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ALTERNATING LINEAR SCHEME IN A BAYESIAN FRAMEWORK
FOR LOW-RANK TENSOR APPROXIMATION\ast 

CLARA MENZEN\dagger , MANON KOK\dagger , AND KIM BATSELIER\dagger 

Abstract. Multiway data often naturally occurs in a tensorial format which can be approxi-
mately represented by a low-rank tensor decomposition. This is useful because complexity can be
significantly reduced and the treatment of large-scale data sets can be facilitated. In this paper, we
find a low-rank representation for a given tensor by solving a Bayesian inference problem. This is
achieved by dividing the overall inference problem into subproblems where we sequentially infer the
posterior distribution of one tensor decomposition component at a time. This leads to a probabilistic
interpretation of the well-known iterative algorithm alternating linear scheme (ALS). In this way, the
consideration of measurement noise is enabled, as well as the incorporation of application-specific
prior knowledge and the uncertainty quantification of the low-rank tensor estimate. To compute the
low-rank tensor estimate from the posterior distributions of the tensor decomposition components,
we present an algorithm that performs the unscented transform in tensor train format.

Key words. low-rank approximation, alternating linear scheme, Bayesian inference, tensor
decomposition, tensor train
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1. Introduction. Low-rank approximations of multidimensional arrays, also
called tensors, have become a central tool in solving large-scale problems. The numer-
ous applications include machine learning (e.g., tensor completion [36, 43, 14], kernel
methods [35, 5] and deep learning [10, 25]), signal processing [34, 3], probabilistic
modeling [21, 40], nonlinear system identification [13, 1], and solving linear systems
[28, 12]. An extensive overview of applications can be found, e.g., in [9].

In many applications, an observed tensor \bfscrY \in \BbbR I1\times I2\times \cdot \cdot \cdot \times IN can be represented
with a low-rank approximation \bfscrY lr, without losing the most meaningful information
[8]. In the presence of uncorrelated noise \bfscrE , however, \bfscrY loses the low-rank structure.
The observed tensor can be modeled as

(1.1) \bfscrY = \bfscrY lr(\bfscrG 1,\bfscrG 2, . . . ,\bfscrG N ) + \bfscrE , vec(\bfscrE ) \sim \scrN (0, \sigma 2I),

where \bfscrY lr is a low-rank tensor decomposition (TD), which is a function of TD com-
ponents \bfscrG 1,\bfscrG 2, . . . ,\bfscrG N . Examples of TDs are the CANDECOMP/PARAFAC (CP)
decomposition [4, 15], the Tucker decomposition [37], and the tensor train (TT) de-
composition [27]. We model the vectorized noise vec(\bfscrE ) as Gaussian, where \scrN (0, \sigma 2I)
denotes a zero mean multivariate normal distribution with covariance matrix \sigma 2I. The
identity matrix is denoted by I which in (1.1) is of size I1I2 . . . IN \times I1I2 . . . IN .

In this work, we solve a Bayesian inference problem to seek a low-rank TD \bfscrY lr,
given an observed noisy tensor \bfscrY . In general, TDs solve an optimization problem of
the form

(1.2) min
\bfscrG 1,\bfscrG 2,...,\bfscrG N

| | \bfscrY  - \bfscrY lr(\bfscrG 1,\bfscrG 2, . . . ,\bfscrG N )| | .
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BAYESIAN ALS A1117

There exist multiple methods to find a decomposition for a given tensor. The approach
that we are looking at in this paper is the well-known iterative method alternating
linear scheme (ALS). The ALS has been studied extensively and successfully been
applied to find low-rank tensor decompositions (TDs). The ALS for the CP decom-
position is described in [23, 11], the Tucker decomposition is also treated in [23], and
the ALS for the TT decomposition is studied in [20, 31]. The ALS optimizes the
sought tensor on a manifold with fixed ranks [31, p. 1136]. Imposing the low-rank
constraint is therefore easy to implement by choosing the ranks in advance.

The CP, Tucker, and TT decomposition are all multilinear functions of all the
TD components. This means that by assuming all TD components except the nth
to be known, the tensor becomes a linear expression in the nth component [11, p. 4].
In the ALS all TD components are updated sequentially by making use of the TD's
multilinearity. Each update step requires solving a linear least squares problem given
by

(1.3) min
\bfg n

| | y  - U\setminus ngn| | F,

where y \in \BbbR I1I2...IN\times 1 and gn \in \BbbR K\times 1 denote the vectorization of \bfscrY and \bfscrG n, re-
spectively, K being the number of elements in the nth TD component. The matrix
U\setminus n \in \BbbR J\times K is a function of all TD components except the nth, where J is the
number of elements in y, and | | \cdot | | F denotes the Frobenius norm.

A drawback of the ALS is that it does not explicitly model the measurement
noise \bfscrE , which in real-life applications is usually present. In this work, we model
the noise by approaching the TD in a Bayesian framework, treating all components
as probability distributions. In this way, finding a low-rank TD approximation can
be solved as a Bayesian inference problem: given the prior distributions of the TD
components p(gi) and the measurements y, the posterior distribution p(\{ gi\} | y) can
be found by applying Bayes' rule:

p (\{ gi\} | y) =

likelihood\underbrace{}  \underbrace{}  
p(y| \{ gi\} )

prior\underbrace{}  \underbrace{}  
p(\{ gi\} )

p(y)\underbrace{}  \underbrace{}  
evidence

,(1.4)

where \{ gi\} denotes the collection of all TD components gi for i = 1, . . . , N . We
assume that the prior is Gaussian and, as in the ALS, we apply a block coordinate
descent [24, p. 230]. This leads to a tractable inference for each substep.

Solving the low-rank tensor approximation problem in a Bayesian way has the
following benefits. The assumptions on the measurement noise \bfscrE are considered and
the uncertainty of each TD component gn is quantified. Furthermore, prior knowledge
can be explicitly taken into account and the resulting low-rank tensor estimate comes
with a measure of uncertainty. We illustrate the benefits with numerical experiments.

Our main contribution is to approach the low-rank tensor approximation problem
from a Bayesian perspective, treating all TD components as Gaussian random vari-
ables. This results in a probabilistic ALS algorithm. We ensure numerical stability by
incorporating the orthogonalization step, present in the ALS algorithm for the TT de-
composition, into the probabilistic framework. In addition, we propose an algorithm to
approximate the mean and covariance of the low-rank tensor estimate's posterior den-
sity with the unscented transform in tensor train format. Our open-source MATLAB
implementation can be found on https://gitlab.tudelft.nl/cmmenzen/bayesian-als.

D
ow

nl
oa

de
d 

06
/1

3/
22

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://gitlab.tudelft.nl/cmmenzen/bayesian-als


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1118 CLARA MENZEN, MANON KOK, AND KIM BATSELIER

Related work. Our work is related to inferring low-rank TDs with Bayesian
methods for noisy continuous-valued multidimensional observations. While most lit-
erature considers either the CP or Tucker decomposition, our paper mainly focuses
on the TT decomposition, but is also applicable to CP and Tucker. Also, in contrast
to our paper, the related work mainly treats tensors with missing values. The main
difference from the existing literature, however, is the modeling choices. While the
existing work proposes different methods to perform approximate inference of the TD
components, we make approximations that allow us to have a tractable inference.
This is because we take inspiration from the ALS and each substep of the ALS has an
analytical solution. Also, we assume that all TD components are Gaussian random
variables and that they are all independent. Thus, our method is preferable when
these assumptions can be made for a given application.

In [29, 30, 38] inference is performed with Gibbs sampling, using Gaussian pri-
ors for the columns of the CP decomposition's factor matrices. Variational Bayes is
applied in [41, 43]. The recovery of orthogonal factor matrices, optimizing on the
Stiefel manifold with variational inference, is treated by [6]. The Bayesian treat-
ment of a low-rank Tucker decomposition for continuous data has been studied using
variational inference [7, 42] and using Gibbs sampling [19]. Furthermore, an infinite
Tucker decomposition based on a t-process, which is a kernel-based nonparametric
Bayesian generalization of the low-rank Tucker decomposition, is proposed by [39].
The first literature about the probabilistic treatment of the TT decomposition using
von-Mises--Fisher priors on the orthogonal cores and variational approximation with
evidence lower bound is introduced by [18]. Recently, the authors of [17] published
the probabilistic TD toolbox for MATLAB, providing inference with variational Bayes
and with Gibbs sampling.

2. Tensor basics and notation. An N -way tensor \bfscrY \in \BbbR I1\times I2\times \cdot \cdot \cdot \times IN is a
generalization of a vector or a matrix to higher dimensions, whereN is often referred to
as the order of the tensor. We denote tensors by calligraphic, boldface, capital letters
(e.g., \bfscrY ) and matrices, vectors, and scalars by boldface capital (e.g., Y), boldface
lowercase (e.g., y), and italic lower case (e.g., y) letters, respectively. To facilitate
the description and computation of tensors, we use a graphical notation as depicted
in Figure 1. The nodes represent a scalar, a vector, a matrix, and an N -way tensor
and edges correspond to a specific index. The number of edges is equal to how many
indices need to be specified to identify one element in the object, e.g., row and column
index for matrices. An identity matrix is generally denoted by I. Its size is either
specified in the context or as a subscript.

Often it is easier to avoid working with the tensors directly, but rather with a
matricized or vectorized version of them. Therefore, we revise some useful definitions.
In this context, a mode of a tensor refers to a dimension of the tensor.

Definition 2.1 (mode-n-unfolding [23, pp. 459--460]). The transformation of
an N -way tensor into a matrix with respect to a specific mode is called the mode-n
unfolding. It is denoted by

Y(n) \in \BbbR In\times I1...In - 1In+1...IN .

The vectorization is a special case of the unfolding, denoted by the operator name
vec() and defined as

vec(\bfscrY ) = y \in \BbbR I1I2...IN\times 1.

