2 (NIHSS) given X3 (Occlusion loc) is in level-5 (category "M2") in Figure 4.1 (right)
on the evaluation data. These two figures are quite representative to explain why the VC
model can capture the dependence between the variables well.

Figure 4.1: Q-Q plot (left) for the variable X1 (Age) given that X4 (Collaterals) is in level-4 (category "100% of
occluded area"); Q-Q plot (right) for the variable X2 (NIHSS) given that X3 (Occlusion loc) is in level-5 (category
"M2"). Simulated quantile for the VC model is shown by black square, for the FCS model it is shown by red
circle and for the CA model it is shown by blue triangle.

4

80
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

For the bivariate distributions of the discrete variables, we explain the performance
of the three methods by their contingency table in Table 4.6.

Obseval ; Obstest ; VC; FCS; CA
HH

HHHX3

X4 level-1 level-2

level-1 0.0000; 0.0000; 0.0005; 0.0002; 0.00002 0.0010; 0.0010; 0.0032; 0.0019; 0.0013
level-2 0.0010; 0.0010; 0.0045; 0.0012; 0.0012 0.0165; 0.0088; 0.0197; 0.0162; 0.0167
level-3 0.0229; 0.0253; 0.0156; 0.0232; 0.0240 0.0929; 0.0993; 0.0849; 0.0925; 0.0931
level-4 0.0311; 0.0331; 0.0327; 0.0340; 0.0323 0.2039; 0.2152; 0.2058; 0.1979; 0.2001
level-5 0.0058; 0.0010; 0.0064; 0.0064; 0.0067 0.0428; 0.0467; 0.0469; 0.0435; 0.0438

H
HHHHX3

X4 level-3 level-4

level-1 0.0015; 0.0010; 0.0027; 0.0030; 0.0018 0.0044; 0.0078; 0.0011; 0.0062; 0.0063
level-2 0.0204; 0.0156; 0.0174; 0.0210; 0.0213 0.0185; 0.0127; 0.0081; 0.0180; 0.0194
level-3 0.0725; 0.0701; 0.0787; 0.0717; 0.0722 0.0268; 0.0185; 0.0348; 0.0267; 0.0267
level-4 0.2229; 0.2288; 0.2270; 0.2215; 0.2181 0.1163; 0.1081; 0.1126; 0.1162; 0.1157
level-5 0.0657; 0.0779; 0.0622; 0.0652; 0.0672 0.0331; 0.0282; 0.0355; 0.0336; 0.0323

Table 4.6: The contingency table of variable X3 (Occlusion loc) and X4 (Collaterals) for the observations
(Obseval on the evaluation data, Obstest on the test data), the stacked simulated data from the VC, FCS and
CA models.

We see that for the evaluation data, the VC model on the bivariate distribution of X3

(Occlusion loc) and X4 (Collaterals) is not so good. This is not surprising in view of the
worse performance of this method on the univariate margins of X3 and X4. For example,
when the level of X3 is in level-2 (category "Intracranial ICA") and the level of X4 is in
level-4 (category "100% of occluded area"), the joint frequency for the VC model is only
0.0081 (compared to 0.0185 for the observed data; 0.0180 for the FCS model; 0.0194 for
the CA model). However, on the test data set the frequency in that region of the joint
distribution is 0.0127, and then the frequency of the data from the FCS and CA model is
not as close to the observed frequency.

Finally we consider the trivariate distribution, F134 and F234. We select the Q-Q plot
of the conditional distribution of X1 (Age) given that X3 (Occlusion loc) is in level-4 (cate-
gory "M1") and X4 (Collaterals) is in level-4 (category "100% of occluded area") in Figure
4.2 (left) and the Q-Q plot of X2 given that X3 is in the level-5 (category "M2") and X4 in
level-3 (category "> 50% but less < 100%") in Figure 4.2 (right).

The region in F34 where X3 (Occlusion loc) is in level-2 (category "Intracranial ICA")
and X4 (Collaterals) is in level-4 (category "100% of occluded area") contains very little
data points for variable X1 (Age). Although the VC model has the worst performance in
that region, its contribution to M AE of the joint distribution of F134 and F234 is small.
This is confirmed graphically in the Q-Q plots in Figure 4.2. However, if we look at the
conditional distribution in Figure 4.2 (right), even though the VC model has the best per-
formance it can generate values which are higher than the maximum of the observation
of X2 (NIHSS) given X3 and X4. This indicates possible mis-specification of the tail de-
pendence in the VC model.

4.5. CONCLUSIONS

4

81

Figure 4.2: Q-Q plot (left) for the variable X1 (Age) given that X3 (Occlusion loc) is in level-4 (category "M1") and
X4 (Collaterals) is in level-4 (category "100% of occluded area") ; Q-Q plot (right) for the variable X2 (NIHSS)
given that X3 is in level-5 (category "M2") and X4 in level-3 (category "> 50% but less < 100%"). Simulated
quantile for the VC model is shown by black square, for the FCS model it is shown by red circle and for the CA
model it is shown by blue triangle.

4.5. CONCLUSIONS
In this chapter we compare the VC model with two fully conditional specification

approaches, the FCS and CA models, based on their performance in generating syn-
thetic acute ischemic stroke patients’ population. Similar comparison has been done
in Samuels & et al. (n.d.). However, we consider not only the heuristic vine structure
selection in Dißmann et al. (2013) but also more vine structures by the method in Zhu
et al. (2020). Similarly, more orders of variables are taken into account in the estimation
of the FCS and CA models. By the above model setting a better VC model and also better
FCS and CA models are found, according to the M AE of the joint distribution of all the
variables.

Although the VC model does not have an overall best performance (the difference
among the three models in M AE is small), in most of the margins especially for the se-
lected four variables, the VC model performs the best in modeling the data set whereas
the FCS and CA models show tendency of overfitting. The worse performance of the VC
model in some margins is due to the mis-specification of the parametric copula, where
the estimated copula captures well the tail dependence (e.g. for categories with low fre-
quency of discrete variables) but mis-specifies other dependencies.

Finally we enumerate also some limitations of our research, which will lead to possi-
ble future improvement of the models.

• The VC model estimates the dependence structure separately from the 1-dim marginal
distributions. The marginal distribution of continuous variable is estimated by its em-
pirical distribution in this chapter, hence one cannot generate data points that are out
of the range of the observations. This also applies to the FCS and CA models. Hence,
model fitting can be improved by considering other univariate distributions in PIT, for

4

82
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

example, a spline based survival model in Royston & Parmar (2002).

• It has been discussed in Appendix 4.A.2 that, by using non-parametric bivariate copu-
las in estimating the VC model, the M AE of the joint distribution is larger when com-
pared with the parametric VC model. For some margins, non-parametric bivariate
copulas can be preferred as they are more flexible in representing dependence struc-
tures especially for discrete variables. However, due to the lack of likelihood based cri-
terion in comparing parametric and non-parametric bivariate copulas, it is not avail-
able at this moment to take both of them into account in the estimation of the VC
model.

• Only simplified VC model is considered in this chapter. Possible model fitting im-
provement can be made by assuming a relationship between the copula parameter
and the variables conditional on like in Acar et al. (2011), Nagler & Vatter (2020).

• In this chapter we use M AE to compare the three models (the VC, FCS and CA models).
The difference in M AE of the three models is quite small, and we are not able to make
a decision on which model is significantly better than the others.

As has been mentioned in the beginning of this chapter, synthetic data generation
requires to capture all distributions and dependencies observed in real-patient popu-
lation. Considering the comparison result in this chapter the constructed VC model is
a better choice in synthetic data generation. By this conclusion, one can apply the VC
model to generate large patient cohorts free of privacy to support descriptive, predictive
research or to provide causal application in the INSIST project as discussed in Samuels
& et al. (n.d.).

4.A. APPENDIX TO CHAPTER 4

4

83

4.A. APPENDIX TO CHAPTER 4
4.A.1. PATIENTS DATA DESCRIPTION

Selected variables were described using mean, standard deviation (sd), skewness,
and kurtosis for continuous variables, and frequencies for discrete variables, shown in
Table 4.7. Skewness and kurtosis describe the shape of the distribution for a variable, by
which one can judge how the distribution is different from a normal distribution (with
skewness equal to 0 and kurtosis equal to 3).

Age mean (sd) 70.0586 (14.1647)
skewness (kurtosis) -0.6722 (3.3115)
range 18.0835∼102.7077

Systolic BP mean (sd) 150.0 (25.02)
skewness (kurtosis) 0.3991 (3.2805)
range 68∼255

Diastolic BP mean (sd) 82.4 (15.57)
skewness (kurtosis) 0.2582 (3.3664)
range 34∼155

Time to ER mean (sd) 79.0 (61.08)
skewness (kurtosis) 1.6376 (5.2647)
range 1∼329

Time ER groin mean (sd) 110.7 (55.05)
skewness (kurtosis) 0.6465 (3.4717)
range 1∼347

NIHSS mean (sd) 15.3 (6.17)
skewness (kurtosis) 0.1062 (3.3184)
range 0∼42

frequency
Sex F(0.4783); M(0.5217)
Prev stroke N(0.8329); Y(0.1671)
Prev diabetes N(0.8397); Y(0.1603)
Prev fibril N(0.7602); Y(0.2398)
HAS N(0.4513); Y(0.5487)
Premrs 1(0.6788); 2(0.1301); 3(0.0740); 4(0.0672); 5(0.0415); 6(0.0084)
Collaterals 1(0.0607); 2(0.3618); 3(0.3864); 4(0.1911)
Occlusion loc 1(0.0078); 2(0.0503); 3(0.2145); 4(0.5779); 5(0.1496)
ASPECTS 1(0.0006); 2(0.0042); 3(0.0068); 4(0.0117); 5(0.0221); 6(0.0357);

7(0.0584); 8(0.1113); 9(0.1639); 10(0.2252); 11(0.3602)

Table 4.7: Basic statistics (mean, standard deviation (sd), skewness, kurtosis and range) for the continuous
variables of the acute ischemic stroke patients data.

According to the skewness and kurtosis, except for the variable Time to ER other con-
tinuous variables are likely to be normally distributed. However, large amount of ties are
presented in the data: in 3082 data points, only 2822 different values for Age, 140 values
for Systolic BP, 96 values for Diastolic BP, 271 values for Time to ER, 270 values for Time

4

84
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

ER groin and 43 values for NIHSS. Hence in PIT, we transform all the continuous vari-
ables by their empirical distribution for the VC model and further transform them into
standard normal distribution for the FCS and CA models.

The bivariate dependence, measured by Kendall’s tau, for most pairs of variables is
not strong (the absolute value of the Kendall’s tau is under 0.10). The maximum Kendall’s
tau is 0.33 between Systolic BP and Diastolic BP.

4.A.2. BEST VC MODEL SELECTION
We start with pseudo observations in estimating a VC model, as explained in Sec-

tion 4.4. As discussed in Section 4.2.2, the vine structure of the VC model is at first con-
structed by the Dißmann’s heuristic in Dißmann et al. (2013) and then some additional
vine structures having 2 sampling orders in common will be generated and estimated to
see whether a better fit can be achieved. For 15 variables it have been suggested in Zhu
et al. (2020) to explore 30 additional vine structures. This choice is dictated by a trade-off
between computational efficiency and possible improvements. In this chapter we de-
cided to generate at first 20 vines having 2 common sampling orders with the initial one
and then each time extra 10 vines are added to see whether the improvement is stable
until at a maximum 100 vines are searched. The improvement is judged by the AIC and
B IC (without taking into account margins). The result we obtained is shown in Table
4.8.

improvement
#2SO #i mp(AIC) ∆AIC (i mp) #i mp(B IC) ∆B IC (i mp)
20 1 2.56 2 12.15
30 4 4.18 3 12.61
40 7 5.19 6 17.97
50 7 5.19 6 17.97

Table 4.8: The improvement as compared with the initial vine by searching #2SO additional vines having 2
common sampling orders with the initial structure. #i mp(AIC) denotes the number of vines having lower
AIC and ∆AIC (i mp) means the absolute average difference in AIC between the initial vine and the vines
having lower AIC . Similarly #i mp(B IC) and ∆B IC (i mp) are defined.

We can observe that after 40 vines have been considered 7 of them had better AIC .
Additional 10 extra vines, however, did not lead to any improvement in AIC or B IC , so
the process stopped. There are in total 10 different vines that are either have better AIC
or B IC . In Table 4.9 we show the AIC and B IC of these 10 vines, and the result from a
Vuong test (Vuong (1989)) (without or with Schwarz correction), both on the evaluation
and test data.

When the Vuong test (also the Vuong test with Schwarz correction) is applied on the
evaluation data, one can conclude that, at 5% significance level, it cannot be rejected
all these 10 vines perform not significantly different than the initial vine. However, for
the test data set, the first, sixth, seventh and the eighth vines having 2 sampling orders
in common perform significantly better than the initial vine according to the Vuong test
with Schwarz correction. Out of those vines we chose the one having the smallest AIC
and also B IC . Hence, the seventh vine having 2 sampling orders in common with the

4.A. APPENDIX TO CHAPTER 4

4

85

Initial vines2SO
AICi n -2422.72 -2437.28-2437.28-2437.28 -2430.27 -2427.04 -2426.70 -2425.27
B ICi n -1961.22 -1987.03-1987.03-1987.03 -1957.52 -1948.65 -1948.32 -1958.15
p-value 0.5992 0.5916 0.6435 0.6508 0.8331

0.1989 0.8636 0.5732 0.5586 0.8871
vines2SO

AICi n -2424.99 -2423.81 -2420.79 -2418.70 -2406.01
B ICi n -1974.74 -1984.83 -1981.81 -1979.71 -1967.02
p-value 0.9364 0.7605 0.6305 0.5935 0.2509

0.5329 0.2972 0.3184 0.4114 0.7874
AICout -890.02 -913.85 -889.15 -898.25 -907.18 -903.13
B ICout -485.40 -519.10 -474.66 -478.83 -487.76 -493.57
p-value 0.1929 0.8476 0.3826 0.1324 0.3365

0.0270 0.5106 0.6870 0.8781 0.6030
vines2SO

AICout -917.26 -920.52-920.52-920.52 -918.37 -890.60 -890.94
B ICout -522.51 -535.63-535.63-535.63 -533.48 -505.72 -506.05
p-value 0.1245 0.1400 0.1733 0.6425 0.6372

0.0142 0.0010 0.0013 0.2035 0.1689

Table 4.9: Result for the initial vine (Initial) and the other 10 vines having 2 common sampling orders
(vines2SO). AICi n (B ICi n) denotes the AIC (B IC) of the model for the estimated data set. AICout (B ICout)
are results for the test data set. The p-value of the Vuong test (with and without [underneath], Schwarz correc-
tion) of equality of the initial vine and each one vine having 2 common sampling orders for different data sets
are shown.

initial constitutes the final structure.
It is suggested in Nagler (2018), that when discrete variables are modeled by the VC

method, non-parametric copulas should be preferred. To investigate this claim, we run a
similar procedure as in the case of parametric VC model, where the bivariate copulas are
modeled non-parametrically (by 2-dimensional Gaussian kernel smoothing method). In
this analysis we take the M AE of the joint distribution on the evaluation and test data
sets as the measure of performance. An initial vine is estimated by the Dißmann’s heuris-
tic and several vines having 2 common sampling orders are estimated. The process is
shown in Table 4.10,

improvement
#2SO #i mp(M AE)eval ∆M AE(i mp)eval #i mp(M AE)test ∆M AE(i mp)test

20 7 3.612E-7 9 1.324E-5
30 13 6.107E-6 16 1.792E-5
40 15 3.432E-6 19 2.204E-5
50 20 2.032E-6 23 1.861E-5
60 23 1.957E-7 27 2.034E-5

Table 4.10: The improvement as compared to the initial vine by searching for other #2SO vines.
#i mp(M AE)eval (#i mp(M AE)test) denotes the number of vines having smaller M AE on the evaluation (test)
data, and ∆M AE(i mp)eval (∆M AE(i mp)test) means the absolute average difference in M AE between the
initial vine and the vines having smaller M AE on the evaluation (test) data.

4

86
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

Although the number of vines having smaller M AE increases when more vines hav-
ing 2 common sampling orders are constructed, the average improvement in M AE be-
comes smaller after 30 vines have been considered on the evaluation data set and re-
mains stable on the test data. We stop the search after 60 vines having 2 common sam-
pling orders have been examined. The best vine structure in the non-parametric VC
model is different than the one in the best parametric VC model. This structure has
M AE (times 100) of the joint distribution equal to 0.0832 on the evaluation data set and
0.1208 on the test data set. When compared with the M AE (times 100) for the best para-
metric VC model with M AE (times 100) of 0.0807 on the evaluation data and 0.1191 on
the test data, we decide to use the parametric VC model in this chapter.

4.A.3. M AE AND STATISTICS OF THE SYNTHETIC DATA OF 1-DIM MARGINS

In this section results concerning M AE and the mean absolute difference of statistics
(the mean, the standard deviation (sd), the range, the 5% quantile, the 50% quantile and
the 95% quantile) are shown. The M AE is given in Table 4.11 and the statistics is in Table
4.12 and Table 4.13 (In the test data for the variable ASPECTS, level 0 does not appear
hence there is no test statistic for this variable on the test data set).

Dim 100×MAE
eval 1 Age Systolic BP Diastolic BP Time to ER Time ER groin NIHSS

VC 0.32590.32590.3259 0.35760.35760.3576 0.33930.33930.3393 0.31500.31500.3150 0.35640.35640.3564 0.33930.33930.3393
FCS 0.5614 0.6252 0.7816 0.5214 0.7722 0.8289
CA 0.6645 0.6178 0.5935 0.7254 0.4400 0.7897

Sex Prev stroke Prev diabetes Prev atrial fibril HAS Premrs
VC 0.7518 0.33800.33800.3380 0.40800.40800.4080 0.53820.53820.5382 0.4412 0.54490.54490.5449

FCS 0.49180.49180.4918 1.6683 1.0080 0.9054 0.26810.26810.2681 1.6540
CA 0.6463 0.8188 0.5091 1.0237 0.5395 0.6562

Collaterals Occlusion loc ASPECTS
VC 0.3816 0.4491 0.2929

FCS 0.32600.32600.3260 0.27940.27940.2794 0.28860.28860.2886
CA 0.3403 0.4538 0.3668

test 1 Age Systolic BP Diastolic BP Time to ER Time ER groin NIHSS
VC 0.32670.32670.3267 0.36160.36160.3616 0.32720.32720.3272 0.32070.32070.3207 0.35580.35580.3558 0.33950.33950.3395

FCS 0.5699 0.6235 0.7723 0.5153 0.7668 0.8190
CA 0.6662 0.6179 0.5923 0.7257 0.4363 0.7941

Sex Prev stroke Prev diabetes Prev atrial fibril HAS Premrs
VC 1.53951.53951.5395 0.37920.37920.3792 0.8476 0.54650.54650.5465 0.79870.79870.7987 1.27301.27301.2730

FCS 1.8257 1.9945 0.63750.63750.6375 1.8478 0.9874 3.4772
CA 2.0070 0.8863 1.2787 1.0289 1.2230 1.9687

Collaterals Occlusion loc ASPECTS
VC 1.08991.08991.0899 0.50680.50680.5068 0.60290.60290.6029

FCS 1.5548 0.8472 0.9459
CA 1.4656 0.9119 1.0002

Table 4.11: Result of MAE (the MAE is multiplied by 100) for each variable for the VC, FCS and CA methods,
where eval denotes the evaluation data set and test denotes the test data set.

4.A. APPENDIX TO CHAPTER 4

4

87

eval Age Systolic BP Diastolic BP Time to ER Time ER groin NIHSS
mean VC 0.11540.11540.1154 0.23190.23190.2319 0.12890.12890.1289 0.50220.50220.5022 0.5615 0.05280.05280.0528

FCS 0.2145 0.4760 0.3923 0.9000 1.1475 0.1562
CA 0.3130 0.4686 0.3070 1.4937 0.47210.47210.4721 0.1617

sd VC 0.1091 0.18610.18610.1861 0.10690.10690.1069 0.41630.41630.4163 0.45010.45010.4501 0.03290.03290.0329
FCS 0.1873 0.3735 0.3126 1.0766 1.1546 0.1010
CA 0.09720.09720.0972 0.3511 0.1194 1.4989 0.8201 0.1234

range VC 0.19820.19820.1982 3.1000 4.0000 0 2.4000 0.1000
FCS 0.2050 1.8000 2.10002.10002.1000 0 3.4000 0.1000
CA 0.2724 1.70001.70001.7000 3.4000 0 1.60001.60001.6000 000

5% VC 0.27010.27010.2701 0.80000.80000.8000 0.20000.20000.2000 0.40000.40000.4000 0.3000 0.3000
FCS 0.4653 0.9000 0.7000 0.6000 0.2000 0.3000
CA 0.5043 0.9000 0.6000 1.3000 0.20000.20000.2000 0.20000.20000.2000

50% VC 0.15250.15250.1525 0.10000.10000.1000 0.20000.20000.2000 0.40000.40000.4000 0.9000 0.1000
FCS 0.2128 0.3000 0.7000 0.8000 2.4000 000
CA 0.3822 0.10000.10000.1000 0.7000 1.4000 0.60000.60000.6000 0.4000

95% VC 0.12480.12480.1248 1.30001.30001.3000 0 0.70000.70000.7000 1.50001.50001.5000 0.10000.10000.1000
FCS 0.3622 2.2000 0 2.4000 3.9000 0.10000.10000.1000
CA 0.2571 1.9000 0 3.1000 3.1000 0.3000

Sex Prev stroke Prev diabetes Prev fibril HAS Premrs
χ2 VC 11.3321 1.77911.77911.7791 2.37842.37842.3784 4.00224.00224.0022 5.1540 8.7561

FCS 6.79206.79206.7920 32.8880 15.3236 12.0676 2.85532.85532.8553 41.8390
CA 12.2931 9.2619 4.1972 13.5430 8.2438 8.23808.23808.2380

Collaterals Occlusion loc ASPECTS
VC 6.1441 14.629714.629714.6297 25.9651

FCS 7.3615 34.7652 27.3516
CA 5.38835.38835.3883 18.3822 22.439722.439722.4397

Table 4.12: Mean absolute difference of the statistics (mean, sd, range, 5%, 50% and 95% quantile for continu-
ous variables and the χ2 test statistic for the discrete variables, between the evaluation data set (eval) and the
synthetic data.) for the VC, FCS and CA methods.

4

88
4. VINE COPULA BASED GENERATION OF SYNTHETIC POPULATION OF ACUTE ISCHEMIC

STROKE PATIENTS

test Age Systolic BP Diastolic BP Time to ER Time ER groin NIHSS
mean VC 0.11260.11260.1126 0.23930.23930.2393 0.12310.12310.1231 0.49690.49690.4969 0.5521 0.05190.05190.0519

FCS 0.2169 0.4936 0.3970 0.8874 1.1384 0.1478
CA 0.3088 0.4797 0.3019 1.5056 0.47710.47710.4771 0.1574

sd VC 0.1221 0.25980.25980.2598 0.1355 0.43020.43020.4302 0.46510.46510.4651 0.03680.03680.0368
FCS 0.1659 0.3730 0.3309 1.0018 1.0047 0.0862
CA 0.08660.08660.0866 0.4135 0.13190.13190.1319 1.6012 0.7602 0.1052

range VC 0.5303 2.2000 0.5000 0.7000 0.7000 000
FCS 0.9564 0.80000.80000.8000 0.10000.10000.1000 0.80000.80000.8000 0.7000 0.2000
CA 0.43220.43220.4322 1.9000 0.4000 1.6000 0.7000 0.1000

5% VC 0.25970.25970.2597 1.1000 0.20000.20000.2000 000 0.80000.80000.8000 0.1000
FCS 0.3539 0.80000.80000.8000 1.1000 0.5000 0.9000 0.1000
CA 0.5193 0.9000 0.7000 0.2000 0.9000 000

50% VC 0.14860.14860.1486 0.30000.30000.3000 000 0.50000.50000.5000 0.60000.60000.6000 0.1000
FCS 0.1727 0.5000 000 0.7000 1.4000 000
CA 0.3425 0.4000 0.1000 1.1000 1.1000 0.3000

95% VC 0.17720.17720.1772 0.50000.50000.5000 0.4000 0.90000.90000.9000 1.30001.30001.3000 000
FCS 0.6730 2.0000 0.20000.20000.2000 2.3000 2.1000 0.1000
CA 0.3494 1.8000 0.2000 3.5000 1.7000 0.3000

Sex Prev stroke Prev diabetes Prev fibril HAS Premrs
χ2 VC 37.279037.279037.2790 2.37042.37042.3704 8.7518 3.60543.60543.6054 12.738712.738712.7387 35.945635.945635.9456

FCS 53.6656 45.6811 5.94205.94205.9420 38.8341 19.1755 203.2500
CA 72.3792 11.4726 20.5623 16.2526 35.3935 73.5746

Collaterals Occlusion loc ASPECTS
VC 22.481322.481322.4813 46.404546.404546.4045

FCS 56.7458 102.4522
CA 52.5757 125.0656

Table 4.13: Mean absolute difference of the statistics (mean, sd, range, 5%, 50% and 95% quantile for continu-
ous variables and theχ2 test statistic for the discrete variables, between the test data set (test) and the synthetic
data.) for the VC, FCS and CA methods.

5
SIMPLIFIED R-VINE BASED

FORWARD REGRESSION

An extension of the D-vine based forward regression procedure to a R-vine forward re-
gression is proposed. In this extension any R-vine structure can be taken into account.
Moreover, a new heuristic is proposed to determine which R-vine structure is the most ap-
propriate to model the conditional distribution of the response variable given the covari-
ates. It is shown in the simulation that the performance of the heuristic is comparable to
the D-vine based approach. Furthermore, it is explained how to extend the heuristic into
a situation when more than one response variable are of interest. Finally, the proposed R-
vine regression is applied to perform a stress analysis on the manufacturing sector which
shows its impact on the whole economy.

Parts of this chapter have been published in Zhu et al. (2021).

89

5

90 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

5.1. INTRODUCTION
Linear regression is one of the most popular models used in many applications. The

conditional distribution of the response variable(s) is modeled by describing its con-
ditional expectation as a linear function of covariates and the error term. The strong
assumptions of this model, which may not be appropriate for some data sets, can be al-
leviated by applying transformations, for example in the generalized linear models Mc-
Cullagh & Nelder (1989).

The problem of modeling the relationship between the response variable(s) and the
covariates can also be approached by estimating their joint distribution, from which the
conditional distribution (or its expectation) can be computed. The joint distribution can
be estimated by estimating the marginal distributions and a copula separately. In Parsa
& Klugman (2011) a multivariate Gaussian copula is used for which the conditional dis-
tribution is given in closed form. Multivariate copula families other than Gaussian (e.g.
Archimedean families) might give a better approximation of the data and have also been
applied in the context of regression Noh et al. (2013). However, the conditional density,
in the above approach, has to be computed as a quotient of a joint density of all vari-
ables and a joint density of the covariates, where the joint density of the covariates is
computed by integrating out the response variable(s). This approach is computationally
expensive. Moreover, the dependence structure represented by the copula is restricted
to few multivariate copula families which might not be sufficiently flexible in higher di-
mensions.

Vine copula model can also be applied in regression analysis. For some vine struc-
tures the conditional distribution of the response variable given the covariates can be
estimated directly from the vine rather than through integration. This is possible when
the response variable appears in the conditioned set of the edge in the last tree of the
vine. Under this requirement, the regular vine copula model has been used in Cooke
et al. (2019) to estimate the conditional distribution of IQ given duration of breastfeed-
ing and other covariates.

