

Delft University of Technology

Quantifying the Progress of Goals in Intelligent Agents

Harland, James; Thangarajah, John; Yorke-Smith, Neil

DOI
10.1504/IJAOSE.2022.122640
Publication date
2022
Document Version
Final published version
Published in
International journal of agent-oriented software engineering

Citation (APA)
Harland, J., Thangarajah, J., & Yorke-Smith, N. (2022). Quantifying the Progress of Goals in Intelligent
Agents. International journal of agent-oriented software engineering, 7(2), 108-151.
https://doi.org/10.1504/IJAOSE.2022.122640

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1504/IJAOSE.2022.122640
https://doi.org/10.1504/IJAOSE.2022.122640

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

 108 Int. J. Agent-Oriented Software Engineering, Vol. 7, No. 2, 2022

 Copyright © 2022 Inderscience Enterprises Ltd.

Quantifying the progress of goals in intelligent agents

James Harland and John Thangarajah
RMIT University,
Melbourne, 3000, Australia
Email: james.harland@rmit.edu.au
Email: john.thangarajah@rmit.edu.au

Neil Yorke-Smith*
Delft University of Technology,
2600 GA Delft, The Netherlands
Email: n.yorke-smith@tudelft.nl
and
American University of Beirut,
Beirut 1107 2020, Lebanon
*Corresponding author

Abstract: Deliberation over goals is a fundamental feature of intelligent agent
systems. In this article we provide pragmatic but principled mechanisms for
quantifying the level of completeness of goals in a belief-desire-intention (BDI)
agent. Our approach leverages previous work on resource and effects
summarisation which we extend by accommodating both dynamic resource
summaries and goal effects, while also allowing a non-binary quantification of
goal completeness. We treat both goals of accomplishment (achievement goals)
and goals of monitoring (maintenance goals). We reconcile such practical
computation of progress estimates of goals of both types with an earlier
theoretical perspective on BDI goal completeness, and thus extend the
theoretical framework to include maintenance goals. Our computational
mechanisms have been implemented in the abstract agent language CAN. We
also provide a detailed example in an autonomous rover domain.

Keywords: agent-based systems; maintenance goals; belief-desire-intention;
BDI; goal reasoning.

Reference to this paper should be made as follows: Harland, J., Thangarajah, J.
and Yorke-Smith, N. (2022) ‘Quantifying the progress of goals in intelligent
agents’, Int. J. Agent-Oriented Software Engineering, Vol. 7, No. 2,
pp.108–151.

Biographical notes: James Harland is a Professor in Computational Logic at
RMIT University. He is known internationally for his work on intelligent agent
systems, automated reasoning, logic programming, Turing machines and
computer science education. His work centres on the relationship between
computation and logical reasoning, particularly in the areas of mathematical
logic and proof theory.

John Thangarajah is the Research Director for the Centre for AI Research &
Innovation at RMIT University, Melbourne, Australia. His interests are in
autonomous multi agent systems (how do we build and construct intelligent
systems), agent reasoning (how can programs behave in smart ways),

 Quantifying the progress of goals in intelligent agents 109

intelligent conversation systems (how can systems interact intelligently with
humans), agent testing (providing assurance that the systems work) and human
machine teaming (how can humans and machine work collaboratively).

Neil Yorke-Smith is an Associate Professor of Socio-Technical Algorithmics in
the Faculty of Electrical Engineering, Mathematics and Computer Science at
the Delft University of Technology (TU Delft). His research focuses on
intelligent decision making in complex socio-technical situations, with a
particular interest in agent-based methodologies and automated planning and
scheduling. The author of over 100 scholarly publications, he is a senior
member of the Association for the Advancement of Artificial Intelligence
(AAAI) and of the Association for Computing Machinery (ACM).

This paper is a revised and expanded version of a paper entitled ‘Quantifying
the completeness of goals in BDI agents’ presented at Proc. of ECAI’14,
Prague, Czech Republic, August 2014; ‘Towards quantifying the completeness
of BDI goals’ presented at Proc. of AAMAS’14, Paris, France, May 2014;
‘Estimating the progress of maintenance goals’ presented at Proc. of
AAMAS’15, Istanbul, Turkey, May 2015.