Tensors can be multiplied with matrices defined as follows.
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BAYESIAN ALS A1119

y y Y \bfscrY 

... ... IN
In

I1I2

\bfscrY \in \BbbR I1\times I2\times ...\times In\times ...\times IN

Fig. 1. Visual depictions of a scalar, a vector, a matrix, and an N-way tensor, where the nodes
represent the object and the edges correspond to a specific index. The number of edges is equal to
how many indices need to be specified to identify one element in the object, e.g., row and column
index for matrices.

Definition 2.2 (n-mode product [23, p. 460]). The n-mode product is defined
as the multiplication of a tensor \bfscrX \in \BbbR I1\times \cdot \cdot \cdot \times In\times \cdot \cdot \cdot \times IN with a matrix A \in \BbbR J\times In in
mode n, written as

\bfscrX \times n A \in \BbbR I1\times \cdot \cdot \cdot \times In - 1\times J\times In+1\times \cdot \cdot \cdot \times IN .

Elementwise, the (i1, i2, . . . , in - 1, j, in+1, . . . , iN )th entry of the result can be computed
as

In\sum 
in=1

\bfscrX (i1, i2, . . . , iN )A(j, in).

Definition 2.3 (Kronecker product [23, p. 461]). The Kronecker product of
matrices A \in \BbbR I\times J and B \in \BbbR K\times L is denoted by A \otimes B. The result is a matrix of
size (KI)\times (LJ) and is defined by

A\otimes B =

\left[     
a11B a12B \cdot \cdot \cdot a1JB
a21B a22B \cdot \cdot \cdot a2JB
...

...
. . .

...
aI1B aI2B \cdot \cdot \cdot aIJB

\right]     .

Definition 2.4 (Khatri--Rao product [23, p. 462]). The Khatri--Rao product of
matrices A \in \BbbR I\times K and B \in \BbbR J\times K is denoted by A \odot B. The result is a matrix of
size (JI)\times K defined by

A\odot B =
\bigl[ 
a1 \otimes b1 a2 \otimes b2 \cdot \cdot \cdot aK \otimes bK

\bigr] 
.

The visual depictions of two important matrix operations are shown in Figure 2.
On the left, a product between matrices A \in \BbbR I\times K and B \in \BbbR K\times J is shown, where
the summation over the middle index K, also called contraction, is represented as
an edge that connects both nodes. On the right, an outer product between matrices
A \in \BbbR I1\times I2 and B \in \BbbR J1\times J2 is shown, where the dotted line represents a rank-1
connection. The resulting matrix is the Kronecker product A\otimes B \in \BbbR I1J1\times I2J2 .

A tensor can be expressed as a function of simpler tensors that form a TD. An
extensive review about TDs can be found in [23]. The most notable are the CP
decomposition, the Tucker decomposition, and the TT decomposition.

Definition 2.5 (CP decomposition [4, 15]). The CP decomposition consists of a
set of matrices Gi \in \BbbR Ii\times R, i = 1, . . . , N , called factor matrices, and a weight vector
\bfitlambda \in \BbbR R\times 1 that represent a given N -way tensor \bfscrY . Elementwise, the (i1, i2, . . . , iN )th
entry of \bfscrY can be computed as

R\sum 
r=1

\bfitlambda (r)G1(i1, r) \cdot \cdot \cdot GN (iN , r),
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A B
K

B

A

\rightarrow A\otimes B

J1 J2

I1 I2

I1J1 I2J2
=

AB

I J

I J

Fig. 2. Left: Visual depictions of an index contraction between matrices A and B. Right:
Visual depictions of an outer product between matrices A and B. The dotted line represents a
summation over a rank-1 one connection. The resulting matrix is computed as the Kronecker product
A\otimes B.

where R denotes the rank of the decomposition.

Definition 2.6 (Tucker decomposition [37]). The Tucker decomposition consists
of an N -way tensor \bfscrC \in \BbbR R1\times \cdot \cdot \cdot \times RN , called core tensor, and a set of matrices Gi \in 
\BbbR Ii\times Ri , i = 1, . . . , N , called factor matrices, that represent a given N -way tensor \bfscrY .
Elementwise, the (i1, i2, . . . , iN )th entry of \bfscrY can be computed as

R1\sum 
r1=1

\cdot \cdot \cdot 
RN\sum 

rN=1

\bfscrC (r1, . . . , rN )G1(i1, r1) \cdot \cdot \cdot GN (iN , rN ),

where R1, . . . , RN denote the ranks of the decomposition. The factor matrices can be
orthogonal, such that the Frobenius norm of the entire tensor is contained in the core
tensor.

Definition 2.7 (the TT decomposition [27]). The TT decomposition consists
of a set of three-way tensors \bfscrG i \in \BbbR Ri\times Ii\times Ri+1 , i = 1, . . . , N, called TT-cores, that
represent a given N -way tensor \bfscrY . Elementwise, the (i1, i2, . . . , iN )th entry of \bfscrY can
be computed as

R1\sum 
r1=1

R2\sum 
r2=1

\cdot \cdot \cdot 
RN+1\sum 

rN+1=1

\bfscrG 1(r1, i1, r2)\bfscrG 2(r2, i2, r3) \cdot \cdot \cdot \bfscrG N (rN , iN , rN+1),

where R1, . . . , RN+1 denote the ranks of the TT-cores and by definition R1=RN+1=1.

If the tensor is only approximately represented by a TD, then the ranks determine
the accuracy of the approximation.

As mentioned in section 1, to formulate the linear least squares problem for one
update of the ALS, the TD's property of multilinearity is exploited and it is expressed
as y = U\setminus ngn, with U\setminus n \in \BbbR J\times K and gn \in \BbbR K\times 1, where J and K are the number of
elements of \bfscrY and \bfscrG n, respectively. The following three examples describe how U\setminus n is
built for the CP decomposition, the Tucker decomposition, and the TT decomposition.

Example 2.8. If a tensor is represented in terms of a CP decomposition, the matrix
U\setminus n can be written as

(2.1) U\setminus n = (GN \odot \cdot \cdot \cdot \odot Gn+1 \odot Gn - 1 \odot \cdot \cdot \cdot \odot G1)\otimes IIn .

Note that U\setminus n is of size InI1 . . . In - 1In+1 . . . IN \times InR, so the first dimension needs
to be permuted in order to match y \in \BbbR I1I2...IN . The weight vector \bfitlambda is absorbed
into the factor matrix that is being updated. After each update, the columns of Gn

are normalized and the norms are stored in \bfitlambda . The CP-ALS algorithm can be found
in [23, p. 471].
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BAYESIAN ALS A1121

R2

I1

R3

I2 IN

RN...

Fig. 3. Visual depiction of a TT decomposition with N TT-cores.

\bfscrG n
Rn Rn+1

In

\bfscrG n
Rn Rn+1

In

GL
n GR

n
RnIn Rn+1 Rn InRn+1\rightarrow \rightarrow 

Fig. 4. Left: Visual depiction of a left-unfolding of a TT-core. Right: Right-unfolding of a
TT-core.

Example 2.9. If a tensor is represented in terms of a Tucker decomposition, the
matrix U\setminus n can be written as

(2.2) U\setminus n =
\Bigl[ 
(GN \otimes \cdot \cdot \cdot \otimes Gn+1 \otimes Gn - 1 \otimes . . .G1)C

\top 
(n)

\Bigr] 
\otimes IIn .

Note that U\setminus n is of size InI1 . . . In - 1In+1 . . . IN \times InRn, so the first dimension needs
to be permuted in order to match y \in \BbbR I1I2...IN . The core tensor is recomputed by
solving

y = (GN \otimes \cdot \cdot \cdot \otimes G1) vec(\bfscrC ).

Example 2.10. If the tensor is represented in terms of a TT decomposition, the
matrix U\setminus n can be written as

(2.3) U\setminus n = \bfscrG i>n \otimes IIn \otimes \bfscrG \top 
i<n \in \BbbR I1I2...IN\times RnInRn+1 ,

where \bfscrG i<n (\bfscrG i>n) denotes a tensor obtained by contracting the TD components, left
(right) of the nth core.

From here on, we will focus on the TT decomposition. We, therefore, review
some of the main concepts. A TT can be represented by a diagram with nodes as
the TT-cores and the edges as the modes of the approximated tensor. Connected
edges are the summation over the ranks between two cores (Figure 3). To introduce a
notion of orthonormality for TT-cores, a special case of Definition 2.1 is used, creating
unfoldings of the TT-cores defined as follows.

Definition 2.11 (left- and right-unfolding [20, p. A689]). The left-unfolding GL
n

and right-unfolding GR
n of a TT-core \bfscrG n are the unfoldings of a core with respect to

the first and last mode, respectively (Figure 4). Please note that the definition by [20]
of the right-unfolding is the transposed version of this definition.

Definition 2.12 (left-orthogonal and right-orthogonal [20, p. A689]). A TT-
core \bfscrG n is called left-orthogonal if the left-unfolding GL

n satisfies\bigl( 
GL

n

\bigr) \top 
GL

n = IRn+1
.

Analogously, a TT-core \bfscrG n is called right-orthogonal if the right-unfolding GR
n satisfies

GR
n

\bigl( 
GR

n

\bigr) \top 
= IRn .

Definition 2.13 (site-n-mixed-canonical form [33, p. 113]). A TT is in site-n-
mixed-canonical form if the TT-cores \{ \bfscrG i\} i<n are left-orthogonal and the TT-cores
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A1122 CLARA MENZEN, MANON KOK, AND KIM BATSELIER

Fig. 5. Visual depiction of TTs with three TT-cores in site-n-mixed-canonical form. Left:
Norm in the first core, and other cores left-orthogonal. Middle: Norm in the second core, and first
and last cores are left- and right-orthogonal, respectively. Right: Norm in the last core, and other
cores right-orthogonal.

I1

J1

I2

J2

...

IN

JN

Fig. 6. Visual depiction of a TT matrix. The row indices I1, . . . , IN point downwards, and the
column indices J1, . . . , JN point upwards.

