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Abstract: Deliberation over goals is a fundamental feature of intelligent agent 
systems. In this article we provide pragmatic but principled mechanisms for 
quantifying the level of completeness of goals in a belief-desire-intention (BDI) 
agent. Our approach leverages previous work on resource and effects 
summarisation which we extend by accommodating both dynamic resource 
summaries and goal effects, while also allowing a non-binary quantification of 
goal completeness. We treat both goals of accomplishment (achievement goals) 
and goals of monitoring (maintenance goals). We reconcile such practical 
computation of progress estimates of goals of both types with an earlier 
theoretical perspective on BDI goal completeness, and thus extend the 
theoretical framework to include maintenance goals. Our computational 
mechanisms have been implemented in the abstract agent language CAN. We 
also provide a detailed example in an autonomous rover domain. 

Keywords: agent-based systems; maintenance goals; belief-desire-intention; 
BDI; goal reasoning. 
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intelligent conversation systems (how can systems interact intelligently with 
humans), agent testing (providing assurance that the systems work) and human 
machine teaming (how can humans and machine work collaboratively). 

Neil Yorke-Smith is an Associate Professor of Socio-Technical Algorithmics in 
the Faculty of Electrical Engineering, Mathematics and Computer Science at 
the Delft University of Technology (TU Delft). His research focuses on 
intelligent decision making in complex socio-technical situations, with a 
particular interest in agent-based methodologies and automated planning and 
scheduling. The author of over 100 scholarly publications, he is a senior 
member of the Association for the Advancement of Artificial Intelligence 
(AAAI) and of the Association for Computing Machinery (ACM). 

This paper is a revised and expanded version of a paper entitled ‘Quantifying 
the completeness of goals in BDI agents’ presented at Proc. of ECAI’14, 
Prague, Czech Republic, August 2014; ‘Towards quantifying the completeness 
of BDI goals’ presented at Proc. of AAMAS’14, Paris, France, May 2014; 
‘Estimating the progress of maintenance goals’ presented at Proc. of 
AAMAS’15, Istanbul, Turkey, May 2015. 

 

1 Introduction 

Intelligent agent technology has become a popular means for developing applications that 
exhibit autonomous behaviour: for instance, unmanned vehicles (Wilson et al., 2018; Jha 
et al., 2018), electronic trading agents (Collins et al., 2009) and tactical simulation 
systems (Evertsz et al., 2015). Among the many agent architectures used to develop such 
autonomous systems, the belief-desire-intention (BDI) model of agency (Georgeff and 
Rao, 1998) is mature and has influenced many agent programming languages such as 
JACK (Winikoff, 2005), SPARK (Morley and Myers, 2004), GOAL (Hindriks, 2009) 
and GORITE (Rönnquist, 2007). 

Goals are an essential concept in BDI agent systems. Autonomous agents, such as a 
Mars rover robot, are designed to work in dynamic environments. Hence it is crucial for 
an agent to deliberate over its goals and manage them appropriately (Thangarajah and 
Padgham, 2011; Harland et al., 2017; Wilson et al., 2018). The two main types of goals 
are achievement and maintenance goals. The most common type, achievement goals, are 
adopted by the agent to achieve a particular state (such as, for the Mars rover, performing 
some particular science experiment), and then dropped once this state has been achieved. 
The other type of goal, increasingly recognised for its importance, is maintenance goals 
(Duff et al., 2014). A maintenance goal has a particular state of the world that the agent 
seeks to maintain, i.e., the state must be true, and kept this way indefinitely. For example, 
the Mars rover would be well advised to ensure that wherever it travels, it always 
maintains sufficient battery charge for the journey back to its base. Hence, the agent’s 
goal is to monitor the maintain condition, to ensure if possible that it never becomes 
false, and to act to restore it, if it is so violated. 

Typically in BDI systems, goal accomplishment is discrete: a goal is either complete 
(usually, a plan for it has succeeded), or it is incomplete (whether execution of a plan or 
plans for it has begun or not) (Georgeff and Rao, 1998; van Riemsdijk and Yorke-Smith, 
2010). Hence, when deliberating about its goals – such as the decision about which goal 
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to focus on next – an agent is limited to a coarse binary approximation of goal 
completeness. If the agent were able to compute a finer-grained approximation of the 
progress of its goals, it could make more nuanced and potentially more suitable decisions. 
For example, when resolving goal conflicts (Thangarajah and Padgham, 2011), the agent 
may choose to continue with one achievement goal that is more complete than another. 
When reasoning about deadlines, such as ensuring all activities are complete by the end 
of the day, it is also useful to be able to estimate how close the current goals are to 
completion, so that the usefulness of a minor extension of time can be evaluated. 
Similarly, an important opportunity (or threat) may arise before a goal is completed, and 
hence it will be useful to know whether or not a minor delay is appropriate, or it is better 
to suspend all current activities in favour of this new opportunity. 

While the notion of partially-complete goals has been defined in Zhou et al. (2008) 
and van Riemsdijk and Yorke-Smith (2010), reasoning frameworks to date have largely 
left unanswered how to compute the level of completeness of a goal in a realistic and 
principled manner. Moreover, maintenance goals have not been considered. In our 
preliminary work we presented an approach to computing partial completeness estimates 
for an achievement goal (Thangarajah et al., 2014b, 2014a), and presented some ideas for 
what it means to estimate the completeness of a maintenance goal (Thangarajah et al., 
2015). 

To address this shortfall in the literature, the aim of this article is to provide a 
principled and general approach that can be used computationally to quantify measures of 
completeness for both achievement and maintenance goals. Hence we provide a 
foundation for subsequent reasoning by the agent using this information, i.e., the agent’s 
(intention) deliberation mechanisms. This article thus enables automated reasoning for 
strategic planning, goal prioritisation, resource allocation and plan selection, among other 
deliberative tasks. 

We make three main contributions. The first is to present detailed mechanisms to 
compute completeness measures of achievement goals. These mechanisms are based on 
goal resources and effects. The second contribution is to establish what it means for 
maintenance goals to be ‘complete’ and to present mechanisms for efficiently computing 
completeness measures for maintenance goals. The methods we introduce for resource-
based estimation of the completeness of achievement goals are also suitable to predict 
potential violations of resource-related maintenance goals. This makes it easier to specify 
more sophisticated interactions between the two types of goals. For example, if it is 
known that continuing to pursue a given achievement goal will cause a maintenance goal 
to be violated, then it seems rational to suspend or abort the achievement goal rather than 
knowingly allowing the maintenance goal become false. In a similar manner, given a 
concurrent set of achievement goals being pursued, we may be able to predict that 
concurrent success of all such goals will falsify a maintenance goal, but yet identify a 
subset of these achievement goals which will not. It is also possible to use completion 
estimates as a means of determining priorities between goals, such as favouring those 
which are closest to completion, or in fact doing the opposite in order to satisfy fairness 
constraints. The third contribution is to reconcile this practical computation of progress 
estimates – in both goal types, achievement and maintenance – with the theoretical 
perspective on BDI goal completeness of van Riemsdijk and Yorke-Smith (2010), and to 
thus implicitly extend the theoretical framework to include maintenance goals. At the 
same time we instantiate that framework to a computationally-feasible approach. 
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Our contribution is foundational and addresses the goals of a single agent considered 
separately. That is, we do not address interaction effects between goals, incomplete 
information about the future, and suspension. As with most BDI agent approaches, we 
assume that the agent’s beliefs are generally true, but not guaranteed to be so, and that 
goals, plans and actions generally succeed, but are also not guaranteed to do so. In other 
words, our agents are generally optimistic, but prepared for (occasional) failures. We 
discuss future extensions at the end of the article. Our work is intended to provide a 
snapshot of the agent’s current activities as a means of assisting in such deliberations, and 
in particular whether to continue its current activities, or to abort or suspend them. 

The article is structured as follows. Section 2 reviews the literature. Section 3 
provides necessary background for understanding our contribution. Section 4 presents the 
autonomous rover scenario. Section 5 proposes means to quantify the completeness of 
achievement and of maintenance goals. Section 6 illustrates these mechanisms on the 
scenario. Section 7 discusses from a theoretical perspective. Section 8 summarises the 
article and presents future directions. 

2 Related work 

An agent reasoning about its goals is a long-standing area of agent design and 
engineering, and one which is seeing a resurgence of research (Roberts et al., 2018; Aha, 
2018). In this section we survey the notion of goal completeness and progress, paying 
attention to the key previous work on which we build. We include related fields such as 
AI planning. 

We start with conceptual foundations of goals. Whereas goals in agent programming 
languages are not customarily defined to allow for partial completeness, Holton, from a 
philosophical perspective, argues for the existence of ‘partial intentions’, a concept 
spanning both desires and goals (Holton, 2008). Holton’s partial intentions have a sense 
similar to Bratman’s (1978) (although seeming to allow multiple live plans 
simultaneously); our focus is on partial completeness of goals in a practical agent system. 
Towards the latter, Haddawy and Hanks (1992) made an early contribution, defining a 
function from propositions to the real number, which represents the degree of satisfaction 
of a goal. 

While partial completeness is less common in the AI literature, goals have commonly 
been associated with a utility, priority or preference in the agents literature (e.g., Huang 
and Bell, 1997; Hindriks et al., 2008; Khan and Lespérance, 2010) and in the automated 
planning literature (e.g., Do et al., 2007; Hsu et al., 2007). The purpose is usually for a 
form of intention selection (see, e.g., Visser et al., 2016): which goals to prioritise or 
pursue, or which plan/action to select and execute. 

Vukovic and Robinson (2005) adopt Haddawy and Hanks’ definition of the degree of 
goal satisfaction, for the purpose of context-aware goal transformation. In the setting of 
robust web services, these authors reformulate failed goals using a temporal planner. 
Their focus revolves around context and an ontology for it rather than agent autonomy. 

Letier and van Lamsweerde (2004) are instead interested in the setting of 
requirements engineering. These authors determine the probabilistic partial goal 
satisfaction of alternative system designs. Our work shares the use of application-specific 
measures and the upwards and downwards propagation of them. 
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Thangarajah et al. (2007) explore multiple criteria that an agent may include in its 
goal deliberation, including utility, preference, deadline, resource considerations, goal 
interactions, effort to date, and likelihood of success. Although they describe a dynamic 
constraintbased reasoning mechanism, these authors also do not explicitly consider 
reasoning with partially-complete goals. 

Based on their earlier work (Thangarajah et al., 2002, 2003), Thangarajah and 
Padgham (2011) study goal interactions, both positive (synergy) and negative (conflicts). 
Their work considers action effects as simple Boolean predicates. These authors define 
the Goal-Plan Tree (GPT) structure of alternating layers of goal and plan-nodes, and use 
this structure to inform deliberation such as goal adoption and plan selection. The 
reasoning centres around the use of resource and effect summaries annotated on GPT 
nodes and dynamically updated as execution proceeds. We will use GPTs in this article. 

Building on Thangarajah et al., Morley et al. (2006) further develop reasoning in a 
BDI agent over GPT structures. They provide an algorithm for an agent to update 
resource estimates on GPTs accommodating resource bound information, parameterised 
goals, and rich plan constructs. Dynamic resource estimation will be leveraged in our 
contribution. Specifically, we use dynamic updating of GPT resource summaries. 

Subsequently, Jiang et al. (2014) reason with preferences over GPT structures. Yao  
et al. (2016a, 2016c) focus on the executability of BDI intentions formulated in GPTs. 
Again unlike our work, none of these authors, nor Morley et al. (2006), explicitly 
consider reasoning with measures of goal completeness. 

Different to the GPT line of work, Zhou and Chen (2004) adopt instead a logical 
approach. In contrast to others, these authors do seek a notion of partial completeness. 
They define semantics for partial implication of desirable propositions (Zhou and Chen, 
2004). Zhou et al. (2008) investigate partial goal satisfaction on the basis of this logical 
semantics, viewing a goal as being completed when a (possibly disjunctive) proposition 
is achieved according to the logic. These authors focus on application of different notions 
of partial implication to goal modification in the context of belief change. We share a 
similar motivation, but our objective is a quantitative, grounded representation of partial 
satisfaction integrated into a reasoning framework. 

This brings us to the two most related works. van Riemsdijk and Yorke-Smith (2010) 
formalised the concept of a partially-complete goal for a BDI-like agent. These authors 
captured partial satisfaction of an achievement goal using a progress metric, and a 
minimum value that the goal must attain for the agent to consider it completely satisfied. 
The authors described agent reasoning using such a representation, but did not provide 
any detailed computational mechanisms. We provide a mechanism to efficiently compute 
domain-specific measures of completeness, which is necessary if van Riemsdijk and 
Yorke-Smith (2010, 2012) framework’s is to be useful in practice. We will discuss the 
relationship between the work of van Riemsdijk and Yorke-Smith (2010, 2012) and our 
work in more detail in Section 7.3. 