In Kraus & Czado (2017a), a D-vine based forward regression procedure has been
introduced. The vine structure is fixed to be a D-vine and the order of variables in the
D-vine, as introduced in Brechmann & Schepsmeier (2013), is chosen via the forward
selection procedure fixing the response variable as the first element in this order. These
choices reduce computational burden of vine copula regression method and at the same
time allow variable selection. The D-vine copula model used in Kraus & Czado (2017a)
is the so called simplified vine where all conditional copulas do not directly depend on
the conditioning variables. More about the simplifying assumption can be found in Haff
et al. (2010) and Stöber et al. (2013). In Herrmann (2018) and Chang & Joe (2019) different
heuristics based on computing some correlation measures to choose the vine structure
in the regression setting have been explored.

The contribution of this chapter is an extension of the method presented in Kraus &
Czado (2017a) to allow other structures than the D-vine in estimation of the conditional
distribution. Our goal is to test whether more flexibility in the choice of vine structure
(which is more computationally intensive) can lead to significantly better copula regres-
sion model. We propose a general approach of how the vine structure can be obtained
during the forward selection such that the conditional distribution can be estimated in

5.2. CONDITIONAL DENSITY BASED ON REGULAR VINES

5

91

the analytic form. The approach is motivated by the results and algorithms presented
in Zhu et al. (2020). Furthermore, we propose a new heuristic R-vine based forward se-
lection procedure which is different than the tree-wise maximization of correlations in
Herrmann (2018) during extension. Our new heuristic maximizes the correlations ’glob-
ally’ when constructing the vine structure.

Moreover, we consider in this chapter the case when more than one response vari-
ables are of interest. Our heuristic of choosing a vine structure has been extended and
allows to build the joint conditional distribution of multiple response variables given
the covariates. The conditional distribution of two response variables obtained by our
heuristic is given in an analytic form but in the case of more than two requires integra-
tion.

In this chapter we estimate only simplified vine copulas. To take the effect of the
simplifying assumption into account, a nonparametric method to estimate the relation-
ship between the parameter in the conditional copula and the covariates is introduced
in Acar et al. (2011) (in 3 dimensional setting). Moreover a fully nonparametric estima-
tion of the joint conditional distribution is proposed in Gijbels et al. (2011), Veraverbeke
et al. (2011). However, none of these lends itself to be applied in the case where many
covariates are of interest. They are simply too computationally intensive and not scal-
able to higher dimensions. It is still an open question how to alleviate the effect of the
simplifying assumption.

This chapter is organized as follows: Section 5.2 explains how the conditional dis-
tribution can be represented by regular vines and which requirement is necessary such
that the conditional distribution can be estimated without integration. A review of the
D-vine based forward regression is presented in Section 5.3.1. Furthermore, we propose
our heuristic for the R-vine based forward selection procedure in Section 5.3.2. A com-
parison of the performance for different regression models based on one example data
set is shown in Section 5.3.3. In Section 5.4 a simulation study to compare the D-vine and
R-vine forward selection methods is presented. Moreover, in Section 5.5, our heuristic is
generalized to allow estimating joint conditional distribution of more than one response
variable. To improve the R-vine regression model in Section 5.6 a method introduced in
Zhu et al. (2020), that proposes to search for several vines having 2 sampling orders in
common with the initial one, is modified and applied. The real data analysis is in Section
5.7 and the conclusion can be found in Section 5.8.

5.2. CONDITIONAL DENSITY BASED ON REGULAR VINES

In Figure 5.1 examples of two special vine structures, C-vine V1(5) and D-vine V2(5)
are shown.

Regression analysis requires modeling of the conditional density. One of the advan-
tages of adopting the regular vine decomposition for the density is that the conditional
density can be easily available. The conditional density of the response variable is equal
to the product of its marginal density and all copula densities assigned to the edges of the
vine whose conditioned set includes the response variable Cooke et al. (2015). For exam-
ple, the conditional density f1|2345 can be obtained from the decomposition of V1(5) as

5

92 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

Figure 5.1: Tree-wise representation for two vines V1(5) (left) and V2(5) (right).

follows:

f1|2345 = f1c12(F1,F2)c13;2(C1|2,C3|2)c14;23(C1|23,C4|23)c15;234(C1|234,C5|234).

Then the conditional distribution F1|2345 can be represented as follows (the argu-
ments of the copulas can be calculated in the same way, and the h-function has been
discussed in Section 1.2.2 in Chapter 1),

F1|2345 = h1|5;234(C1|234|C5|234)

= h1|5;234
(
h1|4;23

(
C1|23|C4|23

) |h5|4;23
(
C5|23|C4|23

))
= h1|5;234(h1|4;23(h1|3;2(h1|2(F1|F2)|h3|2(F3|F2))|h4|3;2(h4|2(F4|F2)|h3|2(F3|F2)))|

h5|4;23(h5|3;2(h5|2(F5|F2)|h3|2(F3|F2))|h4|3;2(h4|3(F4|F3)|h4|2(F4|F2)))).

The conditional expectation of the response variable is in general not available in
closed form and has to be computed by integration or by simulation. However, the quan-
tile function at quantile α of the conditional distribution F1|2345 with density f1|2345 can
be computed as follows:

F−1
1|2345(α) = F−1

1 h−1
1|2(h−1

1|3;2(h−1
1|4;23(h−1

1|5;234(α|
h5|4;23(h5|3;2(h5|2(F5|F2)|h3|2(F3|F2))|h4|3;2(h4|3(F4|F3)|h4|2(F4|F2))))|
h4|3;2(h4|2(F4|F2)|h3|2(F3|F2)))|h3|2(F3|F2))|F2).

The estimation of the vine copula model is a two-step approach called the Infer-
ence Functions for Margins (IFM) introduced in Joe (1997). Suppose we have a data set

5.3. VINE REGRESSION - FORWARD SELECTION

5

93

(xm
k , xm

1 , . . . , xm
j) with m = 1,2, . . . , N , the first step is to estimate each marginal distribu-

tion Fi , respectively. In Joe (1997), it has been advised to use nonparametric approaches
to get Fi in IFM method. The marginal data is transformed into u-scale by applying prob-
ability integral transformation um

i = Fi (xm
i). The vine copula model is estimated based

on the transformed data set um
i called the pseudo observations. The log-likelihood ex-

pression for the conditional distribution Fk|1,..., j (xm
k |xm

1 , . . . , xm
j) denoted after transfor-

mation of margins as Ck|1,..., j (um
k |um

1 , . . . ,um
j) is as follows,

cl lk|1,..., j (um
k ,um

1 , . . . ,um
j ; θ̂̂θ̂θ) =

N∑
m=1

ln(
j∏

i=1
cki ;De (Ck|De (um

k|De
;θ̂kθ̂kθ̂k),Ci |De (um

i |De
;θ̂iθ̂iθ̂i); θ̂ki)),

(5.2.1)
where De represents the conditioning set in (un)conditional bivariate copulas and θ̂ki

denotes their parameters. Pseudo observations um
k|De

and um
i |De

are calculated by the h-

function. The vectors of parameters θ̂kθ̂kθ̂k and θ̂iθ̂iθ̂i contain parameters in the arguments of
the copula obtained by the h-functions. Moreover, θ̂̂θ̂θ is a vector containing all parameters
of the vine model. We can further penalize the cl l by the number of parameters to get
cl l AIC and cl l B IC ,

cl l AIC
k|1,..., j (um

k ,um
1 , . . . ,um

j ; θ̂̂θ̂θ) = −2cl lk|1,..., j (um
k ,um

1 , . . . ,um
j ; θ̂̂θ̂θ)+2|θ̂̂θ̂θ|,

cl l B IC
k|1,..., j (um

k ,um
1 , . . . ,um

j ; θ̂̂θ̂θ) = −2cl lk|1,..., j (um
k ,um

1 , . . . ,um
j ; θ̂̂θ̂θ)+ ln(N)|θ̂̂θ̂θ|.

(5.2.2)

However, not every regular vine structure will represent the given conditional density
directly. To get this easy representation it is necessary that the response variable is in
the conditioned set of the edge in the last tree. As seen from Figure 5.1, it will not be
possible to obtain F3|1245 based on V1(5) or V2(5) as variable 3 does not appear in the
conditioned set of the edge 15|234. Though in Cooke et al. (2015) a method of computing
conditional density in such case was proposed (called plug-in conditionalization), it will
be very computationally expensive especially in high dimensions.

Nonetheless, there are still many vine structures that can decompose the conditional
density easily and one needs to decide which structure is the best to use. Theoretically,
it does not matter as all these structures model the same conditional distribution. When
estimated from data however, some structures may perform better than others due to
1) limited choice of copula families in the VineCopula package; 2) numerical errors in
the tree-wise estimation; 3) the simplifying assumption which assumes that the condi-
tional copula does not depend directly on the conditioning variables (which simplifies
estimation but can have an impact on the performance of different vine structures).

In the next section we discuss the forward selection procedure for vine regression
with one response variable.

5.3. VINE REGRESSION - FORWARD SELECTION
In this section we first explain briefly the D-vine based forward selection procedure

introduced in Kraus & Czado (2017a). Then the extension allowing the choice of different

5

94 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

regular vine structures will be presented. We will end this section with a detailed analysis
of an example data set to compare the performance of different regression methods.

5.3.1. D-VINE FORWARD SELECTION

The vine copula forward selection in Kraus & Czado (2017a) is a two-step approach
where the marginal distributions are estimated first by kernel smoothing. Then the de-
pendence structure in the form of a D-vine copula model is estimated. The D-vine struc-
ture is uniquely determined by the order of variables as discussed in Section 2.3 in Chap-
ter 2. This order will be determined during the forward selection procedure. Suppose
that l0 is the index of the response variable and (l1, . . . , lk) are the set of indices of the
covariates. Each step of the procedure consists of picking a new variable from the set of
covariates that contributes the most to the conditional distribution computed from a D-
vine model extended by this variable. The contribution is measured by the conditional
penalized likelihood cl l AIC shown in Equation 5.2.2. As we discussed in Section 2.3.2
in Chapter 2, once a new variable is added all the new copulas are the copulas whose
conditioned set contains the new variable. Thus we can further measure the contribu-
tion by an improvement∆cl l AIC , which is the AIC for the new copula Cl0li ;l1,...,li−1 plus a
penalty of the number of parameters in other new copulas. In case of no improvement,
∆cl l AIC ≥ 0 and the procedure will stop.

The general algorithm for the D-vine based forward regression presented in Kraus &
Czado (2017a) is in Algorithm 9.

Algorithm 9 D-vine based forward selection

Input: a data set including variables (Y ,X) where X = {X1, X2, . . .}
Output: a conditional distribution FY |D where D ⊆ X

1: Regard l0 as the index of Y
2: Initialize ∆cl l AIC to be 0, D =; and I = {l0}
3: repeat
4: for each new variable candidate Xnew in X in the i th step of forward procedure

do
5: Extend the previous D-vine with order I by adding the new variable Xnew to

have a D-vine with order (I , j) where j denotes the index of Xnew

6: Estimate the new copulas whose conditioned set contains j
7: Calculate the ∆cl l AIC from the new conditional distribution FY |D∪{Xnew }

8: end for
9: Choose X best

new that gives us the smallest ∆cl l AIC (∆cl l AIC
mi n)

10: if ∆cl l AIC
mi n < 0 then

11: Exclude X best
new from X and add it into D

12: Add li in the end of I where li denotes the index of X best
new

13: end if
14: until ∆cl l AIC

mi n ≥ 0

If the structure of the vine is known (D-vine, C-vine or other structures) then the
estimation of the conditional distribution can be carried out as above. We will see in

5.3. VINE REGRESSION - FORWARD SELECTION

5

95

Section 5.3.2 how to choose the R-vine structure for a given order of variables which we
get from the forward selection.

5.3.2. R-VINE FORWARD SELECTION - A HEURISTIC METHOD

We have explained in Section 2.3.2 in Chapter 2, that the vine structure is determined
by the substructure for a given order and a sequence of indicators. Similar to the D-vine
based process the order for the R-vine structure is chosen by computing ∆cl l AIC for
each new variable candidate. In contrast to the D-vine based procedure where the vine
structure is determined for each new variable candidate in the i th step of the forward
selection, we have to check 2i−2 regular vine structures and choose the one that gives us
the best fitting conditional distribution. This process is carried out through extending
the VBT with order (l0, l1, ..., li−1) by variable li hence specifying values of i−2 indicators.
Estimating all 2i−2 regular vines is computationally infeasible (though could be carried
out in lower dimensions) so to make it applicable we propose a heuristic to choose the
vine structure in the forward selection process when a new variable is added.

Suppose the order of variables in the forward selection is (l0, l1, l2, l3, l4) as in Figure
5.2.

Figure 5.2: VBT with given order (l0, l1, l2, l3, l4) in the extension process where the sub-tree underneath
VBT[1][2] is already filled. The elements where choices are possible are indicated by a black circle.

The response variable l0 is placed in VBT[1][1] thus the substructure determined by
the order will be the most right one. Unspecified elements indicated by a circle are de-
termined by values of a sequence of indicators and the remaining elements can be filled
in by the properties of VBT. When l3 is added into the R-vine model with order (l0, l1, l2),
we have 2 choices in VBT[3][6]. The new copulas we need to estimate are either Cl0l3;l1l2 ,
Cl3l2;l1 , Cl3l1 if indicator is 1 or Cl0l3;l1l2 , Cl3l1;l2 , Cl3l2 if indicator is 0. To each choice of
structure determined by indicators we can assign weight ωi j ;De , which leads to a bino-
mial tree like structure as shown in Figure 5.3 (left). We name this structure weighted

5

96 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

binomial tree (wBT). If we set VBT[3][6] = l2, we can similarly have the wBT in Figure 5.3
(right) when l4 is added.

Figure 5.3: Weighted Binomial Tree (wBT) in the third step (left) and the fourth step (right) in the forward
selection.

Each path in wBT corresponds to one indicator sequence thus one vine structure.
Instead of estimating copulas for all possible vine structures our heuristic proposes to
choose the structure determined by the path of wBT with the largest sum of weights.
Different weights can be chosen at this step. They could be based on correlations, esti-
mates of tail dependence and likelihood related measures etc. In this chapter we propose
to compute them as follows:

Heuristic - 1 response variable

1. Assume all new copulas Ci j ;De emerging from any path in wBT are Gaussian copu-
las.

2. Set the weight ωi j ;De to each Gaussian copula Ci j ;De as its parameter, hence the
partial correlation ρi j ;De .

3. Choose the path in wBT which gives the largest sum of the absolute value of the
weights (partial correlations).

4. Construct the new vine structure according to the chosen path.

The algorithm of the R-vine based forward regression differs from the one presented
for D-vine only at line (4) in Algorithm 9 which now becomes:

As mentioned in the introduction the D-vine based forward selection regression method
has been already extended to R-vine based regression in Herrmann (2018) and in Chang
& Joe (2019). In Herrmann (2018) two heuristic methods have been introduced. The vine
structure is constructed by first choosing an order using 1) D-vine forward selection, or

5.3. VINE REGRESSION - FORWARD SELECTION

5

97

Algorithm 10 R-vine based forward selection

...
5: Extend the previous heuristic R-vine with order I by adding the new variable Xnew to

have a R-vine with order (I , j) where j denotes the index of Xnew
...

2) partial correlations (variable with the largest absolute value of correlation with the
response variable becomes second in the order, then all partial correlations with the re-
sponse variable given the second in order are examined and the largest one becomes
the third element in the order etc). Given the order the process is restarted and the vine
structure is extended by adding one covariate at a time according to the chosen order
and picking the new edge in each tree that corresponds to the largest correlation (empir-
ical Kendall’s tau). In contrast to this tree-wise structure selection for the given order our
heuristic chooses the structure which gives us the largest sum of the absolute value of
partial correlations globally in each step of extension. The method introduced in Chang
& Joe (2019) is not a forward selection procedure. It constructs the vine copula of the
covariates using the heuristic in Dißmann et al. (2013) and extends this vine by the re-
sponse variable such that this structure captures the largest correlation in each tree.

It has been shown in both these papers that new heuristics behave quite similarly
to the D-vine based forward regression. Thus, in this chapter we mainly compare our
heuristic with the D-vine based regression. The comparison is done via the illustration
example in Section 5.3.3 and also via a simulation study in Section 5.4.

5.3.3. ANALYSIS OF AN EXAMPLE DATA SET
In this section a comparison of different forward selection regression methods will

be analyzed based on one example data set.
We simulate 1000 observations from X = (X1, . . . , X8) where (X1, X2, X3, X4, X5) each

has exponential distribution with parameters (0.5,1,1.5,2,2.5) respectively, and X6, X7,
X8 are standard normally distributed. The dependence structure of X is from a D-vine
copula with order (1,4,8,7,6,5,3,2) (see detailed information in Table 5.14 in Appendix
5.A.1). The bivariate copulas are chosen out of Gumbel(G), Clayton(C) and Joe(J) copulas
as well as their rotated versions. The copula parameters are transformed from Kendall’s
tau which are simulated from a Beta(2,2) distribution, and are allowed to take negative
values with probability 0.5.

The cl l AIC for the true conditional distribution C1|2345678 when margins are trans-
formed into u-scale is -5263.45. Moreover, the pseudo observations of the true model,
C1|2345678(um

1 |um
2 , . . . ,um

8), should be realizations of the standard uniform distribution.
Hence, after applying to them the inverse standard normal cdf we can observe in Figure
5.4 the performance of the true model on the data via Q-Q plot. Similarly, when other
models are estimated the conditional distribution of the response variable in each model
is obtained and the in sample performance of these models can be visualized by the Q-Q
plot as well, which we call in sample validation Q-Q plot.

5

98 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

Estimated Models:

1. Linear regression

A linear forward regression model is estimated by the function lm in R with forward
selection based on AIC implemented by the function step. Estimation details for
this model are listed in Table 5.15 in Appendix 5.A.1. The in sample validation Q-Q
plot for the linear regression model is shown in Figure 5.4 (black line). It is clear
that this model does not preform well and is especially poor in the tails. This is not
surprising as the example was designed to make it difficult for the linear regression
model.

Figure 5.4: In sample validation Q-Q plot for the
linear regression (black) in comparison with the
true model (red).

Figure 5.5: In sample validation Q-Q plot for the
Gaussian copula model (black) in comparison
with the true model (red).

The results for linear regression model are shown for completeness. The main point
of this chapter is to compare the copula based models. For all copula based regression
models we first transform each margin into their u-scale by applying kernel smoothing
through the function pkde in the package ks (Duong (2019)). Then the conditional dis-
tribution C1|D (where D denotes the set of covariates) is estimated based on ∆cl l AIC

through forward selection. We point out that the AIC of the conditional distribution is
computed only on the pseudo observations, hence the contribution of margins is not
included. For copula based models this comparison is fair.

2. Gaussian copula regression

The Gaussian copula regression is performed by first transforming marginal pseudo
observations to z-scale and then fitting a linear forward regression like above. None
of the covariates are removed during the forward selection and the AIC of the con-
ditional distribution (without the marginal distribution) is −2384.95. The details
of this model are listed in Table 5.16 in Appendix 5.A.1. The in sample validation

5.3. VINE REGRESSION - FORWARD SELECTION

5

99

Q-Q plot for the Gaussian copula model is in Figure 5.5. As we can see the Gaus-
sian copula regression performs better than the linear model, however, there are
still discrepancies especially in the tails.

3. D-vine regression

The details of the D-vine based forward selection are shown in Table 5.1. In the first
step, variable X8 is chosen as it has the smallest∆cl l AIC =−1931.48. In the second
step, we choose variable X2 to be added into the D-vine (a D-vine with order (1,8)).
Next X7 is added and the process chooses l4 = 6, l5 = 4, l6 = 3. In the seventh step,
the smallest ∆cl l AIC is 1.68 which is larger than 0, hence the process stops and
the final D-vine copula model with order (1,8,2,7,6,4,3) is shown in Table 5.17 in
Appendix 5.A.1. The AIC of the conditional distribution is -2461.48.

Forward Selection (D-vine copula)
step order of variables ∆cl l AIC order of variables ∆cl l AIC

1 (1,2) -196.62 (1,3) -410.33
(1,4) -329.23 (1,5) -255.28
(1,6) -35.83 (1,7) -859.10
(1,8) -1931.48

2 (1,8,2) -186.21 (1,8,3) -46.43
(1,8,4) -112.00 (1,8,5) -71.46
(1,8,6) -40.45 (1,8,7) -50.76

3 (1,8,2,3) -60.71 (1,8,2,4) -102.19
(1,8,2,5) -34.46 (1,8,2,6) -27.51
(1,8,2,7) -122.36

4 (1,8,2,7,3) -15.47 (1,8,2,7,4) -30.03
(1,8,2,7,5) -42.09 (1,8,2,7,6) -59.39

5 (1,8,2,7,6,3) -57.98 (1,8,2,7,6,4) -148.31
(1,8,2,7,6,5) -2.33

6 (1,8,2,7,6,4,3) -13.72 (1,8,2,7,6,4,5) 4.80
7 (1,8,2,7,6,4,3,5) 1.68

Table 5.1: Forward selection by D-vine copula model. In each step the chosen variable is printed in bold. The
final D-vine structure has the order of variables (1,8,2,7,6,4,3).

The in sample validation Q-Q plot for D-vine copula model is shown in Figure 5.6.
We can observe that the performance is improved as compared to the Gaussian
copula model especially in the tails. This is because in the true model most of the
copulas are copulas with tail dependence which cannot be captured properly by
the Gaussian copula.

4. R-vine regression

We apply our heuristic to choose the vine structure and the order of variables is
determined during the forward selection. The details of the forward selection are
shown in Table 5.2. The wBTs to determine the vine structure for each possible

5

100 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

Figure 5.6: In sample validation Q-Q plot for the
D-vine regression model (black) in comparison
with the true model (red).

Figure 5.7: In sample validation Q-Q plot for the
R-vine regression model (black) in comparison
with the true model (red).

new variable candidate in each step of the forward selection are in Appendix 5.A.1
and the final R-vine copula model is in Table 5.22 in Appendix 5.A.1. Note that
the first 2 steps of the R-vine and the D-vine based forward selection are the same
since there is no choice for the vine structure for a given order.

The in sample validation Q-Q plot for the R-vine model is shown in Figure 5.7.
In the R-vine model variable X5 that is removed in the previous D-vine model is
added in the fourth step in the forward selection. The final AIC of the conditional
distribution is −2677.72 which is smaller than the AIC from the D-vine model.
The validation plot is comparable with the one obtained with the D-vine copula
model in Figure 5.6. The deviation in the upper tail is a bit smaller.

To not only visually compare the performance with respect to the in sample valida-
tion Q-Q plots we also apply the AD (Anderson-Darling) and Shapiro tests of normality
to the transformed pseudo observations of the obtained conditional distributions for
different models. The results are collected in Table 5.3. All models do not estimate the
conditional distribution well enough. At the significance level 5% all these models would
be rejected. This could be caused by the forward selection process, estimation error, mis-
specification of copula families as well as the assumption of simplified vine copula (both
the D-vine and the R-vine model reject the hypothesis of being simplified at the 5% sig-
nificance level using the ’CCC’ test implemented in the function pacotest introduced
in Kurz (2019)).

5.3. VINE REGRESSION - FORWARD SELECTION

5

101

Forward Selection (R-vine copula)
step order of variables ∆cl l AIC order of variables ∆cl l AIC

1 (1,2) -196.62 (1,3) -410.33
(1,4) -329.23 (1,5) -255.28
(1,6) -35.83 (1,7) -859.10
(1,8) -1931.48

2 (1,8,2) -186.21 (1,8,3) -46.43
(1,8,4) -112.00 (1,8,5) -71.46
(1,8,6) -40.45 (1,8,7) -50.76

3 (1,8,2,3) -60.71 (1,8,2,4) -100.87
(1,8,2,5) -22.96 (1,8,2,6) -27.51
(1,8,2,7) -122.36

4 (1,8,2,7,3) -15.47 (1,8,2,7,4) -21.15
(1,8,2,7,5) -57.35 (1,8,2,7,6) -56.93

5 (1,8,2,7,5,3) -23.91 (1,8,2,7,5,4) -119.50
(1,8,2,7,5,6) -19.21

6 (1,8,2,7,5,4,3) -10.04 (1,8,2,7,5,4,6) -131.03
7 (1,8,2,7,5,4,6,3) -129.79

Table 5.2: Forward selection by R-vine copula model. In each step the chosen variable is printed in bold. The
final R-vine structure has the order of variables (1,8,2,7,5,4,6,3).

True Linear Gaussian D-vine R-vine
AD

p-value 0.2714 < 2.2E-16 < 2.2E-16 2.471E-3 3.241E-4
Shapiro
p-value 0.1853 < 2.2E-16 < 2.2E-16 8.303E-3 2.257E-4

Table 5.3: The result of AD and Shapiro tests for normality of the transformed pseudo observation from the
true model, linear model, Gaussian copula model, D-vine copula model and R-vine copula model.

We also compare the quantile prediction performance of all presented models. To
measure the predictive performance at the α quantile of the response variable l0 given
the covariates (denoted as set D) of the models we use the measure introduced in Koenker
& Machado (1999) which we call the mean quantile error (MQE):

MQEl0|D (α) = 1−
∑N

m=1ρα(xm
l0
− q̂l0|D (α))∑N

m=1ρα(xm
l0
− q̂l0 (α))

,

where ρα(v) = (α−1v≤0)v is the check function and q̂l0|D (α) is the estimated quantile
for the given covariates values xm

li
(i ≥ 1) in D whereas q̂l0 (α) is the empirical quantile

for the response variable.
In Table 5.4 the results of MQE calculated at quantiles (0.01,0.05,0.5,0.95,0.99) for

the true conditional distribution and the estimated conditional distributions are pre-
sented. We notice an asymmetry of performance of the five models with respect to MQE
which is caused by the fact that the marginal distribution of the response variable follows

5

102 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

an exponential distribution. The linear regression model is the worst one among these
models. The Gaussian copula model behaves a bit better than the linear but worse than
the other two vine models especially at low quantiles. The D-vine based forward regres-
sion model and our heuristic R-vine perform quite similarly, though the R-vine model
gives a smaller cl l AIC .

0.01 0.05 0.5 0.95 0.99
True 0.7483 0.8015 0.9007 0.9311 0.9404

Linear -0.2557 0.0838 0.5213 0.5319 0.4318
Gaussian 0.3002 0.4470 0.6776 0.6883 0.6682

D-vine 0.4761 0.5459 0.7019 0.7014 0.6731
R-vine 0.3272 0.5049 0.7149 0.7283 0.7147

Table 5.4: The in sample mean quantile error (MQE) at different quantiles (0.01,0.05,0.5,0.95,0.99) for the true
conditional distribution and the estimated conditional distribution including the linear model, Gaussian cop-
ula model, D-vine copula model, and R-vine copula model.

Furthermore we apply an out of sample validation where another 10 data sets are
generated from the true model and the range and the average (denoted in the brackets)
of the MQE at different quantiles are calculated for all examined models. The results are
presented in Table 5.5.

