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Summary

The Earth’s climate is changing due to the greenhouse gases that we emit by burn-
ing fossil fuels. Consequently, the ocean is heating up and glaciers and ice sheets
are melting, which causes the global mean sea level to rise. However, how much
the sea level is rising regionally varies due to complex dynamical processes. In
some places, the sea level is even falling instead of rising. To decide how to miti-
gate and adapt to sea-level change, estimating how much the (regional) sea level
will change is crucial.

In addition to the sea-level change driven by greenhouse gas emissions (exter-
nally forced sea-level change), the sea level also varies over time naturally (internal
sea-level variability). This complicates estimating forced sea-level change from the
measurements of satellites and tide gauges: is an observed change simply a nat-
ural variation or the result of climate change? To filter out natural variations from
the observations, the processes causing temporal sea-level variability need to be
understood.

Estimates of future sea-level change (so-called sea-level projections) can be made
by simulating the different processes causing sea-level change using numerical
models. The behavior of the ocean and the atmosphere can be simulated with
global climate models. These simulations are used to project dynamic changes in
sea level. Dynamic sea-level change is caused by for instance the expansion of the
warming ocean or the redistribution of the water within the ocean when the domi-
nant wind patterns in a region change. Global climate models also provide the input
to models that can be used to simulate other contributions to sea-level change, such
as the melt of glaciers and the Antarctic and Greenland ice sheets.

There are dozens of different global climate models, developed and continuously
improved by various modeling centers around the world. The differences between
these models introduce uncertainties in sea-level projections. Furthermore, running
global climate models is computationally very expensive. Consequently, the spatial
resolution of these models is limited. For example, most global climate models
compute the properties of the ocean only approximately every 100 km. This is far
from optimal for coastal regions, in which sea-level change is influenced by ocean
currents and topographic features on scales smaller than the typical resolution of
global climate models. How this limited resolution affects sea-level projections for
coastal regions is not yet clear. Techniques to refine the simulations of global climate
models using regional models (dynamical downscaling) have rarely been applied in
the context of sea-level projections.

In this thesis, I address several aspects of sea-level change and sea-level variability
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viii Summary

using a combination of global and regional models. I start by showing how global
mean sea-level projections are affected by the simulations of a new generation of
global climate models (Chapter 2). Next, I focus on the sea level in the North-
western European Shelf region. Using ocean models configured specifically for this
region, I study the impact of dynamical downscaling on the simulations of global cli-
mate models (Chapter 3) and investigate what causes sea level to vary from year to
year (Chapter 4). Finally, I investigate the seasonal mean changes in sea level that
global climate models simulate and explain the differences in the changes between
the different seasons using a regional model (Chapter 5).

In Chapter 2, I compare global mean sea-level projections based on two gener-
ations of global climate models. This is motivated by the sensitivity of the new
generation of models (CMIP6 models) to CO2 emissions, which exceeds that of the
previous generation (CMIP5 models). Due to their higher sensitivity, the CMIP6
models simulate a larger increase in surface air temperature on average. However,
I show that the higher temperature increase does not translate into much higher
projections of global mean sea-level rise for 2100. In contrast, the projections of
the rate of sea-level change by 2100 increase substantially. I explain how this is
partially caused by the relationship between sea-level rise and cumulative surface
air temperature, a relationship which has important implications for the mitigation
of greenhouse gas emissions. Furthermore, I argue that the simulations of the
most sensitive CMIP6 models are useful for projecting large changes in sea level
that are less likely to occur but would have a big impact.

In Chapter 3, I use a regional ocean model to dynamically downscale the simula-
tions of two global climate models on the Northwestern European Shelf. The results
demonstrate that dynamical downscaling regionally improves the historical simula-
tions of both global climate models. It also substantially affects their simulations of
future ocean dynamic sea-level change, including along the coast. Importantly, the
impact of dynamical downscaling is largest for the climate model with the lowest
horizontal resolution and the least realistic land mask and bathymetry. For example,
that model has a too low resolution to resolve the flow through the English Chan-
nel, which likely strongly affects the simulations of sea-level change. This applies
to several other global climate models as well. Based on the results of Chapter 3, I
therefore conclude that dynamical downscaling is a valuable and important method
to improve regional sea-level projections.

In Chapter 4, I perform sensitivity tests with another regional ocean model for
the Northwestern European Shelf. In these sensitivity tests, the different boundary
conditions imposed on the model, such as the properties of the atmosphere and the
neighboring ocean, are only allowed to vary from year to year (interannually) one
by one. The results show how much among others the wind, air pressure and the
processes in the neighboring ocean contribute to the interannual variability of the
sea level on the Northwestern European Shelf. This is used to explain the differences
and similarities of the temporal sea-level variability observed at different coastal
locations. The tests also demonstrate that non-linear interactions between the
different drivers of interannual sea-level variability do not play a large role.
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In Chapter 5, I investigate the changes in seasonal mean sea level on the Northwest-
ern European Shelf using a set of global climate models from the CMIP6 generation.
I show that there can be substantial differences between the amount of sea-level
rise in each season, which are typically not considered in sea-level projections. Us-
ing tests with the regional model of Chapter 4, I find that the deviations of sea-level
rise in winter and summer are mainly caused by changes in regional wind stress. In
spring and autumn, wind-stress changes play a smaller role, and changes in ocean
density are likely more important. The tests also demonstrate that global climate
models that do not resolve currents through the English Channel cannot accurately
simulate the effect of wind-stress changes on the regional sea level, strengthening
the case for dynamical downscaling as in Chapter 3.

In summary, this thesis highlights the value of complementing the sea-level simu-
lations of global climate models with regional ocean models. Using both types of
models, this thesis enhances our understanding of sea-level change and variability
and provides a basis for improving sea-level projections on both the global and the
regional scale.





Samenvatting

Het klimaat op aarde is aan het veranderen vanwege de broeikasgassen die we
uitstoten door het gebruik van fossiele brandstoffen. Als gevolg daarvan warmt de
oceaan op en smelten de gletsjers en ijskappen, waardoor de zeespiegel gemiddeld
genomen stijgt. Hoeveel de zeespiegel precies stijgt kan echter behoorlijk verschil-
len per regio, vanwege complexe dynamische processen. Sterker nog, op sommige
plekken daalt de zeespiegel zelfs. Om te bepalen hoe we ons het beste kunnen aan-
passen aan zeespiegelverandering is het erg belangrijk om in te schatten hoeveel
de (regionale) zeespiegel in de toekomst zal veranderen.

Naast de zeespiegelverandering ten gevolge van de uitstoot van broeikasgassen
(extern veroorzaakte zeespiegelverandering) vertoont de zeespiegel ook natuurlijke
schommelingen (interne zeespiegelvariabiliteit). Dit maakt het lastig om de extern
veroorzaakte zeespiegelverandering af te leiden uit satellietmetingen en peilmetin-
gen aan de kust: is een waargenomen verandering een natuurlijke schommeling of
daadwerkelijk het resultaat van klimaatverandering? Om natuurlijke schommelin-
gen uit de meetsignalen te filteren is het belangrijk om goed te begrijpen waardoor
temporele zeespiegelvariabiliteit wordt veroorzaakt.

Het is mogelijk om schattingen te maken van de toekomstige zeespiegelverandering
(zogeheten zeespiegelprojecties) aan de hand van modelberekeningen. Het gedrag
van de oceaan en de atmosfeer kan worden gesimuleerd met mondiale klimaatmo-
dellen. Die simulaties worden gebruikt om lange termijn projecties te maken van de
dynamische veranderingen van de zeespiegel. Dat zijn veranderingen die worden
veroorzaakt door bijvoorbeeld de uitzetting van de oceaan als die warmer wordt,
of door de herverdeling van het water in de oceaan als de overheersende wind-
richting in een bepaalde regio verandert. Mondiale klimaatmodellen leveren ook de
input waarmee andere bijdrages aan zeespiegelverandering doorgerekend kunnen
worden, zoals het smelten van gletsjers en de ijskappen op Groenland en Antarc-
tica.

Er zijn tientallen verschillende klimaatmodellen, die voortdurend worden ontwikkeld
en verbeterd door verschillende instituten op de wereld. De verschillen tussen kli-
maatmodellen zorgen voor onzekerheden in zeespiegelprojecties. Bovendien kost
het gebruik van mondiale klimaatmodellen veel tijd en rekenkracht. De ruimtelijke
resolutie van die modellen is daarom beperkt: de meeste mondiale klimaatmodel-
len berekenen bijvoorbeeld de eigenschappen van de oceaan alleen maar ongeveer
elke 100 kilometer. Dat is allesbehalve optimaal voor kustgebieden, waarin de zee-
spiegelverandering wordt beïnvloed door zeestromingen en variaties in de kustlijn
en de bodemdiepte op een kleinere schaal. De consequenties van die beperkte
resolutie voor het maken van zeespiegelprojecties voor kustgebieden zijn nog niet
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xii Samenvatting

goed onderzocht. Er bestaan wel technieken om de simulaties van mondiale kli-
maatmodellen te verfijnen met behulp van regionale modellen (dynamische schaal-
verkleining), maar die zijn nog niet vaak gebruikt voor zeespiegelprojecties.

In deze scriptie bestudeer ik een aantal aspecten van zeespiegelverandering en zee-
spiegelvariabiliteit met een combinatie van mondiale en regionale modellen. Ik laat
eerst zien hoe projecties van de wereldgemiddelde zeespiegelverandering worden
beïnvloed door de simulaties van een nieuwe generatie mondiale klimaatmodellen
(Hoofdstuk 2). Daarna concentreer ik me op de zeespiegel op het continentale
plat ten noordwesten van Europa (het Noordwest-Europese Plat). Met behulp van
oceaanmodellen die speciaal voor deze regio zijn ingesteld, bekijk ik de invloed
van dynamische schaalverkleining op de simulaties van mondiale klimaatmodellen
(Hoofdstuk 3) en onderzoek ik de oorzaken van schommelingen in de zeespiegel
van jaar tot jaar (Hoofdstuk 4). Tot slot bestudeer ik de gemiddelde zeespiegel-
verandering die mondiale klimaatmodellen simuleren per seizoen en verklaar ik de
verschillen tussen de veranderingen in de verschillende seizoenen aan de hand van
een regionaal model (Hoofdstuk 5).

In Hoofdstuk 2 vergelijk ik de wereldwijd gemiddelde zeespiegelprojecties geba-
seerd op twee verschillende generaties mondiale klimaatmodellen. De aanleiding
hiertoe is dat de nieuwste generatie modellen (CMIP6 modellen) gevoeliger zijn
voor CO2-uitstoot dan de vorige generatie modellen (CMIP5 modellen) en daarom
gemiddeld genomen een sterkere temperatuurstijging aan het aardoppervlak si-
muleren. Ik toon aan dat die sterkere temperatuurstijging echter niet leidt tot veel
hogere projecties van de wereldwijd gemiddelde zeespiegelstijging in 2100. De pro-
jecties van de snelheid van die stijging in 2100 nemen daarentegen wel behoorlijk
toe. Ik leg uit hoe dit deels te maken heeft met de relatie tussen zeespiegelstijging
en cumulatieve temperatuurstijging - een relatie met belangrijke implicaties voor
hoe snel we onze uitstoot van broeikasgassen zouden moeten verminderen. Bo-
vendien beargumenteer ik dat de meest gevoelige CMIP6 modellen nuttig zijn voor
het doorrekenen van worst-case zeespiegelscenario’s.

In Hoofdstuk 3 gebruik ik een regionaal oceaanmodel voor de dynamische schaal-
verkleining van de simulaties van twee mondiale klimaatmodellen op het Noordwest-
Europese Plat. De resultaten tonen aan dat dit de historische simulaties van beide
klimaatmodellen regionaal verbetert. De schaalverkleining heeft ook invloed op
de simulaties van de toekomstige zeespiegelverandering in de regio, inclusief aan
de kust. De invloed van de schaalverkleining blijkt het grootst voor het klimaat-
model met de laagste resolutie en de minst realistische kustlijn en bodemdiepte.
Dat model is bijvoorbeeld te grof om de stroming door het Engelse Kanaal uit te
kunnen rekenen, wat de simulaties van zeespiegelverandering waarschijnlijk sterk
beïnvloedt. Hetzelfde geldt voor meerdere andere klimaatmodellen. Op basis van
de resultaten in Hoofdstuk 3 concludeer ik daarom dat dynamische schaalverklei-
ning een waardevolle en belangrijke methode is om regionale zeespiegelprojecties
te verbeteren.
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In Hoofdstuk 4 voer ik gevoeligheidstests uit met een ander regionaal oceaanmo-
del van het Noordwest-Europese Plat. In die gevoeligheidstests leg ik het model
bepaalde randvoorwaardes op, zoals de eigenschappen van de atmosfeer en de
aangrenzende oceaan. Ik laat steeds één type randvoorwaarde variëren van jaar
tot jaar, terwijl de andere randvoorwaardes elk jaar hetzelfde blijven. De resul-
taten laten zien hoeveel onder andere de wind, luchtdruk en de processen in de
aangrenzende oceaan bijdragen aan de jaarlijkse schommelingen in de zeespiegel
op het Noordwest-Europese Plat. Die informatie gebruik ik om de overeenkomsten
en verschillen in de zeespiegelvariabiliteit die in verschillende kustplaatsen wordt
waargenomen te verklaren. De gevoeligheidstests laten ook zien dat de niet-lineaire
interacties tussen de verschillende factoren die bijdragen aan de zeespiegelvariabi-
liteit van jaar tot jaar geen grote rol spelen.

In Hoofdstuk 5 onderzoek ik de gemiddelde zeespiegelverandering op het Noordwest-
Europese Plat per seizoen, aan de hand van de simulaties van een groep mondiale
klimaatmodellen. Ik laat zien dat de zeespiegelstijging per seizoen flink kan verschil-
len. Tot nu toe wordt daar in zeespiegelprojecties echter vaak nog geen rekening
mee gehouden. Door middel van tests met het regionale model uit Hoofdstuk 4
vind ik dat de afwijkingen van de zeespiegelstijging in de winter en de zomer vooral
komen door regionale veranderingen in de wind. In de lente en de herfst spelen
de veranderingen in de wind een kleinere rol, en zijn veranderingen in de dichtheid
van het zeewater waarschijnlijk belangrijker. De tests laten ook zien dat mondiale
klimaatmodellen die te grof zijn om de stroming door het Engelse Kanaal uit te
kunnen rekenen niet geschikt zijn om het effect van windveranderingen op de zee-
spiegel in de regio te simuleren. Dit vormt een extra motivatie voor het toepassen
van dynamische schaalverkleining zoals in Hoofdstuk 3.

Samengevat laat mijn proefschrift het belang zien van het gebruik van regionale
oceaanmodellen als aanvulling op de simulaties van mondiale klimaatmodellen.
Door beide soorten modellen te gebruiken vergroot dit proefschrift ons begrip van
zeespiegelverandering en zeespiegelvariabiliteit. Daarmee draagt mijn onderzoek
bij aan het verbeteren van zeespiegelprojecties op zowel mondiale als regionale
schaal.
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1
Introduction

1.1. Climate change and sea-level projections
The headline statements of the recently published Working Group 1 contribution
to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC AR6) are clear: our climate has been warming at a rate that is “unprecedented
over at least the last 2,000 years”, and this warming is “unequivocally caused by
human activities” (Masson-Delmotte et al., 2021). As a result, the ocean is heating
up and ice sheets and glaciers are melting. This causes sea-level rise in many
regions around the world, which increases the risk of coastal flooding and can
even lead to the permanent loss of coastline through submergence. Sea-level rise
can also enhance saltwater intrusion and coastal erosion and result in the loss of
coastal wetlands and ecosystems (Oppenheimer et al., 2019). The consequences
of sea-level rise will be felt especially by the communities located in coastal regions
and call for the mitigation of climate change. However, the sea level will change
substantially even if we reduce our greenhouse gas emissions today, because the
ice sheets and the deep ocean are still responding to the greenhouse gases that
we have emitted in the past (Mengel et al., 2018).

Coastal communities may use different strategies to adapt to sea-level change,
such as protecting, accommodating, advancing, retreating and using nature-based
solutions (Oppenheimer et al., 2019). To decide how and when to act, projections
of sea-level change at a regional to local scale are crucial. Therefore, regional sea-
level projections are being developed in individual studies (e.g., Kopp et al., 2014;
Jackson and Jevrejeva, 2016) and in national and intergovernmental assessments
(e.g., Church et al., 2013; Fox-Kemper et al., 2021; Oppenheimer et al., 2019;
Palmer et al., 2018b; van den Hurk et al., 2014).

Uncertainties in sea-level projections arise from the different approaches to model-
ing sea-level change, but also from the uncertainty in future greenhouse gas emis-
sions and from natural climate variability, which masks externally forced changes
in sea level (Palmer et al., 2020; Kopp et al., 2019; Little et al., 2015; Hawkins and
Sutton, 2009). The uncertainties in sea-level projections are important because
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stakeholders are not only interested in the most likely sea-level rise outcomes, but
also in the potential for larger sea-level rise (Hinkel et al., 2019). Scientists are
continuously trying to improve sea-level projections by better defining and reducing
their uncertainties, building on the latest understanding of all contributing physical
processes and considering the kind of information that stakeholders need.

This thesis uses global climate models and regional ocean models to improve our
understanding of sea-level change and sea-level variability. Before discussing the
aims of this thesis in more detail, I will first introduce the processes causing sea-level
change (Section 1.2) and the methods available to observe sea-level change (Sec-
tion 1.3). Next, I will discuss how sea-level projections can be developed (Section
1.4) and what challenges this currently involves (Section 1.5). Finally, I will state
the aims of this thesis and provide an outline of the chapters that follow (Section
1.6).

1.2. Processes causing sea-level change
Changes in sea level are caused by a combination of physical processes that act on
global to local scales (Figure 1.1). To understand these processes, it is easiest to
first think about the global mean sea level (GMSL). The GMSL rises or falls when
the volume of the ocean increases or decreases. This may happen for two reasons.
First, the volume of the ocean changes when water is added to or removed from
the ocean, for example due to the melt or growth of glaciers and ice caps, the
Greenland ice sheet or the Antarctic ice sheet. Changing the amount of the water
stored on land, for example by groundwater extraction, deforestation or building
dams, also affects the ocean volume (e.g., Wada et al., 2017). The GMSL change
due to the exchange of water between the land, the cryosphere and the ocean
is called barystatic sea-level change (Gregory et al., 2019). Second, the volume
of the ocean changes when the average density of the seawater changes. As a
result, the ocean expands or contracts, leading to so-called steric sea-level change
(Gregory et al., 2019). Steric GMSL rise occurs mainly due to the increasing ocean
temperature (thermal expansion) (Lowe and Gregory, 2006). The melt of glaciers
and the global mean thermal expansion of the ocean have contributed to the GMSL
rise from 1901 to 2018 by about 38 and 41%, respectively (Fox-Kemper et al.,
2021).

While GMSL rise is a useful metric of the effects of climate change, sea-level change
varies on regional to local scales (Figure 1.1) and this is what we ultimately expe-
rience at the coast. The main processes that cause regional variations in sea-level
change are the gravitational, deformational and rotational response of the Earth to
mass redistribution (Section 1.2.1), glacial isostatic adjustment (Section 1.2.2) and
ocean dynamics (Section 1.2.3). Locally, also the vertical motion of the land surface
(Section 1.2.4) and changes in extreme sea levels (Section 1.2.5) come into play.
The reference frame plays an important role for sea-level change: we distinguish
geocentric sea-level change (sea-level change relative to the Earth’s center of mass)
from relative sea-level change (sea-level change relative to the ocean floor).
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Figure 1.1: Overview of the physical processes causing sea-level change on different spatial and tem-
poral scales. Adapted from Figure 2.1.1 of Palmer et al. (2018b).

1.2.1. Contemporary gravitational, rotational and deformational
effects

If the ocean was at rest, the sea surface would have the shape of the geoid. The
geoid is a non-uniform surface of equal gravitational and rotational potential, which
depends on the mass distribution and the rotation of the Earth. When mass is ex-
changed between the land and the ocean, for example through ice melt or changes
in land-water storage, the Earth’s gravity field and rotation change. This affects the
shape of the geoid. Additionally, the Earth deforms in response to the changes in
surface loads. The so-called gravitational, rotational and deformational (GRD) ef-
fects (Gregory et al., 2019) of mass redistribution cause a distinct pattern of regional
sea-level change called a sea-level fingerprint (e.g., Mitrovica et al., 2001).

For example, consider a melting ice sheet (Figure 1.2). In an equilibrium state, the
sea level is relatively high near the ice sheet and low farther away due to the gravi-
tational attraction of the ice sheet. When the ice sheet starts to melt and meltwater
is added to the ocean, the sea level near the ice sheet falls because of the decreas-
ing gravitational attraction of the ice. To compensate, the sea level far away from
the ice sheet rises more than when the meltwater would have been redistributed
over the ocean evenly. This has important consequences. For example, since The
Netherlands is relatively close to Greenland but far away from Antarctica, the melt
on Greenland results in less sea-level rise at our coasts than the same amount of
melt on Antarctica would.

Changes in the Earth’s rotation due to the ice melt further modify the shape of the
geoid. Additionally, the solid Earth will deform in response to the ice melt (Figure
1.2), both instantaneously due to the elastic response of the crust, and on longer
timescales due to the viscous response of the mantle (see Section 1.2.2). Under-
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Figure 1.2: Schematic representation of the gravitational and deformational effects of the Earth on sea
level in response to a melting ice sheet: (a) before the ice melt has started; (b) after the ice melt has
started. Adapted from Figure 2 of Whitehouse (2018).

neath and near the melting ice sheet, the land surface lifts because the surface
load decreases, leading to a relative sea-level fall. In contrast, the sea-level rise far
away from the ice increases the load on the ocean floor, causing the solid Earth to
deform again. Hence, the GRD effects due to the mass redistribution caused by for
example changes in land ice and land-water storage will in turn affect that mass
redistribution itself.

1.2.2. Glacial isostatic adjustment
In addition to the GRD effects due to contemporary mass redistribution, the solid
Earth is also still responding to the redistribution of mass that occurred in the past.
The GRD effects due to the on-going viscous deformation of the Earth’s mantle in
response to the past unloading of ice sheets is called glacial isostatic adjustment
(GIA). The solid Earth deformation due to GIA is especially large in areas that were
covered by large ice sheets during the Last Glacial Maximum (approximately 26,500
to 20,000 years ago). For example, in Scandinavia, land uplift rates can exceed 10
mm/yr (Lidberg et al., 2007). In regions adjacent to former ice sheets, the surface
is sinking because the mantle material that has been pushed outward by the ice is
now slowly flowing back, restoring isostatic equilibrium.

1.2.3. Ocean dynamics
In reality, the sea level differs from the geoid due to spatial variations in ocean
density and ocean circulation. For example, wind-driven subtropical and subpolar
ocean gyres revolve around large areas of relatively high and low sea level, respec-
tively. In high-latitude regions, where deep water forms as part of the thermohaline
circulation, the average sea level is relatively low (Levermann et al., 2005). These
and other features can be recognized when looking at the average shape of the
sea surface relative to the geoid (Figure 1.3), which is called the mean dynamic
topography.

Changes in the density and the circulation of the ocean, both due to internal climate
variability and in response to external forcing such as greenhouse gas emissions,
cause the sea level to vary on a range of timescales (e.g., Yin et al., 2010). Examples
are transient phenomena such as tides, surges, waves and ocean eddies, but also
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longer lasting effects such as the redistribution of ocean water following shifts in
dominant wind patterns and the slowdown of the thermohaline circulation due to
surface warming and freshening. Such changes result in differences in the mean
state of the sea surface between different periods, referred to as ocean dynamic
sea-level change (DSLC). The sea level is also affected by regional atmospheric
pressure anomalies which, depending on their sign, depress or raise the sea surface
through the inverse barometer effect (Stammer and Hüttemann, 2008).
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Figure 1.3: Mean dynamic topography from 1993 to 2012 [m] based on (CNES, 2019) data.

1.2.4. Local vertical land motion
As mentioned in Sections 1.2.1 & 1.2.2, contemporary GRD effects and GIA result
in vertical land motion (VLM), which causes relative sea-level change. Locally, VLM
also occurs due to seismicity (e.g., Klos et al., 2019) and land subsidence, follow-
ing for example sediment compaction (e.g., Brain, 2016). Human activity, such as
the extraction of minerals and fluids from the ground, can accelerate land subsi-
dence, as is happening in deltaic megacities (Cao et al., 2021; Syvitski et al., 2009).
Sediment transport may also partially offset relative sea-level change and could be
considered part of VLM.

1.2.5. Changes in extreme sea levels
Changes in the time-mean state of the sea level due to the processes described
above change the baseline elevation of tides, surges, and waves. This is the main
cause of future changes in the frequency of extreme sea levels (Howard et al.,
2019; Vousdoukas et al., 2018). Additional changes in extreme sea levels can be
caused by dynamic changes in tides, surges and waves, for instance due to changes
in storminess. The time-mean sea-level change may also cause changes in tides,
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surges and waves, for instance through altering the local water depth (e.g., Arns
et al., 2017). Since extreme sea levels cause coastal flooding, projecting their
change is an active area of research (e.g., Vousdoukas et al., 2018; Muis et al.,
2020; Tebaldi et al., 2021; Fox-Kemper et al., 2021).

In summary, sea-level change varies on a range of spatial and temporal scales due
to the combination of the processes described above. To develop comprehensive
sea-level projections, they all need to be considered (Section 1.4).

1.3. Sea-level change in the instrumental era
Over the past century or so (1901-2010), GMSL has risen by approximately 17.5
cm (Palmer et al., 2021) (Figure 1.4a). We know this mainly because of long tide
gauge records. Tide gauges are coastal monitoring stations that record the height
of the sea level relative to the land to which they are anchored. This means that
tide gauges measure relative sea-level change and that their measurements are
affected by local VLM (Section 1.2.4). The VLM at a tide gauge can be estimated
using nearby GPS observations, if available (Wöppelmann and Marcos, 2016). Tide
gauge records, available from global databases such as the Permanent Service for
Mean Sea Level (PSMSL, Holgate et al., 2013), are indispensable for reconstructing
sea-level change over the last century (Figure 1.4a). However, since tide gauges
are situated at the coast and are not evenly distributed around the world (Figure
1.4b), reconstructing GMSL rise from their records is not straightforward.

Since the launch of the TOPEX/Poseidon satellite altimeter mission in 1992 (Fu
et al., 1994), spaceborne observations of sea level with a near-global coverage have
become available. Satellite altimeters take repeated measurements of geocentric
sea level (relative to the Earth’s center of mass) at a regular time interval depending
on the orbit of the satellite. They do so by sending out radar pulses to the ocean
surface and measuring the time it takes for these pulses to return. The altimetry
measurements therefore depend on, among others, the determination of the orbit
of the satellite and geophysical corrections such as for atmospheric propagation
delays and sea state biases (Escudier et al., 2017).

Based on satellite altimetry, GMSL has very likely risen at a rate of 2.88 to 3.61
mm/yr over 1993-2018 (Fox-Kemper et al., 2021). Altimetry measurements also
expose distinct spatial features of sea-level change such as the zonal contrast in
the Tropical Pacific Ocean, the meridional dipole in the North Atlantic Ocean and
the relatively low rates near Antarctica and Greenland (Figure 1.5). In Figure 1.5,
mesoscale eddies in regions with strong currents are visible as near-circular features
of anomalous sea-level change. The altimetry records are crucial for understanding
DSLC (e.g., Chafik et al., 2019; Thompson et al., 2016) and can be used to evaluate
ocean models (e.g., Bilbao et al., 2015; Landerer et al., 2014; Richter et al., 2017).
To distinguish DSLC from sea-level change due to changes in the geoid, altimetry
measurements need be corrected for the latter, for example using satellite mea-
surements of the Earth’s gravity field (e.g., from the Gravity Field and Steady-State
Ocean Circulation Explorer).
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Figure 1.4: (a) Historical GMSL rise relative to 1991-2010 based on an ensemble of tide gauge recon-
structions. The black line shows the ensemble mean of the reconstructions and the light grey shading
shows the uncertainty (90% confidence interval). Based on the data of Palmer et al. (2021); (b) the
global coverage of tide gauges based on the records made available by the PSMSL. The colors indicate
the record lengths. Obtained from Ponte et al. (2019), their Figure 2.

To compare satellite altimetry records with tide gauge records, VLM needs to be
added to the first or subtracted from the latter. Compared to most tide gauge
records, the altimetry record is short. Especially at a regional scale, this complicates
distinguishing externally forced sea-level change and its acceleration from internal
sea-level variability (e.g., Hamlington et al., 2020). Moreover, the waveforms of
the radar pulses of altimeters are affected by the presence of land, reducing the
accuracy of satellite altimetry near the coasts (Cipollini et al., 2017). Tide gauges
and satellite altimetry are therefore complementary observation tools.
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Figure 1.5: Regional trends of annual mean sea level derived from satellite altimetry over 1993-2018
[mm/yr], (a) with and (b) without GMSL rise. Obtained from Fasullo and Nerem (2018), their Figure 1.

1.4. Projecting sea-level change
One way to project future sea-level change is to use the relationship between ob-
served sea-level change (Section 1.3) and a relevant global climate parameter such
as the global mean surface air temperature. For a certain projected change in global
mean surface air temperature, sea-level change can then be projected (e.g., Rahm-
storf et al., 2007; Mengel et al., 2016). Such semi-empirical methods are relatively
simple and computationally cheap but assume that the relationships on which they
are based are adequate representations of the physical processes involved. These
relationships therefore need to be well constrained by observations. Additionally,
semi-empirical methods assume that the relationships involved will not change in
the future; an assumption which may be invalidated by non-linear changes in the
processes causing sea-level change. Alternatively, process-based methods that rely
on complex numerical models may be used to project the contribution of each of
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the processes introduced in Section 1.2 (e.g., Fox-Kemper et al., 2021; Kopp et al.,
2014; Oppenheimer et al., 2019; Palmer et al., 2018b; Slangen et al., 2014). Cru-
cially, our ability to make process-based projections depends on our understanding
of the relevant physical processes and how best to model them, which motivates
this thesis.

1.4.1. Global climate models
Global climate models (GCMs) can be used to simulate the response of the Earth
system to radiative forcing. Radiative forcings are factors that alter the energy im-
balance at the top of the Earth’s atmosphere (Forster et al., 2021), such as solar
variability and changes in the concentration of greenhouse gases and aerosols in
the atmosphere due to human activity and volcanism. The input to GCMs can either
be based on observed radiative forcing or on radiative forcing under different fu-
ture scenarios, such as representative concentration pathways (RCPs, Meinshausen
et al., 2011) and the scenarios tied to shared socioeconomic pathways (SSPs, Mein-
shausen et al., 2020).

The output of GCMs consists of the time-dependent response of many climate vari-
ables, including global mean thermal expansion and DSLC (see Section 1.2). GCMs
simulate these variables by dividing the climate system in many different grid cells.
For each grid cell, the equations describing the relevant physical processes are
solved numerically. Computational constraints limit the number of grid cells of
GCMs and therefore their average grid resolution. The different components of the
climate system are coupled within a GCM. For example, the wind may affect the
ocean circulation, whereas the sea surface temperature may influence the atmo-
spheric circulation.

There are dozens of different GCMs, developed and continuously improved by var-
ious modeling centers around the world. These modeling centers participate in
so-called Coupled Model Intercomparison Projects (CMIPs) to provide a systematic
comparison of their models for a well-defined set of common experiments. These
model ensembles allow scientists to study the response of the climate system to
changes in greenhouse gas concentrations and to identify model biases. Simu-
lations of GCMs participating in the fifth intercomparison project (CMIP5, Taylor
et al., 2012) have been available since the start of writing this thesis, whereas sim-
ulations from the latest intercomparison project (CMIP6, Eyring et al., 2016) have
only started to become available in 2019.

1.4.2. Projecting barystatic sea-level change, GIA and VLM
Ice sheets and glaciers are typically not included in GCMs, mainly due to the dis-
crepancy between the resolution of most GCMs and the resolution appropriate for
ice models (Vizcaino, 2014). Instead, the contributions of ice sheets and glaciers to
sea-level change are projected using dedicated ice sheet and glacier models and pa-
rameterizations, driven by the output of GCMs. For example, glacier mass changes
are typically projected using global mass balance models driven by the precipitation
and surface air temperature output of GCMs (e.g., Marzeion et al., 2020). Projec-
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tions of the mass change of the Greenland and Antarctic ice sheets often rely on
regional ice sheet models forced with the precipitation, surface air temperature, and
ocean temperature and salinity output of GCMs (e.g., Nowicki et al., 2020; Goelzer
et al., 2020). Importantly, this means that the interactions of the ice sheets with
the atmosphere and the ocean are not resolved. To estimate the contribution of
ice sheet processes which we cannot yet model well, structured expert judgement
can be used (Bamber and Aspinall, 2013; Bamber et al., 2019, see Section 1.5.1).
The contribution of land-water storage to sea-level change is often projected using
hydrological models (Konikow, 2011; Wada et al., 2016) and relationships between
land-water storage and the global population (e.g., Fox-Kemper et al., 2021; Kopp
et al., 2014).

The regional sea-level change due to the GRD effects caused by the projected ter-
restrial mass changes is often computed by solving the sea-level equation (Farrell
and Clark, 1976) for a rotating elastic Earth (e.g., Mitrovica et al., 2011). To account
for GIA, typically global models are used that solve the sea-level equation using a
radially symmetric viscoelastic Earth model combined with a spatially varying ice
history over the last glacial cycle (e.g., Lambeck et al., 2014; Peltier et al., 2014).
Alternatively, GIA can be estimated in conjunction with VLM by statistically extrapo-
lating the linear background trends observed at tide gauges (e.g., Kopp et al., 2014;
Fox-Kemper et al., 2021). To sum all the separately estimated components of sea-
level change and their uncertainties, the dependence between processes must be
considered.

1.4.3. Recent projections
Updated sea-level projections, based on CMIP6 models, have recently been pub-
lished by the IPCC AR6 (Fox-Kemper et al., 2021). Their projections of GMSL rise by
2100 range from 0.28 to 1.01 m (relative to 1995-2014), depending on the emis-
sions scenario. This range excludes ice-sheet dynamics that are currently poorly
understood but may lead to higher sea-level projections (see Section 1.5.1). Re-
gionally, the relative sea-level projections of the IPCC AR6 show some distinct de-
viations from the global mean (Figure 1.6). Generally, due to GRD effects, the sea
level will fall near large sources of terrestrial mass loss (e.g., Greenland and West
Antarctica) and rise farther from them. Due to ocean dynamics, the projected sea-
level rise is relatively high for example northeast of the US and relatively low for
example south of the Antarctic Circumpolar Current (Slangen et al., 2014). Due to
GIA, relative sea level is projected to fall strongly in regions that were covered by
large ice sheets in the past (e.g., Scandinavia, Alaska, Greenland, Antarctica and
Patagonia). High rates of relative sea-level rise are found at locations experiencing
large land subsidence, for example in Asian deltas and in the Gulf of Mexico.
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Figure 1.6: The median projections of relative sea-level change by 2100 [m] of the IPCC AR6 for an
intermediate emissions scenario (SSP2-4.5), relative to 1995-2014. Obtained from Fox-Kemper et al.
(2021), their Figure 9.28c. Note that the colormap does not distinguish values below -0.2 m.

1.5. Challenges of projecting sea-level change
In the recent decades, the development of sea-level projections has progressed
substantially, particularly with regards to the regional variations of sea-level change.
However, the range of sea-level projections in the literature has widened over time
(Garner et al., 2018) and substantial challenges remain. This section outlines some
of the main uncertainties involved in projecting sea-level change (Section 1.5.1) and
then introduces the uncertainties that this thesis addresses in more detail (Sections
1.5.2, 1.5.3 & 1.5.4).

1.5.1. Main uncertainties in sea-level projections
Different types of uncertainty in sea-level projections exist and their relative im-
portance varies by location and through time (Little et al., 2015; Palmer et al.,
2020; Hawkins and Sutton, 2009). One type of uncertainty is the uncertainty in the
future emissions of greenhouse gases. This uncertainty is typically addressed by
developing sea-level projections for different emissions scenarios (Section 1.4.1).
A second type of uncertainty stems from the uncertainties in modeling the different
components of sea-level change. Some of the largest uncertainties of this type are
related to the dynamics of the Greenland and Antarctic ice sheets, which are not
well understood.