Thangarajah et al. (2014b, 2014a) presented an approach to computing partial 
completeness estimates for an achievement goal, and some ideas for what it means to 
estimate the completeness of a maintenance goal (Thangarajah et al., 2007). We build on 
this preliminary work in this article. We provide a detailed computational approach for 
maintenance goals and unify the reasoning across the two types of goals. 

Lastly, we review related reasoning questions. First, intention selection has been 
extensively studied as an important topic for intelligent agents (compare Yao et al., 
2016a). Notably, van der Hoek et al. (2007) develop a logical analysis of BDI intention 
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revision, which can be linked with a notion of partial goal satisfaction. The focus of these 
authors is more theoretical than computational, in that an analysis is provided but no 
implementation methods. 

Second, as van Riemsdijk and Yorke-Smith (2010) point out, there is a body of work 
on reasoning with partial plans, for instance in plan formation or negotiation (e.g., Lesser 
et al., 2004; Grosz and Hunsberger, 2006; Kamar et al., 2009), as well as in the 
automated planning literature (e.g., Smith, 2004). For example, in the area of multiagent 
planning and negotiation, Kamar et al. (2009) investigate helpful assistance of teammates 
in pursuit of a plan that could be partially complete, and Kamali et al. (2007) investigate 
information timing. 

In the context of hierarchical task network (HTN) planning, Clement et al. (2007), 
based on their own earlier work, develop summarisations of propositional and metric 
resource conditions and effects [of which Thangarajah and Padgham (2011) can be seen 
as a special case] of a partial temporal HTN plan, and, like Thangarajah et al. (2003), use 
these to determine potential and definite interactions between abstract tasks. Their work 
admits resource bound information and emphasises facilitating the HTN planning 
process. Although accommodating interleaved local planning, multiagent coordination, 
and concurrent execution, their work is not in the context of BDI-style agents and does 
not target measures of goal completeness. 

Third, resources and agents’ executablity of tasks are formalised in so-called resource 
logics, which allow expression of properties such as “a coalition of agents A has a 
strategy (a choice of actions) requiring no more than b resources, such that whatever the 
actions by the agents outside the coalition, any evolution of the system generated by the 
strategy satisfies some temporal property” (Alechina et al., 2017). Alechina et al. (2017) 
present a decidable fragment of resource agent logic. Again, however, the logic is binary 
with regard to outcomes. 

Fourth, time can be seen as an important special case of a resource. There is a body of 
work on reasoning about time in agent programming languages. For instance, the soft 
real-time agent architecture (Horling et al., 2006), AgentSpeak (XL) (Bordini et al., 
2002) and AgentSpeak (RT) (Vikhorev et al., 2011). The compatibility of our 
contribution and that body of work is deferred to future research. 

Fifth, there is a broad literature on probabilistic and fuzzy or soft computing. One can 
see measures about fuzzy goals (Shen et al., 2004; Katarzyniak and Popek, 2013), as 
being degrees of completion of goals. Our interest is in the logical tradition of BDI 
agents. An interesting question for future study is how a fuzzy degree of completeness 
relates to our work. 

3 Background 

This section provides the necessary background about BDI agent systems, goals, and 
GPTs. 

3.1 BDI agents and goal types 

The BDI architecture (Georgeff and Rao, 1998) specifies that an agent has beliefs about 
the world (denoted  ), goals that it wishes to accomplish (‘desires’, but see below), and 
goals that it has adopted together with plans to achieve them (‘intentions’). BDI agents 
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are characterised by having a library of (parameterised) plans. An agent chooses the most 
appropriate set of plans and how to execute them in order to achieve a set of goals – or 
more generally to maximise some objective function. The steps of a plan may contain 
(sub-)goals which are in turn achieved by other plans. 

By design, BDI agents in general have different ways (plans) of accomplishing a 
particular goal, and these may use different resources and bring about different effects. 
Moreover, plans may fail and unexpected events may occur. The deliberation on which 
way to achieve the goal (i.e., plan selection) is made dynamically during execution 
depending on the context the agent is in, and hence is not known in advance. 

For discussion on BDI architectures and their extensions, we refer to the literature 
(e.g., Broersen et al., 2001; Braubach et al., 2004; Myers and Yorke-Smith, 2005; Herzig 
et al., 2017). 

It should be noted that the BDI approach assumes that the agent generally does not 
have knowledge of the world (i.e., justified true information that will not change), but 
rather beliefs, which may be fallible and subject to change. The agent is also assumed to 
be rational, meaning that its beliefs are based on evidence, as much as possible, and that 
the agent does not believe obviously untrue statements such as 1 + 1 = 5 or that gravity 
does not apply. This means that we assume that the information available to the agent is 
generally reliable but not infallible, and that the agent’s beliefs are generally true. 

We will assume that the agent has an appropriate method for storing and updating its 
beliefs (which we denote here by  ) and for inferring whether given statements follow 
from its beliefs or not (which will denote by | G=  as appropriate). 

As originally formulated, the BDI architecture focused on goals of accomplishment. 
Subsequently, the importance of goals of maintenance was identified (Braubach et al., 
2004; Duff et al., 2006; Dastani et al., 2006). We next describe these two types of goals. 
It will be necessary to understand the states that a maintenance goal can hold, in order to 
define notions of completeness for it. In order to see the contrast between achievement 
and maintenance goals, we also depict the states of the former. 

3.1.1 Achievement goals 
An agent adopts an achievement goal in order to accomplish some change in the world, 
such as the successful completion of a science experiment. We denote an achievement 
goal G as achieve(k, S, F), where k is the goal’s context, S is its success condition, which 
we take as a conjunction of effects, and F is its failure condition. 

The goal’s context is a pre-condition for the goal to be considered by the agent: while 
the context is not believed by the agent to be true, the goal is not applicable. The success 
condition describes the state of the world that must be true in order for the goal to be 
accomplished (Sardiña and Padgham, 2011). We write S(G) for the success condition of a 
goal G. Should the agent believe that the failure condition becomes true (before it 
believes that the success condition becomes true), then the instance of the goal has failed 
(Harland et al., 2014). 

Figure 1 depicts a state-based life-cycle for an achievement goal. Note the labels 
denote events (e:fail, e:succeed) and actions (all others). The actions are performed by the 
agent whereas the events are things the agent comes to believe (i.e., the agent now 
believes success or failure condition is true). Null means that the goal has not (yet) been 
created. 
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Figure 1 Life-cycle of an achievement goal 

 

Source: Adapted from Harland et al. (2014, 2017) 

3.1.2 Maintenance goals 
Our approach to maintenance recognises the inherent fallibility of agents in maintaining 
appropriate conditions in their environment. A condition to be maintained is not ensured 
to hold continuously, but, every time it fails to hold, the agent reactively attempts to 
resurrect it. Further, the agent may act proactively and attempt to pre-empt failure if it 
can anticipate the falsehood of the maintenance condition (Duff et al., 2006). In either 
case, the agent is attempting to achieve a state of the world that is not currently true, 
which is exactly the context in which it adopts an achievement goal. Hence maintenance 
goals are generally associated with one or more achievement goals, which can be 
triggered either reactively or proactively in order to restore or maintain the maintenance 
condition. For example, this may involve recharging a battery when its charge level falls 
below a certain amount (reactive) or reducing activity in order to preserve battery charge 
(proactive). 

The literature on maintenance goals and related concepts is extensive. Some early 
conceptions are the passive and active preserve goals of the PRS system (Ingrand et al., 
1996); later works develop temporally extended goals (Hindriks et al., 2009), as well as 
both reactive and proactive goals (Darimont et al., 1997; Braubach et al., 2004; Duff  
et al., 2006; Dastani et al., 2006; Kaminka et al., 2007; Hindriks and van Riemsdijk, 
2008; Baral et al., 2008). We refer to Duff et al. (2006) for a survey. 

While we will follow Duff et al.’s (2006) concept of maintenance goal, we point out 
that our interest in this article is on the logical goals of BDI agents, as stated in Section 2. 
For instance1, one notion of maintenance goal is a continuous goal achieved to some 
degree, e.g., ‘maintain a distance of 1 metre from the wall’. This goal is maintained to 
some degree if the agent stays between [0.9, 1.1]m of the wall, and to greater and lesser 
degree otherwise. This kind of ‘fuzzy’ or ‘soft computing’ agents (Katarzyniak and 
Popek, 2013) are not in our remit. 

Let M = maintain(k, m, S, F) be a maintenance goal for condition m. We specify the 
semantics of M to be: provided context k is true, the agent will maintain the truth of 
condition m until it believes that either the success condition S or failure condition F 
become true. In other words, ‘once k becomes true, maintain m until S or F’. 

In adopting the term ‘success condition’, we follow terminology in the literature. It 
should be clear that the meaning of ‘success’ condition differs for a maintenance goal 
than for an achievement goal, although in notation we write S(·) for either type. 
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Specifically, | S=  does not mean the goal has ‘succeeded’ in the sense of having 
accomplished an ‘objective’ but rather that the goal has stopped being relevant in the 
sense that the purpose of the goal has elapsed (Section 5.3.1). 

The agent might maintain M reactively or proactively. The progress estimates 
computed in this article are applicable for either of these two ways of reasoning that the 
agent might use. In reactive reasoning, | ¬m=  means that the agent believes that m is 
false: thus, the agent adopts a recovery achievement goal R. If the agent has a look ahead 
mechanism π (provided by the agent designer) (Duff et al., 2006), then it can also 
perform proactive reasoning.2 Let π(m) be a predicate that returns true or false according 
to the (current) prediction of the future truth-hood of m. Then, ( )| m π m= ∧ ¬  means 
that the agent believes that m will become false unless it acts appropriately: thus, the 
agent adopts a preventive achievement goal P. One way to envisage this is that the look 
ahead mechanism is a process of checking the agent’s current plans for violations of any 
maintenance goals. However, the precise details of the look ahead mechanism does and 
how it works, and its limitations, are not relevant to the focus of this article. For our 
purpose, we only need that the agent has some such mechanism. In general, the look 
ahead will not be fully reliable and will have limited time horizon. For a discussion we 
refer to van Riemsdijk and Yorke-Smith (2012), Duff et al. (2014) and Barkan and 
Kaminka (2019). 

Duff et al. (2006, 2014) include the reactive repair goal R and proactive preventative 
goal P in the syntax for M, i.e., they specify in the definition of a maintenance goal the 
repair and preventative goals. Following Duff et al. (2014), we do not prescribe how the 
agent determines relevant plans for its goals; this may be done by the use a traditional 
plan library, or by real-time planning, or a combination both (de Silva et al., 2009), and 
so these plans are not included in the definition of the maintenance goal. Harland et al. 
(2014) clarify the semantics of Duff et al. (2014) by insisting that both R and P be 
achievement goals. We follow this semantics, which is consistent with that of Duff et al. 
(2014). 

In more detail, the proactive repair and maintenance goals are respectively  
R = achieve(¬m, m, FR) and P = achieve(m ∧ π(¬m), π(m), FP), where FR and FP are the 
failure conditions for R and P respectively, specified by the agent designer. 

Figure 2 depicts a state-based life-cycle for a maintenance goal M (Duff et al., 2006; 
Harland et al., 2014). It is important to specify the goal’s semantics precisely, because 
this affects the notions of completeness in Section 5. In the figure, the event e:fail means 
that the agent believes that F has become true; the event e:success means that the agent 
believes that S has become true. 

The state Monitoring distinguishes maintenance from achievement goals. Once the 
agent considers the goal, M starts in the Inactive state; upon its activation, M transitions 
to the Monitoring state. This difference means that we can allow for processes such as 
maintaining a lower maximum speed in windy conditions, rather than requiring that all 
such goals immediately enter the Monitoring state. Here, the agent monitors the 
(predicted) truth status of condition m. Should the agent believe that m is not true or will 
not remain true in the future, it transitions the maintenance goal M to Active, where the 
agent creates and adopts a recovery goal R or a preventive goal P, as explained above. M 
remains Active until m is restored or is no longer predicted to become false, whereupon 
M returns to Monitoring. Should P or R fail, the agent retries them, as we assume that 
success of either of these goals is sufficient to restore m, and that both P and R will 
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typically succeed (we do not discuss other potentially useful behaviours in this situation.) 
If the agent believes that it cannot prevent ¬m or restore m, it has the option to fail M. 
There are at least two ways of engineering this: the failure condition F could be specified 
incorporate this requirement, or the failure condition could include the failure of P or R, 
i.e., the agent tries once to prevent ¬m or restore m, and fails M if it cannot. Should the 
agent choose to transition M to the Suspended state, this means that the agent no longer 
monitors m and it aborts any active achievement goals P or R generated by M (Harland  
et al., 2014). The simplest approach regarding suspension and reactivation is for the agent 
to recompute its progress estimates for M when the goal is reactivated. 