\{ \bfscrG i\} i>n are right-orthogonal. The nth TT-core is not orthogonal, and it can be easily
shown that

| | \bfscrY | | F = | | \bfscrG n| | F.

Figure 5 depicts different site-n-mixed-canonical forms for an exemplary three-
way TT. In the left (right) figure, the Frobenius norm is contained in the first (last)
core and all other cores are right- (left-) orthogonal, represented by the diagonal in
the node.

A special case of the TT decomposition format is the TT matrix (Figure 6),
which represents a large matrix in TT format. TT matrices arise in the context of
the unscented transform in section 5.

Definition 2.14 (TT matrix [26]). A TT matrix (TTm) consists of a set of
four-way tensors \bfscrG i \in \BbbR Ri\times Ii\times Ji\times Ri+1 , i = 1, . . . , N with R1 = RN+1 = 1, that
represents a matrix A \in \BbbR I\times J . The row and column indices are split into multiple
row indices I = I1, . . . , IN and column indices J = J1, . . . , JN , respectively, and the
matrix is transformed into a 2N -way tensor \bfscrY \bfA \in \BbbR I1\times J1\times \cdot \cdot \cdot \times IN\times JN . Elementwise,
the (i1, j1, i2, j2, . . . , iN , jN )th entry of \bfscrY \bfA is computed as

R1\sum 
r1=1

R2\sum 
r2=1

\cdot \cdot \cdot 
RN+1\sum 

rN+1=1

\bfscrG 1(r1, i1, j1, r2)\bfscrG 2(r2, i2, j2, r3) \cdot \cdot \cdot \bfscrG N (rN , iN , jN , rN+1).

A TTm arises, e.g., from an outer product between two vectors a and b, which
corresponds to computing the product of one vector with the transpose of the other. If
vector a is represented by a TT with cores \bfscrA 1, . . . ,\bfscrA N , the resulting TTm is achieved
by summing over a rank-1 connection between one of the TT-cores, e.g., the first, and
vector b (Figure 7 top). This result is a special case of the general TTm, where only
one of the TT-cores has a double index. This means that only the row index is very
large and therefore split into multiple indices, while the column index is not split. If
both vectors in the outer product are represented by TTs with cores \bfscrA 1, . . . ,\bfscrA N and
\bfscrB 1, . . . ,\bfscrB N , respectively, then each core is summed over a rank-1 connection with the
core of the other TT's transpose (Figure 7, middle). All cores then have a row and
column indices. The product of a matrix C in TTm format with cores \bfscrC 1, . . . ,\bfscrC N
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BAYESIAN ALS A1123

=
Outer product of

TT and vector
...

a b\top 

=
Outer product

of two TTs

...

...

a

b

Product of

TTm and vector
=

...

C

b\top 

\bfb \top 

\bfscrA 1 \bfscrA 2 \bfscrA N

\bfscrB 1 \bfscrB 2 \bfscrB N

\bfscrA 1 \bfscrA 2 \bfscrA N

\bfb 

\bfscrC 1 \bfscrC 2 \bfscrC N

Fig. 7. Operations with matrices and vectors. Top: Outer product between a vector a, repre-
sented by a TT with cores \bfscrA 1, . . . ,\bfscrA N , and a vector b. A rank-1 connection (dotted line) is summed
over between the first TT-core and vector b\top . Middle: Outer product between two vectors a and
b represented by TTs with cores \bfscrA 1, . . . ,\bfscrA N and \bfscrB 1, . . . ,\bfscrB N , respectively. A rank-1 connection
is summed over between each core of the TTs. Bottom: The product between a matrix C in TTm
format with cores \bfscrC 1, . . . ,\bfscrC N and a vector b. The column index of the first TTm-core is summed
over with the row index of the vector b.

with a vector b is computed by summing over the column index of one TTm-core,
e.g., the first, and the row index of the vector (Figure 7, bottom).

3. Bayesian inference for low-rank tensor approximation. In this section,
we present a method to find a low-rank TD using a similar strategy as in the ALS
by solving a Bayesian inference problem. In this context, the vectorization of each
TD component is treated as a Gaussian random variable, expressed in terms of a
mean and a covariance. Generally, we denote a Gaussian probability distribution as
\scrN (m,P), where m is the mean and P is the covariance. This section is organized
as follows. First, we define the prior for the inference problem. Before computing
the joint posterior distribution, we look at a simpler inference problem, stated in
Lemma 3.1, where the posterior distribution of only one TD component is computed.
Then, Theorem 3.3 describes the computation of the joint posterior by applying a
block coordinate descent method and simplifying the inference problem to iteratively
applying Lemma 3.1. Finally, our resulting Algorithm 3.1 is applied in an example.

To initialize the Bayesian inference problem, a multivariate Gaussian prior is
assigned to every TD component

p (gi) = \scrN 
\bigl( 
m0

i ,P
0
i

\bigr) 
, i = 1, . . . , N,

where m0
i and P0

i are the prior mean and covariance matrix, respectively. The TD
components gi \in \BbbR RiIiRi+1\times 1 are assumed to be statistically independent. Therefore,
the joint prior distribution is given by

p(\{ gi\} ) = \scrN 

\left(      
\left[     
m0

1

m0
2
...

m0
N

\right]     ,

\left[      
P0

1 0 . . . 0

0 P0
2

. . .
...

...
. . .

. . . 0
0 . . . 0 P0

N

\right]      
\right)      ,

where \{ gi\} denotes the priors of all TD components. Because of the statistical inde-
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A1124 CLARA MENZEN, MANON KOK, AND KIM BATSELIER

pendence, the joint prior distribution and the prior on one TD component conditioned
on the other TD components can be written as

p(\{ gi\} ) = p(g1)p(g2) . . . p(gN ) and(3.1)

p(gn | \{ gi\} i\not =n) = p(gn),(3.2)

respectively, where \{ gi\} i\not =n denotes the collection of all TD components except the
nth.

The joint posterior distribution p(\{ gi\} | y) is found by applying Bayes' rule.
However, before solving this inference problem and inspired by a result described in
[32, p. 29], we first look at the simpler problem to find the posterior distribution of
one component, given the measurement and the other components.

Lemma 3.1. Let the prior distribution p(gn) = \scrN (m0
n,P

0
n) and the likelihood

p(y | \{ gi\} ) = \scrN (m\bfy , \sigma 
2I) be Gaussian, where m\bfy = U\setminus ngn. Further, let all TD

components be statistically independent, and let the TD be multilinear. Then, the
posterior distribution p (gn | \{ gi\} i \not =n,y) = \scrN (m+

n ,P
+
n ) of the nth component given

the measurements and the other components is also Gaussian with mean m+
n and

covariance P+
n :

m+
n =

\Biggl[ 
(P0

n)
 - 1 +

U\top 
\setminus nU\setminus n

\sigma 2

\Biggr]  - 1 \Biggl[ 
U\top 

\setminus ny

\sigma 2
+ (P0

n)
 - 1m0

n

\Biggr] 
,(3.3)

P+
n =

\Biggl[ 
(P0

n)
 - 1 +

U\top 
\setminus nU\setminus n

\sigma 2

\Biggr]  - 1

.(3.4)

Proof. The posterior distribution of one TD component conditioned on the other
TD components and the measurements p (gn | y, \{ gi\} i\not =n) can be found by applying
Bayes' rule. Assuming that all components are statistically independent (3.2) leads
to

p (gn | y, \{ gi\} i \not =n) =
p(y | \{ gi\} )p(gn)

p(y | \{ gi\} i\not =n)
.(3.5)

Since the likelihood p(y | \{ gi\} ) and prior p(gn) are Gaussian, also the posterior will
be Gaussian [32, pp. 28--29, 209--210] with mean (3.3) and covariance (3.4).

Corollary 3.2. For limP0
n \rightarrow \infty , (3.3) reduces to the normal equations of the

least squares problem and therefore the update equation of the conventional ALS

(3.6) m+
n =

\Bigl( 
U\top 

\setminus nU\setminus n

\Bigr)  - 1

U\top 
\setminus ny.

Corollary 3.2 describes the case where there is no useful prior information available
for the nth TD component. Thus, the certainty on the prior mean is zero, and
limP0

n \rightarrow \infty .
Now, we can use Lemma 3.1 to find the joint posterior distribution of all TD

components as described in the following theorem.

Theorem 3.3. Let p (\{ gi\} | y) be the posterior joint distribution of all TD com-
ponents given y. Further, let the prior distribution p(gn) = \scrN (m0

n,P
0
n) of any com-

ponent as well as the likelihood p(y | \{ gi\} ) = \scrN (m\bfy , \sigma 
2I) be Gaussian, where the

mean m\bfy is the tensor represented by the TD, which is a nonlinear function of all the
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Prior definition p(g1) p(g2) p(g3)

\downarrow 
...

...

Update 1 p(g1 | g2,g3,y)
...

...

= p(\bfy | \bfg 1,\bfg 2,\bfg 3)p(\bfg 1)
p(\bfy | \bfg 2,\bfg 3)

...
...

\downarrow 
...

Update 2 p(g2 | g1,g3,y)
...

= p(\bfy | \bfg 1,\bfg 2,\bfg 3)p(\bfg 2)
p(\bfy | \bfg 1,\bfg 3)

...

\downarrow 
Update 3 p(g3 | g1,g2,y)

= p(\bfy | \bfg 1,\bfg 2,\bfg 3)p(\bfg 3)
p(\bfy | \bfg 1,\bfg 2)

Fig. 8. Distribution updates for example with three TD components.

TD components. Further, let all TD components be statistically independent, and let
the TD be multilinear. Then, by applying block coordinate descent to find the posterior
density, every step of the block coordinate descent corresponds to applying Lemma 3.1.