0.01 0.05 0.5 0.95 0.99
True r ng . 0.7521∼0.7835 0.8052∼0.8266 0.8959∼0.9112 0.9264∼0.9455 0.9209∼0.9527

av g . (0.7644) (0.8148) (0.9044) (0.9374) (0.9418)
Linear r ng . -0.4837∼-0.1331 -0.0298∼0.1399 0.4985∼0.5584 0.5223∼0.6017 0.3223∼0.5047

av g . (-0.2469) (0.0894) (0.5243) (0.5521) (0.4138)
Gaussian r ng . -0.1746∼0.2767 0.3300∼0.4607 0.6560∼0.7066 0.6661∼0.7742 0.5120∼0.7706

av g . (0.1165) (0.4103) (0.6852) (0.7192) (0.6692)
D-vine r ng . 0.1671∼0.4548 0.4556∼0.5421 0.6750∼0.7104 0.6434∼0.7622 0.5086∼0.7485

av g . (0.2916) (0.5028) (0.6941) (0.7061) (0.6522)
R-vine r ng . 0.0447∼0.4277 0.4137∼0.5598 0.6847∼0.7280 0.6724∼0.7811 0.5590∼0.8094

av g . (0.2702) (0.4946) (0.7095) (0.7305) (0.6920)

Table 5.5: Range and average of mean quantile error (MQE) at different quantiles (0.01,0.05,0.5,0.95,0.99) in
10 out of sample validation for the true conditional distribution and the estimated conditional distribution
including the linear model, Gaussian copula model, D-vine copula model and R-vine copula model.

The predictive performance for the estimated models in the out of sample validation
is comparable. The variability of the MQE at quantile 0.01 out of sample is larger than
for other quantiles.

A further comparison for the D-vine and R-vine based regression model is shown in
the simulation study in Section 5.4. We finish this section by stating the advantages of
using vine based forward regression, improvements made by taking a R-vine structure in
the forward selection as compared to D-vine, and some disadvantages which could be
addressed in the future.

Advantages and improvements

5.4. SIMULATION

5

103

• The vine based regression can capture different types of tail behaviors in the
conditional distribution with the help of different bivariate copula families.

• Some covariates can be removed in the forward selection if they do not improve
the performance of the conditional distribution.

• The conditional distribution is relatively easy to estimate since the response
variable always appears in the conditioned set of the edge in the last tree.

• Each time when adding in a new variable one only needs to estimate those new
copulas whose conditioned set contains the new variable.

• R-vine based regression allows flexibility in choosing the vine structure. This is
helpful in 1) improving the estimation of the conditional distribution; 2) cor-
rectly removing variables that do not improve the conditional distribution.

Disadvantages

• Forward section does not guarantee that the true model will be found. In the
example, the true model is a D-vine and the D-vine based procedure finds one
with different order.

• Though forward selection is a good approach because of the easy application
and of allowing removing variables that do not contribute to the conditional dis-
tribution, there is no guarantee that all important covariates are included.

• During the tree-wise estimation of the vine model, mis-specification of bivariate
copula may occur due to the limited choice of parametric copula families. This
could be improved by using non-parametric copulas in our approach.

• D-vine as well as R-vine regression procedure is based on simplified vines to
ease the parameter estimation complexity of the vine model. However, this as-
sumption might be too restrictive to lead to a good estimation as shown in the
example. It is still an open question how to alleviate the effect of this assump-
tion.

5.4. SIMULATION
In this section we perform a further comparison of D-vine and R-vine forward se-

lection procedures via a simulation study. Similarly to the example in Section 5.3.3, a
random regular vine copula model is generated by randomly choosing a vine structure.
Its bivariate copula families are chosen from Gumbel(G), Clayton(C) and Joe(J) copulas
as well as their rotated versions. The copula parameters are transformed from Kendall’s
tau which are simulated from a Beta(2,2) distribution, and are allowed to take negative
values with probability 0.5. Since we only compare our heuristic with the D-vine model
all margins are set to be standard uniformly distributed. The dimension of the random
regular vine model is chosen as 10, 15 and 20, respectively.

We estimate the conditional distribution based on the training data set of size Ntr ai n

and compare their behaviour in sample, hence using the training data, and out of sample
on a validation data set of size Nval = Ntr ai n . The data size taken into account is 300 or
1000.

5

104 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

To see if there is a difference in the performance of the fitted models when the re-
sponse variable is in the conditioned set or the conditioning set of the true model two
situations are examined. We denote as Resp1 the case when the response variable is cho-
sen randomly from the conditioned set and as Resp2 when is picked at random from the
conditioning set of the edge in the last tree of the vine structure.

The comparison of the R-vine and the D-vine model is made using the following cri-
teria: the MQE at quantiles (0.01,0.05,0.5,0.95,0.99) and the cl l AIC of the conditional
distribution both in the training and validation data sets. Due to the complexity of sim-
ulations we only use one validation data set for one random vine copula model. This
procedure is repeated 100 times. The results are shown in Table 5.61 for cl l AIC and in
Table 5.7 for MQE. In the case of Resp1, the MQE for the true model is also given in Table
5.23 in Appendix 5.A.1. As for Resp2, the true conditional distribution is not available in
an analytic form hence MQE results for the true model are not available.

Resp1 Resp2
In Sample Out of Sample In Sample Out of Sample

Size Dim #i mp ∆AICi mp #i mp ∆AICi mp #i mp ∆AICi mp #i mp ∆AICi mp
300 10 Dv 51 34.09 39 48.65 47 53.53 46 56.15

Rv 49 48.89 61 42.44 53 60.35 54 65.91
15 Dv 50 38.89 48 42.19 45 36.49 42 55.82

Rv 50 45.53 51 59.92 55 49.56 58 58.39
20 Dv 42 35.11 44 43.12 45 32.61 45 43.80

Rv 58 43.17 56 57.92 55 47.98 55 54.34
1000 10 Dv 43 190.80 48 176.61 44 189.15 40 189.66

Rv 57 175.40 52 207.31 56 218.96 60 220.38
15 Dv 55 138.62 53 133.79 53 181.96 55 183.63

Rv 45 183.40 47 194.22 47 163.30 45 161.49
20 Dv 43 156.33 42 154.67 44 125.60 45 136.01

Rv 57 192.77 58 189.99 56 198.06 55 202.00

Table 5.6: The simulation results for the D-vine based model (Dv) and the R-vine based model (Rv). The re-
sponse variable for the conditional distribution is chosen by either Resp1 or Resp2. #i mp denotes the number
of times the given model has smaller cl l AIC than the other model and ∆AICi mp is the average of the differ-

ence of cl l AIC when the given model has smaller cl l AIC then the other model. The results are shown for 300
and 1000 data sizes and for dimensions 10, 15 and 20.

1In Table 5.6 for 300 data size in dimension 15, it happened once that the cl l AIC was not available for out of
sample validation. This is because the function BiCopPDF in the package VineCopula only allows Gumbel
copula parameter to be in (0,50] but in the estimation it is 63.3.

5.4. SIMULATION

5

105

Resp1 Resp2
Size Dim 0.01 0.05 0.5 0.95 0.99 0.01 0.05 0.5 0.95 0.99
300 10 Dv 0.5820 0.6778 0.7782 0.6732 0.5694 0.6574 0.7344 0.8116 0.7189 0.6285

(0.5024) (0.6435) (0.7566) (0.6349) (0.4989) (0.5531) (0.6984) (0.7998) (0.7001) (0.5873)
Rv 0.5852 0.6844 0.7785 0.6739 0.5678 0.6577 0.7349 0.8125 0.7201 0.6299

(0.5241) (0.6528) (0.7568) (0.6273) (0.4814) (0.5877) (0.7056) (0.8023) (0.6993) (0.5865)
15 Dv 0.6037 0.7105 0.8060 0.7096 0.6106 0.6868 0.7665 0.8415 0.7589 0.6774

(0.5451) (0.6825) (0.7924) (0.6789) (0.5378) (0.6341) (0.7433) (0.8272) (0.7271) (0.6165)
Rv 0.6134 0.7146 0.8038 0.7108 0.6054 0.6972 0.7683 0.8399 0.7592 0.6783

(0.5596) (0.6833) (0.7908) (0.6880) (0.5504) (0.6300) (0.7422) (0.8264) (0.7299) (0.6163)
20 Dv 0.6339 0.7200 0.8074 0.7135 0.6177 0.6708 0.7480 0.8291 0.7452 0.6597

(0.5569) (0.6813) (0.7890) (0.6773) (0.5395) (0.6001) (0.7172) (0.8123) (0.7073) (0.5734)
Rv 0.6458 0.7254 0.8101 0.7215 0.6292 0.6708 0.7481 0.8299 0.7481 0.6641

(0.5831) (0.6905) (0.7947) (0.6940) (0.5727) (0.5975) (0.7168) (0.8138) (0.7116) (0.5797)
1000 10 Dv 0.5995 0.6965 0.7854 0.6847 0.5885 0.7068 0.7816 0.8512 0.7732 0.6937

(0.5897) (0.6906) (0.7830) (0.6772) (0.5736) (0.6813) (0.7701) (0.8448) (0.7614) (0.6715)
Rv 0.6021 0.6943 0.7839 0.6826 0.5868 0.7099 0.7817 0.8483 0.7733 0.6989

(0.5900) (0.6890) (0.7804) (0.6767) (0.5730) (0.6869) (0.7731) (0.8438) (0.7650) (0.6820)
15 Dv 0.6442 0.7319 0.8151 0.7304 0.6399 0.6733 0.7518 0.8261 0.7465 0.6637

(0.6154) (0.7174) (0.8061) (0.7151) (0.6162) (0.6533) (0.7422) (0.8230) (0.7417) (0.6502)
Rv 0.6390 0.7276 0.8128 0.7263 0.6347 0.6685 0.7449 0.8213 0.7452 0.6693

(0.6178) (0.7164) (0.8057) (0.7119) (0.6101) (0.6431) (0.7357) (0.8176) (0.7398) (0.6572)
20 Dv 0.6535 0.7391 0.8211 0.7370 0.6464 0.6756 0.7633 0.8407 0.7646 0.6845

(0.6311) (0.7285) (0.8143) (0.7249) (0.6246) (0.6545) (0.7522) (0.8348) (0.7523) (0.6554)
Rv 0.6484 0.7388 0.8188 0.7334 0.6451 0.6795 0.7622 0.8397 0.7649 0.6855

(0.6312) (0.7304) (0.8134) (0.7227) (0.6306) (0.6561) (0.7496) (0.8339) (0.7541) (0.6643)

Table 5.7: The simulation results for the average MQE at quantiles (0.01,0.05,0.5,0.95,0.99) over 100 repetitions.
The results are shown for D-vine model (Dv) and R-vine model (Rv), for data sets of size 300 and 1000, in sample
and out of sample (in brackets), for dimensions of 10, 15 and 20.

In general the conditional distribution estimated by our heuristic R-vine based for-
ward regression behaves quite similarly to the one estimated by the D-vine procedure.
The number of times where one model behaves better than the other is around 50 and
the average improvement in cl l AIC is also quite similar, though a bit better for R-vine.
The MQE results for these two models do not show significant differences for all exam-
ined quantile levels. We do not observe significantly different behaviour of the models
for different response variables (cases Resp1 and Resp2). Additionally we have collected
information about the number of covariates used in each model (picked by the forward
selection). Also from this perspective these two models do not differ much as can be
observed in Table 5.8.

Few reasons for the similarities of the behaviour for both models could be named.
Our heuristic is based on the partial correlations hence an assumption that all new cop-
ulas are Gaussian copulas, which could be too restrictive. However, the real problem is
that the first two steps of the R-vine and D-vine forward selection procedures are the
same. Different vine structures can be chosen only when the third covariate is added.
The forward selection picks the ’most important’ covariates earlier in the process. We
observed that the first two steps cover at least 71.47% and 64.81% of the whole cl l AIC

5

106 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

Resp1 Resp2
Size Dim av g .#cov #covmor e av g .#cov #covmor e

300 10 Dv 5.66 28 5.88 28
Rv 5.82 39 5.87 33

15 Dv 6.81 45 6.65 31
Rv 6.58 29 6.86 47

20 Dv 6.99 34 6.98 27
Rv 7.02 39 7.16 34

1000 10 Dv 7.42 31 7.52 35
Rv 7.47 33 7.49 34

15 Dv 9.66 47 9.25 33
Rv 9.06 25 9.30 37

20 Dv 10.26 37 10.45 33
Rv 10.10 39 10.35 34

Table 5.8: The number of covariates in the forward selection for the D-vine (Dv) and R-vine (Rv) based model.
The average number of included covariates is denoted as av g .#cov and #covmor e represents the number of
times where one model contains more covariates than the other. The result is shown for data sizes 300 and
1000 and for dimensions 10, 15 and 20.

for 300 and 1000 data size, respectively. Hence the benefit of allowing for different vine
structures is limited. This was also concluded in the simulation study in Herrmann
(2018).

In Section 5.6, we will explain how the method introduced in Zhu et al. (2020) can
provide a way to further improve the estimation once the model is given by the forward
selection.

5.5. HEURISTIC FORWARD SELECTION FOR MORE RESPONSE VARI-
ABLES

In Section 5.3.2 a forward selection procedure to obtain the conditional distribution
of one response variable based on a R-vine structure has been presented. In the case
of multiple response variables, the joint conditional distribution will be of interest. A
naive solution could be to first estimate the conditional margins respectively using the
heuristic forward procedure and then to estimate the conditional copula for the pseudo
observations obtained by transforming the data through the estimated conditional mar-
gins. There are two problems with this approach 1) it can happen that different covari-
ates are chosen by the forward selection for each margin (though we can regard those
missing covariates as being (conditionally) independent of the response variable); 2) the
variable selection is applied to each response variable separately rather than to the joint
conditional distribution.

In this section we show how the R-vine based forward selection procedure for one
response variable can be extended to allow more response variables. The detail proce-
dure will be discussed for two response variables and a short discussion of extending this
method to more than two variables will be given at the end of the section.

The process of R-vine based forward selection for two response variables is similar

5.5. HEURISTIC FORWARD SELECTION FOR MORE RESPONSE VARIABLES

5

107

to the case of one response variable. The R-vine structure for a given order can be de-
termined by a sequence of indicators and a substructure in VBT where the order is the
order of newly added variables from the forward selection. However, for two response
variables, to be able to obtain the joint conditional distribution of the response variables
in analytic form additional constraints on the vine structures are needed. For instance,
suppose we want to estimate the joint conditional density f14|235 for the variables X1

and X4 given X2, X3, X5 using V1(5) in Figure 5.1 (left). Then the conditional density can
be decomposed as the product of copula densities assigned to the edges of V1(5) and is
equal:

f14|235 = f1|2345 f4|235 = f1c12c13;2c14;23c15;234 f4c24c34;2c45;23.

However, the conditional distribution F14|235 has to be computed through integra-
tion when decomposition based on V1(5) is used. This can be achieved either by integra-
tion of the conditional density or by computing the conditional distributions F1|2345 and
F4|235 (which are C1|2345 and C4|235 when margins are transformed into u-scale, and they
are represented by the corresponding h-functions, hence are directly computed from
copulas in V1(5) model), then integrating up to the given value x4 of argument in the
function F1|2345 weighted with density f4|235.

In order to get the conditional distribution of the two response variables directly,
we will construct a vine structure such that the two response variables are exactly the
conditioned set of the edge in the last tree. For example, the conditional distribution
F15|234 can be easily estimated based on V1(5),

F15|234 =C15;234(F1|234,F5|234).

In terms of our procedure this requirement boils down to ensuring that one response
variable is in the first place in the given order and the other response variable is the last
element in the order in each forward step. A detail example for the construction of the
vine structure is as follows. Suppose the order of variables is (l 1

0 , l1, l2, l3, l 2
0) where l 1

0 and
l 2

0 represent the two response variables and l1, l2, l3 are the covariates. Then in each step
of the forward selection, we have a VBT as shown in Figure 5.8 and Figure 5.9. Since the
forward selection concerns only the dependence structure the margins are transformed
into their u-scale.

In the first step when l1 is added the vine structure is completely determined by the
order and the conditional density is fl 1

0 l 2
0 |l1

= cl 1
0 l1

cl 1
0 l 2

0 ;l1
cl 2

0 l1
. In the second step, we have

a choice for the value in VBT[2][2] (in black circle in Figure 5.8) which can be either l2 if
indicator is 1 or l1 if indicator is 0. The conditional density fl 1

0 l 2
0 |l1l2

can then be decom-

posed as either cl 1
0 l1

cl 1
0 l2;l1

cl 1
0 l 2

0 ;l1l2
cl 2

0 l1
cl 2

0 l2;l1
or cl 1

0 l1
cl 1

0 l2;l1
cl 1

0 l 2
0 ;l1l2

cl 2
0 l2

cl 2
0 l1;l2

. Note that if

we choose l2, then we do not need to re-estimate the copula cl 2
0 l1

and only copulas cl 2
0 l2;l1

and cl 1
0 l 2

0 ;l1l2
have to be estimated. If l1 is chosen then cl 2

0 l2
and cl 2

0 l1;l2
and of course

cl 1
0 l 2

0 ;l1l2
have to be estimated.

Suppose in the second step we choose l2, then in the third step in Figure 5.9, we
have two unspecified elements in VBT where 2 choices are possible, which are VBT[2][2]
and VBT[3][4]. Again choices of VBT[2][2] to be l3 and VBT[3][4] to be l2 will not need

5

108 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

Figure 5.8: The first step (left) and the second step (right) in the forward selection for two response variables.
The substructure in the left VBT corresponding to the given order (l 1

0 , l1, l 2
0) and the one in the right corre-

sponding to the given order (l 1
0 , l1, l2, l 2

0) are in dashed area. The order of variables in these substructures are
in red squares. The element in VBT where we have 2 choices is included in the black circle in the right VBT.

to re-estimate copulas that have been previously estimated. The conditional density
decomposition is then

fl 1
0 l 2

0 |l1l2l3
= cl 1

0 l1
cl 1

0 l2;l1
cl 1

0 l3;l1
cl 1

0 l 2
0 ;l1l2l3

cl 2
0 l1

cl 2
0 l2;l1

cl 2
0 l3;l1l2

.

We can see that only cl 1
0 l3;l1

, cl 1
0 l 2

0 ;l1l2l3
and cl 2

0 l3;l1l2
have to be additionally estimated.

Though in terms of computational complexity the above choice is beneficial but it leads
to fixing the structure to a C-vine with order (l 1

0 , l1, l2, l3, l 2
0) according to Proposition 2.3.2

(the indicators are always chosen to be 1). In order to have more flexibility of possi-
ble vine structures, we will not adopt this computationally efficient construction in this
chapter.

In the forward selection procedure above we first pick the covariate l1 to form a vine
with order (l 1

0 , l1, l 2
0), which is equivalent with the choice based on subvine (l 1

0 , l1) as for
one response variable, extended by response variable l 2

0 . Similarly, to pick l2 vine struc-
tures based on subvine (l 1

0 , l1, l2) are constructed and extended by l 2
0 etc. Thus the con-

struction of vine structure in each step of forward selection is as follows: for each new
variable candidate we construct a vine structure similarly to the case when l 1

0 is the single
response variable shown in Section 5.3.2, then extend this vine by adding l 2

0 and unspec-
ified elements in VBT are determined by the heuristic presented in Section 5.3.2.

Note that in the procedure above two response variables are treated a bit differently.
In a sense the subvine structure not containing variable l 1

0 is more constrained by the
forward selection of newly added covariates while when extending the structure with l 2

0
more choices of different vine structures are possible. This leads to a certain asymmetry
in treatment of the response variables and can lead to different performance of the re-
gression model when the order of response variables is exchanged. This behaviour can
be observed in the numerical example presented later on where both orders of response

5.5. HEURISTIC FORWARD SELECTION FOR MORE RESPONSE VARIABLES

5

109

Figure 5.9: The third step in the forward selection. The substructure corresponding to the given order
(l 1

0 , l1, l2, l3, l 2
0) is in the dashed area and the order is in red squares. The elements in VBT where we have 2

choices are denoted by the black circle (the value in VBT[3][6] has been determined in the second step).

variables are used to build a regression model. For just two response variables, when
not too many covariates are of interest, it is possible to fit both models. In general, how-
ever, checking all possible combinations is prohibitive. Hence we propose to determine
the order of response variables in our procedure by picking l 1

0 as the response variable
which is the most correlated, measured by empirical multiple correlation Yule & Kendall
(1965), with the remaining response variables and covariates.

Heuristic - multiple response

The order of the response variables is determined by the decreasing order of empirical mul-
tiple correlations2 for a response variable based on the remaining response variables and
covariates.

For the same data set analyzed in Section 5.3 where margins are transformed into
u-scale by kernel smoothing, we apply our heuristic to model the conditional distri-
bution F12|D by a forward selection approach. The estimated multiple correlations are:
R2

1{23...8} = 0.8952 and R2
2{13...8} = 0.7805 (the empirical correlation matrix of normal scores

for the data is in Table 5.24 in Appendix 5.A.1). Thus (l 1
0 , l 2

0) (order of response variables)
is (1,2). However, for this example we have estimated models when both orders are used
for comparison. The detailed steps of our approach are shown in Table 5.9 and the final
vine copula model is in Table 5.25 in Appendix 5.A.1.

2The empirical multiple correlation R2
i {P } is computed from empirical correlation matrix P of normal scores

by R2
i {P } = 1− det (P)

det (P i i)
, where P i i denotes the matrix P without the i th row and the i th column.

5

110 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

Forward Selection (R-vine copula with response variables 1,2)
step order of variables ∆cl l AIC order of variables ∆cl l AIC

1 (1,3,2) -1241.33 (1,4,2) -661.74
(1,5,2) -792.52 (1,6,2) -473.01
(1,7,2) -1161.53 (1,8,2) -2249.03

2 (1,8,3,2) -875.78 (1,8,4,2) -179.38
(1,8,5,2) -348.15 (1,8,6,2) -275.56
(1,8,7,2) -275.84

3 (1,8,3,4,2) -597.40 (1,8,3,5,2) -796.46
(1,8,3,6,2) -930.52 (1,8,3,7,2) -7.68

4 (1,8,3,6,4,2) -235.87 (1,8,3,6,5,2) -67.37
(1,8,3,6,7,2) -143.28

5 (1,8,3,6,4,5,2) -103.68 (1,8,3,6,4,7,2) -34.21
6 (1,8,3,6,4,5,7,2) -11.60

Table 5.9: Forward selection R-vine copula regression model for two response variables ordered as (1,2).
In each step the chosen variable is printed in bold. The final R-vine structure has the order of variables
(1,8,3,6,4,5,7,2).

Details for the model with the order of the response variables being (2,1) and R-vine
models for one response variable (either variable 1 or variable 2) are given in the 5.A.1.
Next, we compare the performance of the R-vine based forward approach with both or-
ders of response variables to a naive approach, called Separate or SeparateAll. In model
Separate the forward selection process is carried out for both margins separately, hence
different variables could have been removed by the selection process. The joint con-
ditional distribution of the response variables is then estimated by a copula from the
pseudo observations obtained via applying estimated conditional margins. As for the
SeparateAll model all the covariates are kept during the forward selection to the marginal
conditional distributions. The cl l AIC (excluding margins) for the estimated joint condi-
tional distribution from these four methods and the true model are given in Table 5.10.

Furthermore, we compare the performance of these four models using the Brier skill
score. The Brier score introduced in Brier (1950) is simply the average of the squared
difference between the probability of an event occurrence estimated by a model and
whether this event happens (which is 1 if it happens otherwise it is 0). Hence we com-
pute the average of the squared difference between the probability of an event occurring
conditioned on the given value of covariates and whether this event happens, and then
divide by the average of the squared difference of the unconditional probability and the
dichotomous outcome. If this ratio is smaller than one then the estimated conditional
model predicts the required event better than the unconditional model (taken as refer-
ence model). Subtracting this ratio from one gives the Brier skill score presented below
for response variables (l 1

0 , l 2
0) with covariates set D and required event P (l 1

0 ≤ t1, l 2
0 ≤ t2)

BSl 1
0 l 2

0
(t1, t2) = 1−

∑N
m=1(1xm

l1
0
≤t1,xm

l 2
0
≤t2 −Pl 1

0 l 2
0 |D (t1, t2))2

∑N
m=1(1xm

l1
0
≤t1,xm

l 2
0
≤t2 −Pl 1

0 l 2
0

(t1, t2))2
,

5.5. HEURISTIC FORWARD SELECTION FOR MORE RESPONSE VARIABLES

5

111

where Pl 1
0 l 2

0
and Pl 1

0 l 2
0 |D denote the probability P (l 1

0 ≤ t1, l 2
0 ≤ t2) computed from uncon-

ditional and conditional model, respectively. t1 is the threshold for the response variable
l 1

0 and t2 is the threshold for l 2
0 in the event.

In Table 5.10 the Brier skill score results are presented for the four estimated models
as well as the true model. The thresholds t1 and t2 are chosen to be the empirical quan-
tiles of the marginal distributions of l 1

0 and l 2
0 (transformed by kernel smoothing) at level

(0.1,0.2,0.3, . . . ,0.9), respectively (the same quatiles for both thresholds are chosen).

Threshold levels
cl l AIC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

True -8256.87 0.7658 0.8216 0.7782 0.8138 0.7797 0.8024 0.7807 0.7655 0.7406
R-vine(1,2) -4406.48 0.6664 0.6993 0.6976 0.7008 0.6589 0.6853 0.6618 0.5941 0.5467
R-vine(2,1) -3999.70 -0.8492 -0.1105 0.0597 0.2123 0.2767 0.3529 0.3539 0.3152 0.2434

Separate -4386.60 0.6186 0.6878 0.7024 0.7212 0.6632 0.6935 0.6520 0.5956 0.5688
SeparateAll -4371.36 0.5981 0.6873 0.6958 0.7209 0.6686 0.6960 0.6541 0.6006 0.5702

Table 5.10: The AIC for the conditional distribution C12|D and the Brier skill score for different threshold levels
are listed. They are estimated by different approach: R-vine (1,2) represents the heuristic approach with (1,2)
as the order of response variables whereas R-vine (2,1) is with the order of (2,1). Separate is the model where
the conditional margins are found using the heuristic in Section 5.3.2 and then the conditional copula was
estimated from pseudo-observations. SeparateAll in contrast to Separate does not allow any variable to be
removed in estimating conditional margins.

The R-vine model obtained with our heuristic, R-vine(1,2), has the smallest cl l AIC .
Its Brier skill score is much larger than other estimated models in the case of thresh-
old corresponding to 0.1 quantiles of the response variables. For other quantile levels
results of Brier skill score are comparable for R-vine(1,2) as well as Separate and Sep-
arateAll. The R-vine model with different order of the response variables, R-vine(2,1),
shows the worst performance of all estimated models which confirms the choice made
by our heuristic. As compared to the true model all four estimated models perform
poorly. This is also confirmed by the results of the bivariate KS goodness-of-fit test
Fasano & Franceschini (1987), where the assumption that the data is a random sample
from the estimated model is strongly rejected for all these four methods (with a maxi-
mum p-value 3.9649E −10 for the R-vine model from our heuristic approach).

The extension of the forward selection regression to more than two response vari-
ables leads to a few complications. In the case of s > 2 response variables, (l 1

0 , . . . , l s
0),

there are s! different orders for the response variables that could be considered. The
heuristic based on the empirical multiple correlation explained above can be employed
to find such an order.