Figure 2 Life-cycle of a maintenance goal 

 

Source: Adapted from Duff et al. (2006) 

3.2 Goals and the GPT 

A BDI agent will generally have several goals that it is currently pursuing, which may 
include both achievement goals and maintenance goals. The latter will typically be in the 
Monitoring state, i.e., not active, but with the relevant maintenance conditions being 
monitored, so that appropriate action may be taken if any maintenance condition is 
violated or predicted to be violated. 

Traditionally, a BDI agent program consists of a set of pre-defined plans that are used 
to achieve or maintain the agent’s goals. Each plan consists of steps which are either 
basic actions or sub-goals. Each sub-goal is in turn achieved by some other plan. This 
relationship is naturally represented as a tree structure called a GPT of the kind seen in 
Figure 4. Note that even if plans are generated as needed, rather than selected from a  
pre-existing library, there will still be a GPT relating goals to the plans used to achieve 
them. 

Formally (Yao et al., 2016a; Logan et al., 2017), the root of a GPT is a top-level goal 
(goal-node), and its children are the plans that can be used to achieve the goal  
(plan-nodes). Usually there are several alternative plans to achieve a goal: hence, the 
child plan-nodes are viewed as ‘OR’ nodes. By contrast, plan execution involves 
performing all the steps in the plan: hence, the children of a plan-node are viewed as 
‘AND’ nodes. As in Yao et al. (2016c) and Yao and Logan (2016), we consider GPTs in 
which plans may contain primitive actions in addition to sub-goals. However, we will 
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take a plan as our basic unit of reasoning, following Thangarajah and Padgham (2011). 
Figure 3 gives the formal syntax of GPTs. 

Figure 3 BNF Syntax of GPTs with actions 

 

Source: From Yao et al. (2016a) 

In order to facilitate reasoning over goals, we follow the methodology of Clement  
et al. (2007) and particularly Thangarajah and Padgham (2011) and Thangarajah et al. 
(2003), we require the goals and plans be annotated with certain information about the 
resource requirements and effects attained, we generate a GPT structure with annotations, 
and use it in our reasoning algorithms. 

In the next section we present a simplified version of the Mars rover scenario, and 
then in the first part of Section 5 we explain the annotations on goals and plans, before 
proceeding to describe our computational mechanisms that use them. 

4 Example introduced 

We illustrate our approach on a Mars rover scenario. In this section we describe a 
simplified version of the scenario so that we can illustrate Section 5 using it. An 
autonomous rover has these resources: battery charge (energy), spectroscope utilisations 
(drill bits), internal memory capacity (for images), and time. The spectroscope involves 
drilling a small sample from a target (e.g., a rock), and the rover’s drill bit has a limited 
lifetime; hence the spectroscope is a consumable, discrete resource. Energy is a 
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renewable resource, since the rover can charge its battery from the sun. Memory is a 
renewable discrete resource. Time (seconds) is a renewable but perishable resource. 

To begin with, we will ignore the resource energy and the associated maintenance 
goals that the rover adopts to ensure it does not exhaust its battery. We return to these in 
Section 6. 

Each sol (Martian day), the rover leaves its base to explore a given region; today, that 
is region red1. The rover’s top-level goal is: ExploreRegion(red1) = achieve( ,  
TargetList(canyon) ∧ At(canyon) ∧ Measured(rock1) ∧ Measured(target), ⊥). The rover 
believes that region red1 has a rock of interest, rock1, which it is currently near, and an 
area of interest, canyon, within region red1 but some distance away from rock1, which it 
has been instructed to survey. 

The GPT is shown in Figure 4. There are various plans and goals below the top-level 
goal, as shown. Following the plan traverseAndStudy for ExploreRegion(red1), the rover 
will perform an Experiment(rock1) on rock1, Traverse(rock1, canyon) (i.e., move) from 
rock1 to canyon, and then Survey(canyon). 

For an Experiment goal, the rover can choose from two possible plans, one using its 
spectroscope and the other its thermal imaging device. In both cases, the rover moves 
close to the target object, positions its device arm, performs the measurement and saves 
any data. For the Survey goal, the rover has a single plan, which is to first 
IdentifyTargets, which may be fulfilled by a plan that uses the panoramic camera and 
then selects one target, and second Experiment on the selected target object. Later we will 
elaborate the scenario with the more realistic goal of iterating through a list of targets for 
the survey. Note for better presentation we omit the repeated sub-tree rooted at 
Experiment(target) in the right-hand branch of the GPT, as it is identical to the sub-tree 
rooted at Experiment(rock) apart from the argument. 

Figure 4, the GPT for the Mars rover scenario, has the effects and the resources 
estimated to be required for each leaf plan-node. We assume these estimations are 
specified by the rover’s designer, e.g., based on past experiences. The remaining 
annotations (except the success conditions) are computed from the leaf nodes and goals 
as we will describe in Section 5.1. Note that each goal has a pre-specified set of success 
conditions annotated to it, in additional to the effects. 

Lastly, in order to state an appropriate success condition for goals such as 
Experiment(rock1), we use a predicate Measured(X), which is true if either 
SpectralProfile(X) or ThermalProfile(X) is true. This is easily implemented by an 
appropriate rule in the agent’s beliefs. 

5 Quantifying completeness 

We can identify a number of factors which may contribute towards assessing the 
completeness of a goal: resources, deadlines, number of actions/plans complete, time 
elapsed, effects realised, etc. In this work we propose the use of two factors to determine 
a quantifiable measure of completeness of a goal: resource consumption and, for 
achievement goals, the effects of achieving the goal. 

First, we use resource consumption to provide a measure of the level of effort the 
agent has dedicated towards satisfying or repairing the goal. As discussed in Section 2, 
there has been previous work on representing resource requirements and continuously 
refining them as the agent executes its goals. We build on this existing work to provide a 
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quantifiable measure of completeness with respect to effort. Resource consumption 
cannot directly measure progress: an agent might have expended considerable resources, 
but made little progress towards a goal. Further while nonetheless resource consumption 
is a natural and useful quantity to exploit, there are complicating factors especially in 
realistic settings. For instance, a plan for a goal might fail, necessitating additional 
resources to retry it or try another plan; and goals and more generally agents can interact, 
such as the Mars rover needing to wait for another robot, and consuming battery power 
while waiting. We discuss these points further in Section 8. 

Second, the effects of an achievement goal capture its desired outcome, generally in 
terms of conditions that should be true when the goal execution is complete (Sardiña and 
Padgham, 2011; Thangarajah and Padgham, 2011). For example, the effect of a goal of 
the Mars rover to perform a measurement on a rock is that the rock is measured. We use 
the effects of the goal to provide a measure of the level of goal accomplishment, since the 
purpose of an achievement goal is indeed to bring about its intended effects. Goal effects 
more directly measure progress than resource consumption. As with resources, we build 
on and extend existing work on representing and reasoning about the effects of goals and 
plans (Thangarajah et al., 2003). In that prior work, effects are represented as Boolean 
predicates, such as Measured in the rover example (Figure 4). However, there may be 
instances where the conditions may be satisfied to a certain degree, such as 80% of the 
measurement is completed. We extend the prior work in the literature to allow for this 
representation. 

Besides these two factors representing effort and accomplishment, we highlight two 
other factors that might seem amenable to be used as a measure of completeness: the 
number of actions performed by the agent and the time taken. To reason with the number 
of actions seems tempting, in that it is relatively simple to identify them. However, not all 
actions are the same; for example, moving the rover from one location to another is one 
action, as is turning on a specific light. This means that resource consumption tends to be 
a more useful measure, in that different actions may involve vastly different uses of 
resources. 

On the other hand, time can be measured with respect to the pace of goal execution. 
However, to reason about the time required to execute a particular goal, an explicit 
representation of the time taken to execute each action or an entire plan is needed. For 
instance, Yao et al. (2016b) perform deadline-aware reasoning about intentions in a BDI 
system. If this is the case, then it is possible to consider time as a type of resource and use 
the same computational mechanisms we describe for resources, as we will illustrate. To 
ensure tractable computation, however, we do not consider dedicated temporal reasoning 
or projections (compare van Riemsdijk and Yorke-Smith, 2010; Yao et al., 2016b). 

We first consider achievement goals, focussing on quantifying completeness in terms 
of resource consumption and the effects of achieving the goal, and providing a 
computational mechanism to do so. We then turn to maintenance goals, defining what 
completeness means and showing how parts of our computational approach are useful 
again for these new notions of completeness. As a preliminary step, we specify the 
annotations on goals and plans that provide the basis for the computation. 
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Figure 4 GPT in the mars rover scenario, achievement goals only (see online version for colours) 
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5.1 GPT annotations 

5.1.1 Resources (Morley et al., 2006) 
The resources consumed when a goal is executed or maintained by an agent depend on 
the plans that are used to achieve or maintain the goal. As such, resource requirements 
are not annotated on goals, but only at the plan level. Each plan will have ascribed the 
resources necessary for the plan to complete execution, in line with the precedent in 
Clement et al. (2007), Thangarajah and Padgham (2011) and Morley et al. (2006). Note 
that this means that the GPT must be ground, i.e., all details known for it, at the time of 
execution. These resource annotations do not include the resources required for executing 
the sub-goals of the plan, if any. This declarative specification can be made by the agent 
designer, or in some domains learned from past execution traces. 

Definition 1: A set of resources   is a set of key-value pairs {(r1, α1), …, (rn, αn)} 
where ri is the unique resource name and i ∈α  is its corresponding value. □ 

Definition 2 (Thangarajah and Padgham, 2011): The resource requirement of a plan p, 
denoted p  is the set of total resource requirements of all the actions within p, in order 
to successfully execute p (assuming that all actions succeed). □ 

For example, in Figure 4, plan measurementT has resource requirement {(memory, 50), 
(time, 20)}. 

p  contains all the resource names and, for each, the aggregate total value. For 
example, if p had one action which used 50 units of memory and another action which 
used a further 25 units of memory, then in p  is (memory, 75). Note that p  does not 
contain the resource requirements of the sub-goals within the plan, but only of its actions. 

The above definition of resources takes the values of resources to be discrete. Our 
methodology applies if i ∈α .  In fact, we can accommodate lower and upper bound 
range estimates, thanks to the computation of summary information described below 
(compare Morley et al., 2006; Clement et al., 2007). Hence, with this extension, resource 
annotations on plans can be single values (when the resource usage can be estimated 
precisely by the designer) or ranges (when they cannot be estimated precisely). 

We consider resources of two types: consumable and reusable (or renewable). The 
former are those that are no longer available following use (e.g., drill bits) and the latter 
are those that can be reused following usage (e.g., memory3). 

We will need a means to aggregate resource values. We use straightforward addition, 
since the domains of all resources are commensurate. Suitable aggregation operators can 
be defined for ranges (Clement et al., 2007). 

Definition 3 (Thangarajah and Padgham, 2011): The resource set aggregation operator 
(⊕) is defined as: 1 2 1 2 1 2{( , ( ) ( )) | ( ( ) ( ))}r r r r dom dom⊕ = + ∈ ∪       where r is a 
resource type and 1( )r  provides the value of r in the relational set 1 .⊆   □ 

Note that we assume ( ) 0i r =  if .ir ∉  So for example {(drill, 1), (memory, 20)} ⊕ 
{(memory, 40), (time, 50)} = {(drill, 1), (memory, 60), (time, 50)}. 

While straightforward, our definition can suffer from interaction effects (when, e.g., 
two actions can be achieved with a single resource) and weighting of different resource 
types’ values. Below we introduce weights for the resources. 
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5.1.2 Effects 
Recall from Section 3.1.1 that we define the success condition of an achievement goal to 
be a set of effects, S(G), where the conjunction of the effects must hold for the goal to be 
complete. A plan p will have attached to it the effects attained by the actions of that plan 
(Thangarajah et al., 2003) excluding the effects of any sub-goals that are executed by 
other plans. 