1 Introduction

Intelligent agent technology has become a popular means for developing applications that
exhibit autonomous behaviour: for instance, unmanned vehicles (Wilson et al., 2018; Jha
et al., 2018), electronic trading agents (Collins et al., 2009) and tactical simulation
systems (Evertsz et al., 2015). Among the many agent architectures used to develop such
autonomous systems, the belief-desire-intention (BDI) model of agency (Georgeff and
Rao, 1998) is mature and has influenced many agent programming languages such as
JACK (Winikoff, 2005), SPARK (Morley and Myers, 2004), GOAL (Hindriks, 2009)
and GORITE (Rönnquist, 2007).

Goals are an essential concept in BDI agent systems. Autonomous agents, such as a
Mars rover robot, are designed to work in dynamic environments. Hence it is crucial for
an agent to deliberate over its goals and manage them appropriately (Thangarajah and
Padgham, 2011; Harland et al., 2017; Wilson et al., 2018). The two main types of goals
are achievement and maintenance goals. The most common type, achievement goals, are
adopted by the agent to achieve a particular state (such as, for the Mars rover, performing
some particular science experiment), and then dropped once this state has been achieved.
The other type of goal, increasingly recognised for its importance, is maintenance goals
(Duff et al., 2014). A maintenance goal has a particular state of the world that the agent
seeks to maintain, i.e., the state must be true, and kept this way indefinitely. For example,
the Mars rover would be well advised to ensure that wherever it travels, it always
maintains sufficient battery charge for the journey back to its base. Hence, the agent’s
goal is to monitor the maintain condition, to ensure if possible that it never becomes
false, and to act to restore it, if it is so violated.

Typically in BDI systems, goal accomplishment is discrete: a goal is either complete
(usually, a plan for it has succeeded), or it is incomplete (whether execution of a plan or
plans for it has begun or not) (Georgeff and Rao, 1998; van Riemsdijk and Yorke-Smith,
2010). Hence, when deliberating about its goals – such as the decision about which goal

 110 J. Harland et al.

to focus on next – an agent is limited to a coarse binary approximation of goal
completeness. If the agent were able to compute a finer-grained approximation of the
progress of its goals, it could make more nuanced and potentially more suitable decisions.
For example, when resolving goal conflicts (Thangarajah and Padgham, 2011), the agent
may choose to continue with one achievement goal that is more complete than another.
When reasoning about deadlines, such as ensuring all activities are complete by the end
of the day, it is also useful to be able to estimate how close the current goals are to
completion, so that the usefulness of a minor extension of time can be evaluated.
Similarly, an important opportunity (or threat) may arise before a goal is completed, and
hence it will be useful to know whether or not a minor delay is appropriate, or it is better
to suspend all current activities in favour of this new opportunity.

While the notion of partially-complete goals has been defined in Zhou et al. (2008)
and van Riemsdijk and Yorke-Smith (2010), reasoning frameworks to date have largely
left unanswered how to compute the level of completeness of a goal in a realistic and
principled manner. Moreover, maintenance goals have not been considered. In our
preliminary work we presented an approach to computing partial completeness estimates
for an achievement goal (Thangarajah et al., 2014b, 2014a), and presented some ideas for
what it means to estimate the completeness of a maintenance goal (Thangarajah et al.,
2015).

To address this shortfall in the literature, the aim of this article is to provide a
principled and general approach that can be used computationally to quantify measures of
completeness for both achievement and maintenance goals. Hence we provide a
foundation for subsequent reasoning by the agent using this information, i.e., the agent’s
(intention) deliberation mechanisms. This article thus enables automated reasoning for
strategic planning, goal prioritisation, resource allocation and plan selection, among other
deliberative tasks.