Though the conditional density can be computed analytically for subsets of vine
structures, the analytic form of the conditional distribution is hardly available and has
to be computed by integration. For example, suppose we have three response variables
(l 1

0 , l 2
0 , l 3

0) and we have already estimated a vine structure where we have copula Cl 1
0 l 3

0 ;l 2
0∪D

for the edge in the last tree, then the joint conditional distribution can only be computed
through the integration up to given value xl 2

0
of argument in Fl 1

0 l 3
0 |l 2

0∪D weighted with

density fl 2
0 |D .

If there are s response variables then at least s − 2 dimensional integral will need

5

112 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

to be solved. In this case characteristics of interest from the required joint conditional
distribution of the response variables can be obtained via simulations.

5.6. EXTENSION STUDY BY SEARCHING FOR VINES HAVING 2
SAMPLING ORDERS IN COMMON

As shown in the example in Section 5.3.3, the R-vine based forward regression proce-
dure is not able to overcome some disadvantages caused by the application of forward
selection and the assumption of simplified vine copula. Rather than adopting other vari-
able selection methods or allowing conditional copulas in our model to depend on the
conditioning variables, we opt here to use the heuristic studied in Zhu et al. (2020) (also
presented in Chapter 3) to improve the estimation of the conditional distribution. This
heuristic suggests to start with an estimated initial vine structure and then to search for
several regular vines that have 2 common sampling orders with the initial structure. The
number of common sampling orders of two vine structures correlates with the number
of common bivariate (un)conditional copulas in their copula decomposition. Hence the
idea of the heuristic presented in Zhu et al. (2020) is to consider vine structures that are
not ’similar’ to the initially estimated vine. The set of vines having 2 common sampling
orders have been chosen because it is sufficiently large (but not too large compared to
the number of all vines) and contains vine structures that are in principle quite differ-
ent than the initial vine. Another reason to choose this set of vines is the existence of an
algorithm to generate random structures from this set, see Algorithm 6 in the Appendix
3.A.2.

Once we have estimated the regular vine model from the R-vine based forward re-
gression, we can search for several regular vine structures that have 2 common sampling
orders with this vine and choose the one that gives us the best fitting conditional dis-
tribution. The algorithm to find vines having 2 sampling orders in common has to be
modified slightly as in the R-vine based forward regression we require the response vari-
able to appear in the conditioned set of the edge in the last tree of the vine.

The algorithm developed in Zhu et al. (2020) can be easily adapted to include this

requirement and one can calculate that there are 3(n−3)2
(n−2

2

)
regular vines having 2 sam-

pling orders in common with the initial vine and one common variable (the response
variable) in the conditioned set of the edge in the last tree.

As suggested in Zhu et al. (2020), we have chosen to search for 10 random vines hav-
ing 2 sampling orders in common with the vine obtained in the R-vine based forward
regression estimated in Section 5.3.3. Out of 10 vines having 2 sampling orders in com-
mon only one is better than the estimated R-vine model with cl l AIC equal to −2720.32
3. The true vine has 0 common sampling order with the R-vine based model hence it
cannot be found by the above search.

Similarly, as in Section 5.3.3, we test the performance of the obtained model. The in
sample validation Q-Q plot is shown in Figure 5.10. The p-values of AD test and Shapiro
test are 0.1178 and 0.00217, and the in sample and out of sample results of MQE at quan-

3Additionally we also looked at 10 random vines generated with the algorithm in Joe et al. (2011) modified such
that the response variable is in the conditioned set of the edge in the last tree. This procedure led to a vine
with the smallest cl l AIC equal to -2508.34. Hence it validates the result shown in Zhu et al. (2020).

5.6. EXTENSION STUDY BY SEARCHING FOR VINES HAVING 2 SAMPLING ORDERS IN

COMMON

5

113

tiles (0.01,0.05,0.5,0.95,0.99) can be found in Table 5.11.

Figure 5.10: In sample validation Q-Q plot for the
best model (smallest cl l AIC) we find in vines hav-
ing 2 sampling orders (SO) in common with the
R-vine model (black) in comparison with the true
model (red).

Figure 5.11: In sample validation Q-Q plot for the
best model (largest MQE at quantile 0.01) we find
in vines having 2 sampling orders (SO) in com-
mon with the R-vine model (black) in comparison
with the true model (red).

0.01 0.05 0.5 0.95 0.99
R-vine 2SO 0.2370 0.5237 0.7120 0.7612 0.7811

r ng . -0.2276∼0.4161 0.3563∼0.5506 0.6581∼0.7177 0.7136∼0.7616 0.6601∼0.7580
av g . (0.0780) (0.4409) (0.6934) (0.7396) (0.7282)

R-vine 2SO∗ 0.4513 0.5380 0.7013 0.7154 0.6881
r ng . 0.0253∼0.3544 0.4116∼0.5059 0.6717∼0.7146 0.6581∼0.7815 0.5066∼0.8047
av g . (0.2375) (0.4686) (0.6944) (0.7163) (0.6689)

Table 5.11: In sample mean quantile error (MQE) and the range and average (in brackets) of out of sample
MQE at different quantiles (0.01,0.05,0.5,0.95,0.99). The result is shown for R-vine 2SO which is the vine found
by searching for vines having 2 sampling orders in common based on smallest cl l AIC , and for R-vine 2SO∗
which is found by largest MQE at quantile 0.01.

The vine structure obtained by searching for 2 common sampling orders provides a
better model of the conditional distribution for the data. Predictions are good in the me-
dian and upper tails. However, the in-sample validation Q-Q plot in Figure 5.10 shows
more deviations in lower tail. This behaviour is also visible in the range of MQE at quan-
tile 0.01 for out of sample data sets which varies from -0.2276 to 0.4161.

Note that so far we have used cl l AIC as a measure of performance to decide which
structure performs best. If the performance at a certain quantile, say 0.01, is of impor-
tance we can adjust our procedure and search for a vine that gives the best performance
at this quantile level. This can be implemented in both R-vine regression forward selec-
tion as well as in the procedure that searches vines having 2 sampling orders in common.

5

114 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

The vine with the best performance at 0.01 quantile level in the 10 vines having 2 com-
mon sampling orders is denoted as R-vine 2SO∗ in Table 5.11 with cl l AIC = −2456.75
and MQE = 0.4513 at 0.01 quantile. We can also observe in Figure 5.11 that the in sample
validation Q-Q plot for this new vine structure has much smaller deviation in lower tail.

5.7. REAL DATA ANALYSIS
In this section the techniques presented so far in this chapter are applied to perform

a stress test analysis on the manufacturing industry. The manufacturing sector is a key
sector in many economies and is involved in creating sustainable economic growth (see
Behun et al. (2018)). This sector also faces challenges such as shifting and fragmenting
demand, natural disasters (e.g. Thailand’s flooding), government’s action (e.g. tariff pol-
icy), shortage of high-skill workers etc. Hence it is important to assess the impact of the
manufacturing industries on other sectors in economy in order to prevent a potential
future crisis.

In our analysis we will use the data set from K ennethR.F r ench −Dat al i br ar y 4

which consists of 1122 monthly returns of 30 industry portfolios from 07-1926 to 12-
2019. As in Kraus & Czado (2017a) we apply a stress scenario to the indices in the manu-
facturing sector to see how indices in other industries are affected. The industry sectors
are formed by four digit SIC code according to Fama and French 30 industries classifica-
tion, which are

• Manufacturing industry 5: Chemicals (Chems), Construction &Construction Ma-
terials (Cnstr), Steel Works Etc (Steel), Fabricated Products &Machinery (FabPr),
Electrical Equipment (ElcEq), Automobiles &Trucks (Autos), Aircraft, Ships &Rail-
road Equipment (Carry), Business Supplies &Shipping Containers (Paper).

• Remaining industries: Food Products (Food), Beer &Liquor (Beer), Tobacco Prod-
ucts (Smoke), Recreation (Games), Printing &Publishing (Books), Consumer Goods
(Hshld), Apparel (Clths), Healthcare, Medical Equipment &Pharmaceutical Prod-
ucts (Hlth), Textiles (Txtls), Precious Metals, Non-Metallic &Industrial Metal Min-
ing (Mines), Coal (Coal), Petroleum &Natural Gas (Oil), Utilities (Util), Communi-
cation (Telcm), Personal &Business Services (Servs), Business Equipment (BusEq),
Transportation (Trans), Wholesale (Whlsl), Retail (Rtail), Restaurants, Hotels &Mo-
tels (Meals), Banking, Insurance Real Estate &Trading (Fin) and Everything Else
(Other).

We follow the steps taken in Kurz (2019) and first filter the data by a ARMA(1,1)-
GARCH(1,1) model with student-t innovation. The residuals are fitted by kernel smooth-
ing and the fitted margins are then transformed to data in u-scale. The stress test can be
applied on the transformed data only as discussed in Brechmann et al. (2013).

4ht t p : //mba.tuck.d ar tmouth.edu/pag es/ f acul t y/ken. f r ench/d at a_l i br ar y.html
5According to Fama and French 10 industries classification, most of the stocks in the manufacturing industry

sector can be covered by the indices, Chems, Cnstr, Steel, FabPr, ElcEq, Autos, Carry and Paper, based on the
four digit SIC code.

5.7. REAL DATA ANALYSIS

5

115

5.7.1. ONE RESPONSE VARIABLE CASE
In this section, we concentrate on the case where only one response variable is taken

into account in the stress test. For each index in industries other than the manufacturing,
we apply our heuristic R-vine regression to estimate the distribution of this index con-
ditioned on the stressed indices in the manufacturing sector. The estimated quantiles
of the conditional distribution when the manufacturing industry is stressed is shown as
a bar plots in Figure 5.12 for stress level 0.05 (red) and for level 0.01 (black). Each bar
represents the range between 0.1 and 0.9 quantile of the conditional distribution and
the median of the conditional distribution is denoted as hollow dot (0.05 level) or square
(0.01 level).

Figure 5.12: Results of the stress analysis per index when manufacturing industries are stressed at 0.05 (red) or
0.01 (black) level. The median of the conditional distribution is denoted as hollow dot (0.05 level) or square
(0.01 level), and bars represent the range between its 0.1 and 0.9 quantile.

A few observations are worth pointing out. We see that the medians of most indus-
tries are close to the stress level of the manufacturing industries. Moreover, the quantile
interval for stress level 0.01 is narrower as compared to the stress level 0.05. This indi-
cates a strong impact of the manufacturing sector on the other industries.

We also observe that in our R-vine based forward procedure for each index the first
chosen covariate is always the index Cnstr or the FabPr, except for the conditional distri-
bution of Hlth (Paper being the first) and Mines, Coals (Steel being the first). This makes
it clear that Cnstr and the FabPr are very important within the manufacturing sector for
the well being of the economy. By contrast, the index Chems is retained in the regression
model only for the following response variables: Hlth, Oil and Telcm. Hence problems
in chemical industries do not affect the economy as much as the other manufacturing
indices.

Smoke index is the least affected one by the stressed manufacturing sector as we see

5

116 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

in Figure 5.12. This conclusion could have been drawn also from exploring its empirical
multiple correlation with manufacturing indices which was the smallest and equal to
0.2847. The Smoke industry includes companies which grow, deliver, advertise and sell
tobacco and tobacco-related products. It is a rather self-contained industry hence the
effect of the crisis in the manufacturing sector is limited.

Conclusions that can be drawn from exploring empirical multiple correlations do not
always align with ones obtained from our regression analysis. For instance, the empirical
multiple correlation for the Clths (0.5697) is larger than the one for the Coal (0.4455), but
results plotted in Figure 5.12 show that when manufacturing sector is stressed at level
0.01 Coal is more affected than Cloth. This shows the importance of more thorough
analysis.

In the next section, we explore how different indices are jointly affected by the stressed
manufacturing sector.

5.7.2. TWO RESPONSE VARIABLES CASE

Our analysis can be carried out also to explore the joint behaviour of different in-
dices when stress in manufacturing sector occurs by following the procedures explained
in Section 5.5. We present results of bivariate response variables only, where we explore
the behaviour of index Food with other indices when manufacturing sector is stressed.
For each pair Food and Y index in remaining industry, their joint distribution condi-
tioned on the manufacturing sector is computed. From these joint distributions we then
compute the probability that the return of the Food index and Y index are both smaller
or equal to given thresholds t (denoted as P t

Food ,Y) when the manufacturing industry
is stressed at 0.05 or 0.01 level. We chose the threshold to be equal to their conditional
median or 0.1 quantile (t = 0.5,0.1) obtained in the stress test analysis in Section 5.7.1.

If the Food index is conditionally independent with the other index Y , then this prob-
ability should be 0.25 (0.52) when both thresholds are the median or 0.01(0.12) when the
thresholds are 0.1 quantile. The degree of the conditional dependence of the Food index
and Y index when the manufacturing sector is stressed can be assessed by the quotient
of the probability P t

Food ,Y and t 2. The result is shown in Table 5.12 when t = 0.5 and in
Table 5.13 when t = 0.1.

0.05 0.01 0.05 0.01 0.05 0.01
Food, Beer 1.2434 1.2441 Food, Smoke 1.3494 1.4076 Food, Games 1.1296 1.1593
Books, Food 1.1415 1.1449 Hshld, Food 1.3456 1.3545 Food, Clths 1.3849 1.5012
Food, Hlth 1.1681 1.1599 Txtls, Food 1.1819 1.1926 Food, Mines 0.9750 0.9491
Food, Coal 0.9841 0.9551 Food, Oil 0.9801 0.9798 Food, Util 1.2836 1.2722
Food, Telcm 1.2841 1.2903 Food, Servs 1.3192 1.4505 BusEq, Food 1.0247 1.0261
Trans, Food 1.1618 1.1951 Whlsl, Food 1.1563 1.1645 Rtail, Food 1.2299 1.2305
Food, Meals 1.2903 1.2964 Fin, Food 1.0942 1.0978 Other, Food 1.1024 1.1060

Table 5.12: P t
Food ,Y /0.52 where the thresholds are chosen to be the median of the two indices in the corre-

sponding stress scenario in Section 5.7.1. The order of the response variables based on our heuristic is also
indicated.

5.8. CONCLUSION

5

117

0.05 0.01 0.05 0.01 0.05 0.01
Food, Beer 2.4837 2.4938 Food, Smoke 3.7568 3.9389 Food, Games 1.2088 1.3182
Books, Food 1.3260 1.3779 Hshld, Food 2.7433 2.7826 Food, Clths 2.1766 2.3104
Food, Hlth 2.4821 2.4774 Txtls, Food 1.3381 1.3612 Food, Mines 0.8548 0.8506
Food, Coal 1.1780 1.1538 Food, Oil 1.2385 1.2405 Food, Util 3.3179 3.3004
Food, Telcm 2.2938 2.2967 Food, Servs 1.7698 2.0227 BusEq, Food 1.6004 1.6239
Trans, Food 1.2507 1.3422 Whlsl, Food 2.5230 2.5505 Rtail, Food 2.3369 2.3671
Food, Meals 2.1548 2.1603 Fin, Food 1.9666 2.0073 Other, Food 1.1164 1.1317

Table 5.13: P t
Food ,Y /0.12 where the thresholds are chosen to be the 0.1 quantile of the two indices in the cor-

responding stress scenario in Section 5.7.1. The order of the response variables based on our heuristic is also
indicated

We see that most quotients in Tables 5.12 and Table 5.13 are larger than 1 hence most
indices show positive conditional correlation to the Food index when the manufacturing
sector is stressed. This relationship becomes stronger as the stress level of the manufac-
turing sector changes from 0.05 to 0.01 though the difference is small. Furthermore as
expected, the quotient is always larger when the threshold is chosen to be the 0.1 quan-
tile than of the median.

In the forward selection procedure the first added covariate is always the Cnstr index
and the second one is mostly (16 out of 21) the Paper index. The Chems index is now in-
cluded in the conditional distribution when Y is Hlths, Coal, Oil, Meals and Other index.
As the forward selection is now applied to both the response variables, more covariates
are included than in the case of only one response variable.

The Smoke index, which was the least affected industry by the stressed manufactur-
ing sector in the case of one response variable analysis, now has the largest joint prob-
ability of being below the threshold while Food is also below the threshold. When the
thresholds are the median the quotients for the energy industry (indices Mines, Coal
and Oil) are smaller than 1, which indicates their negative conditional correlation with
Food when the manufacturing sector is stressed. However, this behaviour is not visible
when partial correlation are examined (0.03627 for Food,Mines, 0.09411 for Food,Coal
and 0.09044 for Food,Oil).

Similarly, the analysis concerning the joint behaviour of different indices other than
Food conditioned on the stressed manufacturing sector can be carried out.

5.8. CONCLUSION
In this chapter results of an effort to extend the simplified D-vine based forward re-

gression method, introduced in Kraus & Czado (2017a), by allowing different types of
regular vine structures have been presented. However, when combined with the forward
selection procedure (which determines the order of the variables for the vine structure)
the benefits of such a extension, in terms of possible improvements in estimated mod-
els, are shown to be limited. Other than the forward selection procedures to choose the
order of the variables in the construction of the vine structures can be easily combined
with the methods proposed in this chapter.

Even if computationally expensive, R-vine based regression methods are shown to
provide a better alternative to the traditional linear regression. Moreover, the R-vine

5

118 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

based regression can be tailored to give an improved performance in particular regions
of the conditional distribution by choosing a specific selection criterion for this region
(e.g. specific quantile level). R-vine regression can also be extended to the case of more
than one response variables. This is of great importance if the joint behaviour of the
response variables is required as we have illustrated in the stress test analysis.

5.A. APPENDIX TO CHAPTER 5
5.A.1. MODEL SPECIFICATION

RANDOM DIM-8 D-VINE

V0

structure C0 τ0 structure C0 τ0 structure C0 τ0

Tree-7
12|345678 G 0.68
Tree-6
42|35678 G90 -0.46 31|45678 C270 -0.26
Tree-5
82|3567 G 0.25 51|4678 G270 -0.35 43|5678 G270 -0.35
Tree-4
72|356 C 0.19 61|478 G270 -0.27 83|567 G 0.31
54|678 C270 -0.67
Tree-3
62|35 G270 -0.06 71|48 J90 -0.03 73|56 J270 -0.60
64|78 C180 0.80 85|67 J90 -0.29
Tree-2
52|3 C270 -0.56 81|4 J270 -0.77 63|5 J90 -0.18
74|8 G270 -0.38 75|6 C180 0.63 68|7 C270 -0.15
Tree-1
32 J270 -0.52 41 C270 -0.33 53 G90 -0.22
84 G180 0.43 65 C90 -0.59 78 J270 -0.65
76 C270 -0.08

Table 5.14: A random D-vine copula model with order (1,4,8,7,6,5,3,2). C0 represents the set of copula fami-
lies assigned to each edge and τ0 is the set of kendall’s tau of the corresponding copula.

LINEAR FORWARD REGRESSION MODEL

Linear forward regression model AIC =−91.15 σ= 0.9517
coefficient intercept X2 X3 X4 X5 X6 X7 X8

0.26 0.42 0.23 0.88 1.79 -0.09 -0.03 -1.53
p-value 8.87E-3 < 2E-16 4.76E-3 4,94E-9 < 2E-16 0.21 0.60 < 2E-16

Table 5.15: The linear regression model based on the AIC forward selection where X1 is the response variable.
σ is the standard deviation of the residuals. The p-values refers to the test with null hypothesis stating that the
coefficient is zero.

5.A. APPENDIX TO CHAPTER 5

5

119

GAUSSIAN COPULA FORWARD SELECTION MODEL

The Gaussian copula model is estimated by estimating the marginal distributions
and a multivariate Gaussian copula separately. In order to include the forward selection
in this model the distributions of both the response variable and the covariates are esti-
mated by kernel smoothing and they are transformed into u-scale. Then we transform
them into z-scale and apply a linear forward regression approach.

Gaussian copula by linear approach AIC =−2384.95 σ= 0.3023
coefficient intercept X2 X3 X4 X5 X6 X7 X8

0.02 0.26 0.09 0.46 0.30 -0.13 -0.09 -1.09
p-value 0.11 < 2E-16 2.77E-5 < 2E-16 < 2E-16 1.64E-7 1.42E-4 < 2E-16

Table 5.16: The linear regression model based on the AIC forward selection for the data transformed into z-
scale where X1 is the response variable. σ is the standard deviation of the residuals. The p-values refers to the
test with null hypothesis stating that the coefficient is zero.

D-VINE BASED FORWARD SELECTION MODEL

V2

structure C2 τ̂2 logLik structure C2 τ̂2 logLik
Tree-6
31|24678 Tawn180 0.11 18.86
Tree-5
41|2678 BB1_180 0.27 84.15 83|2467 BB7_180 0.16 39.60
Tree-4
61|278 Tawn2_270 -0.17 35.70 23|467 BB8_90 -0.55 398.63
48|267 BB7 0.13 45.50
Tree-3
71|28 BB8_90 -0.18 65.18 73|46 Tawn2_270 -0.36 177.60
68|27 F -0.18 35.78 24|67 Tawn2 0.07 21.52
Tree-2
21|8 BB1_180 0.29 96.11 63|4 Tawn90 -0.20 88.03
78|2 J270 -0.62 672.31 74|6 BB8_270 -0.70 860.47
62|7 Tawn 0.29 151.53
Tree-1
81 t -0.77 967.74 43 BB7_180 0.37 172.79
28 J90 -0.21 65.67 64 BB7 0.47 335.30
72 C 0.26 88.61 76 J90 -0.07 13.18

Table 5.17: Final D-vine copula model through the forward selection. C2 represents the set of copula families
assigned to each edge and τ̂2 is the set of estimated kendall’s tau of the corresponding copula.

5

120 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

WBTS IN R-VINE FORWARD SELECTION

(1,8,2,3) (1,8,2,4) (1,8,2,5) (1,8,2,6) (1,8,2,7)
ω32;8 ω38;2 ω42;8 ω48;2 ω52;8 ω58;2 ω62;8 ω68;2 ω72;8 ω78;2

-0.69 0.60 0.23 0.64 -0.43 -0.58 0.34 0.05 0.19 -0.79
ω38 ω32 ω48 ω42 ω58 ω52 ω68 ω62 ω78 ω72

0.58 -0.68 0.61 0.04 -0.48 -0.26 -0.03 0.33 -0.80 0.30
(0) (1) (1) (0) (0)

Table 5.18: The wBTs in the 3r d step for each possible new variable candidate in the forward selection. The
selected path in wBT is denoted in bold and the result sequence of indicators is listed below each wBT.

(1,8,2,7,3) (1,8,2,7,4)
ω37;28 ω38;27 ω47;28 ω48;27

-0.24 0.27 -0.59 0.06
ω38;2 ω32;8 ω37;2 ω32;7 ω48;2 ω42;8 ω47;2 ω42;7

0.60 -0.69 -0.59 -0.66 0.64 0.23 -0.78 0.40
ω32 ω38 ω32 ω37 ω42 ω48 ω42 ω47

-0.68 0.58 -0.68 -0.61 0.04 0.61 0.04 -0.73
(0,0) (1,0)

(1,8,2,7,5) (1,8,2,7,6)
ω57;28 ω58;27 ω67;28 ω68;27

0.51 -0.04 -0.35 -0.25
ω58;2 ω52;8 ω57;2 ω52;7 ω68;2 ω62;8 ω67;2 ω62;7

-0.58 -0.43 0.71 -0.55 0.05 0.34 -0.25 0.39
ω52 ω58 ω52 ω57 ω62 ω68 ω62 ω67

-0.26 -0.48 -0.26 0.58 0.33 -0.03 0.33 -0.13
(1,0) (0,1)

Table 5.19: The wBTs in the 4th step for each possible new variable candidate in the forward selection.The
selected path in wBT is denoted in bold and the result sequence of indicators is listed below each wBT.

5.A. APPENDIX TO CHAPTER 5

5

121

(1,8,2,7,5,3)
ω35;278 ω37;258

-0.50 0.05
ω37;28 ω38;27 ω35:28 ω32;58

0.24 0.27 -0.54 -0.79
ω38;2 ω32;8 ω37;2 ω32;7 ω32;8 ω38;2 ω35;8 ω38;5

0.60 -0.69 -0.59 -0.66 -0.69 0.60 -0.06 0.52
ω32 ω38 ω32 ω37 ω38 ω32 ω38 ω35

-0.68 0.58 -0.68 -0.61 0.58 -0.68 0.58 -0.32
(1,0,0)

(1,8,2,7,5,4)
ω45;278 ω47;258

-0.87 -0.34
ω47;28 ω48;27 ω45:28 ω42;58

-0.59 0.06 -0.90 -0.38
ω48;2 ω42;8 ω47;2 ω42;7 ω42;8 ω48;2 ω45;8 ω48;5

0.64 0.23 -0.78 0.40 0.23 0.64 -0.89 0.49
ω42 ω48 ω42 ω47 ω48 ω42 ω48 ω45

0.04 0.61 0.04 -0.73 0.61 0.04 0.61 -0.91
(1,1,0)

(1,8,2,7,5,6)
ω65;278 ω67;258

-0.85 0.22
ω67;28 ω68;27 ω65:28 ω62;58

-0.35 -0.25 -0.86 -0.10
ω68;2 ω62;8 ω67;2 ω62;7 ω62;8 ω68;2 ω65;8 ω68;5

0.05 0.34 -0.25 0.39 0.34 0.05 -0.88 -0.68
ω62 ω68 ω62 ω67 ω68 ω62 ω68 ω65

0.33 -0.03 0.33 -0.13 -0.03 0.33 -0.03 -0.75
(0,0,0)

Table 5.20: The wBTs in the 5th step for each possible new variable candidate in the forward selection.The
selected path in wBT is denoted in bold and the result sequence of indicators is listed below each wBT.

For simplicity we don’t show the wBTs in the 6th and the 7th step in forward selection
but only the sequence of indicators in the below table,

sequence of indicators
(1,8,2,7,5,4,3) (1,1,0,0)
(1,8,2,7,5,4,6) (0,0,0,0)

(1,8,2,7,5,4,6,3) (1,0,1,0,0)

Table 5.21: Sequence of indicators in the 6th and the 7th step in the forward selection.

5

122 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

R-VINE BASED FORWARD SELECTION MODEL

V3

structure C3 τ̂3 logLik structure C3 τ̂3 logLik
Tree-7
31|245678 F 0.26 77.89
Tree-6
61|24578 F -0.25 76.52 63|24578 Tawn2 0.22 80.77
Tree-5
41|2578 BB7_180 0.22 68.75 43|2578 t 0.01 48.63
56|2478 Twan2_90 -0.26 117.30
Tree-4
51|278 J180 0.14 34.67 53|278 BB8_90 -0.33 163.01
76|248 BB8 0.33 161.45 45|278 F -0.69 647.13
Tree-3
71|28 BB8_90 -0.18 65.18 83|27 Tawn2 0.14 45.73
26|48 Tawn2 0.20 62.28 75|28 Tawn 0.29 145.28
74|28 BB8_270 -0.45 252.14
Tree-2
21|8 BB1_180 0.29 96.11 23|7 BB8_90 -0.49 343.00
86|4 t -0.53 397.76 25|8 Tawn270 -0.24 120.00
24|8 Tawn2 0.16 55.69 87|2 J90 -0.62 672.31
Tree-1
81 t -0.77 967.74 73 t -0.45 241.27
46 BB7 0.47 335.30 85 C270 -0.33 182.38
84 BB1 0.45 262.70 27 C 0.26 88.61
28 J90 -0.21 65.67

Table 5.22: Final R-vine copula model through the forward selection. C3 represents the set of copula families
assigned to each edge and τ̂3 is the set of estimated kendall’s tau of the corresponding copula.