Previous work about effects reasoning defined the effects of a goal (or plan) as simple 
predicates that are either true or false. As we have seen, this neglects effects which are 
not discrete but fulfilled continuously to a certain degree. For example, a goal like 
MeasurementS in Figure 4 involves performing a spectral profile on a target. A variant of 
this goal with quantified effects might be considered 80% complete once it has analysed 
80% of the target’s sample, which would result in an effect of (Measured, 80). 

Let ε be the set of all effect-types relevant to the agent system. 

Definition 4: An effect is a key-value pair (e, α) where e ∈ ε, the effect-type, is a unique 
identifying label and ∈α  is the degree to which the effect has to be attained for it to 
be achieved. For discrete effects, α ∈ {0, 100}; for continuous effects, 0 ≤ α ≤ 100. □ 

For example, consider the effect-quantified variant of the goal MeasurementS which 
drills a hole and then performs a spectral profile on the drilled sample. At 80% 
completion of the analysis, its effects can be represented as: {(Hole-Drilled, 100), 
(Measured, 80)}. 

As with resources, we will need a means to aggregate effect values: 

Definition 5 (Thangarajah and Padgham, 2011): The effects set aggregation operator 
(⊕) is defined as: E1 ⊕ E2 = {(e, E1(e) + E2(e)) | e ∈ (dom(E1) ∪ dom(E2))}. 

5.2 Quantifying completeness of achievement goals 

In this section we introduce two measures of completeness for achievement goals in BDI 
agents, based respectively on resources and effects. Our computational mechanisms 
reason over dynamically-updated summary information on the GPT, derived from the 
resource and effect annotations described above. 

5.2.1 Summary information 
In order to determine the level of completion of an achievement goal G at the current 
time t, with respect to resources or effects, it is necessary to determine: 

1 the resources consumed and effects attained thus far in executing G 

2 the resources required and effect that should be attained in order for the goal to 
complete from t. 

The former step can be computed accurately, by monitoring the resource consumption 
and checking the current state of the world for effects achieved. There might be a cost of 
this checking, such as time or some resource consumption. 

The latter step, of determining resources and effects needed to complete the goal, is 
more complex. Recall from Section 3.1 that the nature of BDI agents means that there 
can be multiple possible plans for accomplishing a particular goal, using different 
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resources and bringing about different effects, that plans may fail and unexpected events 
may occur, and that plan selection is dynamic during execution (although, as above, for a 
rational agent, we do not expect failure to be generally more common than success). 
Consequently we cannot always say a priori precisely what resources will be needed to 
accomplish a given goal. 

Further, although no matter which way a goal is pursued, its effects ought to be 
attained, the way in which the goal is achieved may result in further effects. Some of 
these (side-)effects may be necessary no matter which way the goal is achieved; others 
not. For example, the goal Experiment(rock1) results in the effect ArmPositioned(rock1) 
no matter which plan is followed, while the effects SpectralProfile(rock1) and 
ThermalProfile(rock1) depend on the choice of plan used. 

The second step above therefore requires some form of look-ahead for both resources 
and effects. It suffices for us to adopt and extend the efficient look-ahead mechanism of 
Thangarajah and Padgham (2011) and Thangarajah et al. (2003) which uses summary 
information to compute a lower and upper-bound of future resource usage and effects 
attained. 

5.2.1.1 Resource summaries 
Previous work (Thangarajah and Padgham, 2011) used the notion of summary 
information to (dynamically) estimate the necessary (lower-bound) and possible  
(upper-bound) resource requirements of a goal. Necessary resources are those that are 
used no matter which way the agent chooses to achieve the goal, while possible resources 
are those that may be needed in the worst case. This worst case is the largest resource 
consumption of the known plans, assuming that all the current plans succeed. This may 
seem simplistic; however, the alternative is to consider some kind of failure modelling, 
which is both not a feature of previous work and beyond the scope of the present paper. 
Furthermore, if a failure results in a change to an agent’s plans, the resource estimates 
can be easily recalculated once the revised plans are known. 

We adopt the algorithms for computing and updating resource summaries introduced 
in Thangarajah and Padgham (2011) and Morley et al. (2006) for our purpose. We do not 
detail all the same algorithms here since it is not the contribution of this work and is not 
necessary to understand the approach we present, but refer to the cited references for the 
details. The most relevant algorithm is updating GPT summaries dynamically, given in 
pseudocode as Algorithm 1. 

Definition 6: The dynamically-updated resource summary of a goal G at time t is: 

( ) ( ), ( )t t t
R RRS G N G P G=  (1) 

where ( )t
RN G  is the set of necessary resources and ( )t

RP G the set of possible resources 
required to execute the goal from current time t. □ 

For example, the goal Survey(canyon) in Figure 4 has necessary resources 
(Survey( )) {(memory, 20), (time, 380)},t

RN canyon =  and possible resources (Survey( ))t
RP canyon  

{(drill, 20), (memory, 380), (time, 580)}.=  
Note that both parts of the resource summary can change: the resource summary is 

dynamically-updated as execution proceeds, and the actual use of resources becomes 
known (rather than estimated). Note also that the necessary resources are the minimum 
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required, whereas the possible resources are the maximum required. This means that 
.t t

R RN P≤  
In Algorithm 1, for any node of the GPT, summary(r) for resource r ∈  returns the 

pair (necessary, possible) of resource r, indexed by a count of the number of child nodes 
using the resource. 

We briefly explain the algorithm. Procedure delete simply deletes a node from the 
GPT. Procedure update updates the resource summary of a node: both the necessary 
and possible resources. The next three procedures use the concept of a node being  
‘dirty’, i.e., its resource summary is in need of an update check, or not. Procedure 
propagateDirty pushes the dirty flag from parent node to its children. Procedure 
recompute performs the actual computation of how the resources at a node have 
changed, clearing the dirty flag when done. Procedure decrementCount records that a 
unit of a resource type is finished, and initiates upward propagation of this information 
and of dirty status as appropriate. For further details, see (Thangarajah and Padgham, 
2011); a more advanced algorithm is given by Morley et al. (2006). 

5.2.1.2 Effect summaries (Thangarajah and Padgham, 2011) 
The effect summaries of a goal are defined in terms of definite and potential effects: 
definite effects are those that are brought about no matter which way the goal is achieved, 
while potential effects are those that may potentially be brought about depending on the 
way the goal is achieved. 

Thangarajah et al. (2003) similar to their work on resource summaries, presented a set 
of algorithms for deriving effect summaries at compile time and updating them 
dynamically at run-time. The form of the algorithm is similar to Algorithm 1. 

Definition 7: The dynamically-updated effects summary of an achievement goal G is: 

( ) ( ), ( )t t t
E EES G D G P G=  (2) 

where ( )t
ED G  is the set of definite effects and ( )t

EP G  is the set of potential effects that 
will be brought about by pursuing the goal G at the current time t. □ 

For example, the goal Survey(canyon) has definite effects (Survey( ))t
ED canyon  

{TargetList(canyon), ArmPositioned(target), Measured(target)},=  and potential effects 
(Survey( )) {SpectralProfile(target), ThermalProfile(target)}.t

EP canyon =  Note that ( )t
ED G  

and ( )t
EP G  are exclusive, and that the success condition of the goal is a subset of the 

definite effects, i.e., ( ) ( ).t
ES G D G⊆  

5.2.1.3 Resource and effect weights 
Our initial work (Thangarajah et al., 2014a) treated the different resources, e.g., battery 
charge, drill bits, memory, etc. to be of equal importance, and likewise the  
different effect-types, placing the emphasis on domain independence. In this article we 
allow a domain-dependent weight rλ +∈  for each resource r and a weight eμ +∈   
for each effect-type e, with default values 1. In this way we can model both the  
domain-independent uniform resources and effects, and also allow customised  
domain-specific weights. 
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The use of weights provides the agent designer with the flexibility to emphasise some 
resources more than others in the calculation of completeness. The precise meaning of 
these weights is therefore outside the scope of this paper; our task here is to ensure that 
the calculations respect these weights. 

5.2.2 Resources as a measure of completeness 
The aim of our resource analysis is to provide an agent with a quantified measure of 
effort with respect to the amount of resources consumed thus far in executing a goal, in 
the context of the total resource requirements for achieving the goal. Hence we require 
the agent to keep track of the total resources consumed in executing each goal. Note that 
this is the resources for a single goal G: other goals might be using the same resources; 
their usage is not ascribed to G. 

Definition 8: Let Rt(G) be the set of resources consumed thus far up to current time t 
solely by the execution of G. □ 

We write (Rt(G)) (r) for the value of resource r in Rt(G) at time t, i.e., the value αr (see 
Definition 1). 

Note that Rt(G) is monotonically increasing with t. It is natural to expect that a 
corresponding decreased in Nt(G) over time, in that as G gets closer to completion, then 
the resources required to complete it should decrease. While this is generally true, it may 
be that Nt(G) does in fact increase; ultimately this is an estimate, and hence may be 
incorrect. 

5.2.2.1 Lower-bound resource consumption analysis 
We use the necessary and possible resource summaries to provide a lower and  
upper-bound resource consumption analysis, respectively. 

The intuition of the lower-bound resource consumption analysis is: for every resource 
that has been used by the current time t or is necessary in the future, calculate the 
percentage of the value of that resource that has been consumed at time t. Aggregate the 
percentage values to attain a single normalised value. Note that resources used so far for 
goal G are added to resources still needed to achieve G. 

Definition 9: The lower-bound resource consumption analysis of a goal G at the current 
time t is: 

( )
( )( )

( )

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( )
t t

R

t t
R

t

r t t
Rr dom R G N Gt

lb
r

r dom R G N G

R G r
λ

R G N G r
CR G

λ
∈ ∪

∈ ∪

⊕
=




 (3) 

where dom denotes the domain of the resource types set, i.e., the set of key values 
(Definition 1), and ⊕ is the resource set aggregation operator (Definition 3). □ 

Note that the plausible intuition that t
lbCR  is non-decreasing does not hold in general, as 

will be seen in execution traces in the Mars rover scenario. The intuitive reason is that the 
possible resources for one choice of plan may be less than the necessary resources for 
another choice; see Table 1 for an example of this. 



   

 

   

   
 

   

   

 

   

    Quantifying the progress of goals in intelligent agents 127    
 

    
 
 

   

   
 

   

   

 

   

       
 

Algorithm 1 Dynamic update of GPT resource summaries 

Procedure delete(node): 
 update(node, 0, 0 )/ /  

 if node ≠ root then // remove the node from the parent’s child list 
 node.parent.children := node.parent.children \ node 
Procedure update(node, newSummary): 
 if newSummary = node.summary then // no changes needed 
 return 
 foreach type ∈  do 

 (nold, pold)count := node.summary(type) 
 (nnew, pnew) := newSummary(type) 
 if (nold ≠ nnew ∨ pold ≠ pnew) ∧ node ≠ root then 
 if nnew = pnew = 0 then // resource no longer needed 
 decrementCount(node.parent, type) 
 else if node ≠ root then 
 node.parent.dirty[type] :=  

 propagateDirty(node.parent, type) 
 node.summary := newSummary 
Procedure propagateDirty(node, type): 
 if node ≠ root ∧ !node.parent.dirty[type] then 
 node.parent.dirty[type] :=  

 propagateDirty(node.parent, type) 
Procedure recompute(node): 
 if such that node.dirty[type]type¬∃ ∈ = then   

 return // no dirty nodes 
 foreach c ∈ node.children do 
 recompute(c) // if there are child nodes recompute them first 
 if node is a GoalNode then 
 

c node.children
node.summary : .c summary

∈
= +  

 if node is a PlanNode p then 
 node.summary : node.plan.p node.child.summary= ⊕  

 if node is a ParallelOperator node then 
 node.summary := ⊕c⊕node.children c.summary 
 if node is a SequenceOperator node then 
 node.summary := ⊗c∈node.children c.summary 
 foreach t such that node.dirty[type] =   do 
 node.dirty[type] := ⊥ // updated hence not dirty any longer 
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Procedure decrementCount(node, type): 
 (n, p)count := node.summary(type) 
 node.summary(type) := (n, p)count–1 
 if count – 1 = 0 then // resource no longer in use 
 node.summary(type) := (0, 0)0 
 if node ≠ root then 
 decrementCount(node.parent, type) 
 else 
 node.dirty[type] :=   
 if node ≠ root then 
 propagateDirty(node.parent, type) 

Source: Thangarajah and Padgham (2011) 

5.2.2.2 Upper-bound resource consumption analysis 
The computation is the same as for the lower bound, except instead of the necessary 
resource summary we use the possible resource summary. 