Proof. Bayes' rule and statistical independence (3.1) gives

p (\{ gi\} | y) =
p(y | \{ gi\} )p(g1)p(g2) . . . p(gN )

p(y)
.(3.7)

As in the conventional ALS, a block coordinate descent method is applied by con-
ditioning the posterior distribution of one TD component on all the others. In this
way, the TD components can be computed sequentially with (3.5). In addition, due
to the multilinearity of the TD the mean of the likelihood becomes a linear function
of the nth TD component, m\bfy = U\setminus ngn. Thus, every TD update corresponds to
applying Lemma 3.1.

With Corollary 3.2, Theorem 3.3 gives a Bayesian interpretation of the ALS by
deriving its update equation from the TD components defined as probability distribu-
tions. The following example shows how the distributions change with every update.

Example 3.4 (distribution updates for a TD with three components). Assume
we would like to apply Theorem 3.3 to find a TD with three components. First, the
three TD components are initialized with a prior distribution. Then, the distributions
are updated sequentially by computing the posterior with Bayes' rule, as shown in
Figure 8. After updating the three TD components, the updates are repeated until a
stopping criterion is met.

Algorithm 3.1 summarizes the steps of the ALS in a Bayesian framework. The
mean and covariance of each TD component are sequentially updated, followed by
the computation of U\setminus n which is computed from \{ gi\} i \not =n. The stopping criterion is
defined by the user, e.g., as a maximum number of iterations or the convergence of the
residuals between the measurement and estimate, as used in the convectional ALS. It
is also possible to consider the convergence of the TT-core's covariance matrices as a
stopping criterion since these are additionally computed in the ALS in the Bayesian
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A1126 CLARA MENZEN, MANON KOK, AND KIM BATSELIER

Table 1
Computational cost per update and overall storage requirements for Algorithm 3.1.

TD Computational cost Storage

CP \scrO (R3I3) +\scrO (RIN+1) \scrO (NRI +NR2I2)
Tucker \scrO (R3N ) +\scrO (RN IN ) \scrO (NRI +RN +NR2I2 +R2N )
TT \scrO (R6I3) +\scrO (R2IN ) \scrO (NR2I +NR4I2)

framework. Another possibility is to look at the convergence of the numerator of
Bayes' rule.

For the complexity analysis, we use the following notation. The largest rank
or the CP-rank is denoted by R, and the largest dimension of the approximated
tensor is denoted by I. The computational cost per update and the overall storage
requirements are given in Table 1. The first term in the computational cost for CP,
Tucker, and TT represents the inversion that needs to be performed to compute
the covariance matrix of the updated factor matrices, core tensor, and TT cores,
respectively. The cost for the Tucker core could be reduced, however, by incorporating
an orthogonalization step, thus, avoiding the recomputation of the core tensor. The
second term for all TDs is the complexity to compute U\top 

\setminus ny, which is dominant

compared to the cost of computing U\top 
\setminus nU\setminus n. In comparison, the conventional ALS

has the same computational cost for every TD component update, and a total storage
requirement of \scrO (NRI) for CP, \scrO (NRI + RN ) for Tucker, and \scrO (NR2I) for TTs.
The ALS in a Bayesian framework has an additional term in the storage requirements,
because it computes the covariance matrix for every TD component.

Our method also opens up the possibility of recursively estimating the mean and
covariance of the TD components. In case a new noisy measurement y of the same
underlying tensor becomes available, Algorithm 3.1 can be applied repeatedly with
the output mean and covariance from the previous execution as the prior for the new
execution.

Algorithm 3.1. ALS in a Bayesian framework.

Require: Prior mean \{ m0
i \} and covariance \{ P0

i \} , i = 1, . . . N , measurement y, and
noise variance \sigma 2.

Ensure: Posterior mean \{ m+
i \} and covariance \{ P+

i \} , i = 1, . . . N .
1: Set \{ mi\} := \{ m0

i \} , \{ Pi\} := \{ P0
i \} , i = 1, . . . N .

2: while Stopping criterion is not true do
3: for n = 1, . . . , N do

4: Compute U\setminus n with (2.1) for CP, (2.2) for Tucker or (2.3) for TT, using the

mean of the TD components \{ mi\} i\not =n.

5: P+
n \leftarrow 

\Bigl[ 
(P0

n)
 - 1 +

\bfU \top 
\setminus n\bfU \setminus n

\sigma 2

\Bigr]  - 1

6: m+
n \leftarrow P+

n

\Bigl[ 
\bfU \top 

\setminus n\bfy 

\sigma 2 + (P0
n)

 - 1m0
n

\Bigr] 
7: mn \leftarrow m+

n , Pn \leftarrow P+
n

8: end for
9: end whileD
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BAYESIAN ALS A1127

Fig. 9. Visual depiction of a TT transformation into site-1-mixed-canonical form.

4. Orthogonalization step in Bayesian framework for a TT. Every iter-
ation of Algorithm 3.1 requires the inversion

(4.1)

\Biggl[ 
(P0

n)
 - 1 +

U\top 
\setminus nU\setminus n

\sigma 2

\Biggr]  - 1

, corresponding to
\Bigl[ 
U\top 

\setminus nU\setminus n

\Bigr]  - 1

in the conventional ALS update. To avoid the propagation of numerical errors and
ensure numerical stability, some ALS algorithms, e.g., the one for the TT decomposi-
tion, include an orthogonalization step after every update. In this way, the condition
number of each subproblem cannot become worse than the one of the overall prob-
lem [20, p. A701]. In this section, we present how we integrate the orthogonalization
procedure into the ALS in a Bayesian framework for a TT decomposition in site-n-
mixed-canonical form. The same can also be applied to a Tucker decomposition with
orthogonal factor matrices.

We first describe how the orthogonalization step is performed in the conventional
ALS and then how we integrate it into the ALS in a Bayesian framework. Here, we
differentiate between the prior distributions of each TT-core and the initial guess for
each TT-core, which initializes the conventional ALS. In the conventional ALS with
orthogonalization step, the initial TT is transformed into the site-1-mixed-canonical
form, where the Frobenius norm of the first TT-core corresponds to the Frobenius
norm of the entire TT. The update is always performed on the core that contains the
Frobenius norm. The procedure, therefore, requires transformations that separate the
Frobenius norm from the updated TT-core and moves it to the next TT-core to be
updated.

The initial TT is transformed into site-1-mixed-canonical form, by orthogonalizing
the Nth up to the 2nd TT-core as illustrated in Figure 9 for a TT with three cores.
To move the Frobenius norm from the nth TT-core to the (n - 1)th, the nth TT-core
is orthogonalized by applying the thin QR-decomposition on

(4.2)
\bigl( 
GR

n

\bigr) \top 
= QR

nR
R
n .

Then, GR
n is replaced by

(4.3) GR
n \leftarrow 

\bigl( 
QR

n

\bigr) \top 
,

and the nonorthogonal part, illustrated by the small circle in Figure 9, is absorbed
into the (n - 1)th core with

(4.4) \bfscrG n - 1 \leftarrow \bfscrG n - 1 \times 3 R
R
n .

Equations (4.2)--(4.4) are applied to the Nth until the 2nd TT-core, leading to the
TT in site-1-mixed-canonical form. Then, the first core is updated, followed by a
transformation to move the Frobenius norm to the second core, and so on. Since the
Frobenius norm moves to the right, the orthogonalization step consists of applying
the thin QR-decomposition on the left-unfolding

(4.5) GL
n = QL

nR
L
n.
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=

RnRn \bigl( 
RR

n

\bigr)  - \top 

I

GR
n

In
Rn+

1
I\otimes 

\bigl( 
RR

n

\bigr)  - \top gn
RnInRn+1 RnInRn+1

InRn+1

Fig. 10. Visual depiction of how the nonorthogonal part is separated from the TD component's
mean.

The nth and (n+ 1)th core are replaced by

(4.6) GL
n \leftarrow QL

n and \bfscrG n+1 \leftarrow \bfscrG n+1 \times 1 R
L
n,

respectively. After the Nth core is updated, the updating scheme goes backwards,
using again (4.2)--(4.4) for the orthogonalization step. When the Frobenius norm is
absorbed back into the first core, one back-and-forth sweep of the ALS algorithm is
concluded.

In the following, we describe how the transformation steps affect the distributions
representing the TT-cores in the ALS in a Bayesian framework. The transformation
of the random variables can be derived from (4.2)--(4.6). When the Frobenius norm
is moved to the left, the mean of the nth core becomes

mn \leftarrow vec
\Bigl( \bigl( 

QR
n

\bigr) \top \Bigr) 
,

where
\bigl( 
QR

n

\bigr) \top 
is computed from (4.3). To obtain the transformed covariance of the

nth TT-core, (4.2) is rewritten as\bigl( 
QR

n

\bigr) \top 
=

\bigl( 
RR

n

\bigr)  - \top 
GR

n .

Now, the right-hand side, is vectorized by summing over a rank-1 connection between\bigl( 
RR

n

\bigr)  - \top 
and an identity matrix of size InRn+1 \times InRn+1 that has a connected edge

with GR
n as depicted in Figure 10. This leads to a transformation term

(4.7) I\otimes 
\bigl( 
RR

n

\bigr)  - \top 

that orthogonalizes gn. The diagram in Figure 11 shows how this transformation
is applied to the covariance matrix. The transformation term and its transpose are
multiplied on the left and right side of Pn, respectively, resulting in

Pn \leftarrow 
\Bigl( 
I\otimes 

\bigl( 
RR

n

\bigr)  - \top \Bigr) 
Pn

\Bigl( 
I\otimes 

\bigl( 
RR

n

\bigr)  - \top \Bigr) \top 

=
\Bigl( 
I\otimes 

\bigl( 
RR

n

\bigr)  - \top \Bigr) 
Pn

\Bigl( 
I\otimes 

\bigl( 
RR

n

\bigr)  - 1
\Bigr) 
.