Given the lack of consensus among experts on how best to model the Greenland
and Antarctic Ice Sheets, their contributions to sea-level change can be considered
deeply uncertain (Fox-Kemper et al., 2021). The main difficulties relate to processes
that are poorly constrained by observations and that existing models cannot resolve
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well (see also Section 1.4.2). For the Antarctic ice sheet, examples are the marine
ice sheet and ice cliff instabilities, the sensitivity of marine-grounded ice shelves
to ocean warming, and the effect of ice-ocean feedbacks (e.g., DeConto et al.,
2021; Golledge et al., 2019; Levermann et al., 2020; Nowicki et al., 2020; Fox-
Kemper et al., 2021). For the Greenland Ice Sheet, examples are atmospheric
forcing, surface processes, and ice-climate interactions (e.g., Muntjewerf et al.,
2020; Goelzer et al., 2020; Fox-Kemper et al., 2021).

Modeling VLM is also challenging. Only a few models provide global estimates of
VLM due to GIA (e.g., Lambeck et al., 2014; Peltier et al., 2014). Except for the
model of Caron et al. (2018), forward GIA models do not provide formal uncertainty
estimates. Moreover, most global GIA models assume that the Earth is radially sym-
metric, neglecting potentially important lateral variations in lithospheric thickness
and mantle viscosity. Projections of other types of VLM are not available at a global
scale. As an alternative, some studies have extrapolated linear background rates
in tide gauge records to account for GIA in combination with other long-term VLM
components (e.g., Fox-Kemper et al., 2021; Kopp et al., 2014). This is inaccu-
rate at locations with non-linear VLM caused by seismicity or anthropogenic land
subsidence.

Additional modeling uncertainties arise from the use of GCMs to develop sea-level
projections, which is a central theme of this thesis. Many components of sea-
level projections rely directly or indirectly on the simulations of GCMs (Section 1.4).
Therefore, uncertainties are introduced by the discrepancies between the simula-
tions of different GCMs, which will be discussed in more detail in Section 1.5.2.
Furthermore, even though different GCMs have different ocean and atmosphere
grids, most of them have a relatively low grid resolution (Section 1.4.1). This may
affect their simulations of DSLC in coastal regions, which will be discussed in more
detail in Section 1.5.3.

A third type of uncertainty in sea-level projections is caused by internal sea-level
variability, which refers to the natural fluctuations in sea level within the climate
system. Internal sea-level variability is important because it can temporarily alter
long-term sea-level trends. Essentially, internal sea-level acts as noise, obscuring
the externally forced sea-level change. As such, it is the main source of uncertainty
in local sea-level projections for the next few decades (Palmer et al., 2020). Sea-
level variability therefore forms another important theme of this thesis and will be
further introduced in Section 1.5.4.

1.5.2. Differences between GCMs
Ensembles of GCMs like the CMIP5 and CMIP6 ensembles typically consist of a few
tens of models from modeling centers willing to participate. Such ensembles are
therefore called ‘ensembles of opportunity’: unlike perturbed physics ensembles,
they were not designed to fully and systematically sample uncertainty (Tebaldi and
Knutti, 2007). Consequently, the spread between the GCMs in an ensemble does
not necessarily reflect the true uncertainty of a quantity of interest. Subsequent
ensembles of GCMs may well have different distributions of a variable, which af-
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fects the sea-level projections derived from them. The different distributions of the
climate sensitivity of the CMIP5 and CMIP6 ensembles form an important example.
Primarily due to stronger positive cloud feedbacks, CMIP6 models tend to be more
sensitive to radiative forcing than CMIP5 models (Zelinka et al., 2020), leading to
higher projections of global mean surface air temperature increase (Forster et al.,
2020). The implications of the differences between the CMIP5 and CMIP6 models
for global mean sea-level projections will be studied in Chapter 2.

To develop sea-level projections, the simulations of all GCMs in an ensemble are
typically weighted equally (e.g., Slangen et al., 2014; Kopp et al., 2014). This may
not be the most appropriate strategy, since structural differences between GCMs
introduce differences in model performance. Additionally, GCMs can be interdepen-
dent, especially when developed by the same modeling center or when based on
the same code. Weighting schemes accounting for model performance and inter-
dependence have been developed (e.g., Knutti et al., 2017; Brunner et al., 2020),
but their application to sea-level projections remains largely unexplored. Weight-
ing schemes have to rely on evaluating historical simulations. However, physically
plausible relationships between historical performance metrics and future change
(‘emergent constraints’) are challenging to determine (Eyring et al., 2019).

1.5.3. Using GCMs for coastal sea-level projections
The horizontal grid resolution of CMIP5 and CMIP6 models is typically around 100
km for the ocean and around 150-200 km for the atmosphere (see Chapters 3 &
5). Additionally, the number of vertical levels in most GCMs is limited, especially in
the shallow parts of the ocean. Consequently, processes occurring at scales smaller
than the grid resolution must be parameterized and small-scale topographic features
cannot be represented. These are major limitations especially for shallow shelf seas,
in which the coastline, bathymetric features and small-scale processes strongly in-
fluence the ocean dynamics. Examples are water transport along and across the
shelf break, coastal upwelling and downwelling, mesoscale eddies, freshwater in-
flow and fronts, mixing, frictional boundary layers and ocean currents through nar-
row seas and channels (e.g., O’Dea et al., 2012; Holt et al., 2017). The limited
resolution of GCMs also prevents them from resolving tides, waves and surges and
their interaction with time-mean sea-level change. The dissipation of tidal energy
is an important source of mixing in shelf seas. How these limitations affect coastal
sea-level projections based on GCMs is not yet clear.

Running multiple centennial experiments with high-resolution GCMs is computation-
ally very expensive. Alternatively, GCM simulations may be refined regionally using
high-resolution regional models, a technique called dynamical downscaling. While
dynamical downscaling is commonly applied for the atmosphere (e.g., Jacob et al.,
2020), only few dynamical-downscaling studies have been carried out for sea-level
change. High-resolution regional ocean models also offer the possibility to resolve
tides, waves and surges. In Chapter 3, I therefore apply dynamical downscaling
to two GCMs and study its impact on their simulations of ocean dynamic sea-level
change and sea-level variability.
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1.5.4. Sea-level variability and projections
Evaluating sea-level projections and determining the current pathway of sea-level
change based on observations is important for adaptive coastal planning (Haasnoot
et al., 2018, 2019). However, interannual to decadal sea-level variability complicates
interpreting the discrepancies between sea-level projections and observations (e.g.,
Baart et al., 2018). Externally forced sea-level change can be estimated from the
observations with higher confidence if internal sea-level variability is removed first
(e.g., Calafat and Chambers, 2013; Haigh et al., 2014; Hamlington et al., 2019). In
this context, a good understanding of the drivers of regional sea-level variability is
important, motivating the research presented in Chapter 4.

The sea level does not only vary interannually to decadally, but also has a pro-
nounced seasonal cycle at many locations, mainly driven by oceanic and meteoro-
logical effects (Tsimplis and Woodworth, 1994). However, sea-level projections are
typically provided on an annual mean time scale, meaning that the seasonal sea-
level cycle is filtered out. Consequently, potential changes in the characteristics of
the seasonal sea-level cycle are not included. Chapter 5 explores this research gap
by studying projections of seasonal mean sea-level change and its causes.

1.6. Thesis aims and outline
This thesis aims to improve our understanding of the uncertainties in sea-level
projections based on GCMs, and of sea-level variability and its future changes, using
a combination of global climate models and regional ocean models. The thesis starts
by studying GMSL rise and then proceeds to investigate regional sea-level change
(Figure 1.7), taking the Northwestern European Shelf (NWES) as an example study
region. The NWES is a continental shelf northwest of Europe (Figure 1.8) and a
typical example of a region which is not well represented in most GCMs. At the same
time, the NWES is rich of oceanographic observations spanning long time periods
(e.g., from PSMSL and the Copernicus Marine Service), which facilitates sea-level
research and the evaluation of ocean models for this region.

The following research questions will be addressed in this thesis:

Chapter 2 - How do the global mean sea-level projections based on
CMIP5 and CMIP6 models differ?

As discussed in Section 1.5.2, the distributions of the climate sensitivity of the CMIP5
and CMIP6 ensembles differ. Chapter 2 therefore investigates how the global mean
sea-level projections based on these ensembles differ. First, the simulations of
global mean thermal expansion and surface air temperature increase are compared.
Next, these simulations are used to derive global mean sea-level projections using
the methods of the Fifth Assessment Report of the IPCC (Church et al., 2013).
The resulting projections are compared across the ensembles and across individual
models, gaining insight into the implications of the increased climate sensitivity of
CMIP6 models.
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Figure 1.7: Overview of the topics of this thesis, highlighting the temporal and spatial scales studied
and the types of models used in each chapter.

Chapter 3 - How does dynamical downscaling affect the simulations of
ocean dynamic sea-level change of global climate models?

Moving to the regional scale, Chapter 3 focuses on the limitations of GCMs regard-
ing their simulations of DSLC on the NWES (see Section 1.5.3). To this end, Chapter
3 uses a high-resolution regional ocean model to dynamically downscale the sim-
ulations of two CMIP5 models on and around the NWES. First, the original and
downscaled simulations are evaluated against observations. Next, the simulations
of future DSLC are compared to study the impact of dynamical downscaling. The
impact of dynamical downscaling on the simulations of the time of emergence and
changes in the seasonal sea-level cycle is also discussed.

Chapter 4 - What drives the interannual sea-level variability on the
NWES?

Removing natural sea-level variability from observations helps to estimate exter-
nally forced sea-level change and to compare observed sea-level change with pro-
jections with higher confidence (Section 1.5.4). To this end, the respective roles
of the different drivers of interannual sea-level variability need to be understood
and quantified. In Chapter 4, I therefore perform sensitivity experiments with a
high-resolution regional ocean model to investigate the drivers of the interannual
sea-level variability on the NWES. The results complement prior observation-based
studies and provide new insights into the spatial correlation pattern of sea level on
the NWES.
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Chapter 5 - How will seasonal mean sea level on the NWES change in
the future?

Sea-level projections are often provided at an annual mean basis, which means that
potential changes in the seasonal sea-level cycle are not considered (Section 1.5.4).
Chapter 5 therefore studies the seasonality of future sea-level change on the NWES,
using the simulations of an ensemble of CMIP6 models. The causal role of seasonal
wind-stress change is investigated using experiments performed with the regional
ocean model of Chapter 4. Additional model experiments are performed to study
the ability of CMIP6 models to simulate the response of sea level on the NWES to
regional wind-stress change, connecting the findings of Chapters 3 & 5.

In Chapter 6, I discuss the outcomes of my research and provide recommendations
for future work.

Figure 1.8: Bathymetry of the NWES and the surrounding North Atlantic Ocean, together with a
schematic overview of the general circulation on the NWES (arrows). The black line indicates the 200 m
isobath approximating the shelf break. Figure obtained from Ricker and Stanev (2020), their Figure 1.
The abbreviations and numbers denote the ”Armorican Shelf (AS), Bay of Biscay (BB), Celtic Sea (CS),
Dogger Bank (DB), East Anglia (EA), English Channel (EC), German Bight (GB), Goban Spur (GS), Irish
Sea (IS), Kattegat (Ka), North Sea (NS), Norwegian Trench (NT), Oyster Ground (OG), Outer Hebrides
(OH), Orkney Islands (OI), Porcupine Bank (PB), Rockall Trough (RT), Skagerrak (Sk), Southern Bight
(SB), St. George’s Channel (SGC), Shetland Islands (SI), Silver Pit (SP), Fair Isle Current (a), European
Slope Current (b), East Anglia Plume (c), Frisian Front (d), Rhine (1), Ems (2), Weser (3), and Elbe (4)”
(p. 638) (Ricker and Stanev, 2020).
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Abstract
The effective climate sensitivity (EffCS) of the models in the Coupled Model Inter-
comparison Project 6 (CMIP6) has increased relative to CMIP5. We explore the
implications of this for projections of global mean sea-level (GMSL) rise by 2100
for three emissions scenarios. CMIP6 projections of global surface air temperature
are substantially higher than in CMIP5, but this is not the case for the projections
of global mean thermal expansion. Using these projections as input to construct
GMSL projections with the methods of the IPCC AR5, the 95th percentile projec-
tions of GMSL rise by 2100 only increase by 3-7 cm. The projected rates of GMSL
rise around 2100 increase more strongly, though, implying more pronounced differ-
ences beyond 2100 and greater committed sea-level rise. Inter-model differences
in GMSL projections indicate that EffCS-based model selection may substantially
alter the ensemble projections. GMSL change in 2100 is accurately predicted by
time-integrated temperature change, and thus requires reducing emissions early to
be mitigated.

Published as: Hermans, T.H.J., Gregory, J.M., Palmer, M.D., Ringer, M.A., Katsman, C.A., & Slangen,
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2.1. Introduction
Global mean sea level (GMSL) has risen by around 1.5 mm/yr since the 1960s
(Dangendorf et al., 2017; Frederikse et al., 2018) and is projected to rise at an
accelerated pace unless greenhouse gas emissions are substantially reduced (Op-
penheimer et al., 2019). Limiting the adverse impacts of sea-level rise (Nicholls
and Cazenave, 2010) requires accurate sea-level projections to underpin effec-
tive coastal decision making and adaptation planning. GMSL change results from
both ocean density changes (steric sea-level change) and the exchange of mass
(barystatic sea-level change) between the ocean and the cryosphere or the land.
Global mean steric sea-level change is nearly equal to global mean thermal expan-
sion (GTE), since global mean halosteric change is negligible (Gregory and Lowe,
2000; Gregory et al., 2019) .

Ensembles of complex, coupled global climate models (GCMs), for example from the
Coupled Model Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012), form
the basis of many GMSL projections (e.g., Church et al., 2013; Kopp et al., 2014;
Oppenheimer et al., 2019; Palmer et al., 2018b, 2020; Slangen et al., 2012, 2014).
The Fifth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC AR5) constructed a Monte Carlo ensemble of GMSL projections from CMIP5
simulations of GTE and global mean surface air temperature (GSAT), with GSAT-
driven parameterizations of the surface mass balance components of land-based
ice melt (Church et al., 2013). Several subsequent studies built on this approach
(Oppenheimer et al., 2019; Palmer et al., 2018b, 2020), updating the contribution of
the dynamics of the Antarctic ice sheet based on post-AR5 modeling studies.

The GSAT response to radiative forcing varies across GCMs according to the strength
of different climate feedbacks, and can be characterized by estimates of climate
sensitivity. In particular, equilibrium climate sensitivity (ECS) measures the GSAT
response in GCMs upon reaching equilibrium following an instantaneous doubling
of CO2 concentration in the atmosphere. Since running coupled GCMs to equilib-
rium is computationally very expensive, ECS is often approximated with effective
climate sensitivity (EffCS). EffCS is obtained through linearly regressing the top-
of-atmosphere radiative flux anomaly on GSAT in idealized experiments in which a
GCM has not yet reached equilibrium (Gregory et al., 2004).

The current generation of GCMs in CMIP6 (Eyring et al., 2016) has a positively
skewed EffCS distribution, including multiple models with a higher EffCS than the
CMIP5 range (2.1-4.7 K; Andrews et al., 2012) and the 5-95% range constrained
by multiple lines of evidence (2.3-4.7 K; Sherwood et al., 2020). Consequently,
CMIP6 models project a larger GSAT increase for a given emissions scenario (Forster
et al., 2020). This has sparked an important debate about what model develop-
ments have caused the increase in EffCS and whether these developments have
improved model physics. The increased EffCS in CMIP6 has been attributed to
stronger positive cloud feedback (Meehl et al., 2020; Zelinka et al., 2020), and the
representation of clouds has improved in several CMIP6 models compared to CMIP5
(e.g., Bodas-Salcedo et al., 2019; Gettelmann et al., 2019; Voldoire et al., 2019;
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Bjordal et al., 2020; Swart et al., 2019; Williams et al., 2020). On the other hand,
some high-EffCS CMIP6 models overestimate historical warming, suggesting their
future warming may be too large (Brunner et al., 2020; Forster et al., 2020; Ni-
jsse et al., 2020; Tokarska et al., 2020). Still, an EffCS higher than 5 K cannot be
discounted as physically implausible (Bjordal et al., 2020). Thus, investigating the
consequences of the increased EffCS in CMIP6 for projections of climate change is
important.

Although multiple studies have investigated the consequences of the increased Ef-
fCS in CMIP6 for GSAT change projections, the consequences for GMSL projections
have only been studied using a reduced complexity model (Vega-Westhoff et al.,
2020). Here, we generate GMSL projections based on CMIP6 using the Monte Carlo
approach of IPCC AR5 (Church et al., 2013), including both GTE and the GSAT-driven
barystatic contributions, and compare these to CMIP5-based projections. Isolating
the impact of CMIP6 simulations using consistent methods is an important step to
ensure traceability to past IPCC projections of global and regional sea-level change.
Given the complex correlations among different GMSL change components (Palmer
et al., 2020), increased EffCS may not simply lead to increased GMSL projections.
Additionally, the increased EffCS in CMIP6 motivates us to premise high-risk, low-
probability GMSL projections on individual models, exploring high-end projections
to a fuller extent than was previously possible with CMIP5.

In Section 2.3.1, we compare CMIP5 and CMIP6 projections of GTE and GSAT
change, which form the input to the GMSL projections. Next, we investigate their
relationship with EffCS in Section 2.3.2. We include their relationship with the tran-
sient climate response (TCR), another policy-relevant metric of climate sensitivity,
in the supporting information. In Section 2.3.3, we compare CMIP5- and CMIP6-
based GMSL projections and show GMSL projections based on individual CMIP6
models. Since we focus on the impact of increased EffCS on inter-ensemble and
inter-model uncertainties using IPCC AR5 methods, we acknowledge but do not
consider more recent insights into the potential instability of the Antarctic ice sheet
(e.g., DeConto and Pollard, 2016; Edwards et al., 2019).

2.2. Data and methods
2.2.1. CMIP5 and CMIP6 model data
We use monthly mean CMIP5 GTE and GSAT data (‘zostoga’ and global area-
weighted mean ‘tas’ variables) from the IPCC AR5 (Church et al., 2013) for the
representative concentration pathways (RCPs, Meinshausen et al., 2011) 8.5, 4.5
and 2.6. This ensemble contains 21 models from 13 modeling centers. For three
models, the RCP2.6 data was not provided and instead emulated by IPCC AR5 using
the simple climate model of Good et al. (2011, 2013).

The CMIP6 data were downloaded from the Earth System Grid Federation (ESGF) for
three shared socioeconomic pathways (SSPs, O’Neill et al., 2014). We picked SSPs
with high fossil-fueled, middle-of-the-road and sustainable-development narratives,
with nameplate radiative forcing in 2100 approximately corresponding with the
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aforementioned RCPs. Thus, we use the RCP-SSP pairs SSP5-RCP8.5, SSP2-RCP4.5
and SSP1-RCP2.6, respectively. Only for the CMIP6 model CanESM5, both RCP-
and SSP-forced simulations were available from ESGF. The median GSAT change in
2081-2100 (relative to 1986-2005) of the 5 RCP-forced and 25 SSP-forced variants
of CanESM5 differ by 0.27, 0.19 and -0.15 K (SSP minus RCP) for SSP5-RCP8.5,
SSP2-RCP4.5 and SSP1-RCP2.6, respectively. These differences are likely smaller
for the multi-model mean, so based on this preliminary comparison we assume that
differences in GSAT change between CMIP5 and CMIP6 are mainly due to increased
EffCS (following Forster et al. (2020)). Differences between RCPs and SSPs may
have a larger relative effect on GTE, because the inter-ensemble differences in GTE
are smaller (Section 2.3.1).

Our CMIP6 ensemble includes 20 models from 12 modeling centers (Table S2.1).
For these models both GTE and GSAT were available by November 2nd, 2020,
for the historical simulation (1850-2014) and all three emissions scenarios (2015-
2100). We use the first available simulation variant (‘ripf’, Table S2.1) of each
model. Additionally, we require models to provide fully overlapping pre-industrial
control runs for GTE to allow us to correct for model drift, and the idealized model
experiments required to compute EffCS and TCR (see Section 2.2.2). All CMIP6
GCMs providing GSAT but not necessarily GTE (n=31, Table S2.1) are used for
context in Figures S2.2, S2.3 and Table S2.3.

We corrected GTE for model drift, which can arise from the slow adjustment of
the deep ocean to initial conditions and/or imperfect representation of energy con-
servation in the model simulations (Hobbs et al., 2016; Sen Gupta et al., 2013).
To remove drift, we apply a least-squares quadratic fit to the full control experi-
ment of each model and subtract the overlapping part of the fit from the historical
and scenario runs. Although we chose a quadratic fit for consistency with IPCC
AR5 (Church et al., 2013), the drift is nearly linear for most CMIP6 models (Figure
S2.1). This is consistent with the analysis of Hobbs et al. (2016) for CMIP5 mod-
els. The difference between linear and quadratic drift-correction (2081-2100 minus
1986-2005) is largest for INM-CM5-0 (0.32 cm), which is small compared to the
projected GTE (8-37 cm; Figure 2.1). Finally, the monthly mean GTE and GSAT
data were annually averaged.

2.2.2. Calculating EffCS and TCR
The EffCS and TCR of the CMIP5 models were obtained from Andrews et al. (2012)
and Forster et al. (2013), respectively. For the CMIP6 models, we compute these
using the same methods (see Table S2.1 for the results). Namely, to obtain EffCS,
for each GCM we linearly regress the top-of-atmosphere radiative flux anomaly
ΔN on GSAT over 150 simulation years in experiments of abrupt CO2 quadrupling.
(Gregory et al., 2004). We use the CO2 quadrupling instead of doubling experiment,
because the signal-to-noise ratio is higher. Additionally, we assume that the 4xCO2
forcing is equal to twice the 2xCO2 forcing and that the climate feedback parameter
is constant. Extrapolating ΔN to zero to approximate equilibrium, EffCS is found
as 0.5 times the x-intercept. EffCS underestimates ECS in GCMs because the net
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climate feedback becomes less effective at restoring radiative equilibrium over time
(Andrews et al., 2012; Rugenstein et al., 2020). Nevertheless, EffCS is a widely
used metric relevant to 21st-century climate change (Grose et al., 2018) and thus a
useful basis of comparison between CMIP5 and CMIP6. To obtain TCR, we compute
the mean GSAT change in the simulation years 61-80 in experiments of 1% CO2
increase per year (i.e., the window centered around the time of CO2 doubling). For
the CMIP5 model MIROC-ESM-CHEM, these idealized model experiments were not
available.

2.2.3. GMSL projection methodology
To ensure traceability to previous GMSL projections, we compute CMIP6-based pro-
jections using the same approach as in IPCC AR5 (Church et al., 2013). For each
emissions scenario, we generate a 450,000-member Monte Carlo ensemble of GMSL
projections. These projections contain the contributions of thermal expansion, land-
ice mass changes and land-water storage changes. The inputs to these projections
are the time-dependent CMIP6 mean and standard deviation of GTE and GSAT
change, from which 450 samples are drawn (see Section 2.5.3 and the flowchart
therein for details). Through parameterization schemes (Section 2.5.3), the contri-
bution of glaciers and the surface mass balance of the Greenland and Antarctic ice
sheets depend on GSAT change, while the other barystatic contributions depend
only on time. For comparison with the projections of Palmer et al. (2020), and indi-
rectly with the projections of Oppenheimer et al. (2019), we also use an alternative
parameterization of Antarctic dynamical ice discharge based on the projections of
Levermann et al. (2014).

For each GTE and GSAT sample pair, one thousand samples are generated to rep-
resent methodological uncertainty in the parameterization schemes. This results in
an ensemble of GMSL projections of 450x1,000=450,000 members. These projec-
tions converge with a 0.01 m uncertainty for GMSL change and its components and
with a 0.1 mm/yr uncertainty for its rate (Church et al., 2013). Thus, subsequently
computed GMSL projections can differ randomly by these amounts. We present a
flowchart and a summary of the methods in Section 2.5.3, and refer to Church et al.
(2013) and Palmer et al. (2020) for further information.

Finally, we also derive GMSL projections based on the GTE and GSAT simulations of
each of the 20 CMIP6 models individually (Section 2.5.3). This results in 20 ensem-
bles of one thousand members each, which allow us to study inter-model uncer-
tainty related to EffCS. Additionally, equally weighting all models these ensembles
can be joined into a 20,000-member ensemble to test the sensitivity to the assump-
tions made in constructing the 450,000-member ensemble (Section 2.3.3).
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2.3. Results
2.3.1. Comparing CMIP5 and CMIP6 projections of GTE and

GSAT change
We first compare CMIP5 and CMIP6 GTE and GSAT change projections, which form
the input to the GMSL projections in Section 2.3.3. Despite the increased EffCS in
CMIP6, the CMIP5 and CMIP6 ensemble means and medians of GTE, averaged over
the period 2081-2100, are similar (Figures 2.1a-c & key statistics in Table S2.2). The
5-95% range has widened from CMIP5 to CMIP6, particularly toward lower values,
mainly due to the GTE projections of INM-CM4-8 (EffCS=1.82 K) and INM-CM5-0
(EffCS=1.92 K). Relative to CMIP5, the 95th percentiles of CMIP6 GTE increased
by 1 cm (+4, +5, and +3%) under SSP5-RCP8.5, SSP2-RCP4.5 and SSP1-RCP2.6,
respectively. The 5th percentiles of GTE correspondingly decreased by 4, 2 and 2
cm (-17, -13 and -22%). However, a two-sided Kolgomorov-Smirnov test suggests
we cannot reject the null hypothesis that the CMIP5 and CMIP6 GTEs are drawn
from the same underlying distribution (p≥0.05, Figure S2.2).

In contrast to GTE, the mean, median and 5-95% range of CMIP6 GSAT change
are substantially higher than in CMIP5 for all emissions scenarios (Figures 2.1d-f
& Table S2.2). The CMIP6 medians, averaged over 2081-2100, are 0.80, 0.60 and
0.43 K higher than for CMIP5 for SSP5-RCP8.5, SSP2-RCP4.5, and SSP1-RCP2.6,
respectively (+22, +31 and +41%; the relative difference due to increased EffCS
could be larger in stabilization scenarios because the ocean heat uptake (OHU)
efficiency declines faster than in higher emissions scenarios). Relative to CMIP5,
the 95th percentile changes of CMIP6 increased by 1.36, 0.91 and 0.55 K (+29, +35
and +31%). Nevertheless, the CMIP5 and CMIP6 distributions of GSAT change are
only statistically different for SSP2-RCP4.5 (p<0.05, Figure S2.2). However, this
does not mean that the inter-ensemble differences for SSP5-RCP8.5 and SSP1-
RCP2.6 are unimportant.
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Figure 2.1: Ensemble median (CMIP6: colored solid lines; CMIP5: black solid lines) and 5-95% range
(CMIP6: colored shaded area; CMIP5: black dashed lines) of (a-c) global mean thermal expansion
[GTE, m] and (d-f) global mean surface air temperature [GSAT, K] change of the 20-member CMIP6
and 21-member CMIP5 ensembles, relative to the 1986-2005 average, for SSP5-RCP8.5 (orange, a/d),
SSP2-RCP4.5 (blue, b/e) and SSP1-RCP2.6 (green, c/f).
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2.3.2. Relation of GTE and GSAT change with climate sensi-
tivity

The 20-member CMIP6 ensemble has a higher median EffCS and TCR than the
CMIP5 ensemble (4.04 and 2.00 K compared to 3.50 and 1.88 K, respectively), and
spans a larger range (EffCS of 1.83-5.62 K compared to 2.08-4.67 K; Table S2.2).
However, insufficient evidence exists for significant statistical difference between
the CMIP5 and CMIP6 distributions (Figure S2.3). Nevertheless, the higher upper
tail of CMIP6 motivates investigating the differences further.

To interpret the inter-ensemble differences in GTE and GSAT change given the in-
creased climate sensitivity in CMIP6, we linearly regress GTE and GSAT change in
2081-2100 on EffCS (Figure 2.2). We find statistically significant linear relationships
with EffCS for both GTE (Figures 2.2a-c) and GSAT change (Figures 2.2d-f), except
for CMIP5 GTE under SSP1-RCP2.6 (Figure 2.2c). Thus, EffCS is a relevant metric
for 21st-century climate change. However, since EffCS represents the GSAT re-
sponse to CO2-doubling, it explains much but not all of the inter-model variance of
GSAT change in emissions scenarios with multiple forcing agents (Figures 2.2d-f, 𝑅2
values). The role of OHU in determining the tendency of the curve of GSAT against
EffCS to flatten for increasing EffCS likely causes the non-zero y-intercepts.

Linear regression against EffCS explains much less of the variance of GTE than of
GSAT change (10-63% versus 59-91%; Figure 2.2). While GTE correlates positively
with GSAT change (r=0.59-0.80; Figure S2.5), GTE is also controlled by the ocean
dynamics governing OHU and expansion efficiency, which cause inter-model spread
(Melet and Meyssignac, 2015). For example, OHU in CMIP6 models could partially
occur in regions contributing little to increased GSAT change, or be driven by wind-
driven subduction unrelated to GSAT change. Aspects like these could explain why
GTE projections have not substantially increased from CMIP5 to CMIP6, despite the
increased EffCS.

For both GTE and GSAT change, the correlations with EffCS are higher for higher
emissions scenarios (Figure 2.2), consistent with previous results for GSAT change
in CMIP5 (Grose et al., 2018). The reason is likely the larger ratio of forced signal
to internal variability for higher emissions scenarios (Lyu et al., 2015). Additionally,
more of the inter-model variance of CMIP6 than of CMIP5 is explained by EffCS for
all emissions scenarios, suggesting that the increased spread of EffCS causes the
increased spread of GTE and GSAT change (Table S2.2). The correlations of both
GTE and GSAT change with TCR are lower than with EffCS (Figure S2.4), consistent
with previous CMIP5-based studies (Gregory et al., 2015; Grose et al., 2018, 2016).
Thus, TCR is less useful than EffCS for characterizing GMSL projections.
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Figure 2.2: (a-c) Global mean thermal expansion [GTE, m] and (d-f) global mean surface air temper-
ature [GSAT, K] change (2081-2100 minus 1986-2005) of the CMIP6 (colored circles) and CMIP5 (black
circles) models against their effective climate sensitivity [EffCS, K], together with a least-squares linear
regression (CMIP6: colored, solid; CMIP5: black, dashed) on EffCS for SSP5-RCP8.5 (orange, a/d),
SSP2-RCP4.5 (blue, b/e) and SSP1-RCP2.6 (green, c/f). The intercept, slope, R-squared and p-value
of the regression are indicated in each panel.
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2.3.3. CMIP6-based GMSL projections
Applying the IPCC AR5 methods (Church et al., 2013) to the CMIP6 simulations
results in ensemble-median projections of GMSL rise of 0.76, 0.56 and 0.47 m in
2100 for SSP5-RCP8.5, SSP2-RCP4.5 and SSP1-RCP2.6, respectively (Figures 2.3a-
c; see Table S2.4 for 2081-2100 and Table S2.5 for a component breakdown). This
represents a modest increase of 2, 3 and 3 cm (+3, +6 and +7%) relative to CMIP5.
The 5-95% range shifted up from 0.52-0.98, 0.36-0.71 and 0.28-0.61 m to 0.52-
1.05, 0.38-0.76 and 0.30-0.64 m, respectively. For the 95th percentile, this is an
increase of 7, 5 and 3 cm (+7, +7 and +5%). In comparison, the projected rates of
GMSL rise (average rates during 2095-2100) increase more strongly: 1.4, 0.9 and
0.4 mm/yr for the medians (+12, +15 and +9%) and 3.5, 1.6 and 0.5 mm/yr for
the 95th percentiles (+21, +18 and +8%), respectively. Projections made with the
methods of Palmer et al. (2020) show a comparable increase from CMIP5 to CMIP6
(Figure S2.6). Thus, updating existing GMSL projections with CMIP6 data affects
projections for 2100 only moderately, but has a more pronounced impact beyond
2100.

To study inter-model differences, we also generate GMSL projections based on the
20 individual CMIP6 models directly (explained in Sections 2.2.2 & 2.5.3). The 5-
95% range for individual models can fall substantially outside the CMIP6 ensemble
5-95% range (Figure S2.7) and may therefore be used to describe the outer en-
velope of GMSL projections. Large inter-model differences exist: the CMIP6 model
with the highest EffCS (CanESM5; Swart et al., 2019) projects 5-95% ranges of
0.81-1.24, 0.51-0.82, and 0.39-0.67 m for SSP5-RCP8.5, SSP2-RCP4.5 and SSP1-
RCP2.6, respectively, whereas the model with the lowest EffCS (INM-CM4-8; Volodin
and Gritsun, 2018) projects 0.43-0.73, 0.29-0.56 and 0.23-0.48 m (Figures 2.3a-
c).

The differences between the 20,000-member ensemble consisting of the individ-
ual model projections combined (20x1,000) and the 450,000-member ensemble
of GMSL projections constructed by sampling from GTE and GSAT change (Sec-
tion 2.5.3) are mostly below the random uncertainty of the Monte Carlo method.
However, the 5-95% range of the thermal expansion of the 20,000-member en-
semble is around 2 cm lower than that of the 450,000-member ensemble because
the GTE distribution of CMIP6 is negatively skewed (Figures 2.1a-c). Thus, the
assumptions made in constructing the 450,000-member ensemble (i.e., that GTE
and GSAT change are normally distributed and perfectly correlated to one another)
are reasonable but imperfect. The actual correlation structure (Figure S2.5) can
be preserved by directly sampling from the CMIP6 ensemble, but the number of
models is likely insufficient for a proper representation.

For both CMIP5 and CMIP6, the relationship between the median projection of
GMSL and GSAT change becomes less linear toward 2100 under most scenarios
(Figure 2.3d). In contrast, GMSL change and the time-integrated (cumulative sum
of) GSAT change have a nearly linear and approximately scenario-independent re-
lationship toward 2100 (Figure 2.3e). We explain why and discuss the implications
for mitigation in the next section.



2.3. Results

2

27

GM
SL

ex
pa

ns
io

n

An
ta

rc
tic

a

Gr
ee

nl
an

d

gl
ac

ie
rs

la
nd

 w
at

er

GM
SL

 ra
te

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Se
a-

le
ve

l C
ha

ng
e 

[m
]

(a) SSP5-RCP8.5
CMIP5
CanESM5; EffCS=5.62 K
INM-CM4-8; EffCS=1.83 K

GM
SL

ex
pa

ns
io

n

An
ta

rc
tic

a

Gr
ee

nl
an

d

gl
ac

ie
rs

la
nd

 w
at

er

GM
SL

 ra
te

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

(b) SSP2-RCP4.5
CMIP5
CanESM5; EffCS=5.62 K
INM-CM4-8; EffCS=1.83 K

GM
SL

ex
pa

ns
io

n

An
ta

rc
tic

a

Gr
ee

nl
an

d

gl
ac

ie
rs

la
nd

 w
at

er

GM
SL

 ra
te

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

(c) SSP1-RCP2.6
CMIP5
CanESM5; EffCS=5.62 K
INM-CM4-8; EffCS=1.83 K

0 1 2 3 4 5
GSAT [K]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

GM
SL

 [m
]

(d)

CMIP6: SSP5-RCP8.5
CMIP5: SSP5-RCP8.5
CMIP6: SSP2-RCP4.5
CMIP5: SSP2-RCP4.5
CMIP6: SSP1-RCP2.6
CMIP5: SSP1-RCP2.6

0 25 50 75 100 125 150 175 200 225
GSAT-time integral [K yr]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(e)

5

0

5

10

15

20

25

30

5

0

5

10

15

20

25

30

5

0

5

10

15

20

25

30

Se
a-

le
ve

l C
ha

ng
e 

Ra
te

 [m
m

/y
r]

Figure 2.3: CMIP6-based projections of global mean sea-level (GMSL) change and its components in
2100 relative to 1986-2005 [m] and the average rate during 2095-2100 [mm/yr], computed using IPCC
AR5 methods, for (a) SSP5-RCP8.5 (orange), (b) SSP2-RCP4.5 (blue) and (c) SSP1-RCP2.6 (green),
overlaid by CMIP5-based projections (Church et al., 2013, Table 13.SM.1); and the CMIP6 (solid curves)
and CMIP5 (dashed curves) ensemble-median GMSL change [m] against (d) ensemble-median GSAT [K]
and (e) time-integrated ensemble-median GSAT change [K yr] for 2007-2100, for the same emissions
scenarios. The colored solid lines and boxes in (a-c) represent the CMIP6 ensemble-medians and 5-
95% ranges, and the black dashed lines those for CMIP5. The symbols and whiskers represent the
median and 5-95% for the two CMIP6 models with the highest and lowest EffCS, respectively. Note the
secondary y-axes for the average rate of GMSL change.
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2.4. Discussion and conclusions
The increased EffCS in CMIP6 translates into substantially higher (e.g., 0.82, 0.56
and 0.41 K for the medians) projections of 21st-century GSAT change than the
CMIP5 GSAT change for SSP5-RCP8.5, SSP2-RCP4.5 and SSP1-RCP2.6, consistent
with previous findings (Forster et al., 2020; Tokarska et al., 2020). However, the
differences between the CMIP5- and CMIP6-based GMSL projections are relatively
modest. Updating the IPCC AR5 projections with CMIP6 input leads to 5-95%
ranges of 0.52-1.05, 0.38-0.76 and 0.30-0.64 m in 2100 for SSP5-RCP8.5, SSP2-
RCP4.5 and SSP1-RCP2.6, respectively. The medians have increased by 2-3 cm
only and the 95th percentiles by 3-7 cm (see Table S2.4 for the projections of other
studies that used IPCC AR5 methods). This is caused by multiple factors.

