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A Fast Smoothing-Based Algorithm to Generate
l∞-Norm Constrained Signals for Multivariable

Experiment Design
Nic Dirkx , Marcel Bosselaar , and Tom Oomen , Senior Member, IEEE

Abstract—Handling peak amplitude constraints, or
equivalently l∞-norm constraints, is an important applica-
tion demand in experiment design for system identification.
The aim of this letter is to present a method for the design
of excitation signals with prescribed power spectrum under
l∞-norm constraints for systems with many inputs and out-
puts. The method exploits an exponential smoothing func-
tion in an iterative algorithm. Fast convergence is achieved
by a computationally efficient construction of the gradient
and the Hessian matrix. Experimental results show excel-
lent convergence behavior that overcomes local minima,
while significantly reducing computation time compared to
existing techniques.

Index Terms—Crest-factor optimization, experiment
design, system identification.

I. INTRODUCTION

THE COMPUTATION of optimal excitation signals plays
a central role in the design of experiments for system

identification. Typically, the aim of optimal experiment design
(OED) is to maximize the signal-to-noise ratio in view of
a selected model quality criterion, yet within the system its
operating constraints [1], [2]. In many practical applications,
including wafer scanners [3] and chemical processes [4], deal-
ing with l∞-norm constraints on the input and output signals
is key to guarantee safe experiments.

The complexity of OED depends on the constraints, conse-
quently the availability of algorithms heavily depends on the
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specific constraints that are imposed. In case of power con-
straints, OED problems can often be formulated as convex
optimization programs, with the input spectrum as decision
variable [5], [6]. Such problems can readily be solved by
convex optimization techniques [7]. For l∞-norm signal con-
straints, such approach cannot be applied, since the signal peak
amplitude depends not only spectral power, but also on the
phase [8]. The relationship between the peak amplitude and the
phase is highly nonlinear and non-smooth [9], which compli-
cates optimal design procedures, especially for multiple inputs
multiple outputs (MIMO) systems.

To mitigate the full complexity in solving l∞-norm con-
strained OED problems, various methods have been developed
to solve the related problem of crest-factor minimization for
signals with prescribed power spectrum. The crest-factor is
the ratio between signal peak amplitude and signal power [8].
Exact solutions to crest-factor minimization are not available,
hence methods tend to be of heuristic nature. In [10], a phase
selection law is presented that often yields a low crest-factor for
scalar-valued signals. In [12], [13], a time-frequency domain
swapping method is presented for joint crest-factor reduction
of input and output signals. Extension of these methods to
MIMO systems is complicated due to the heuristic nature of
the algorithms. An optimization-based approach to crest-factor
minimization is presented in [9], wherein the l∞-norm is itera-
tively approximated by the lp-norm. The method can be applied
to MIMO systems, but becomes computationally intensive for
systems with many inputs and outputs.

An alternative approach to achieve a low crest-factor is by
the generation of binary signals that approximate a prescribed
spectrum, since binary signals achieve maximal power for a
given amplitude constraint [11]. In [14], a simulated anneal-
ing approach is employed to globally solve this nonconvex
problem. The method is computationally intensive. Recursive
algorithms based on a receding horizon concept are presented
in [15], [16]. The algorithms are of lower computational
complexity but are not defined for MIMO systems. In [17],
excitation signals are computed from a l∞-norm constrained
time-domain optimization problem, which typically leads to
binary signals. The method involves solving a large scale semi-
definite program, which becomes computationally intractable
for large MIMO systems.

Although many approaches for OED have been developed
for a wide range of system identification problems, tractable
methods for current applications with increasing complexity,
such as many inputs and outputs, are not available. The aim
of this letter is to develop an efficient algorithm for l∞-norm
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constrained design of excitation signals with prescribed power
spectrum, that is particularly suitable for large scale and
multivariable experiment design problems.