The transformations of the (n  - 1)th core to absorb the Frobenius norm can be
derived from (4.4) in a similar way as explained above, resulting in a transformation
term

(4.8) RR
n \otimes I.
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\bigl( 
RR

n

\bigr)  - \top 
Pn

\bigl( 
RR

n

\bigr)  - 1

I I

Rn

I n
R
n
+
1 = PnI\otimes 

\bigl( 
RR

n

\bigr)  - \top 
I\otimes 

\bigl( 
RR

n

\bigr)  - 1

RnInRn+1

Fig. 11. Visual depiction of how the covariance matrix is transformed in the orthogonalization
step.

When the Frobenius norm is moved to the right during the orthogonalization step,
the transformations for the updated core and the next core to be updated become

(4.9)
\bigl( 
RL

n

\bigr)  - \top \otimes I and I\otimes RL
n,

respectively. It can be easily shown that the transformations for the orthogonalization
step do not affect the statistical independence of the joint distribution of the random
variables, since the transformations are performed on each variable individually. The
following example shows the updating for the transformation scheme of the random
variables that represent an exemplary three core TT.

Example 4.1 (distribution updates and orthogonalization transformations for a
TT with three cores). Assume we would like to apply Theorem 3.3 to find a TT with
three cores and keep the TD in site-n-mixed-canonical form. The three TT-cores are
initialized with a prior distribution and transformed such that the corresponding TT
is in site-1-mixed-canonical form. The random variables that represent the orthogonal
cores are denoted by qi, i = 1, 2, 3, and the random variable representing the TT-
core that contains the Frobenius norm is denoted by xi, i = 1, 2, 3. After the random
variables are transformed into site-1-mixed-canonical form using (4.7) and (4.8), the
first core is updated followed by moving the Frobenius norm to the second core. Then
the second core is updated and the Frobenius norm is moved to the last. When this
half-sweep, as shown below, is completed using the transformations from (4.9), the
same procedure is repeated in the opposite direction, requiring again (4.7) and (4.8).
The example is depicted in Figure 12.

The ALS in a Bayesian framework with orthogonalization step has another differ-
ence compared to the one without orthogonalization. The update equations for the
mean and covariance, (3.3) and (3.4), are affected by the TT decomposition being
in site-n-mixed-canonical form: the matrix U\setminus n becomes orthogonal and the update
equations simplify to

m+
n =

\biggl[ 
(P0

n)
 - 1 +

I

\sigma 2

\biggr]  - 1

\underbrace{}  \underbrace{}  
\bfP +

n

\Biggl[ 
U\top 

\setminus ny

\sigma 2
+ (P0

n)
 - 1m0

n

\Biggr] 
.
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Prior p(g1) p(g2) p(g3)

\downarrow \downarrow \downarrow 
Transformed prior p(x1) p(q2) p(q3)

\downarrow 
...

...

Update core 1 p(x1 | q2,q3,y)
...

...

=
p(\bfy | \bfx 1,\bfq 2,\bfq 3)p(\bfx 

0
1)

p(\bfy | \bfq 2,\bfq 3)

...
...

\downarrow \downarrow 
...

Move norm to core 2 p(q1 | x2,q3,y) p(x2)
...

\downarrow 
...

Update core 2 p(x2 | q1,q3,y)
...

=
p(\bfy | \bfq 1,\bfx 2,\bfq 3)p(\bfx 

0
2)

p(\bfy | \bfq 1,\bfq 3)

...

\downarrow \downarrow 
Move norm to core 3 p(q2 | q1,x3,y) p(x3)

\downarrow 
Update core 3 p(x3 | q1,q2,y)

=
p(\bfy | \bfq 1,\bfq 2,\bfx 3)p(\bfx 

0
3)

p(\bfy | \bfq 1,\bfq 2)

Fig. 12. Distribution updates with orthogonalization step for example with three TT-cores.

In this case U\top 
\setminus ny corresponds to the update of the conventional ALS (3.6), due

to the orthogonality of U\setminus n.
Algorithm 4.1 summarizes the ALS in a Bayesian framework with orthogonal-

ization step for a TT decomposition. The computational cost of one update in Al-
gorithm 4.1 is \scrO (R6I3) for the inversion and \scrO (R3I) for the thin QR-factorization,
and the storage requirement is \scrO (R2I + R4I2), where R is the largest TT-rank and
I is the largest dimension of the approximated tensor. The only difference compared
to the conventional ALS in terms of complexity is the additionally required storage
for the covariance matrices. Thus, the number of elements of one TD component,
depending on the ranks, will be the limiting factor for the computational complexity.
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BAYESIAN ALS A1131

Algorithm 4.1. ALS in Bayesian framework with orthogonalization step.

Require: Prior mean \{ m0
i \} and covariance \{ P0

i \} , i = 1, . . . , N , measurement y and
noise variance \sigma 2.

Ensure: Posterior mean \{ m+
i \} and covariance \{ P+

i \} , i = 1, . . . , N .

1: Transform random variables such that the corresponding TT decomposition is in

site-1-mixed-canonical form.

2: Set \{ mi\} := \{ m0
i \} , \{ Pi\} := \{ P0

i \} , i = 1, . . . , N .

3: while stopping criterion is not true do

4: for n = 1, . . . , N,N  - 1, . . . , 2 do

5: Compute U\setminus n with (2.3) for TT using the mean of the TD compo-

nents \{ mi\} i \not =n.

6: P+
n \leftarrow 

\bigl[ 
(P0

n)
 - 1 + \bfI 

\sigma 2

\bigr]  - 1

7: m+
n \leftarrow P+

n

\Bigl[ 
\bfU \top 

\setminus n\bfy 

\sigma 2 +
\bigl( 
P0

n

\bigr)  - 1
m0

n

\Bigr] 
8: if next core is to the right, then

9: m+
n \leftarrow vec(QL

n), with QL
n from thin QR-factorization of GL

n

10: P+
n \leftarrow 

\Bigl( \bigl( 
RL

n

\bigr)  - \top \otimes I
\Bigr) 

P+
n

\Bigl( \bigl( 
RL

n

\bigr)  - 1 \otimes I
\Bigr) 

11: mn+1 \leftarrow (I\otimes RL
n)mn+1

12: Pn+1 \leftarrow (I\otimes RL
n) Pn+1 (I\otimes 

\bigl( 
RL

n

\bigr) \top 
)

13: else if next core is on the left, then

14: m+
n \leftarrow vec

\Bigl( \bigl( 
QR

n

\bigr) \top \Bigr) 
, with QR

n from thin QR-factorization of GR
n

15: P+
n \leftarrow 

\Bigl( 
I\otimes 

\bigl( 
RR

n

\bigr)  - \top 
\Bigr) 

P+
n

\Bigl( 
I\otimes 

\bigl( 
RR

n

\bigr)  - 1
\Bigr) 

16: mn - 1 \leftarrow (RR
n \otimes I)mn - 1

17: Pn - 1 \leftarrow (RR
n \otimes I) Pn - 1

\Bigl( \bigl( 
RR

n

\bigr) \top \otimes I
\Bigr) 

18: end if

19: mn \leftarrow m+
n , Pn \leftarrow P+

n

20: Apply the transformations of the lines 7--10 or 12--15 to m0
n,P

0
n.

21: end for

22: end while

5. Unscented transform in TT format. In Algorithms 3.1 and 4.1 we com-
pute the posterior distributions of the TT-cores p(gn | \{ gi\} i \not =n,y). However, we are
interested in computing the distribution of the low-rank tensor estimate \bfscrG , which is
computed with a nonlinear function dependent on the posterior distributions and is,
therefore, not Gaussian. The unscented transform (UT) [22] can approximate the
mean mUT and covariance PUT of the sought distribution. In this section, we show
how we can perform the UT in TT format. In this way, the direct computation of the
potentially large covariance matrix can be avoided.
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Generally, the UT approximates the mean and covariance of a distribution that
is a nonlinear function of a known distribution h \sim \scrN (m,P) with mean m \in \BbbR M\times 1

and covariance P \in \BbbR M\times M [32, pp. 81--84]. First, 2M + 1 sigma points are formed
with

x(0) = m,(5.1)

x(i) = m+
\surd 
M + \lambda 

\Bigl[ \surd 
P
\Bigr] 
i
, i = 1, . . . ,M,(5.2)

x(i+M) = m - 
\surd 
M + \lambda 

\Bigl[ \surd 
P
\Bigr] 
i
, i = 1, . . . ,M,(5.3)

where the square root of the covariance matrix
\surd 
P corresponds to the Cholesky

factor, such that
\surd 
P
\surd 
P

\top 
= P, where

\bigl[ \surd 
P
\bigr] 
i
is the ith column of that matrix. The

scaling parameter \lambda is defined as \lambda = \alpha 2(M + \kappa ) - M , where \alpha and \kappa determine the
spread of the sigma points around the mean. Second, the sigma points are propagated
through the nonlinearity. Third, the approximated mean mUT and covariance PUT

are computed as

mUT =

2M\sum 
i=0

w\bfm 
i \bfscrS (i),(5.4)

PUT =

2M\sum 
i=0

w\bfP 
i

\Bigl( 
\bfscrS (i)  - mUT

\Bigr) \Bigl( 
\bfscrS (i)  - mUT

\Bigr) \top 
,(5.5)

where \bfscrS (i) are the transformed sigma points. The scalars w\bfm 
i and w\bfP 

i denote weight-
ing factors, defined as

w\bfm 
0 =

\lambda 

M + \lambda 
, w\bfP 

0 = w\bfm 
0 +

\bigl( 
1 - \alpha 2 + \beta 

\bigr) 
,

w\bfm 
i = w\bfm = w\bfP 

i = w\bfP =
1

2(M + \lambda )
, i = 1, . . . , 2M.

Literature suggests \alpha = 0.001, \kappa = 3 - M [16, p. 229], and for Gaussian distributions
\beta = 2 [32, p. 229].

In order to use the UT in TT format, the known distribution h \sim \scrN (m,P) is
computed from the cores' mean and covariance as

h \sim \scrN (m,P) = \scrN 

\left(      
\left[     
m1

m2

...
mN

\right]     ,

\left[      
P1 0 . . . 0

0 P2
. . .

...
...