We make three main contributions. The first is to present detailed mechanisms to
compute completeness measures of achievement goals. These mechanisms are based on
goal resources and effects. The second contribution is to establish what it means for
maintenance goals to be ‘complete’ and to present mechanisms for efficiently computing
completeness measures for maintenance goals. The methods we introduce for resource-
based estimation of the completeness of achievement goals are also suitable to predict
potential violations of resource-related maintenance goals. This makes it easier to specify
more sophisticated interactions between the two types of goals. For example, if it is
known that continuing to pursue a given achievement goal will cause a maintenance goal
to be violated, then it seems rational to suspend or abort the achievement goal rather than
knowingly allowing the maintenance goal become false. In a similar manner, given a
concurrent set of achievement goals being pursued, we may be able to predict that
concurrent success of all such goals will falsify a maintenance goal, but yet identify a
subset of these achievement goals which will not. It is also possible to use completion
estimates as a means of determining priorities between goals, such as favouring those
which are closest to completion, or in fact doing the opposite in order to satisfy fairness
constraints. The third contribution is to reconcile this practical computation of progress
estimates – in both goal types, achievement and maintenance – with the theoretical
perspective on BDI goal completeness of van Riemsdijk and Yorke-Smith (2010), and to
thus implicitly extend the theoretical framework to include maintenance goals. At the
same time we instantiate that framework to a computationally-feasible approach.

 Quantifying the progress of goals in intelligent agents 111

Our contribution is foundational and addresses the goals of a single agent considered
separately. That is, we do not address interaction effects between goals, incomplete
information about the future, and suspension. As with most BDI agent approaches, we
assume that the agent’s beliefs are generally true, but not guaranteed to be so, and that
goals, plans and actions generally succeed, but are also not guaranteed to do so. In other
words, our agents are generally optimistic, but prepared for (occasional) failures. We
discuss future extensions at the end of the article. Our work is intended to provide a
snapshot of the agent’s current activities as a means of assisting in such deliberations, and
in particular whether to continue its current activities, or to abort or suspend them.

The article is structured as follows. Section 2 reviews the literature. Section 3
provides necessary background for understanding our contribution. Section 4 presents the
autonomous rover scenario. Section 5 proposes means to quantify the completeness of
achievement and of maintenance goals. Section 6 illustrates these mechanisms on the
scenario. Section 7 discusses from a theoretical perspective. Section 8 summarises the
article and presents future directions.

2 Related work

An agent reasoning about its goals is a long-standing area of agent design and
engineering, and one which is seeing a resurgence of research (Roberts et al., 2018; Aha,
2018). In this section we survey the notion of goal completeness and progress, paying
attention to the key previous work on which we build. We include related fields such as
AI planning.

We start with conceptual foundations of goals. Whereas goals in agent programming
languages are not customarily defined to allow for partial completeness, Holton, from a
philosophical perspective, argues for the existence of ‘partial intentions’, a concept
spanning both desires and goals (Holton, 2008). Holton’s partial intentions have a sense
similar to Bratman’s (1978) (although seeming to allow multiple live plans
simultaneously); our focus is on partial completeness of goals in a practical agent system.
Towards the latter, Haddawy and Hanks (1992) made an early contribution, defining a
function from propositions to the real number, which represents the degree of satisfaction
of a goal.

While partial completeness is less common in the AI literature, goals have commonly
been associated with a utility, priority or preference in the agents literature (e.g., Huang
and Bell, 1997; Hindriks et al., 2008; Khan and Lespérance, 2010) and in the automated
planning literature (e.g., Do et al., 2007; Hsu et al., 2007). The purpose is usually for a
form of intention selection (see, e.g., Visser et al., 2016): which goals to prioritise or
pursue, or which plan/action to select and execute.

Vukovic and Robinson (2005) adopt Haddawy and Hanks’ definition of the degree of
goal satisfaction, for the purpose of context-aware goal transformation. In the setting of
robust web services, these authors reformulate failed goals using a temporal planner.
Their focus revolves around context and an ontology for it rather than agent autonomy.

Letier and van Lamsweerde (2004) are instead interested in the setting of
requirements engineering. These authors determine the probabilistic partial goal
satisfaction of alternative system designs. Our work shares the use of application-specific
measures and the upwards and downwards propagation of them.