Definition 10: The upper-bound resource consumption analysis of a goal G at the current 
time t is: 

( )
( )( )

( )

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( )
t t

R

t t
R

t

r t t
Rr dom R G P Gt

ub
r

r dom R G N G

R G r
λ

R G P G r
CR G

λ
∈ ∪

∈ ∪

⊕
=




 (4) 

Note that as the necessary resources ( ( ))t
RN G  will never exceed the possible resources 

( ( )),t
RP G  it will always be the case that ( )t

lbCR G  will be at least as large as ( ).t
ubCR G  

This may seem counter-intuitive; it is important to keep in mind that this is an estimate of 
the completion of the goal, and hence if it completes using only the necessary resources, 
then the latter value may be less than 100%, as it may turn out that not all of the possible 
resources are required. For example, if Rt(G) is 80, ( )t

RN G  is 20 and ( )t
RP G  is 70, then 

( ) 80 /100t
lbCR G =  and ( ) 80 /150.t

ubCR G =  
For example, consider the goal ExploreRegion(red1) at the point where 

Experiment(rock1) has completed but neither Traverse(rock1, canyon) nor 
Survey(canyon) has started. Let Rt(Experiment(rock1)) = {(drill,1), (memory,40), 
(time,150)}. 

Then we have the following: 

• (ExploreRegion( 1)) {(drill, 0), (memory, 120), (time, 480)}t
RN red =  

• (ExploreRegion( 1)) {(drill, 1), (memory, 150), (time, 860)}t
RP red =  

and further: 
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• (1/ (1 0) 40 / (40 120) 150 / (150 480)) / 3 49.6%t
lbCR = + + + + + =  

• (1/ (1 1) 40 / (40 150) 150 / (150 860)) / 3 28.6%.t
ubCR = + + + + + =  

A point to note is that there are some occasions when we may have ( )( ) ( )( )t t
DR G r N G r=  

( )( ) 0t
DP G r= =  for some resource r and goal G. In such cases we will not consider r in 

the calculation of t
lbCR  and .t

ubCR  So if we had Rt(Experiment(rock1)) = {(drill,0), 
(memory,40), (time,150)} and (ExploreRegion( 1)) {(drill, 0), (memory, 150),t

RP red =  
(time, 860)}  in the above example, we would calculate as below. This is because the  
drill resource cannot in any way contribute to the completeness of the goal 
ExploreRegion(red1), as there is never any change in the usage of this resource. 

• (40 / (40 120) 150 / (150 480)) / 2 24.4%t
lbCR = + + + =  

• (40 / (40 150) 150 / (150 860)) / 2 18.0%.t
ubCR = + + + =  

Note that in the case where ( )( ) ( )( ) 0t t
DR G r N G r= =  but ( )( ) 0t

DP G r >  we will ignore 
any term involving the first two quantities in the calculation of ,t

lbCR  but otherwise 
proceed as above. This is because when there are no resources that have been consumed, 
there is no relevant measure of completeness that we can compute. Accordingly, if we 
have Rt(Experiment(rock1)) = {(drill, 0), (memory, 40), (time, 150)} then we calculate 

t
lbCR  as (40 / (40 + 120) + 150 / (150 + 480)) / 3 = 16.3%. 

5.2.3 Effects as a measure of completeness 
We now turn from resources, a measure of effort, to effects, a measure of 
accomplishment. As we have discussed, the effects of a goal can be thought of as the 
state of the world that the agent wants to achieve in order to accomplish the goal. For 
instance, in the example at the end of Section 5.1.2, the rover’s goal to survey the area 
may have the effects of area-surveyed and target-selected. The percentage of these 
effects currently achieved gives a quantifiable measure of accomplishment. The issue at 
hand is not how to express effects (e.g., the language used for S(G)) but how to quantify 
goal completeness. For simplicity, we assume that all effects are expressed as atomic 
formulae. We propose two computational approaches: the first based on the success 
condition of the goal and the second on the effect summaries of the goal. 

5.2.3.1 Completeness based on the success condition 
One way of determining the level of completeness of an achievement goal G, with 
respect to accomplishment, is to determine the percentage of effects in the success 
condition S(G) achieved at the current point in time. 

In order to compute this measure the agent needs to know the current value of a given 
effect, and to know the initial values of the effects in the success condition of the goal. 

Definition 11: Let Bt(e) be a function that evaluates the current value α of the effect e ∈ ε 
as known by the agent at the current time t. □ 
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Unlike the success condition or effect summaries, where the value of the effect is what 
needs to be accomplished in the future, the value of the effect determined by Bt(e) is the 
current value of the effect e as estimated by the agent. 

Definition 12: The initial set of effects for a goal G is Bi(G) = {(e, αi)|e ∈ ε}, where αi is 
the value of e when the execution of G begins. □ 

We compute the level of completeness with respect to S(G) by calculating the percentage 
of the value of each effect in S(G) currently achieved by the agent relative to the initial 
value when the goal execution began and the value to be achieved. For an effect  
e ∈ dom(S(G)), we write S(G)(e) to denote the value of e in S(G), and similarly for Bi(G). 

Definition 13: The level of completion of a goal G at the current time t with respect to the 
effects in the success condition is: 

( ( ))

( ( ))

( ) ( )( )
( )( ) ( )( )

( )

t i

e i
e dom S Gt

S
ee dom S G

B e B G eμ
S G e B G e

CE G
μ

∈

∈

−
−

=



 (5) 

For example, the goal Survey(canyon) in Figure 4 has S(Survey(canyon))  
= {TargetList(canyon), Measured(target)}. If IdentifyTargets(canyon) has completed but 
Experiment(target) has not commenced, we have: 

• (Survey( )) ((1 0) / (1 0) (0 0) / (1 0)) / 2 50%.t
SCE canyon = − − + − − =  

Note that if desired, the agent designer could use weights in order to emphasise  
some goals more than others. For example, if the completion of the goal 
IdentifyTargets(canyon) is more important than the goal Experiment(target), due to 
identified targets being able to be investigated later, the designer may wish for  
the completion of Experiment(target) to weigh more heavily on the completion of 
Survey(canyon) than Experiment(target). 

A limitation of this approach is if S(G) is can change. For example, in one 
formulation of the goals of the example, IdentifyTargets returns a target list of a priori 
unknown length, and Experiment must be run on each item of the list. In this sense, the 
progress based on the success condition depends on the interaction between the two 
goals. We return to this point later. Note that the above definition is nonetheless well 
defined, because it is defined in terms of the initial set of effects and their current values. 

5.2.3.2 Completeness based on the effect summaries 

The above computation ( )t
SCE G  does not take into consideration effects other than those 

in the success condition of the goal G, even for those goals where some (side-)effects are 
necessary in order to achieve the goal’s effects. We include these effects as part of the 
quantification of completeness and use effect summaries to present a lower-bound using 
the definite effect summary, and an upper-bound using the combined definite and 
potential effect summaries (since they are exclusive). 

Note that goal side-effects were also included in the resource summary approach of 
Section 5.2.2. For effects, these are not relevant, as effects are either achieved or not. 
Hence there is no consideration of side-effects in Definition 13. 
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We adopt the techniques developed by Thangarajah et al. (2003) for deriving and 
updating the effect summaries, but generalise their formulae to operate on a set of effects 
that are composed of key-value pairs and not simple predicates. This generalisation 
changes the way in which the sets of effects are added (⊕) and merged (⊕). We gave the 
redefined ⊕ operator as Definition 5 but omit the ⊕ operator as this work does not use it. 

Definition 14: The lower-bound effect accomplishment analysis of a goal G at the current 
time t is: 

( )
( )

( )

( ) ( )( )
( )( ) ( )( )

( )
( )

t
E

t i

e t i
Ee dom D Gt

lb t
eEe dom

B e B G eμ
D G e B G e

CE G
D G μ

∈

∈

−
−

=



 (6) 

Definition 15: The upper-bound effect accomplishment analysis of goal G at the current 
time t is: 

( )( )
( )

( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )( )

( )
( ) ( )

t t
E E

t i

e t t i
E Ee dom D G P Gt
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D G P G μ
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∈

−
⊕ −

=
⊕




 (7) 

where ⊕ is the effects set aggregation operator. □ 

For example, consider the goal Survey(canyon) in Figure 4 which has t
ED  

(Survey( )) {TargetList(canyon), ArmPositioned(target), Measured(target)},canyon =  and 
(Survey( )) {SpectralProfile(target), ThermalProfile(target)}.t

EP canyon =  If the sub-goal 
IdentifyTargets(canyon) has completed but Experiment(target) has not commenced, and 
none of the effects were true at the start of the goal execution, then we have: 

• (Survey( )) ((1 0) / (1 0) 2 (0 0) / (1 0)) / 3 33%t
lbCE canyon = − − + × − − =  

• (Survey( )) ((1 0) / (1 0) 4 (0 0) / (1 0)) / 5 20%.t
ubCE canyon = − − + × − − =  

Note that ( )t
ubCE G  will typically be less than 100%, as it will be unusual for all potential 

effects to be achieved. This value should thus be read in conjunction with the definite 
effects measure to provide an estimate of completeness, rather than as specific 
measurements of a precise quantity. 

These two mechanisms, based respectively on resources and effects, are founded on 
the efficient computation of summary information for achievement goals. They provide 
us with, for resources, lower and upper bound analyses, and for effects, a success-based 
analysis and lower and upper bound effect-based analyses. Note that the success-based 
analysis (5) and the effect-based analysis bounds (6) and (7), are complementary: it is for 
the agent to decide how to use them. For example, for Survey(canyon), we have seen that 
the latter three analyses are respectively 50%, 33% and 20%. 

We will illustrate these mechanisms on the scenario in Section 6. We next turn to 
maintenance goals, which present a conceptually more difficult task. 
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5.3 Quantifying completeness of maintenance goals 

By its nature, a maintenance goal is intended to persist in order to uphold its maintain 
condition – until the goal is no longer relevant. In this sense, a maintenance goal is never 
‘complete’ in the way an achievement goal can be. In this subsection we introduce two 
notions of ‘completeness’ for maintenance goals in BDI agents. The intuition is that 
‘completeness’ is in terms of the agent’s actions to maintain the goal, whether proactively 
or reactively. 

First, permanently complete (PC) refers to a goal no longer being relevant, and hence 
the agent no longer needing to uphold the goal’s maintain condition (which means no 
further action is ever taken with regards to this goal). By contrast, recovery complete 
(RC) refers to the agent’s progress in restoring the maintain condition after it has been 
violated; in other words, the achievement goal used to store the maintain condition has 
completed successfully. 

There are several reasons why it might be useful for an agent to have estimate of how 
close a maintenance goal M is to completing its relevancy, and, while the goal is still 
relevant but the maintain condition m is violated, of how close it is to completing the 
restoration of the maintain condition. The first reason is to make an estimate of how 
much longer M is still relevant, such as for how much longer a Mars rover will need to 
conserve its battery life. If this period is relatively short, it may be appropriate to drop 
this maintenance goal. The second reason is to consider the constraints on the agent’s 
behaviour which may be required in order to maintain the maintain condition. For 
example, if the battery can be recharged fully in a few minutes, then this allows a greater 
range of behaviour than if it will take two hours, or knowing that a certain amount of 
memory must be kept in reserve. The third reason is to use both these estimates to inform 
its deliberation and planning about other goals, such as in anticipating resource conflicts 
(Thangarajah et al., 2003). We will see that the methods introduce above for  
resource-based estimation of the completeness of achievement goals can also be used to 
predict potential violations of resource-related maintenance goals. Finally, to use the 
estimates to help prioritise M in the case of goal conflict, such as because of a lack of 
resources. 

5.3.1 Defining progress for maintenance goals 
5.3.1.1 ‘Completion’ of a maintenance goal 
Consider a maintenance goal M = maintain(k, m, S, F). Granted that, by its nature, M is 
intended to persist in order to uphold its maintain condition, what does it mean for such a 
goal to be ‘complete’? Recalling Figure 2, we consider the two relevant goal states in 
turn. 

First, when the goal is in state Monitoring. In contrast to achievement goals, 
maintenance goals are meant to persist. In this sense, they are never complete in 
themselves; the agent is not attempting to achieve the success condition S. 

However, if M’s success condition becomes true, then the purpose of the goal has 
expired, and so the agent need not keep maintaining M. We call this situation PC. A goal 
that is PC is no longer relevant: it is ‘complete’ in the sense that the purpose of the goal is 
complete. 