The main contributions of this letter are:
1. An algorithm for l∞-norm minimization of multivariable

signals that exploits an exponential smoothing function
to overcome local minima (Section III),

2. An efficient and scalable computation of the gradi-
ent and Hessian matrix, including a quantification of
computational complexity (Section IV),

3. An experimental validation on a multivariable Active
Vibration Isolation System (Section V).

Smooth approximations provide a solution to deal with
non-smoothness and non-convexity at the same time, and
are applied in non-smooth convex [18], [19] and non-convex
optimization [20], [22] to accelerate convergence and increase
parameter space exploration.

Notations: Operator � denotes the element-wise product.
Operations X = F(x) and x = F−1(X) denote the Discrete
Fourier Transform (DFT) of x and the inverse DFT of X [8],
respectively. x denotes the complex conjugate of x.

II. PROBLEM FORMULATION

A. Experiment Design for System Identification
In system identification the goal is to estimate a system

model from measured data. The identification setup is given
by the discrete-time input-output relation

y(n) = G(z) ∗ u(n)+ ν(n), (1)

where G(z) represents a ny×nu open-loop or closed-loop LTI
system to be identified, with z the z-domain operator. Signal
u(n) ∈ R

nu is a user-defined vector-valued excitation signal,
where n = [0, . . . , N − 1] the discrete-time index, for sample
size N. Signal y ∈ R

ny represents the measurements, per-
turbed by an independent and identically distributed random
sequence ν. Note that y may encompass both input and output
signals, via suitable choice of G.

The quality of the identified model of G depends on the
design of the excitations u. OED consists in the computation
of optimal excitation signals u within constraints:

uopt = minimize
u

I(G, u)

subject to l∞(yp) ≤ cp, p = 1, . . . , ny, (2)

where criterion I expresses the quality of the to-be-identified
model, yp is the pth signal in y and cp denotes the correspond-
ing constraint value. The l∞-norm is defined as follows.

Definition 1: The l∞-norm of a scalar-valued signal x(n) is
defined as its absolute peak value in the interval [0, N − 1],

l∞(x) = max
n∈[0,N−1]

|x(n)|. (3)

B. Signal Parametrization
Multisine excitation signals u with a band-limited spec-

trum [8] are considered, i.e., for the qth input,

uq(n, A,�) =
Nk∑

k=1

aqk cos

(
2πkn

N
+ φqk

)
, (4)

where Nk ≤ 1/2N − 1 is the excited frequency band, and the
amplitudes aqk > 0 ∀q, k and phases φqk = [0, 2π), ∀q, k are
collected in A and �, respectively.

The output signals yp in (1) for multisine inputs uq in (4),
assuming ν = 0, are given by

yp(n) =
nu∑

q=1

Nk∑

k=1

bpqk cos

(
2πkn

N
+ ξpqk

)
, (5)

with bpqk = aqk|Gpqk| and ξpqk = φqk + ∠Gpqk, and where
|Gpqk| and ∠Gpqk denote the magnitude and the phase of entry
[p, q] of G at the kth spectral line, respectively.

C. Objective: l∞-Norm Constrained Excitation Design
Solving the OED problem (2) consists in the design of both

the spectral magnitudes A and the phases � in (4). In this
letter, it is assumed that computation of the magnitudes in
view of some selected criterion I in (2) has been performed
as prior step, e.g., by convex spectrum design approaches
in [5], [6]. The design problem considered in this letter is the
subsequent phase design step to generate l∞-norm bounded
signals, for such prescribed spectral magnitudes. By using the
equivalence between l∞(yp) ≤ cp,∀p and l∞(ȳ) ≤ 1 with
ȳ = [y1/c1, . . . , yny/cny ], this problem is formulated as the
unconstrained l∞-norm minimization problem over �, i.e.,

minimize
�

l∞(ȳ(�)). (6)

Prior knowledge of G is required to solve (6), which is
assumed available, e.g., from preliminary identification [6].

Solving (6) is non-straightforward since 1) the function
l∞(ȳ(�)) is non-convex in the variables �, 2) the function
l∞(ȳ(�)) is non-smooth and not differentiable over the entire
domain of �, and 3) identification problems tend to be large
in the number of variables, especially for systems with many
inputs and outputs. Consequently, a dedicated and efficient
strategy is required to solve (6). The concept of the strategy
is presented in the next section.