5.A. APPENDIX TO CHAPTER 5

5

123

MQE OF THE TRUE CONDITIONAL DISTRIBUTION IN SIMULATION

Resp1
Size Dim 0.01 0.05 0.5 0.95 0.99
300 10 True 0.9649 0.9731 0.9810 0.9698 0.9586

(0.9645) (0.9721) (0.9804) (0.9691) (0.9586)
15 True 0.9934 0.9959 0.9972 0.9953 0.9920

(0.9930) (0.9957) (0.9973) (0.9959) (0.9942)
20 True 0.9970 0.9991 0.9996 0.9994 0.9986

(0.9987) (0.9994) (0.9997) (0.9996) (0.9993)
1000 10 True 0.9620 0.9705 0.9779 0.9630 0.9485

(0.9618) (0.9707) (0.9779) (0.9633) (0.9500)
15 True 0.9948 0.9961 0.9972 0.9953 0.9930

(0.9948) (0.9961) (0.9972) (0.9956) (0.9939)
20 True 0.9984 0.9993 0.9996 0.9992 0.9984

(0.9986) (0.9994) (0.9996) (0.9991) (0.9980)

Table 5.23: The simulation results for the MQE of the true conditional distribution of Resp1 at quantiles
(0.01,0.05,0.5,0.95,0.99). The result is shown for 300 evaluation data set and 1000 evaluation data set, also
for dimensions in 10, 15 and 20 respectively.

R-VINE BASED FORWARD SELECTION MODEL FOR TWO RESPONSE VARIABLES

The correlation matrix of the sample data set is as follows,

X1 X2 X3 X4 X5 X6 X7 X8

X1 1
X2 0.3281 1
X3 -0.5727 -0.6779 1
X4 -0.4725 0.0398 0.5003 1
X5 0.3746 -0.2593 -0.3206 -0.9141 1
X6 0.0879 0.3332 0.1190 0.6583 -0.7538 1
X7 0.6876 0.2957 -0.6138 -0.7347 0.5784 -0.1280 1
X8 -0.9216 -0.2288 0.5841 0.6130 -0.4815 -0.0313 -0.7999 1

Table 5.24: The correlation matrix for the sample data set in Section 5.3.3.

5

124 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

V4

structure C4 τ̂4 logLik structure C4 τ̂4 logLik
Tree-7
21|345678 BB1_180 0.37 189.63
Tree-6
71|34568 Tawn180 0.12 18.05 72|34568 t 0.08 10.23
Tree-5
51|3468 t 0.04 9.11 52|3468 BB8_90 -0.15 29.82
47|3568 BB8_270 -0.39 196.57
Tree-4
41|368 BB8 0.27 82.33 82|346 G 0.27 107.82
87|356 BB7_270 -0.11 18.33 54|368 t -0.42 232.33
Tree-3
61|38 BB8 0.12 24.42 42|36 Tawn2_180 0.24 78.36
37|56 BB8_90 -0.55 419.81 84|36 N 0.56 436.93
85|36 J90 -0.56 585.81
Tree-2
31|8 Tawn2_270 -0.15 27.22 62|3 C180 0.42 296.16
67|5 J 0.44 346.61 34|6 Tawn 0.33 203.53
35|6 BB7_90 -0.23 63.13 68|3 Tawn2_90 -0.12 18.11
Tree-1
81 t -0.77 967.74 32 BB8_270 -0.53 413.34
57 Tawn2 0.36 242.61 64 BB7 0.47 335.30
65 BB8_270 -0.59 533.74 38 t 0.42 215.33
36 t 0.07 35.60

Table 5.25: Final R-vine copula model for two response variables (1,2) through the forward selection. C4 rep-
resents the set of copula families assigned to each edge and τ̂4 is the set of estimated kendall’s tau of the
corresponding copula.

5.A. APPENDIX TO CHAPTER 5

5

125

V5

structure C5 τ̂5 logLik structure C5 τ̂5 logLik
Tree-5
12|3458 BB1 0.37 174.59
Tree-4
42|358 t -0.12 47.64 41|358 t 0.13 33.57
Tree-3
52|38 BB8_90 -0.48 346.16 81|35 BB8_270 -0.66 668.90
54|38 t -0.72 804.43
Tree-2
32|8 BB8_270 -0.51 347.82 31|5 t -0.43 213.86
84|3 BB8_180 0.28 134.88 85|3 J90 -0.22 126.67
Tree-1
82 J270 -0.21 65.67 51 J 0.25 128.64
34 BB7_180 0.37 172.79 35 BB1_90 -0.24 62.28
38 t 0.42 215.33

Table 5.26: Final R-vine copula model for two response variables (2,1) through the forward selection. C5 rep-
resents the set of copula families assigned to each edge and τ̂5 is the set of estimated kendall’s tau of the
corresponding copula.

V6

structure C6 τ̂6 logLik structure C6 τ̂6 logLik
Tree-4
31|468 F -0.18 35.64
Tree-3
61|48 F -0.22 52.60 83|64 BB1_180 0.20 56.17
Tree-2
41|8 t 0.22 60.00 63|4 Tawn90 -0.20 88.03
68|4 t -0.53 397.76
Tree-1
81 t -0.77 967.74 43 BB7_180 0.37 172.79
48 BB1 0.45 262.70 46 BB7 0.47 335.30

Table 5.27: Final R-vine copula model for the conditional margins of variable 1 in the naive approach (Sepa-
rate). C6 represents the set of copula families assigned to each edge and τ̂6 is the set of estimated kendall’s tau
of the corresponding copula.

5

126 5. SIMPLIFIED R-VINE BASED FORWARD REGRESSION

V7

structure C7 τ̂7 logLik structure C7 τ̂7 logLik
Tree-6
72|34568 t 0.07 17.02
Tree-5
62|3458 t 0.09 28.37 67|3458 BB8 0.32 139.20
Tree-4
82|345 t 0.15 35.53 87|345 BB8_90 -0.30 182.64
86|345 BB8_90 -0.47 333.49
Tree-3
42|35 BB8_270 -0.13 32.35 47|35 t -0.41 222.57
36|54 J270 -0.13 38.72 38|45 BB8 0.27 91.88
Tree-2
52|3 BB8_90 -0.53 416.47 37|5 F -0.46 248.31
56|4 Tawn_90 -0.38 256.70 48|5 BB7 0.38 219.07
43|5 BB1 0.36 160.93
Tree-1
32 BB8_270 -0.53 413.34 57 Tawn2 0.36 242.61
46 BB7 0.47 335.30 58 C90 -0.33 182.38
53 BB1_270 -0.24 62.28 54 F -0.77 908.24

Table 5.28: Final R-vine copula model for the conditional margins of variable 2 in the naive approach (Sepa-
rate). C7 represents the set of copula families assigned to each edge and τ̂7 is the set of estimated kendall’s tau
of the corresponding copula.

6
REGULAR VINES WITH STRONGLY

CHORDAL PATTERN OF

(CONDITIONAL) INDEPENDENCE

Multivariate statistical models can be simplified by assuming that a pattern of conditional
independence is present in the given data. A popular way of capturing the (conditional)
independence is to use probabilistic graphical models. The relationship between strongly
chordal graphs and m-saturated vines is proved. Moreover, an algorithm to construct an
m-saturated vine structure corresponding to strongly chordal graph is provided. This al-
lows the reduction of regular vine copula models complexity. When the underlying data
is sparse our approach leads to a model with better performance as compared with cur-
rent heuristic methods. Furthermore, due to reduction of model complexity it is possible
to evaluate all vine structures as well as to fit non-simplified vines. These advantages have
been shown in the simulated and real data examples.

Parts of this chapter have been published in Zhu & Kurowicka (2022).

127

6

128
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

6.1. INTRODUCTION
Probabilistic graphical models are very useful in representing the joint distribution

of random variables. In these models the variables are associated with the vertices of
the graph and the (conditional) independence in the joint distribution of these variables
are determined by the absence of edges. It suffices to study the structure of the graph
in order to assess whether variables are (conditionally) independent. The correspond-
ing joint density can then be built with additional information provided about the types
of dependence encoded in the edges. For example, the joint probability density repre-
sented by a chordal graph is known to be equal to the product of densities of the variables
in maximal cliques divided by the product of densities over the variables in the separa-
tors (Pearl (1988)), and the joint density of a Bayesian network is the product of condi-
tional densities of variables given their parents in the graph (Lauritzen (1996)). However,
for continuous random variables, these models are not easy to be estimated or/and are
not simple to be sampled in high dimensions unless we assume that the distributions
are multivariate Gaussian or a Gaussian copula.

The regular vine model, which is a set of nested trees, is another example of graphi-
cal model to represent a joint distribution. In principle regular vines are fully connected
graphs and the (conditional) independence can be specified by setting the bivariate cop-
ulas to be independence copula. This can be seen as removing some nodes in the nested
set of trees. In general, however, it is not known how the structure of a regular vine with
some nodes missing can be used to describe all (conditional) independence of the ran-
dom variables in the joint distribution. There are cases where the conditional indepen-
dence can be easily specified in a regular vine model. In Brechmann et al. (2012), trun-
cated regular vines are introduced where all bivariate copulas above certain tree level
are set to be the independence copula. The level of truncation is chosen during the tree-
wise estimation process (estimation stops when the absolute AIC of the new copulas in
the tree is smaller than a predetermined threshold or the improvement in likelihood by
adding the next tree is not sufficient (determined by the Vuong test (Vuong (1989))). De-
termining (conditional) independence during estimation is convenient but is in general
not optimal. The chosen vine structure, the simplifying assumption and the tree-wise
estimation procedure can result in wrongly specified conditional (in)dependence in the
estimated model.

The idea of simplifying regular vine copula models by assuming a pattern of condi-
tional independence has been already discussed in the literature. Both Müller & Czado
(2018) and Hobæk Haff et al. (2016) present conditions under which a directed acyclic
graph (DAG) in the former and a chordal graph in the latter corresponds to a truncated
vine. Then heuristics are provided to construct the vine copula model based on a graph
obtained from data. A different heuristic construction of the vine structure is proposed
in Müller & Czado (2019b), where conditional independence result from structural equa-
tion models. In Müller & Czado (2019a) the conditional independence is found using
graphical Lasso (Friedman et al. (2007)), where variables are partitioned into homoge-
neous groups and subvines corresponding to each group are estimated at first. Then
these subvines are combined together in a similar way as by using the concept of merg-
ing discussed in Cooke et al. (2015). This method requires to specify a pre-determined
level for a maximum number of dimensions for subvines as well as a truncation level.

6.2. BACKGROUND

6

129

In this chapter we show that the set of conditional independence in the form of a
special chordal graph, called strongly chordal graph (Farber (1983)), can be represented
by regular vine copulas. Our main result establishes the equivalence between strongly
chordal graphs and m-saturated vines (abbreviated as m-vine, introduced in Kurowicka
& Cooke (2006)). A special case of this relationship has been studied in Hobæk Haff et al.
(2016), where the authors showed that the truncated vines (which are special cases of
m-vines) correspond to chordal graphs satisfying extra conditions.

The chapter is organized as follows: we start with basic notations concerning graph
theory and m-vines in Section 6.2; In Section 6.3 the main theorem of this chapter de-
scribing the relationship between a strongly chordal graph and an m-vine is proved and
an algorithm to construct an m-vine corresponding to a given graph is proposed. Simu-
lation results are presented in Section 6.4, where two examples showing the advantages
of the m-vine approach are listed in Section 6.4.1. A general heuristic of choosing the
m-vine structure for a given data set is proposed in Section 6.4.2, which is tested by a
simulation study in Section 6.4.3. Finally, a real data analysis is implemented in Section
6.5 and the conclusions finalize the chapter in Section 6.6.

6.2. BACKGROUND
In this section, we present basic definitions from graph theory and a brief introduc-

tion to m-vines as well as the notations we will use in the chapter.

6.2.1. GRAPHS

Let G be a graph with vertices V (G) = {v1, . . . , vn} and edges E (G). A graph is com-
plete if every pair of vertices is connected by a unique edge. Two vertices are adjacent if
there is an edge between them, whereas the adjacency of edges means two edges share a
common vertex. We say that G (U) is a subgraph of graph G induced by the vertex set U

if G (U) is the graph with vertex set U ⊆ V (G) and with edge set {(u, v) ∈ E (G)|u, v ∈U }.
C ⊆ V (G) is a clique of G when G (C) is a complete subgraph. If G (C) is a maximal
complete subgraph of graph G then C is called maximal clique.

A path of length k between verticesα andβ in graph G is a sequenceα=α0, ...,αk =β
of distinct vertices of G such that (αi−1,αi) ∈ E (G) for all i = 1, ...,k. A cycle of length k is
a path of length k in which the end points are identical (α=β).

A vertex set S ⊆ V (G) is said to be (α,β)-separator if all paths from α to β intersect
S . Furthermore the set S is said to separate vertex set A from vertex set B if S is an
(α,β)-separator for every α ∈A and β ∈B.

A connected graph T is called a tree if it has no cycle.
Graph G is said to be chordal if every cycle of G with length larger than 3 has a chord

(where chord of a cycle is an edge joining two nonconsecutive vertices in the cycle).
Hence, a tree is an example of a chordal graph. A strongly chordal graph is a chordal
graph with the property that every cycle of even length of at least six contains a chord.
This chord combines with the edges of the cycle to form two shorter even-length cycles.

In this chapter we will discuss also graphs whose vertices correspond to sets of ele-
ments (and vertices will be referred to as nodes) and edges correspond to intersections
of sets. A clique tree (or junction tree), T , of graph G is an example of such a graph. If

6

130
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

C (G) = (C1, ...,Ck) is a set of maximal cliques of graph G then T with nodes C (G) is said
to be a clique tree if any nonempty intersection Ci ∩C j is contained in every node on the
unique path in T between Ci and C j . This property is called the running intersection
property (RIP). The set of separators S (T) in a clique tree is the nonempty intersec-
tions of adjacent nodes. For a vertex v of G , T{v} denotes the subgraph of T induced by
nodes containing v . If T is a clique tree, then for any v ∈ V (G), T{v} is always connected
according to RIP.

We show below an example (from Mukhopadhyay & Rahman (2021)) to illustrate the
above definitions.

Figure 6.1: The graphs below are the clique trees of chordal graphs above. The left graph is a chordal graph but
not strongly chordal while the right one is a strongly chordal graph.

In Figure 6.1, two graphs with six nodes (above) and their corresponding clique trees
(underneath) are presented. Maximal cliques are shown in squares and separators are
shown in circles in the clique tree. The left graph contains four cliques {1,2,3}, {1,5,6},
{3,4,5} and {1,3,5} (this can be seen also in its clique tree). This graph is chordal but it is
not strongly chordal. This graph can be made strongly chordal when an extra edge 36 is
added. Alternatively, edge 14 or edge 25 instead of edge 36 could be added. The graph
constructed by adding edge 36 is shown in Figure 6.1 (right). We can observe that the
addition of edge 36 leads to the existence of clique {1,3,5,6}, which is composed of two
cliques {1,5,6} and {1,3,5}.

In the next section, a graphical model called m-vine in presented.

6.2.2. VINES

Vines introduced in Section 1.2.1 in Chapter 1 are in principle fully connected graph.
Figure 6.2 shows two examples of regular vine on 5 elements, denoted as V1(5) (left) and
V2(5) (right).

6.2. BACKGROUND

6

131

Figure 6.2: Two regular vines on 5 elements with conditioned and conditioning sets. The left vine is denoted as
V1(5) and the right one is V2(5). The nodes included in the dashed areas can be removed to form incomplete
vines.

The vine triangular arrays of the vines V1(5) and V2(5) in Figure 6.2 are shown in
Figure 6.3.

Figure 6.3: Vine triangular array for V1(5) (left), and V2(5) (right) in Figure 6.2.

Incomplete vines are vines from which some nodes have been removed. In this chap-
ter two kinds of incomplete vines: truncated vines (Brechmann et al. (2012)) and m-
saturated vines (Kurowicka & Cooke (2006)), are considered.

Definition 6.2.1 (Truncated vine). An incomplete vine is a k-truncated vine of a regular
vine V (n), 1 ≤ k ≤ n, if all nodes in trees Ti ,k +1 ≤ i ≤ n have been removed.

Definition 6.2.2 (m-saturated vine (for short m-vine)). An incomplete vine is a m-saturated
vine of a regular vine V (n) if all descendants of a node in its node set belong to the node
set of the incomplete vine.

6

132
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

It is easy to observe that a truncated vine is a special type of m-vine.
Regular vines have only one top node, which is the node in the highest tree level,

however, for truncated vine or m-vine there are several "top" nodes, which we call max-
imal nodes. Maximal nodes are nodes that do not have ancestor. For example, the max-
imal nodes in a 3-truncated vine of V1(5), shown in Figure 6.2 (left), are 13|2,24|3,25|3.
The maximal nodes of m-vine can appear in different tree levels. For V2(5), shown in
Figure 6.2 (right), the maximal nodes in an m-vine constructed by removing nodes in
the dashed area are 13|2,24|3,35.

Figure 6.4: Vine triangular array for 3-truncated vine (left) of V1(5), and an m-vine (right) by removing the
nodes in the dashed area in V2(5) in Figure 6.2.

We will represent an m-vine as V (U∗
e1

, . . . ,U∗
ek

) where U∗
e1

, . . . ,U∗
ek

are the constraint
sets of its maximal nodes e1, . . . ,ek . Note that this representation is not unique as both
m-vines in Figure 6.2 obtained by removing nodes in dashed areas have the same max-
imal nodes, hence the same representation: V ({1,2,3}, {2,3,4}, {3,5}). We will call two
maximal nodes adjacent if these two nodes share common nodes in their descendants
(a common subvine). For example, maximal nodes 24|3, 13|2 and 35 are adjacent to each
other.

In Section 6.3, we will study the correspondence of incomplete vines and chordal
graphs.

6.3. RELATIONSHIP BETWEEN M-VINE AND STRONGLY CHORDAL

GRAPH
In Kurowicka & Cooke (2006), Hobæk Haff et al. (2016), it has been shown that there

exists a relationship between chordal graphs and m-vines (or truncated vines). We dis-
cuss it briefly in Section 6.3.1 and conclude that m-vines correspond to chordal graphs,
but not all chordal graphs correspond to m-vines (this has been shown in Hobæk Haff
et al. (2016) for truncated vines). A more general discussion on this topic follows, leading
to the main result of this chapter and its proof. We show the equivalence of m-vines and
strongly chordal graphs.

6.3.1. CHORDAL GRAPH AND M-VINE

One of the many characterizations of chordal graphs is the existence of a correspond-
ing clique tree (Gavril (1974)). To show that an m-vine corresponds to a chordal graph, it
is sufficient to observe that constraint sets of maximal nodes in an m-vine form maximal
cliques and the separators are the intersections of constraint sets of adjacent maximal

6.3. RELATIONSHIP BETWEEN M-VINE AND STRONGLY CHORDAL GRAPH

6

133

nodes. A tree obtained in this way is a clique tree of a chordal graph (Kurowicka & Cooke
(2006), Hobæk Haff et al. (2016)).

As an example, let us consider the m-vine obtained by removing nodes in dashed
areas shown in Figure 6.2. For both m-vines, the corresponding clique tree (maximal
cliques shown in squares and separators are in circles) and the chordal graphs are shown
in Figure 6.5 (left panel - the chordal graph for the m-vines when the nodes in the dashed
area are removed for both vines; middle panel - the chordal graph for the 3-truncated
vine in Figure 6.2 (left); right panel - the chordal graph for the 3-truncated vine in Figure
6.2 (right)).

Figure 6.5: Examples of clique trees (below) of chordal graphs (above). The graph on the left corresponds to
the m-vines in Figure 6.2 where the nodes in the dashed area have been removed. The middle and the right
graphs correspond to the 3-truncated vines for V1(5) and V2(5) in Figure 6.2, respectively.

It is not, however, the case that all chordal graphs correspond to m-vines. We call
those clique trees to which a corresponding m-vine exists as regular clique trees.

Definition 6.3.1 (Regular clique tree). A clique tree T is regular if there exists an m-vine
V (U∗

e1
, . . . ,U∗

ek
) such that the constraint sets of the maximal nodes e1, . . . ,ek of the m-vine

are the nodes V (T) = {C1, . . . ,Ck } of the clique tree, respectively.

In Figure 6.6, we show an example of a regular and a non-regular clique tree. The
’black’ tree is a regular clique tree and the non-regular clique tree is obtained when node
{1,3,7} is replaced by {2,3,7}, and we print it in red.

6

134
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

Figure 6.6: A regular (black, T) and non-regular (red, T ′) clique tree.

For the ’black’ clique tree T in Figure 6.6, there are four cliques shown in squares
and three separators shown in circles. In this example, the corresponding m-vine can
be constructed as follows: the clique with cardinality (number of elements) equal to 4
is the constraint set of the maximal node in tree T4 of the m-vine, whereas the cliques
with cardinality equal to 3 are the constraint sets of maximal nodes in T3. The node with
constraint set {1,2,3,4} has two children in T3 and they share the common child 13 with
node {1,3,5} and {1,3,7}. Moreover, they share the common child 12 with node {1,2,6}.
One possible m-vine can then have maximal nodes 26|1, 15|3, 17|3 and 23|14 (it has two
children 24|1 and 34|1).

When we look at the ’red’ clique tree T ′, where node {1,3,7} is replaced by {2,3,7},
following the arguments above, we can observe that the children of node {1,2,3,4} should
share the common node 13 with node {1,3,5}, the common node 12 with node {1,2,6}
and the common node 23 with node {2,3,7}. This is not possible for a regular vine as 13,
12 and 23 constitutes a cycle.

6.3.2. STRONGLY CHORDAL GRAPH AND M-VINE
As proved in McKee (2003), strongly chordal graphs are characterized by the exis-

tence of a strong clique tree, defined below:

Definition 6.3.2 (Strong clique tree). Clique tree T is a strong clique tree of graph G if
there exists the sequence of trees T (0),T (1), ...,T (k), where T (0) =T , T (k) is edgeless and
T (i) is a maximum spanning tree of the separators S (T (i−1)) with edge weight being the
cardinality of separator such that T (i)

{v} is connected for any vertex v in G .

In Figure 6.7, the sequence of trees T (i), i = 1, . . . for clique trees in Figure 6.6 are
shown. We can observe that in T (1) (right) node (1,2) and (2,3) are not connected.

In McKee (2003) another characterization of a strong clique tree was proposed.

Theorem 6.3.1. A clique tree T of a graph G is strong if and only if there do not exist
distinct vertices v1, ..., vk ∈ V (G) and distinct nodes C1, . . . ,Ck ∈ V (T) where k ≥ 3 and,
for each i , Ci ∩ {v1, ..., vk } = {vi , vi+1} (computing subscripts modulo k).

Using the above theorem, we see immediately that the red clique tree in Figure 6.6
is not strong as for cliques C1 = {1,3,5}, C2 = {1,2,6}, C3 = {2,3,7} and a set of vertices
{v1 = 3, v2 = 1, v3 = 2} the condition in the theorem is violated.

In the remaining part of this section, we prove that a strong clique tree corresponds
to an m-vine. We only consider the situation when the strong clique tree is connected,

6.3. RELATIONSHIP BETWEEN M-VINE AND STRONGLY CHORDAL GRAPH

6

135

Figure 6.7: Sequence of trees T (i), i = 1, . . . for the clique trees in Figure 6.6 (black (left) and red (right)), respec-
tively.

otherwise the proof can be applied to each connected subgraph of the strong clique tree,
separately.

Theorem 6.3.2. Clique tree T is regular if and only if T is strong.

Proof.
Necessity: Assume that T is regular but T is not strong. By theorem 6.3.1, there exist
distinct vertices v1, . . . , vk ∈ V (G) and distinct nodes C1, . . . ,Ck ∈ V (T) where k ≥ 3 and,
for each i , Ci ∩{v1, ..., vk } = {vi , vi+1} (Note that Ck∩{v1, ..., vk } = {vk , v1}). Each Ci corre-
sponds to the constraint set of a maximal node in the m-vine (a subvine of this m-vine),
and they intersect by forming a path through vertices {v1, v2, . . . , vk , v1}. This leads to a
cycle in the first tree of m-vine which is not allowed by the definition of a vine.
Sufficiency: The proof of sufficiency is by construction and is presented in Section 6.3.4.

Before illustrating the algorithm to prove sufficiency, we show in the next section the
algorithm of merging vines. This lays the foundation for the algorithm of constructing
an m-vine corresponding to a strongly chordal graph.

6.3.3. MERGING VINES
In this section, an algorithm to combine two regular vines V (n) and V (m) into a

larger vine, such that V (n) and V (m) are its subvines is presented. This algorithm lays
the foundation for the procedure to construct an m-vine corresponding to a strongly
chordal graph.

We call the procedure of combining two vines merging. This procedure has been
introduced in Cooke et al. (2015) for vines without overlapping elements. In that case
merging two vines is always possible. If we want to combine two vines that share the
same subset of elements, then merging is possible only if they share a common subvine
on common elements. A formal definition is as follows,

Definition 6.3.3 (Merger). A regular vine V (Vn ∪Vm) is a merger of two regular vines V (n)
and V (m) where Vn * Vm and Vm * Vn if V (n) and V (m) are subvines of V (Vn ∪Vm).

Construction of the merger for two vines V (n) and V (m) with common subvine V (p)
can be done following a bottom-up approach, where each tree structure starting from

6

136
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

tree Tp+1 in the merger is constructed sequentially. This can be achieved following Algo-
rithm 11.

Algorithm 11 General approach of merging two regular vines V (n) and V (m)

Input: regular vine V (n) and V (m) where Vn ∩Vm = Vp (possibly empty)
Output: A merger V (Vn ∪Vm)

1: for i in p +1 to n +m −p do
2: Construct the tree structure Ti of the merger satisfying three conditions:

• the proximity condition;

• if i ≤ max(n,m), nodes in tree Ti of the merger should include the nodes in Ti

of V (n) and V (m);

• if i ≤ max(n,m), connections between nodes of the merger have to be consis-
tent with connections that these nodes have in V (n) and V (m).

3: end for

In Cooke et al. (2015), the merging algorithm has been presented in the case of two
vines that do not overlap, hence when Vn∩Vm = Vp =;. The possible merger of two vines
without overlap was shown to be determined by the choice of sampling order of V (n)
and V (m). This gives a more efficient way of constructing the merger when compared to
the method in Algorithm 11, and allows to prove that there are always 2n+m−2 possible
mergers of V (n) and V (m). The procedure developed to merge vines without overlap
can be adapted to work also in the case of vines with overlap.

Suppose we have a sampling order (a1, a2, . . . , an) for V (n) and a sampling order
(b1,b2, . . . ,bm) for V (m), the new partners of an in nodes from Tn+m to Tn+1 in the
merger are the elements in reverse sampling order, (bm , . . . ,b1). After marginalizing ele-
ment an from the merger, the new partners of an−1 in nodes from Tn−1+m to Tn in the
merger will be the elements (bm , . . . ,b1). In general, the new partners of ai will be cho-
sen following the reverse sampling order, (bm , . . . ,b1), from Ti+m to Ti+1. Similarly the
partners of b j will be (an , . . . , a1) from T j+n to T j+1 in the merger. A general algorithm is
as follows (which appears in the proof of Theorem 5.2 in Cooke et al. (2015)),

Algorithm 12 Merging two regular vines V (n) and V (m) without overlapping elements

Input: regular vine V (n) and V (m) where Vn ∩Vm =;
Output: A merger V (Vn ∪Vm)

1: Determine a sampling order SOn = (a1, . . . , an) for V (n).
2: Determine a sampling order SOm = (b1, . . . ,bm) for V (m).
3: The merger is constructed based on SOn and SOm where the new partners of ai from

Ti+m to Ti+1 will be (bm , . . . ,b1), and the new partners of b j from T j+n to T j+1 will be
(an , . . . , a1).