 112 J. Harland et al.

Thangarajah et al. (2007) explore multiple criteria that an agent may include in its
goal deliberation, including utility, preference, deadline, resource considerations, goal
interactions, effort to date, and likelihood of success. Although they describe a dynamic
constraintbased reasoning mechanism, these authors also do not explicitly consider
reasoning with partially-complete goals.

Based on their earlier work (Thangarajah et al., 2002, 2003), Thangarajah and
Padgham (2011) study goal interactions, both positive (synergy) and negative (conflicts).
Their work considers action effects as simple Boolean predicates. These authors define
the Goal-Plan Tree (GPT) structure of alternating layers of goal and plan-nodes, and use
this structure to inform deliberation such as goal adoption and plan selection. The
reasoning centres around the use of resource and effect summaries annotated on GPT
nodes and dynamically updated as execution proceeds. We will use GPTs in this article.

Building on Thangarajah et al., Morley et al. (2006) further develop reasoning in a
BDI agent over GPT structures. They provide an algorithm for an agent to update
resource estimates on GPTs accommodating resource bound information, parameterised
goals, and rich plan constructs. Dynamic resource estimation will be leveraged in our
contribution. Specifically, we use dynamic updating of GPT resource summaries.

Subsequently, Jiang et al. (2014) reason with preferences over GPT structures. Yao
et al. (2016a, 2016c) focus on the executability of BDI intentions formulated in GPTs.
Again unlike our work, none of these authors, nor Morley et al. (2006), explicitly
consider reasoning with measures of goal completeness.

Different to the GPT line of work, Zhou and Chen (2004) adopt instead a logical
approach. In contrast to others, these authors do seek a notion of partial completeness.
They define semantics for partial implication of desirable propositions (Zhou and Chen,
2004). Zhou et al. (2008) investigate partial goal satisfaction on the basis of this logical
semantics, viewing a goal as being completed when a (possibly disjunctive) proposition
is achieved according to the logic. These authors focus on application of different notions
of partial implication to goal modification in the context of belief change. We share a
similar motivation, but our objective is a quantitative, grounded representation of partial
satisfaction integrated into a reasoning framework.

This brings us to the two most related works. van Riemsdijk and Yorke-Smith (2010)
formalised the concept of a partially-complete goal for a BDI-like agent. These authors
captured partial satisfaction of an achievement goal using a progress metric, and a
minimum value that the goal must attain for the agent to consider it completely satisfied.
The authors described agent reasoning using such a representation, but did not provide
any detailed computational mechanisms. We provide a mechanism to efficiently compute
domain-specific measures of completeness, which is necessary if van Riemsdijk and
Yorke-Smith (2010, 2012) framework’s is to be useful in practice. We will discuss the
relationship between the work of van Riemsdijk and Yorke-Smith (2010, 2012) and our
work in more detail in Section 7.3.

Thangarajah et al. (2014b, 2014a) presented an approach to computing partial
completeness estimates for an achievement goal, and some ideas for what it means to
estimate the completeness of a maintenance goal (Thangarajah et al., 2007). We build on
this preliminary work in this article. We provide a detailed computational approach for
maintenance goals and unify the reasoning across the two types of goals.

Lastly, we review related reasoning questions. First, intention selection has been
extensively studied as an important topic for intelligent agents (compare Yao et al.,
2016a). Notably, van der Hoek et al. (2007) develop a logical analysis of BDI intention

 Quantifying the progress of goals in intelligent agents 113

revision, which can be linked with a notion of partial goal satisfaction. The focus of these
authors is more theoretical than computational, in that an analysis is provided but no
implementation methods.

Second, as van Riemsdijk and Yorke-Smith (2010) point out, there is a body of work
on reasoning with partial plans, for instance in plan formation or negotiation (e.g., Lesser
et al., 2004; Grosz and Hunsberger, 2006; Kamar et al., 2009), as well as in the
automated planning literature (e.g., Smith, 2004). For example, in the area of multiagent
planning and negotiation, Kamar et al. (2009) investigate helpful assistance of teammates
in pursuit of a plan that could be partially complete, and Kamali et al. (2007) investigate
information timing.