For example, consider the goal 
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1 maintain( at-base 30%, priority-science-targets-exist,
                        battery-functioning).
M = ¬ > ¬

¬
 

With this goal, agent rover is not attempting to achieve ¬priority-science-targets-exist. 
However, if it is true that ¬priority-science-targets-exist, then the purpose of goal M1 has 
expired, and M1 is PC. This condition may be based on a list of currently known targets, 
and one can then measure progress towards this condition becoming true by tracking 
progress through this list. Note that it may also be appropriate to have the success 
condition as at-base, so that the rover will actively seek to maintain its battery charge 
whenever it is not at the base (not just when there are no more science targets). Progress 
towards the success of at-base may be measured by proximity to the base, or by the 
progress of a goal to make this condition true. If the failure condition becomes true, 
likewise the agent need not keep maintaining M. For example, if it is true that  
¬battery-functioning, then rover need not keep maintaining battery > 30%. This 
situation is a failure case, and we do not class it as ‘completeness’ in any sense. Likewise, 
the goal’s transition to state Terminated we also do not class as ‘complete’. Note that if a 
goal fails or otherwise terminates, any quantification of its completeness becomes 
irrelevant. 

Second, we consider when a maintenance goal is in state Active. Here, if the maintain 
condition m becomes false (or is predicted to become false), the agent acts to restore it 
(respectively, to prevent its violation). If it succeeds in doing so, we call this situation 
RC. RC is the analogy of completeness for achievement goals. 

This notion of ‘completeness’ is decidedly non-monotonic: it can occur many times 
during execution. In contrast, once a maintenance goal is permanently complete, it has 
transitioned to state Satisfied and remains there. 

5.3.1.2 ‘Progress’ of a maintenance goal 
The next question is: what does ‘progress’ mean for a maintenance goal? That is, what 
does it mean for M to be ‘more complete’ at time t’ than at time t < t’? Again we consider 
the two relevant goal states in turn. 

First, we consider when the goal is in state Monitoring. Again, in contrast to 
achievement goals, the agent is not trying to progress M towards the accomplishment of 
S. That said, for permanently complete, one could characterise progress by a measure of 
how much S(M) is complete. The less informative alternative is to just say | S= ¬  
means that the agent believes M is 0% PC, and | S=  means that it believes M is 100% 
PC. 

Second, we consider when the goal is in state Active. When M becomes recovery 
incomplete, the agent is then attempting to achieve either P or R in order to restore m or 
proactively prevent its violation. As such, one could characterise progress in terms of 
how close M is to being RC again by the completeness of P or R. When m becomes 
violated, then the agent believes the goal is 0% RC. As the agent progresses towards 
restoring m, it believes M is increasing (not necessarily monotonically) in percentage RC, 
and on successful completion of P or R, then x believes M is 100% RC again. 
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5.3.2 Computing estimates 
Having indicated two notions of completeness for maintenance goals, we now specify 
metrics to measure progress in each case. We leverage the computational mechanisms for 
achievement goal progress of Section 5.2 in order to compute estimates of the metrics. 
This makes describing the computation quite simple, although, as for achievement goals, 
the underlying mechanisms are sophisticated. Again we consider the two goal states in 
turn. 

5.3.2.1 When the goal is in state ‘Monitoring’ 
By definition, when a maintenance goal is in state Maintain, then m is true (and not 
predicted to become false, in the proactive case). Hence, neither R nor P sub-goals are 
active, and M is (100%) RC. Given that S(G) is not true, the goal is not (100%) 
permanently complete. For the reasons given earlier, the agent may wish to estimate how 
close the goal is to being PC. 

If we characterise a metric of permanent completeness as how much the success 
condition S is complete, then we can directly leverage the computation mechanism for 
completeness based on the set (i.e., conjunction) of effects in the success condition 
(Section 5.2.3).4 That is, the percentage PC of M at time t, denoted PCt(M), is estimated 
based on estimating the percentage of effects in S(M) that are true at time t: 

( ) ( )t t
SPC M CE M=  (8) 

5.3.2.2 When the goal is in state ‘Active’ 
Given that a maintenance goal is not (100%) PC, then whenever the goal is in state 
Active, it is not (100%) RC. Since the recovery goal R or preventative goal P are 
achievement goals, we can leverage the computation mechanism for completeness for R 
or P, in one of two ways. First, completeness according to the resource consumption in 
restoring m (respectively preventing its violation). Second, completeness according to the 
accomplishment of the effects in restoring (respectively preventing violation) m, based on 
R’s (respectively P’s) success condition or on effect summaries for the goal (i.e., R or P). 

Note that the recovery/preventative sub-goals of M are restricted such that to 
themselves have no maintenance sub-goals (Harland et al., 2014). That is, plans to 
accomplish R or P can contain only actions and achieve sub-goals. 

5.3.2.3 Estimate based on resource consumption of R/P 
In this case we have lower and upper-bounds as follows. Let G be the achievement goal R 
or P as appropriate. 

( ) ( )t t
r lb lbRC M CR G− =  (9) 

( ) ( )t t
r ub ubRC M CR G− =  (10) 
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5.3.2.4 Estimate based on effects of R/P 
We again have lower and upper-bounds, as follows. 

( ) ( )t t
e lb lbRC M CE G− =  (11) 

( ) ( )t t
e ub ubRC M CE G− =  (12) 

6 Example 

We now show a detailed execution of the Mars rover example from Section 4. We begin 
with the simplified scenario that excludes maintenance goals, iteration and the resource 
energy, and then study the full scenario. The purpose of this section is to demonstrate the 
proposed mechanisms on a complex example. 

6.1 Simplified scenario: achievement goals only 

Recall the scenario as described in Section 4. The rover’s top-level goal is  
A0 = ExploreRegion(red1), whose plan P1 = traverseAndStudy consists of three sequential 
achieve sub-goals: A1 = Experiment(rock1), A2 = Traverse(rock1, canyon), and  
A3 = Survey(canyon), as seen in Figure 4. Here our interest is in the calculations about the 
completeness of each goal at every point in the execution process, and what insight that 
may give us. For ease of illustration, we set weights λr and μe uniformly to be 1. 

Note that to execute Experiment(rock1), the agent has to position the robot arm 
appropriately (PositionArt(rock1)), and then choose which measurement method to use 
(spectral or thermal). For illustration suppose the thermal method is used, which means 
that the agent will execute PositionArm(rock1) followed by MeasurementT(rock1). For 
the later goal Experiment(target), we will suppose the spectral method is used, and so 
PositionArm(target) and MeasurementS(target) are executed. 
Table 1 Resource and effect summaries in the simplified scenario 

No. Goal N P DE PE 
3, 5 PA(r1) 0, 0, 60 0,0,180 AP(r1) - 
11, 13 PA(t) 0, 0, 60 0,0,180 AP(t) - 
4 MS(r1) 1, 20, 40 1, 20, 80 SP(r1) - 
12 MS(t) 1, 20, 40 1, 20, 80 SP(t) - 
6 MT(r1) 0, 50, 20 0, 50, 30 TP(r1) - 
14 MT(t) 0, 50, 20 0, 50, 30 TP(t) - 
7 T(r1, c) 0, 0, 100 0, 0, 300 At(c) - 
9 IT(c) 0, 100, 300 0, 100, 300 TL(c) - 
2 E(r1) 0, 20, 80 1, 50, 260 AP(r1), M(r1) SP(r1), TP(r1) 
10 E(t) 0, 20, 80 1, 50, 260 AP(t), M(t) SP(t), TP(t) 
8 S(c) 0, 120, 380 1, 150, 560 TL(c), AP(t), M(t) SP(t), TP(t) 
1 ER(red1) 0, 140, 560 2, 200, 1,120 TL(c), At(c), 

M(t), M(r1) 
SP(r1), TP(r1), 

SP(t), TP(t) 
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As an initial step we calculate the resource and effects summaries from the GPT in Figure 
4. This is straightforward, and the results of this process are in Table 1. Column no. refers 
to the node numbering in Figure 4, column N is the necessary resources (respectively: 
drill count, memory, time), column P is the possible resources, column DE is the definite 
effects, and column PE is the potential effects.5 

6.1.1 Execution 
With the GPT resource and effect summaries computed, we can now proceed with 
execution. Table 2 shows the important stages in one execution of the goals in the 
scenario. For each goal, column CE shows the current effects which are true, including 
success conditions, and both definite and potential effects. The notation in this column is: 
S; DE; PE. We do not repeat effects in DE if they are in S. We now describe the trace of 
this execution in detail. 

The completeness of the goalsPositionArm(_), MeasurementS(_), MeasurementT(_), 
Traverse(rock1, canyon) and IdentifyTargets(_) is straightforward, as for each goal a 
single action is sufficient for their entire execution. For the others (Explore(red1), 
Experiment(_), Survey(canyon)) we simply aggregate the consumed resources and effects 
of the completed sub-goals, and then recursively aggregate the estimates for completion 
of the incomplete sub-goals. This means we traverse the GPT, but we only need to 
consider the children of incomplete sub-goals. For example, if MeasurementS(target) is 
the only incomplete sub-goal of ExploreRegion(red1), then we aggregate the resources 
and effects used by the completed goals Experiment(rock1), Traverse(rock1, canyon) and 
Survey(canyon), and calculate the completion estimates for MeasurementS(target) in 
order to find the completion estimate for ExploreRegion(red1). Similarly if the only  
sub-goal of ExploreRegion(red1) that is complete is PositionArm(rock1), then the 
consumed resources and effects for ExploreRegion(red1) are just those for 
PositionArm(rock1), and the calculation of the remaining resources and effects is the 
aggregation of those for all the other sub-goals. 

To compute the completion estimates, note that initially, all Rt values are 0, and the 
t
RN  and t

RP  values are as ascribed a priori on the GPT nodes. When a goal is completed, 
the t

RN  and t
RP  estimates are both 0, and hence the t

ubCR  and t
lbCR  measures will be 

100%. The possible resources will always be equal to or greater than the definite 
resources, so t

ubCR  will never exceed .t
lbCR  As we discuss in Section 7.2, during the 

execution of a goal, t
uR  will increase, and t

RN  and t
RP  will (generally) decrease. Once a 

goal is complete, its t
uR  value may also be used to calculate the completeness values of 

subsequent goals. For example, once Experiment(rock1) has completed, knowledge of 
the resources it has used will be needed for the completeness calculations for 
Traverse(rock1, canyon) and Survey(canyon). 
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Table 2 Example execution in the simplified Mars rover scenario 
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Figure 5 GPT in the Mars rover scenario including maintenance goals (see online version  
for colours) 
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In the execution of ExploreRegion(red1), t
uR  is initially 0, and the t

RN  and t
RP  estimates 

are as in stage 0. Experiment(rock1) is then adopted and executed. The t
RN  and t

RP  
estimates for Experiment(rock1) are refined in stage 1, as the rover has decided that the 
thermal profile will be used. After the goal PositionArm(rock1), the estimates for the 
completion of Experiment(rock1) are updated. Once MeasurementT(rock1) is completed 
(stage 2), Experiment(rock1) is also complete (stage 3). The next goal is Traverse(rock1, 
canyon), which completes (stage 4) using 200 units of time. Survey(canyon) is next, 
which leads to the execution of the goal IdentifyTargets(canyon), for which the definite 
and possible resource estimates are the same. The next goal is Experiment(target), which 
unlike the instance for Experiment(rock1), chooses the spectral option, and hence results 
in the execution of the goals PositionArm(target) (stage 7) and MeasurementS(target) 
(stage 8), which completes the execution. 

6.2 Full scenario: achievement and maintenance goals 

The simplified scenario neglects the resource energy, and omits the rover’s maintenance 
of its battery charge. Until now we also assumed the canyon area has only a single 
science target of interest. Figure 5 shows the full scenario. Differences from Figure 4 are 
in highlighted in red text. Note the two maintenance goals depicted in the top-right of the 
figure. 

Consider the rover’s top-level maintenance goal for this sol: 

1 maintain( at-base, battery ,30% priority-targets-exist( 1)
priority-targets-exist( ), battery-functioning)

M rock
canyon

= ¬ >
∨ ¬

 

M1 has context condition k of ¬at-base; maintain condition m of battery > 30% – the rover 
must keep its battery charge at least 30% of maximum, which is sufficient to get back to 
its base; success condition S of ¬priority-science-targets-exist – this means the goal is 
relevant as long as its context is true and the rover believes that high-priority science 
targets exist in its current target area(s); and failure condition that the battery is  
non-functional. In addition, the rover has goals such as R = PauseAndRecharge – the 
rover stops movement and science and waits until solar cells have recharged battery 
sufficiently – and P = ConserveEnergy – for which the rover might move more slowly, or 
deprioritise some science targets. For ease of illustration, we will focus on the 
PauseAndRecharge goal and a reactive semantics for M1. 