The example to illustrate Algorithm 12 is presented in Appendix 6.A.1. Extending a
regular vine by just one distinct element, introduced in Nápoles (2010), is a special case
of merging two vines without overlap. In this case, one vine is just a single element and
its sampling order is this element itself.

6.3. RELATIONSHIP BETWEEN M-VINE AND STRONGLY CHORDAL GRAPH

6

137

In the case when V (n) and V (m) have a common subvine V (p), Vp 6= ;, the tree struc-
tures up to and including Tp of the merger are fixed, hence only the segment (ap+1, . . . , an)
and (bp+1, . . . ,bm) will contribute to the construction of the merger when Algorithm 12
is applied. However, not all sampling orders lead to a valid merger. One extra constraint
that both the initial segments (a1, . . . , ap) and (b1, . . . ,bp) are sampling orders of the com-
mon subvine V (p) should be satisfied (a detailed proof can be seen in Appendix 6.A.2).
This constraint guarantees that the construction of the merger from Tn+m−p to Tp+2 fol-
lows a vine structure construction for merger without overlap, and a valid tree structure
construction for Tp+1, hence a valid merger can be constructed according to Algorithm
12.

As an example, we show how to merge vine V1(5) = V ({1,2,3,4,5}) and another vine
denoted as V ′(5) = V ({2,3,6,7,8}), which share a common subvine on elements {2,3}.
These two vines are shown in Figure 6.8 (black).

Figure 6.8: A merger of vine V1(5) (V ({1,2,3,4,5})) (black) and V ′(5) (V ({2,3,6,7,8}) (black). The nodes in the
common subvine V ({2,3}) is denoted in shaded area and the new nodes and lines in the vine triangular array
are marked in red.

Following Algorithm 12 with extra conditions on the sampling orders, one possible
merger of V1(5) and V ′(5) is shown in Figure 6.8, where the sampling order is (2,3,5,4,1)
or (3,2,5,4,1) in V1(5) and (2,3,6,8,7) or (3,2,6,8,7) in V ′(5). Other choice for the seg-
ment (a3, a4, a5) in V1(5) can be (4,5,1), (4,1,5) or (1,4,5). There is no other choice for
the segment (b3,b4,b5) in V ′(5). Hence in total there are four possible mergers of V1(5)
and V ′(5).

In general it is unknown how many mergers can be constructed. The number of
mergers depends on the structures of both vines and the overlapping elements. In this
chapter, we follow the bottom-up approach in Algorithm 11 when we want to merge two
vines with overlap (we expect differences in the performance of both algorithms but this
problem will not be researched here). The merger given in Figure 6.8 is constructed by

6

138
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

connecting nodes 25|3 and 26|3 in T3. Other choice can be to connect 13|2 and 26|3
(leading to another merger) or to connect 24|3 with 26|3 (leading to two extra mergers).

In the examples above we have explained how two vines can be merged. However,
when there are more overlapping vines that need to be merged, the order of merging
should be specified so the merging is done consistently. We show in Figure 6.9 one ex-
ample where three vines V ({1,2,3}), V ({1,3,5}) and V ({1,4,5}) (denoted as V1(3), V2(3)
and V3(3), respectively) are to be merged.

Figure 6.9: Three regular vines V ({1,2,3}) (V1(3)), V ({1,3,5}) (V2(3)) and V ({1,4,5}) (V3(3)) (black) and one
possible way of merging V1(3) and V3(3) (red).

If we were to merge V1(3) and V3(3) first, setting the new node in T3 of V {1,2,3,4,5} to
be 34|1 (in red) instead of 35|1, as shown in Figure 6.9, then their merger will not have a
common subvine with V2(3). By choosing right a correct order of merging these vines the
problem above can be avoided. In the example above, we should merge V1(3) and V2(3)
first and then V3(3), or to merge V2(3) and V3(3) first and then V1(3). In Section 6.3.4, we
will provide a procedure to order the merging process when an m-vine corresponding to
a strong clique tree is constructed.

6.3.4. CONSTRUCTION OF AN M-VINE CORRESPONDING TO A STRONG CLIQUE

TREE
In this section, an algorithm to construct an m-vine corresponding to a strong clique

tree is presented. Regular vines on elements of each node in the strong clique tree T are
constructed and they are constructed consistently such that they contain common sub-
vines. This is done by following, in reverse order, the sequence of trees T (i), i = 0, . . . ,k
obtained for T . The nodes of these trees determine constraint sets of nodes that have
to appear at different trees in a regular vine. The elements in a node in T (i) are either
in its separator(s) or do not appear in any node of T (j), j ≥ i , which we refer to as extra
elements.

First, an example of the approach will be presented. The m-vine corresponding to
the strong clique tree T in Figure 6.6 (black) can be constructed as follows:

The sequence of trees T (i), i = 1, . . . ,3 are in Figure 6.7 (left). We follow these trees in
reverse order starting with T (3).

Step 1: In T (3) there is only one node, which has no separator (the process is just started)
and has an extra element 1. Hence, a vine V ({1}) is constructed.

Step 2: In T (2) we have C (2)
1 = {1} and C (2)

2 = {1,3}. Node C (2)
1 has a separator {1} and

no extra element, hence the vine is V ({1}). Node C (2)
2 has a separator {1} and an

6.3. RELATIONSHIP BETWEEN M-VINE AND STRONGLY CHORDAL GRAPH

6

139

extra element 3, then the vine for this node is obtained through extending V ({1})
by element 3, to get V ({1,3}).

Step 3: In T (1), there are three nodes C (1)
1 = {1,2},C (1)

2 = {1,3} and C 1
3 = {1,3}. Node C (1)

1
has separator {1} and an extra element 2, hence we obtain V ({1,2}) by extending
V ({1}) with element 2. In the case of node C (1)

2 , we see that it has separators {1}
and {1,3}. Separator {1} is a subset of {1,3}, hence only separator {1,3} will be con-
sidered. Since there is no extra element its corresponding vine is V ({1,3}). Node
C (1)

3 has separator {1,3} and no extra element so its corresponding vine is V ({1,3}).

Step 4: In T (0) corresponding vines for nodes {1,3,5}, {1,2,6} and {1,3,7} can be constructed
similarly as above. Node {1,2,3,4} has two separators, {1,2} and {1,3}, with their
corresponding vines V ({1,2}) and V ({1,3}), respectively, and an extra element 4. A
vine V ({1,2,3}) can be constructed by at first merging V ({1,2}) and V ({1,3}) and
then by extending with element 4 to get V ({1,2,3,4}). The last step is to combine
the regular vines in T (0) to get the m-vine V ({1,2,6}, {1,3,5}, {1,2,3,4}, {1,3,7}).

The general algorithm to construct an m-vine corresponding to a strong clique tree
T is presented in Algorithm 13.

Algorithm 13 Construction of an m-vine for a strong clique tree T

Input: A tree sequence T (i), i = 0, . . . ,k where T (0) =T

Output: An m-vine corresponding to the strong clique tree T

1: for i from k to 0 do
2: repeat
3: Find the separators of C (i)

j which are not subsets of the others.

4: if no separator found then
5: Construct a regular vine V (C (i)

j) for the node C (i)
j .

6: else
7: Find the vine structures corresponding to the separators.
8: Combine the vines corresponding to separators and the extra elements (if

applicable).
9: The vine after merging and extending by extra elements is V (C (i)

j).

10: end if
11: until all nodes in T (i) have been considered
12: end for
13: Combine the vine structures corresponding to the nodes in T (0) to get the m-vine.

As discussed in the end of Section 6.3.3, a correct order of merging more than two
regular vines is needed. This can be implemented in line 8 in Algorithm 13 where more
than two separators of node C (i)

j are found. These separators are nodes in tree T (i+1).

We propose to merge them following the known depth-first search algorithm of trees.
That is, to choose randomly one separator as a root of the tree and then order separators
by applying a depth-first algorithm in T (i+1). The detailed algorithm can be found in Al-
gorithm 15 in the Appendix 6.A.5. Due to the property of strong clique tree, the merging
of the separators this way is always consistent.

6

140
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

Theorem 6.3.3 below ensures that Algorithm 13 produces a consistent m-vine. We
show that subvines corresponding to each node in T (i), i = 0, . . . ,k are constructed such
that if they have overlapping elements they must share a common subvine on the over-
lap.

Theorem 6.3.3. Let Cm and Cn be nodes in the tree sequence T (i), i = 0, . . . ,k and let
Cp = Cm ∩Cn 6= ;. Regular vines V (Cm) and V (Cn) constructed according to Algorithm
13 share a common subvine V (Cp).

Proof. Suppose nodes Cm and Cn are in tree T (im) and T (in) respectively, where im ≤ in .
It suffices to find a node with elements Cp in the tree sequence. If im = in , then there is a
path through nodes Cm and Cn and the overlapping elements Cp appear in at least one
separator of Cm or Cn (if the separator is Cp then node is found). These separators are
the nodes in tree T (im+1) and there must be a path through these separators. Similarly,
their separators containing elements Cp are the nodes in T (im+2) and a path through
them exists as well. Applying this argument iteratively, we can finally find a node in a
certain tree level containing only elements Cp . The common subvine V (Cp) of V (Cm)
and V (Cn) is built at that stage and will not change anymore during the construction.
When im < in , the search procedure starts with the separator(s) of Cm that contains el-
ements Cp . This separator will finally result in node(s) that includes the elements Cp

in T (in), otherwise the property that T (i)
{v} is connected is violated. Similarly, as in the

case when im = in , a node Cp and the corresponding common subvine V (Cp) can be
found.

In the next section we show how the theoretical results presented above can be ap-
plied in practice.

6.4. APPLICATIONS OF THE EQUIVALENCE BETWEEN M-VINES

AND STRONGLY CHORDAL GRAPHS
The theoretical result presented in the previous section provides a flexible method

that estimates a distribution with strongly chordal pattern of conditional independence.
Using our result one construct a variety of distributions having a specified set of condi-
tional independence and different properties, e.g. correlation structures, asymmetries,
tail dependence. This can be valuable, e.g. in simulation studies that evaluate the per-
formance of conditional independence tests in a non-Gaussian environment. Moreover
one can take an advantage of existing software implementations of vine copula models.

However, in this section we concentrate on a different application of our result. It
is known that the number of regular vine structures on n elements grows exponentially
with dimensions. Hence estimating all vine structures for the given data is infeasible.
Simplifying the model by assuming a pattern of conditional independence to be pre-
sented in the data, represented by a strongly chordal graph, makes the estimation effort
manageable. The number of m-vine structures constructed following Algorithm 13 is
much smaller (however the exact number of m-vine structures is unknown). For clique
trees containing a small enough number of elements in maximal nodes, one can assess
all vine structures for the subvines corresponding to the maximal nodes. Furthermore
one can even estimate a non-simplified regular vine.

6.4. APPLICATIONS OF THE EQUIVALENCE BETWEEN M-VINES AND STRONGLY CHORDAL

GRAPHS

6

141

In this section, we first analyze in detail two simulated examples where the advan-
tages of simplifying the vine copula model are highlighted. In high dimensions when
it is not possible to estimate all possible m-vines, a heuristic method to choose an m-
vine structure for a given data is needed. We propose a general heuristic of constructing
m-vine structures from data, along with a simulation study to evaluate its performance.

The following procedure describes how to obtain a strongly chordal graph from data.
For a given data transformed into its z-scale, the strongly chordal graph is constructed
as follows: a graph is chosen at first using function selectFast in the GGMselect pack-
age (Giraud et al. (2009)) (the best graph in a family of graphs generated by the method
introduced in Meinshausen & Bühlmann (2006), Wille & Bühlmann (2006) is chosen), if
this graph is not chordal, necessary edges are added to make it chordal; if this graph is
not strongly chordal (according to Theorem 6.3.1), more edges are added based on the
algorithm in Mukhopadhyay & Rahman (2021).

6.4.1. SIMULATED EXAMPLES

An m-vine on 10 elements is used in simulations . The maximal nodes are {2}, {6},
{1,3,7,8} and {1,4,5,9,10}. Details about the simulated vine are presented in Table 6.1
(in this example, we include commas to separate elements in the nodes of the vine and
in the nodes of the clique tree), where we show the m-vine structure, the copula family C
and the corresponding Kendall’s tau τ. In order to amplify the effect of the vine structure,
the copula families are chosen from Clayton copula (C), Gumbel copula (G) and their
rotated versions. The vine triangular array for this m-vine is shown in Appendix 6.A.3.

structure C τ structure C τ structure C τ

Tree-4
9,5|1,4,10 C270 -0.60
Tree-3
5,10|1,4 C180 0.48 1,7|3,8 G270 -0.34 9,10|1,4 C270 -0.67
Tree-2
4,5|1 G180 0.74 3,7|8 C90 -0.68 1,9|4 C90 -0.50
1,3|8 C90 -0.70 1,10|4 G270 -0.88
Tree-1
1,5 G270 -0.33 7,8 C 0.61 4,9 G180 0.49
3,8 G 0.50 4,10 G 0.54 1,4 G180 0.56
1,8 C180 0.64

Table 6.1: An m-vine V ({2}, {6}, {1,3,7,8}, {1,4,5,9,10}).

ABILITY TO ASSESS ALL POSSIBLE VINE STRUCTURES

The number of vines grows exponentially as dimension grows. However in the m-
vine approach, we may be able to find the best vine structure for a maximal clique with
relatively small number of variables. We show below an example.

We simulate 1000 samples from the m-vine. The strong clique tree from the data is
as follows,

6

142
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

Figure 6.10: The strong clique tree estimated by selectFast for the data simulated from the m-vine with 1000
samples.

The graph given by the function selectFast is already a strongly chordal graph
and we observe that it does not exactly recover the clique tree of the true m-vine (This
is not surprising as the methods GGMselect assumes gaussian data.). Extra maximal
cliques appear in the estimated tree, {1,4,5,8} and {1,3,5,8}. However, we show below
that one can still find the true structure (copula families can be different) for subvine
V ({1,4,5,9,10}) and V ({1,3,7,8}).

According to Algorithm 13, V ({1,4,5,9,10}) is constructed by extending V ({1,4,5})
with variable 9 and 10, and V ({1,3,7,8}) is constructed by extending V ({1,3,8}) with vari-
able 7. Vine V ({1,4,5}) requires to contain node 1,5, hence only two possible structures
are available. The best structure is the true structure which has the smallest AIC =
−3207.56 (also smallest B IC =−3183.03). When we fix the best structure for V ({1,4,5}),
there are 48 possible vine structures for V ({1,4,5,9,10}) and it is easy to estimate all of
them. The one that has the smallest AIC = −12394.17 (also smallest B IC = −12330.37)
is the true structure for these variables. Similarly, for V ({1,3,7,8}), its subvine V ({1,3,8})
has two possible structures with node 1,8 included. The best V ({1,3,8}) is the one we
simulated from and has AIC = −4202.58 (B IC = −4182.95). Then extending V ({1,3,8})
by variable 7 leads to estimating four possible structures and the best one is the true one
V ({1,3,7,8}) (AIC =−7638.84 and B IC =−7599.58).

The remaining maximal cliques {1,4,5,8} and {1,3,7,8} are determined once V ({1,4,5})
and V ({1,3,8}) are fixed (In general finding the best vine for each maximal clique does
not guarantee a globally optimal m-vine). We compare the m-vine estimated follow-
ing the procedure above with the true m-vine and observe that the contribution to AIC
and B IC of the extra nodes 5,8|1, 3,5|1,8 and 4,8|1,5 in the constructed m-vine is very
small. Following Dißmann’s heuristic in Dißmann et al. (2013), Brechmann et al. (2012),
a 5-truncated vine is constructed. We see in Table 6.2 that the m-vine we constructed is
significantly better than the truncated vine. However, even when the true structure is re-
trieved, due to estimation error from the tree-wise estimation procedure and the limited
choice of parametric copula families, the constructed m-vine performs worse than the
true m-vine for the data.

6.4. APPLICATIONS OF THE EQUIVALENCE BETWEEN M-VINES AND STRONGLY CHORDAL

GRAPHS

6

143

Vuong test p-value
AIC B IC true m-vine 5-trun

true -20438.98 -20360.46 2.83E-15 3.02E-117
m-vine -20036.67 -19913.97 4.48E-20 1.77E-110
5-trun -18134.05 -18016.27 7.03E-123 1.08E-109

Table 6.2: The AIC , B IC and the p-value from a Vuong test for the true m-vine (true), the m-vine we con-
structed (m-vine) corresponding to the strong clique tree in Figure 6.10 and a 5-truncated vine constructed by
Dißmann’s heuristic (5-trun). The upper diagonal in the Vuong test shows the result without Schwarz correc-
tion while the lower diagonal shows the result with Schwarz correction.

ABILITY TO ASSESS NON-SIMPLIFIED MODELS FOR SUBVINES

Non-simplified vines are difficult to construct and estimate. There are a few attempts
to handle this problem, which propose to estimate the relationship between the copula
parameter (or the corresponding conditional Kendall’s tau) and the conditioning vari-
ables non-parametrically (Acar et al. (2011)) or to use generalized additive models (GAM)
(Nagler & Vatter (2020)). A discussion about the performance of these two methods can
be found in Acar et al. (2019). These approaches are in principle feasible only in low
dimensions. In this chapter, we show an example using the latter method which is im-
plemented in the gamCopula package.

The non-simplified regular vine is constructed based on the same m-vine as in Ta-
ble 6.1. We replace the constant conditional copula by assuming a relationship between
the conditional Kendall’s tau and the conditioning variables in the subvines V ({1,4,5}),
V ({1,4,10}) and V ({1,4,9}) as follows: τ = ez−1

ez+1 , where z = −β0 +β1u and u denotes the
conditioning variable. The copula families are adjusted to include their rotated ver-
sions (the copula family for node 4,5|1 (β0 = −2.77,β1 = 5.70) includes G180 and G270,
for node 1,10|4 (β0 = −1.63,β1 = 3.28) includes G and G270 and for node 1,9|4 (β0 =
−1.27,β1 = 2.34) includes C180 and C90). Again 1000 samples are simulated from this
m-vine and the resulting strong clique tree presented in Figure 6.11.

Figure 6.11: The strong clique tree for the data simulated from a non simplified m-vine of size 1000 by adding
edges 19 and 1,10 to the estimated graph from selecFast.

Edges 1,9 and 1,10 are added in order to make the graph strongly chordal. We see that
in the estimated tree nodes 5 and 10 as well as 4 and 10 are not connected. Hence the
true structure for V ({1,4,5,9,10}) cannot be found. Similar, as in the previous example,
we can still find the best vine for each maximal clique. The maximal clique {1,4,5,9} re-
quires to construct V ({1,4,9}) first. There are three possible vine structures for V ({1,4,9})
and we first estimate a simplified vine for each structure. Then we apply the pacotest

6

144
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

Figure 6.12: Kendall’s tau for the conditional copula in vine V ({1,4,9}) (left) and in vine V ({1,4,5}) (right). The
true conditional tau is marked in black points and the estimated tau is marked in red points with its 95%
confidence interval. The horizontal line denotes the conditional tau estimated by a simplified vine (τ=−0.06
(left) and τ= 0.02 (right)).

(Kurz (2019)) to check whether the simplifying assumption is rejected. If it is rejected,
we fit a non-simplified vine with the GAM method instead. All the three structures are
rejected to be a simplified vine, and the best non-simplified vine (AIC = −1977.96 and
B IC = −1953.42) is the one with the true vine structure (the number of parameters in
a non-simplified vine includes, 1) the number of parameters of the simplified bivari-
ate (conditional) copulas, 2) the number of degrees of freedom in the GAM model con-
tained in the non-simplified bivariate conditional copulas. 3) the number of the second
parameters in the non-simplified bivariate conditional copulas if there are any). The re-
lationship between the conditional tau and the conditioning variable is shown in Figure
6.12 (left). The estimated non-simplified conditional copula is a Student-t copula with
degrees of freedom equal to 15.33 and the coefficients are β̂0 =−0.97, β̂1 = 1.62.

Fixing the best non-simplified vine V ({1,4,9}) gives four possible structures for V ({1,4,5,9}).
The best structure is to connect 5 and 1 in the first tree. A non-simplified vine is esti-
mated which has AIC =−3588.35 and B IC =−3517.44. Furthermore, the non-simplified
conditional copula C45;1 can be estimated quite well, as shown in Figure 6.12 (right).
The vine structure for the maximal clique {1,4,9,10} is fixed once V ({1,10}) 1 is deter-
mined, which leads to a non-simplified vine V ({1,4,9,10}) with AIC = −3116.49 and
B IC = −3023.53. The remaining two maximal cliques require to construct V ({1,3,8})
at first. Similarly there are three possible structures and for each structure a simplified
vine is estimated or a non-simplified vine is estimated instead decided by the pacotest.
Two of them are non-simplified vines but the best one is a simplified vine having the

1the gamCopula package does not allow the BB6 family copula (AIC =−506.61, B IC =−496.79) to be chosen
which for this data has better AIC than the Gumbel copula (AIC = −505.73, B IC = −500.82). Hence we fix
this copula to be Gumbel also in the later simplified vine V ({1,3,8,10})

6.4. APPLICATIONS OF THE EQUIVALENCE BETWEEN M-VINES AND STRONGLY CHORDAL

GRAPHS

6

145

true structure (AIC = −3908.47 and B IC = −3893.75). Once V ({1,3,8}) is determined
V ({1,3,8,10}) is fixed. V ({1,3,7,8}) is constructed by extending V ({1,3,8}) with variable
7 and there are four possibilities to consider. Two of them are rejected to be simplified
vines hence non-simplified vines are estimated instead. The best V ({1,3,7,8}) is a sim-
plified vine with its true structure (AIC =−7139.28 and B IC =−7104.93).

The Dißmann’s heuristic gives a 4-truncated vine. Information about the perfor-
mance of the models is provided in Table 6.3 and we see that the m-vine approach is
significantly better.

Vuong test p-value
AIC B IC true m-vine 4-trun

true -11865.60 -11772.35 0.775 2.02E-13
m-vine -11865.28 -11688.48 0.494 1.64E-45
4-trun -10812.19 -10714.04 1.40E-13 2.36E-37

Table 6.3: The AIC , B IC and the p-value from a Vuong test for the true m-vine model (true), the m-vine we
constructed (m-vine) corresponding to the strong clique tree in Figure 6.11 and a 4-truncated vine constructed
by Dißmann’s heuristic (4-trun). The upper diagonal in the Vuong test shows the result without Schwarz cor-
rection while the lower diagonal shows the result with Schwarz correction.

Since we are not able to recover the true vine structure due to the restriction caused
by the constructed strongly chordal graph, the dependence between X1 and X10 condi-
tional on X4 cannot be estimated well, which is shown in Appendix 6.A.4.

In the two simulated examples above, we have explained that by applying the m-vine
approach we are able to focus on estimating its subvines on small number of variables
and can improve the model estimation. Furthermore when some maximal cliques share
no separators or a separator with one element only, their corresponding vine structure
can be estimated separately. This leads to a great reduction of computational effort when
data from a sparse model is considered.

However, it is also very clear that if our assumptions of conditional independence
structure present in the data are not correct the performance of our method will not be
optimal.

6.4.2. HEURISTICS
Algorithm 13 explains how the m-vine corresponding to a given strong clique tree

can be constructed. There are still many possible m-vine structures and, in general, it is
not known how many there are. In this section, we will design a heuristic search for the
’best’ m-vine structure for the data. This will be achieved by specifying information on
how choices should be made in Algorithm 13 in every step where a choice is possible.
We discuss all these choices below.

• In line 5 in algorithm 13, the method of constructing a regular vine on given elements is
required.
At this point we will use Dißmann’s heuristic where a vine structure is constructed
tree by tree and each tree structure is determined by the maximum spanning tree with
absolute value of Kendall’s tau being the edge weight. Hence in the case of only one
maximal clique, the m-vine approach coincides with Dißmann’s heuristic.

6

146
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

• In line 8 in algorithm 13, the way of combining vines corresponding to separators and
the extra elements needs to be provided.
First we merge the vines for the separators and then extend the merger by the extra
elements. The order of merging separators is determined by Algorithm 15. We require
two choices at this point.

1. The choice of the sampling order for the regular vines in Algorithm 12 when vines
without overlap are merged and tree structures for trees higher than Tp when merg-
ing vines with overlap.

When vines do not overlap, the sampling order is chosen based on empirical mul-
tiple correlation (Yule & Kendall (1965)). For n variables and their empirical corre-
lation matrix Σ of normal scores, the empirical multiple correlation of variable i is
R2

i {Σ} = 1− det (Σ)
det (Σi i)

, where Σi i denotes the matrix Σ without i th row and i th column

and det is the determinant.

When merging V (n) and V (m) where Vn∩Vm =;, the sampling order SOn = {a1, . . . , an}
is determined in reverse. From the top node of V (n) there are two variables in the
conditioned set denoted as vn , vn−1. The empirical multiple correlation for these
two variables are denoted by R2

vn {Σ} and R2
vn−1{Σ} respectively, where Σ is the empir-

ical correlation matrix for variables Vn ∪ Vm . Since an will appear in the top node
of the merger, it’s more reasonable to choose an with smaller correlation in higher
trees. When the value of an is determined, V (n) is marginalized by an and we get a
subvine with conditioned set vn−1vn−2 in its top node. The variable an will be re-
moved from the matrix Σ. By successively applying this approach we get a reverse
sampling order (an , . . . , a1). The sampling order of V (m) can be similarly deter-
mined. The algorithm below concludes the above procedure.

Algorithm 14 Determine a sampling order of V (n) during merging with V (m)

Input: A regular vine V (n) and empirical correlation matrix Σ(Vn ∪Vm)
Output: A sampling order SOn = (a1, . . . , an)

1: for i from n to 2 do
2: Calculate the empirical multiple correlation R2

vi {Σ} and R2
vi−1{Σ} for the variables

vi , vi−1 in the conditioned set of the top node of V (n).
3: ai is chosen to be the variable with smaller empirical multiple correlation.
4: V (n) is updated by marginalizing ai .
5: Σ is updated by removing the row and the column of ai .
6: end for

When merging V (n) and V (m) with overlapping elements Vp 6= ;, the heuristic to
determine the tree structure higher than Tp is the same as Dißmann’s heuristic. A
weight (absolute value of Kendall’s tau) is assigned to the possible edges and the
tree structure is chosen to be the maximum spanning tree.

2. When there is only one extra element, then vine structure can be constructed by
extending a vine by this element as explained in Algorithm 12. However, when there
are more extra elements, we must decide in which order they should be added. We

6.4. APPLICATIONS OF THE EQUIVALENCE BETWEEN M-VINES AND STRONGLY CHORDAL

GRAPHS

6

147

propose to construct a vine on extra elements using Dißmann’s heuristic and merge
these vines using the approach explained in the previous point.

Note that due to the choices we made, not all m-vine structures are considered. This
is mainly due to the choice we made in the second point. For example in Figure 6.10,
the vine V ({1,4,5,9,10}) is constructed by at first fixing a vine structure for V ({1,4,5})
and then merging with V ({9,10}), which accounts for only 8 possibilities. This choice
eliminates 40 possible vine structures for V ({1,4,5,9,10}).