In the context of hierarchical task network (HTN) planning, Clement et al. (2007),
based on their own earlier work, develop summarisations of propositional and metric
resource conditions and effects [of which Thangarajah and Padgham (2011) can be seen
as a special case] of a partial temporal HTN plan, and, like Thangarajah et al. (2003), use
these to determine potential and definite interactions between abstract tasks. Their work
admits resource bound information and emphasises facilitating the HTN planning
process. Although accommodating interleaved local planning, multiagent coordination,
and concurrent execution, their work is not in the context of BDI-style agents and does
not target measures of goal completeness.

Third, resources and agents’ executablity of tasks are formalised in so-called resource
logics, which allow expression of properties such as “a coalition of agents A has a
strategy (a choice of actions) requiring no more than b resources, such that whatever the
actions by the agents outside the coalition, any evolution of the system generated by the
strategy satisfies some temporal property” (Alechina et al., 2017). Alechina et al. (2017)
present a decidable fragment of resource agent logic. Again, however, the logic is binary
with regard to outcomes.

Fourth, time can be seen as an important special case of a resource. There is a body of
work on reasoning about time in agent programming languages. For instance, the soft
real-time agent architecture (Horling et al., 2006), AgentSpeak (XL) (Bordini et al.,
2002) and AgentSpeak (RT) (Vikhorev et al., 2011). The compatibility of our
contribution and that body of work is deferred to future research.

Fifth, there is a broad literature on probabilistic and fuzzy or soft computing. One can
see measures about fuzzy goals (Shen et al., 2004; Katarzyniak and Popek, 2013), as
being degrees of completion of goals. Our interest is in the logical tradition of BDI
agents. An interesting question for future study is how a fuzzy degree of completeness
relates to our work.

3 Background

This section provides the necessary background about BDI agent systems, goals, and
GPTs.

3.1 BDI agents and goal types

The BDI architecture (Georgeff and Rao, 1998) specifies that an agent has beliefs about
the world (denoted ), goals that it wishes to accomplish (‘desires’, but see below), and
goals that it has adopted together with plans to achieve them (‘intentions’). BDI agents

 114 J. Harland et al.

are characterised by having a library of (parameterised) plans. An agent chooses the most
appropriate set of plans and how to execute them in order to achieve a set of goals – or
more generally to maximise some objective function. The steps of a plan may contain
(sub-)goals which are in turn achieved by other plans.

By design, BDI agents in general have different ways (plans) of accomplishing a
particular goal, and these may use different resources and bring about different effects.
Moreover, plans may fail and unexpected events may occur. The deliberation on which
way to achieve the goal (i.e., plan selection) is made dynamically during execution
depending on the context the agent is in, and hence is not known in advance.

For discussion on BDI architectures and their extensions, we refer to the literature
(e.g., Broersen et al., 2001; Braubach et al., 2004; Myers and Yorke-Smith, 2005; Herzig
et al., 2017).

It should be noted that the BDI approach assumes that the agent generally does not
have knowledge of the world (i.e., justified true information that will not change), but
rather beliefs, which may be fallible and subject to change. The agent is also assumed to
be rational, meaning that its beliefs are based on evidence, as much as possible, and that
the agent does not believe obviously untrue statements such as 1 + 1 = 5 or that gravity
does not apply. This means that we assume that the information available to the agent is
generally reliable but not infallible, and that the agent’s beliefs are generally true.

We will assume that the agent has an appropriate method for storing and updating its
beliefs (which we denote here by ) and for inferring whether given statements follow
from its beliefs or not (which will denote by | G= as appropriate).

As originally formulated, the BDI architecture focused on goals of accomplishment.
Subsequently, the importance of goals of maintenance was identified (Braubach et al.,
2004; Duff et al., 2006; Dastani et al., 2006). We next describe these two types of goals.
It will be necessary to understand the states that a maintenance goal can hold, in order to
define notions of completeness for it. In order to see the contrast between achievement
and maintenance goals, we also depict the states of the former.

3.1.1 Achievement goals
An agent adopts an achievement goal in order to accomplish some change in the world,
such as the successful completion of a science experiment. We denote an achievement
goal G as achieve(k, S, F), where k is the goal’s context, S is its success condition, which
we take as a conjunction of effects, and F is its failure condition.