D. Gradual Smoothing Strategy
The key idea of the presented approach is to solve the

non-smooth problem (6) via a sequence of approximate
smooth problems, wherein the level of smoothness is grad-
ually reduced. A similar strategy is employed in [9], using
lp-norm approximations of the l∞-norm to solve (6). In this
letter, an exponential smoothing function is employed that
achieves accurate approximations. Besides obtaining a differ-
entiable problem, a gradual smoothing strategy reduces the
susceptibility to local minima, as exemplified next.

Example 1: Consider a scalar-valued signal u as in (4) with
Nk = 52, a1k = √2/Nk, ∀k and uniformly distributed random
phases φ1k ∈ [0, 2π), k = 1, . . . , Nk − 2. The contour maps
of l∞(u) and the approximations are shown in Fig. 1.

The method is formalized in the next section.

III. A SMOOTHING-BASED ALGORITHM TO

l∞-NORM MINIMIZATION

A. Smooth Approximation Function
To handle the complexity introduced by both the non-

smoothness and the non-convexity in (6), the function
l2∞(ȳ(�)) is approximated by the smooth function,

L(ȳ, σ ) = σ ln

⎛

⎝
N̄−1∑

n=0

exp

(
ȳ2(n)

σ

)⎞

⎠, (7)
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Fig. 1. Illustration of convergence behavior with and without smoothing strategy for Example 1. (a) Contour map of non-smooth l∞(u) as function
of φ51, φ52, with multiple local minima (×) and single global minimum (×). For this example, without a smoothing strategy, iteratively stepping in the
steepest descent direction (black lines) from either of the numbered initial points leads to locally optimal solutions. (b) To improve performance, a
gradual smoothing strategy is applied, depicted by the contour maps of the sequence of two smooth approximations of l∞(u), with local minima (×)
and the global minimum of l∞(u) (×). Left: First, a high level of smoothing is applied. For this example, the approximant has a single local minimum
(×) close to the global minimum (×) or the original problem. As a result, by iteratively stepping in the steepest descent direction from the numbered
initial points, near global convergence is achieved. Right: Taking the previous solution as a new starting point, a next optimization is performed
using a lower level of smoothing by which the global minimum is attained for all initial conditions.

where N̄ = nyN and σ > 0. This function is based on the
exponential penalty function presented in [21], [23] for solving
convex programs with inequality constraints. It is also applied
for smoothing of minmax problems in [22]. Furthermore, (7)
is a specific form of the log-sum-exp function encountered
in inference and classification in machine learning, e.g., [25].
Properties of the function L(ȳ, σ ) are given in the following.

Lemma 1: Consider the function L(ȳ, σ ) for σ > 0. Then,
i) l2∞(ȳ) ≤ L(ȳ, σ ) ≤ l2∞(ȳ)+ σ ln(N),

ii) limσ→0 L(ȳ, σ ) = l2∞(ȳ),
iii) L(ȳ, σ ) is increasing with respect to σ .
iv) L(ȳ, σ ) is twice continuously differentiable everywhere.
v) The gradient ∇�L(ȳ, σ ) is expressed as

∇�L(ȳ, σ ) = ∂L

∂φ
=

N̄−1∑

n=0

λn(�, σ)∇�ȳ2(�, n), (8)

where

λn(�, σ) = exp(ȳ2(n)/σ )
∑N̄−1

n=0 exp(ȳ2(n)/σ )
,

N̄−1∑

n=0

λn = 1. (9)

See [22], [25] for a proof. Numerically stable implementa-
tions of L that avoid overflow are addressed in [22], [24]. The
optimization problem based on L is formulated next.

B. Optimization Problem Formulation
The smoothing function L(ȳ, σ ) is exploited to approximate

the original non-smooth problem (6) by the smooth problem

argmin
�

L(ȳ(�), σ ) (10)

for some selected σ > 0. To obtain a quadratic form that is
compatible with Gauss-Newton-type (GN) algorithms [26], the
following equivalent problem to (10) is considered,

argmin
�

L̃(ȳ(�), σ ), (11)

Algorithm 1 Smoothing-Based l∞-Norm Minimization

1: (Initialization). Given A and G, choose initial phases �0

and σ 0, αmax, c, ε > 0, τ ∈ (0, 1) and set i = 0.
2: (Direction generation). di = ∇�L̃(�i, σ i).
3: (Armijo line search). Find the largest αi, 0 < αi < αmax

that satisfies the sufficient descent condition,

L(�i − αidi, σ i) ≤ L(�i, σ i)− αicσ i

L̃(�i, σ i)
∇�L̃T (�i, σ i)di.