First, a higher GSAT increase results in a lower Antarctic GMSL contribution through
increased snowfall accumulation. Moreover, the total land-ice contribution to GMSL
is a (nearly linear) function of time-integrated GSAT change, since the rate of ice
mass loss from the Greenland and Antarctic ice sheets and glaciers is related to
GSAT change (Section 2.5.3). Since the relative difference in time-integrated GSAT
change between CMIP5 and CMIP6 is smaller than the relative difference in GSAT
change itself, the relative difference in GMSL rise in 2100 is also smaller. This addi-
tionally explains why projected GMSL rise rates around 2100 increase considerably
from CMIP5 to CMIP6 (Figures 2.3a-c), implying that GMSL projections beyond 2100
(e.g., Nauels et al., 2017; Palmer et al., 2018a, 2020) will be affected more strongly
by the increased EffCS. It also implies that time-integrated GSAT change up to 2100
is a better and more scenario-independent descriptor of the total GMSL rise in 2100
than the GSAT change in 2100. The approximate proportionality between the rate
of OHU and GSAT change (Gregory et al., 2015; Gregory and Mitchell, 1997) fur-
ther contributes to this. To minimize the time-integral of GSAT change, emissions
should be reduced early (e.g., Mengel et al., 2018), making time-integrated emis-
sions metrics more relevant for GMSL rise targets than endpoint metrics (Collins
et al., 2020; Olivié and Peters, 2013).

Second, GTE is not substantially higher in CMIP6 than in CMIP5 and correlates
with EffCS less strongly than GSAT change (Section 2.3.2). Given the increase in
GSAT change, our results suggest that the average OHU efficiency (e.g., Kuhlbrodt
and Gregory, 2012) in CMIP6 is lower than in CMIP5. While the reasons for this
are unclear (it could reflect increases in mean ocean stratification or differences
in the patterns of projected surface warming), the inter-model differences in OHU
efficiency may be dominated by the inter-model differences in the representation of
ocean circulation processes (Newsom et al., 2020). Also, larger differences in GTE
may only emerge after 2100, given the slow response of the deep ocean (Geoffroy
and Saint-Martin, 2013; Held et al., 2010).

Third, the effect of the high EffCS in some CMIP6 models on differences between
CMIP5 and CMIP6 is partially balanced by the very low EffCS in others, such as INM-
CM4-8 and INM-CM5-0. Thus, the lower end of the CMIP6 EffCS distribution also
needs to be scrutinized. Additionally, the 20 models in our CMIP6 ensemble come
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from only 12 different modeling centers. Consequently, model weighting based on
model interdependence (e.g., Brunner et al., 2020) may influence our results.

For consistency between GTE and GSAT change (Section 2.5.3), we only used CMIP6
models that provide simulations of both GTE and GSAT. Since the ensemble-mean
GSAT change of all 31 CMIP6 models providing GSAT simulations is 0.11-0.24 K
lower than that of the 20-member CMIP6 ensemble (Table S2.3), our GMSL projec-
tions might change when GTE simulations from additional models become available.
Alternatively, for these models GTE could be derived from ocean temperature simu-
lations (e.g., Lorbacher et al., 2015; Melet and Meyssignac, 2015), or by emulation
with simple climate models (e.g., Geoffroy and Saint-Martin, 2013; Good et al.,
2013; Palmer et al., 2018a).

Although the EffCS range of CMIP6 lies partially outside the range recently as-
sessed by the World Climate Research Programme (Sherwood et al., 2020), the
increased EffCS appears to result from an improved representation of the atmo-
sphere in at least some of the CMIP6 models (e.g., Gettelmann et al., 2019; Bjordal
et al., 2020; Williams et al., 2020). Even though the differences in GMSL pro-
jections for 2100 between CMIP5 and CMIP6 are modest, the uncertainty around
what constitutes EffCS in GCMs combined with the interest of risk-averse stakehold-
ers in low-probability/high-impact GMSL projections (Hinkel et al., 2019; Stammer
et al., 2019) clearly motivates exploring the outer envelope of GMSL projections by
premising projections on individual CMIP6 GCMs (Figures 2.3a-c & S2.7).

If the real world behaves as simulated with CanESM5 (highest EffCS of CMIP6:
5.62 K), we cannot exclude a GMSL rise of 1.24 m for SSP5-RCP8.5 with more
than 95% confidence based on the methods of the IPCC AR5. This is 51 cm more
than for INM-CM4-8 (lowest EffCS of CMIP6: 1.83 K). Incorporating marine ice
cliff instability in Antarctica in our projections may further augment this difference
(Vega-Westhoff et al., 2020). Thus, the choice between characterizing the central
part of the probability distribution and more comprehensively sampling the high
end of the GMSL projection space, through subsetting the CMIP6 ensemble using
EffCS, has a substantial impact on GMSL projections. Our results underline the
need to constrain EffCS, GTE and GSAT in global climate models in order to better
characterize the uncertainty in sea-level projections.
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2.5. Supplementary information
2.5.1. Supplementary figures
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Figure S2.1: Pre-industrial control time series of GTE (‘zostoga’) [m] (black) for the 20 CMIP6 models
used in this study and linear (blue, solid) and quadratic (red, dashed) polynomials fitted to the control
runs for dedrifting. The total linear (blue text) and quadratic drift (red text) in 2081-2100 relative to
1986-2100 is indicated in [cm]. The overlap of the control run with the historical and scenario runs is
indicated with the grey and light grey boxes.
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Figure S2.2: Cumulative distribution functions (CDFs) of the (a-c) global mean thermal expansion
[GTE, m] and (d-f) global mean surface air temperature [GSAT, K] change in 2081-2100 relative to
1986-2005 for the 20-member CMIP6 ensemble, the IPCC AR5 CMIP5 ensemble (n=21), and the CMIP6
ensemble with all models that provide GSAT simulations (n=31), for SSP5-RCP8.5, SSP2-RCP4.5 and
SSP1-RCP2.6. The Kolgomorov-Smirnov test statistics (i.e., the maximum difference between two CDFs)
and corresponding p-values are indicated. A small p-value implies high confidence in that the maximum
distance between two CDFs drawn from the same underlying distribution will not exceed the reported
test statistic.
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Figure S2.3: Cumulative distribution functions (CDFs) of the (a) effective climate sensitivity [EffCS, K]
and (b) transient climate response [TCR, K] for the 20-member CMIP6 ensemble, the IPCC AR5 CMIP5
ensemble (n=21), and the CMIP6 ensemble with all models that provide GSAT simulations (n=31). The
Kolgomorov-Smirnov test statistics (i.e., the maximum difference between two CDFs) and corresponding
p-values are indicated. A small p-value implies high confidence in that the maximum distance between
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2.5. Supplementary information

2

33

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

GT
E 

[m
]

CMIP5: 0.22+0.03*TCR, R2=0.09, p=0.20
CMIP6: 0.12+0.08*TCR, R2=0.56, p=0.00

(a) SSP5-RCP8.5

CMIP5
CMIP6
CMIP5
CMIP6

0

1

2

3

4

5

6

7

GS
AT

 [K
]

CMIP5: 1.05+1.46*TCR, R2=0.68, p=0.00
CMIP6: 0.55+1.92*TCR, R2=0.84, p=0.00

(d) SSP5-RCP8.5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

GT
E 

[m
]

CMIP5: 0.16+0.01*TCR, R2=0.05, p=0.36
CMIP6: 0.09+0.05*TCR, R2=0.50, p=0.00

(b) SSP2-RCP4.5
CMIP5
CMIP6
CMIP5
CMIP6

0

1

2

3

4

5

6

7

GS
AT

 [K
]

CMIP5: 0.14+0.96*TCR, R2=0.61, p=0.00
CMIP6: 0.08+1.19*TCR, R2=0.80, p=0.00

(e) SSP2-RCP4.5

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
TCR [K]

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

GT
E 

[m
]

CMIP5: 0.13+0.01*TCR, R2=0.01, p=0.70
CMIP6: 0.07+0.04*TCR, R2=0.38, p=0.00

(c) SSP1-RCP2.6
CMIP5
CMIP6
CMIP5
CMIP6

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
TCR [K]

0

1

2

3

4

5

6

7

GS
AT

 [K
]

CMIP5: -0.14+0.67*TCR, R2=0.40, p=0.00
CMIP6: -0.27+0.88*TCR, R2=0.68, p=0.00

(f) SSP1-RCP2.6

Figure S2.4: (a-c) Global mean thermal expansion [GTE, m] and (d-f) global mean surface air temper-
ature [GSAT, K] change (mean 2081-2100 minus 1986-2005) of the CMIP6 (colored circles) and CMIP5
(black circles) models against their transient climate response [TCR, K], together with a least-squares
linear regression (CMIP6: colored, solid; CMIP5: black, dashed) against TCR for SSP5-RCP8.5 (orange,
a/d), SSP2-RCP4.5 (blue, b/e) and SSP1-RCP2.6 (green, c/f). The intercept, slope, R-squared and
p-value of the regression are indicated in each panel.
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Figure S2.5: Least-squares linear regression of global mean thermal expansion [GTE, m] against global
mean surface air temperature [GSAT, K] change (mean 2081-2100 minus 1986-2005) for (a) the 21-
member CMIP5 ensemble and (b) the 20-member CMIP6 ensemble, for SSP5-RCP8.5 (orange), SSP2-
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for each emissions scenario are indicated.
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Figure S2.6: CMIP6-based projections of global mean sea-level (GMSL) change and its components in
2100 relative to 1986-2005 [m] and the average rate during 2095-2100 [mm/yr], computed using IPCC
AR5 methods with (Levermann et al., 2014) parameterizations for Antarctic ice dynamics, for (a) SSP5-
RCP8.5 (orange), (b) SSP2-RCP4.5 (blue) and (c) SSP1-RCP2.6 (green), overlaid by the projections
of Palmer et al. (2020) (black dashed lines). The colored solid lines and boxes represent the CMIP6
ensemble-medians and 5-95% ranges, and the black dashed lines those of Palmer et al. (2020).
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Figure S2.7: Projected median (solid lines) and 5-95% range (shaded boxes) of global mean sea-level
(GMSL) rise at 2100 relative to 1986-2005 [m] for the 20-member CMIP6 ensemble (grey) computed
using IPCC AR5 methods, and for individual CMIP6 models (colored) sorted by EffCS in ascending order,
computed using IPCC AR5 methods adapted to sample directly from the 20-member CMIP6 ensemble
(explained in Sections 2.2.3 & 2.5.3) for (a) SSP5-RCP8.5 (orange), (b) SSP2-RCP4.5 (blue) and (c)
SSP1-RCP2.6 (green).
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2.5.2. Supplementary tables
Table S2.1: CMIP6 models used in this study and their modeling centers, their effective climate sensitiv-
ity [EffCS, K] and transient climate response [TCR, K] derived from idealized model experiments (Section
2.2.2), and whether (x) or not ( ) they provide the required GTE simulations. For the drift-corrected
global mean thermal expansion and global mean surface air temperature change of the models, see
Table S1 of Hermans et al. (2021). The data was downloaded on the 2nd of November, 2020. Results
for GISS-E2-1-G were excluded as its historical GTE decrease of over 4 m may indicate data errors
(r1i1p1f2).

Model (institute) EffCS [K] TCR [K] Variant GTE
ACCESS-CM2 (CSIRO & ARCCS) 4.72 2.11 r1i1p1f1 x
ACCESS-ESM1-5 (CSIRO & ARCCSS) 3.87 1.95 r1i1p1f1 x
AWI-CM-1-1-MR (AWI) 3.11 2.07 r1i1p1f1
BCC-CSM2-MR (BCC) 3.06 1.73 r1i1p1f1
CAMS-CSM1-0 (CAMS) 2.28 1.69 r1i1p1f1
CanESM5 (CCCma) 5.62 2.74 r1i1p1f1 x
CESM2-WACCM (NCAR) 4.75 2.00 r1i1p1f1
CIESM (THU) 5.66 2.39 r1i1p1f1
CMCC-CM2-SR5 (CMCC) 3.52 2.08 r1i1p1f1 x
CNRM-CM6-1 (CNRM & CERFACS) 4.83 2.13 r1i1p1f2 x
CNRM-CM6-1-HR (CNRM & CERFACS) 4.28 2.47 r1i1p1f2 x
CNRM-ESM2-1 (CNRM & CERFACS) 4.76 1.84 r1i1p1f2 x
EC-Earth3 (EC-Earth-Consortium) 4.20 2.31 r1i1p1f1 x
EC-Earth3-Veg (EC-Earth-Consortium) 4.31 2.61 r1i1p1f1 x
FGOALS-g3 (CAS) 2.87 1.46 r1i1p1f1
FGOALS-f3-L (CAS) 3.00 2.06 r1i1p1f1
GFDL-ESM4 (NOAA & GFDL) 2.72 1.57 r1i1p1f1
HadGEM3-GC31-LL (MOHC) 5.55 2.55 r1i1f1p3 x
INM-CM4-8 (INM) 1.83 1.31 r1i1p1f1 x
INM-CM5-0 (INM) 1.92 1.33 r1i1p1f1 x
IPSL-CM6A-LR (IPSL) 4.55 2.29 r1i1p1f1 x
MCM-UA-1-0 (UA) 3.64 1.93 r1i1p1f2
MIROC-ES2L (MIROC) 2.68 1.55 r1i1p1f2
MIROC6 (MIROC) 2.61 1.55 r1i1p1f1 x
MPI-ESM1-2-HR (MPI-M) 2.98 1.66 r1i1p1f1 x
MPI-ESM1-2-LR (MPI-M) 3.00 1.84 r1i1p1f1 x
MRI-ESM2-0 (MRI) 3.15 1.64 r1i1p1f1 x
NESM3 (NUIST) 4.67 2.74 r1i1p1f1
NorESM2-LM (NCC) 2.54 1.48 r1i1p1f1 x
NorESM2-MM (NCC) 2.50 1.33 r1i1p1f1 x
UKESM1-0-LL (MOHC) 5.34 2.79 r1i1p1f2 x
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CMIP5 (n=21)
EffCS [K] TCR [K] ΔGSAT [K] GTE [m]

SSP-RCP SSP-RCP
1-2.6 2-4.5 5-8.5 1-2.6 2-4.5 5-8.5

Mean 3.39 1.81 0.14 0.19 0.27 1.11 1.92 3.76
St. Dev. 0.74 0.37 0.02 0.03 0.04 0.44 0.50 0.72
Median 3.50 1.88 0.14 0.19 0.28 1.04 1.92 3.70
5-95% 2.37-4.59 1.28-2.41 0.10-0.18 0.14-0.23 0.21-0.33 0.49-1.78 1.12-2.58 2.64-4.70
Min.-Max. 2.08-4.67 1.10-2.50 0.10-0.18 0.13-0.23 0.20-0.34 0.31-1.85 1.04-2.65 2.52-4.96

CMIP6 (n=20)
EffCS [K] TCR [K] ΔGSAT [K] GTE [m]

SSP-RCP SSP-RCP
1-2.6 2-4.5 5-8.5 1-2.6 2-4.5 5-8.5

Mean 3.80 2.00 0.15 0.19 0.27 1.48 2.46 4.39
St. Dev. 1.16 0.47 0.03 0.03 0.05 0.51 0.63 0.99
Median 4.04 2.02 0.15 0.19 0.27 1.47 2.52 4.50
5-95% 1.92-5.55 1.33-2.74 0.08-0.18 0.12-0.24 0.18-0.34 0.80-2.32 1.63-3.49 3.10-6.06
Min.-Max. 1.83-5.62 1.31-2.79 0.08-0.19 0.11-0.24 0.17-0.37 0.79-2.40 1.60-3.68 3.02-6.19

Table S2.2: Summary of effective climate sensitivity [EffCS, K] and transient climate response [TCR, K], and projected global mean thermal expansion
[GTE, m] and surface air temperature [GSAT, K] change for SSP1-RCP2.6, SSP2-RCP4.5 and SSP5-RCP8.5 (2081-2100 minus 1986-2005) for the IPCC AR5
CMIP5 ensemble and the CMIP6 ensemble introduced in Section 2.2.1.
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Table S2.3: Summary of effective climate sensitivity [EffCS, K] and transient climate response [TCR,
K], and projected global surface air temperature [GSAT, K] change for SSP1-RCP2.6, SSP2-RCP4.5 and
SSP5-RCP8.5 (2081-2100 minus 1986-2005) for the CMIP6 ensemble including all models with GSAT
simulations (n=31, see Section 2.2.1).

EffCS [K] TCR [K] ΔGSAT [K]
SSP-RCP
1-2.6 2-4.5 5-8.5

Mean 3.69 1.97 1.37 2.33 4.15
St. Dev. 1.12 0.44 0.47 0.59 1.11
Median 3.52 1.95 1.27 2.27 3.98
5-95% 2.10-5.58 1.33-2.74 0.77-2.24 1.59-3.37 2.91-5.96
Min.-Max. 1.83-5.66 1.31-2.79 0.75-2.40 1.43-3.68 2.60-6.19

Table S2.4: Comparison of the 5-95% GMSL change projections computed using the IPCC AR5 Monte
Carlo approach as presented in this study and in previous studies for 2100 and 2081-2100. All change
values are expressed relative to the 1986-2005 average.

Projected GMSL rise in 2100 (5-95%) [m]
SSP1-RCP2.6 SSP2-RCP4.5 SSP5-RCP8.5

This study (CMIP6) 0.30-0.64 0.38-0.76 0.52-1.05
This study (CMIP6), Antarctica 0.31-0.68 0.39-0.81 0.55-1.16
using (Levermann et al., 2014)
IPCC AR5 (CMIP5) 0.28-0.61 0.36-0.71 0.52-0.98
IPCC SROCC (CMIP5) 0.28-0.59 0.38-0.72 0.61-1.11
UKCP181/Palmer et al. (2020) 0.28-0.66 0.37-0.78 0.55-1.11
(CMIP5)

Projected GMSL rise averaged over 2081-2100 (5-95%) [m]
SSP1-RCP2.6 SSP2-RCP4.5 SSP5-RCP8.5

This study (CMIP6) 0.28-0.57 0.34-0.66 0.44-0.87
This study (CMIP6), Antarctica 0.29-0.60 0.35-0.70 0.47-0.95
using (Levermann et al., 2014)
IPCC AR5 (CMIP5) 0.26-0.55 0.32-0.63 0.45-0.82
IPCC SROCC (CMIP5) 0.26-0.53 0.34-0.64 0.51-0.92
UKCP181/Palmer et al. (2020) 0.26-0.58 0.33-0.68 0.47-0.93
(CMIP5)

1The UK Climate Projections 2018 (UKCP18) used a baseline of 1981-2000, resulting in change values
approximately 1 cm higher than the values reported here from Palmer et al. (2020).
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Table S2.5: CMIP6-based median and [5-95%] range projections of GMSL change [m] and its com-
ponents at 2100 relative to 1986-2005, computed using the IPCC AR5 Monte Carlo approach. For
comparison with CMIP5, see Table 13.SM.1 of Church et al. (2013).

SSP1-RCP2.6 SSP2-RCP4.5 SSP5-RCP8.5
GTE [m] 0.16 [0.11-0.22] 0.21 [0.15-0.28] 0.32 [0.23-0.42]
Glaciers [m] 0.12 [0.06-0.19] 0.15 [0.08-0.22] 0.19 [0.11-0.28]
Net Greeland [m] 0.08 [0.05-0.14] 0.10 [0.06-0.18] 0.17 [0.09-0.33]
Greenland SMB [m] 0.04 [0.02-0.09] 0.06 [0.02-0.14] 0.11 [0.04-0.27]
Greeland dynamics [m] 0.04 [0.02-0.06] 0.04 [0.02-0.06] 0.05 [0.02-0.09]
Net Antarctica [m] 0.06 [-0.04-0.16] 0.05 [-0.05-0.15] 0.03 [-0.08-0.14]
Antarctica SMB [m] -0.03 [-0.05—0.01] -0.03 [-0.07–0.01] -0.05 [-0.10–0.02]
Antarctica dynamics [m] 0.09 [-0.02-0.19] 0.09 [-0.02-0.19] 0.09 [-0.02-0.19]
Land water [m] 0.05 [-0.02-0.11] 0.05 [-0.02-0.11] 0.05 [-0.02-0.11]
GMSL [m] 0.47 [0.30-0.64] 0.56 [0.38-0.76] 0.76 [0.52-1.05]
GMSL rate [mm/yr] 4.79 [2.28-7.38] 7.10 [4.13-10.41] 13.35 [8.32-20.31]

2.5.3. Supplementary text
Using the Monte Carlo GMSL projection method of IPCC AR5
With the methods presented in IPCC AR5 (Church et al., 2013), GMSL projections
can be derived for a given multi-model ensemble using annual mean GTE and GSAT
time series (see flowchart). In IPCC AR5, projections were based on a CMIP5 en-
semble, whereas we use a CMIP6 ensemble. First, we reference the 20 model-
dependent GTE and GSAT time series to their averages in a common base period.
To enable one-on-one comparison to IPCC AR5 (Church et al., 2013), we adhere to
their base period of 1986-2005. Subsequently, for both the GTE and GSAT anoma-
lies the multi-model mean and standard deviation are calculated. To generate con-
tinuous probability distribution functions, we assume both GTE and GSAT change
are normally distributed, and draw 450 samples each of GTE and GSAT change us-
ing a common normal variate (this process is denoted by (1) in the flowchart in
Figure S2.8). Thus, GTE and GSAT change are assumed to be perfectly correlated,
meaning that a model with high GTE is implied to have a high GSAT change as
well. This introduces a correlation structure between thermal expansion and the
GSAT-driven barystatic contributions (Palmer et al., 2020). In the absence of strong
constraints on the value to choose for a less than perfect correlation between GTE
and GSAT, assuming a perfect correlation is a simplification which tends to overes-
timate uncertainty (and thus high-end sea-level rise), which is more cautious than
assuming GTE and GSAT change are fully independent.

As seen in Figure S2.8, the GTE samples are used to estimate the contribution
of thermal expansion to total GMSL change, whereas the GSAT change samples
are used to estimate the contributions of glaciers and the surface mass balance of
the Greenland and Antarctic ice sheets through parameterization schemes (Church
et al., 2013). The contributions from Greenland ice dynamics, Antarctic ice dy-
namics and land-water storage are parameterized only as a function of time, so
do not depend on GSAT change. The parameterization schemes for the barystatic
components are based on global and regional models, and observations, and have
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Figure S2.8: Flowchart of the Monte Carlo method of IPCC AR5 (Church et al., 2013) for producing
GMSL projections.

been motivated and explained extensively by IPCC AR5 (Church et al., 2013) and
Palmer et al. (2020). We summarize them here to clarify how the land-ice compo-
nents depend on GSAT change and how methodological uncertainty is accounted
for:

• Glaciers: changes in global glacier mass were estimated by the IPCC AR5
(Church et al., 2013) using a parameterization based on four equally weighted
global glacier models. The time-dependent contribution of glaciers to GSML
change was modeled as 𝑓𝐼(𝑡)𝑝, in which 𝐼(𝑡) refers to the time-integral (cu-
mulative sum) of GSAT change, and 𝑓 and 𝑝 are coefficients estimated through
linear regression for each global glacier model separately. Systematic uncer-
tainty is represented by assuming a time-dependent standard deviation equal
to 20% of the contribution of glaciers projected with the aforementioned ex-
pression and using the ensemble-mean 𝐼(𝑡) as input. The standard deviation
is multiplied by a random normally distributed factor.

• Greenland ice sheet: the surface mass balance of the Greenland ice sheet
in Gt/yr was estimated by the IPCC AR5 (Church et al., 2013) from GSAT using
the cubic polynomial −71.5𝐺𝑆𝐴𝑇−20.4𝐺𝑆𝐴𝑇2−2.8𝐺𝑆𝐴𝑇3, based on regional
climate model projections. Since in this parameterization the rate of ice mass
change depends on GSAT, the sea-level contribution of the surface mass bal-
ance of the Greenland ice sheet also scales with the time-integral of GSAT. To
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represent methodological uncertainties, the cubic polynomial was multiplied
by a log-normally distributed factor 𝐹 = 𝑒𝑁, with 𝑁 a normal distribution with
zero mean and standard deviation 0.4. Another factor 𝐸, varying randomly
between 1 and 1.15, was used to account for positive elevation feedback.

Projections of the contribution of ice dynamics of the Greenland ice sheet
were estimated by fitting a quadratic function of time, starting at half of the
observed rate of loss from Greenland during 2005-2010, toward lower and up-
per limits of 0.014 to 0.063 m for SSP1-RCP2.6 and SSP2-RCP4.5, and 0.020
to 0.085 for SSP5-RCP85, based on a number of different ice-sheet model
projections (discussed by Church et al. (2013)). In between, a uniform prob-
ability density was assumed. Thus, the parameterization of the ice dynamic
part of the net Greenland contribution does not depend on GSAT change.

• Antarctic ice sheet: the surface mass balance of the Antarctic ice sheet
was estimated by the IPCC AR5 (Church et al., 2013) based on combined
information from GCMs, high-resolution regional climate models and an ice-
sheet mass balance model. The accumulation 𝐴(𝑡) was related to warming
in Antarctica with 5.1+1.5% ∘𝐶−1, and the ratio of warming in Antarctica
to GSAT was assumed to be 1.1 ±0.2. The standard deviations of these
ratios were assumed to be normally distributed uncertainties. The effect of
increased accumulation on increased dynamic ice discharge was accounted
for by adding −𝑆𝐴(𝑡) to 𝐴(𝑡), with 𝑆 a factor varying randomly with a uniform
probability distribution between 0 and 0.35. To obtain the contribution of the
Antarctic surface mass balance to GMSL change, the mass balance changes
are time-integrated. Thus, the accumulation in Antarctica depends on time-
integrated GSAT.

Similar to the Greenland ice dynamics parameterization, the dynamics of the
Antarctic ice sheet were parameterized in IPCC AR5 by fitting a quadratic
function of time, starting at the observed rate of loss during 2005-2010, to-
ward lower and upper limits of -0.029 and 0.185 m for all emissions scenarios.
These were based on an assessment of the literature available at the time of
the IPCC AR5. Thus, the parameterization of the ice dynamic part of the net
Antarctic contribution does not depend on the GSAT change input nor on the
emissions scenario. Again, in between the lower and upper limits a uniform
probability density was assumed. The factor 𝑆 mentioned above was assumed
to be perfectly correlated with this distribution.

• Land-water storage: similar to the ice dynamic parameterizations, the con-
tribution of land-water storage to GMSL change was estimated by the IPCC
AR5 (Church et al., 2013) by fitting a quadratic function of time, starting at the
observed rate of the land-water storage contribution to GMSL change, toward
the assessed lower and upper limits of the time-mean of 2081-2100, for all
emissions scenarios (-0.01 to 0.09 m; Church et al., 2013). The uncertainty
was treated in the same way as for the ice dynamics.

For each of the 450 GTE and GSAT samples drawn (see flowchart), 1,000 additional
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random samples are generated to represent methodological uncertainty in the pa-
rameterizations through varying parameters as explained above. For this number of
samples, results converge to a random uncertainty of 0.01 m for GMSL rise and its
components, and 0.1 mm/yr for its rate (Church et al., 2013). Combining the steric
and barystatic contributions, an ensemble of 450,000 GMSL projections is obtained.

Parameterizing Antarctic ice dynamics based on projections of Lever-
mann et al. (2014)
After the IPCC AR5 (Church et al., 2013) was published, Levermann et al. (2014)
generated projections of Antarctic dynamic ice discharge for RCP 8.5, 6.0, 4.5 and
2.6 through employing linear response functions fitted to basal-melt sensitivity ex-
periments of five different ice-sheet models for Antarctica. Levermann et al. (2014)
related sub-surface ocean warming in Antarctica to GSAT change based on an en-
semble of CMIP5 models, and estimated basal melt sensitivities from observations
to translate sub-surface ocean warming into enhanced basal ice-shelf melting. This
was translated into the ice dynamical response for each emissions scenario using
the linear response functions.

As an alternative to the scenario-independent parameterization of the Antarctic ice
dynamic contribution to GMSL change in IPCC AR5 (Church et al., 2013), Palmer
et al. (2018b) and Palmer et al. (2020) parameterized the scenario-dependent pro-
jections of Levermann et al. (2014). This was done by estimating a log-normal fit
of the form 𝐴𝑒𝑁, with 𝐴 a constant and 𝑁 a normal distribution with zero mean, to
the percentiles of the probability distributions of projections reported by Levermann
et al. (2014) for each RCP separately. The contribution of Antarctic ice sheet dy-
namics to GMSL change was then modeled as a quadratic function of time, starting
at the observed rate of loss, toward 𝐴𝑒𝑁 in 2100. Thus, with this parameteriza-
tion, the Antarctic dynamic contribution to GMSL change depends on the emissions
scenario, but similar to the scenario-independent parameterization used by Church
et al. (2013), does not depend on the GSAT input. To compare our GMSL projec-
tions with the projections of Palmer et al. (2020), we also generate GMSL projections
incorporating their parameterization, replacing the scenario-independent parame-
terization of IPCC AR5 denoted by (2) in the flowchart (Figure S2.8).

Producing GMSL projections for individual CMIP6 models
We also use a variation of the Monte Carlo approach to produce GMSL projections
based on each individual CMIP6 model separately instead of based on the CMIP6
multi-model ensemble. With this approach, we bypass the process denoted with (1)
in the flowchart (Figure S2.8). Thus, instead of generating 450 samples using the
multi-model mean and standard deviation of GTE and GSAT change, we use the GTE
and GSAT change time series of the 20 individual CMIP6 models directly as input to
the parameterization schemes. As before, an additional one thousand independent
samples are used to represent methodological uncertainty in the parameterization
schemes for each CMIP6 model. This results in 20 ensembles of GMSL projections,
one for each CMIP6 model, with 1,000 members in each ensemble.
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Abstract
Changes in ocean properties and circulation lead to a spatially non-uniform pat-
tern of ocean dynamic sea-level change (DSLC). The projections of DSLC that the
IPCC AR5 presented were constructed with global climate models (GCMs) from the
Coupled Model Intercomparison Project 5 (CMIP5). Since CMIP5 GCMs have a rel-
atively coarse resolution and exclude tides and surges it is unclear whether they
are suitable for providing DSLC projections in shallow coastal regions such as the
Northwestern European Shelf (NWES). One approach to addressing these short-
comings is dynamical downscaling – i.e., using a high-resolution regional model to
refine the output of GCMs. Here, we use the regional shelf seas model AMM7 to
show that, depending on the driving CMIP5 GCM, dynamical downscaling can have
a large impact on the simulations of DSLC in the NWES region. For a high-end
greenhouse gas concentration scenario, we find that the downscaled simulations
of 21st century DSLC are up to 15.5 cm smaller than the DSLC originally simulated
along the North Sea coastline, owing to unresolved processes in the GCM. This is of
a magnitude similar to the inter-model uncertainty of the CMIP5 ensembles used for
previous DSLC projections. Furthermore, dynamical downscaling affects the sim-
ulated time of emergence of externally forced sea-level change from background
sea-level variability, and can result in differences in the projected change of the am-
plitude of the seasonal cycle of sea level of over 0.3 mm/yr. Our results therefore
support a role for dynamical downscaling in future regional sea-level projections to
aid coastal decision makers.
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3.1. Introduction
An increase in coastal sea level has major socioeconomic and environmental impacts
as it can lead to, for instance, flooding, erosion, saltwater intrusion and the decline
of coastal wetlands (Nicholls and Cazenave, 2010). However, the magnitude of sea-
level change (SLC) varies for different locations (Church et al., 2013). Regionally,
projected SLC can deviate up to 50% from the global mean (Kopp et al., 2014;
Slangen et al., 2014). This spatially non-uniform pattern of relative SLC is the result
of different contributions, such as changes in the ocean and atmosphere, land ice
mass change, vertical land motion (VLM), glacial isostatic adjustment (GIA) and
terrestrial water storage (TWS) (Church et al., 2013). Here, we focus on ocean
dynamic sea-level change (DSLC) due to local changes in seawater density and
local convergence or divergence of mass (steric and manometric SLC, respectively;
Gregory et al., 2019).

Projections of DSLC driven by greenhouse gas concentration scenarios are com-
monly made with the output of coupled global climate models (GCMs, e.g., Slangen
et al., 2012, 2014; Church et al., 2013; de Vries et al., 2014; Kopp et al., 2014;
Palmer et al., 2018b). Simulations of these models can be obtained from the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5) database (Taylor et al., 2012).
At the time of writing CMIP6 models are being released (Eyring et al., 2016). Com-
putational constraints limit the horizontal ocean resolution of CMIP5 GCMs to about
100 by 100 km, but the horizontal resolution varies considerably across the CMIP5
model ensemble. The vertical resolution of most GCMs is limited in shallow regions
due to their unevenly spaced vertical levels at fixed depths (z-coordinates). Addi-
tionally, GCMs do not resolve tides and storm surges. However, in shallow shelf
seas such as the North Sea, small-scale bathymetric features and hydrodynamical
processes such as tidal mixing can be important for simulating DSLC. Furthermore,
an increased horizontal ocean resolution can give enhanced eddy activity (Suzuki
et al., 2005; Penduff et al., 2010), which affects the simulated sea-level variability.
Thus, GCMs may not be the most appropriate means for providing DSLC projections
in coastal regions. For local stakeholders and impact studies, projections at a finer
spatial resolution are also desired.

Sea-level projections at a finer spatial resolution can be obtained by downscaling,
which is a technique to obtain regional to local detail from larger scale informa-
tion (Rummukainen, 2010). Here, we focus on dynamical downscaling by using
a high-resolution regional climate model (RCM). Dynamical downscaling has pre-
viously been applied to study present-day hydrodynamics and the regional impact
of future climate change for the North Sea and the Northwestern European Shelf
(NWES) region (see (Schrum et al., 2016) for a comprehensive review). These
studies have mainly focused on future changes in ocean temperature, salinity and
circulation (e.g., Ådlandsvik, 2008; Holt et al., 2010, 2018; Mathis, 2013; Tinker
et al., 2015, 2016; Mathis et al., 2017) and primary production and biochemistry
(e.g., Wakelin et al., 2015; Holt et al., 2016). Extreme sea levels and tides have
mainly been studied with barotropic models (e.g., Sterl et al., 2009; Howard et al.,
2010; Pickering et al., 2012; Ward et al., 2012; Pelling et al., 2013; Pelling and
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Green, 2014; Cannaby et al., 2016; Idier et al., 2017; Palmer et al., 2018b; Howard
et al., 2019). DSLC on the NWES however, has not extensively been studied with
RCMs, with the exception of Mathis (2013) who analyzed the seasonal variation of
100-yr sea-level trends in the North Sea with the HAMSOM model. Consequently,
the effects of downscaling DSLC simulations for this region are not yet clear.

In other geographic regions dynamical downscaling has been shown to affect DSLC
simulations substantially. Zhang et al. (2017) used a 1/10° near-global ocean model
(75°S to 75°N) driven by the atmospheric forcing of an ensemble of 17 CMIP5 GCMs
for Australia. The downscaled DSLC was found to differ 1-3 cm from the original
projections along the Australian coast, and was up to 20 cm larger further offshore.
For the North Pacific, downscaled DSLC was computed with a regional model (¼°
by ¼°) for three different driving CMIP5 GCMs (Liu et al., 2016). They found that
along the coast of Japan, downscaled DSLC can differ up to 10 cm from the original
DSLC depending on the driving GCM.