6.2.1 Execution 
For the region of interest red1, the rover knows from previous surveys that the region 
contains rock1 and canyon, but it does not how many science targets there will be  
in the latter. The success condition of M1 is therefore priority-targets-exist(rock1)  
∨ priority-targets-exist(canyon). At the start of mission execution, all the effects in S(M1) 
are false, so M1 is 0% permanently complete. 

Part-way through execution of plan P1 = traverseAndStudy for achievement goal A0 
this sol, just after positionArm(rock1) succeeds, the maintain condition m is violated. The 
rover therefore adopts the achieve goal R to repair m. M1 is 0% RC at this point. R leads 
to the suspension of P1 and so A1 and its sub-goals, which are resumed once R succeeds 
and M1 is 100% RC again. 
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Later, once Experiment(rock1) succeeds, the first part of M1’s success condition is 
true, and the rover computes that M1 is now 50% permanently complete. This is clearly 
an estimate, since there could be more science targets in priority-targets-exist(canyon) 
than in priority-targets-exist(rock1), or it could take more effort to study one target in the 
latter than in the former. That is, the rover has only an estimate of how much progress has 
been made on M1 and it must keep maintaining M1 until S(M1) is fully true. 

Given the estimation that M1 is 50% complete, the rover notes that it already has had 
to recharge once. Hence, based on its estimate, the rover may decide to choose a plan for 
Transverse(rock1, canyon) that involves travelling at lower speed than normal, because it 
predicts that it has limited battery charge left before it will likely to pause and charge 
again. 

6.2.2 Multiple targets in the canyon 
We extend the latter part of the scenario as previously presented by having the rover 
select not one single target in the canyon (from the found target list) and perform 
Experiment(target), but, perhaps more realistically, to work through all targets targeti in 
the target list and perform Experiment(targeti) on each one. This means the bottom-right 
node of the GPT becomes an iterative goal ‘for each targeti in targetList, do 
Experiment(targeti)’.6 

This sol, the rover finds four priority science targets in the canyon through goal 
IdentifyTargets(canyon). Hence, S(M1) can be expanded to priority-targets-exist(rock1)  
∧ priority-targets-exist(target1) ∧…∧ priority-targets-exist(target4). Note that such 
refinement of terms in the success condition means that the relevance (PC) estimates of 
M1 are non-monotonic. Before any of the canyon targets are investigated, the 
completeness of M1 has fallen from 50% to 20% (i.e., rock1 is done but four canyon 
targets remain). As the rover proceeds with Experiment(targeti), the progress estimate for 
M1 can be further updated. 

6.2.3 Battery recharging 
In the full scenario we must consider the resources required to perform the battery 
recharging process. In particular, suppose that a certain amount of memory is required by 
the recharge process, and so it is necessary that a certain amount of memory be available 
whenever M1 is Active. One possibility would be to ensure that the first step of the 
recovery goal PauseAndRecharge includes pausing all other goals, in order to ensure that 
the memory is available. Another possibility, which enables more rational and proactive 
resource management, is to introduce a second maintenance goal M2, whose task is to 
ensure that sufficient memory is available (indicated by memory-high). This means we 
have: 

2 maintain(battery 50%, memory-high, at-base, battery-functioning)M = < ¬  

The idea is for M2 to maintain a certain amount of free memory, which will be required 
when M1 becomes active. Since M2 needs only monitor memory levels when the rover is 
nearing the time for the battery to be recharged, M2 only enters the Monitoring state when 
the battery level drops below 50%, at which point it begins monitoring the memory level. 
Initially the goal is RC and not PC. If the memory falls too low (indicated by  
memory-high becoming false), then M2 is no longer RC; it becomes Active. The recovery 
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goal for M2 suspends the Explore(red1) goal, which frees up the memory to allow the 
battery to be recharged. As a result, the battery may be recharged even before the level 
drops below 30%, since waiting until this happens will only lower the level of available 
memory even further. Once the battery is recharged, M1 returns to the Monitoring state, 
M2 returns to the Inactive state, and ExploreRegion(red1) is resumed. We have not 
included the details of this variation on the scenario, which is similar in many respects to 
what is shown above. 

6.2.4 Discussion 
It should be noted that the estimates used for measuring the completeness of achievement 
goals are similar to the considerations needed for the activation of resource-based 
maintenance goals, such as M1 and M2. In particular, as this scenario shows, we can use 
the estimates for the resources needed to complete, e.g., Survey(canyon), to also estimate 
whether the battery will drop below the crucial level of 30% during the execution of this 
goal, i.e., whether M1 will become non-RC, and hence whether the battery should be 
proactively recharged during the execution of the goal. This could be achieved by 
incorporating such resource estimations into the procedure π supplied by the agent 
designer for maintenance goals. 

We could also use similar methods to prioritise some goals over others (i.e., those 
which will use less energy) when the battery level is getting low, or to allow a temporary 
violation of a maintain condition. The latter may occur when the goal Survey(canyon) is 
nearing completion, and only requires sub-goal MeasurementS(target4) to be performed. 
If, for instance, the agent estimates that the battery level will fall to no less than 27% 
while this is done, the agent may decide to continue with MeasurementS(target4) before 
recharging. There are a number of similar variations that we could consider similarly; the 
point to note is that estimating the completeness of achievement goals (via t

lbCR  and 
t
ubCR ) and the progress of maintenance goals have a close correspondence. Thia requires 

a mechanism for priotising certain goals over others, which is outside the scope of this 
paper. 

7 Discussion 

This section discusses implementation of our reasoning mechanisms, monotonicity and 
completeness, and reconciles our computational approach with a previous theoretical 
perspective. 

7.1 Implementation 

We have implemented our computational approach in the abstract agent language CAN 
(Winikoff et al., 2002; Sardiña and Padgham, 2011), and have used it to experiment on 
the above scenario. It is worth noting that the state-based techniques of Harland et al. 
(2014) simplify this process, in that it is relatively simple to specify rules such as one that 
requires ExploreRegion(red1) to be suspended when either M1 or M2 are Active, or that 
the activation of M2 requires proactive activation of M1 (i.e., even if the maintain 
condition of M1 is not yet violated). 
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The implementation consists of around 2,000 lines of Prolog, and is available from 
the authors’ website at: https://titan.csit.rmit.edu.au/~e24991/orpheus/. It has been tested 
under Ciao and SWI-Prolog. Execution time on the scenario is negligible, compared to 
the time without the extra code for the completeness calculations. Once the CAN 
execution rules were implemented, it was a simple task to translate the rules into 
executable code in Prolog. CAN is an established formalism for specifying and reasoning 
about processes in agent systems based on the BDI framework. This allows us the 
necessary precision to reason about particular points in the execution of an agent’s plans 
without having to commit ourselves to a specific programming language. This particular 
implementation is not intended as a substitute for such languages, but as a means of 
experiment with our techniques and checking that the mechanisms introduced perform in 
the intended manner. 

While our computational mechanisms are straightforward to implement, they give 
significant insight into the behaviour of the goals, as demonstrated in the Mars rover 
scenario. In particular, the relative values of the various completeness measures together 
with the consumed resources and effects achieved provide information for the agent’s 
deliberation. 

Recall that our emphasis is not on raw computational efficiency, but on finding 
principled, tractable ways to quantify completion estimates for goals. Hence we do not 
perform efficiency comparisons with other methods: indeed there are none to directly 
compare with, as previous works (Thangarajah and Padgham, 2011; Morley et al., 2006), 
etc. do not account for partial completeness, while van Riemsdijk and Yorke-Smith 
(2010) do not provide computational mechanisms. 

Regarding implementation in a deployed agent programming language, a suitable 
candidate is for example GOAL (Hindriks, 2009). van Riemsdijk and Yorke-Smith 
(2010) discuss (but do not undertake) what is necessary to implement reasoning with 
partial satisfaction (of achievement goals) in GOAL. They point out that modifying the 
language to include the possibility to reason about partial goal satisfaction will likely 
involve providing a new notion of goal, analogous to the proposed by van Riemsdijk and 
Yorke-Smith (2010). The completeness metrics such as t

lbCR  and t
SCE  can be computed 

over the agent’s belief base; annotations of the program text analogous to the annotations 
of the GPT may be useful. Then, one can investigate how deliberation such as action 
selection change according to this new notion of goal and the new information available 
from the completeness estimates, i.e., whether the existing mechanism in GOAL can in 
essence be used or whether other mechanisms are required. 

7.2 Monotonicity and completeness 

Observe the non-monotonic change between stages 5 and 6 of the detailed trace of  
Table 2. The t

RN  estimates for ExploreRegion(red1) and Survey(canyon) increase, and 
the t

RP  estimates decrease, due to the plan selection process for Experiment(rock1). 
Before it is known which of the two choices will be made, the t

RN  and t
RP  estimates are 

based on the minimum and maximum values across both choices. When a choice of a 
particular branch is made (stage 6), the estimates can be made more precise, as these now 
only need to take into account the particular branch chosen. This shows that the plausible 
intuition that the t

lbCR  is non-decreasing does not hold in general.7 
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It should also be noted that we do not dynamically update the effect estimates, which 
contrasts with our treatment of the resource estimates. In particular, in the transition from 
stage 5 to stage 6, as discussed above, it is known what branch of the GPT will be used; 
the resource estimates are updated accordingly but the effect estimates remain the same. 
The reason for this is that in general we do not know at what point the definite and 
possible effects become true. In the above scenario, it is clear that the effects 
SpectralProfile(rock1) and ThermalProfile(rock1) are not only mutually exclusive, but 
only become true at the very end of the execution of the relevant plan. However in 
general we do not know such specific information, i.e., whether possible effects are 
exclusive or not, and how closely their success is related to the overall success of the 
goal. This means that when a plan fails, it could potentially have made some of the 
definite and possible effects true despite its failure. While it may be interesting to explore 
the use of dynamically-updated effect summaries in future work, we have not done so 
here as we have been unable to see how to do this in a domain-independent way. 

A related issue is the way in which success conditions, definite effects, and potential 
effects are specified. In the above, effects are assumed to be just atoms and success 
conditions are sets of atoms. This makes it straightforward to measure discrete effects by 
simply counting formulae. It is arguably more natural to use more complex formulae for 
success conditions, such as SpectralProfile(rock1) ∨ ThermalProfile(rock1) as one of the 
success conditions for Experiment(rock1), rather than using the predicate Measured as 
above. This may allow for potentially richer methods of measuring effects than the 
simple measure used here. 

7.3 Theoretical perspective 

In this subsection, we reconcile our computational approach, denoted ‘Hetal’, with the 
theoretical framework of van Riemsdijk and Yorke-Smith (2010) (‘vRYS’). Our 
motivation is to ask whether our development of the former can provide the 
computational mechanism missing in the latter. In doing so, we instantiate vRYS’s 
theoretical framework to a computationally feasible approach. 

The scope of vRYS is greater than ours in this article, in that it studies how an agent 
can use goal completeness information, for instance in ‘goal adaptation’. In Hetal we ask 
instead how to compute goal completeness estimates. The two lines of work have in 
common the GPT as the basic reasoning structure. Both place attributes on (leaf) nodes 
which specify factors such as utility and resource usage. Both perform aggregation from 
leaf to higher-level nodes. vRYS explicitly include aggregation functions for each factor, 
and default aggregation functions in AND and OR cases, if no specific function is 
specified. vRYS consider goals only but mention the ‘means’ by which a goal can be 
achieved; Hetal explicitly include plans also – which is necessary to obtain a 
computational mechanism. vRYS consider only achievement goals. 

The key question is what defines (full) completeness of a goal G. vRYS suppose each 
goal has a progress metric, denoted as a set A with a partial order ≤ (usually total w.r.t. 
amin), and further a minimum value, amin ∈ A, the completion value, that should be 
reached in order to consider the goal to have been completely satisfied. By contrast, Hetal 
hold the classical view that completeness is defined by the success condition. 

Since vRYS do not use the logical conjunction of effects in S(G) to define 
completeness, they require each goal to have a progress appraisal function ψ from ,  
the set of states, to A. In addition, they posit an accompanying upper bound function, 
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which we will denote ψU, that takes into account the means m that ‘will be used for 
pursuing the goal’: ψU ‘yields (an estimation of) the maximum value in A reachable’ from 
a state s ′′∈  with means m. They also mention but do not develop a lower bound 
function which we will denote ψL. vRYS recognise that all three functions may be 
estimates, which concurs with the principles of Hetal’s mechanism. 