. . .
. . . 0

0 . . . 0 PN

\right]      
\right)      .(5.6)

The mean, consisting of the stacked vectorized cores, is of size M \times 1 with

M =

N\sum 
n=1

RnInRn+1, R1 = RN+1 = 1.

The covariance matrix of size M \times M is block diagonal, since we assume the
TT-cores to be statistically independent. The nonlinear function for the UT in TT
format is defined as

(5.7) fT : \BbbR M\times 1 \rightarrow \BbbR I1\times I2\times ...\times IN given by x \mapsto \rightarrow \bfscrG ,
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\bfscrG 1 \bfscrG 2 \bfscrG Nx = \bfscrG fT

M

I1 I2 IN
I1I2 IN

R2 RNR3 . . .

...

Fig. 13. Visual depiction of the nonlinear transformation from vector x into a TT with cores
\bfscrG i, i = 1, . . . , N, that represents tensor \bfscrG .

M

e\top j
x(i)e\top j =

\left[        

0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0
...

...
x(i)

...
...

0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0

\right]        \rightarrow i = 1 . . . 2M + 1

j = 1 . . .M

Fig. 14. Propagation of each sigma point as a column of matrix x(i)e\top i through the nonlinearity.

where x is a vector of size M \times 1. The transformation of a vector into a tensor is
depicted in Figure 13.

The formation and propagation of the sigma points works as follows. The first
sigma point x(0) is the mean m from (5.6) and propagated through the nonlinearity; it
corresponds to the TT represented by the distributions determined by Algorithm 3.1.
To facilitate later steps, the remaining sigma points from (5.2) and (5.3) are organized
into two matrices, according to

A+ =

M\sum 
i=1

x(i)e\top i ,(5.8)

A - =

M\sum 
i=1

x(M+i)e\top i ,(5.9)

where ei denotes a vector with zeros everywhere except a 1 at location i. In this
way, the propagation through the nonlinearity of all sigma points then becomes a
propagation of every summand x(i)e\top i and x(M+i)e\top i , respectively. The propagation
is achieved by forming TT-cores from x(i) and x(M+i) and summing over a rank-1
connection between the first core and the vector e\top i as shown in Figure 14.

Then, all summands of A+ \in \BbbR M\times M and A - \in \BbbR M\times M , are summed together,
respectively, by stacking the cores according to [28, p. 2308], as illustrated in Figure 15
(left). The summation causes the ranks of the TTm to increase and a rounding proce-
dure [27, pp. 2301--2305] needs to be applied to reduce the ranks back to the required
precision. Finally, the vector containing the weights w\bfm = w\bfm 1M is absorbed into
the first core (Figure 15, right).

The computation of the covariance matrix from (5.5) is divided into two steps.
First, mUT is subtracted from the sum over the sigma points (Figure 15, left). This
is achieved by creating a matrix, where mUT is stacked M times next to each other.
The visual depiction of this operation equals the one in Figure 14 with the difference
that the multiplied vector is 1\top 

M . Second, the result from the first step absorbs the
weights into the first core, as depicted in Figure 16. The resulting covariance matrix
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I1 I2 I3

M

e\top j\sum M
j=1

M

=

M

I1 I2 I3

w\bfm 

Fig. 15. Visual depiction of (5.4) as a sum over sigma points (left) and absorption of the
weight vector w\bfm into the first core (right).

I1

I2

I3

M
I1

I2

I3

M
w\bfP IM

=

I1

I2

I3

I1

I2

I3

Fig. 16. Visual depiction of (5.5) with w\bfP IM as a diagonal matrix containing the weight
factors on the diagonal.

PUT in the three-core example is a TT matrix that corresponds to a matrix of size
I1I2I3 \times I1I2I3.

The computation of the approximate mean and covariance with the UT in TT
format is summarized in Algorithm 5.1. The computational cost depends on the ranks
of the TD, since M is a function of the ranks. The bottleneck of Algorithm 5.1 is the
rounding procedure necessary after performing summations in TT format. It has a
cost of \scrO (R3I2N) for a TT matrix.

Algorithm 5.1. Approximation of the low-rank tensor estimate's mean and covari-
ance with the unscented transform in TT format.
Require: The mean and covariances of each TT-core \{ mi,Pi\} , i = 1, . . . , N , com-

puted with the ALS in a Bayesian framework.
Ensure: The approximated mean mUT and covariance PUT in TT format of the

low-rank tensor estimate's distribution.
1: Compute sigma point x(0) with (5.1).
2: Compute remaining sigma points with (5.2) and (5.3) and organize them into

groups according to (5.8) and (5.9).
3: Propagate sigma points through (5.7), where groups from step 2 are propagated

as shown in Figure 13.
4: Estimate the mean mUT with (5.4) as shown in Figure 15.
5: Estimate the covariance PUT with (5.5) as shown in Figure 16.

6. Numerical experiments. In this section, we present the numerical examples
that test the algorithms. All experiments with exception of the last were performed
with MATLAB R2020b on a Dell computer with processor Intel Core i7-8650U CPU
@ 1.90GHz 2.11 GHz and 8GB of RAM. The last experiment is performed on a
Lenovo computer with processor Intel Core i7-10700KF CPU @ 3.80GHz 3.79 GHz
and 16GB of RAM. The implementation of the experiments can be found on https:
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//gitlab.tudelft.nl/cmmenzen/bayesian-als.
The first three experiments are performed with a random TT, \bfscrG , that represents

the ground truth and has the cores

\bfscrG 1,truth \in \BbbR 1\times 5\times 3, \bfscrG 2,truth \in \BbbR 3\times 5\times 3, and \bfscrG 3,truth \in \BbbR 3\times 5\times 1.

The entries of each TT-core are drawn from a standard normal distribution. After
computing the tensor \bfscrY truth \in \BbbR 5\times 5\times 5 from the TT-cores and vectorizing it, a noisy
sample y is formed with

(6.1) y = ytruth + \bfitepsilon , \bfitepsilon \sim \scrN (0, \sigma 2I),

where ytruth denotes the vectorized ground truth and \bfitepsilon is a realization of random noise.
The noisy samples of the same underlying tensor formed with (6.1) are uncorrelated.
The covariance of the measurement noise is influenced by fixing the signal-to-noise
ratio

SNRdB = 10 log10
\| y\| 2

\| \bfitepsilon \| 2
.

If not stated otherwise, the signal-to-noise ratio is set to zero dB. Some experiments
use multiple noisy samples y, computed from (6.1). In this case, the estimate is
recursively updated. Initially, the prior TT is input to Algorithm 3.1 together with a
sample y. After the execution of Algorithm 3.1, the output mean and covariance is
used as a prior for the next execution together with a new sample y. This recursive
updating is very suitable for the ALS in a Bayesian framework, because it can deal
with prior knowledge on the TD components. For the conventional ALS, the estimate
from an execution of the algorithm that computes a TT with the ALS is used as an
initial TT for the next execution.

6.1. Convergence analysis of maximization problem. In the ALS in a
Bayesian framework, we solve the optimization problem given by (1.2). In this context,
we define the relative error between the low-rank estimate g and the ground truth
ytruth as

\varepsilon truth =
\| ytruth  - g\| 
\| ytruth\| 

,

and the relative error between the low-rank estimate g and the noisy sample y as

\varepsilon meas =
\| y  - g\| 
\| y\| 

.

In the first experiment, we look at the errors defined above in order to analyze the con-
vergence of Algorithm 3.1. In addition, we look at the evolution of the log likelihood
times the prior, since from Theorem 3.3 it follows that the numerator of the logarithm
of (1.4) needs to be maximized to compute the posterior of all TD components.

In this experiment, only one noisy sample y is used. The prior mean is initialized
randomly and the covariance for each core is set to 2002I, meaning a low certainty on
the prior mean. The experiment is performed 100 times with the same TT, \bfscrG , but with
different priors. Then, the mean of the 100 results is plotted with a region of twice the
standard deviation. Figure 17, left shows how both relative errors decrease rapidly and
converge after approximately five iterations in Algorithm 3.1. Figure 17, right shows
how the product of log likelihood and prior increases during the first approximately
six iterations, converging to a fixed value. Both subfigures of Figure 17 also show how
the region of twice the standard deviation from the 100 trials becomes smaller with
an increasing number of iterations. Hence, it can be concluded that Algorithm 3.1
converges and therefore also the optimization problem converges.
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Fig. 17. Left: Evolution of the relative errors during 20 iterations in Algorithm 3.1. Right:
Evolution of log likelihood times the prior during 20 iterations in Algorithm 3.1.

6.2. Analysis of covariance matrices. In the second experiment, we look at
how the covariance matrix of each core changes throughout the iterations in Algo-
rithm 4.1. We also examine the covariance matrix of the low-rank tensor estimate,
computed with the UT in TT format. The experiment is performed 100 times with
the same TT, \bfscrG , but with different priors, as in subsection 6.1. Then, the mean of the
100 results is plotted with a region of twice the standard deviation. Figure 18 shows
the trace and Frobenius norm of the covariance matrix of the core that will be up-
dated next, after the norm is moved to this core. Both the trace and Frobenius norm
of each core's covariance matrix decrease and converge to a fixed value. For the first
and third core, the values are smaller than for the second, because the second core has
a larger number of elements. The convergence behavior is also shown in Figure 19,
where the trace and Frobenius norm of the covariance matrix of the low-rank tensor
estimate converge quickly to a fixed value. The decreasing and converging values of
the trace (Figure 17, top) and the Frobenius norm (Figure 17, bottom) indicate that
the uncertainty of the mean decreases and then remains constant with an increasing
number of iterations. In the next experiments, we will use the information of the
covariance matrices to visualize a confidence interval for our estimate.

6.3. Comparison to conventional ALS. The main benefits of the ALS in a
Bayesian framework are the uncertainty quantification of the low-rank tensor estimate,
as well as the incorporation of prior knowledge. In the third experiment, we show the
benefits by comparing the ALS in a Bayesian framework to the conventional ALS.