In this study we assess the importance of dynamical downscaling for the NWES
region and quantify the uncertainties related to basing DSLC projections on coarse-
resolution GCMs. We do this by downscaling the simulations of two CMIP5 GCMs
with a regional shelf seas model (the Atlantic Margin Model (AMM7), O’Dea et al.,
2017) and comparing the results with the original simulations for two different rep-
resentative concentration pathways (RCPs, Meinshausen et al., 2011). In addition,
we discuss the changes in the seasonal cycle of sea level in our simulations, which
appears to be a gap in the current literature (e.g., Slangen et al., 2014; Kopp et al.,
2014; Meyssignac et al., 2017; Palmer et al., 2018b) but is an important aspect of
extreme sea levels and tides (Pugh, 1987). We assess whether the increased spa-
tial and temporal resolution of our downscaled simulations leads to more realistic
simulations of sea level on subannual timescales.

We start by presenting our downscaling set-up and the methods and observational
data used to evaluate our simulations in Section 3.2. Next, we show in Section 3.3
that dynamical downscaling improves the historical GCM simulations based on com-
parisons with observations of sea surface temperature (SST), sea surface salinity
(SSS), mean dynamic topography (MDT) and sea-level variability on seasonal and
interannual timescales. We will discuss the large differences that dynamical down-
scaling can introduce in terms of annual mean DSLC and its different components in
Section 3.4, and how these differences depend on the driving GCM and the climate
change scenario. In Section 3.5 we focus on subannual timescales and compare
the original and downscaled simulations of changes in the seasonal sea-level cycle.
We end with a discussion and our conclusions in Section 3.6.
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3.2. Data and methods
Here, we introduce AMM7 and the GCMs (Section 3.2.1) followed by our dynamical
downscaling set-up (Section 3.2.2). Next, we discuss how we decompose DSLC in
our analysis (Section 3.2.3). Finally, we present our framework to compare the sea
surface height (SSH) output of the different models (Section 3.2.4) and to compare
the output with observational data (Section 3.2.5).

3.2.1. NEMO AMM7 and the CMIP5 GCMs
We use the AMM7 (Coastal Ocean version 6) configuration of the primitive-equation
modeling framework Nucleus for European Modelling of the Ocean (NEMO) V3.6
(Madec and NEMO Team, 2016) to downscale long-term simulations of two CMIP5
GCMs. AMM7 is a hydrodynamic model of the NWES region that has been exten-
sively described and validated, and is being used for operational ocean forecasting
(O’Dea et al., 2012; O’Dea et al., 2017) and marine reanalyses (Renshaw et al.,
2019). Its domain (henceforth the NWES region) extends from 20°W to 13°E and
from 40°N to 65°N (Figure 3.1a), allowing to internally resolve the exchange of
water across the shelf break. The horizontal resolution is 1/15° latitude by 1/9°
longitude, or nominally 7 by 7 km. Thus, on the shelf, AMM7 does not resolve
the internal Rossby radius (≈4 km) (O’Dea et al., 2012) and is not eddy-resolving,
but can capture small-scale topographical features that GCMs cannot. AMM7 has
50 vertical levels with hybrid z-σ coordinates (Siddorn and Furner, 2013). Details
on how horizontal pressure gradient errors are handled are given by O’Dea et al.
(2012) and Madec and NEMO Team (2016). Due to the terrain-following vertical
levels, processes such as vertical mixing and bottom boundary layers are handled
better than in CMIP5 GCMs, in which the mean depth of the North Sea (≈80 m) is
represented by only 7 to 8 vertical levels.

We downscale the simulations of two example CMIP5 GCMs (Taylor et al., 2012)
commonly used for sea-level projections, namely HadGEM2-ES (Collins et al., 2011)
and MPI-ESM-LR (Giorgetta et al., 2013). Up to 2005, the CMIP5 GCMs are forced
by observed greenhouse gas concentrations. For 2006-2099, the simulations forced
with the RCP4.5 (intermediate) and RCP8.5 (high-end) scenarios (Meinshausen
et al., 2011) are used. Together, these simulations are used to force AMM7 from
1972-2099. AMM7 is spun up from 1972 to 1979 and analyses are done for 1980-
2099. In the main manuscript, we only the show results for RCP8.5. We show
the results for RCP4.5 in the Supplementary Information, as DSLC for RCP4.5 is
spatially similar to that for RCP8.5 but smaller in magnitude.

The ocean component of HadGEM2-ES has 40 vertical z-levels (max. 17 on the
shelf) and a horizontal resolution of 1° by 1° (≈85 km) on the NWES. The ocean
component of MPI-ESM-LR also has 40 vertical z-levels (max. 12 on the shelf) and
a bipolar grid with poles on Greenland and in the Weddell Sea. The curvilinear grid
has an approximate resolution of 0.45° latitude by 0.82° longitude (≈50 km) in
the central North Sea, which increases toward Greenland. As a result, MPI-ESM-LR
includes several topographical features which HadGEM2-ES does not, such as the
Norwegian Trench, the English Channel and the Irish Sea (Figures 3.1b & c).
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3.2.2. Downscaling set-up
The GCM simulations are prescribed to AMM7 as boundary conditions at the lateral
ocean boundaries and at the surface in a “one-way nesting” approach. For clarity,
from now on we will refer to the simulations of HadGEM2-ES and MPI-ESM-LR as
GCM-HAD and GCM-MPI, respectively. The downscaled simulations from AMM7,
driven by HadGEM2-ES and MPI-ESM-LR, will be referred to as RCM-HAD and RCM-
MPI, respectively.

Atmospheric forcing
The atmospheric surface forcing is obtained from simulations of the Rossby Centre
regional atmospheric model RCA4 (Strandberg et al., 2014). RCA4 has been used to
dynamically downscale the atmosphere component of GCM-HAD and GCM-MPI for
the European Coordinated Regional Downscaling Experiment domain (Giorgi et al.,
2009). Direct fluxes are used rather than bulk formulae: atmospheric pressure,
precipitation minus evaporation and long-wave radiation are prescribed daily and
10 m wind and short-wave radiation 6-hourly.

Since no downscaled preindustrial atmospheric forcing is available from RCA4, we
did not downscale the preindustrial control runs of GCM-HAD and GCM-MPI. Control
runs can be used to correct SLC for spurious model drift (Sen Gupta et al., 2013). As
model drift is small compared to forced trends especially on the shallow continental
shelf (Sen Gupta et al., 2013), we expect that dedrifting will not significantly impact
our findings, in particular not the comparison between the GCM and the downscaled
simulations.

Lateral boundary conditions
The lateral boundary conditions consist of monthly mean temperature and salinity,
barotropic currents and SSH, which are derived from the GCMs and interpolated
onto the AMM7 grid. Temperature, salinity and barotropic currents are directly
prescribed, and a relaxation zone of 10 grid points with a tanh-shaped relaxation
parameter relaxes the internal solution to the prescribed boundary values (Madec
and NEMO Team, 2016). SSH, and additionally 15 tidal constituents, are indirectly
prescribed: a Flather radiation condition (Flather, 1976) corrects the depth-mean
velocity normal to the lateral boundaries based on the SSH gradients between the
internal solution and the lateral boundaries (Madec and NEMO Team, 2016). Directly
prescribing SSH and prescribing barotropic currents through radiation conditions
instead was found to be detrimental to the simulation of tides. SSH is derived from
the ‘zos’ field of the driving CMIP5 GCMs, which gives SSH anomalies with respect
to a time-invariant geoid. We ensured that global mean ‘zos’ is 0 m by removing
the global mean at each timestep prior to generating the boundary conditions. The
SSH boundary conditions were anomalized with respect to their spatial and temporal
mean and for reasons of numerical stability an offset of 0.5 m was added.

River run-off and Baltic outflow
We simulate river run-off with the Total Runoff Integration Pathways river routing
model (Oki and Sud, 1998) using the daily run-off from RCA4. Exchange with the
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Baltic Sea through the Danish Straits and the Kattegat occurs at too small scales
to resolve in AMM7. Instead, a climatology is used for temperature, salinity and
barotropic currents for the Baltic inflow to the North Sea following O’Dea et al.
(2017). As a consequence, downscaled DSLC along the Norwegian coast will be
biased to present-day conditions.

3.2.3. Computing changes in bottom and atmospheric pres-
sure and the local steric effect

To analyze the drivers of DSLC (Section 3.4.2), we decompose simulated DSLC into
changes due to manometric change (local convergence/divergence of mass, which
is related to bottom pressure change) and due to the local steric effect (depth-
integrated density changes of the water column) as follows (Ponte, 1999; Gregory
et al., 2019):

𝛿𝜂
𝛿𝑡 =

1
𝑔𝜌0

𝛿(𝑝𝑏 − 𝑝𝑎)
𝛿𝑡 − 1

𝜌0
∫
𝜂

−𝐻

𝛿𝜌
𝛿𝑡 𝑑𝑧 (3.1)

where 𝜂 refers to SSH, 𝑡 to time, 𝑔 is the gravitational acceleration, 𝜌 the density
and 𝜌0 a constant reference density at sea level, 𝑝𝑏 the bottom pressure, 𝑝𝑎 the
atmospheric pressure and 𝐻 the local ocean depth.
Bottom pressure changes (r.h.s. of Equation 3.1, first term) and local steric changes
(r.h.s. of Equation 3.1, second term) are directly available from AMM7 output, but
not for the GCMs. For the GCMs we therefore compute local steric change from
the 3D fields of temperature and salinity, using the Gibbs SeaWater (GSW) tool-
box (McDougall and Barker, 2011) of the Thermodynamic Equation of SeaWater
2010. Thermosteric and halosteric SLC can be computed similarly, keeping re-
spectively salinity and temperature constant. We subsequently compute bottom
pressure change from Equation 3.1. Differences in 21st century local steric SLC on
the NWES between the direct AMM7 output and the GSW computation are less than
4 mm, so the methods are comparable.

Atmospheric pressure (𝑝𝑎) changes also contribute to bottom pressure (𝑝𝑏) changes.
Their effect on sea level, referred to as the inverse barometer (IB) effect 𝜂𝐼𝐵, is
computed as follows (Stammer and Hüttemann, 2008):

𝜂𝐼𝐵(𝑥, 𝑦, 𝑡) = −
𝜌′𝑎(𝑥, 𝑦, 𝑡)
𝑔𝜌0

(3.2)

where 𝜌′𝑎 is defined as the local pressure anomaly with respect to the global area-
weighted mean atmospheric pressure over the oceans 𝑝𝑎, as a function of location
𝑥 and 𝑦, and time 𝑡. Here, for both the GCMs and AMM7 we compute 𝜌′𝑎 in Equation
3.2 with respect to the global mean (𝑝𝑎) obtained from the GCM simulations. We in-
clude the IB effect in the presented sea-level results unless stated otherwise.
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3.2.4. Comparing DSLC in the GCMswith DSLC in AMM7
Both the CMIP5 GCMs and AMM7 apply the Boussinesq approximation. The Boussi-
nesq approximation refers to replacing in-situ density by a reference density in all
equations except the vertical momentum equation and the equation of state (Gill,
1983). As a result, Boussinesq models conserve volume rather than mass, and for
global Boussinesq models the global mean thermosteric sea-level change (‘zostoga’
in CMIP5 models) needs to be diagnosed. Boussinesq models are still influenced by
a local steric effect (Griffies et al., 2014). Since we use one-way dynamical down-
scaling in a relatively small domain, we neglect the effect that refining the GCM
regionally has on ‘zostoga’.

Since the spatial mean density changes in Boussinesq models while the volume is
conserved, the bottom pressure shows a physically spurious change (Griffies and
Greatbatch, 2012) according to Equation 3.1 (Section 3.2.3). AMM7 has Boussinesq
dynamics like the GCMs, but only covers a limited region. Consequently, AMM7 does
not conserve the same volume as the GCMs, leading to a different regional mean
DSLC and a different (spurious) bottom pressure change. Additionally, discrepancies
between the GCMs and AMM7 in the mass transport across the boundaries of the
NWES region can result from the interpolation of the lateral boundary conditions
(e.g., the ocean currents) from the parent grid onto the AMM7 grid and from the
different representations of bathymetry, atmosphere and river run-off.

To directly compare DSLC in the GCMs with DSLC in AMM7, we correct the DSLC
output of AMM7 for the differences in regional mean DSLC resulting from the Boussi-
nesq approximation and from discrepancies in mass transport due to artefacts of the
downscaling set-up. A spatially uniform correction to prognostic Boussinesq SSH
can be made a posteriori based on the spatial mean density change, but only for
models with closed boundaries (Greatbatch, 1994). This applies to CMIP5 GCMs,
but not to a nested regional model. Instead, we apply a spatially uniform correction
to the DSLC simulations of AMM7 by enforcing global mass conservation. To this
end, we replace the regional area-weighted mean manometric SLC of AMM7 (re-
gional mean DSLC due to bottom pressure change only, or equivalently, the total
regional mass change) with the regional area-weighted mean manometric SLC in
the driving GCMs:

Δ𝜂∗𝐴𝑀𝑀7(𝑥, 𝑦, 𝑡) = Δ𝜂𝐴𝑀𝑀7(𝑥, 𝑦, 𝑡) − Δ𝜂
𝑃𝑏
𝐴𝑀𝑀7(𝑡) + Δ𝜂

𝑃𝑏
𝐺𝐶𝑀(𝑡) (3.3)

where Δ𝜂∗𝐴𝑀𝑀7 and Δ𝜂𝐴𝑀𝑀7 refer to corrected and uncorrected DSLC of AMM7,
respectively, as a function of location and time. Δ𝜂𝑃𝑏𝐴𝑀𝑀7 and Δ𝜂

𝑃𝑏
𝐺𝐶𝑀 refer to the

area-weighted mean DSLC due to bottom pressure changes only (first term on
the l.h.s. of Equation 3.1, excluding atmospheric pressure changes) in the NWES
region, as simulated by AMM7 and the GCMs, respectively.

3.2.5. Observational data for model evaluation
AMM7 has been extensively tested and downscaling setups similar to ours have been
validated against observations in previous studies (e.g., Tinker et al., 2015). When
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forced by a preindustrial control run of HadGEM3, AMM7 reproduces interannual
sea-level variability observed with satellite altimetry and tide gauges well (Tinker
et al., 2020). As different forcing introduces different biases, we will evaluate our
historical simulations against observations in Section 3.3.

Model evaluation is complicated by internal variability: although the historical por-
tion of the CMIP5 simulations is forced by observed changes in greenhouse gas
concentrations (Taylor et al., 2012), the timing of internal variability in the models
is not expected to match the timing of observed variability. Therefore, we focus
on the capability of the models to reproduce the observations in a statistical sense.
We extend the historical period 1980-2005 of our simulations to 2017 using RCP8.5.
The time periods used for the evaluation within this window depend on the avail-
ability of each observational dataset.

Richter et al. (2017) compared 20-yr sliding windows of historical CMIP5 simulations
(1850-2005) with satellite altimetry (1993-2012) in the Northern North Atlantic.
They found little effect of internal variability on the correlation between simulated
and observed mean dynamic topography (MDT), a measure of the average strength
of geostrophic circulation. However, internal variability had a larger effect on the
correlation with observed interannual sea-level variability and linear trends. There-
fore, we compare satellite altimetry to simulated MDT, but use the longer records
that tide gauges (TGs) provide to compare to simulated sea-level variability. A com-
prehensive comparison of TG records with simulated sea-level trends including the
contributions of VLM, GIA, TWS and land ice mass change is beyond the scope of
this study.

For MDT, we use the MDT CNES CLS18 product (Rio et al., 2014), which provides
the mean SSH above the GOCO05S geoid model for the period 1993-2012. The
CNES MDT is based on a combination of GRACE and GOCE data, satellite altimetry
and in-situ data, and is provided on a 1/8° by 1/8° grid.

Observations of SST are obtained from the Operational Sea Surface Temperature
and Sea Ice Analysis (OSTIA) (Donlon et al., 2012; Roberts-Jones et al., 2012),
which combines satellite data and in-situ data. It is available at a resolution of
1/20° by 1/20° for the period 1992-2010.

Observations of SSS for 1980-2017 are derived from the EN4.2.0 dataset (Good
et al., 2013), which provides quality-controlled sub-surface temperature and salin-
ity measurements from profiling instruments and Argo floats. As the spatial and
temporal resolution of EN4 in the NWES region are limited, we use EN4 only quali-
tatively. Similarly to Tinker et al. (2015), we do not use the optimally interpolated
dataset. Instead, we average salinity observations within the first 10 m below the
surface over winter (DJF) and summer (JJA) months and assign them to the nearest
grid cell of a 1/4° by 1/4° grid. Mean salinity values computed from less than 4
years of data are rejected.

We use monthly and annual TG records from the revised local reference dataset
obtained from the Permanent Service for Mean Sea Level (PSMSL) website (Holgate
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et al., 2013; PSMSL, 2018). We select TGs on the NWES (Figure S3.1) with a
series length of over 50 years and with a data coverage of at least 28 years during
1980-2017 (≥75%). Stations in near proximity of the Baltic outflow are excluded,
because exchange with the Baltic Sea is not resolved in any of our models (Section
3.2.2). Simulated annual mean SSH nearest to the TGs is subsampled based on the
temporal coverage of each individual TG record.

The comparison of the GCM simulations with the AMM7 simulations, and of simu-
lations with observations, involves datasets provided at different grids and resolu-
tions. Throughout the paper, we will show all data on their original grids, as this
best shows their spatial characteristics. When analyzing the differences between
models, and between models and observations, computations are made and pre-
sented on the AMM7 grid to avoid losing the high-resolution information of AMM7.
To this end, data with a different resolution and/or land mask are bilinearly interpo-
lated and ocean grid cells that were originally land are filled with nearest-neighbor
interpolation.
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Figure 3.1: Bathymetry of (a) NEMO AMM7, (b) HadGEM2-ES, and (c) MPI-ESM-LR. The land mask is
grey; the black lines denote the 200 m isobath approximating the shelf break. The abbreviations in (a)
denote the Amorican Shelf (AS), Bay of Biscay (BB), Celtic Sea (CS), English Channel (EC), Faroe Islands
(FI), German Bight (GB), Iceland Basin (IB), Irish Sea (IS), Kattegat (Ka), North Sea (NS), Norwegian
Trench (NT), Rockal Trough (RT) and Skagerrak (Sk) (see also Figure 1.8).
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3.3. The impact of dynamical downscaling on his-
torical simulations

In the following sections we compare the historical GCM and downscaled simula-
tions of MDT (Section 3.3.1), SST and SSS (Section 3.3.2) and sea-level variability
(Section 3.3.3) with observations and investigate the information that dynamical
downscaling with AMM7 adds.

3.3.1. Mean dynamic topography
The observed MDT CNES CLS18 anomalies (w.r.t. the regional mean) for 1993-2012
show a northwest to southeast gradient (Figure 3.2a) perpendicular to the North
Atlantic Current that flows along the shelf break. This slope current is driven by the
combination of a horizontal density gradient and a sloping bathymetry (Huthnance,
1984). Along the southeastern North Sea coastline and in the Kattegat (see Figure
3.1 for a map), observed MDT is higher than elsewhere on the shelf.

Simulated MDT generally agrees well with the observations: we find pattern cor-
relation coefficients (PCCs) with the observations of 0.86 and 0.90 for respectively
GCM-HAD and GCM-MPI in the NWES region (Figures 3.2b & d). The accuracy of
satellite altimetry is lower near the coasts than in the deep ocean due to land con-
tamination (e.g., Deng et al., 2002), while we expect downscaling to provide added
value especially on the shelf. Additionally, the across-track resolution of satellite
altimetry is much lower than the resolution of AMM7. Despite these limitations,
we find that after downscaling the PCCs of GCM-HAD and GCM-MPI improve to
0.94 and 0.94, respectively (Figures 3.2c & e). The MDT of GCM-HAD is improved
most. The root mean square error (RMSE) changes slightly after downscaling (0.07
m for GCM-HAD and RCM-HAD, and 0.08 and 0.06 m for GCM-MPI and RCM-MPI,
respectively).

All models reproduce the observed northwest to southeast MDT gradient reflecting
the slope current, but this is captured only crudely by GCM-HAD (Figure 3.2b). The
gradient of high to low MDT off the coast of Norway, perpendicular to the Norwegian
Coastal Current and Atlantic inflow through the Norwegian Trench, is present in all
models except GCM-HAD (Figures 3.2c-e). These topographically-steered currents
cannot be resolved by GCM-HAD since its horizontal resolution is insufficient for
a realistic bathymetry. However, the high MDT along the Norwegian coast is not
clearly present in the MDT CNES CLS18 product either (Figure 3.2a), most likely due
to insufficient resolution and land contamination (Ophaug et al., 2015; Idžanovic
and Ophaug, 2017).

Along the southeastern North Sea coastline all models show elevated MDT similar
to the observations, but for GCM-HAD this is obscured by a checkerboard pattern
(Figures 3.2b). Such a checkerboard pattern may be related to numerical insta-
bilities in horizontal diffusivity. Along the western boundary of the NWES region,
simulated MDT is lower than observed MDT for all models. In the Norwegian Sea,
simulated MDT is too low in GCM-MPI, RCM-HAD and RCM-MPI, and does not agree
spatially with the observations in GCM-HAD.
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Overall, dynamical downscaling with AMM7 adds value to the CMIP5 GCM simula-
tions of MDT. The spatial improvement is largest for GCM-HAD, which has a lower
horizontal resolution than GCM-MPI. Horizontal resolution is important to resolve
the North Atlantic Current and Norwegian Coastal Current. This is in line with pre-
vious findings on the impact of dynamical downscaling of GCMs on the simulation of
ocean circulation in the NWES region (e.g., Ådlandsvik and Bentsen, 2007). Resolv-
ing these currents is important for the exchange of heat and salt between the deep
ocean and the shelf (Huthnance, 1995) and therefore likely to impact the emergent
patterns of DSLC in climate change simulations.
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Figure 3.2: MDT anomalies (1993-2012), observed: (a) MDT CNES CLS18 and simulated: (b) GCM-
HAD, (c) RCM-HAD, (d) GCM-MPI and (e) RCM-MPI. Simulated MDT is the time-mean of annual mean
sea level, excluding the IB effect. The historical simulations are extended with the RCP8.5 scenario for
2006-2012. The regional mean MDT was removed from all fields. The PCCs and RMSEs of simulations
v.s. observations are indicated in the panels.
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3.3.2. Sea surface temperature and sea surface salinity
Next, we assess model skill at resolving the lateral transport and surface fluxes of
heat and freshwater in the NWES region by comparing the historical simulations with
observations of climatological SST and SSS. In winter, observed SST from OSTIA
is relatively warm in the southwest of the NWES region (Figure 3.3a). The warm
Atlantic water flows northward following the shelf break and enters the North Sea
via its southern and northern entrances (as schematically shown in Figure 1.8). SST
is colder in the east of the North Sea, along Norway and in the Norwegian Sea. In
summer, observed SST is relatively high in the east of the North Sea (Figure 3.3b)
and the SST of the slope current is less pronounced.

Compared to OSTIA, GCM-HAD is around 0.5-1.5 °C too warm at the surface on the
shelf in winter (Figure 3.3c). Along the coasts, biases are larger and can reach up to
3 °C near the Danish coast (see Figure S3.2 for anomalies w.r.t. the observations).
The SST of the slope current and the inflow of Atlantic water into the North Sea are
not well reproduced by GCM-HAD. The English Channel in GCM-HAD is closed and
we find cold biases of channel water of up to 0.9 °C with respect to the observations.
In summer, GCM-HAD (Figure 3.3a) is around 2.5 °C colder than OSTIA near the
Danish coast, and up to 5.2 °C warmer around the coast of the UK. Evaluated on
the shelf, the PCCs and RMSEs of GCM-HAD with observations are 0.92 and 1.09 °C
in winter, and 0.50 and 2.13 °C in summer, respectively. Dynamical downscaling of
GCM-HAD clearly improves the representation of SST (Figures 3.3e & f). Similar to
previous downscaled simulations (Holt et al., 2010; Tinker et al., 2015), RCM-HAD
spatially reproduces the observed SST pattern in winter of the warm North Atlantic
Current flowing along the shelf break and into the North Sea (Figure 3.3e). The
biases in summer SST around the UK of RCM-HAD are reduced compared to GCM-
HAD (Figure 3.3f). The PCCs increase and RMSEs reduce to 0.97 and 0.88 °C in
winter, and to 0.88 and 1.16 °C in summer, respectively.

In winter, GCM-MPI is mostly around 0.3-1.4 °C warmer than the observations in
the northern North Sea and north of Scotland, and around 0.6-1.1 °C colder west
of the UK (Figure 3.3g). Like GCM-HAD, GCM-MPI is also too warm along the
southeastern coasts of the North Sea (up to 2.6 °C) in winter compared to OSTIA.
GCM-MPI resolves the SST of the slope current and the SST in the English Channel
in winter better than GCM-HAD. In summer, GCM-MPI is around 1 °C warmer than
the observations north of the UK and in the English Channel, and around 0.8-2.2
°C colder in the central and eastern North Sea (Figure 3.3h). On the shelf, GCM-
MPI has PCCs and RMSEs of 0.91 and 0.69 °C in winter, and 0.82 and 0.86 °C in
summer, respectively, so has smaller biases than GCM-HAD. Dynamical downscaling
adds more spatial information and reduces biases with respect to the observations
in both seasons (Figures 3.3i & j). The PCCs increase and RMSEs reduce to 0.96
and 0.54 °C in winter, and 0.90 and 0.66 °C in summer, respectively.
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Figure 3.3: Climatological SST (1992-2010) in winter (DJF) and summer (JJA) from (a-b) the obser-
vational dataset OSTIA, and simulated for (c-d) GCM-HAD, (e-f) RCM-HAD, (g-h) GCM-MPI and (i-j)
RCM-MPI. Note the different scales used for winter and summer. The historical simulations are extended
with the RCP8.5 scenario for 2006-2010. The PCCs and RMSEs of simulations v.s. observations on the
shelf are indicated in the panels. Biases relative to the observations are shown in Figure S3.2.



3

60 3. Improving Sea-Level Projections Using Dynamical Downscaling

Similar to MDT, the biases of simulated SST with respect to the observations are
larger for GCM-HAD than for GCM-MPI, and the improvement for GCM-HAD after
downscaling is also larger. Part of this might be explained by the more realistic
bathymetry and land mask of GCM-MPI. Near the boundaries of the NWES region,
biases of RCM-HAD and RCM-MPI with observations are larger than in the interior,
and the downscaled simulations are closer to their driving GCMs, due to the applied
boundary conditions.

The observed climatological SSS is low in the German Bight, along part of the
Dutch coast, in the Skagerrak and around Norway, owing to the freshwater outflow
of rivers and the Baltic Sea (Huthnance, 1991), with moderate seasonal variation
(Figures 3.4a & b). In contrast to the observations, in GCM-HAD low SSS is not
confined to the coasts but spread out through most of the southeastern North Sea
(Figures 3.4c & d). Simulated SSS there is around 1.5-2 PSU lower than EN4 (see
also Figure S3.3). The observed low SSS around Norway is not reproduced by GCM-
HAD, pointing to the misrepresentation of the Norwegian Coastal Current and/or
Baltic outflow. RCM-HAD (Figures 3.4e & f) is more similar to the observations than
GCM-HAD, but is fresher than EN4 in the German Bight, and more saline around
Norway.

GCM-MPI displays low SSS around Norway like the EN4 observations, but does
not reproduce the low SSS confined to the southeastern coast of the North Sea
(Figures 3.4g & h). GCM-MPI is 4 to 6 psu too fresh in the Skagerrak compared to
EN4. Downscaling also improves GCM-MPI, but like RCM-HAD, RCM-MPI (Figures
3.4i & j) is too fresh in the German Bight and too saline around Norway. The
SSS of RCM-HAD and RCM-MPI are similar. This indicates that SSS on the shelf is
controlled more strongly by freshwater input from evaporation/precipitation, river
run-off, Baltic outflow and the circulation on the shelf than by dynamics outside
of the domain. Compared to the GCMs, AMM7 also simulates lower SSS around
the UK and west of France near freshwater input from river run-off. However,
the EN4 observations are too sparse to facilitate a meaningful evaluation in those
regions.
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Figure 3.4: Climatological SSS (1980-2017) in winter (DJF) and summer (JJA) for (a-b) the obser-
vational dataset EN4, and simulated for (c-d) GCM-HAD, (e-f) RCM-HAD, (g-h) GCM-MPI and (i-j)
RCM-MPI. The historical simulations are extended with the RCP8.5 scenario for 2006-2017. Biases rela-
tive to the observations are shown in Figure S3.3.
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3.3.3. Interannual and seasonal sea-level variability
In addition to MDT (geostrophic circulation), SST and SSS, which have been used
to evaluate downscaled simulations before (e.g., Ådlandsvik and Bentsen, 2007;
Holt et al., 2010; Mathis, 2013; Tinker et al., 2015), we also evaluate the historical
simulations of seasonal and interannual sea-level variability. As our metrics, we
use the standard deviation of the detrended annual mean sea level and the mean
amplitude of the seasonal sea-level cycle during 1980-2017. The TG observations
(colored circles) show relatively large interannual variability in the German Bight and
north of the Netherlands (Figure 3.5a), and slightly increased variability around the
north of Norway. The large variability in the German Bight is also observed with
satellite altimetry and can be explained well with a regression against local wind,
SST and sea-level pressure (Sterlini et al., 2016).

GCM-HAD displays a relatively large interannual variability in the German Bight (Fig-
ure 3.5a), but in contrast to the observations this extends to the coast of Norway
as well. In the deep ocean, GCM-HAD simulates a large interannual variability, es-
pecially near the western boundary of the NWES region. Comparing simulated in-
terannual variability near TG stations to the observed TG data, GCM-HAD has a PCC
of 0.7 and an RMSE of 1.12 cm. Dynamical downscaling improves the interannual
sea-level variability of GCM-HAD compared to the TG records (Figure 3.5c), mainly
along the Norwegian coast. Indeed, RCM-HAD (Figure 3.5b) has an increased PCC
of 0.90 and a decreased RMSE of 0.84 cm.

The observed interannual sea-level variability at TGs is better reproduced by GCM-
MPI (Figure 3.5d) than by GCM-HAD, which is reflected by a PCC of 0.83 and an
RMSE of 0.55 cm with respect to the observations. Similar to GCM-HAD, the inter-
annual sea-level variability in GCM-MPI is larger in parts of the deep ocean than on
the shelf. In contrast to GCM-HAD, the skill of GCM-MPI at reproducing observed
variability is only marginally affected by downscaling (Figures 3.5e & f). The PCC
remains unchanged after downscaling, and the RMSE decreases from 0.55 to 0.52
cm for RCM-MPI. The comparison suggests that the impact of dynamical down-
scaling on simulations of interannual sea-level variability along the coast depends
strongly on the driving GCM. The patterns of large interannual sea-level variability
in the deep ocean are roughly similar between the original and downscaled simula-
tions. The transition near the shelf break from small variability on the shelf to large
variability in the deep ocean is more pronounced in the downscaled simulations,
likely because the shelf break is better resolved in AMM7.

TGs in the German Bight and along the north coast of Norway show the highest
seasonal sea-level variability (Figure 3.6, colored circles). The observed seasonal
amplitude gradually increases northward along the Dutch coast. The simulated
seasonal amplitude is typically smaller in the southwest of the NWES region and
increases toward the north and northeast for all models (Figures 3.6a, b, d & e).
Although GCM-HAD simulates high seasonal sea-level variability in the German Bight
and around Norway, its variability has little spatial coherency in the North Sea and
along the Norwegian coast (Figure 3.6a) and does not compare well with the TGs
(Figure 3.6c). The PCC and RMSE of GCM-HAD with the observations are 0.84
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Figure 3.5: Simulated interannual sea-level variability (1980-2017) calculated as the standard deviation
(std.) of detrended annual mean sea level for (a) GCM-HAD, (b) RCM-HAD, (d) GCM-MPI and (e) RCM-
MPI, with colored circles depicting observed interannual variability at TGs. The historical simulations are
extended with the RCP8.5 scenario for 2006-2017. The PCCs and RMSEs of simulations v.s. observations
are indicated in the panels; scatter plots of simulated v.s. observed interannual variability at TGs for (c)
GCM-HAD (red) and RCM-HAD (black) and for (f) GCM-MPI (red) and RCM-MPI (black).

and 2.18 cm, respectively. Dynamical downscaling strongly improves the fit with
observations: RCM-HAD has a PCC of 0.94 and an RMSE of 1.57 cm (Figures 3.6b
& c). Especially in the central North Sea, the seasonal amplitude is larger for RCM-
HAD than for GCM-HAD.

GCM-MPI also displays high seasonal sea-level variability in the German Bight, but
its variability extends too far south along the Dutch and Belgian coasts (Figure
3.6d). This leads to a poor fit with the observations: the PCC and RMSE of GCM-
MPI are 0.67 and 2.99 cm, respectively. Around Norway, the simulation agrees with
the observations better. Again, dynamical downscaling leads to a much better fit
(Figures 3.6e & f), especially along the southeastern coast of the North Sea. The
PCC and RMSE of RCM-MPI are 0.95 and 0.94 cm, respectively.

The improved model skill likely results from the increased ocean resolution and
downscaled atmospheric forcing in our setup. However, the seasonal cycle is also
affected by river run-off and tides (Tsimplis and Woodworth, 1994), of which the
latter is not resolved in the GCMs. Seasonal sea-level variability in RCM-HAD and
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RCM-MPI (Figures 3.6b & d) is remarkably similar (PCC of 0.82 over the NWES
region, and similar biases w.r.t. TGs) despite the different driving GCMs, indicating
that the boundary conditions have a lesser influence. Comparing Figures 3.5 & 3.6
shows that particularly along the coasts, the seasonal sea-level cycle benefits more
from dynamical downscaling than interannual sea-level variability, which appears to
have a larger dependency on the lateral boundary conditions.

Figure 3.6: Simulated amplitude of the seasonal cycle of sea level 𝑆𝐴 (1980-2017) calculated as half
of the difference between the annual minimum and maximum sea level and averaged over all years
for (a) GCM-HAD, (b) RCM-HAD, (d) GCM-MPI and (e) RCM-MPI, with colored circles depicting the
observed seasonal amplitude at TGs. The historical simulations are extended with the RCP8.5 scenario
for 2006-2017. The PCCs and RMSEs of simulations v.s. observations are indicated in the panels; scatter
plots of the simulated v.s. observed seasonal amplitude at TGs for (c) GCM-HAD (red) and RCM-HAD
(black) and for (f) GCM-MPI (red) and RCM-MPI (black).

Summarizing, dynamical downscaling generally improves the historical GCM simula-
tions with respect to observations (i.e., reduces biases). We expect that dynamical
downscaling will improve the simulations of other CMIP5 GCMs as well, especially
since most CMIP5 GCMs have a lower horizontal resolution than MPI-ESM-LR in
the NWES region. The evaluation shows that the bathymetry and land mask of
GCM-HAD is too coarse to resolve the circulation on and along the shelf. This can
influence sea-level projections as well, which we will investigate next.
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3.4. The impact of dynamical downscaling on future
DSLC

In this section we assess the effect of dynamical downscaling on simulations of
future DSLC (Section 3.4.1) and its different components (Section 3.4.2). Addition-
ally, we investigate the time of emergence (Hawkins and Sutton, 2012; Lyu et al.,
2014) of SLC above background variability (Section 3.4.3).

3.4.1. DSLC projections for the 21st century
We compute 21st century DSLC as the difference between time-mean sea level
in the historical period (1980-2005) and at the end of the century (2074-2099).
The global-mean thermosteric SLC ‘zostoga’ is excluded (see Section 3.2.4). For
RCP8.5, all models project a relative sea-level rise on the NWES (Figure 3.7), with
the strongest increase for GCM-HAD (Figure 3.7a). The results for RCP4.5 are
spatially similar to the results for RCP8.5, but have smaller magnitudes (Figure
S3.4).