The goal’s context is a pre-condition for the goal to be considered by the agent: while
the context is not believed by the agent to be true, the goal is not applicable. The success
condition describes the state of the world that must be true in order for the goal to be
accomplished (Sardiña and Padgham, 2011). We write S(G) for the success condition of a
goal G. Should the agent believe that the failure condition becomes true (before it
believes that the success condition becomes true), then the instance of the goal has failed
(Harland et al., 2014).

Figure 1 depicts a state-based life-cycle for an achievement goal. Note the labels
denote events (e:fail, e:succeed) and actions (all others). The actions are performed by the
agent whereas the events are things the agent comes to believe (i.e., the agent now
believes success or failure condition is true). Null means that the goal has not (yet) been
created.

 Quantifying the progress of goals in intelligent agents 115

Figure 1 Life-cycle of an achievement goal

Source: Adapted from Harland et al. (2014, 2017)

3.1.2 Maintenance goals
Our approach to maintenance recognises the inherent fallibility of agents in maintaining
appropriate conditions in their environment. A condition to be maintained is not ensured
to hold continuously, but, every time it fails to hold, the agent reactively attempts to
resurrect it. Further, the agent may act proactively and attempt to pre-empt failure if it
can anticipate the falsehood of the maintenance condition (Duff et al., 2006). In either
case, the agent is attempting to achieve a state of the world that is not currently true,
which is exactly the context in which it adopts an achievement goal. Hence maintenance
goals are generally associated with one or more achievement goals, which can be
triggered either reactively or proactively in order to restore or maintain the maintenance
condition. For example, this may involve recharging a battery when its charge level falls
below a certain amount (reactive) or reducing activity in order to preserve battery charge
(proactive).

The literature on maintenance goals and related concepts is extensive. Some early
conceptions are the passive and active preserve goals of the PRS system (Ingrand et al.,
1996); later works develop temporally extended goals (Hindriks et al., 2009), as well as
both reactive and proactive goals (Darimont et al., 1997; Braubach et al., 2004; Duff
et al., 2006; Dastani et al., 2006; Kaminka et al., 2007; Hindriks and van Riemsdijk,
2008; Baral et al., 2008). We refer to Duff et al. (2006) for a survey.

While we will follow Duff et al.’s (2006) concept of maintenance goal, we point out
that our interest in this article is on the logical goals of BDI agents, as stated in Section 2.
For instance1, one notion of maintenance goal is a continuous goal achieved to some
degree, e.g., ‘maintain a distance of 1 metre from the wall’. This goal is maintained to
some degree if the agent stays between [0.9, 1.1]m of the wall, and to greater and lesser
degree otherwise. This kind of ‘fuzzy’ or ‘soft computing’ agents (Katarzyniak and
Popek, 2013) are not in our remit.

Let M = maintain(k, m, S, F) be a maintenance goal for condition m. We specify the
semantics of M to be: provided context k is true, the agent will maintain the truth of
condition m until it believes that either the success condition S or failure condition F
become true. In other words, ‘once k becomes true, maintain m until S or F’.

In adopting the term ‘success condition’, we follow terminology in the literature. It
should be clear that the meaning of ‘success’ condition differs for a maintenance goal
than for an achievement goal, although in notation we write S(·) for either type.

 116 J. Harland et al.

Specifically, | S= does not mean the goal has ‘succeeded’ in the sense of having
accomplished an ‘objective’ but rather that the goal has stopped being relevant in the
sense that the purpose of the goal has elapsed (Section 5.3.1).