Figure 20 depicts the vectorized low-rank tensor estimate for the ALS and the
mean of the ALS in a Bayesian framework's estimate with a 95\% confidence interval
in comparison with the ground truth. The uncertainty measure is computed from the
diagonal elements of PUT. The top figure shows the estimate using one noisy sample y
for the ALS in a Bayesian framework and the bottom using 100 noisy samples. While
the ALS does not improve when taking into account multiple noisy samples, the ALS
in a Bayesian framework improves in two aspects. The error between the mean and
the truth becomes smaller and the estimate becomes more certain. Also, in the top
figure, where the uncertainty is relatively large, the ground truth almost always lies
inside the confidence interval and therefore the ALS in a Bayesian framework provides
more information than the conventional ALS.

Now, we analyze the influence of the prior quality on the relative error. Figure 21
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2 4 6 8 10

2,000

2,500

3,000

Iterations

tr
(P

1
)

2 4 6 8 10

6,000

6,500

7,000

Iterations

tr
(P

2
)

2 4 6 8 10

2,000

2,500

3,000

Iterations

tr
(P

3
)

2 4 6 8 10
400

600

800

Iterations

| | P
1
| | F

2 4 6 8 10
800

1,000
1,200
1,400
1,600

Iterations

| | P
2
| | F

2 4 6 8 10
400

600

800

Iterations

| | P
3
| | F

Fig. 18. Top: Trace. Bottom: Frobenius norm of covariance matrix of \bfscrG 1, \bfscrG 2, and \bfscrG 3.
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Fig. 19. Left: Trace. Right: Frobenius norm of covariance matrix of low-rank tensor estimate.

shows the relative error \varepsilon truth of the ALS in a Bayesian framework for different priors.
The prior mean is computed from

(6.2) m0
i = gi,truth + a \scrN (0, I), i = 1, 2, 3,

where gi,truth denotes the vectorization of \bfscrG i,truth and a is a number that is set to
values between 0 and 5. It determines how different the prior mean is from the ground
truth. The prior covariance is computed from

(6.3) P0
i = b2 I, i = 1, 2, 3,

by setting b to values between 0 and 5. A small value means a high certainty and a
large value means a low certainty on the prior mean. Figure 21 shows that the error
is small if the prior mean is close to the ground truth and the covariance is small.
For a bad prior and a small covariance, the error is 100 percent or larger, since a
high certainty for a bad prior is assumed. For comparison, the isoline (dashed line)
corresponding to the mean relative error of the conventional ALS is shown in the
graph, which is almost independent of the prior information.

Figure 22, left shows the relative error of the reconstructed tensor versus the
signal-to-noise ratio for a prior mean from (6.2) with a = 10 - 1 and prior covariance
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Fig. 20. Ground truth with ALS estimate and mean of estimate from the ALS in a Bayesian
framework with confidence region of 95\%. Top: Estimate using one noisy sample. Bottom: Estimate
using 100 noisy samples.

from (6.3) with b = 10 - 1, meaning a good prior and a high certainty on the prior.
While the ALS performs poorly for high noise, the ALS in a Bayesian framework
results in small relative errors. For an increasing SNR, the relative error of the ALS
in a Bayesian framework converges to the one of the ALS.

Further, Figure 22, right shows the ALS in comparison with the ALS in a Bayesian
framework for multiple noisy samples. While the relative error \varepsilon truth decreases for the
ALS in a Bayesian framework, the conventional ALS does not improve when more
noisy samples become available.

As shown, the ALS in a Bayesian framework gives better results if a good prior is
available and it provides a measurement of the uncertainty and, therefore, additional
valuable information. Also, if multiple noisy samples are available, ALS in a Bayesian
framework significantly improves the estimate.

6.4. Reconstruction of noisy image. To test Algorithm 3.1 on an image
processing problem, a cat image is reconstructed from an image corrupted with noise.
Figure 23 shows the steps before applying Algorithm 3.1. The original image of size
256\times 256 pixel is reshaped into an 8-way tensor, where each mode is of dimension 4.
To obtain the TT-ranks, here we use the TT-SVD algorithm [27]. It finds a TD that
approximates the given tensor by setting an upper bound for the relative error. With
an upper bound of 0.1, the TT-ranks, depicted in Figure 23, are obtained. Finally, the
ground truth is computed as the vectorized contracted TT. Now, ten noisy samples
are formed with (6.1) with a signal-to-noise ratio of SNRdB = 0.

Figure 24 (a) shows the original image and Figure 24 (b) the low-rank image,
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Fig. 21. Relative error of the ALS in a Bayesian framework for different priors for SNRdB = 0.
The y-axis indicates the similarity of the prior mean to the ground truth and the x-axis indicates
the certainty on the prior mean. The dashed line corresponds to the isoline corresponding to the
mean error of the conventional ALS.
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Fig. 22. Left: Relative error \varepsilon truth vs. signal-to-noise ratio with prior mean from (6.2) with
a = 10 - 1 and prior covariance from (6.3) with to b = 10 - 1. Right: Comparison of the the relative
error \varepsilon truth between the ALS and the ALS in a Bayesian framework for different numbers of noisy
samples.

256256

4 4 4 4 4 4 4 4

Original Image
full rank

Tensor
full rank

Tensor Train
low-rank

TT-SVD 2 5 14 32 30 13 4
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ground
truth

Fig. 23. Computation of ground truth from the original image. The original image of size
256 \times 256 pixel is reshaped into an 8-way tensor, where each mode is of dimension 4. Then, the
TT-SVD algorithm [27] with an upper bound for the relative error of 0.1 is applied, resulting in the
depicted TT-ranks. Finally, the ground truth is obtained as the vectorized contracted TT.
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Fig. 24. (a) Original image. (b) Image approximated with the TT-SVD algorithm [27] with
an upper bound for the relative error of 0.1. (c) One noisy sample (low-rank image corrupted with
random noise).

Fig. 25. Reconstructed image with conventional ALS algorithm. Left: using one noisy sample.
Right: using ten noisy samples.

which is obtained by reshaping the low-rank TT from the TT-SVD into the size of
the original image. Figure 24 (c) shows one exemplary noisy sample y reshaped into
the dimensions of the original image. As a stopping criterion, we used the maximum
number of iterations of 3. Figure 25, left shows the reconstruction of the image with
the conventional ALS using one noisy sample and on the right using ten noisy samples.
Figure 26 shows the reconstruction of the image inputting a random prior mean and a
prior covariance on each core of 10002I and using one and ten noisy samples. For the
ALS in a Bayesian framework, it is shown that the image gets clearer with a higher
number of noisy samples y, confirmed by the decreasing relative error \varepsilon truth from
0.3127 to 0.1478. The relative error of the conventional ALS only decreases slightly
from 0.3664 to 0.3088.

6.5. Large-scale experiment. In this experiment, we demonstrate that Algo-
rithm 3.1 also works with larger tensors. The cat image from subsection 6.4 in color
is upscaled via bicubic interpolation to obtain a 6000\times 4000\times 3 tensor as depicted in
Figure 27 (a). Next, we find a low-rank approximation of the image by first applying
the TKPSVD algorithm [2]. The TKPSVD decomposes a tensor \bfscrA into a sum of

multiple Kronecker products of N tensors \bfscrA (n)
r ,

\bfscrA =

R\sum 
r=1

\lambda r \bfscrA (N)
r \otimes \cdot \cdot \cdot \otimes \bfscrA (1)

r ,
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Fig. 26. Reconstructed image with ALS in a Bayesian framework (Algorithm 3.1). Left: Using
one noisy sample. Right: Using ten noisy samples.

Fig. 27. (a) Original image. (b) Low-rank image. (c) Noisy image (low-rank image corrupted
with random noise, with an SNR =  - 22). (d) Reconstructed image.

where \lambda r \in \BbbR . We approximate the image by taking only the term with the largest
\lambda r and N = 5,

\bfscrA \approx \lambda max \bfscrA (5)
1 \otimes \bfscrA (4)

1 \otimes \bfscrA (3)
1 \otimes \bfscrA (2)

1 \otimes \bfscrA (1)
1 ,

where \lambda max = \lambda 1. The resulting Kronecker product is of dimensions

(375\times 250\times 3)\otimes (2\times 2\times 1)\otimes (2\times 2\times 1)\otimes (2\times 2\times 1)\otimes (2\times 2\times 1),

as depicted in the top part of Figure 28. Second, \bfscrA (5)
1 \in \BbbR 375\times 250\times 3 is further

decomposed with the TT-SVD algorithm with an upper bound of the relative error
of 0.08, where the dimensions are factorized as shown in the lower part of Figure 28.
The resulting low-rank approximation of the image is shown in Figure 27 (b) and
the noisy image, created with an SNR =  - 22, is shown in Figure 27 (c). We use
Algorithm 3.1 with a random prior mean and P0

i = 100002I. Figure 27 (d) shows the
reconstructed image after 30 iterations in Algorithm 3.1. The main computational
bottleneck is the inversion of the covariance matrix of the largest TD component (line
4 of Algorithm 3.1). Thus, the number of elements of a TD component, dependent
on its ranks, is the limiting factor for the computational complexity. In this case, the
largest TT-core has 13 \cdot 25 \cdot 18 = 5850 elements; see the second-to-last TT-core in the
lower part of Figure 28.