The differences in DSLC between GCM-HAD and RCM-HAD (Figures 3.7a & b) are
large, especially in the North Sea (Figure 3.7c): DSLC is up to 15.5 cm larger in
GCM-HAD than in RCM-HAD along the southeastern coast (up to 8 cm larger for
RCP4.5). This difference is approximately 30% of the sterodynamic SLC (DSLC
plus ‘zostoga’, Gregory et al., 2019) simulated by GCM-HAD for the North Sea. It
is of a magnitude similar to the inter-model uncertainty of CMIP5 ensembles used
for previous ocean dynamic sea-level projections (e.g., Slangen et al., 2012, 2014;
de Vries et al., 2014; Kopp et al., 2014; Palmer et al., 2018b). DSLC in GCM-
HAD is 5-7 cm larger than in RCM-HAD north of the UK, 3-4 cm larger along the
coastline of France and Spain, and 2-4 cm smaller along parts of the Irish coast.
In the Irish Sea, differences in DSLC between GCM-HAD and RCM-HAD are also
large, since the Irish Sea is not resolved in GCM-HAD and interpolated values are
used instead. Unlike GCM-HAD, RCM-HAD simulates a distinct sea-level rise in the
Norwegian Trench despite the climatology used for the Baltic outflow. This points
toward changes in shelf circulation or in the Atlantic inflow into the North Sea (Holt
et al., 2018).

In contrast to GCM-HAD and RCM-HAD, the spatial patterns of DSLC in GCM-MPI
(Figure 3.7d) and RCM-MPI (Figure 3.7e) generally agree well. DSLC in GCM-MPI
is up to 3.5 cm smaller than in RCM-MPI in the Bay of Biscay (Fig. 7f). In the
North Sea, GCM-MPI simulates slightly larger DSLC, but differences with RCM-MPI
do not exceed 2.5 cm (7% of the sterodynamic SLC simulated by GCM-MPI). The
differences are much smaller than for GCM-HAD, which points to the importance of
a realistic bathymetry and land mask for sea-level projections.

In the deep ocean,the differences between the original and downscaled simulations
of DSLC can exceed the differences on the shelf for both driving GCMs (Figures 3.7c
& f). The currents east of Iceland and along the Faroe Islands show a sea-level fall
relative to the global mean in RCM-HAD, but not in GCM-HAD. DSLC in GCM-MPI
around the Faroe Islands is smaller than on the shelf, but in RCM-MPI it is larger.
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Near the western boundary of the NWES region, GCM-HAD (Figure 3.7a) shows a
large sea-level rise, whereas in GCM-MPI (Figure 3.7d) sea level falls relative to the
global mean change. This is likely caused by changes in the gyre circulation west
of the region, which are inherited in the downscaled simulations through the lateral
boundary conditions (Figures 3.7b & e).

Figure 3.7: Projected DSLC between 1980-2005 and 2074-2099 (RCP8.5) for (a) GCM-HAD, (b) RCM-
HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f) RCM-MPI minus GCM-MPI.
The differences in (c) and (f) are computed on the AMM7 grid; black crosses indicate the original GCM
coastline.

In GCM-HAD there is a large contrast (≈18 cm) between DSLC northeast and south-
west of the English Channel (Figure 3.7a). Apparently, the closed English Channel
in GCM-HAD prohibits circulation into the North Sea via its southern entrance. The
DSLC gradient across the closed English Channel reduces by approximately 13 cm
after dynamically downscaling (Figure 3.7b). For GCM-MPI, which has an open En-
glish Channel, dynamical downscaling hardly affects the SLC gradient. To explore
the effect of a closed English Channel on DSLC further, we assess the difference
between DSLC on either side of the English Channel in 18 additional CMIP5 GCMs
(Figure 3.8). For all 20 GCMs and the downscaled simulations, 21st century DSLC
is larger near Vlissingen (northeast of the channel) than near Brest (southwest of
the channel). The difference is largest for HadGEM2-ES (≈18 cm, closed English
Channel) and smallest for EC-EARTH (≈0.55 cm, open English Channel). On av-
erage, the difference between DSLC near Vlissingen and Brest is 4.2 cm for the
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10 CMIP5 models with an open English Channel (squares), and 8.5 cm for the 10
CMIP5 models with a closed English Channel (circles). Like HadGEM2-ES, other
CMIP5 models with a closed English Channel and a large gradient in DSLC across
the channel might benefit substantially from dynamical downscaling.
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Figure 3.8: Simulated DSLC (excluding the IB effect) between 1980-2005 and 2074-2099 (RCP8.5) near
Vlissingen v.s. near Brest for 20 CMIP5 models with a closed English Channel (circles) or open English
Channel (squares), and for our downscaled simulations (asterisks). The CMIP5 models downscaled in
this study are indicated in red (HadGEM2-ES) and blue (MPI-ESM-LR). The solid 1:1 line denotes equal
DSLC in Vlissingen and Brest.

3.4.2. Drivers of projected DSLC
To better understand which processes drive the DSLC differences between the orig-
inal and downscaled simulations (Figure 3.7), we decompose DSLC into local steric
SLC (Figure 3.9) and SLC related to bottom pressure changes (manometric SLC,
Figure 3.10) following Equation 3.1 (Section 3.2.3). We exclude the IB effect here,
since it is small on centennial timescales (Church et al., 2013) and differences in
DSLC due to the IB effect between our models are less than 0.5 cm.

All models project the largest steric change in the deep ocean (Figures 3.9a, b, d &
e), because when heated a deeper water column expands more than a shallow one.
If no other forces balance the resulting SSH gradient, these volume anomalies are
redistributed from the deep ocean toward the shelf (Landerer et al., 2007). This
mass redistribution leads to a slight bottom pressure decrease in the deep ocean
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and to an increase on the shelf (Figures 3.10a, b, d & e). The dependency of local
steric and bottom pressure change on water column depth means that differences
between models will depend partially on differences in bathymetry. The imprint of
bathymetry is indeed visible in Figures 3.9c & f and Figures 3.10c & f, for example
in the North Sea, the Norwegian Trench and along the shelf break. Note that these
steric and bottom pressure change differences often have opposite signs.

Figure 3.9: Local steric SLC (derived in Section 3.2.3) between 1980-2005 and 2074-2099 (RCP8.5)
for (a) GCM-HAD, (b) RCM-HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f)
RCM-MPI minus GCM-MPI. The differences in (c) and (f) are computed on the AMM7 grid; black crosses
indicate the original GCM coastline.

On the shelf, the differences in local steric and manometric SLC between GCM-
HAD and RCM-HAD are large (Figures 3.9c & 3.10c). The local steric change in
GCM-HAD can be over 15 cm larger than in RCM-HAD in the northern North Sea.
GCM-HAD also simulates a much larger local steric change north of Scotland, where
the representation of the shelf break is crude (Figure 3.1). SLC due to bottom
pressure changes is up to 13 cm larger in GCM-HAD than in RCM-HAD in the North
Sea. These effects combined lead to the large DSLC differences in the North Sea
between GCM-HAD and RCM-HAD (Figure 3.7c). The DSLC differences between
GCM-MPI and RCM-MPI (Figure 3.7f) on the shelf are the result of a slightly larger
local steric change on the Armorican and Aquitaine shelves (Figure 3.9f), and a
slightly smaller bottom pressure change mainly in the North Sea and Irish Sea in
RCM-MPI (Figure 3.10f).
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Off the shelf, the differences in local steric and manometric SLC display a complex
spatial pattern and partially cancel out. Differences in the local steric change be-
tween the GCM and downscaled simulations are largest in the north and northwest
of the domain. The decrease in sea level with respect to the global mean change
in RCM-HAD and the increase in RCM-MPI east of Iceland and around the Faroe
Islands (Figures 3.7b & e), and the resulting differences with the GCMs, are mainly
driven by local steric changes (Figures 3.9c & f).

Figure 3.10: Manometric SLC (SLC related to bottom pressure changes, as derived in Section 3.2.3)
between 1980-2005 and 2074-2099 (RCP8.5) for (a) GCM-HAD, (b) RCM-HAD, (c) RCM-HAD minus
GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f) RCM-MPI minus GCM-MPI. The differences in (c) and
(f) are computed on the AMM7 grid; black crosses indicate the original GCM coastline. The global-mean
thermosteric change ‘zostoga’ has been added to all fields to correct for the spurious bottom pressure
change of the GCMs due to the Boussinesq approximation (Section 3.2.4).

Despite the shallow depth of the North Sea, the differences in local steric changes
between GCM-HAD and RCM-HAD (Figure 3.9c) in the North Sea are large (10-17
cm). To see if this is the result of differences in temperature change or differences in
salinity change, we further decompose steric change into thermosteric (Figure 3.11)
and halosteric (Figure 3.12) SLC (explained in Section 3.2.3). All models simulate
large thermosteric sea-level rise in the deep ocean, except RCM-HAD southeast of
Iceland (Figures 3.11a, b, d & e). Halosteric SLC partially cancels out thermosteric
SLC and is negative in the southwest of the NWES region and positive elsewhere in
all models (Figures 3.12a, b, d & e). On the shelf, thermosteric SLC is in the order
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of a few cm, and the differences between GCM-HAD and RCM-HAD (Figure 3.11c)
and between GCM-MPI and RCM-MPI (Figures 3.11f) are mostly below 1 cm.

Figure 3.11: Thermosteric SLC between 1980-2005 and 2074-2099 (RCP8.5) for (a) GCM-HAD, (b)
RCM-HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f) RCM-MPI minus GCM-
MPI. The differences in (c) and (f) are computed on the AMM7 grid; black crosses indicate the original
GCM coastline.

The differences in halosteric SLC between GCM-HAD and RCM-HAD are up to 15
cm (Figure 3.12c) on the shelf. This indicates that DSLC in the northern North
Sea in GCM-HAD is larger than in RCM-HAD (Figure 3.7c) mainly because of the
differences in depth-integrated salinity change. This can be the result of (a combi-
nation of) differences in the projected changes in river run-off, evaporation minus
precipitation, Atlantic inflow and shelf circulation that are introduced by dynamical
downscaling. Halosteric SLC is also larger in RCM-MPI than in GCM-MPI, especially
in the Bay of Biscay (Figure 3.12f). As shown in Section 3.3, the bathymetry and
land mask of GCM-HAD are too coarse to model the Atlantic inflow through the Nor-
wegian Trench and English Channel, affecting the simulated climatological salinity
on the shelf (Figure 3.4) and likely also DSLC.
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Figure 3.12: Halosteric SLC between 1980-2005 and 2074-2099 (RCP8.5) for (a) GCM-HAD, (b) RCM-
HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f) RCM-MPI minus GCM-MPI.
The differences in (c) and (f) are computed on the AMM7 grid; black crosses indicate the original GCM
coastline.

3.4.3. Time of emergence of sea-level change
In addition to the DSLC over the 21st century, we investigate the impact of dynami-
cal downscaling on the time of emergence (ToE) of sterodynamic SLC (Hawkins and
Sutton, 2012; Lyu et al., 2014), which is a measure of the magnitude of forced SLC
relative to internal sea-level variability. The detection of SLC relative to background
noise is useful for impact assessments and adaption planning (Kirtman et al., 2013).
We calculate the ToE of sterodynamic SLC relative to the simulated historical time-
mean sea level (1980-2005). We define ToE as the time in the middle of a 26-yr
window following the 26-yr historical period, in which the change in time-mean sea
level relative to the historical window exceeds and remains outside the bands of
one standard deviation of detrended annual-mean sea level in both this and the
historical window.

For all models sterodynamic SLC has emerged above variability on most of the shelf
before 2020 (Figures 3.13a, b, d & e). The emergence in the German Bight occurs
later than elsewhere in the North Sea because of the high local interannual sea-level
variability (Figure 3.5). Compared to RCM-HAD, ToE in GCM-HAD is up to 6 years
earlier in the North Sea and along the coast of France and Scotland, 3 years later
south of the UK and up to 8 years later in the Norwegian Trench (Figure 3.13c).
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These differences are relatively small despite the large differences in DSLC between
GCM-HAD and RCM-HAD by the end of the 21st century (Figure 3.7c). Since the
differences in historical interannual variability on the shelf between both models
are not very large (Figures 3.5a & b), this indicates that DSLC in the North Sea in
RCM-HAD starts to diverge from DSLC in GCM-HAD mainly after the ToE. In the
deep ocean, sterodynamic SLC emerges later than on the shelf for both models
since interannual sea-level variability in the deep ocean is larger (Figures 3.5a & b).
The sea-level fall east of Iceland and around the Faroe Islands in RCM-HAD (Figure
3.7b) is not detectable above sea-level variability before the end of the 21st century
(Figure 3.13b).

Figure 3.13: ToE of sterodynamic SLC (RCP8.5) relative to the historical period 1980-2005 for (a)
GCM-HAD, (b) RCM-HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f) RCM-
MPI minus GCM-MPI. The differences in (c) and (f) are computed on the AMM7 grid; black crosses
indicate the original GCM coastline. Yellow grid cells indicate no emergence before the end of the
century. For these grid cells we use the value 2099 in (c) and (f).

On the shelf, differences in ToE between GCM-MPI and RCM-MPI (Figure 3.13f) are
larger than between GCM-HAD and RCM-HAD, especially along the coasts of the UK
and Norway. For example, the ToE in the Irish Sea in GCM-MPI is up to 12 years
earlier than in RCM-MPI, despite differences in 21st century DSLC between GCM-
MPI and RCM-MPI of less than 2.5 cm (Figure 3.7f). Since sea-level variability and
the timing of SLC differ between GCM and RCM, the effect of dynamical downscaling
on ToE on the NWES can be large, even if differences in DSLC by the end of the 21st
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century are relatively small. The ToE on the shelf is similar for RCP4.5 and RCP8.5
since emergence occurs mostly before the RCPs start to significantly diverge. The
emergence for RCP4.5 occurs somewhat earlier in RCM-HAD than in GCM-HAD in
the German Bight and south of the UK (Figure S3.5). Similar to GCM-HAD and RCM-
HAD, the emergence in GCM-MPI and RCM-MPI occurs later in the deep ocean than
on the shelf. West of the shelf, sterodynamic SLC does not emerge before the end
of the 21st century, indicating that the projection of a sea-level fall there (Figures
3.7d & e) is strongly affected by interannual variability.

3.5. Projected changes in the seasonal sea-level cy-
cle

In Section 3.3.3, we showed that dynamical downscaling improved the fit with the
observed amplitude of the seasonal sea-level cycle at TGs. Therefore, we also
analyze the impact of dynamical downscaling on the projected changes in seasonal
amplitude. Changes in the seasonal sea-level cycle may heighten the risk associated
to sea-level rise on sub-annual timescales. In most of the domain, the linear trends
of the seasonal amplitude over the 21st century are not significantly different from 0
(yellow) for any of the models (Figures 3.14a, b, d & e). For RCP4.5 an even smaller
part of the NWES region displays significant trends (Figure S3.6). In locations with
significant trends, differences between GCM-HAD and RCM-HAD can be as large as
the trends themselves (Figure 3.14c). The trends in GCM-HAD are up to 0.33 mm/yr
smaller than in RCM-HAD in the southern North Sea, which is a large difference
compared to the observed historical seasonal amplitude of around 7 cm (Figure
3.6). For GCM-MPI and RCM-MPI, the trends are mostly significant and positive
around the north of the UK (Figures 3.14d & e). A large difference in trends is
displayed in the southwest of the NWES region. In the northern North Sea, trends
in GCM-MPI can be up to 0.19 mm/yr smaller than in RCM-MPI (Figure 3.14f). The
large differences in trends between the GCM and downscaled simulations suggest
that RCMs can be used to improve projections of the change in the amplitude of
the seasonal sea-level cycle on the NWES region.

Next, we use the linear trends in Figure 3.14 to detrend the amplitude of the sea-
sonal sea-level cycle. The magnitude of the remaining variability of the amplitude
over the 21st century can be calculated by taking the standard deviation of the
detrended signal (Figure 3.15). The amplitude of the seasonal sea-level shows
substantial interannual variability for all models (Figures 3.15a, b, d & e), especially
when compared to the linear trends in Figure 3.14. The variability is largest in the
German Bight, and smaller at the British coast of the North Sea. This is in line with
the 20th century observations at TG stations around the North Sea (Dangendorf
et al., 2013b; Frederikse and Gerkema, 2018). The results are similar for RCP4.5
(Figure S3.7).

On the shelf, differences in the interannual variability of the seasonal amplitude
between GCM-HAD and RCM-HAD (Figure 3.15c) can be up to 1.6cm (≈40% of
the standard deviation in GCM-HAD), and up to 2.6 cm (≈32% of the standard
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Figure 3.14: Linear trends in the amplitude of the seasonal cycle of sea level 𝑆𝐴 (1980-2099, RCP8.5)
for (a) GCM-HAD, (b) RCM-HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f)
RCM-MPI minus GCM-MPI. Yellow grid cells indicate linear regression coefficients that are not significantly
different from 0 (2 standard errors; 95% confidence). The differences in (c) and (f) are computed on
the AMM7 grid; black crosses indicate the original GCM coastline. Differences are yellow when both
simulations have insignificant trends.

deviation in GCM-MPI) between GCM-MPI and RCM-MPI (Figure 3.15f). The high
variability in the German Bight simulated by GCM-MPI extends further along the
southeastern coast of the North Sea than in RCM-MPI, similar to the bias of its
historical mean seasonal amplitude relative to observations (Figure 3.6). Hence,
dynamical downscaling is important to better project the variability of the amplitude
of the seasonal sea-level cycle in the NWES region.
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Figure 3.15: Interannual variability of the amplitude of the seasonal cycle of sea level 𝑆𝐴 (1980-2099)
calculated as the standard deviation of the detrended timeseries of 𝑆𝐴 (RCP8.5), for (a) GCM-HAD,
(b) RCM-HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f) RCM-MPI minus
GCM-MPI. The differences in (c) and (f) are computed on the AMM7 grid; black crosses indicate the
original GCM coastline.

3.6. Discussion and conclusions
Previous projections of regional sea level have been constructed with the output
of CMIP5 GCMs (e.g., Slangen et al., 2012, 2014; Church et al., 2013; de Vries
et al., 2014; Kopp et al., 2014; Palmer et al., 2018b). However, such GCMs have
a horizontal ocean resolution in the order of 100 km and exclude some of the key
processes relevant to shelf seas. Therefore, GCMs might not be the most appropri-
ate means of providing sea-level projections for coastal regions. The objective of
this study was to explore the use of dynamical downscaling with the regional model
AMM7 to refine the CMIP5 GCM simulations of the ocean dynamic sea-level change
and variability for the NWES region.

In agreement with previous dynamical downscaling studies for the NWES (e.g., Åd-
landsvik and Bentsen, 2007), we find that dynamical downscaling improves histori-
cal GCM simulations with respect to observations of SST, SSS and MDT. Additionally,
we show that dynamical downscaling provides a better representation of sea-level
variability on seasonal and interannual timescales (Section 3.3). The improvements
reflect the importance of a realistic bathymetry and land mask to resolve important
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topographically-steered currents along and on the shelf, which requires a suffi-
cient horizontal and vertical resolution. MPI-ESM-LR has a relatively high horizontal
resolution and reproduces observations better than HadGEM2-ES. Related to this,
we find that the improvement after dynamical downscaling is generally larger for
HadGEM2-ES than for MPI-ESM-LR.

The inclusion of key processes for the NWES and the improvement in reproducing
observed ocean properties and sea-level characteristics that was demonstrated in
Section 3.3 promotes greater confidence in the emergent patterns of DSLC in our
dynamically downscaled simulations. Depending on the driving GCM, the impact of
dynamical downscaling on 21st century DSLC can be substantial (Section 3.4). For
MPI-ESM-LR, differences between the GCM and downscaled simulations are in the
order of a few cm on the shelf. For HadGEM2-ES the downscaled DSLC is up to 15.5
cm (RCP8.5) smaller along the North Sea coastline than in the original GCM simu-
lations (up to 8 cm for RCP4.5). This is as large as the inter-model uncertainty in
the CMIP5 ensembles used for previous dynamic sea-level projections (e.g., Church
et al., 2013; Slangen et al., 2014). To draw more general conclusions, additional
CMIP5 models need to be dynamically downscaled. However, since the horizontal
resolution of HadGEM2-ES is more typical for the CMIP5 ensemble than the hori-
zontal resolution of MPI-ESM-LR, we expect the results of dynamical downscaling
for HadGEM2-ES to be representative of other CMIP5 models as well.

Part of the differences in projected 21st century DSLC between the original and
downscaled simulations are caused by the differences in bathymetry and land mask
between the models. Our results show that it is important for DSLC projections
that models resolve the main topographic features such as the English Channel,
the Norwegian Trench and the transition from the deep ocean to the shelf. This
is further supported by the finding that the impact of dynamical downscaling is
larger for HadGEM2-ES than for MPI-ESM-LR. Therefore, sea-level projections for
the NWES constructed with an ensemble of GCMs could be improved by weighting
or excluding models based on their bathymetry and land mask or skill at reproducing
observations regionally (e.g., McSweeney et al., 2015). This can have a substantial
effect on model spread (Little et al., 2015).

Besides the magnitude of simulated DSLC, dynamical downscaling also affects the
projected time of emergence of sterodynamic SLC. When including the global-mean
thermosteric change, the SLC signal emerges above internal variability before 2020
for most of the NWES in all of our models. The ToE is later in the deep ocean. Spa-
tially, this compares well with the results of Lyu et al. (2014) obtained with CMIP5
GCMs. However, dynamical downscaling delayed the emergence of sterodynamic
SLC on the shelf by up to 12 years (Section 3.4.3). Instead of using preindustrial
control runs to estimate (unforced) internal sea-level variability (Lyu et al., 2014),
dynamical downscaling can be used to estimate the ToE of SLC more realistically,
accounting for both the mean state and the variability around the mean state that
can both evolve over time.
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We have also shown that historical GCM simulations of the amplitude of the seasonal
cycle of sea level strongly improve after dynamical downscaling (Section 3.3.3).
The projected trends and interannual variability of the seasonal amplitude over the
21st century can differ substantially between the GCM and downscaled simulations
(Section 3.5). This means that dynamical downscaling offers the ability to investi-
gate DSLC on sub-annual timescales. The primary driver for sea-level projections is
coastal flood risk. A stronger seasonal cycle of sea level, or for instance of tidal am-
plitudes, may exacerbate the in-year risk associated with the annual mean increase
in sea level. This can be relevant to sediment transport and the recoverability of
ecological systems in coastal wetlands.

Our dynamical downscaling setup does not include a two-way coupling between
AMM7 and the atmosphere nor between AMM7 and the ocean component of the
driving GCMs, which would allow the RCM to influence the simulations outside
the NWES region. Although we find that dynamical downscaling improves the
SST simulations of the GCMs relative to the observations (Section 3.3.2), a two-
way atmosphere-ocean coupling was found to be important for downscaled SST
to evolve more independently from the atmospheric forcing provided by the par-
ent model (Mathis et al., 2017). Future studies could investigate the sensitivity of
the results of dynamical downscaling to two-way coupling, to the implementation
of the boundary conditions and to using different regional models, or isolate the
role of tides in the simulations. The DSLC output can be combined with other SLC
contributors to construct comprehensive downscaled sea-level projections. Monte
Carlo approaches such as used by Palmer et al. (2018b) can readily accommodate
this new information.

A few CMIP6 models will have an increased horizontal ocean resolution of 1/4°
(Haarsma et al., 2016) and are expected to better resolve the topographic scales
in the NWES region. Despite these advancements, the vertical resolution of most
GCMs remains limited in shallow shelf seas. Additionally, to fully resolve eddy-
induced sea-level variability, mixing and coastal upwelling, the horizontal ocean
resolution needs to be increased beyond the first baroclinic Rossby radius on the
shelf (≈4 km). GCMs operating at such small scales are decades away in terms
of computational feasibility (Holt et al., 2017), while the latest generation of 3D
regional ocean models can resolve these scales already (e.g., Graham et al., 2018).
Our results show the importance of improving the representation of coastal regions
in GCMs for regional sea-level projections for the NWES, and support a role for
dynamical downscaling in improving projections for coastal regions.
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3.7. Supplementary information
3.7.1. Supplementary figures

Figure S3.1: Location and temporal coverage of selected tide gauges (TG) from the revised local
reference dataset of the Permanent Service for Mean Sea Level (PSMSL).
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Figure S3.2: Biases of climatological SST (1992-2010) in winter (DJF) and summer (JJA) with respect to
the observational dataset OSTIA (simulations minus observations) for (a-b) GCM-HAD, (c-d) RCM-HAD,
(e-f) GCM-MPI and (g-h) RCM-MPI. The historical simulations are extended with the RCP8.5 scenario
for 2006-2010. The differences are calculated on the AMM7 grid.
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Figure S3.3: Biases of climatological SSS (1980-2017) in winter (DJF) and summer (JJA) with respect
to the observational dataset EN4.2.0 (simulations minus observations) for (a-b) GCM-HAD, (c-d) RCM-
HAD, (e-f) GCM-MPI and (g-h) RCM-MPI. The historical simulations are extended with the RCP8.5
scenario for 2006-2017. Differences with EN4 are taken from the nearest AMM7 grid cell.
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Figure S3.4: Projected DSLC between 1980-2005 and 2074-2099 (RCP4.5) for (a) GCM-HAD, (b) RCM-
HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f) RCM-MPI minus GCM-MPI.
The differences in (c) and (f) are computed on the AMM7 grid; black crosses indicate the original GCM
coastline.
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Figure S3.5: ToE of sterodynamic SLC (RCP4.5) relative to the historical period 1980-2005 for (a)
GCM-HAD, (b) RCM-HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f) RCM-
MPI minus GCM-MPI. The differences in (c) and (f) are computed on the AMM7 grid; black crosses
indicate the original GCM coastline. Yellow grid cells indicate no emergence before the end of the
century. For these grid cells we use the value 2099 in (c) and (f).
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Figure S3.6: Linear trends in the amplitude of the seasonal cycle of sea level 𝑆𝐴 (1980-2099, RCP4.5)
for (a) GCM-HAD, (b) RCM-HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f)
RCM-MPI minus GCM-MPI. Yellow grid cells indicate linear regression coefficients that are not significantly
different from 0 (2 standard errors; 95% confidence). The differences in (c) and (f) are computed on
the AMM7 grid; black crosses indicate the original GCM coastline. Differences are yellow when both
simulations have insignificant trends.
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Figure S3.7: Interannual variability of the amplitude of the seasonal cycle of sea level 𝑆𝐴 (1980-2099)
calculated as the standard deviation of the detrended timeseries of 𝑆𝐴 (RCP4.5), for (a) GCM-HAD,
(b) RCM-HAD, (c) RCM-HAD minus GCM-HAD, (d) GCM-MPI, (e) RCM-MPI and (f) RCM-MPI minus
GCM-MPI. The differences in (c) and (f) are computed on the AMM7 grid; black crosses indicate the
original GCM coastline.
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Abstract
Sea level on the Northwestern European Shelf (NWES) varies substantially from
year to year. Removing explained parts of interannual sea-level variability from
observations helps to improve estimates of long-term sea-level trends. To this end,
the contributions of the different drivers to interannual sea-level variability need to
be understood and quantified. We analyzed these contributions for the entire NWES
by performing sensitivity experiments with a high-resolution configuration of the
Regional Ocean Modeling System (ROMS). The lateral and atmospheric boundary
conditions were derived from reanalyses. We compared our model results with
satellite altimetry data, and used our sensitivity experiments to show that non-
linear feedbacks cause only minor interannual sea-level variability on the shelf. This
indicates that our model experiments can be used to separate the effects of different
drivers. We find that the variability of wind dominates the variability of annual mean
sea level in the southern and eastern North Sea (up to 4.7 cm standard deviation),
whereas the inverse barometer effect dominates elsewhere on the NWES (up to 1.7
cm standard deviation). In contrast, the forcing at the lateral ocean boundaries of
the model results in small and coherent sea-level variability on the shelf (0.5 cm
standard deviation). The sea-level variability driven by the variability of buoyancy
fluxes ranges from 0.5 to 1.3 cm standard deviation. The results of our sensitivity
experiments explain the (anti)correlation between interannual sea-level variability
at different locations on the NWES and can be used to estimate forced sea-level
rise from observations in this region with a higher accuracy.
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4.1. Introduction
Sea level on the Northwestern European Shelf (NWES) has been rising since the
19th century (Wahl et al., 2013), and this rise is projected to accelerate in the
coming centuries (e.g., Church et al., 2013; Oppenheimer et al., 2019). Fluctuations
of sea level on various timescales complicate detecting forced sea-level change from
observations, and sea-level variability will continue to be the dominant source of
uncertainty of sea-level change for the coming decades (Palmer et al., 2018b).
Removing explained parts of variability from sea-level records can lead to more
accurate estimates of trends and accelerations (e.g., Thompson, 1986; Calafat and
Chambers, 2013; Wahl et al., 2013; Dangendorf et al., 2014a; Gerkema and Duran-
Matute, 2017; Hogarth et al., 2020). Therefore, the processes driving interannual
to multi-decadal sea-level variability on the NWES need to be understood.

The drivers of sea-level variability on the NWES have mainly been studied using the
long tide gauge (TG) records that are available in the region. Wahl et al. (2013)
found that interannual sea-level variability is largest at TGs in the southeastern
North Sea. Using linear regression, Dangendorf et al. (2014a) showed that a large
part of the interannual sea-level variability at TGs in the southeastern North Sea can
be explained by the variability of wind stress, and at the western UK and Norwegian
coastlines by the inverse barometer (IB) effect (Stammer and Hüttemann, 2008).
Additionally, a link has been found between the North Atlantic Oscillation (NAO)
and sea level on the NWES (Wakelin et al., 2003; Woolf et al., 2003; Tsimplis et al.,
2005, 2008; Chen et al., 2014).

On annual to multi-decadal timescales, sea level at several locations on the NWES
is significantly correlated with sea level along the eastern boundary of the North At-
lantic. Miller and Douglas (2007) and Woodworth et al. (2010) correlated sea level
at Brest (France) and Cascais (Portugal) to sea-level pressure (SLP) over the sub-
tropical North Atlantic, and suggested a link between multi-decadal sea-level vari-
ability and mass redistribution related to gyre-scale adjustments. Others showed
that sea-level variability is coherent from northwestern Africa to the NWES, and
strongly correlated with integrated longshore winds (LSWs) on timescales of one
year to decades (Sturges and Douglas, 2011; Calafat et al., 2012). This suggests
an important role of boundary dynamics, and in particular wind-driven coastally
trapped waves (CTWs). Dangendorf et al. (2014a) hypothesized that CTWs also
affect sea-level variability in the North Sea. Using the correlation between sea level
in the North Sea and the eastern North Atlantic, Frederikse et al. (2016) closed
the sea-level budget for the North Sea for 1958-2014. More recently, Chafik et al.
(2019) argued that steric anomalies in the North Atlantic are communicated to the
NWES through Ekman transport and affect interannual to decadal sea-level vari-
ability, since sea level, along-slope winds and the properties of the North Atlantic
subpolar gyre co-varied during 1993-2016.

These studies have explained sea-level variability on the NWES at interannual to
multi-decadal timescales using statistical relationships between observed sea level
at different locations, and between sea level and a variety of oceanic and atmo-
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spheric drivers. Many of these drivers, such as SLP, winds, gyre circulation, pre-
cipitation and the NAO, are correlated themselves (Woodworth et al., 2009). This
makes the correlations between observed sea level and sea-level drivers challeng-
ing to interpret. Additionally, since TGs are sparsely distributed and located at the
coast, TGs alone do not allow us to characterize sea-level variability spatially and
determine whether observed signals are purely coastal or originate in the open
ocean. Satellite altimetry has a better spatial coverage than TGs, but can be less
accurate in coastal zones due to altimetric corrections and land contamination (i.e.,
the distortion of altimetric waveforms by the presence of land).

Instead of using observations, Roberts et al. (2016) ran numerical sensitivity ex-
periments with a global ocean model to link interannual sea-level variability to dif-
ferent modes of climate variability. More recently, Tinker et al. (2020) used a
high-resolution regional ocean model to explore the influence of atmospheric forc-
ing and lateral ocean boundary conditions on interannual sea-level variability on the
NWES. However, they used a climate control simulation and did not investigate the
effect of specific drivers. Hence, the contributions of different drivers to interannual
sea-level variability in the satellite altimetry era are not yet fully clear for the entire
NWES region.

Here, we investigate different drivers of interannual sea-level variability for a pe-
riod in the satellite altimetry era (1995-2018). To this end, we developed a high-
resolution set-up of the Regional Oceanic Modeling System (ROMS; Shchepetkin
and McWillams, 2005) for the NWES. We derived boundary conditions for our model
from ocean and atmosphere reanalyses (GLORYS12v1 and ERA5, respectively). By
separately varying the lateral ocean boundaries, SLP, winds and buoyancy fluxes in
our model, we quantify the effects of these drivers on interannual sea-level vari-
ability.

We explain our ROMS set-up and methods in Section 4.2 and show that our model
simulations agree well with satellite altimetry data in Section 4.3. We show the
influence of forcing at the lateral ocean boundaries, SLP, winds and buoyancy fluxes
on interannual sea-level variability and discuss the correlations between annual
mean sea level at different coastal locations in Section 4.4. We end with a discussion
in Section 4.5 and our conclusions in Section 4.6.

4.2. Data and methods
We first introduce our ROMS set-up for the NWES (Section 4.2.1) and the reanalysis
data that we prescribed at the boundaries of ROMS (Section 4.2.2). Additionally,
we discuss the satellite altimetry data that we used to evaluate our model (Section
4.2.3) and present the sensitivity experiments that were used to study the influences
of different drivers of interannual sea-level variability (Section 4.2.4).

4.2.1. ROMS set-up for the Northwestern European Shelf
ROMS is a primitive-equation, curvilinear, hydrostatic, Boussinesq and free-surface
regional ocean modeling system (Shchepetkin and McWillams, 2005). It runs on a
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staggered Arakawa C grid and has stretched terrain-following vertical coordinates
(Song and Haidvogel, 1994). Terrain-following coordinates are particularly suited
for modeling regions with large bottom topography gradients such as the slope from
the deep ocean toward the NWES.

Our model domain extends from 36°N to 62°N and from 20°W to 10°E, and has
four lateral open boundaries (Figure 4.1). Our model has 30 vertical levels and
a horizontal resolution of 1/8° by 1/8° (≈11 km), so resolves eddies in the open
ocean. With this resolution, the English Channel and Irish Sea are at least 4 to
5 grid points wide. The bathymetry (Figure 4.1), derived from ETOPO1 (Amante
and Eakins, 2009), was smoothed with grid stiffness 𝑟𝑥0 = 0.13, which reduces
horizontal pressure gradient errors (Beckmann and Haidvogel, 1993). We used
mixing along geopotential surfaces.

Figure 4.1: Map of the ROMS domain showing the smoothed ETOPO1 bathymetry [m] and the land
mask (grey) of the model set-up. The red contours indicate the 80 and 200 m isobaths. The abbreviations
denote the Amorican Shelf (AS), Bay of Biscay (BB), Celtic Sea (CS), English Channel (EC), German Bight
(GB), Iceland Basin (IB), Irish Sea (IS), North Sea (NS), Norwegian Trench (NT), Rockal Trough (RT)
and Skagerrak (Sk) (see also Figure 1.8).

4.2.2. ROMS boundary conditions from reanalysis data
We derived surface and lateral boundary conditions for ROMS from reanalysis data
for 1993-2018. For the lateral ocean boundaries, we obtained monthly mean values
of sea-surface height (SSH), zonal and meridional currents, and temperature and
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salinity from GLORYS12v1 (Fernandez and Lellouche, 2018). GLORYS12v1 is a
global ocean reanalysis with a horizontal resolution of 1/12° by 1/12° (≈8 km),
and covers the period 1993-2018. Its model component NEMO (Madec and NEMO
Team, 2016) is driven by atmospheric forcing from the ERA-Interim reanalysis (Dee
et al., 2011). GLORYS12v1 assimilates satellite sea-surface temperature and in-situ
temperature and salinity profiles. It also assimilates along-track satellite altimetry
data, corrected for the IB effect and the 18.61-year lunar nodal cycle (Fernandez
and Lellouche, 2018).

We imposed Chapman conditions for the free surface (Chapman, 1985), Flather
radiation conditions for barotropic velocities (Flather, 1976), and mixed-radiation
nudging for baroclinic velocities and ocean temperature and salinity (Orlanski, 1976;
Marchesiello et al., 2001). We applied outgoing nudging to temperature and salinity
at a timescale of one year, and ingoing nudging at a timescale of one day, using a 20-
point relaxation zone at the lateral boundaries of the domain. Baroclinic velocities
were nudged at the boundaries only. To suppress computational noise, we also
applied a 20-point sponge layer, multiplying the diffusion and viscosity by a factor
that linearly increases from 1 to 10 at the lateral boundaries.