The agent might maintain M reactively or proactively. The progress estimates
computed in this article are applicable for either of these two ways of reasoning that the
agent might use. In reactive reasoning, | ¬m= means that the agent believes that m is
false: thus, the agent adopts a recovery achievement goal R. If the agent has a look ahead
mechanism π (provided by the agent designer) (Duff et al., 2006), then it can also
perform proactive reasoning.2 Let π(m) be a predicate that returns true or false according
to the (current) prediction of the future truth-hood of m. Then, ()| m π m= ∧ ¬ means
that the agent believes that m will become false unless it acts appropriately: thus, the
agent adopts a preventive achievement goal P. One way to envisage this is that the look
ahead mechanism is a process of checking the agent’s current plans for violations of any
maintenance goals. However, the precise details of the look ahead mechanism does and
how it works, and its limitations, are not relevant to the focus of this article. For our
purpose, we only need that the agent has some such mechanism. In general, the look
ahead will not be fully reliable and will have limited time horizon. For a discussion we
refer to van Riemsdijk and Yorke-Smith (2012), Duff et al. (2014) and Barkan and
Kaminka (2019).

Duff et al. (2006, 2014) include the reactive repair goal R and proactive preventative
goal P in the syntax for M, i.e., they specify in the definition of a maintenance goal the
repair and preventative goals. Following Duff et al. (2014), we do not prescribe how the
agent determines relevant plans for its goals; this may be done by the use a traditional
plan library, or by real-time planning, or a combination both (de Silva et al., 2009), and
so these plans are not included in the definition of the maintenance goal. Harland et al.
(2014) clarify the semantics of Duff et al. (2014) by insisting that both R and P be
achievement goals. We follow this semantics, which is consistent with that of Duff et al.
(2014).

In more detail, the proactive repair and maintenance goals are respectively
R = achieve(¬m, m, FR) and P = achieve(m ∧ π(¬m), π(m), FP), where FR and FP are the
failure conditions for R and P respectively, specified by the agent designer.

Figure 2 depicts a state-based life-cycle for a maintenance goal M (Duff et al., 2006;
Harland et al., 2014). It is important to specify the goal’s semantics precisely, because
this affects the notions of completeness in Section 5. In the figure, the event e:fail means
that the agent believes that F has become true; the event e:success means that the agent
believes that S has become true.

The state Monitoring distinguishes maintenance from achievement goals. Once the
agent considers the goal, M starts in the Inactive state; upon its activation, M transitions
to the Monitoring state. This difference means that we can allow for processes such as
maintaining a lower maximum speed in windy conditions, rather than requiring that all
such goals immediately enter the Monitoring state. Here, the agent monitors the
(predicted) truth status of condition m. Should the agent believe that m is not true or will
not remain true in the future, it transitions the maintenance goal M to Active, where the
agent creates and adopts a recovery goal R or a preventive goal P, as explained above. M
remains Active until m is restored or is no longer predicted to become false, whereupon
M returns to Monitoring. Should P or R fail, the agent retries them, as we assume that
success of either of these goals is sufficient to restore m, and that both P and R will

 Quantifying the progress of goals in intelligent agents 117

typically succeed (we do not discuss other potentially useful behaviours in this situation.)
If the agent believes that it cannot prevent ¬m or restore m, it has the option to fail M.
There are at least two ways of engineering this: the failure condition F could be specified
incorporate this requirement, or the failure condition could include the failure of P or R,
i.e., the agent tries once to prevent ¬m or restore m, and fails M if it cannot. Should the
agent choose to transition M to the Suspended state, this means that the agent no longer
monitors m and it aborts any active achievement goals P or R generated by M (Harland
et al., 2014). The simplest approach regarding suspension and reactivation is for the agent
to recompute its progress estimates for M when the goal is reactivated.

Figure 2 Life-cycle of a maintenance goal

Source: Adapted from Duff et al. (2006)

3.2 Goals and the GPT

A BDI agent will generally have several goals that it is currently pursuing, which may
include both achievement goals and maintenance goals. The latter will typically be in the
Monitoring state, i.e., not active, but with the relevant maintenance conditions being
monitored, so that appropriate action may be taken if any maintenance condition is
violated or predicted to be violated.

Traditionally, a BDI agent program consists of a set of pre-defined plans that are used
to achieve or maintain the agent’s goals. Each plan consists of steps which are either
basic actions or sub-goals. Each sub-goal is in turn achieved by some other plan. This
relationship is naturally represented as a tree structure called a GPT of the kind seen in
Figure 4. Note that even if plans are generated as needed, rather than selected from a
pre-existing library, there will still be a GPT relating goals to the plans used to achieve
them.