7. Conclusions. We approached the computation of low-rank TD from a Bayesian
perspective. Assuming Gaussian priors for the TD components and Gaussian mea-
surement noise and by applying a block coordinate descent, we were able to perform
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40006000

TT-SVD 1 1 1 1 2 13 18
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\approx 

3

2 2 2 2 3 5 5
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2 2 2 2 2 2 2 2 375250
3

\approx TKPSVD

with last

5 35TT-core

Fig. 28. Determination of the TT-ranks by computing a low-rank decomposition with the
TKPSVD and then decomposing the last TT-core (gray) further with the TT-SVD.

a tractable inference and compute the posterior joint distribution of the TD compo-
nents. This leads to a probabilistic interpretation of the ALS. The distribution of the
underlying low-rank tensor was computed with the UT in TT format. We found that
the relative error of the resulting low-rank tensor approximation depends strongly on
the quality of the prior distribution. In addition, our method opens up for a recursive
estimation of a tensor from a sequence of noisy measurements of the same underlying
tensor. If no useful prior information is available, the method gives the same result as
the conventional ALS. Our method will perform worse than the conventional ALS if a
small covariance is assumed for a bad prior mean. Future work could focus on incor-
porating the inference of the ranks which for the ALS are fixed and therefore need to
be decided beforehand. Also, the method could be extended to a non-Gaussian prior
and the UT algorithm could be further developed, e.g., by parallelizing the code to
make it computationally more efficient for large data sets.

REFERENCES

[1] K. Batselier, Z. Chen, and N. Wong, Tensor network alternating linear scheme for MIMO
Volterra system, Automatica J. IFAC, 84 (2017), pp. 26--35.

[2] K. Batselier and N. Wong, A constructive arbitrary-degree Kronecker product, Numer. Lin-
ear Algebra Appl., 24 (2017), e2097.

[3] C. F. Caiafa and A. Cichocki, Stable, robust, and super fast reconstruction of tensors using
multi-way projections, IEEE Trans. Signal Process., 63 (2015), pp. 780--793.

[4] J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scaling
via an n-way generalization of ``Eckart-Young"" decomposition, Psychometrika, 35 (1970),
pp. 283--319.

[5] C. Chen, K. Batselier, C.-Y. Ko, and N. Wong, A support tensor train machine, in Pro-
ceedings of the International Joint Conference on Neural Networks, IEEE, 2019, pp. 1--8.

[6] L. Cheng, Y.-c. Wu, and H. V. Poor, Probabilistic tensor canonical polyadic decomposition
with orthogonal factors, IEEE Trans. Signal Process., 65 (2017), pp. 663--676.

[7] W. Chu and Z. Ghahramani, Probabilistic models for incomplete multi-dimensional arrays,
J. Mach. Learn. Res., 5 (2009), pp. 89--96.

[8] A. Cichocki, N. Lee, I. V. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, Ten-
sor networks for dimensionality reduction and large-scale optimization Part 1: Low-rank
tensor decompositions, Found. Trends Mach. Learn., 9 (2016), pp. 249--429.

[9] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. V. Oseledets, M. Sugiyama, and D. P.
Mandic, Tensor networks for dimensionality reduction and large-scale optimization: Part
2 Applications and future perspectives, Found. Trends Mach. Learn., 9 (2017), pp. 431--673.

[10] N. Cohen, O. Sharir, and A. Shashua, On the expressive power of deep learning: A tensor
analysis, J. Mach. Learn. Res., 49 (2016), pp. 698--728.

[11] P. Comon, X. Luciani, and A. de Almeida, Tensor decompositions, alternating least squares
and other tales, J. Chemom., 23 (2009), pp. 393--405.

[12] S. V. Dolgov and D. Savostyanov, Alternating minimal energy methods for linear systems
in higher dimensions, SIAM J. Sci. Comput., 36 (2014), pp. A2248--A2271, https://doi.
org/10.1137/140953289.

D
ow

nl
oa

de
d 

06
/1

3/
22

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/140953289
https://doi.org/10.1137/140953289


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BAYESIAN ALS A1143

[13] G. Favier, A. Y. Kibangou, and T. Bouilloc, Nonlinear system modeling and identification
using Volterra-PARAFAC models, Internat. J. Adapt. Control Signal Process., 26 (2012),
pp. 30--53.

[14] L. Grasedyck, M. Kluge, and S. Kr\"amer, Variants of alternating least squares tensor com-
pletion in the tensor train format, SIAM J. Sci. Comput., 37 (2015), pp. A2424--A2450,
https://doi.org/10.1137/130942401.

[15] R. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an ``ex-
planatory"" multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970),
pp. 1--84.

[16] S. S. Haykin, Kalman Filtering and Neural Networks, John Wiley \& Sons, 2001.
[17] J. L. Hinrich, K. H. Madsen, and M. M{\e}rup, The probabilistic tensor decomposition toolbox,

Mach. Learn. Sci. Technol., 1 (2020), 025011.
[18] J. L. Hinrich and M. M{\e}rup, Probabilistic tensor train decomposition, in Proceedings of the

27th European Signal Processing Conference, IEEE, 2019, pp. 1--5.
[19] P. D. Hoff, Equivariant and scale-free Tucker decomposition models, Bayesian Anal., 11

(2016), pp. 627--648.
[20] S. Holtz and T. Rohwedder, R. Schneider, The alternating linear scheme for tensor op-

timization in the tensor train format, SIAM J. Sci. Comput., 34 (2012), pp. A683--A713,
https://doi.org/10.1137/100818893.

[21] P. A. Izmailov, A. V. Novikov, and D. A. Kropotov, Scalable Gaussian processes with
billions of inducing inputs via tensor train decomposition, in Proceedings of the Twenty-
First International Conference on Artificial Intelligence and Statistics, Proc. Mach. Learn.
Res. 84, 2018, pp. 726--735.

[22] S. J. Julier and J. K. Uhlmann, Unscented filtering and nonlinear estimation, Proc. IEEE,
92 (2004), pp. 401--422.

[23] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455--500, https://doi.org/10.1137/07070111X.

[24] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006.
[25] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, Tensorizing neural networks,

in Proceedings of the 28th International Conference on Neural Information Processing
Systems, 2015, pp. 442--450.

[26] I. V. Oseledets, Approximation of 2d \times 2d matrices using tensor decomposition, SIAM J.
Matrix Anal. Appl., 31 (2010), pp. 2130--2145, https://doi.org/10.1137/090757861.

[27] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295--2317,
https://doi.org/10.1137/090752286.

[28] I. V. Oseledets and S. Dolgov, Solution of linear systems and matrix inversion in the
TT-format, SIAM J. Sci. Comput., 34 (2012), pp. A2718--A2739, https://doi.org/10.1137/
110833142.

[29] P. Rai, Y. Wang, and L. Carin, Leveraging features and networks for probabilistic tensor
decomposition, in Proceedings of the National Conference on Artificial Intelligence, Vol. 4,
2015, pp. 2942--2948.

[30] P. Rai, Y. Wang, S. Guo, G. Chen, D. Dunson, and L. Carin, Scalable Bayesian low-rank
decomposition of incomplete multiway tensors, in Proceedings of the 31st International
Conference on Machine Learning, Vol. 5, 2014, pp. 3810--3820.

[31] T. Rohwedder and A. Uschmajew, On local convergence of alternating schemes for opti-
mization of convex problems in the tensor train format, SIAM J. Numer. Anal., 51 (2013),
pp. 1134--1162, https://doi.org/10.1137/110857520.

[32] S. S\"arkk\"a, Bayesian Filtering and Smoothing, Cambridge University Press, Cambridge, 2013.
[33] U. Schollw\"ock, The density-matrix renormalization group in the age of matrix product states,

Ann. Physics, 326 (2011), pp. 96--192.
[34] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and

C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE
Trans. Signal Process., 65 (2017), pp. 3551--3582.

[35] M. Signoretto, L. De Lathauwer, and J. A. Suykens, A kernel-based framework to tensorial
data analysis, Neural Netw., 24 (2011), pp. 861--874.

[36] Q. Song, H. Ge, J. Caverlee, and X. Hu, Tensor completion algorithms in big data analytics,
ACM Trans. Knowl. Discov. Data, 13 (2019), 6.

[37] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31
(1966), pp. 279--311.

[38] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, Temporal col-
laborative filtering with Bayesian probabilistic tensor factorization, in Proceedings of
the 10th SIAM International Conference on Data Mining, SIAM, 2010, pp. 211--222,

D
ow

nl
oa

de
d 

06
/1

3/
22

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/130942401
https://doi.org/10.1137/100818893
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/090757861
https://doi.org/10.1137/090752286
https://doi.org/10.1137/110833142
https://doi.org/10.1137/110833142
https://doi.org/10.1137/110857520


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1144 CLARA MENZEN, MANON KOK, AND KIM BATSELIER

https://doi.org/10.1137/1.9781611972801.19.
[39] Z. Xu, F. Yan, and Y. Qi, Bayesian nonparametric models for multiway data analysis, IEEE

Trans. Pattern Anal. Mach. Intell., 37 (2015), pp. 475--487.
[40] Q. Zhao, L. Zhang, and A. Cichocki, A tensor-variate Gaussian process for classification of

multidimensional structured data, in Proceedings of the 27th AAAI Conference on Artificial
Intelligence, AAAI 2013, pp. 1041--1047.

[41] Q. Zhao, L. Zhang, and A. Cichocki, Bayesian CP factorization of incomplete tensors
with automatic rank determination, IEEE Trans. Pattern Anal. Mach. Intell., 37 (2015),
pp. 1751--1763.

[42] Q. Zhao, L. Zhang, and A. Cichocki, Bayesian Sparse Tucker Models for Dimension Re-
duction and Tensor Completion, preprint, https://arxiv.org/abs/1505.02343, 2015.

[43] Q. Zhao, G. Zhou, L. Zhang, A. Cichocki, and S. I. Amari, Bayesian robust tensor factor-
ization for incomplete multiway data, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016),
pp. 736--748.

D
ow

nl
oa

de
d 

06
/1

3/
22

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/1.9781611972801.19
https://arxiv.org/abs/1505.02343

	Introduction
	Tensor basics and notation
	Bayesian inference for low-rank tensor approximation
	Orthogonalization step in Bayesian framework for a TT
	Unscented transform in TT format
	Numerical experiments
	Convergence analysis of maximization problem
	Analysis of covariance matrices
	Comparison to conventional ALS
	Reconstruction of noisy image
	Large-scale experiment

	Conclusions
	References