ROMS and NEMO (GLORYS12v1) are both Boussinesq ocean models, meaning that
local steric effects are modeled prognostically but non-Boussinesq steric effects
are not (Griffies and Greatbatch, 2012). Although non-Boussinesq steric effects
have a negligible imprint on monthly or longer regional sea-level patterns, they
do impact global mean sea level (Greatbatch, 1994; Griffies and Greatbatch, 2012).
The global mean sea level in GLORYS12v1 was corrected by adding the global mean
steric effect to the SSH diagnostically (Lellouche et al., 2018). This signal may
enter our model via the lateral boundary conditions, but has only small interannual
variability.

The atmospheric boundary conditions were derived from ERA5 (CDS, 2019). ERA5 is
based on the IFS41r2 Earth-system model and is available for 1979 to a few months
before present. The atmospheric forcing was applied using bulk formulae based on
(Fairall et al., 1996). We prescribed solar radiation daily using an idealized diurnal
cycle, and precipitation 12-hourly. Winds at 10 m above sea level, atmospheric
pressure, cloud coverage, air temperature, and relative air humidity at 2 m above
sea level were prescribed on a 6-hourly basis.

We also applied a climatological river run-off based on the river discharge dataset
of Dai (2017). This means that our model does not capture interannual variability
due to the freshwater inflow from rivers. We also omit tides in our model. River
run-off and tides may contribute to interannual sea-level variability, but require a
model set-up with a higher horizontal resolution to be fully resolved.

4.2.3. Satellite altimetry data used for model evaluation
We evaluated model results against sea-level observations from the level-4 grid-
ded Ssalto/Duacs multi-mission satellite product (1/4° by 1/4°) of AVISO (AVISO,
2019). This product is available for 1993 to a few months before present. It has
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been corrected for the IB effect, and for the nodal cycle through standard tidal cor-
rections. Furthermore, we assume that barystatic effects on interannual sea-level
variability are small compared to the effects of regional ocean dynamics, allowing
for direct comparison with ROMS.

In addition, we evaluated our simulation of mean dynamic topography (MDT), which
reflects the average strength of geostrophic currents. We used the CNES MDT
CLS18 product (CNES, 2019), which is an estimate of the mean SSH above the
geoid, and is given at a 1/8° by 1/8° resolution. It is based on altimetry data,
in-situ measurements of temperature and salinity, and the GOCO5S geoid model,
and covers the period 1993-2012.

Although the satellite altimetry data is given on 1/4° and 1/8° grids respectively,
its effective resolution is lower than our model resolution. Hence, small-scale fea-
tures in the model results are difficult to evaluate. Additionally, land contamination
leads to a lower accuracy of satellite altimetry in coastal regions (Andersen and
Scharroo, 2011). Finally, satellite altimetry products are usually corrected for the
IB effect, tides and high-frequency winds (e.g., Ponte and Ray, 2002), leading to
reduced accuracy in regions on the NWES where these corrections are difficult to
model. Therefore, in Section 4.3 we also compare our model results with GLO-
RYS12v1.

4.2.4. ROMS sensitivity experiments
We decomposed sea-level variability using six sensitivity experiments with different
lateral and surface boundary conditions (Table 4.1). For the reference experiment,
we varied all lateral and surface boundary conditions (Exp_AllVar). For the sensi-
tivity experiments, we prescribed ROMS with an interannually varying annual cycle
for the driver under investigation and with a repeated mean annual cycle for the
others.

We decomposed the total interannual sea-level variability (Exp_AllVar) into vari-
ability due to the lateral ocean boundary conditions, atmospheric forcing, and in-
trinsic variability (Exp_OceanVar, Exp_AtmosVar and Exp_NoneVar). The influ-
ence of atmospheric forcing was further decomposed into the influences of SLP,
winds and buoyancy fluxes (Exp_SLPVar, Exp_WindVar and Exp_BuoyVar). The
SSH from GLORYS12v1 does not include the IB effect. Hence, when we include
SLP in ROMS, the lateral boundary conditions from GLORYS12v1 are compensated
using the PRESS_COMPENSATE option in ROMS.

All runs were initialized with the final year of Exp_NoneVar, i.e., the sensitivity
experiment in which both the atmospheric forcing and the lateral ocean boundary
conditions are a repeated mean annual cycle. We calculated the mean annual cycle
of the reanalysis data from the years 1993-1998, instead of the full period 1993-
2018. This was done to minimize spin-up effects toward a changed climate state,
as the mean state of 1993-1998 is more compatible with the boundary conditions in
1993. Additionally, we discarded the first two model years (1993 and 1994) to avoid
any remaining spin-up effects. Therefore, in this chapter we show model results
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Table 4.1: Overview of the ROMS sensitivity experiments. We used a climatological annual cycle for
river run-off in every model experiment.

Experiment Interannually Repeated Discussed in
varying annual cycle

Exp_AllVar All boundaries None Sections 4.4.1-4.4.4
(reference)
Exp_AtmosVar Surface boundaries Lateral boundaries Sections 4.4.1, 4.4.2
Exp_OceanVar Lateral boundaries Surface boundaries Sections 4.4.1, 4.4.3,

4.4.4
Exp_NoneVar None Lateral & surface Section 4.4.1

boundaries
Exp_SLPVar SLP Winds, buoyancy fluxes, Sections 4.4.2-4.4.4

lateral boundaries
Exp_WindVar Winds SLP, buoyancy fluxes, Sections 4.4.2-4.4.4

lateral boundaries
Exp_BuoyVar Buoyancy fluxes SLP, winds, Sections 4.4.2-4.4.4

lateral boundaries

for 1995-2018 (24 years). Spun-up sensitivity experiments show that the results
depend marginally on the period used to derive the climatological forcing.

Some of the bulk parameterizations of atmospheric forcing (Section 4.2.2) depend
on variables that vary in all sensitivity experiments. Thus, buoyancy fluxes may still
vary interannually in sensitivity experiments other than Exp_BuoyVar. For example,
the variability of SLP (Exp_SLPVar) affects air density and specific humidity, which in
turn affect heat and freshwater fluxes. Since these feedbacks are ultimately caused
by the interannual variability of the driver under investigation (SLP in this example),
we do not consider them part of Exp_BuoyVar.

Additionally, the response of the ocean to the various components of forcing at
the lateral and surface boundaries depends on its state (temperature, salinity, cir-
culation). For example, the heat taken up by the ocean varies interannually in
Exp_BuoyVar, but is redistributed by the same wind-driven circulation each year.
Hence, due to non-linear feedbacks the interannual sea-level variability in Exp_-
BuoyVar may differ from the actual buoyancy-driven variability in Exp_AllVar. This
applies to the other sensitivity experiments as well. However, we show in Sec-
tion 4.4 that such non-linear feedbacks result in only small interannual sea-level
variability on the shelf.

4.3. Evaluation of model results
In this section, we evaluate simulated MDT against CNES MDT CLS18 (both as
anomalies with respect to their area-weighted regional mean) and interannual sea-
level variability against the AVISO product. Additionally, we compare our simula-
tions with the GLORYS12v1 reanalysis. We evaluate a variant of Exp_AllVar that
excludes the effect of SLP. We compared the different fields quantitatively using
pattern correlation coefficients (PCCs - the spatial equivalent of Pearson’s correla-
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tion coefficient) and root mean square errors (RMSEs). We used a hypothesis test
to determine statistical significance (p<0.05, with p calculated using a two-sided
t-distribution).

ROMS MDT matches well with GLORYS12v1 MDT and CNES MDT CLS18 (Figure 4.2,
left panels). It has PCCs of 0.95 and 0.93 and RMSEs of 3.76 and 4.34 cm with
the other products, respectively. All three fields have a north to south gradient of
low to high MDT anomalies. The MDT is higher than the regional mean on most
of the shelf, and largest in the southeastern North Sea. All fields show lower MDT
in the Norwegian Trench and the northern North Sea. In ROMS and GLORYS12v1,
the 0 cm MDT contour realistically follows the northern coast of Scotland and ap-
proximately traces the 80-m isobath into the North Sea.

Since GLORYS12v1 assimilates along-track satellite altimetry, its MDT is similar to
the satellite altimetry data. However, in some areas, ROMS and GLORYS12v1 MDT
match well, but differ from CNES MDT CLS18. For example, ROMS and GLORYS12v1
differ only 1 cm near the coast of Scotland and Denmark, whereas CNES MDT CLS18
is up to 6 cm lower. This could be due to limitations of the satellite altimetry data
(see Section 4.2.3).

ROMS MDT differs from the other products near the Rockall Bank and in the south-
west of the domain, so here geostrophic currents may not be well reproduced. Our
model also has stronger MDT gradients across the shelf break, particularly at the
Celtic and Armorican slopes. Such gradients indicate along-slope geostrophic cur-
rents, which have indeed been identified in this region with moorings and numerical
models (Friocourt et al., 2008; Pingree and Cann, 1989) and may be affected by
bathymetry smoothing. CNES MDT CLS18 shows no gradient in this area, but its
resolution is likely insufficient to assess such a feature. Despite its data assimila-
tion, GLORYS12v1 has a somewhat lower MDT along this part of the shelf break.
Other high-resolution regional ocean models with different boundary conditions also
show, to various extents, reduced MDT along the Celtic and Armorican slopes (e.g.,
Hermans et al., 2020b; Tinker et al., 2020).

Next, we compare the magnitude of interannual sea-level variability in our model
with the observations. To this end, we calculated the standard deviation (SD) of
linearly detrended, annual mean sea level. Exp_AllVar reproduces the observed
SDs well (Figure 4.2, right panels). It has PCCs of 0.80 and 0.78 and RMSEs of
0.49 and 0.53 cm with respect to GLORYS12v1 and AVISO. All three fields have
large interannual sea-level variability in deep waters, such as the Iceland Basin, the
Rockall Trough and the Bay of Biscay. However, the variability in ROMS (Figure 4.2b)
is larger than in GLORYS12v1 and AVISO (Figures 4.2d & f) northwest of Portugal,
and generally smaller in the rest of the open ocean. Sea-level variability is small near
the shelf break and the Norwegian Trench, with all three fields showing a similar
magnitude of 0.7-1.0 cm SD. This is encouraging, since the shelf break might play
an important role for (decadal) sea-level variability on the shelf (Dangendorf et al.,
2014a).



4.3. Evaluation of model results

4

93

Figure 4.2: Mean dynamic topography anomalies with respect to the area-weighted regional mean
[cm] (left panels) and interannual sea-level variability as the SD of detrended, annual mean sea level
[cm] (right panels) for (a-b) ROMS, (c-d) GLORYS12v1 and (e-f) CNES MDT CLS18 and AVISO. All
products have been interpolated to the 1/8° grid of ROMS. The PCCs and RMSEs of ROMS with respect
to GLORYS12v1 and the satellite altimetry products are indicated. The black contours indicate 0 cm
MDT, and the red contours indicate the 80 and 200 m isobaths of ROMS (a-b) and GLORYS12v1 (c-f).
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The spatial patterns of interannual sea-level variability also agree well on the shelf.
As in GLORYS12v1 and AVISO, the largest variability in ROMS is found in the German
Bight. The variability in the German Bight is somewhat higher in ROMS than in
GLORYS12v1 and AVISO (up to 4.9, 4.3 and 4 cm SD, respectively). In the central
North Sea, ROMS is closer to AVISO, whereas AVISO has somewhat larger sea-
level variability in the northern North Sea and around the UK than both ROMS
and GLORYS12v1. Additionally, unlike ROMS and GLORYS12v1, AVISO shows a
few patches of high variability (up to ≈3 cm SD) in the English Channel. These
differences could be the result of inaccurate tidal corrections or processes that are
not represented in ROMS and GLORYS12v1.

The high pointwise correlation between ROMS and AVISO (Figure 4.3a) corrobo-
rates the agreement seen in Figure 4.2. Correlation coefficients are high and statis-
tically significant in most of the domain. The insignificant correlations in the deep
parts of the open ocean (Figure 4.1) are likely because of the intrinsic variability
in these regions (see Section 4.4.1 and Figure 4.5b). Intrinsic variability in ROMS
does not have exactly the same spatial pattern as in the observations, and is not
expected to have the same phase. In the English Channel, the Irish Sea and along
parts of the shelf break, the correlations between ROMS and AVISO are lower than
on the rest of the shelf, which could be due to limitations of the satellite altimetry
data (see Section 4.2.3). This is further supported by the pointwise correlation be-
tween GLORYS12v1 and AVISO, which is also reduced around the UK and parts of
the shelf break (Figure 4.3b).

To further demonstrate the high correlations between sea level in ROMS and AVISO,
we show the time series for a few sample locations at the coast (Figure 4.3c).
Correlation coefficients range from 0.64 to 0.84 for these coastal locations, despite
the potential land contamination of the altimetry. The time series in Figure 4.3c
also show how much sea level varies. For example, interannual variations are up to
11.14 cm (Cuxhaven), while long-term trends are only in the order of mm/yr (Wahl
et al., 2013).



4.3. Evaluation of model results

4

95

Figure 4.3: Pointwise correlation coefficients [-] between detrended, annual mean sea level (1995-
2018) in (a) ROMS and AVISO and (b) GLORYS12v1 and AVISO, and (c) detrended sea level with
respect to the time-mean [cm] at sample locations for ROMS (red, solid) and AVISO (black, dashed),
with their correlation coefficients. The black stipples in (a) and (b) indicate statistically insignificant
correlation coefficients (p≥0.05); isobaths as in Figure 4.2.

Finally, we compare the correlations of detrended sea level at Brest with detrended
sea level at all other grid cells in ROMS and AVISO (Figures 4.4a & b), since the
spatial correlation pattern in the eastern North Atlantic and on the NWES has been
discussed in a number of previous studies (Sturges and Douglas, 2011; Calafat
et al., 2012, 2013; Dangendorf et al., 2014a; Chafik et al., 2019; Frederikse et al.,
2016; Hogarth et al., 2020). The resulting patterns of ROMS and AVISO agree well
within the model domain. High correlations (>0.6) with sea level at Brest extend
from northwestern Africa to Norway, with the highest correlations found primarily
along the continental slope. In both ROMS and AVISO, sea level at Brest becomes
progressively less correlated with sea level toward the southern and eastern North
Sea. It is negatively correlated with sea level in the open ocean in the west and
northwest of the domain, although in most places this anticorrelation is statistically
insignificant. To highlight the unique character of the spatial coherence of the
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sea-level variability in the region, we compare the cross-correlations of observed
sea level along the continental slope and along a meridional transect in the open
ocean (25°W) (Figures 4.4c & d). This shows that the correlation scales along the
slope are several times longer than those in the open ocean, suggesting shelf-sea
dynamics play an important role in driving spatial coherence on the NWES.

Figure 4.4: Correlation coefficients [-] between detrended annual mean sea level (1995-2018) at Brest
and at all other grid cells for (a) ROMS and (b) AVISO, and cross-correlations for AVISO along (c) a
meridional transect in the open ocean (25°W) and (d) along the 200m isobath. Distances [km] along
the transect and isobath are indicated. Stipples and isobaths as in Figure 4.3.

We conclude that, overall, interannual sea-level variability in ROMS, GLORYS12v1
and AVISO are in good agreement (Figures 4.2, 4.3 & 4.4). Next, we use our ROMS
set-up to investigate the different drivers of interannual sea-level variability in the
NWES region (Section 4.4).



4.4. The contributions of different drivers

4

97

4.4. The contributions of different drivers
Using the sensitivity experiments in Table 4.1, we first isolate the contributions of
intrinsic sea-level variability, atmospheric forcing and the lateral ocean boundaries
(Section 4.4.1). Then, we split up the contribution of atmospheric forcing into the
effects of the variability of SLP, winds and buoyancy fluxes (Section 4.4.2). Finally,
we show the relative contribution of different drivers to sea level at a few coastal
locations (Section 4.4.3) and relate these to the correlation between sea level at
different locations (Section 4.4.4).

4.4.1. Intrinsic variability, atmospheric forcing and lateral ocean
boundaries

In contrast to Section 4.3, here we included the effect of SLP in Exp_AllVar (Figure
4.5a). The spatial patterns of sea-level variability in Figures 4.2b & 4.5a are similar,
but due to covariance, not exactly the same. For example, including SLP leads to
larger sea-level variability in most locations, but to slightly lower sea-level variability
in the central North Sea.

The interannual sea-level variability in Exp_NoneVar (Figure 4.5b) has SDs of up
to 2.7 cm in the deep ocean (Rockall Trough), but is negligible (<0.1 cm SD) on
the shelf. Since all forcing in Exp_NoneVar is a repeated mean annual cycle, the
resulting variability must be due to spontaneously generated non-linear processes,
such as mesoscale eddies. Therefore, we refer to this variability as intrinsic. A
model with tides and sufficient resolution to resolve shelf-sea eddies may simulate
larger intrinsic sea-level variability on the shelf. The open ocean variability in Exp_-
NoneVar is lower than the intrinsic variability found in previous studies (e.g., Sérazin
et al., 2015), and is negligible at the lateral boundaries. This is the result of the
lateral boundary conditions, which were prescribed as a repeated annual cycle in
Exp_NoneVar. The other sensitivity experiments also have intrinsic variability, so
the sea-level variability due to forcing at the lateral and surface boundaries is easier
to identify on the shelf than in the open ocean.

Exp_AtmosVar (Figure 4.5c), in which only the atmospheric forcing varies inter-
annually, shows that the atmospheric forcing is the dominant driver of sea-level
variability on the shelf. The resulting spatial pattern on the shelf compares well
to Exp_AllVar (Figures 4.2b & 4.5a) and the observations (Figure 4.2f). Sea-level
variability in Exp_AtmosVar is highest in the German Bight (≈5.6 cm SD) and is
also relatively high around Scotland and Norway (≈2.4 cm SD). Intrinsic sea-level
variability is present in the open ocean, and is enhanced by the local effects of at-
mospheric variability. At the lateral boundaries, the interannual sea-level variability
is nudged toward the variability due to SLP, since a repeated annual cycle from
GLORYS12v1 was used combined with the PRESS_COMPENSATE option (explained
in Section 4.2.4).

Exp_OceanVar (Figure 4.5d), in which only the lateral boundary conditions vary in-
terannually, has only minor interannual sea-level variability of around 0.5 cm SD on
the shelf. The variability is mostly uniform on the shelf, as demonstrated by the high
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Figure 4.5: Sea-level variability in different ROMS experiments (Table 4.1) as the SD [cm] of detrended
annual means (1995-2018) for (a) Exp_AllVar, (b) Exp_NoneVar, (c) Exp_AtmosVar, (d) Exp_Ocean-
Var, (e) the linear sum of time series in Exp_NoneVar, Exp_AtmosVar and Exp_OceanVar and (f) the
residual SD of Exp_AllVar minus the linear sum of components. Isobaths as in Figure 4.1.

correlations between detrended sea level at Brest and elsewhere shown in Figure
S4.1. By interannually varying the boundary conditions at each lateral boundary
separately, we find that the sea-level variability on the shelf is caused mostly by
the variation of the western and southern boundaries of our model domain (see
Figure S4.2). Variations in subtropical gyre strength may affect transport through
the western and southern boundaries, but we did not find a significant correlation
between sea level in Exp_OceanVar and the North Atlantic barotropic streamfunc-
tion in GLORYS12v1. In the open ocean, interannual sea-level variability due to the
varying lateral boundary conditions is much larger than on the shelf. Geostrophic
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currents along the continental slope can hinder the propagation of open ocean sig-
nals to the coast (Huthnance, 1981). In addition to the intrinsic sea-level variability
in the open ocean, the lateral ocean boundaries drive strong sea-level variability
along the western boundary, in the Iceland Basin (≈4 cm SD) and east of the Faroe
Islands (≈2.6 cm SD).

Next, we calculated SDs for the linear sum of the detrended sea level time series in
Exp_NoneVar, Exp_AtmosVar and Exp_OceanVar (Figure 4.5e). We compared this
to the variability in Exp_AllVar (Figure 4.5a), in which all forcing varies interannually
simultaneously. The SDs for Exp_AllVar and the linear sum are similar on the shelf
(Figures 4.5a & e), with differences well below 0.2 cm (Figure 4.5f). The linear
sum also has the same phase, as indicated by the high pointwise correlation with
Exp_AllVar (see Figure S4.3). This indicates that to first order, sea-level variability
due to the atmospheric and oceanic drivers combines linearly on the shelf. This
also holds for the forcing at the separate lateral ocean boundaries (Figures S4.2
& S4.3). Since all sensitivity experiments include intrinsic sea-level variability, the
differences between Exp_AllVar and the linear sum are larger in the open ocean
(Figure 4.5f).

4.4.2. Sea-level pressure, winds and buoyancy fluxes
We further decomposed the interannual sea-level variability in Exp_AtmosVar (Fig-
ure 4.5c, repeated in Figure 4.6a) into the variability induced by the variability of SLP
(Exp_SLPVar), winds (Exp_Windvar) and buoyancy fluxes (Exp_BuoyVar).

Exp_SLPVar (Figure 4.6b) shows the effect of SLP on interannual sea-level variabil-
ity. Except for the intrinsic variability in the open ocean, the resulting variability
agrees with the variability of SLP in ERA5 (≈1 cm sea level for 100 Pa SLP, see Fig-
ure S4.4). Therefore, the interannual sea-level variability in Exp_SLPVar is mainly
due to the IB effect. The resulting sea-level variability is smallest in the south of
the domain and in the southeastern North Sea (≈1 cm SD), and increases toward
the Icelandic Low northwest of the domain (≈2.1 cm SD).

Exp_WindVar (Figure 4.6c) shows that winds drive large sea-level variability in the
North Sea, and around Scotland, Ireland and Norway (up to 1.4 cm SD). Wind-
induced sea-level variability is largest in the southern and eastern North Sea (up
to ≈4.7 cm SD), and is also large in the open ocean. The large SDs in the open
ocean and on the shelf are separated by much smaller sea-level variability along
the shelf break (0.3-0.55 cm SD), west of France (0.6 cm SD) and southwest of the
UK (0.5-0.7 cm SD).

Exp_BuoyVar (Figure 4.6d) results in spatially relatively smooth sea-level variability
that varies from 0.5 to 1.3 cm SD on the shelf. Apart from the intrinsic sea-level
variability, the magnitude of the variability in the open ocean is comparable to that
on the shelf. The sea-level variability in Exp_BuoyVar tends toward zero at the
lateral boundaries because of the repeated annual cycle of GLORYS12v1. The in-
teraction of buoyancy fluxes with river run-off and winds may explain the pattern
of buoyancy-driven sea-level variability in the German Bight.
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Figure 4.6: Sea-level variability in different ROMS experiments (Table 4.1) as the SD [cm] of detrended
annual means (1995-2018) for (a) Exp_AtmosVar, (b) Exp_SLPVar, (c) Exp_WindVar, (d) Exp_BuoyVar,
(e) the linear sum of time series in Exp_SLPVar, Exp_WindVar and Exp_BuoyVar and (f) the residual
SD of Exp_AtmosVar minus the linear sum of components. Isobaths as in Figure 4.1.

Similar to Section 4.4.1, we linearly summed the detrended sea-level time series
in Exp_SLPVar, Exp_WindVar and Exp_BuoyVar, and computed the resulting SDs
(Figure 4.6e). The residual SDs relative to Exp_AtmosVar are less than 0.24 cm
on the shelf (Figure 4.6f). Additionally, the pointwise correlation with the time
series of Exp_AtmosVar is high (Figure S4.3). The residual SD is around 0.23 cm
in the German Bight, which indicates that non-linear feedbacks between buoyancy
fluxes and winds, or buoyancy fluxes and river run-off, can have a small effect on
the interannual sea-level variability in this area. The generally small effect of non-
linear feedbacks suggests that, to first order, the influences of different drivers of
sea-level variability on the shelf can be studied separately. This justifies the use of
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multiple linear regression methods in observation-based studies (e.g., Calafat and
Chambers, 2013; Dangendorf et al., 2013a, 2014a; Wahl et al., 2013; Frederikse
et al., 2016; Gerkema and Duran-Matute, 2017).

4.4.3. Relative magnitudes of sea-level variability at coastal lo-
cations

To compare the sea-level variability in each sensitivity experiment, we display the
time series for the sample coastal locations of Figure 4.3 (Figure 4.7, left pan-
els). Additionally, we calculated the relative magnitudes of interannual sea-level
variability by dividing the SDs of the detrended sea level in each sensitivity ex-
periment by those in Exp_AllVar (Figure 4.7, right panels). These ratios do not
necessarily add up to one for a given location, because the sea-level variability in
one sensitivity experiment may reinforce or interfere with that in another sensitivity
experiment.

In most locations, the variability of SLP drives the largest interannual sea-level
variability (red). This is especially the case for Brest, Santander and Cascais (Figures
4.7f, g & h, red). In Stavanger, Malin Head and North Shields, both SLP (red)
and winds (green) play a dominant role (Figures 4.7a, b & c). Wind variability is
the primary driver of interannual sea-level variability at Cuxhaven and Den Helder
(Figures 4.7d & e); there is large overlap between the time series of Exp_WindVar
(green) and Exp_AllVar (black, dashed). The effects of winds at the western and
eastern North Sea coasts clearly differ (Figures 4.7c, d & e). Sea-level variability
due to the variability of SLP, buoyancy fluxes and the lateral boundary conditions is
smaller than wind-driven variability at Cuxhaven and Den Helder, but not negligible.
Using linear regression, Dangendorf et al. (2013a) obtained similar results for the
Cuxhaven TG record.

Since the interannual sea-level variability in Exp_OceanVar is approximately uniform
on the shelf (Section 4.4.1), the relative importance of the forcing at the lateral
boundaries depends on the spatial pattern of sea-level variability in the other ex-
periments in Figure 4.7. Hence, although sea-level variability in Exp_OceanVar is
small (≈0.5 cm SD, Figure 4.5d), the forcing at the lateral ocean boundaries is still
a relatively important driver at Stavanger, North Shields, Santander and Cascais. It
results in SD ratios of 0.41, 0.33, 0.36 and 0.42, respectively (Figures 4.7a, c, g &
h, blue).

Especially Cascais is situated close to the lateral boundaries of our ROMS domain.
Because of the nudging layer, the sea-level variability in Exp_WindVar and Exp_-
BuoyVar tends toward the repeated mean annual cycle of GLORYS12v1 at the lateral
boundaries (Figures 4.6c & d). Therefore, the SD ratios of the sensitivity experi-
ments should be interpreted with caution at locations close to the lateral bound-
aries. Nevertheless, we expect that the drivers of sea-level variability at Cascais,
Santander and Brest are similar, since sea level at these locations is highly corre-
lated in both ROMS and the observations.
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Figure 4.7: Detrended sea-level anomalies with respect to time-mean sea level [cm] and the ratio of SDs
[-] with respect to Exp_AllVar (black, dashed) for Exp_SLPVar (red), Exp_WindVar (green), Exp_BuoyVar
(purple) and Exp_OceanVar (blue) at the coastal locations in Figure 4.3: (a) Stavanger (Norway), (b)
Malin Head (Ireland), (c) North Shields (United Kingdom), (d) Cuxhaven (Germany), (e) Den Helder
(The Netherlands), (f) Brest (France), (g) Santander (Spain) and (h) Cascais (Portugal).
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4.4.4. Correlation between sea level at coastal locations
To relate the spatially varying effect of different drivers to the correlation between
sea level at different locations, we calculated the correlation between detrended
annual mean sea level in Exp_AllVar at several coastal locations in the region (Fig-
ure 4.8a, lower triangle). In Section 4.4.2 we showed that wind variability is an
important driver of interannual sea-level variability in the North Sea (Figure 4.6c).
Consequently, sea level along the North Sea coast is highly correlated (e.g., at Wick,
Aberdeen, North Shields, Esbjerg, Cuxhaven, Den Helder and Oostende). The sea
level at locations on the southwest of the NWES is also correlated (e.g., Brest, New-
lyn, Santander and Cascais), which is where SLP dominates (Figure 4.6b). The sea
level at Malin Head is strongly influenced by both SLP and winds (Figure 4.7b) and
has high correlations with sea level at Bergen, Stavanger, and the northeast UK
coastline. It has reduced correlations with the sea level at locations in the North
Sea, since these are predominantly controlled by wind variability. Correlations be-
tween the sea level at locations in the North Sea and the English Channel, and
in the North Sea and on the southwestern NWES, are low or even negative (e.g.,
Santander and Brest).

The correlation pattern for Exp_AllVar generally agrees with that for the TGs of
PSMSL (Holgate et al., 2013; PSMSL, 2020) (Figure 4.8a, upper triangle), but the
correlations between the sea level observed at TGs are generally lower, possibly
due to data gaps and the influence of local unmodelled processes. We excluded
TGs with less than 18 years of data (75%, grey) and corrected for the nodal cycle
following Woodworth (2012), neglecting self-attraction and loading effects. Both
ROMS and the TG observations show that the sea level on the southwestern part
of the NWES has low or negative correlations with the sea level in the southern
and eastern North Sea. This can be explained by the sensitivity of shelf sea level
to the NAO (Wakelin et al., 2003; Woolf et al., 2003; Tsimplis et al., 2005, 2008;
Chen et al., 2014). For example, a high SLP anomaly at Santander depresses sea
level locally. This coincides with stronger southwesterly winds over the North Sea,
which induce higher sea level at the North Sea coast through Ekman transport
(Tsimplis et al., 2008). This mechanism becomes apparent from Exp_SLPVar and
Exp_WindVar, (Figures 4.6b & c).

Complementing Figure 4.8a, we repeat Figure 4.4a, now incorporating the effect of
SLP (Figure 4.8b). This leads to increased and statistically significant correlations
between sea level at Brest and in the open ocean, because SLP has long corre-
lation scales and the coastal region and open ocean respond to SLP similarly. As
discussed earlier, SLP also enhances the contrast between sea-level variability on
the southwestern part of the NWES and in the North Sea. As a consequence, the
coherence of sea-level variability along the shelf break extends less far north in
Figure 4.8b than in Figure 4.4a.

To investigate the role of LSWs inside our domain in driving the coherence of sea
level on the NWES, we integrated the winds from ERA5 along the 400 m isobath
from the southern lateral boundary (36°N) to the respective latitudes of Stavanger,
Malin Head, Brest, Santander and Cascais. The LSW integrals are significantly cor-
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ROMS

TGs(a)

(b)

Figure 4.8: Correlation coefficients [-] between (a) detrended annual mean sea level (1995-2018) at
several coastal locations across the region for Exp_AllVar (lower triangle) and for tide gauges with ≥75%
data available (upper triangle), and between (b) detrended sea level at Brest (label o) and detrended
sea level at all other grid cells for Exp_AllVar. Stipples and isobaths in (b) as in Figure 4.2.
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related with the detrended annual mean sea level in Exp_AllVar (excluding the IB
effect) at these locations, which appears to primarily reflect the high correlations
between integrated LSWs and sea level in Exp_WindVar (Table S4.1). The corre-
lations between the integrated LSWs and sea level are higher than those between
local winds and sea level, supporting the premise of signals propagating along the
boundary (Sturges and Douglas, 2011; Calafat et al., 2012). The LSW integral up to
Stavanger has relatively low correlations with sea level at North Shields, Cuxhaven
and Den Helder. In line with Figure 4.8b, including SLP changes the correlation
between integrated LSWs and annual mean sea level (Table S4.1), reflecting the
important role of the IB effect at most locations.

4.5. Discussion
Our sensitivity experiments showed that atmospheric forcing is the main driver of
interannual sea-level variability on the NWES. This agrees with previous studies
for different time periods (e.g., Wakelin et al., 2003; Dangendorf et al., 2014a;
Tinker et al., 2020). Additionally, we found that ocean-driven variability is small
and coherent on the shelf, and combines with atmospheric-driven variability nearly
linearly. Similar spatial patterns of sea-level variability were obtained by Tinker et al.
(2020) with a different regional ocean model, indicating some robustness to model
design. Because Tinker et al. (2020) derived boundary conditions from a 200-yr
control run of HadGEM3 GC3.0 (Williams et al., 2018), the magnitude of sea-level
variability in their atmospheric and ocean-driven simulations differs from that in
Exp_AtmosVar and Exp_OceanVar (Figures 4.5c & d,). Since we used reanalysis
data as boundary conditions instead, our results can be compared directly with
satellite altimetry, but may not be fully representative of (multi-)decadal sea-level
variability.

We have separated the effect of atmospheric forcing on interannual sea-level vari-
ability into the effects of SLP, winds and buoyancy fluxes for the entire NWES.
This complements the analysis of Dangendorf et al. (2014a), which focused on tide
gauges in the North Sea. Dangendorf et al. (2014a) found that a linear regression
on winds explains around 50-85% of the observed sea-level variability from Oost-
ende (Belgium) to Hirtshals (Denmark), and on SLP around 50-65% from Tregde to
Bergen (Norway) and Aberdeen to Lerwick (UK). Exp_WindVar confirms that wind-
driven interannual sea-level variability is largest in the southern and eastern North
Sea. Our results also show that wind-driven variability is large around Norway,
Scotland and north of Ireland, and small on the southwest of the NWES and along
the shelf break. In line with Dangendorf et al. (2014a), we showed that SLP is the
dominant driver of interannual sea-level variability along the northeast UK coastline.
Our sensitivity experiments show that this is also the case on the southwestern part
of the NWES. Much of the interannual variability observed at TGS in the North Sea
can be explained with barotropic models (Dangendorf et al., 2014a; Piecuch et al.,
2019). The baroclinic response to winds could be further investigated by compar-
ing our results to the results of a barotropic set-up under the same atmospheric
forcing.
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Since the NWES-seas are shallow, local steric sea-level variability is limited (Roberts
et al., 2016; Tinker et al., 2020). We showed that buoyancy fluxes result in interan-
nual sea-level variability with SDs varying from 0.5-1.3 cm on the shelf (Exp_Buoy-
Var; Figure 4.6d). At the sample locations in Figure 4.7, the relative magnitude of
buoyancy-driven variability roughly agrees with the finding of Tinker et al. (2020)
that the local steric component explains up to 35% of the total variability on the
shelf. A large fraction of the steric sea-level variability on the NWES in the global
model of Roberts et al. (2016) was indeed explained by buoyancy fluxes.

The coherence of sea level along the eastern boundary of the North Atlantic and in
the North Sea was previously attributed to wind-driven CTWs (Sturges and Douglas,
2011; Calafat et al., 2012, 2013; Dangendorf et al., 2014a). The long correlation
scales along the shelf break compared to in the deep ocean (Figures 4.4c & d)
suggest that boundary dynamics are indeed at play. This is further supported by the
significant correlations of integrated LSWs with simulated coastal sea level (Table
S4.1), which are similar to the correlations with observed sea level (Calafat et al.,
2012, 2013; Dangendorf et al., 2014a). That these correlations remain high when
only the wind forcing is varied interannually (Exp_WindVar) confirms that the wind
variability has a causative role, and the reduced correlations between local winds
and sea level suggest that LSWs drive a part of the variability in Exp_WindVar. The
correlation between integrated LSWs and sea level in the North Sea is low, mirroring
the correlation pattern of a common mode of British TGs with satellite altimetry in
(Hogarth et al., 2020) and indicating the dominance of local winds over the North
Sea (Figure 4.6c).

Since wind-driven interannual sea-level variability is relatively small at the shelf
break and on the southwestern NWES (Exp_WindVar, Figure 4.6c), the coherence
of sea level there could partially be explained by the relatively uniform sea-level
variability due to the forcing at the lateral ocean boundaries and due to buoyancy
fluxes (Exp_OceanVar and Exp_BuoyVar, Figures 4.5d & 4.6d). The correlation
scales in Figure 4.4 as well as the correlation between sea level and integrated
LSWs strongly suggest that wind-driven CTWs influence sea level on the NWES,
but do not necessarily rule out an effect of open ocean steric anomalies (Chafik
et al., 2019), which may be represented in Exp_OceanVar. The variability driven
by the southern boundary conditions may also reflect northward propagating CTWs
triggered south of the domain (Calafat et al., 2012; Fukumori et al., 2015). However,
quantifying this remote contribution accurately would require enlarging the model
domain and increasing the simulation period.