4: (Select H and J ). Hi = 1,J i = αidi.
5: (�-parameter update). �i+1 = �i − (Hi)−1(J i).
6: (σ -parameter update). σ i+1 = τ qσ i, where q ← 1 if
|L(�i, σ i)− L(�i+1, σ i)| < ε and q← 0 otherwise.

7: (Termination). Stop if a stopping criterion is met, other-
wise set i← i+ 1 and return to step 2.

where

L̃(ȳ, σ ) = 1

2
εT(ȳ, σ )ε(ȳ, σ ), (12)

with ε(ȳ, σ ) = [ exp(
ȳ2(0)
2σ

), . . . , exp(
ȳ2(N̄−1)

2σ
)]T . The gradients

of L and L̃ are equal up to a scale factor, since

∇�L(ȳ, σ ) = σ L̃−1(ȳ, σ )∇�L̃(ȳ, σ ), (13)

and hence L and L̃ have identical minimizers.
Various optimization algorithms may be employed to

solve (11). Typically, the parameters � are updated iteratively
by an update law of the form

�i+1 = �i − (Hi)−1(J i), (14)

with i the iteration index, and where J and H contain curva-
ture information of L̃. In the next section, an iterative algorithm
is presented for solving (6).

C. A Descent Algorithm
This section presents Algorithm 1, that enables accu-

rately solving (6) by a joint minimization of the smoothing

Authorized licensed use limited to: TU Delft Library. Downloaded on January 10,2022 at 08:45:02 UTC from IEEE Xplore.  Restrictions apply. 
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function L(ȳ, σ ) and a gradual decrease of the smoothing
parameter. The algorithm bears resemblance to that in [22]
for solving minmax problems, but differs in the selection
of the search direction and the control of the smoothing
parameter.

In step 2, a Steepest Descent (SD) direction [26] is selected.
Step 3 involves a Wolfe condition [26] to determine the step
size αi. Step 4 sets the parameters J ,H in (14) that give rise
to a SD algorithm. The �-parameters are updated in step 5. In
step 6, approximation parameter σ i is controlled by the rate of
descent of the function L. Properties ii) and iii) in Lemma 1
enable the following result.

Theorem 1: Let {L(�i, σ i)} be the sequence generated by
Algorithm 1 for i→∞. Then,
(i) Sequence {L(�i, σ i)} is monotonically non-increasing.

(ii) The point �∞ is a stationary point of l∞(ȳ(A,�)).
Proof: (i) For fixed σ i > 0, −di is a descent direc-

tion of L̃ and L, where the latter follows from (13). Step 3
guarantees that L(�i+1, σ i) ≤ L(�i, σ i). Step 6 guaran-
tees that σ i+1 ≤ σ i. Thus, by property iii) in Lemma 1,
L(�i+1, σ i+1) ≤ L(�i+1, σ i) ≤ L(�i, σ i). (ii) For fixed
σ i > 0, steps 2-5 guarantee that L(�i, σ i) is reduced towards
a stationary point for i → ∞. Step 6 guarantees reduc-
tion of σ by q ← 1 when a stationary point is sufficiently
approached. Hence, σ i → 0 for i → ∞. Property ii) in
Lemma 1 implies that a stationary point of L(�i, σ i) is a sta-
tionary point l2∞(ȳ(�i), σ i) for σ i → 0, which is formalized
in [22, Th. 3.1].

The convergence properties in Theorem 1 are preserved for
any other parameter update in step 5 that reduces L in each
iteration. This is exploited in Section IV for the selection of
more advanced solvers.

A key aspect of Algorithm 1 is that a gradual refinement
of the approximation reduces the sensitivity to local min-
ima. Next result shows that certain local minima vanish when
σ →∞.