6.4.3. SIMULATION

A simulation study is presented in this section to show the performance of the pro-
posed heuristic when compared to the Dißmann’s heuristic. The data is simulated from
a regular vine copula model. The vine structure is randomly constructed by the function
RVineMatrixSample. Its bivariate copula families are chosen from Gumbel(G), Clay-
ton(C) and Joe(J) copulas as well as their rotated versions. The copula parameters are
obtained from Kendall’s tau which are simulated from a Beta(2,2) distribution. In or-
der to distinguish from the independence copula, all Kendall’s tau smaller than 0.2 are
rounded off to 0.2 (according to the test in Genest & Favre (2007) this 0.2 Kendall’s tau
is rejected to be 0 for 300 or 1000 sample size). The Kendall’s tau is also allowed to take
negative values with probability 0.5.

The conditional independence are introduced by at first determining a truncation
level k and then replacing randomly the bivariate copulas in tree Tk with independence
copula. The dimension of the simulated model is 10, 20 and 30 respectively and the sam-
pled data size is 300 or 1000. The proportions of the independent copulas in vine mod-
els are chosen to be 30% (leading to a not very sparse model) and 70% (sparse model).
Hence, for dimension 10 there are 13 (b45∗0.3c) or 31 (b45∗0.7c) independence copulas
assigned, for dimension 20 there are 57 (190*0.3) or 133 (190*0.7) independence copu-
las, and for dimension 30 there are 130 (b435∗ 0.3c) or 304 (b435∗ 0.7c) independence
copulas.

For each simulated data, we apply 1) method-1, the Dißmann’s heuristic to get a
truncated vine; 2) method-2, the procedure introduced in the previous section (estimate
a graph by selectFast, make it strongly chordal if needed) and the heuristic to get an
m-vine from the estimated strongly chordal graph; 3) method-3, the heuristic directly
on the strongly chordal graph from the simulated m-vine model (which is a graph by
connecting all the variables in the constraint set of each maximal node of the m-vine
respectively). We then calculate the AIC and B IC for the vines estimated by these three
approaches. Furthermore, we apply a Vuong test (without or with Schwarz correction)
to the estimated vines to see whether one vine is significantly better than the other. This
procedure is repeated 100 times. The results are shown in Table 6.4.

6

148
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

Dim % size #i mp ∆AIC ∆B IC #i mpSchw ar z ∆AICSchw ar z ∆B ICSchw ar z #OV LP
10 30 300 M-2 71(33) 267.88 262.94 71(25) 345.71 342.30 17(18)

M-3 80(67) 1129.93 1175.32 84(70) 1088.23 1133.58
1000 M-2 81(34) 586.96 585.51 81(32) 622.37 621.91 7(5)

M-3 84(76) 4067.88 4162.23 86(80) 3877.10 3970.65
70 300 M-2 49(30) 352.33 354.67 49(30) 352.33 354.67 7(7)

M-3 96(84) 448.61 467.48 96(86) 439.47 458.55
1000 M-2 56(39) 901.21 908.88 54(39) 904.02 912.58 8(7)

M-3 92(89) 1545.87 1588.94 96(89) 1545.87 1588.94
20 30 300 M-2 84(73) 406.15 193.32 74(29) 609.99 380.35 15(16)

M-3 59(40) 1604.54 1744.54 64(50) 1330.61 1474.39
1000 M-2 72(30) 441.84 436.44 77(30) 450.86 450.86 8(11)

M-3 61(50) 4408.98 4781.87 64(56) 3983.06 4356.40
70 300 M-2 31(18) 925.64 883.16 29(18) 926.89 894.39 3(0)

M-3 99(96) 2943.62 3249.96 100(97) 2915.97 3222.12
1000 M-2 81(71) 842.96 641.15 75(37) 1341.46 1170.62 1(0)

M-3 99(98) 12268.93 12979.95 99(99) 12147.05 12857.28
30 30 300 M-2 82(73) 599.97 189.19 59(8) 997.39 420.53 9(18)

M-3 47(25) 2036.46 2226.09 58(34) 1604.84 1813.34
1000 M-2 25(13) 747.70 678.93 22(14) 701.45 663.88 16(19)

M-3 67(45) 442.24 302.50 41(11) 1141.46 897.68
70 300 M-2 49(42) 574.41 231.53 34(3) 1039.37 491.21 10(7)

M-3 64(57) 3158.75 3957.02 82(71) 2592.34 3376.34
1000 M-2 94(90) 883.60 390.24 84(32) 1341.17 771.41 2(6)

M-3 73(72) 12479.21 14267.61 79(73) 12312.03 14101.68

Table 6.4: Simulation result in dimension 10, 20 and 30 respectively with proportion of independence copula
being 30% or 70%, with 300 or 1000 data size. M-2 denotes method-2 and M-3 denotes method-3. #i mp de-
notes the number of times the estimated m-vine and the truncated vine from method-1 are not significantly
different according to the Vuong test or the estimated m-vine is significantly better (the number for this case is
shown in brackets). ∆AIC and ∆B IC denotes the average absolute AIC and B IC improvement when the esti-
mated m-vine is significantly better than the truncated vine. #i mpSchw ar z , ∆AICSchw ar z and∆B ICSchw ar z
correspond to the same results of the Vuong test with Schwarz correction. #OV LP denotes the number of
times the m-vines from method-2 and method-3 are not significantly different according to the Vuong test
(the number in brackets correspond to the Vuong test with Schwarz correction).

We draw several conclusions from the simulation results.

• The performance of method-2 is comparable to method-1 when the simulated data
is not very sparse (30% proportion of independence copula) in dimension 10 and 20.
However, when the simulated data is sparse (70% proportion of independence copula)
method-2 performs worse than method-1 especially when the dimension is high and
the data size is small. This is because the data is simulated from a non-Gaussian dis-
tribution which violates the Gaussian assumption used in the function selectFast.
Moreover, when smaller data size is generated, this function is less likely to capture
the conditional independence well especially in high dimensions. According to the
Vuong test, the m-vines from method-2 and method-3 are less likely to have similar
performance when the underlying data is sparse;

• when the underlying strongly chordal graph is correctly captured in method-3, the

6.5. REAL DATA ANALYSIS

6

149

performance is much better than method-1 when the simulated data is sparse. How-
ever in dimension 20 when the underlying data is not very sparse or in dimension 30,
the performance of method-3 is not as good as in other cases. This is due to the choice
of our heuristic vine structure constructions, where lots of vine structures are not con-
sidered (as discussed in the example in Section 6.4.2). Even though the vine structures
are not well chosen in general, one can still find some vine structures with much better
AIC or B IC , as shown in Table 6.4 where the average improvement in AIC and B IC is
large.

6.5. REAL DATA ANALYSIS
In this section, we analyze two data sets.

Data set 1 The first data set we consider is the uranium data set (Cook & Johnson
(1986)). It consists of 655 data points for 7 variables, which are denoted as X1 (Ura-
nium), X2 (Lithium), X3 (Cobalt), X4 (Potassium), X5 (Cesium), X6 (Scandum) and X7

(Titanium). The data is transformed into u-scale using their empirical distributions. The
function selectFast is applied to the data transformed to z-scale and we get that the
output graph is not chordal. After two extra edges 16 and 27 are added into the graph,
the final strong clique tree is obtained, which is shown in Figure 6.13.

Figure 6.13: The strongly chordal graph (by adding the extra edges marked in red) and the strong clique tree
for uranium data set.

We can observe that rather than estimating a dim-7 regular vine one can analyze
this data by estimating two dim-5 vines and one dim-4 vine with overlapping elements.
Following our heuristic m-vine approach we obtain a simplified m-vine with AIC =
−1655.24 and B IC = −1534.16. The Dißmann’s heuristic gives a 3-truncated vine with
AIC =−1572.59 and B IC =−1496.35. The m-vine approach is better (the p-value of the
Vuong test is equal to 8.19E-03 but 0.3302 with Schwarz correction) and it can be im-
proved further by taking into account non-simplified vines. This data set was already
extensively studied in Acar et al. (2012), Killiches et al. (2017) and there has been shown

6

150
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

that the conditional copula C36;7 does depend on the conditioning variable.
In our further analysis we concentrate on the maximal clique {2,3,6,7} and the vine

structures for other maximal cliques can be constructed similarly. The best vine struc-
ture for the maximal clique {2,3,6,7} can be found similarly as in Section 6.4.1, which is
to search for all possible structures, estimate simplified vine at first and non-simplified
vine instead if it’s rejected according to the pacotest. Node 67 has to be included in the
first tree as the restriction in the graph. By extending V ({6,7}) with variable 2 and 3 there
are 12 possible vine structures. For each of them, we apply the mentioned estimation
procedure and find the best one according to AIC (AIC = −939.50) is a non-simplified
vine. This vine has the same vine structure as the simplified subvine on {2,3,6,7} in the
heuristic m-vine approach (with AIC =−891.88 and B IC =−847.03). It contains nodes
26, 67 and 36 in the second tree, nodes 27|6 and 37|6 in the third tree and node 23|67
in the last tree. We see that non-simplified vines are better models for the data. The
Kendall’s tau for the conditional copula in the third tree for both simplified and non-
simplified copula are shown in Figure 6.14. The best non-simplified vine according to
B IC (B IC =−863.40) is the one with nodes 26, 67, 23 in the second tree, 27|6, 36|2 in the
third tree and 37|26 in the fourth tree.

Figure 6.14: Kendall’s tau for the conditional copula C27;6 (left) and C37;6 (right), marked in red points with its
95% confidence interval. The horizontal line denotes the conditional Kendall’s tau of the simplified copula.

Data set 2 The second data set is the financial data in K ennethR.F r ench−Dat al i br ar y
2 which consists of 1142 monthly returns of 49 industry portfolios from 07-1926 to 08-
2021. Detailed explanation for the industries can be found in Appendix 6.A.6. We follow
the steps taken in Kurz (2019) and first filter the data by a ARMA(1,1)-GARCH(1,1) model
with Student’s t innovation. The residuals are fitted by their empirical distributions, and
the fitted margins are then transformed to u-scale. The graph for the data in z-scale given
by the function selectFast consists of 220 edges and is not chordal. To make this graph

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

6.5. REAL DATA ANALYSIS

6

151

chordal extra 358 edges are added, and furthermore in order to make it strongly chordal
101 more edges are added. The final strongly chordal graph is shown in Figure 6.15 by
the function tkplot (Csardi & Nepusz (2006)) and the added extra edges are marked in
red. The obtained twenty maximal cliques in the corresponding clique tree are shown in
Appendix 6.A.6.

Figure 6.15: The final constructed strongly chordal graph. The extra edges added to make the graph strongly
chordal is marked as red.

Although there were many edges added to make the graph strongly choral, for some
indices their relationship to other indices stays the same, for example the index Mines
for which no extra edges are added to have it connected with other vertices. Furthermore
not all the added edges are meaningless to represent the relationship between indices.
For example, the index Oil was connected with indices Chems, Cnstr, Mach, Mines,
Coal, Util and Fin, and thirteen more edges between Oil and other indices are added
like with Fun and Steel. In our m-vine approach, the relationship between Oil and Fun,
and between Oil and Steel are estimated by a G180 copula (τ = 0.33, lower tail depen-
dence λL = 0.41) and a BB1 copula (τ= 0.44, lower tail dependence λL = 0.48 and upper
tail dependence λU = 0.30) respectively. Discussion about how the Oil industry affects
the Fun industry can be found in Dahlquist & Vonderau (2022). The relationship be-
tween Oil industry and Steel industry seems more intuitive. There is a stronger lower tail
dependence than the upper tail dependence for these variables.

The resulting m-vine has AIC = −52749.33 and B IC = −49362.09. Compared with
the estimated 28-truncated vine from Dißmann’s heuristic (AIC =−52217.30 and B IC =
−48930.87), the m-vine approach is significantly better (the p-value in Vuong test equals
to 2.10E-4, and 5.20E-3 with Schwarz correction). In the constructed strong clique tree,
there are some maximal cliques with five or six variables for which we can further im-

6

152
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

prove the estimation by assessing all vine structures corresponding to those maximal
cliques.

6.6. CONCLUSION
In this chapter we studied m-vines introduced in Kurowicka & Cooke (2006) and

proved their relationship to the strongly chordal graphs. We proposed to use this re-
sult to simplify the regular vine copula model by assuming that a pattern of conditional
independence represented by strongly chordal graph is appropriate for the data. This
makes the estimation of the model much less expensive. When modeling a sparse data
it allows to consider all possible vine structures corresponding to nodes in strong clique
tree, and furthermore it makes feasible to consider non-simplified vines.

We showed that when the assumptions of the pattern of conditional independence is
correct our method provides obvious advantages. However, it is not surprising that when
the model is simplified incorrectly, our method might miss important dependencies and
its performance might be poor.

We summarize several deficiencies of the m-vine approach as follows:

• The estimation accuracy of the m-vine approach relies heavily on the initial graph
generated from the data as shown in the simulation study in Section 6.4.3. The m-
vine approach will not consider more complex vine structures than the information
about conditional (in)dependencies given by the graph. In this chapter, we use the
Gaussian graphical model to generate the graph. When non-Gaussian dependence
appears, methods in Bauer et al. (2012), Bauer & Czado (2016), Hobæk Haff et al. (2016)
(where the conditional independence is captured by pair copula constructions includ-
ing vines) can be used. This issue is however still an open problem.

• The m-vine approach benefits from the sparsity of given data to reduce computations.
However, in some cases many edges may be added into the estimated graph in order to
make it strongly chordal, for example when the estimated graph is sparse but contains
a large cycle. This problem so far cannot be mitigated.

• Even though we can assess all possible structures for the subvines, the true m-vine
structure may not be found. This is due to the restrictions in the strongly chordal graph
or the heuristics we proposed. However, we can assess all possible subvine structures
and choose the best if maximal cliques with small number of variables are obtained.

• To the best of the authors’ knowledge, it is not known in general how specified condi-
tional independence can be represented by a regular vine with some nodes removed.
In this chapter we only discussed the conditional independence represented by strongly
chordal graphs.

6.A. APPENDIX TO CHAPTER 6

6

153

6.A. APPENDIX TO CHAPTER 6
6.A.1. EXAMPLE OF MERGER WITHOUT OVERLAP

Below we show an example of how to merge two regular vines without overlap. One
vine is V1(5) (V ({1,2,3,4,5})) and the other vine is V (3) (V ({6,7,8})), both of them shown
in black in Figure 6.16. The sampling order we have chosen for V (5) is (2,3,5,4,1) and
for V (3) it is (6,8,7).

Figure 6.16: A merger of vine V1(5) (V ({1,2,3,4,5})) (black) and V (3) (V ({6,7,8}) (black). The new nodes and
lines in the vine triangular array are marked in red.

We see that the partners of a5 = 1 are 7 in T8, 8 in T7 and 6 in T6. Then marginalizing
by 1 we have the partners of a4 = 4 are 7 in T7, 8 in T6 and 6 in T5. Through marginalizing
by a3 = 5, a2 = 3 and a1 = 2, we obtain their partners and the structure of joint vine with
new nodes printed in red is shown in Figure 6.16.

6.A.2. THEOREM OF MERGER WITH OVERLAP
The theorem in this section concerns constraints on sampling orders that will lead to

consistent mergers of two vines with overlap using the method in Algorithm 12.

Theorem 6.A.1. Given two regular vines V (n) and V (m) with Vn∩Vm = Vp 6= ;, the merger
V (Vn ∪Vm) constructed by two sampling orders SOn = (a1, . . . , an) and SOm = (b1, . . . ,bm)
according to Algorithm 12 is valid (leads to a regular vine on elements Vn ∪Vm) if and only
if (a1, . . . , ap) and (b1, . . . ,bp) are sampling orders of V (p).

Proof. The structure of the merger is fixed up to and including tree Tp hence only the
segment (ap+1, . . . , an) in SOn and (bp+1, . . . ,bm) in SOm affect the construction of the
merger. According to Algorithm 12, in the merger, the new partners of ai , p +1 ≤ i ≤ n
are (bm , . . . ,bp+1) from tree Ti+m−p to Ti+1, and the new partners of b j , p +1 ≤ j ≤ m are
(an , . . . , ap+1) from tree T j+n−p to T j+1. Denote the top node of V (p) as tp .

6

154
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

Sufficiency: The proof of sufficiency is by construction according to Algorithm 12.
Because (a1, . . . , ap) and (b1, . . . ,bp) are sampling orders of the common subvine V (p),
the segment (ap+1, . . . , an) and (bp+1, . . . ,bm) do not contain elements in Vp . Hence ele-
ments (ap+1, . . . , an) are not in Vm and (bp+1, . . . ,bm) are not in Vn . This means that con-
struction of the merger up to and including tree Tp+2 is valid as it follows a vine structure
construction for merger of two vines without overlap. A new node with conditioned set
ap+1bp+1 is chosen in Tp+2 of the merger, which has one child in V (n) (whose condi-
tioned set contains ap+1) and the other child in V (m) (whose conditioned set contains
bp+1). Since (a1, . . . , ap) and (b1, . . . ,bp) are sampling orders of V (p), these two children
are both a parent node of tp . Hence the tree construction in Tp+1 is also valid, and a
consistent merger is obtained.

Necessity: Let us assume that only (a1, . . . , ap) is not a sampling order of V (p). Hence
at least one element in the conditioned set {s, t } ∈ Vp of tp , is in (ap+1, . . . , an). Let ak = s
(the case that ak = t is similar), p +1 ≤ k ≤ n, and the new partners of ak in the merger
are (bm , . . . ,bp+1) from tree Tk+m−p to tree Tk+1. We also have that ak is either in the
conditioning or conditioned set of parents of tp in tree Tp+1 of V (m). If ak is in the con-
ditioning set, then by proximity condition, it cannot be in the conditioned sets of nodes
in higher trees. If ak is in the conditioned set, there must be a parent node where ak

is partnered with bp+1, hence node with conditioned set ak bp+1 already exists in V (m).
This leads to contradiction as each pair of elements exists in the conditioned set of a
node only once in a regular vine.

6.A.3. EXAMPLE VINE TRIANGULAR ARRAY

Figure 6.17: The vine triangular array representation for the m-vine in Section 6.4.1.

6.A.4. NON SIMPLIFIED COPULA EXAMPLE

To show the dependence between X1 and X10 conditional on X4, we simulated data
from the estimated m-vine. The relationship between the conditional Kendall’s tau of
C1,10|4 (copula family is C180 or C270) and variable X4, estimated by GAM model is
shown in the figure below. The estimated non-simplified m-vine where this relationship
is not modeled directly cannot recover the relationship quite well.

6.A. APPENDIX TO CHAPTER 6

6

155

Figure 6.18: Kendall’s tau for the conditional copula C1,10|4 with respect to X4. The true conditional tau is
marked in black points and the estimated tau is marked in red points with its 95% confidence interval.

6

156
6. REGULAR VINES WITH STRONGLY CHORDAL PATTERN OF (CONDITIONAL)

INDEPENDENCE

6.A.5. ALGORITHM

Algorithm 15 Determine the order of separators to be merged for node C (i)
j

Input: the separators S and the clique tree T (i+1)

Output: the order of separators or der

1: i ndex = 0.
2: while not all separators in S are considered do
3: Randomly pick one separator from the separators that haven’t been considered,

denoted as S ′
i ndex .

4: Set i ndex = i ndex +1 and or der [i ndex] = the index of S ′
i ndex in S .

5: Find the neighbors of S ′
i ndex in T (i+1), denoted as nei g hi ndex .

6: Apply the below recursive procedure.
7: procedure RECURSE(nei g hi ndex)
8: if there are at least one neighbor in nei g hi ndex then
9: for each neighbor in nei g hi ndex do

10: if this neighbor is in S then
11: if this neighbor has overlap with S ′

i ndex then
12: Denote this neighbor as S ′′

i ndex .
13: Set i ndex = i ndex+1, or der [i ndex] = the index of S ′′

i ndex in S .
14: end if
15: end if
16: Find the neighbors of this neighbor in T (i+1) and choose ones which

haven’t been considered before, denoted as nei g hi ndex .
17: RECURSE(nei g hi ndex)
18: end for
19: end if
20: end procedure
21: end while

In line 13 in Algorithm 13 when all the vines corresponding to the nodes T (0) are
combined, the order of combining these vines should follow Algorithm 15 as well. This
is achieved by setting S to be the maximal cliques C of the strongly chordal graph and
the underlying tree structure is T (0).

6.A.6. REAL DATA VARIABLES SPECIFICATION
The industries in the 49 industry portfolios are, Agriculture (Agric, X1), Food Prod-

ucts (Food,X2), Candy & Soda (Soda, X3), Beer &Liquor (Beer, X4), Tobacco Products
(Smoke, X5), Recreation (Toys, X6), Entertainment (Fun, X7), Printing &Publishing (Books,
X8), Consumer Goods (Hshld, X9), Apparel (Clths, X10), Healthcare (Hlth, X11), Medical
Equipment (MedEq, X12), Pharmaceutical Products (Drugs, X13), Chemicals (Chems,
X14), Rubber and Plastic Products (Rubbr, X15), Textiles (Txtls, X16), Construction Ma-
terials (BldMt, X17), Construction (Cnstr, X18), Steel Works Etc (Steel, X19), Fabricated
Products &Machinery (FabPr, X20), Machinery (Mach, X21), Electrical Equipment (ElcEq,
X22), Automobiles &Trucks (Autos, X23), Aircraft (Aero, X24), Ships &Railroad Equipment

6.A. APPENDIX TO CHAPTER 6

6

157

(Ships, X25), Defense (Guns, X26), Precious Metals (Gold, X27), Non-Metallic &Industrial
Metal Mining (Mines, X28), Coal (Coal, X29), Petroleum &Natural Gas (Oil, X30), Utili-
ties (Util, X31), Communication (Telcm, X32), Personal Services (PerSv, X33), Business
Services (BusSv, X34), Computers (Hardw, X35), Computer Software (Softw, X36), Elec-
trical Equipment (Chips, X37), Measuring & Control Equipment (LabEq, X38), Business
Supplies (Paper, X39), Shipping Containers (Boxes, X40), Transportation (Trans, X41),
Wholesale (Whlsl, X42), Retail (Rtail, X43), Restaurants, Hotels &Motels (Meals, X44),
Banking (Banks, X45), Insurance (Insur, X46), Real Estate (RlEst, X47), Trading (Fin, X48)
and Almost nothing (Other, X49).

The maximal cliques in the strong clique tree for the financial data set in Section 6.5.
{27,28}
{19,28,29,30}
{3,4,11,26,36}
{1,7,19,28,30}
{2,5,13,31,49}
{14,15,17,39,40,41}
{4,11,15,20,26,36}
{4,11,15,17,24,26,36,41}
{1,6,7,8,15,17,37,41,44}
{1,4,11,12,15,17,24,33,36,37,41}
{1,7,8,14,15,17,19,21,23,30,33,37,41,48}
{1,2,7,8,13,14,15,17,18,21,23,30,31,33,37,41,48,49}
{1,4,12,13,15,17,18,21,22,24,33,34,35,36,37,38,41,43,48,49}
{1,4,10,12,13,15,17,18,21,22,24,25,33,34,35,37,38,41,42,43,48,49}
{1,2,7,8,9,12,13,14,15,17,18,21,22,23,31,33,37,40,41,43,48,49}
{1,4,10,12,13,15,17,18,21,22,25,33,34,35,37,38,41,42,43,46,47,48,49}
{1,2,7,8,9,12,13,14,15,17,18,21,22,23,31,33,34,35,37,38,41,42,43,46,47,48,49}
{1,2,7,8,9,12,13,15,16,17,18,21,22,23,31,33,34,35,37,38,41,42,43,45,46,47,48,49}
{1,2,4,7,8,9,10,12,13,15,16,17,18,21,22,33,34,35,37,38,41,42,43,44,46,47,48,49}
{1,2,4,7,8,9,10,12,13,15,16,17,18,21,22,31,32,33,34,35,37,38,41,42,43,45,46,47,48,49}

7
CONCLUSION

The main topic of this thesis is to discuss the problem of selecting vine structures for
the vine copula model. This problem is important as the choice of a structure is shown to
have strong influence on the performance of the vine copula model for a given data. This
topic is quite challenging as the number of possible vine structures grows exponentially
with the number of variables. In this chapter, the main conclusions of the works in the
thesis will be presented and a few future research directions will be discussed.

• In order to construct a vine structure, a new vine representation called vine binomial
tree (VBT) is proposed in this thesis. VBT has been shown to be a useful tool in con-
structing vine structures. We have applied this representation in a few problems dis-
cussed in the thesis. However, VBT is not as compact as other representations such as
the vine matrix representation. Due to computational inefficiency of the VBT repre-
sentation, some of the developed algorithms could not be implemented in very high
dimensions. Hence, it will be of interest to find a relationship between VBT and vine
matrix, by which efficient implementation of the algorithms can be achieved. Such an
extension might also lead to a new package in R for the developed algorithms.

• The idea of trying to find a vine structure with a better performance for a given data
than an initial structure is very intuitive. One can examine a fixed number of randomly
chosen structures, but that can be inefficient as the space of possible vine structures
in higher dimensions is large. In this thesis, it is proposed to search for vines having
2 common sampling orders with an initial vine. The approach was motivated by the
observation that vines having large number of sampling orders in common with the
initial vine have many repeated copulas in the density decomposition. It has been
shown both in the simulation study and the real data analysis that vine copula mod-
els with better performance can be found with this method. The number of common
sampling orders is not the only measure to explore the space of vine structures. Differ-
ent types of measures of similarity between two vine structures could be investigated
in the future, which might allow an improved performance of the search procedure
presented in this thesis.

159

160 7. CONCLUSION

• A choice of structure in R-vine based regression has been investigated in this thesis.
We have developed algorithms that allow the construction of all possible vine struc-
tures that lead to a conditional distribution of the response variable given covariates
in an analytic form. However, when the construction is combined with the forward
selection approach, the importance of the structure selection to the performance of
the regression model is not as strong as expected. This is because the variables con-
tributing the most to the performance are fixed at first, when not many vine structures
can be constructed. One of the possible research directions could be to combine the
proposed vine based regression with other types of variable selection methods.

• Vine copula model is flexible but certainly not parsimonious. It can be simplified by
assuming a pattern of conditional independence presented in the given data. In this
thesis, it is shown that for a strongly chordal pattern of conditional independence,
an m-vine can be constructed by assigning independence copula to the correspond-
ing edges of the vine based on the given strongly chordal graph. There are still many
m-vine structures corresponding to the given strongly chordal graph, and it is compu-
tationally expensive to examine each of them. However, the assumed strongly chordal
pattern of conditional independence allows one to work with models composed of
smaller subvines, where it becomes possible to estimate all possible subvine structures
and/or even consider non-simplified vines. It has been shown in a simulation study
that when the assumed conditional independence is not correct, the proposed m-vine
model might not perform well. Hence, improving the efficiency of our method under
different graph selection methods, especially for non-Gaussian method, would be of
interest. Moreover, more research is needed to investigate how in general a specified
pattern of conditional independence can be represented by incomplete vines.

• In this thesis only simplified vines are considered. We have shown in the example in
the beginning of this thesis that, when the vine structure is different than the structure
of the simulated model, the simplifying assumption may be violated. It is, in general,
very difficult to judge if the given data can be modeled by a simplified vine, because
in order to answer this question one needs to consider all structures. This problem is
very difficult but we hope that some progress can be made in the future to extend our
knowledge of this issue.