4.6. Conclusions
We have used a high-resolution (1/8° by 1/8°) configuration of ROMS for the NWES
to identify the contribution of different drivers of interannual sea-level variability
during 1995-2018. The interannual sea-level variability in our model matches well
with that observed with satellite altimetry. Based on sensitivity experiments in
which we isolated the effect of atmospheric and oceanic drivers, we conclude that
atmospheric variability is the main driver of interannual sea-level variability, with
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the largest SDs in the German Bight (up to 5.6 cm). On the other hand, the forcing
at the lateral ocean boundaries causes coherent sea-level variability on the shelf,
with an SD of only 0.5 cm. The ocean-driven variability on the shelf is mainly
caused by the variation of the western and southern boundary conditions, but the
driving physical mechanism requires further investigation, for instance by compar-
ing against simulations with a barotropic model, further decomposing the lateral
boundary conditions or studying the ocean bottom pressure on the shelf. In our
model, intrinsic sea-level variability has an SD of up to 2.7 cm in the open ocean,
but is negligible on the shelf.

Our results show that, to first order, the interannual sea-level variability induced by
the variability of SLP, winds, buoyancy fluxes and the lateral ocean boundaries com-
bines linearly on the NWES. Thus, the contributions of these drivers can be studied
separately, which supports the use of multiple linear regression analysis. Wind vari-
ability has a large influence on sea-level variability in the North Sea, and around
Scotland, Norway and north of Ireland. It is the dominant driver in the southern
and eastern North Sea, whereas the IB effect dominates at other coastal locations
shown in this study. Wind also drives large mesoscale variability in the open ocean,
but wind-driven sea-level variability is suppressed along the shelf break. At the
sample locations in Figure 4.7, buoyancy-driven sea-level variability can have a rel-
ative magnitude of up to 55% (North Shields). Sea-level variability driven by the
lateral ocean boundary conditions can have a relative magnitude of up to 42%
(Cascais).

Sea-level variability on the southwestern part of the NWES is predominantly driven
by the IB effect. As a consequence, detrended annual mean sea level on the south-
western part of the shelf has low or even negative correlations with that in the
southern and eastern North Sea, where sea-level variability is predominantly driven
by local winds. This agrees with the sensitivity of shelf sea level to the NAO (e.g.,
Tsimplis et al., 2008; Wakelin et al., 2003). The significantly positive correlations be-
tween wind-driven sea-level variability on the NWES and winds integrated along the
continental slope in our model indicate that LSWs and the consequent propagation
of signals along the eastern boundary of the North Atlantic are partly responsible
for the coherence of sea-level variability on the NWES.

To conclude, our results improve the understanding of the drivers of interannual
sea-level variability on the NWES, which vary in importance depending on location.
Explicitly decomposing the contribution of different drivers using ROMS increases
confidence in previous observation-based studies and is useful for sea-level budget
studies. The results of our sensitivity experiments can be used to remove known
variability from observations to estimate sea-level rise or time of emergence with a
higher accuracy. This will help coastal decision makers to monitor and detect early
warning signals more reliably.
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4.7. Supplementary information
4.7.1. Supplementary figures

Figure S4.1: Correlation coefficients [-] of the detrended annual mean sea level (1995-2018) at Brest
with that at all other grid cells in Exp_OceanVar (Figure 4.5d). The black stipples indicate statistically
insignificant correlation coefficients (p≥0.05). The red contours indicate the 80 and 200 m isobaths of
ROMS.
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Figure S4.2: Sea-level variability as the SD [cm] of detrended annual means (1995-2018) for four
variants of Exp_OceanVar (Figure 4.5d) in which there is only interannual variation of forcing at (a)
the northern boundary, (b) the eastern boundary, (c) the southern boundary, and (d) the western
boundary; for (e) the linear sum of time series of these four variants; and (f) the residual SD of
Exp_OceanVar minus the linear sum of components. Isobaths as in Figure S4.1.
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Figure S4.3: Correlation coefficients [-] between the detrended annual mean sea level in
(a) Exp_AllVar and the linear sum of time series in Exp_AtmosVar, Exp_OceanVar and Exp_NoneVar
(Figure 4.5), (b) Exp_AtmosVar and the linear sum of time series in Exp_SLPVar, Exp_WindVar and
Exp_BuoyVar (Figure 4.6), and (c) Exp_OceanVar and the linear sum of time series in the model ex-
periments in which boundary conditions are varied interannually separately for each lateral boundary
(Figure S4.2). Stipples and isobaths as in Figure S4.1.
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Figure S4.4: Interannual variability expressed as the SD of detrended annual means (1995-2018), for

(a) SLP in ERA5 [Pa], (b) the IB correction 𝜂𝐼𝐵(𝑥, 𝑦, 𝑡) =
−(𝑃𝑠𝑙(𝑥,𝑦,𝑡)−𝑃𝑠𝑙(𝑡))

𝜌0𝑔
[cm] following Stammer

and Hüttemann (2008) and using SLP from ERA5, with 𝑃𝑠𝑙 = 101,000 Pa, 𝑔 = 9.81 m/s2 and 𝜌0 = 1025
kg/m3, and (c) sea level in Exp_SLPVar [cm] (Figure 4.6c). Isobaths as in Figure S4.1.

4.7.2. Supplementary tables
Table S4.1: Correlation coefficients [-] between detrended annual mean sea level in the various ROMS
experiments with the integral of winds along the 400 m isobath from 36N to the respective latitudes of
sample coastal locations in Figures 4.3 & 4.7 (up to the latitude of Stavanger for North Shields, Cuxhaven
and Den Helder). Bold correlation coefficients are statistically significant (p<0.05).

Experiment
Location AllVar AllVar SLPVar WindVar BuoyVar OceanVar

(no IB)
Stavanger 0.51 0.09 -0.38 0.75 -0.07 -0.02
Malin Head 0.61 0.56 0.14 0.75 0.01 -0.17
North Shields 0.31 0.20 -0.14 0.38 0.00 -0.16
Cuxhaven 0.07 -0.05 -0.59 0.08 -0.02 -0.17
Den Helder 0.12 -0.06 -0.44 0.13 -0.02 -0.13
Brest 0.56 0.68 0.45 0.82 0.09 0.00
Santander 0.46 0.49 0.23 0.67 0.05 -0.04
Cascais 0.56 0.24 -0.07 0.64 0.31 0.18





5
The Effect Of Wind Stress on
Seasonal Sea-Level Change

Abstract
Projections of relative sea-level change (RSLC) are commonly reported at an annual
mean basis. The seasonality of RSLC is often not considered, even though it may
modulate the impacts of annual mean RSLC. Here, we study seasonal differences in
21st-century ocean dynamic sea-level change (DSLC, 2081-2100 minus 1995-2014)
on the Northwestern European Shelf (NWES) and their drivers, using an ensemble
of 33 CMIP6 models complemented with experiments performed with a regional
ocean model. For the high-end emissions scenario SSP5-8.5, we find substantial
seasonal differences in ensemble mean DSLC, especially in the southeastern North
Sea. For example, at Esbjerg (Denmark) winter mean DSLC is on average 8.4 cm
higher than summer mean DSLC. Along all coasts on the NWES, DSLC is higher in
winter and spring than in summer and autumn. For the low-end emissions scenario
SSP1-2.6, these seasonal differences are smaller. Our model experiments indicate
that the changes in winter and summer sea-level anomalies are mainly driven by
regional changes in wind-stress anomalies, which are generally southwesterly and
east-northeasterly over the NWES, respectively. In spring and autumn, regional
wind-stress changes play a smaller role. We also show that CMIP6 models not re-
solving currents through the English Channel cannot accurately simulate the effect
of seasonal wind-stress changes on the NWES. Our results imply that using pro-
jections of annual mean rather than seasonal mean RSLC may underestimate the
RSLC-driven changes in the frequency of extreme coastal sea levels in spring and
winter. Additionally, changes in the seasonal sea-level cycle may affect groundwa-
ter dynamics and the inundation characteristics of intertidal ecosystems.
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A.B.A. (2021). The Effect Of Wind Stress on Seasonal Sea-Level Change on the Northwestern European
Shelf, Journal of Climate, 1-31. 10.1175/JCLI-D-21-0636.1
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5.1. Introduction
Probabilistic regional sea-level projections are crucial for coastal adaptation plan-
ning (e.g., Hinkel et al., 2019). New sea-level projections are continuously being
developed for a range of emissions scenarios, building on the latest understanding
of the physical processes contributing to relative sea-level change (RSLC) (Fox-
Kemper et al., 2021, and references therein). Most of these projections focus on
annual mean RSLC. However, the seasonal sea-level cycle may also change over
time, which has the potential to modulate the impacts of RSLC in particular sea-
sons.

Widlansky et al. (2020) recently showed that seasonal sea-level variability will in-
crease in many regions in which the ocean warms. The authors argue that this is
at least partially because of the larger thermal expansion of the ocean at higher
temperatures, which implies that steric sea-level variability will increase even if
the temperature variability stays constant. In shallow coastal regions, however,
barotropic processes also contribute substantially to the seasonal sea-level cycle
(Roberts et al., 2016; Vinogradov et al., 2008; Vinogradova et al., 2007). The ef-
fect of barotropic processes on future changes of the seasonal sea-level cycle in
coastal regions has not been extensively studied yet.

This study focuses on seasonal changes in the coastal region northwest of Europe.
The Northwestern European Shelf (NWES) harbors shallow shelf seas, such as the
North Sea, with low-lying and densely populated coasts. On the NWES, atmospheric
forcing is the dominant driver of the interannual variability of annual mean sea level
(Dangendorf et al., 2014a; Hermans et al., 2020a; Tinker et al., 2020). Atmospheric
forcing also affects the temporal variability of the seasonal sea-level cycle on the
NWES (Plag and Tsimplis, 1999). The magnitude of the interannual to multi-decadal
variability of seasonal mean sea level and the extent to which that variability can be
explained by atmospheric forcing are larger for autumn and winter than for spring
and summer (Dangendorf et al., 2012, 2013a; Frederikse and Gerkema, 2018). For
example, a regression on local wind stress explains 80-90% of the observed interan-
nual sea-level variability at Cuxhaven (Germany) in autumn and winter, compared
to 50-60% in spring and summer (Dangendorf et al., 2013a). This reflects the
seasonality of atmospheric variability and introduces seasonal differences in sea-
level trends computed over a few decades, especially in the southeastern North
Sea (Dangendorf et al., 2012, 2013b; Frederikse and Gerkema, 2018; Marcos and
Tsimplis, 2007).

At centennial timescales, seasonal differences in RSLC on the NWES have also been
observed. For example, along the Dutch coast, Gerkema and Duran-Matute (2017)
found differences of 0.35-0.81 mm/yr between 100-year trends of sea level in winter
and summer half-years. Also in the Baltic Sea, seasonal differences in RSLC of
several centimeters were observed (Ekman, 1998). These were linked to seasonal
differences in the change of southwesterly winds over the entrance to the Baltic Sea.
Although these findings suggest that RSLC may also have seasonal differences in the
future, only a few studies have investigated the seasonality of sea-level projections
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for the NWES (Dangendorf et al., 2014b; Hermans et al., 2020b; Mathis, 2013).
Moreover, the results of these studies were based on a limited number of models
and/or were obtained for only a part of the NWES.

Here, we explore the seasonal differences in ocean dynamic sea-level change (DSLC)
over the 21st century as simulated by a large ensemble of state-of-the-art global
climate models from the Coupled Model Intercomparison Project 6 (CMIP6; Eyring
et al., 2016). Additionally, we investigate if these seasonal differences can be at-
tributed to the projected wind-stress changes over the region. To better understand
the effect of wind-stress changes, we complement the CMIP6 simulations with ex-
periments performed with a high-resolution regional ocean model for the NWES
(Hermans et al., 2020a). Section 5.2 describes both these datasets. Section 5.3
shows that, depending on the emissions scenario, CMIP6 models simulate substan-
tial seasonal differences in DSLC. In Section 5.4, we present seasonal differences in
ensemble-mean wind-stress change and test the effect of wind-stress changes on
sea level in individual CMIP6 models using the regional model. We also study the
importance of the representation of the English Channel. We end with a discussion
and our conclusions in Section 5.5.

5.2. CMIP6 simulations and regional model experi-
ments

Section 5.2.1 details how we obtained and processed the CMIP6 output. In Section
5.2.2, we introduce the high-resolution regional ocean model and the experiments
that we performed with it.

5.2.1. Downloading and processing the CMIP6 output
We use simulations of dynamic sea level and wind stress from an ensemble of 33
CMIP6 models (see the overview in Table S5.1), downloaded from the Earth System
Grid Federation database in July 2021. The variables used are monthly mean dy-
namic sea level above the geoid (‘zos’ variable) and the zonal and meridional wind
stress components at the surface (‘tauu’ & ‘tauv’ variables). Since we use ‘zos’, we
study DSLC as defined by Gregory et al. (2019) and therefore exclude the inverse
barometer effect (Stammer and Hüttemann, 2008).

All simulation realizations that provide both sea level and wind stress for the histor-
ical period (1850-2014) and the high-end shared socioeconomic pathway scenario
SSP5-8.5 (O’Neill et al., 2014) (2015-2100) are used. For sea level, we also ob-
tain the same realizations for the low-end emissions scenario SSP1-2.6, if available.
We focus on the output for the SSP5-8.5 scenario, since it has the highest signal-
to-noise ratio. To indicate the range within which seasonal differences in DSLC for
other SSPs may fall, we present results for the SSP1-2.6 scenario in Section 5.6. Ad-
ditionally, we download preindustrial control simulations of ‘zos’, which are required
to correct DSLC for ocean model drift. Finally, for our regional model experiments
(Section 5.2.2), we also download the wind velocity components at a height of 10
m (‘uas’ & ‘vas’ variables) for a subset of CMIP6 models.
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The CMIP6 ‘zos’ output first needs to be corrected for ocean model drift (Sen Gupta
et al., 2013). We do so by applying a linear fit to ‘zos’ over the full length of
the preindustrial control run of each model and by subtracting these fits from the
historical and SSP runs. This commonly used procedure implicitly assumes that the
model drift and the forced changes are linearly separable (Hobbs et al., 2016; Sen
Gupta et al., 2013). Since ‘zos’ is defined as sea level above the geoid, and the
geoid is time-invariant in CMIP6 models, we also remove the global area-weighted
mean of ‘zos’ at each time step using the grid cell area variable ‘areacello’. For the
analysis of gridded ensemble projections (e.g., Figures 5.1 & 5.3), we bi-linearly
interpolate the CMIP6 simulations to a common 1° by 1° grid using ESMValTool
routines (Eyring et al., 2020).

Before adding each model to the multi-model ensemble, we first take the mean of
all available realizations of each model, following Yin (2012). Since each realization
of a simulation of a given model is branched from its preindustrial control run at a
different time, the phase of the internal sea-level variability differs between each
realization. Averaging over the available realizations reduces the effect of internal
sea-level variability on the projections of each model, leading to a better repre-
sentation of the externally forced response. In Section 5.5, we will show that this
moderately reduces the multi-model ensemble spread. Projections derived from
models with relatively few realizations will be affected by internal variability the
most. However, using only models with an equal number of multiple realizations
would substantially reduce the ensemble size. Table S5.1 provides an overview
of the CMIP6 output that we used. We exclude simulations that do not provide
the complete (meta)data required for the processing steps described above. Addi-
tionally, we exclude the models MIROC6 and MIROC-ES2L, because their minimum
ocean depth on the NWES is 150 m. This is unrealistically deep compared to the
other CMIP6 models (10-60 m). At 90 and 193 km, the average native ocean and
atmosphere grid resolution of the CMIP6 models in the NWES region is relatively
coarse (Table S5.1), but large ensembles of high-resolution models are currently
not available.

From the processed monthly mean CMIP6 output, we compute seasonal means by
averaging over December to February (DJF), March to May (MAM), June to August
(JJA) and September to November (SON). To study the seasonal differences in
DSLC, we then compute seasonal anomalies by subtracting the annual mean of
each year from the seasonal means of that year, with the annual mean calculated
over December to November. We abbreviate the seasonal anomalies of sea level,
wind stress and wind velocity as SSLA, SWSA and SWVA, respectively. We compute
the projected change of these anomalies (ΔSSLA, ΔSWSA and ΔSWVA) from the
difference between the future mean (2081-2100) and the historical mean (1995-
2014) anomalies.

5.2.2. Regional ocean model and model experiments
To test the effect of wind-stress changes in CMIP6 models on sea level (Sections
5.4.2 & 5.4.3), we perform experiments with a regional ocean model for the NWES
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(Hermans et al., 2020a). This model is a configuration of the Regional Ocean Mod-
eling System (ROMS; Shchepetkin and McWillams, 2005) and covers the region
36°N-62°N by 20°W-10°E with a 1/8° by 1/8° horizontal resolution. At the sur-
face and lateral boundaries, the ROMS model is forced with atmosphere (ERA5;
CDS, 2019) and ocean reanalysis data (GLORYS12v; Lellouche et al., 2018). Cli-
matological river run-off is prescribed based on the dataset of Dai (2017). Simula-
tions with this model compare well with satellite altimetry data and were used to
study the drivers of interannual sea-level variability on the NWES (Hermans et al.,
2020a).

Here, the reanalysis-forced model simulation is our reference experiment. For our
sensitivity experiments (Table 5.1), we add the ΔSWVA derived from four example
CMIP6 models (for SSP5-8.5) to the wind velocity boundary conditions from ERA5
at each timestep. We compute the resulting response of sea level and barotropic
currents for a specific season as the difference relative to the reference experiment,
averaged over 1993-1995. We use three CMIP6 models that span a wide range of
ΔSSLA and provide at least five realizations each: CanESM5, UKESM1-0-LL and IPSL-
CM6A-LR. Additionally, we use a model with a closed English Channel: ACCESS-
ESM1-5. For further interpretation, we also simulate the effect of spatially uniform
southwesterly and northeasterly wind-velocity changes. To test the importance of
the representation of the English Channel, we repeat several experiments using a
modified land mask in which the English Channel is closed at the Strait of Dover
(Table 5.1).

Table 5.1: Model experiments discussed in Sections 5.4.2 & 5.4.3. The boundary conditions other than
wind velocity are identical in all experiments.

Model experiments Modifications of ERA5-based English Channel
wind velocity boundary conditions

Exp_Ref - Open
Exp_Ref_cc - Closed
Exp_CAN +ΔSWVA from CanESM5 Open
Exp_UK +ΔSWVA from UKESM1-0-LL Open
Exp_IPSL +ΔSWVA from IPSL-CM6A-LR Open
Exp_ACC +ΔSWVA from ACCESS-ESM1-5 Open
Exp_ACC_cc +ΔSWVA from ACCESS-ESM1-5 Closed
Exp_SW +1 m/s southerly and 1 m/s westerly Open
Exp_SW_cc +1 m/s southerly and 1 m/s westerly Closed
Exp_NE +1 m/s northerly and 1 m/s easterly Open
Exp_NE_cc +1 m/s northerly and 1 m/s easterly Closed

To add the wind-velocity changes from the CMIP6 models to the surface bound-
ary conditions, we bi-linearly interpolate. To avoid prescribing the ROMS model
with land-contaminated wind-velocity changes (Birol Kara et al., 2007), we first use
nearest neighbor extrapolation to replace the wind-velocity change of (partially)
over-land grid cells with the wind-velocity change of purely over-ocean grid cells in
the CMIP6 models. We only extrapolate if it leads to larger wind-velocity changes,
because over-land winds are weaker than over-ocean winds.
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We emphasize that we only use the regional model experiments to qualitatively
understand the effect of ΔSWSA on ΔSSLA and barotropic currents in the different
CMIP6 models. Our model experiments are less well suited for a quantitative attri-
bution because of the differences between the regional model and the global mod-
els, and because of the potential inconsistencies of combining coarse-resolution
CMIP6 wind-velocity changes with ERA5 atmospheric forcing. For instance, the
wind-velocity changes that we apply may not translate to exactly the same wind-
stress changes as in the CMIP6 models, since the climatological wind velocities and
the parameterization of air-sea fluxes may differ between the ROMS set-up and the
CMIP6 models. Additionally, we ignore the results of the model experiments near
Norway, because we do not modify the eastern lateral boundary conditions of the
ROMS model that control the Norwegian Coastal Current.

5.3. Seasonal DSLC simulated by CMIP6models
In this section we investigate seasonal differences in DSLC by analyzing ΔSSLA.
First, we analyze CMIP6 projections of ΔSSLA on the NWES (Section 5.3.1). Then,
we take a closer look at sea-level projections for Esbjerg (Section 5.3.2), which we
find is a location on the NWES with large seasonal DSLC differences.

5.3.1. ΔSSLA on the NWES
Figures 5.1a-d show that for SSP5-8.5, the magnitude of the ensemble mean ΔSSLA
reaches up to 4.9 cm on the NWES, which indicates how much seasonal mean DSLC
may deviate from annual mean DSLC (Figure S5.1a). In the Celtic and Irish Seas,
in part of the English Channel, along parts of the coast of Ireland and Scotland,
and in the southern and eastern North Sea, ensemble mean ΔSSLA is most pos-
itive (DSLC is highest) in winter (Figure 5.1a). Elsewhere on the shelf, ΔSSLA is
highest in spring (Figure 5.1b). The spatial patterns of summer and autumn ΔSSLA
(Figures 5.1c & d) approximately oppose those of winter and spring (Figures 5.1a
& b). Whereas spring and autumn ΔSSLA are spatially relatively uniform, winter
and summer ΔSSLA show a dipole pattern in the North Sea. Along the coast of
the southeastern North Sea, the seasonal differences are largest. For example,
at Esbjerg (Denmark, location 8), winter and summer ΔSSLA are 3.7 and -4.7 cm,
respectively. Therefore, on average, the CMIP6 models simulate an 8.4 cm (52%)
increase in the difference between winter and summer mean sea level for SSP5-8.5
(see Figure S5.2 for historical and future SSLAs on the NWES).

The multi-model distributions of ΔSSLA reveal that DSLC is larger in spring than in
autumn at all eight example coastal locations on the NWES (Figure 5.1e). However,
especially at Den Helder, Cuxhaven and Esbjerg (locations 6-8), the difference be-
tween winter and summer mean DSLC exceeds the difference between spring and
autumn mean DSLC. Together, these changes shift the phase and increase the
amplitude of the seasonal sea-level cycle (Figure S5.2i). Additionally, at locations
6-8, the inter-model spread introduces large uncertainty in the projections. Conse-
quently, studying the seasonality of DSLC is particularly relevant for the southeast-
ern North Sea.
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For the SSP1-2.6 scenario, the spatial patterns of ΔSSLA are comparable to those for
the SSP5-8.5 scenario, but have a smaller magnitude (Figure S5.3). For example,
the ensemble mean winter and summer ∆SSLA at Esbjerg are 0.1 and -1.0 cm,
compared to 3.7 and -4.7 cm for SSP5-8.5. As for SSP5-8.5, the inter-model spread
of ΔSSLA at locations 6-8 is larger than at the other locations. Since the signal-to-
noise ratio is lower for SSP1-2.6, there is less agreement between models on the
season of largest DSLC than for SSP5-8.5. In contrast to SSP5-8.5, DSLC for SSP1-
2.6 is highest in spring and lowest in autumn on most of the NWES. Therefore, the
projected seasonal differences in DSLC are scenario-dependent.

5.3.2. Seasonal sea-level projections at Esbjerg
The largest seasonal differences in DSLC occur in the southeastern North Sea, for
example near Esbjerg (Figure 5.1). We therefore illustrate the seasonality of sea-
level projections for Esbjerg in further detail. At Esbjerg, the CMIP6 ensemble has
a median annual mean DSLC of 17.7 cm and a 5-95% range of 2.2 to 26.1 cm
for SSP5-8.5 (Figure 5.2a, black bar). Spring and autumn mean DSLC have slightly
higher and lower multi-model medians than annual mean DSLC (18.2 and 16.9 cm),
respectively, and have differently shaped distributions (Figure 5.2a, light blue and
light red bars). For winter, the ensemble projections are overall higher than for
the annual mean, with a median of 21.1 cm and a 5-95% range of 2.9 to 31.6 cm
(Figure 5.2a, dark blue bar). The projections for summer are substantially lower
than for the annual mean, with a median of 11.1 cm and a 5-95% range of 0.8 to
20.7 cm (Figure 5.2a, dark red bar).

At Esbjerg, the changes in seasonal sea-level anomalies are most apparent for win-
ter and summer (Figure 5.2b, dark blue and dark red bars). The CMIP6 ensemble
projects a median winter ΔSSLA of 3.5 cm (5-95%: -0.5 to 9.2 cm) and a me-
dian summer ΔSSLA of -4.1 cm (5-95%: -9.9 to -1.3 cm). The finding that the
multi-model distributions of ΔSSLA are not equal to the difference between the dis-
tributions of seasonal and annual mean DSLC indicates that models that simulate
large/small seasonal differences in DSLC do not necessarily also simulate large/s-
mall annual mean DSLC. As noted in Section 5.3.1, the seasonal differences in the
projections for Esbjerg are much smaller for SSP1-2.6 than for SSP5-8.5 (Figure
S5.4).

The results in Sections 5.3.1 & 5.3.2 raise the question of what causes the scenario-
dependent seasonality of DSLC. In Section 5.4 we therefore study the dynamics
behind the seasonal differences in DSLC on the NWES. We focus on the effect of
wind stress, motivated by the high correlation between observed seasonal mean sea
level and wind stress on interannual to multi-decadal timescales (Dangendorf et al.,
2013a, 2014b; Frederikse and Gerkema, 2018; Plag and Tsimplis, 1999).
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Figure 5.1: Ensemble mean changes of (a) winter (DJF), (b) spring (MAM), (c) summer (JJA) and
(d) autumn (SON) sea-level anomalies [cm], for SSP5-8.5 (2081-2100 relative to 1995-2014); (e) the
multi-model distributions of these changes in CMIP6 models at their ocean grid cells nearest to eight
example coastal locations, for winter (dark blue), spring (light red), summer (dark red) and autumn
(light blue). Each colored circle represents the change in one model; the black-edged circle represents
the ensemble mean. In (a-d), ensemble mean results are shown only on grid cells for which at least
5 CMIP6 models provide ocean values on a common 1° by 1° grid. The white contour denotes the 200
m isobath from ETOPO1 (Amante and Eakins, 2009) approximating the shelf break. The abbreviations
in (a) denote the Celtic Sea (CS), English Channel (EC), German Bight (GB), Irish Sea (IS), North Sea
(NS) and Norwegian Trench (NT) (see also Figure 1.8).
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Figure 5.2: Ensemble median projections for Esbjerg of (a) annual mean and seasonal mean DSLC
[cm] and of (b) the change in seasonal sea-level anomalies [cm] for SSP5-8.5 (relative to 1995-2014).
The bars on the right indicate the 50% (horizontal white stripes), 17-83% (thick bars) and 5-95% (thin
bars) percentiles of the multi-model distributions of the mean change in 2081-2100.

5.4. The effect of wind stress on the seasonality of
DSLC

To study the effect of wind stress on seasonal differences in DSLC, we first investi-
gate the ensemble mean changes in seasonal wind-stress anomalies (ΔSWSA) and
discuss their relation to ensemble mean ΔSSLA (Section 5.4.1). Second, we com-
pare ΔSSLA and ΔSWSA between individual CMIP6 models and test the effect of
the wind-stress changes in these models on sea level using high-resolution model
experiments (Section 5.4.2). Finally, in Section 5.4.3 we use model experiments to
test the impact of the representation of the English Channel in CMIP6 models on
simulating wind-driven ΔSSLA.

5.4.1. Ensemble mean ΔSWSA over the NWES
In winter the ensemble mean ΔSWSA for SSP5-8.5 is approximately southwesterly
over the southern half of the NWES (Figure 5.3a). Toward the northwest of the
domain, winter ΔSWSA decreases in magnitude and becomes southeasterly. The
historical mean winter wind-stress anomalies are predominantly southwesterly over
the NWES (see Figure S5.5 for historical and future SWSAs). Therefore, Figure 5.3a
indicates that winter wind-stress anomalies will become more strongly southwest-
erly in the future over the Celtic Sea, the Irish Sea, the English Channel and most
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of the North Sea. In contrast, summer ΔSWSA is approximately east-northeasterly
(Figure 5.3c), which indicates that the historical, predominantly north-northeasterly
wind-stress anomalies over the NWES in summer will become more strongly north-
easterly. Spring ΔSWSA varies from northerly to westerly over the North Sea (Figure
5.3b) and autumn ΔSWSA is mainly southwesterly over the north and northwest of
the NWES (Figure 5.3d). Over most of the NWES, spring and autumn ΔSWSA are
lower in magnitude than winter and summer ΔSWSA. Ensemble mean ΔSWSA dif-
fers relatively little from seasonal mean wind-stress change because the annual
mean wind-stress change is relatively small over the NWES (Figure S5.1b).

For a southwesterly wind-stress increase over the NWES as in Figure 5.3a, Ekman
transport is expected to enhance sea level along the coasts to the right of the
wind stress. Pingree and Griffiths (1980) modelled the effect of a spatially uniform
southwesterly wind stress over the NWES and indeed found enhanced sea level
in the English Channel, west of the United Kingdom (UK), around Scotland and
Norway, and particularly in the southeastern North Sea (their Figure 3). This is
qualitatively very similar to the ensemble mean winter ΔSSLA (Figure 5.1a). Pingree
and Griffiths (1980) also found that the increased sea-level gradients perpendicular
to the coast are accompanied by geostrophic changes in barotropic transport along
the coast (their Figure 2).

Assuming linearity, the response to a northeasterly wind-stress change is approx-
imately opposite to the response to a southwesterly wind-stress change. This is
consistent with the ensemble mean summer ΔSSLA (Figure 5.1c), which is nega-
tive in the regions where winter ΔSSLA is positive (Figure 5.1a). These patterns
strongly suggest that the ensemble mean southwesterly and (east-)northeasterly
winter and summer ΔSWSA over the shelf cause a large part of the winter and sum-
mer ΔSSLA, respectively. Basic scaling relationships between wind-stress change
and sea-level change based on Ekman transport are likely not easily applicable here,
since ΔSWSA is spatially non-uniform and involves changes in both magnitude and
direction. Nevertheless, summer ΔSSLA is likely larger than winter ΔSSLA (Figures
5.1a, c & e) because summer ΔSWSA is generally larger in magnitude than winter
ΔSWSA (Figures 5.3a & c). A dynamical effect similar to the projected change can
be found in observations of SSLAs in years with approximately southwesterly and
northeasterly SWSAs (Figure S5.6).

The near shelf-wide positive and negative ΔSSLA in spring and autumn (Figures
5.1b & d) cannot be reconciled with the Ekman transport expected for the relatively
small northwesterly and southwesterly spring and autumn ΔSWSA (Figures 5.3b &
d), respectively. Instead, spring and autumn ΔSSLA may be more strongly affected
by steric changes and mass redistribution between the shelf and the deep ocean
than winter and summer ΔSSLA, since in the Northern Hemisphere the thermosteric
component of the seasonal sea-level cycle has a minimum in spring and a maximum
in autumn (Tsimplis and Woodworth, 1994; Vinogradov et al., 2008). We leave
further investigation of steric effects on seasonal differences in DSLC, for instance
by decomposing the DSLC on the NWES into local steric and manometric changes,
to future work.
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Figure 5.3: Ensemble mean changes of (a) winter (DJF), (b) spring (MAM), (c) summer (JJA) and
(d) autumn (SON) wind-stress anomalies [N/m2] for SSP5-8.5 (2081-2100 relative to 1995-2014). The
colors represent the absolute change and the arrows the direction. White contours and land masks as
in Figure 5.1.

5.4.2. The effect of ΔSWSA on ΔSSLA in individual CMIP6mod-
els

In winter and summer, the ensemble mean ΔSSLA and ΔSWSA appear dynamically
consistent (Section 5.4.1). However, Figures 5.1e & 5.2 reveal considerable inter-
model differences in ΔSSLA. To understand the effect of the inter-model differences
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in ΔSWSA on the inter-model differences in ΔSSLA, we compare winter and summer
ΔSWSA and ΔSSLA between three example CMIP6 models: CanESM5, UKESM1-0-
LL and IPSL-CM6A-LR. Additionally, as described in Section 5.2.2, we use our ROMS
model to test the effect of the wind changes in these models on sea level and
barotropic currents.

Winter and summer ΔSSLA vary in magnitude between CanESM5, UKESM1-0-LL
and IPSL-CM6A-LR (Figures 5.4a-f, colors), but all three models resemble the en-
semble mean spatial patterns (Figures 5.1a & c). ΔSWSA is also model-dependent
and generally not spatially uniform over the region (Figures 5.4a-f, arrows). Nev-
ertheless, ΔSWSA and ΔSSLA appear to be consistent in the models: the stronger
and more southwesterly or northeasterly the ΔSWSA over the region, the higher
the magnitude of winter and summer ΔSSLA. The contrast between the over-ocean
and over-land ΔSWSA may be caused by the different surface roughness character-
istics of the ocean and the land, affecting the translation of wind-velocity changes
to wind-stress changes. The timeseries of ΔSSLA at Esbjerg reflect the model-
dependent magnitudes of winter and summer ΔSSLA (Figures 5.4g-i). Although
less of the internal variability is averaged out for UKESM1-0-LL and IPSL-CM6A-LR
(5 & 6 realizations) than for CanESM5 (25 realizations), Figures 5.4g-i suggest that
the projected changes in Figures 5.4a-f mostly represent forced responses rather
than multi-decadal variability.

Next, we test the effect of winter and summer ΔSWSA in CanESM5, UKESM1-0-LL
and IPSL-CM6A-LR on ΔSSLA by imposing the ΔSWVA derived from these models
on the ROMS model (as explained in Section 5.2.2). The patterns of DSLC that
the ROMS model simulates as a result (Figure 5.5, colors) are very similar to the
patterns of winter and summer ΔSSLA in the CMIP6 models (Figure 5.4, colors). This
confirms a causal relationship between ΔSWSA and ΔSSLA in winter and summer.
Additionally, the model experiments imply that the ΔSSLA in the CMIP6 models are
accompanied by changes in barotropic currents with opposite directions in winter
and summer. For the experiments forced with winter ΔSWVA (Figures 5.5a-c),
DSLC is smallest in Exp_CAN , intermediate in Exp_UK and largest in Exp_IPSL
. This is consistent with the winter ΔSSLA in the CMIP6 models (Figures 5.4a-c)
and suggests that the inter-model differences in ΔSWSA are responsible for the
inter-model differences in ΔSSLA. For the experiments forced with summer ΔSWVA
(Figures 5.5d-f), however, DSLC in Exp_CAN and Exp_UK are very similar despite
the differences in summer ΔSWSA and ΔSSLA between CanESM5 and UKESM1-0-LL
(Figures 5.4d & e). This may reflect that other factors besides regional ΔSWSA
(e.g., changes in North Atlantic circulation) affect winter and summer ΔSSLA on
the NWES in the CMIP6 models. It may also reflect differences in the translation
of ΔSWVA to ΔSWSA between CanESM5 and UKESM1-0-LL due to differences in
atmosphere-ocean coupling and the different atmosphere grid resolutions (Table
S5.1).

The ensemble mean winter and summer ΔSSLA have a dipole pattern in the North
Sea (Figures 5.1a & c). This is likely caused by the wind-driven redistribution of
mass in the North Sea: the ensemble mean winter and summer ΔSWSA both have
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Figure 5.4: Composite plots of changes in winter (DJF, top row) and summer (JJA, middle row) sea-
level anomalies [colors, cm] and wind-stress anomalies [arrows, N/m2] for (a & d) CanESM5, (b &
e) UKESM1-0-LL and (c & f) IPSL-CM6A-LR, for SSP5-8.5 (2081-2100 relative to 1995-2014); and
timeseries of winter (blue) and summer (red) sea-level anomalies [cm] at Esbjerg for (g) CanESM5, (h)
UKESM1-0-LL and (i) IPSL-CM6A-LR. The number of realizations used for each model is indicated in the
title of each panel. For (a-f), model specific grids are used (detailed in Table S5.1). The white circle in
(a-f) denotes Esbjerg. White contours as in Figure 5.1.

a southeast to northwest gradient in magnitude and direction (Figures 5.3a & c),
which may respectively drive a divergence and convergence of the flow in the central
and northern North Sea. For IPSL-CM6A-LR, the dipole pattern of ΔSSLA in the
North Sea is less apparent (Figures 5.4c & f). This appears to be consistent with
the ΔSWSA in IPSL-CM6A-LR, which is spatially more uniform than in the other
models (Figure 5.4). The absence of a dipole pattern in the sea-level responses to a
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Figure 5.5: Composite plots of the response of sea level [colors, cm] and barotropic currents [arrows,
cm/s] in ROMS to winter (top row) and summer (bottom row) ΔSWVA derived from (a & d) CanESM5
(Exp_CAN), (b & e) UKESM1-0-LL (Exp_UK) and (c & f) IPSL-CM6A-LR (Exp_IPSL), relative to Exp_Ref
(Table 5.1). The arrows representing the response of barotropic currents are plotted every 9th grid cell.
White contours as in Figure 5.1.

spatially uniform increase in southwesterly and northeasterly wind stress supports
this interpretation (Exp_SW & Exp_NE, Figure 5.6). The results of Exp_SW are
qualitatively very similar to the results of Pingree and Griffiths (1980), their Figures
2 & 3.