Theorem 2: Consider the parameter set M =
{�:

∑N̄−1
n=0 ∇�ȳ2(�, n) 
= 0}. Suppose that the set

�∗ = {� ∈ M:∇�L(ȳ(�), σ ) = 0} for σ → ∞ is
non-empty and includes local minimizers to L(ȳ(�), σ ).
Then, the set �∗ is empty for σ → 0.

Proof: From (9) it follows that λn → 1/N̄,∀n for
σ →∞. Hence, by (8) the gradient becomes ∇�L(ȳ(�), σ ) =
1/N̄

∑N̄−1
n=0 ∇�ȳ2(�, n) 
= 0 for ∀� ∈ M. Thus, L(ȳ, σ ) has

no local minima for � ∈ M for σ → ∞, since M is
void.

Although global convergence cannot be guaranteed in gen-
eral, experience has shown that gradual smoothing tends to
lead to low signal peak amplitude values. The results of
Algorithm 1 for the multisine defined in Example 1 are shown
in Fig. 1.

IV. A FAST AND SCALABLE ALGORITHM

A. Efficient Gradient and Hessian Computation
The computation of the gradient and Hessian matrix are

typically the most time-consuming operations in optimization.
A direct computation of the gradient via differentiation of L̃
in (12) leads to the expression

∇�L̃ =
[

ny∑
p=1

(JT
p,1εp)

T , . . . ,
ny∑

p=1
(JT

p,nu
εp)

T

]T

, (15)

where εp(n) = exp (
y2

p(n)

2c2
pσ

) and Jp,q ∈ R
N×Nk represent

submatrices of the Jacobian J, with elements [n, u] given by

[Jp,q]nu = ∂εp(n)

∂φqu
= −yp(n)

cpσ
εp(n)bpquSpqu(n), (16)

and Spqu(n) = sin(2πkun/N + ξpqu).
An alternative and significantly more efficient method

for computing the gradient is presented in the following
result. The method exploits structural properties to formu-
late the gradient as a circular convolution, to benefit from
the computational advantages of the DFT in circulant matrix
multiplication [27].

Theorem 3: The vectors JT
p,qεp in (15) are given by

JT
p,qεp = 1

cpσ
Im

(
ηp,q �

[
INk
0Nk

]T

F−1
(
D−p +D+p

))
, (17)

where

ηp,q = 1/
√

2
[
bpq1ejξpq1 , . . . , bpqNk ejξpqNk

]T
,

D−p = F(c−p )� F
[

ρp
0Nk

]
, D+p = F(c+p )� F

[
Pρp
0Nk

]
, (18)

with P an Nk × Nk exchange matrix,

c−p =
[
[Zp]0, . . . , [Zp]Nk−1, 0, [Zp]Nk−1, . . . , [Zp]1

]T
,

c+p =
[
[Zp]Nk+1, . . . , [Zp]2Nk , 0, [Zp]2, . . . , [Zp]Nk

]T
,

ρp = 1/
√

2
nu∑

w=1

[
bpw1ejξpw1 , . . . , bpwNk ejξpwNk

]T
, (19)

and where [Zp]u is the DFT of zp = exp(y2
p/(c

2
pσ)) at

frequency line u, with [Zp]−u = [Zp]u.
Proof: Substituting yp(n) in (16) by (5), performing the

multiplication by εp, and using zp(n) = ε2
p(n) gives,

[JT
p,qεp]u = −bpqu

cpσ

N−1∑

n=0

nu∑

w=1

Nk∑

v=1

zp(n)Spqu(n)Cpwv(n)bpwv

where Cpwv(n) = cos(2πkvn/N+ξpwv). Using that SpquCpwv =
1
2 (Spqu−pwv+Spqu+pwv) with Spqu±pwv := sin(2π(ku±kv)n/N+
(ξpqu± ξpwv)) and, by Euler’s law, sin a± b = −Im(e−j(a±b)),
the elements of JT

p,qεp satisfy

[JT
p,qεp]u = bpqu

2cpσ
Im

nu∑

w=1

Nk∑

v=1

(
[Zp]u−ve−j(ξpqu−ξpwv)