ACKNOWLEDGEMENTS

At first I would like to thank to the financial support from the China Scholarship
Council. Then I want to thank my supervisors Dorota Kurowicka and Gabriela Florentina
Nane. Thank you very much for your novel ideas and suggestions directing my research
projects, your patient guidance on writing papers, your generous attitude towards my
faults, e.g. my disappearance. Without your supports, I would not have been able to
succeed in the world of vine copula and finished this thesis. I would also like to thank
the support from my colleagues in the Applied Probability and Statistics group.

161

CURRICULUM VITÆ

Kailun ZHU

Kailun Zhu was born in Huzhou, Zhejiang Province, China, on 01-Sep-1992. He re-
ceived his bachelor’s degree in Zhejiang University in 2015 major in Mathematics & Ap-
plied Mathematics. Then he went to Singapore to study Financial Engineering and re-
ceived his master’s degree in National University of Singapore in July, 2017. In October,
2017, he moved to the Netherlands and start his PhD study working with vine copula
model, in the group of Applied Probability in Delft University of Technology.

163

BIBLIOGRAPHY

Aas, K. (2016), ‘Pair-copula constructions for financial applications: A review’, Econo-
metrics 4(4).
URL: https://www.mdpi.com/2225-1146/4/4/43

Aas, K., Czado, C., Frigessi, A. & Bakken, H. (2009), ‘Pair-copula constructions of multiple
dependence’, Insurance: Mathematics and Economics 44(2), 182 – 198.

Acar, E. F., Craiu, R. V. & Yao, F. (2011), ‘Dependence calibration in conditional copulas: A
nonparametric approach’, Biometrics 67(2), 445–453.

Acar, E. F., Czado, C. & Lysy, M. (2019), ‘Flexible dynamic vine copula models for multi-
variate time series data’, Econometrics and Statistics 12, 181–197.
URL: https://www.sciencedirect.com/science/article/pii/S2452306219300206

Acar, E. F., Genest, C. & Nešlehová, J. (2012), ‘Beyond simplified pair-copula construc-
tions’, Journal of Multivariate Analysis 110, 74 – 90.

Akaike, H. (1998), Information theory and an extension of the maximum likelihood prin-
ciple, in P. E., T. K. & K. G., eds, ‘Selected Papers of Hirotugu Akaike’, Springer, pp. 199–
213.

Bauer, A. & Czado, C. (2016), ‘Pair-copula bayesian networks’, Journal of Computational
and Graphical Statistics 25(4), 1248–1271.

Bauer, A., Czado, C. & Klein, T. (2012), ‘Pair-copula constructions for non-gaussian dag
models’, Canadian Journal of Statistics 40(1), 86–109.

Bedford, T. & Cooke, R. (2001), ‘Probability density decomposition for conditionally de-
pendent random variables modeled by vines’, Ann. Math. Artif. Intell. 32, 245– 268.

Bedford, T. & Cooke, R. (2002), ‘Vines - a new graphical model for dependent random
variables’, Annals of Statistics 30(4), 1031–1068.

Behun, M., Gavurova, B., Tkacova, A. & Kotaskova, A. (2018), ‘The impact of the man-
ufacturing industry on the economic cycle of european union countries’, Journal of
Competitiveness 10(1), 23–39.

Brechmann, E. C., Czado, C. & Aas, K. (2012), ‘Truncated regular vines in high dimen-
sions with application to financial data’, The Canadian Journal of Statistics / La Revue
Canadienne de Statistique 40(1), 68–85.
URL: http://www.jstor.org/stable/41724516

165

166 BIBLIOGRAPHY

Brechmann, E. C., Hendrich, K. & Czado, C. (2013), ‘Conditional copula simulation for
systemic risk stress testing’, Insurance: Mathematics and Economics 53(3), 722 – 732.

Brechmann, E. C. & Joe, H. (2014), ‘Parsimonious parameterization of correlation matri-
ces using truncated vines and factor analysis’, Computational Statistics & Data Analy-
sis 77, 233 – 251.

Brechmann, E. & Schepsmeier, U. (2013), ‘Modeling dependence with c- and d-vine cop-
ulas: The r package cdvine’, Journal of Statistical Software, Articles 52(3), 1–27.

Breymann, W., Dias, A. & Embrechts, P. (2003), ‘Dependence structures for multivariate
high-frequency data in finance’, Quantitative Finance 3(1), 1–14.

Brier, G. W. (1950), ‘Verification of forecasts expressed in terms of probability’, Monthly
Weather Review 78(1), 1–3.

Buczak, A. L. & Gifford, C. M. (2010), Fuzzy association rule mining for community crime
pattern discovery, in ‘ACM SIGKDD Workshop on Intelligence and Security Informat-
ics’, ISI-KDD ’10, Association for Computing Machinery, New York, NY, USA.
URL: https://doi.org/10.1145/1938606.1938608

Chang, B. & Joe, H. (2019), ‘Prediction based on conditional distributions of vine copu-
las’, Computational Statistics & Data Analysis 139, 45 – 63.

Chang, B., Pan, S. & Joe, H. (2019), Vine copula structure learning via monte carlo tree
search, in K. Chaudhuri & M. Sugiyama, eds, ‘Proceedings of Machine Learning Re-
search’, Vol. 89 of Proceedings of Machine Learning Research, PMLR, pp. 353–361.
URL: http://proceedings.mlr.press/v89/chang19a.html

Cherubini, U., Luciano, E. & Vecchiato, W. (2004), Copula Methods in Finance, The Wiley
Finance Series, Wiley.
URL: https://books.google.nl/books?id=0dyagVg20XQC

Compagne, K. C. & et al. (n.d.), ‘Improvements in endovascular treatment for
acute ischemic stroke: A longitudinal study in the mr clean registry’, Stroke
0(0), STROKEAHA.121.034919.
URL: https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.121.034919

Cook, R. D. & Johnson, M. E. (1986), ‘Generalized burr-pareto-logistic distributions with
applications to a uranium exploration data set’, Technometrics 28(2), 123 – 131.

Cooke, R. (1997), ‘Markov and entropy properties of tree- and vine-dependent variables’,
Proceedings of the ASA Section on Bayesian Statistical Science pp. 166–175.

Cooke, R., Kurowicka, D. & Wilson, K. (2015), ‘Sampling, conditionalizing, counting,
merging, searching regular vines’, Journal of Multivariate Analysis 138, 4 – 18.

Cooke, R. M., Joe, H. & Chang, B. (2019), ‘Vine copula regression for observational stud-
ies’, AStA Advances in Statistical Analysis .
URL: https://doi.org/10.1007/s10182-019-00353-5

BIBLIOGRAPHY 167

Csardi, G. & Nepusz, T. (2006), ‘The igraph software package for complex network re-
search’, InterJournal Complex Systems, 1695.
URL: https://igraph.org

Czado, C. (2010), Pair-copula constructions of multivariate copulas, in P. Jaworski, F. Du-
rante, W. Härdle & T. Rychlik, eds, ‘Copula Theory and Its Applications: Proceedings
of the Workshop Held in Warsaw, 25-26 September 2009’, Springer Berlin Heidelberg,
pp. 93– 109.

Czado, C. (2019), Analyzing dependent data with vine copulas, Lecture Notes in Statistics,
Springer.

Czado, C., Brechmann, E. C. & Gruber, L. (2013), Selection of vine copulas, in P. Jaworski,
F. Durante & W. Härdle, eds, ‘Copulae in Mathematical and Quantitative Finance’,
Springer Berlin Heidelberg, pp. 17– 37.

Czado, C. & Nagler, T. (2022), ‘Vine copula based modeling’, Annual Review of Statistics
and Its Application 9(1), null.
URL: https://doi.org/10.1146/annurev-statistics-040220-101153

Dahlquist, M. & Vonderau, P. (2022), Petrocinema: Sponsored Film and the Oil Industry,
Bloomsbury Academic.
URL: https://books.google.nl/books?id=bUBBEAAAQBAJ

Dißmann, J., Brechmann, E., Czado, C. & Kurowicka, D. (2013), ‘Selecting and estimating
regular vine copulae and application to financial returns’, Computational Statistics &
Data Analysis 59, 52 – 69.

Drechsler, J. (2011), Synthetic datasets for statistical disclosure control, theory and imple-
mentation, Lecture Notes in Statistics, Springer.

Duong, T. (2019), ks: Kernel Smoothing. R package version 1.11.6.
URL: https://CRAN.R-project.org/package=ks

Farber, M. (1983), ‘Characterizations of strongly chordal graphs’, Discrete Mathematics
43(2), 173–189.

Fasano, G. & Franceschini, A. (1987), ‘A multidimensional version of the kolmogorov-
smirnov test’, Mon Not R astr 225, 155–170.

Friedman, J., Hastie, T. & Tibshirani, R. (2007), ‘Sparse inverse covariance estimation
with the graphical lasso’, Biostatistics 9(3), 432–441.

Gavril, F. (1974), ‘The intersection graphs of subtrees in trees are exactly the chordal
graphs’, Journal of Combinatorial Theory, Series B 16(1), 47–56.
URL: https://www.sciencedirect.com/science/article/pii/009589567490094X

GBD 2019 Stroke Collaborators (2021), ‘Global, regional, and national burden of stroke
and its risk factors, 1990-2019: a systematic analysis for the global burden of disease
study 2019’, Lancet Neurol 20(10), 795–820.

168 BIBLIOGRAPHY

Genest, C. & Favre, A.-C. (2007), ‘Everything you always wanted to know about copula
modeling but were afraid to ask’, Journal of Hydrologic Engineering 12(4), 347–368.

Gijbels, I., Veraverbeke, N. & Omelka, M. (2011), ‘Conditional copulas, association mea-
sures and their applications’, Computational Statistics & Data Analysis 55(5), 1919 –
1932.

Giraud, Christophe, Huet, Sylvie, Verzelem & Nicolas (2009), ‘Graph selection with ggm-
select’, arXiv:0907.0619.
URL: http://fr.arxiv.org/abs/0907.0619

Goncalves, A. & et al. (2020), ‘Generation and evaluation of synthetic patient data’, BMC
medical research methodology 108(1), null.

Goodman, B. & Flaxman, S. (2017), ‘European union regulations on algorithmic
decision-making and a “right to explanation”’, AI Magazine 38(3), 50–57.
URL: https://ojs.aaai.org/index.php/aimagazine/article/view/2741

Gravesteijn, B. & et al. (2021), ‘Missing data in prediction research: A five-step approach
for multiple imputation, illustrated in the center-tbi study’, Journal of neurotrauma
38(13), 1842–1857.

Gruber, L. & Czado, C. (2015), ‘Sequential Bayesian Model Selection of Regular Vine Cop-
ulas’, Bayesian Analysis 10(4), 937 – 963.
URL: https://doi.org/10.1214/14-BA930

Gruber, L. F. & Czado, C. (2018), ‘Bayesian Model Selection of Regular Vine Copulas’,
Bayesian Analysis 13(4), 1111 – 1135.
URL: https://doi.org/10.1214/17-BA1089

Haff, I. H., Aas, K. & Frigessi, A. (2010), ‘On the simplified pair-copula construction —
simply useful or too simplistic?’, Journal of Multivariate Analysis 101(5), 1296 – 1310.

Hasler, C., Craiu, R. V. & Rivest, L.-P. (2018), ‘Vine copulas for imputation of monotone
non-response’, International Statistical Review 86(3), 488–511.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12263

Herrmann, J. S. (2018), Regular vine copula based quantile regression, Master’s thesis,
Technische Universität München, Germany.

Hobæk Haff, I., Aas, K., Frigessi, A. & Lacal, V. (2016), ‘Structure learning in bayesian
networks using regular vines’, Computational Statistics & Data Analysis 101, 186–208.
URL: https://www.sciencedirect.com/science/article/pii/S0167947316300457

Hofert, M., Kojadinovic, I., Maechler, M. & Yan, J. (2018), Elements of Copula Modeling
with R, Springer.

Hofert, M., Kojadinovic, I., Maechler, M. & Yan, J. (2020), copula: Multivariate Depen-
dence with Copulas. R package version 1.0-1.
URL: https://CRAN.R-project.org/package=copula

BIBLIOGRAPHY 169

Jansen, I. G. H., Mulder, M. J. H. L. & Goldhoorn, R.-J. B. (2018), ‘Endovascular treatment
for acute ischaemic stroke in routine clinical practice: prospective, observational co-
hort study (mr clean registry)’, BMJ 360.
URL: https://www.bmj.com/content/360/bmj.k949

Joe, H. (1997), Multivariate Models and Multivariate Dependence Concepts, Taylor &
Francis.

Joe, H. (2014), Dependence Modeling with Copulas, Chapman and Hall/CRC.

Joe, H., Cooke, R. & Kurowicka, D. (2011), Regular vines: Generation algorithm and num-
ber of equivalence classes, in H. Joe & D. Kurowicka, eds, ‘Dependence Modeling: Vine
Copula Handbook’, World Scientific, pp. 219– 231.

Killiches, M., Kraus, D. & Czado, C. (2017), ‘Examination and visualisation of the sim-
plifying assumption for vine copulas in three dimensions’, Australian & New Zealand
Journal of Statistics 59(1), 95–117.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/anzs.12182

Koenker, R. & Machado, J. A. F. (1999), ‘Goodness of fit and related inference processes
for quantile regression’, Journal of the American Statistical Association 94(448), 1296–
1310.

Konishi, S. & Kitagawa, G. (1996), ‘Generalised information criteria in model selection’,
Biometrika 83(4), 875–890.
URL: http://www.jstor.org/stable/2337290

Kraus, D. & Czado, C. (2017a), ‘D-vine copula based quantile regression’, Computational
Statistics & Data Analysis 110, 1 – 18.

Kraus, D. & Czado, C. (2017b), ‘Growing simplified vine copula trees: improving Diß-
mann’s algorithm’, ArXiv e-prints .

Kurowicka, D. (2011), Optimal truncation of vines, in H. Joe & D. Kurowicka, eds, ‘De-
pendence Modeling: Vine Copula Handbook’, World Scientific, pp. 243– 257.

Kurowicka, D. & Cooke, R. (2006), ‘Completion problem with partial correlation vines’,
Linear Algebra and its Applications 418(1), 188–200.
URL: https://www.sciencedirect.com/science/article/pii/S0024379506000619

Kurowicka, D. & Joe, H. (2011), Dependence Modeling: Vine Copula Handbook, World
Scientific.

Kurz, M. S. (2019), pacotest: Testing for Partial Copulas and the Simplifying Assumption
in Vine Copulas. R package version 0.3.1.

Kurz, M. S. & Spanhel, F. (2017), ‘Testing the simplifying assumption in high-dimensional
vine copulas’, ArXiv e-prints .

Lauritzen, S. (1996), Graphical Models, Oxford Statistical Science Series, Clarendon Press.

170 BIBLIOGRAPHY

Li, F., Yu, Y. & Rubin, D. B. (2012), ‘Imputing missing data by fully conditional models:
Some cautionary examples and guidelines’.

Li, H., Huang, G., Li, Y., Sun, J. & Gao, P. (2021), ‘A c-vine copula-based quantile regression
method for streamflow forecasting in xiangxi river basin, china’, Sustainability 13(9).
URL: https://www.mdpi.com/2071-1050/13/9/4627

McCullagh, P. & Nelder, J. (1989), Generalized Linear Models, Second Edition, Chapman
& Hall/CRC Monographs on Statistics & Applied Probability, Taylor & Francis.

McKee, T. A. (2003), ‘Subgraph trees in graph theory’, Discrete Mathematics 270(1), 3 – 12.

McNeil, A., Embrechts, P. & Frey, R. (2010), Quantitative Risk Management: Concepts,
Techniques and Tools, Princeton series in finance, New Age International.
URL: https://books.google.nl/books?id=lc7PlwEACAAJ

Meinshausen, N. & Bühlmann, P. (2006), ‘High-dimensional graphs and variable selec-
tion with the Lasso’, The Annals of Statistics 34(3), 1436 – 1462.

Müller, D. & Czado, C. (2018), ‘Representing sparse gaussian dags as sparse r-vines allow-
ing for non-gaussian dependence’, Journal of Computational and Graphical Statistics
27(2), 334–344.

Müller, D. & Czado, C. (2019a), ‘Dependence modelling in ultra high dimensions
with vine copulas and the graphical lasso’, Computational Statistics & Data Analysis
137, 211–232.
URL: https://www.sciencedirect.com/science/article/pii/S0167947319300568

Müller, D. & Czado, C. (2019b), ‘Selection of sparse vine copulas in high dimensions with
the lasso’, Statistics and Computing 29(2), 269 – 287.

Mukhopadhyay, A. & Rahman, M. Z. (2021), Algorithms for generating strongly chordal
graphs, in M. L. Gavrilova & C. K. Tan, eds, ‘Transactions on Computational Science
XXXVIII’, Springer Berlin Heidelberg.

Mulder, M. J. & et al. (2018), ‘Time to endovascular treatment and outcome in acute is-
chemic stroke’, Circulation 138(3), 232–240.
URL: https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.117.032600

Nagler, T. (2018), ‘A generic approach to nonparametric function estimation with mixed
data’.

Nagler, T., Bumann, C. & Czado, C. (2019), ‘Model selection in sparse high-dimensional
vine copula models with an application to portfolio risk’, Journal of Multivariate Anal-
ysis 172, 180–192. Dependence Models.
URL: https://www.sciencedirect.com/science/article/pii/S0047259X18300630

Nagler, T. & Czado, C. (2016), ‘Evading the curse of dimensionality in nonparametric den-
sity estimation with simplified vine copulas’, Journal of Multivariate Analysis 151, 69–
89.
URL: https://www.sciencedirect.com/science/article/pii/S0047259X16300471

BIBLIOGRAPHY 171

Nagler, T., Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B. & Erhardt, T. (2019),
VineCopula: Statistical Inference of Vine Copulas. R package version 2.2.0.
URL: https://CRAN.R-project.org/package=VineCopula

Nagler, T. & Vatter, T. (2020), gamCopula: Generalized Additive Models for Bivariate Con-
ditional Dependence Structures and Vine Copulas. R package version 0.0-7.
URL: https://CRAN.R-project.org/package=gamCopula

Nagler, T. & Vatter, T. (2021), rvinecopulib: High Performance Algorithms for Vine Copula
Modeling. R package version 0.5.5.1.1.
URL: https://CRAN.R-project.org/package=rvinecopulib

Nápoles, O. (2010), Bayesian Belief Nets and Vines in Aviation Safety and Other Applica-
tions, PhD thesis, Delft University of Technology.

Nápoles, O. (2011), Counting vines, in H. Joe & D. Kurowicka, eds, ‘Dependence Model-
ing: Vine Copula Handbook’, World Scientific, pp. 199– 228.

Nelsen, R. (2006), An Introduction to Copulas, Springer.

Noh, H., Ghouch, A. E. & Bouezmarni, T. (2013), ‘Copula-based regression estimation
and inference’, Journal of the American Statistical Association 108(502), 676–688.

Panagiotelis, A., Czado, C. & Joe, H. (2012), ‘Pair copula constructions for multivariate
discrete data’, Journal of the American Statistical Association 107(499), 1063–1072.

Parsa, R. A. & Klugman, S. A. (2011), ‘Copula regression’, Variance 5(1), 45–54.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, Morgan Kaufmann series in representation and reasoning, Elsevier Science.
URL: https://books.google.nl/books?id=AvNID7LyMusC

Rosenblatt, M. (1952), ‘Remarks on a multivariate transformation’, Ann. Math. Statist.
23(3), 470–472.

Royston, P. & Parmar, M. K. B. (2002), ‘Flexible parametric proportional-hazards and
proportional-odds models for censored survival data, with application to prognos-
tic modelling and estimation of treatment effects’, Statistics in Medicine 21(15), 2175–
2197.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.1203

Rubin, D. B. (1987), Multiple Imputation for Nonresponse in Surveys, Wiley.

Samuels, N. & et al. (n.d.), A synthetic stroke population: rationale, comparison of meth-
ods, and overview of applications. unpublished.

Saver, J. L. & et al. (2016), ‘Time to treatment with endovascular thrombectomy and out-
comes from ischemic stroke: A meta-analysis’, JAMA 316(12), 1279–1288.

172 BIBLIOGRAPHY

Schepsmeier, U. & Czado, C. (2016), ‘Dependence modelling with regular vine copula
models: a case-study for car crash simulation data’, Journal of the Royal Statistical
Society. Series C (Applied Statistics) 65(3), 415–429.
URL: http://www.jstor.org/stable/24773029

Schwarz, G. (1978), ‘Estimating the Dimension of a Model’, The Annals of Statistics
6(2), 461 – 464.
URL: https://doi.org/10.1214/aos/1176344136

Sklar, M. (1959), Fonctions de Répartition À N Dimensions Et Leurs Marges, Université
Paris 8.
URL: https://books.google.nl/books?id=nreSmAEACAAJ

Smania, G. & Jonsson, E. N. (2021), ‘Conditional distribution modeling as an alterna-
tive method for covariates simulation: Comparison with joint multivariate normal and
bootstrap techniques’, pharmacometrics & systems pharmacology 10(4), 330–339.

Spanhel, F. & Kurz, M. S. (2015), ‘The partial vine copula: A dependence measure and
approximation based on the simplifying assumption’, ArXiv e-prints .

Stöber, J., Hong, H. G., Czado, C. & Ghosh, P. (2015), ‘Comorbidity of chronic diseases
in the elderly: Patterns identified by a copula design for mixed responses’, Computa-
tional Statistics & Data Analysis 88, 28–39.
URL: https://www.sciencedirect.com/science/article/pii/S0167947315000304

Stöber, J., Joe, H. & Czado, C. (2013), ‘Simplified pair copula constructions—limitations
and extensions’, Journal of Multivariate Analysis 119, 101 – 118.

Tannenbaum, S. J. & et al. (2006), ‘Simulation of correlated continuous and categori-
cal variables using a single multivariate distribution’, Journal of Pharmacokinetics and
Pharmacodynamics 33(6), 773–794.
URL: https://doi.org/10.1007/s10928-006-9033-1

Teutonico, D. & et al. (2015), ‘Generating virtual patients by multivariate and discrete re-
sampling techniques’, Pharmaceutical Research 32(10), 3228–3237.
URL: https://doi.org/10.1007/s11095-015-1699-x

Tucker, A., Wang, Z., Rotalinti, Y. & Myles, P. (2020), ‘Generating high-fidelity synthetic
patient data for assessing machine learning healthcare software’, npj Digital Medicine
3(1), 147.
URL: https://doi.org/10.1038/s41746-020-00353-9

van Buuren, S. (2012), Flexible Imputation of Missing Data, Chapman & Hall/CRC Inter-
disciplinary Statistics, CRC Press.
URL: https://books.google.nl/books?id=elDNBQAAQBAJ

Venema, C. & et al. (2017), ‘18f-fes pet has added value in staging and therapy decision
making in patients with disseminated lobular breast cancer’, Clinical nuclear medicine
42(8), 612–614.

BIBLIOGRAPHY 173

Veraverbeke, N., Omelka, M. & Gijbels, I. (2011), ‘Estimation of a conditional copula and
association measures’, Scandinavian Journal of Statistics 38(4), 766–780.

Vuong, Q. H. (1989), ‘Likelihood ratio tests for model selection and non-nested hypothe-
ses’, Econometrica: Journal of the Econometric Society pp. 307–333.

Walonoski, J. & et al. (2018), ‘Synthea: An approach, method, and software mechanism
for generating synthetic patients and the synthetic electronic health care record’, Jour-
nal of the American Medical Informatics Association 25(3), 230–238.

Wille, A. & Bühlmann, P. (2006), ‘Low-order conditional independence graphs for infer-
ring genetic networks’, Statistical Applications in Genetics and Molecular Biology 5(1).

Yeh, I. (1998), ‘Modeling of strength of high-performance concrete using artificial neural
networks’, Cement and Concrete Research 28(12), 1797 – 1808.

Yule, G. & Kendall, M. (1965), An Introduction to the Theory of Statistics, C. Griffin.
URL: https://books.google.nl/books?id=CM1WAAAAYAAJ

Zhu, K. & Kurowicka, D. (2022), ‘Regular vines with strongly chordal pattern of (condi-
tional) independence’, Computational Statistics & Data Analysis 172, 107461.
URL: https://www.sciencedirect.com/science/article/pii/S016794732200041X

Zhu, K., Kurowicka, D. & Nane, G. F. (2020), ‘Common sampling orders of regular
vines with application to model selection’, Computational Statistics & Data Analysis
142, 106811.

Zhu, K., Kurowicka, D. & Nane, G. F. (2021), ‘Simplified r-vine based forward regression’,
Computational Statistics & Data Analysis 155, 107091.
URL: https://www.sciencedirect.com/science/article/pii/S0167947320301821

Zhu, K., Samuels, N., Kurowicka, D. & Nieboer, D. (n.d.), Vine copula based generation of
synthetic population of acute ischemic stroke patients. unpublished.

	Summary
	Samenvatting
	Introduction
	Copulas
	Vines
	Regular Vines
	Vine copula model
	Estimation
	Simplifying assumption

	Importance of vine structure
	Outline of the thesis
	Appendix to Chapter 1

	Vine representations and structure constructions
	Introduction
	Vine representations
	Tree-wise representation and vine triangular array
	Vine matrix
	Vine binomial tree

	Vine structure construction
	Through vine matrix
	Through vine binomial tree

	Common sampling orders of regular vines with application to model selection
	Introduction
	Sampling orders
	Definition
	Sampling orders implied by a vine

	Common sampling orders
	Finding common sampling orders of two given regular vines
	Generating vines having a given number of common sampling orders with an initial vine
	The number of vines having nComSO common sampling orders with an initial vine

	Simulation study
	Simulation of a 5 dimensional regular vine
	Heuristic search of a structure with lower AIC than of the initial vine
	Testing the heuristic search method

	Real data analysis
	Conclusion
	Appendix to Chapter 3
	Proof
	Algorithms
	Simulation result by random choice

	Vine copula based generation of synthetic population of acute ischemic stroke patients
	Introduction
	Models
	Fully conditional specification
	Vine copula approach
	Data preparation and performance measures

	Data description
	Analysis
	Marginal and joint distributions
	Performance of the methods on the selected variables

	Conclusions
	Appendix to Chapter 4
	Patients data description
	Best VC model selection
	MAE and statistics of the synthetic data of 1-dim margins

	Simplified R-vine based forward regression
	Introduction
	Conditional density based on regular vines
	Vine regression - forward selection
	D-vine forward selection
	R-vine forward selection - a heuristic method
	Analysis of an example data set

	Simulation
	Heuristic forward selection for more response variables
	Extension study by searching for vines having 2 sampling orders in common
	Real data analysis
	One response variable case
	Two response variables case

	Conclusion
	Appendix to Chapter 5
	Model specification

	Regular vines with strongly chordal pattern of (conditional) independence
	Introduction
	Background
	Graphs
	Vines

	Relationship between m-vine and strongly chordal graph
	Chordal graph and m-vine
	Strongly chordal graph and m-vine
	Merging vines
	Construction of an m-vine corresponding to a strong clique tree

	Applications of the equivalence between m-vines and strongly chordal graphs
	Simulated examples
	Heuristics
	Simulation

	Real data analysis
	Conclusion
	Appendix to Chapter 6
	Example of merger without overlap
	Theorem of merger with overlap
	Example vine triangular array
	Non simplified copula example
	Algorithm
	Real data variables specification

	Conclusion
	Acknowledgements
	Curriculum Vitæ
	Bibliography