5.4.3. The effect of a closed English Channel on simulated
ΔSSLA

Figures 5.6a & b show that increased southwesterly and northeasterly wind stress
over the NWES induce changes in barotropic transport through the English Channel.
However, the native land masks of at least 8 of the 33 CMIP6 models in our ensemble
(see Table S5.1) are too coarse to allow these models to resolve currents through
the English Channel. Therefore, we adjust the land mask of the ROMS model to
test the effect of closing the English Channel at the Strait of Dover on the results
of Exp_SW and Exp_NW (Exp_SW_cc & Exp_NE_cc, Figure 5.7).
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Figure 5.6: Composite plots of the response of sea level [colors, cm] and barotropic currents [arrows,
cm/s] in ROMS in (a) Exp_SW in summer and (b) Exp_NE in winter, relative to Exp_Ref (Table 5.1).
Arrows as in Figure 5.5, white contours as in Figure 5.1.

With a closed English Channel, the effect of a southwesterly wind-stress increase
on sea-level rise in winter is reduced in the southern and eastern North Sea and
enhanced elsewhere on the NWES, especially along the southern and western coast-
line of the UK (Figures 5.7a & c). The effect of a closed English Channel on the
response to a northeasterly wind-stress increase in summer is similar to some ex-
tent (Figures 5.7b & d). That is, the sea-level fall in summer is mainly reduced in
the southern and eastern North Sea and enhanced along the southern and western
coastline of the UK, but also somewhat reduced in the Celtic Sea. Since direct trans-
port of water between the English Channel and the southern North Sea is blocked in
Exp_SW_cc and Exp_NE_cc , the response of barotropic currents to wind stress is
reduced in the southern and eastern North Sea and enhanced on other parts of the
shelf. Based on the results of these idealized experiments, we expect CMIP6 mod-
els with a closed English Channel to underestimate the difference between winter
and summer DSLC in the southern and eastern North Sea and to overestimate it
mainly along the coast of the UK.



5

128 5. The Effect Of Wind Stress on Seasonal Sea-Level Change

48°N

50°N

52°N

54°N

56°N

58°N

(a) Exp_SW_cc, DJF

5 cm/s

(b) Exp_NE_cc, JJA

10 5 0 5 10
Sea-level response [cm]

5°W 0° 5°E

48°N

50°N

52°N

54°N

56°N

58°N

(c) Closed minus open

5 cm/s
5°W 0° 5°E

(d) Closed minus open

4 2 0 2 4
Sea-level difference [cm]

Figure 5.7: Composite plots of the response of sea level [colors, cm] and barotropic currents [arrows,
cm/s] in ROMS in (a) Exp_SW_cc in summer and (b) Exp_NE_cc in winter, relative to Exp_Ref_cc (Table
5.1); (c-d) Figures 5.7a & b minus Figures 5.6a & b (response with a closed English Channel minus with
an open English Channel). Arrows as in Figure 5.5, white contours as in Figure 5.1. The green circles
indicate the closed English Channel in the modified land mask.

We illustrate the effect of a closed English Channel for the CMIP6 model ACCESS-
ESM1-5 by applying the winter ΔSWVA derived from ACCESS-ESM1-5 to our ROMS
model (Figure 5.8). When the English Channel is closed in the ROMS model, the
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sea-level response is very similar to the winter ΔSSLA simulated by ACCESS-ESM1-5
itself (Figure 5.8a v.s. 5.8b). When the English Chanel is open in the ROMS model,
the sea-level response is higher in the southeastern North Sea and lower around
the UK than in ACCESS-ESM1-5 (Figure 5.8a v.s. 5.8c). This indicates that the
representation of the English Channel in CMIP6 models affects their simulation of
ΔSSLA on the NWES. Excluding CMIP6 models with a closed English Channel from
the ensemble increases the ensemble mean of winter ΔSSLA at Den Helder by 0.6
cm (28%).
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Figure 5.8: (a) Winter ΔSSLA [cm] simulated by ACCESS-ESM1-5 for SSP5-8.5 (2081-2100 relative to
1995-2014); (b-c) composite plots of the response of sea level [colors, cm] and barotropic currents [ar-
rows, m/s] in ROMS to winter ΔSWVA derived from ACCESS-ESM1-5, with (b) a closed English Channel
(Exp_ACC_cc relative to Exp_Ref_cc ) and (c) an open English Channel (Exp_ACC relative to Exp_Ref)
(Table 5.1). Arrows as in Figure 5.5, white contours as in Figure 5.1, green circles as in Figure 5.7.

5.5. Discussion and conclusions
Sea-level projections typically only consider annual mean RSLC, even though sea-
sonal differences in DSLC may modulate the impacts of annual mean RSLC. There-
fore, we studied the seasonal differences in DSLC on the NWES and investigated
their causes. Based on an ensemble of 33 CMIP6 models, we find substantial
changes in seasonal sea-level anomalies on the NWES for the SSP5-8.5 scenario, in-
dicating substantial seasonal differences in DSLC. The seasonality of DSLC is largest
in the southeastern North Sea, where sea level rises most in winter and least in sum-
mer (Figure 5.1). Our experiments with a regional ocean model indicate that the
differences between winter and summer mean DSLC are for a large part caused
by the differences in regional wind-stress change between these seasons (Section
5.4). For SSP1-2.6, seasonal differences in DSLC are much smaller, because atmo-
spheric circulation changes are weaker for lower emissions scenarios (Collins et al.,
2013).
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To our knowledge, only one other study has investigated seasonal sea-level pro-
jections on the NWES using a multi-model ensemble (Dangendorf et al., 2014b).
Although limited to the German Bight, Dangendorf et al. (2014b) found that the en-
semble mean sea-level rise of 8 CMIP3 models was largest in winter and smallest in
spring and summer. This partially agrees with our results, but we also find relatively
large sea-level rise in spring (Figure 5.1b). The seasonal projections of Dangendorf
et al. (2014b) were based on a sea-level pressure proxy reflecting the correlation
between sea level and local zonal wind stress. In contrast, we find that the 21st-
century changes in winter and summer sea-level anomalies are mainly caused by
regional southwesterly and east-northeasterly wind-stress changes. The sea-level
response is most likely governed by Ekman transport and accompanied by changes
in barotropic transport on the shelf. The proxy of Dangendorf et al. (2014b) does
not fully capture these regional dynamics, nor does it account for steric effects,
which may influence ΔSSLA especially in spring and autumn (Section 5.4.1).
Since we find that the changes in winter and summer sea-level anomalies on the
NWES are largely driven by regional changes in wind-stress anomalies, the large
inter-model spread of projections of atmospheric circulation change (e.g., Oudar
et al., 2020; Shepherd, 2014; Woollings, 2010) likely introduces substantial un-
certainty in projected ΔSSLA (e.g., Figures 5.1, 5.2 & 5.4). It may be possible to
constrain projections of ΔSSLA by weighting the CMIP6 models according to their
performance and interdependence in simulating historical sea level or wind stress
(e.g., Knutti et al., 2017; Lyu et al., 2020). Studies evaluating the seasonal sea-
level cycle on the NWES in CMIP6 models are currently lacking, but they would be
warranted in light of our results. Another part of the inter-model spread stems from
internal variability, associated with the limited number of realizations available for
some of the CMIP6 models. Although quantifying this uncertainty would require
additional realizations, the differences between our projections of ΔSSLA and those
derived by using only a single realization per model (Figure S5.7) suggest that the
ensemble uncertainty due to internal variability is relatively modest.

While we focused on future changes and did not evaluate historical performance in
this chapter, we do find that nearly 25% of the CMIP6 models in our ensemble do
not resolve the currents through the English Channel (Table S5.1). This leads to an
underestimation of seasonal differences in DSLC in the southern and eastern North
Sea and an overestimation mainly along the southern and western coastline of the
UK (Section 5.4.3). Not resolving currents through the English Channel likely affects
simulations of annual mean DSLC as well (Hermans et al., 2020b). Therefore, we
advocate excluding models that do not resolve currents through the English Channel
when projecting DSLC for the NWES, unless the model simulations are dynamically
downscaled first. Other resolution issues, such as related to resolving the inflow of
the North Atlantic Current into the northern North Sea and the wind forcing near
the coast, may further impact the CMIP6 simulations of ΔSSLA and need to be
investigated.

We studied seasonal differences in DSLC for SSP5-8.5 and SSP1-2.6, and focused
on the effect of wind-stress change to explain these. As a next step, results for SSP
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scenarios in between SSP5-8.5 and SSP1-2.6 could be further investigated. Since
changes in wind stress are coupled to changes in sea-level pressure, investigat-
ing the additional seasonal differences in DSLC that the inverse barometer effect
(Stammer and Hüttemann, 2008) may introduce would also be useful. Addition-
ally, follow-up studies could investigate steric effects in more detail by partitioning
seasonal differences in DSLC into steric and manometric changes.

We see two potentially important implications of the seasonal differences in DSLC
that we found. First, flood risk assessments and adaptation planning are currently
based on projections of annual mean RSLC (e.g., Oppenheimer et al., 2019). We
showed that coastal sea-level rise on the NWES exceeds the annual mean in spring
and winter, which may cause a stronger shift in the distribution of extreme sea levels
in these seasons than currently considered. Whether the increase in winter sea-
level anomalies, which is mainly caused by increased southwesterly wind stress, can
be superimposed on the height of the most severe storm surges in the southeastern
North Sea, which occur for extreme northwesterly and westerly winds (de Winter
et al., 2013; Sterl et al., 2009), is not yet clear. Second, mainly in the southeastern
North Sea, the seasonal differences in DSLC imply a shift in the phase and an
increase in the amplitude of the seasonal sea-level cycle (e.g., Figure S5.2i). This
may impact coastal groundwater dynamics (Gonneea et al., 2013) and ecosystems
in the intertidal zone. Whereas salt marshes with sufficient sediment accretion may
keep up with centennial sea-level rise (Kirwan et al., 2016), even small changes in
the seasonal sea-level cycle have the potential to significantly change the seasonal
inundation characteristics of intertidal ecosystems, affecting the prospects for salt
marsh development (Balke et al., 2016; Kim et al., 2011; Morris, 2000). Therefore,
it is worth considering seasonal RSLC on the NWES and its impacts in addition to
the annual mean change. This may apply to other regions as well.
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5.6. Supplementary information
5.6.1. Supplementary figures
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Figure S5.1: Ensemble mean changes of annual mean (a) ocean dynamic sea level [cm] and (b)
wind stress [N/m2] for SSP5-8.5 (2081-2100 relative to 1995-2014). In (a-b), ensemble mean results
are shown only on grid cells for which at least 5 CMIP6 models provide ocean values on a common 1°
by 1° grid. The white contour denotes the 200 m isobath from ETOPO1 (Amante and Eakins, 2009)
approximating the shelf break.



5.6. Supplementary information

5

133

46°N
48°N
50°N
52°N
54°N
56°N
58°N

(a) Winter (DJF)

1

23
4

5

6 7
8

(e) Winter (DJF)

1

23
4

5

6 7
8

46°N
48°N
50°N
52°N
54°N
56°N
58°N

(b) Spring (MAM)

1

23
4

5

6 7
8

(f) Spring (MAM)

1

23
4

5

6 7
8

46°N
48°N
50°N
52°N
54°N
56°N
58°N

(c) Summer (JJA)

1

23
4

5

6 7
8

(g) Summer (JJA)

1

23
4

5

6 7
8

5°W 0° 5°E
46°N
48°N
50°N
52°N
54°N
56°N
58°N

(d) Autumn (SON)

1

23
4

5

6 7
8

5°W 0° 5°E

(h) Autumn (SON)

1

23
4

5

6 7
8

15 10 5 0 5 10 15
SSLA [cm]

(i)

-10
0
10

SS
LA

 [c
m

]

1 Aberdeen

-10
0
10

SS
LA

 [c
m

]

2 Immingham

-10
0
10

SS
LA

 [c
m

]

3 Liverpool

-10
0
10

SS
LA

 [c
m

]

4 Newhaven

-10
0
10

SS
LA

 [c
m

]

5 Brest

-10
0
10

SS
LA

 [c
m

]

6 Den Helder

-10
0
10

SS
LA

 [c
m

]
7 Cuxhaven

DJF MAM JJA SON
-10
0
10

SS
LA

 [c
m

]

8 Esbjerg

1995-2014
2081-2100

Figure S5.2: Ensemble mean (a-d) historical mean SSLA [cm] in winter (DJF), spring (MAM), summer
(JJA) and autumn (SON) (1995-2014), (e-h) future mean SSLA [cm] in winter (DJF), spring (MAM),
summer (JJA) and autumn (SON) for SSP5-8.5 (2081-2100), and (i) historical (blue) and future mean
(orange) SSLA [cm] nearest to eight example coastal locations. White contours and land masks as in
Figure S5.1.
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Figure S5.3: Ensemble mean changes of (a) winter (DJF), (b) spring (MAM), (c) summer (JJA) and
(d) autumn (SON) sea-level anomalies [cm] for SSP1-2.6 (2081-2100 relative to 1995-2014); (e) the
multi-model distributions of these changes in CMIP6 models at their ocean grid cells nearest to eight
example coastal locations. Circles, white contours and land masks as in Figure S5.1.
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Figure S5.4: Ensemble median projections for Esbjerg of (a) annual mean and seasonal mean DSLC
[cm] and of (b) the change in seasonal sea-level anomalies [cm] for SSP1-2.6 (relative to 1995-2014).
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bars) percentiles of the multi-model distributions of the mean change in 2081-2100.
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Figure S5.5: Ensemble mean (a-d) historical mean SWSA [N/m2] in winter (DJF), spring (MAM),
summer (JJA) and autumn (SON) (1995-2014); (e-h) future mean SWSA [N/m2] in winter (DJF), spring
(MAM), summer (JJA) and autumn (SON) for SSP5-8.5 (2081-2100). White contours and land masks as
in Figure S5.1.
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Figure S5.6: Observed sea-level anomalies [colors, cm] from AVISO (AVISO, 2021) and wind-stress
anomalies [arrows, N/m2] derived from the NCEP reanalysis (Kalnay et al., 1996) in (a) winter 2007
and (b) summer 1995. As a first order approximation, the equation ⃗⃗𝜏 = 𝜌𝑎𝐶𝐷 ⃗⃗𝑢|⃗⃗𝑢| was used to convert
wind speed to wind stress, with 𝜌𝑎=1.2 kg/m3 and 𝐶𝐷=0.0015. White contours as in Figure S5.1.
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example coastal locations for a multi-model ensemble consisting of the mean of all available realizations
for each model (black) and for a multi-model ensemble consisting of a single realization for each model
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5.6.2. Supplementary tables
Table S5.1: Overview of the CMIP6 models and realizations used for the ensemble projections. Model
output on native grids (‘gn’) is used where possible. Otherwise, regridded (‘gr’) model output is used.
The mean grid resolution in the NWES region was computed for the models providing the required
metadata. We followed the routines prescribed for computing the ‘nominal_resolution’ CMIP6 attribute
and used only grid cells in the region spanning from 45°N to 62°N and 15°W to 10°E. The mean grid
resolution is defined as the area-weighted mean of the maximum great-circle distances between the
vertices of each grid cell (see https://pcmdi.github.io/nominal_resolution/html/summary.html).

No. Model Realizations Realizations Mean Mean
used for used for ocean atmos.
SSP5-8.5 SSP1-2.6 res. [km] res. [km]

1 ACCESS-CM21 r(1-3)i1p1f1 r(1-3)i1p1f1 99 (gn) 187 (gn)
2 ACCESS-ESM-1-51 r(1-10)i1p1f1 r(1-10)i1p1f1 99 (gn) 188 (gn)
3 CanESM5 r(1-25)i1p1f1 r(1-25)i1p1f1 100 (gn) 364 (gn)
4 CanESM5-CanOE r(1-3)i1p1f1 r(1-3)i1p1f1 100 (gn) 364 (gn)
5 CAS-ESM2-012 r(1,3)i1p1f1 r(1,3)i1p1f1 129 (gn) n/a (gn)
6 CESM21 r(4,10, r(4,10, 83 (gn) 134 (gn)

11)i1p1f1 11)i1p1f1
7 CESM2-WACCM1 r(1-3)i1p1f1 r1i1p1f1 83 (gn) 134 (gn)
8 CIESM12 r1i1pf1 r1i1p1f1 83 (gn) n/a (gr)
9 CMCC-CM2-SR52 r1i1pf1 r1i1p1f1 100 (gn) 134 (gn)
10 CMCC-ESM22 r1i1pf1 r1i1p1f1 100 (gn) 134 (gn)
11 CNRM-CM6-1 r(1-6)i1p1f1 r(1-6)i1p1f1 100 (gn) 182 (gr)
12 CNRM-CM6-1-HR r1i1p1f2 r1i1p1f2 25 (gn) 65 (gr)
13 CNRM-ESM2-1 r(1-5)i1p1f2 r(1-5)i1p1f2 100 (gn) 182 (gr)
14 E3SM-1-1 r1i1p1f1 - 129 (gr) 130 (gr)
15 EC-Earth3 r(1,3,4,6, r(1,4,6, 99 (gn) 91 (gr)

11,13)i1p1f1 11,13)i1p1f1
16 EC-Earth3-CC r1i1p1f1 - 99 (gn) 91 (gr)
17 EC-Earth3-Veg r(1-3, r(1-3, 99 (gn) 91 (gr)

4,6)i1p1f1 4,6)i1p1f1
18 EC-Earth3-Veg-LR r(1-3)i1p1f1 r(1-3)i1p1f1 99 (gn) 146 (gr)
19 FIO-ESM-2-012 r(1-3)i1p1f1 r(1-3)i1p1f1 83 (gn) n/a (gn)
20 GFDL-ESM4 r1i1p1f1 r1i1p1f1 48 (gn) 139 (gr1)
21 GISS-E2-1-G1 r(1-5)i1p1f2 r(1-5)i1p1f2 138 (gn) 280 (gn)
22 HadGEM3-GC31-LL r(1-4)i1p1f3 r1i1p1f3 100 (gn) 187 (gn)
23 HadGEM3-GC31-MM (r1-4)i1p1f3 r1i1p1f3 25 (gn) 83 (gn)
24 INM-CM4-8 r1i1p1f1 r1i1p1f1 129 (gr1) 214 (gr1)
25 INM-CM5-0 r1i1p1f1 r1i1p1f1 129 (gr1) 214 (gr1)
26 IPSL-CM6A-LR r(1-4, r(1-4, 100 (gn) 219 (gr)

6,14)i1p1f1 6,14)i1p1f1
27 MPI-ESM1-2-HR r(1,2)i1p1f1 r(1,2)i1p1f1 65 (gn) 122 (gn)
28 MPI-ESM1-2-LR r(1-10)i1p1f1 r(1-10)i1p1f1 86 (gn) 243 (gn)
29 MRI-ESM2-0 r1i1p1f1 r1i1p1f1 86 (gn) 146 (gn)
30 NESM3 r(1,2)i1p1f1 r(1,2)i1p1f1 98 (gn) n/a (gn)
31 NorESM2-LM r1i1p1f1 r1i1p1f1 93 (gn) 268 (gn)
32 NorESM2-MM r1i1p1f1 r1i1p1f1 93 (gn) 134 (gn)
33 UKESM1-0-LL r(1-4, r(1-4, 100 (gn) 187 (gn)

8)i1p1f2 8)i1p1f2

1CMIP6 models with a closed English Channel on their native grid.
2CMIP6 models for which ‘tauu’ appears to be defined positive westward instead of eastward. For these
models, ‘tauu’ was multiplied by -1.

https://pcmdi.github.io/nominal_resolution/html/summary.html
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Conclusions and

Recommendations

The research presented in this thesis aims to improve our understanding of sea-
level change and sea-level variability using global climate models and regional ocean
models. Four different research questions were addressed, moving from the global
mean (Chapter 2) to the regional scale (Chapters 3, 4 & 5). Here, I discuss to what
extent these research questions have been answered (Section 6.1). Furthermore,
I discuss how my research can be expanded and propose several new avenues for
future work (Section 6.2).

6.1. Conclusions
6.1.1. Research question 1
How do the global mean sea-level projections based on CMIP5 and
CMIP6 models differ?

In Chapter 2, global mean sea-level projections based on the latest generation of
global climate models (CMIP6) were benchmarked against the projections based on
the previous model generation (CMIP5). This ensures traceability to past sea-level
projections. From the comparison, it can be concluded that despite its substantially
higher mean climate sensitivity and surface air temperature increase, using the
CMIP6 ensemble instead of the CMIP5 ensemble results in only modestly higher sea-
level projections for 2100. Among others, this is caused by the thermal expansion
of CMIP6, which was found not to be much larger than that of CMIP5. If this
results from a lower mean ocean heat uptake and/or expansion efficiency is not
yet clear. Another reason is the projected amount of glacier and ice sheet melt,
which is a function of the time-integral of the surface air temperature. The CMIP5
and CMIP6 projections of the time-integrated surface air temperature differ less
than their projections of the surface air temperature increase itself. Consequently,
the projections of the sea-level rise by 2100 differ less than the projected rates
of sea-level rise in 2100 (3-7% compared to 9-12% for the ensemble medians).
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This implies that the inter-ensemble differences will affect sea-level projections for
beyond 2100 (e.g., Palmer et al., 2020) more strongly.

Besides its higher mean, the climate sensitivity range of CMIP6 has a substantially
higher upper end than that of CMIP5 (5.62 K compared to 4.67 K). When used indi-
vidually, the CMIP6 models with the highest climate sensitivities also appear to yield
the highest sea-level projections. Therefore, they can be used to explore high-end
sea-level projections to a fuller extent than their CMIP5 counterparts (as recom-
mended in Section 6.2.1). For both CMIP5 and CMIP6, the time-integrated global
mean surface air temperature was found to be a good predictor of global mean
sea-level rise. This implies that, while endpoint targets of cumulative emissions are
useful to limit the global mean surface air temperature increase, the pathway of
the emissions reduction needs to be considered to limit sea-level rise.

Since the CMIP5 and CMIP6 models were forced with different scenarios of green-
house gas concentrations, the inter-ensemble differences found in Chapter 2 cannot
be attributed solely to differences in model physics. Although the representative
concentration pathways of CMIP5 and the shared socioeconomic pathways scenar-
ios of CMIP6 were designed to yield the same approximate radiative forcing in 2100,
their exact greenhouse gas concentrations differ (Meinshausen et al., 2020). To en-
able isolation of the differences in sea-level projections due to model physics, the
CMIP5 and CMIP6 models would need to be forced with identical emissions scenar-
ios and preferably using large ensembles to average out internal variability.

6.1.2. Research question 2
How does dynamical downscaling affect the simulations of ocean
dynamic sea-level change of global climate models?

In Chapter 3, I investigated the ocean dynamic sea-level change on the Northwest-
ern European Shelf. Motivated by the typical limitations of global climate models
in coastal regions (see Section 1.5.3), I studied how dynamical downscaling affects
the simulations of two CMIP5 models: HadGEM2-ES and MPI-ESM-LR. Dynamical
downscaling was found to improve the representation of the ocean circulation and
add spatial detail for both models, reflected by a better match between the histor-
ical simulations and the observations. The improvements are generally largest for
HadGEM2-ES, which has a lower horizontal resolution and a less realistic land mask
and bathymetry than MPI-ESM-LR. The HadGEM2-ES simulations of future sea-level
change were also affected the most (up to 55% different from the original in the
North Sea). Together, this shows that the added value of dynamical downscaling
depends on the driving climate model. For example, whether a model resolves cur-
rents through the English Channel or not likely affects how accurately it simulates
steric sea-level change in the North Sea. Also, Chapter 5 shows that CMIP6 models
without an English Channel cannot accurately simulate how regional wind-stress
change affects sea level, which dynamical downscaling would improve.

Only the simulations of two global climate models were dynamically downscaled.
Nevertheless, since the horizontal resolution of HadGEM2-ES is typical for global
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climate models, dynamical downscaling can be expected to affect the simulations
of other CMIP5 and CMIP6 models to a similar extent. Ocean dynamic sea-level
change is an important component of the total regional sea-level change (Fox-
Kemper et al., 2021). My results therefore indicate that dynamical downscaling
needs to be considered for sea-level projections for coastal regions like the North-
western European Shelf, at least until the simulations of high-resolution global cli-
mate models become more widely available. In terms of computational feasibility,
we are years to decades away from routinely running global climate models that
well resolve small-scale coastal ocean processes (Holt et al., 2017).

6.1.3. Research question 3
What drives the interannual sea-level variability on the Northwestern
European Shelf?

In Chapter 4, I used a high-resolution regional ocean model to investigate the
drivers of interannual sea-level variability on the Northwestern European Shelf from
1995-2018. The atmospheric forcing that was applied to the regional model caused
most of the interannual sea-level variability on the shelf, through the inverse barom-
eter effect and the effects of wind stress and heat and freshwater fluxes. The
resulting sea-level variability has a distinct spatial pattern. In contrast, varying
the lateral ocean boundary conditions resulted in small and spatially highly coher-
ent sea-level variability on the shelf. The sensitivity of these results to a different
model configuration was not tested. However, similar conclusions were drawn by
Tinker et al. (2020) using a different model, indicating that the results are relatively
robust across the available studies and the methods used.

Furthermore, I separated the atmospherically driven sea-level variability into the
contributions of the variability of wind, air pressure and heat and freshwater fluxes.
Wind variability was found to be the dominant driver of interannual sea-level vari-
ability in the southern and eastern North Sea. Elsewhere on the shelf, the variability
of air pressure dominates through the inverse barometer effect. Most of the spatial
variation of sea-level variability on the shelf can be attributed to the wind variabil-
ity. In contrast, the sea-level variability due to the variability of air pressure and
buoyancy fluxes is spatially relatively smooth. The respective contributions of the
different drivers of interannual sea-level variability therefore vary from location to
location, which provides insight into the temporal correlation between sea level at
different locations. Importantly, the model experiments indicate that the non-linear
interactions between the different drivers that I studied have only a small impact
on the interannual sea-level variability on the Northwestern European Shelf. This
justifies reconstructing the sea-level variability in this region using multi-linear re-
gression. The relations of the different boundary conditions with sea level that
Chapter 4 exposed may also aid the prediction of seasonal to interannual sea-level
variations, which is an emerging topic in the literature (Scaife et al., 2014; Miles
et al., 2014; Roberts et al., 2016; Tinker et al., 2018).
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6.1.4. Research question 4
How will seasonal mean sea level on the Northwestern European Shelf
change in the future?

In Chapter 5, the focus shifted from annual to seasonal timescales. Potential
changes in seasonal mean sea level on the Northwestern European Shelf were
investigated. Based on the simulations of 33 CMIP6 models, it was found that sea-
sonal sea-level anomalies are projected to change over the 21st century. Along the
coasts on the shelf, the CMIP6 models simulate several centimeters larger sea-level
rise in winter and spring than in summer and autumn. For a low emissions sce-
nario these differences are small, but for higher emissions scenarios they increase.
For example, under the SSP5-8.5 scenario, the projected dynamic sea-level rise
in the eastern North Sea is 19.6 cm in winter and 11.2 cm in summer (ensemble
means).

Tests with the regional model of Chapter 4 indicate that the deviations of sea-level
rise in winter and summer are mainly caused by the seasonal deviations in regional
wind-stress change simulated by the CMIP6 models. The projected deviations of
sea-level rise in spring and autumn are likely more steric in nature, although this
remains to be tested. The seasonal deviations in sea-level rise found in Chapter
5 imply that the seasonal sea-level cycle on the Northwestern European Shelf will
change in amplitude and phase as a function of location and future emissions (Figure
S5.2). The consequences that this may have for extreme sea levels, groundwater
dynamics and ecosystems will need to be considered. While the results in Chapter
5 answer the research question above to a large extent, a caveat of the study
is that the historical seasonal sea-level cycle in the CMIP6 models was not yet
evaluated.

6.2. Recommendations
6.2.1. Climate sensitivity and high-end sea-level projections
In Chapter 2, I showed that individual CMIP6 models with a high effective climate
sensitivity tend to yield high projections of global mean sea-level rise. Since some
of these models overestimate observed surface warming and ocean heat uptake
(Tokarska et al., 2020; Lyu et al., 2021) and their effective climate sensitivity falls
outside assessed ranges (Sherwood et al., 2020; Forster et al., 2021), their projec-
tions may be considered less likely. However, higher climate sensitivities, outside of
the assessed ranges, cannot be ruled out based on current scientific understanding
(Forster et al., 2021). Based on the results of Chapter 2, I therefore propose to use
the CMIP6 models with a high climate sensitivity to explore projections of global
mean sea-level rise with a low probability and a high impact, which are very rele-
vant for risk-averse stakeholders (Hinkel et al., 2019; Stammer et al., 2019). Such
high-end global mean sea-level projections can be extended to the coast using
dynamical downscaling.
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6.2.2. Dynamical downscaling: the way forward
Chapters 3 & 5 demonstrate the value of dynamical downscaling for sea-level pro-
jections on the Northwestern European Shelf. Given the impact of dynamical down-
scaling, I recommend expanding the research in Chapter 3 to other coastal regions,
such as the marginal seas near China and the United States. Additionally, dynami-
cally downscaling the simulations of more global climate models will help to better
understand the overall impact. I also recommend testing the sensitivity of dy-
namical downscaling results to methodological choices. This includes testing the
influence of the regional ocean model used, the implementation of the bound-
ary conditions, the incorporation of tides and dynamically downscaled atmospheric
forcing, (the lack of) two-way coupling, and for the Northwestern European Shelf
specifically, the representation of the exchange of water between the North Sea
and the Baltic Sea.

To derive robust high-resolution projections, ideally the simulations of all models
in the CMIP5 or CMIP6 ensemble would be dynamically downscaled. However,
using the methods of Chapter 3 to downscale many century-long simulations is
computationally expensive. If only the total change over a certain time window is
of interest, computational cost can be reduced by dynamically downscaling only a
few time slices of the full timeseries. Another approach worth exploring is dynam-
ical downscaling using ensemble mean changes in forcing (e.g., Jin et al., 2021),
although this does not readily provide estimates of multi-model uncertainty. In ad-
dition to dynamical downscaling, I recommend investigating statistical approaches
to improve sea-level projections. For example, it may be possible to find robust
statistical relationships between large-scale predictors and the dynamically down-
scaled simulations of only a subset of global climate models. These relationships
can then be used to statistically downscale the simulations of other models and
tested using cross-validation.

Apart from its value for regional sea-level projections, dynamical downscaling also
offers a framework in which changes in mean sea level, tides, waves and surges
can be simulated together in a dynamically consistent way. Such a high-resolution
dataset can be used for local impact assessments, for example to assess dynamic
changes in extreme sea levels or as boundary conditions to local hydrodynamic
models. All in all, dynamical downscaling is a promising tool to tailor sea-level
information to the needs of local stakeholders.

6.2.3. Model weighting for regional sea-level projections
Weighting the models in an ensemble based on their skill at reproducing obser-
vations and on their similarity (e.g. Knutti et al., 2017) has rarely been applied to
regional sea-level projections. One of the main difficulties of model weighting is
establishing weighting criteria that plausibly relate historical performance to simu-
lated future change (see Section 1.5.2). The linkages between the historical mean
atmospheric circulation and the ocean dynamic sea-level change in global climate
models (Lyu et al., 2020) form a reasonable starting point. Since changes in atmo-
spheric circulation affect the seasonal sea-level cycle on the Northwestern European
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Shelf (Chapter 5), I recommend examining these linkages on seasonal timescales as
well. In addition to emergent constraints, I argue that models should be weighted
based on regional realism (e.g., McSweeney et al., 2015), which tests with regional
models help to assess. For example, the results in Chapters 3 & 5 support giving
less weight to models that do not resolve currents through the English Channel
for their use for sea-level projections for the Northwestern European Shelf. Fur-
thermore, the sea-level projections derived from models developed by the same
modeling center tend to be more structurally similar. By accounting for the degree
of model similarity in the ensemble, false confidence in the convergent results due
to these similarities can be avoided.

6.2.4. Projecting changes in temporal sea-level variability
In Chapter 5, I found that the seasonal sea-level cycle on the Northwestern Euro-
pean Shelf is projected to change in addition to the annual mean sea-level change.
This may be the case in other regions as well. I therefore recommend expanding
Chapter 5 by studying seasonal sea-level change globally, and by studying potential
changes in interannual to decadal sea-level variability. An increase in the variability
around the long-term sea-level change can increase the height of extremes and
lead to certain sea-level thresholds being exceeded earlier than expected, even if
only temporarily. Externally forced changes in sea-level variability are therefore
an important topic for future research. The roles that the variability of land-water
storage and ice mass change may play in addition to the atmospheric and oceanic
drivers of sea-level variability (Chapters 4 & 5) need to be considered in the process.
The potential predictability of sea-level variability on shorter timescales is a related
topic, which given its societal relevance, also deserves further investigation. It may
be possible to use dynamical downscaling to improve the skill of global seasonal
forecasting systems on the Northwestern European Shelf (Tinker et al., 2018) in a
similar way to improving centennial sea-level projections (Chapter 3).

6.2.5. Final remarks
All in all, these recommendations make clear that there is still a lot to learn about
sea-level change and its projections. However, mitigation and adaptation planning
cannot wait until all existing uncertainties are resolved. Climate change is already
underway, and we need adaptative plans that can be adjusted as new information
about sea-level change comes in. This thesis has highlighted that regional ocean
models are valuable tools to provide that information. Embedding regional modeling
in sea-level science will help to improve the simulations of global climate models, to
understand the mechanisms behind sea-level change and variability and to provide
stakeholders with the local information they need.
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Data Statements

Chapter 2

The CMIP6 data was extracted from ESGF on November 2, 2020. Chris Jones
provided the CMIP6 GSAT time series, processed using JASMIN on November 1,
2020. The CMIP6 data and Monte Carlo GMSL projections produced for this chapter
are available from the 4TU.ResearchData repository: http://doi.org/10.412
1/12958079.

The WCRP, which, through its Working Group on Coupled Modeling, coordinated
and promoted CMIP6, is hereby acknowledged. The climate modeling groups are
thanked for producing and making available their model output, the ESGF for archiv-
ing the data and providing access, and the multiple funding agencies who support
CMIP6 and ESGF.

Chapter 3

The dynamically downscaled simulations underlying the figures are available from
the 4TU.ResearchData repository: https://doi.org/10.4121/uuid:ef1c5c
ca-3900-49f3-9049-6719598a128d.

The World Climate Research Programme’s Working Group on Coupled Modeling,
which is responsible for CMIP5, is hereby acknowledged. The associated climate
modeling groups are thanked for producing and making available their model output
used in this study. For CMIP5 the U.S. Department of Energy’s Program for Climate
Model Diagnosis and Intercomparison provides coordinating support and led devel-
opment of software infrastructure in partnership with the Global Organization for
Earth System Science Portals.

Chapter 4

The ROMS input and output files are available from the 4TU.ResearchData repos-
itory: http://doi.org/10.4121/uuid:d9656541-ff40-45d0-8859-ac
644b155dfb.

This study has been conducted using E.U. Copernicus Marine Service Information
(2019). Neither the European Commission nor ECMWF is responsible for any use
that may be made of the Copernicus Information or Data it contains.

Chapter 5

The CMIP6 data was extracted from ESGF in July 2021. The processed CMIP6
output and the output of the ROMS model experiments underlying the figures can
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be obtained from the 4TU.ResearchData repository: https://doi.org/10.412
1/16831918.

The code used to obtain, process and analyze this data is available at Zenodo:
https://doi.org/10.5281/zenodo.5654667.

This study has been conducted using E.U. Copernicus Marine Service Information
(2019). Neither the European Commission nor ECMWF is responsible for any use
that may be made of the Copernicus Information or Data it contains.

The WCRP, which, through its Working Group on Coupled Modeling, coordinated
and promoted CMIP6, is hereby acknowledged. The climate modeling groups are
thanked for producing and making available their model output, the ESGF for archiv-
ing the data and providing access, and the multiple funding agencies who support
CMIP6 and ESGF.
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