+ [Zp]u+ve−j(ξpqu+ξpwv)
)

bpwv. (20)

Herein, [Zp]u±v = ∑N−1
n=0 zp(n)e−j(2π(ku±kv)n/N is equal to the

DFT of zp at frequency lines (ku ± kv). Due to the specific
element-wise construction, (20) is expressed as the sum of
two matrix-vector products involving a Toeplitz and a Hankel
matrix, which allows writing

JT
p,qεp = 1

cpσ
Im(�−p,q +�+p,q), (21)

with

�−p,q = ηp,q � T (Z−p )ρp, �+p,q = ηp,q � T (Z+p )Pρp. (22)
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TABLE I
COMPLEXITY OF GRADIENT AND HESSIAN COMPUTATIONS

Here, T (a) is the Toeplitz matrix with basis vector a,

T (a) =

⎡

⎢⎢⎢⎣

a0 a−1 . . . a−(n−1)

a1 a0
. . .

...
...

. . .
. . . a−1

an−1 . . . a1 a0

⎤

⎥⎥⎥⎦, a =

⎡

⎢⎢⎢⎢⎣

a−(n−1)

a−(n−2)

...
an−2
an−1

⎤

⎥⎥⎥⎥⎦
,

and the basis vectors Z−p and Z+p are defined by

Z−p =
[
[Zp]−(Nk−1), [Zp]−(Nk−2), . . . , [Zp]Nk−2, [Zp]Nk−1

]T
, (23)

Z+p =
[
[Zp](Nk−2), [Zp](Nk−1), . . . , [Zp]2Nk−1, [Zp]2Nk

]T
.

By embedding the matrices T (Z±p ) into circulant matri-
ces C(c±p ) with basis column vectors c±p defined in (19),
expression (22) is expressed as a circular convolution.
Using the circular convolution theorem to expresss C(c)b =
F−1(F(c) � F(b)) [27], allows formulating �±p,q = ηp,q �[
INk 0Nk

]
F−1(D±p,q), with D±p,q and ηp,q defined in (18).

Insertion into (21) and rearranging completes the proof.
In GN-type algorithms, the Hessian matrix ∇2

�L̃ is approx-
imated based on the Jacobian matrix J, e.g., classical GN
employs ∇2

�L̃ ≈ JTJ . A fast method for constructing H = JTJ
based on the DFT is presented next.

Theorem 4: Let J be the Jacobian matrix composed of the
submatrices Jp,q in (16) for p = 1, . . . , ny and q = 1, . . . , nu.
Let Hi,j ∈ R

Nk×Nk for i, j = 1, . . . nu be the submatrices of
H = JTJ. Then,

Hi,j =
ny∑

w=1

1

c2
wσ 2

Re(�−w,i,j − �+w,i,j) (24)

where [�±w,i,j]uv = bwiubwjv
2 e

√−1(φwiu±φwjv)[Qw,i,j]u±v. Herein,
[Qw,i,j]u±v is defined as the DFT of qw,i,j := exp (y2

w/(c2
wσ))x2

at frequency lines (ku ± kv), where [Qw,i,j]−u = [Qw,i,j]u.
The proof follows the lines of [9, Appendix A].

B. Computational Complexity
The complexity of the computation of the gradient and

the Hessian is quantified in Tab. I for a SISO system.
Herein, a comparison is performed between: direct computa-
tion from (16), the approach presented in [9] for the Lp-norm
based method, and the fast approach by Theorems 3 and 4.
The Fast Fourier Transform (FFT) implementation of the
DFT is assumed. The complexity of the gradient and Hessian
computation scales with nynu and nyn2

u, respectively.
Evidently, by exploiting circular convolution theory, the

fast approach eliminates the quadratic complexity in Nk in
the gradient computation for both the direct approach (since
NNk > N2

k ) and the Lp approach. For the Hessian, the cubic
complexity in Nk in the direct method is eliminated in the Lp
and the fast method by employing the FFT.