Hetal explicitly compute lower and upper-bounds. These bounds can be seen as 
equivalent to vRYS’s ψ (or ψL) and ψU for the progress metric. While vRYS consider 
only a single such ‘metric’, Hetal compute multiple metrics – multiple resources and 
multiple effects. However, vRYS note “Besides the metric chosen as the progress metric, 
the agent (or designer) might have interest in others: e.g., progress may be defined in 
terms of tracks searched, but time taken could be an additional relevant factor in the 
team’s decisions” (van Riemsdijk and Yorke-Smith, 2010). 

From this analysis we conclude that the general philosophy of the two lines of work 
seem compatible. The computation mechanisms of Hetal for lower and upper-bounds can 
be seen as computing the ψL and ψU bounds of the progress metric of vRYS. That is, if 
one metric of those computed by Hetal is designated as the progress metrics for a goal in 
vRYS’s framework, then Hetal provide the computational mechanism that is lacking in 
vRYS’s framework. 

In more detail, consider an achievement or maintenance goal G being pursued by an 
agent using a plan that in vRYS’s notation is the meansm.8 First, in the case of (the usage 
of) a resource r being selected as the progress metric, we have: 9( ) ( ) ,t

L lbψ G CR G=  ψ(G) 
= Rt(G), and ( ) ( ).t

U ubψ G CR G=  Second, in the case of success-condition effects, we 
have: ( ) ( ), ( ) ( ),t t

L Slbψ G CE G ψ G CE G= =  and ( ) ( ).t
U ubψ G CE G=  Note that for 

maintenance goals, the resource-based metric and the effects-summary-based metric 
apply to its recovery completeness, while the success-condition-based metric applies to 
both its recovery and its permanent completeness. 

An important point of difference between the two lines of work is the key question of 
what constitutes completeness of an achievement goal. vRYS give the agent designer the 
ability to define completeness through the choice of which metric (which could be one of 
those of Hetal) constitutes the designated progress metric for a goal, together with the 
designated amin value. Hetal, by contrast, give this ability through what the agent designer 
specifies in S(G). Hence, to reconcile the framework of vRYS with the classical view, 
S(G) should be set to be the condition that corresponds to ψ(G) ≥ amin. 

Let us make two final remarks. First, if a different metric than resources or effects is 
selected as the progress metric for a goal, then the metrics computed by Hetal can be 
useful in agent deliberation, although not defining completeness – as vRYS remark  
(van Riemsdijk and Yorke-Smith, 2010). 

Second, in line with Hetal’s computation of multiple metrics, an interesting extension 
of the vRYS framework would be to have multiple progress metrics, i.e., to choose more 
than one metric to be the progress metric for a goal. The question then is how to define 
completeness (since they do not use S(G)), the simplest approach being min( ) i

iψ G a≥  for 
all progress metrics i. 
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8 Conclusions 

The practice of BDI agent systems is that goal accomplishment is discrete. This article 
contributes a principled mechanism for computing completeness of top-level goals of a 
BDI-style agent in order to inform the agent’s deliberation. The overall aim in our work 
is to provide an approach that is principled and generic and that can be used 
computationally to quantify a measure of completeness for both goals of accomplishment 
(achievement goals) and goals of monitoring (maintenance goals). By enabling an agent 
to compute a finer-grained approximation of the level of completeness of its goals, we 
endow agents to make more nuanced and potentially more suitable decisions. For 
example, when reasoning to resolve goal conflicts (Thangarajah and Padgham, 2011), the 
agent may choose to continue with the goal that is more complete than the other. 

As a further, specific example, in the Mars rover scenario, given an imminent 
deadline such as the approach of dusk, it may be reasonable to terminate the execution of 
IdentifyTargets(canyon) once a sufficient fraction of the canyon has been surveyed, or if 
a sufficient number of targets has been found. This would allow the top-level goal 
(ExploreRegion(red1)) to be completed before the deadline, despite not having fully 
explored the canyon for all possible targets. The information computed at run-time by our 
approach provides a quantifiable basis for such decisions. 

First, our approach leverages previous work on resource and effects summarisation 
but we go beyond by accommodating both dynamic resource summaries and goal effects, 
while also allowing a non-binary quantification of goal completeness. We can 
accommodate BDI agents with generative planning capabilities (Sardiña and Padgham, 
2011), since we compute dynamically from the GPT. 

Second, we examine what it means for a maintenance goal to be ‘complete’, and 
compute estimates of the notions of permanently complete and RC, leverage recent work 
on computing completeness of achievement goals. Throughout, our implementation, in 
the abstract agent language CAN, enjoys low computational overhead. 

Third, we examine our work on practical computation of progress estimates in the 
light of an earlier theoretical framework on BDI goal completeness. We showed that 
computation of lower and upper-bounds of Thangarajah et al. (2015) can be seen as 
computing the bounds on the progress metric of van Riemsdijk and Yorke-Smith (2010), 
depending on the choice of progress metric. As a by product of this reconciliation, we 
implicitly extended the reach of the theoretical framework to include maintenance goals. 
We also instantiated the theoretical framework to a computationally-feasible approach. 

8.1 Assumptions and limitations 

The assumptions and limitations of this article are summarised as follows: 

1 We assume that the agent’s beliefs are generally true. However the agent does not 
have knowledge of the world, only beliefs. 

2 We assume that the agent is rational and optimistic, but that its goals do not always 
succeed. 

3 For a maintenance goal, we assume that the success of either a preventive or 
recovery goal is sufficient to restore the maintenance condition, and that these goals 
will typically succeed. 



   

 

   

   
 

   

   

 

   

   146 J. Harland et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

4 We assume that effect and resource summaries on leaf nodes are provided by the 
agent designer. 

5 We assume that the value of a resource is zero if the resource is not in a resource 
subset. 

6 We assume that all goal effects are expressed as atomic formulae. 

7 We assume that effects are atoms and that success conditions are sets of atoms. 

8.2 Future work 

This article leads to a number of extensions and future directions, which we now briefly 
describe. 

First, some potential aspects for further work relate to the potentially non-monotonic 
nature of effects. Despite having made one or more effects become true, these effects 
could be undone by either interactions between plans (Thangarajah et al., 2003), by 
another agent, or by interactions with the environment, such as wind moving rocks 
around after the agent has positioned its robot arm, or an identified target being moved 
from its initial location. This means the calculations above would need to take into 
account the need to re-establish effects which had been previously made true. Further, 
additional resources beyond those estimated previously might be needed for the plan to 
succeed. 

Second, a further observation that may be made about the example involving the wind 
moving the rocks is the need for preconditions to be maintained. In other words, there is 
often an implicit connection between goals, such as PositionArm(rock1) and 
MeasurementS(rock1) in Figure 4, in that we assume that PositionArm(rock1) remains 
true during the execution of MeasurementS(rock1). This suggests that an interesting line 
of further work would be to consider a more complex plan that involved maintaining any 
necessary pre-requisites for the duration of the plan; the cost of re-establishing these, as 
discussed above, would then become the cost of maintaining the relevant pre-requisite 
conditions. 

Third, as noted above, the traditional notion of accomplishment for achievement 
goals are discrete, i.e., it is either achieved or not. In some circumstances, it may be 
appropriate to consider a ‘less binary’ notion of success. For example, for M1 in the rover 
scenario above, consider when the battery level drops to 29% and so the rover recharges. 
However, as this will interrupt the achievement of other goals, it may be that it is not 
strictly necessary to recharge the battery in full to complete the day’s schedule. If it is 
known that completing the schedule will require only say 90% of the battery charge, it 
may be better to cease recharging when this level is achieved, and spend the time saved 
on science opportunities. This will involve considering the goal ‘complete enough’, 
rather than strictly complete. 

Fourth, another line of further work is suggested by the discussion in Section 6.2 on 
iterative goals, and in particular how they may apply to the issue of finding and analysing 
science targets. The notion of an iterative goal, either triggered by a rule of some sort or 
as an extension of the notion of a maintenance goal, is something that we intend to 
explore further. Some related issues concern the relationships between the various 
components of a maintenance goal. For example, it seems natural to consider 
maintenance goals in which the success condition is the negation of the context condition, 
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so that there is a direct and intuitive connection between what triggers activity and what 
ceases it. It also seems natural to consider maintenance goals in which the success 
condition of the recovery goal implies the maintenance condition, so that there is a formal 
reflection of the intuitive goal that the achievement of the recovery goal will in fact 
restore the desired state. For M1 and M2 above, it is clear that restoring the battery level to 
100% will ensure any specified level of minimum charge is reached; in other examples, it 
may not be so obvious. 

Fifth, one can consider the resource costs for failed plans for achievement goals 
(including repair and preventative goals). For example, if the Mars rover attempts a 
spectroscopic analysis, but finds that it fails, it may still consume energy, drill bits, 
memory and time in doing so. This means that we need to adjust the calculations for the 
definite and potential resource estimates for completing the goal to take the resources 
used in failed sub-goals into account. 

Sixth, for maintenance goals, there is the possibility of leveraging look ahead 
predictions in order to refine progress estimates, based the likelihood or number of 
predicted future maintain condition violations. As discussed in Section 5.3, reasoning 
about predicted resource use may be useful for resolving conflicts and improving 
resource utilisation. 

Seventh, as noted in Section 2, there are two bodies of literature for which the 
connections with our work are interesting to explore: the works on reasoning about time 
in agent programming languages, and the works on the degree of completeness of fuzzy 
goals. 

Lastly, a further conclusion of our work is that measuring the progress of an agent 
that has maintenance goals can lead to ‘higher-level’ considerations of progress. For 
example, potentially a maintenance goal could be active for the entire existence of the 
agent, which in the Mars rover scenario could be a mission of several months. Given that 
the rover’s activity is restricted to daytime hours, the agent’s activity over the course of 
the mission involves a regular cycle of returning to its base each night. It would seem 
natural to integrate a regular update of the overall progress of its mission, based largely 
on techniques similar to those discussed here, to allow it to compare the current sol’s 
progress to previous sols, as well as to estimate its overall progress. For example, at the 
end of a given sol, the rover may compare the time spent in reactively charging the 
battery that sol to previous ones, as well as proactive recharging, in order to determine 
whether its battery use could be better managed. This may also include a comparison of 
the completion estimates with their actual values, again to potentially improve the 
accuracy of its predictions and hence of its goal management. 
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Notes 
1 We thank an anonymous reviewer for this point. 
2 One could also include the look ahead function π in the goal syntax, whereupon the look ahead 

function could differ by goal. 
3 Although note that in the timescale of the scenario of Section 4, memory is not reused. 
4 Since x is not trying to achieve S, completeness based on resource usage is irrelevant, as x is 

not intentionally expending resources to accomplish S. Likewise, completeness based on effect 
summaries is irrelevant. 

5 We abbreviate rock1 to r1, target to t, canyon to c, ArmPositioned(_) to AP(_), 
SpectralProfile(_) to SP(_), etc. 

6 While there is no explicit loop construct in the CAN (Sardiña and Padgham, 2011)  
language used in our implementation, described below, such a construct is easily be simulated 
by a particular combination of a goal and plan. Specifically, to execute a plan such as  
‘while C do P’, we adopt the CAN goal loopP = achieve(C, ¬C, ¬C), with the corresponding 

; ? .P C fail¬   The goal loopP is activated when C is true, and is dropped when ¬C is true. 
The plan for loopP will perform P and then pose the query ?¬C. If this succeeds, ¬C is true, 
the plan for loopP terminates, and loopP succeeds. Otherwise, the query fails, and the   
construct ensures that the plan ; ?P C fail¬   fails. Due to the semantics of CAN, this means 
that the plan for loopP is restarted, and P and the subsequent query are performed again. This 
process will only halt when C becomes true. Based on this kind of rule, one could add an 
explicit while construct to CAN. 

7 A similar occurrence is found in the change from stage 0 to 1, but as no goals have completed 
at this point, all the completion estimates are 0% despite this narrowing of the resource 
estimates. 

8 For a maintenance goal, the plan/means is that used for the R or P sub-goal when it becomes 
active. 

9 There is a caveat in the case of resources: 1t
lbCR =  does not imply that the goal is complete 

w.r.t. S(G) – the moment a plan uses all the necessary resources does not imply the plan is 
complete at the moment – whereas vRYS have ψL ≥ amin implies ψ ≥ amin. That is, Hetal’s 
resources lower bound estimate is not a strict lower bound w.r.t. completeness if used in the 
way proposed. In the case of effects, t

lbCR  is a strict lower bound provided effects are 
monotonic. 