TABLE II
COMPUTATIONAL PERFORMANCE FOR DIFFERENT SOLVERS

C. Solver Selection
The performance of Algorithm 1 for three different solvers is

compared: 1) GN with modified Levenberg-Marquardt regular-
ization (GNLM) [28], 2) SD, and 3) the Polak-Ribière Conjugate
Gradient (PRCG) method [29]. Steps 2-4 in Algorithm 1
are appropriately adjusted and the corresponding parameters
J ,H in step 4 are given in Tab. II. Herein, λ is the LM
parameter that ensures well-conditioned and positive defi-
nite H [28]. Parameter β is the PR parameter, and r is the
previous step direction [29]. In the sequel, the tuning param-
eters {σ 0, αmax, c, ε, τ } = {1, 0.1, 10−4, 10−4, 0.7} are used,
which have been found to generally produce high-performance
results.

Tab. II shows the results averaged over 100 simulations (per-
formed on a standard laptop) with uniform spectral magnitudes,
random initial phases �, and N = 2 · 105, Nk = 103, nu, ny =
1, b11k = √2/Nk ∀k. All solvers achieve l∞(ȳ) = 1.38. GNLM
requires the fewest iterations, yet requires the most time due
to the computation of the Hessian. This motivates the use
of the first-order solvers SD and PRCG. PRCG achieves the
best performance by mitigating the typical chatter behavior of
SD. In the next section, the performance of Algorithm 1 is
experimentally evaluated on a multivariable system.

V. EXPERIMENTAL VALIDATION

A. Experiment Description
The presented algorithm is experimentally validated on

a closed-loop controlled Active Vibration Isolation System
(AVIS) with 6 inputs and 6 outputs [30]. A scalar-valued
multisine signal u is applied to the first system input. The
signal u has a uniform spectrum, a length of N = 215, and
Nk = 3000. The constraints are imposed onto the 6 outputs,
6 input voltages, and 6 controller outputs, hence ny = 18 and
dim(G) = 18× 1. The spectra of y are all non-uniform due to
the closed-loop dynamics in G between u and y.

B. Results
1) Optimized Signals: The output signals yp/cp, p =

1, . . . , 6 before and after optimization are shown in Fig. 2.
Peak amplitude reduction up to a factor 3 is achieved and
l∞(yp/cp) ≤ 1 ∀p.

2) Performance Comparison: The smoothing-based algo-
rithm is compared to several existing crest-factor minimization
techniques. The results are shown in Fig. 3. The ran-
dom method [13] generates random realizations with φk ∈
[0, 2π), ∀k and retains the realization with lowest l∞-norm.
This method hardly shows convergence. Schroeder phase
selection [10] is fast but leads to a constraint excess of a factor
> 2.5. The time-frequency domain swapping algorithm [12]
is originally a SISO method, and is applied to the worst-
case signal per iteration. This method fails to converge in the
multivariable setting, since the optimization of a single sig-
nal yp deteriorates the other signals. The Lp-method [9], using
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Fig. 2. Signals y1, . . . , y6 before (–) and after (–) optimization using the
smoothing-based approach.

Fig. 3. Convergence of l∞(ȳ ) versus computation time for different
methods. The smoothing-based algorithm outperforms existing methods
significantly in view of computation time and achieved cost.

sequence p = {22, 23, . . . , 29}, converges in ∼40 iterations,
but the computation time of ∼500s is substantial. The smooth-
ing method refers to Algorithm 1 with PRCG solver, and
gradient computation by Theorem 3. This method shows con-
vergence in ∼150 iterations, and is ∼50 times faster than the
Lp method. This demonstrates the capability of the smoothing-
based algorithm for multivariable l∞-norm constrained signal
design, as well as its high computational efficiency.

VI. CONCLUSION

The presented method enables designing l∞-norm con-
strained excitation signals to improve the quality of iden-
tified models of large MIMO systems. This is realized by
an optimization-based approach that exploits a sequence of
smooth approximations of the non-smooth objective function,
to achieve a high level of robustness against local minima.
Low computational complexity is achieved by exploiting struc-
tural properties in the gradient and Hessian matrix and results
from circular convolution theory. Experimental results show
a drastic improvement in both the achieved l∞-norm and the
computation time compared to existing techniques.
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