Formally (Yao et al., 2016a; Logan et al., 2017), the root of a GPT is a top-level goal
(goal-node), and its children are the plans that can be used to achieve the goal
(plan-nodes). Usually there are several alternative plans to achieve a goal: hence, the
child plan-nodes are viewed as ‘OR’ nodes. By contrast, plan execution involves
performing all the steps in the plan: hence, the children of a plan-node are viewed as
‘AND’ nodes. As in Yao et al. (2016c) and Yao and Logan (2016), we consider GPTs in
which plans may contain primitive actions in addition to sub-goals. However, we will

 118 J. Harland et al.

take a plan as our basic unit of reasoning, following Thangarajah and Padgham (2011).
Figure 3 gives the formal syntax of GPTs.

Figure 3 BNF Syntax of GPTs with actions

Source: From Yao et al. (2016a)

In order to facilitate reasoning over goals, we follow the methodology of Clement
et al. (2007) and particularly Thangarajah and Padgham (2011) and Thangarajah et al.
(2003), we require the goals and plans be annotated with certain information about the
resource requirements and effects attained, we generate a GPT structure with annotations,
and use it in our reasoning algorithms.

In the next section we present a simplified version of the Mars rover scenario, and
then in the first part of Section 5 we explain the annotations on goals and plans, before
proceeding to describe our computational mechanisms that use them.

4 Example introduced

We illustrate our approach on a Mars rover scenario. In this section we describe a
simplified version of the scenario so that we can illustrate Section 5 using it. An
autonomous rover has these resources: battery charge (energy), spectroscope utilisations
(drill bits), internal memory capacity (for images), and time. The spectroscope involves
drilling a small sample from a target (e.g., a rock), and the rover’s drill bit has a limited
lifetime; hence the spectroscope is a consumable, discrete resource. Energy is a

 Quantifying the progress of goals in intelligent agents 119

renewable resource, since the rover can charge its battery from the sun. Memory is a
renewable discrete resource. Time (seconds) is a renewable but perishable resource.

To begin with, we will ignore the resource energy and the associated maintenance
goals that the rover adopts to ensure it does not exhaust its battery. We return to these in
Section 6.

Each sol (Martian day), the rover leaves its base to explore a given region; today, that
is region red1. The rover’s top-level goal is: ExploreRegion(red1) = achieve(,
TargetList(canyon) ∧ At(canyon) ∧ Measured(rock1) ∧ Measured(target), ⊥). The rover
believes that region red1 has a rock of interest, rock1, which it is currently near, and an
area of interest, canyon, within region red1 but some distance away from rock1, which it
has been instructed to survey.

The GPT is shown in Figure 4. There are various plans and goals below the top-level
goal, as shown. Following the plan traverseAndStudy for ExploreRegion(red1), the rover
will perform an Experiment(rock1) on rock1, Traverse(rock1, canyon) (i.e., move) from
rock1 to canyon, and then Survey(canyon).

For an Experiment goal, the rover can choose from two possible plans, one using its
spectroscope and the other its thermal imaging device. In both cases, the rover moves
close to the target object, positions its device arm, performs the measurement and saves
any data. For the Survey goal, the rover has a single plan, which is to first
IdentifyTargets, which may be fulfilled by a plan that uses the panoramic camera and
then selects one target, and second Experiment on the selected target object. Later we will
elaborate the scenario with the more realistic goal of iterating through a list of targets for
the survey. Note for better presentation we omit the repeated sub-tree rooted at
Experiment(target) in the right-hand branch of the GPT, as it is identical to the sub-tree
rooted at Experiment(rock) apart from the argument.

Figure 4, the GPT for the Mars rover scenario, has the effects and the resources
estimated to be required for each leaf plan-node. We assume these estimations are
specified by the rover’s designer, e.g., based on past experiences. The remaining
annotations (except the success conditions) are computed from the leaf nodes and goals
as we will describe in Section 5.1. Note that each goal has a pre-specified set of success
conditions annotated to it, in additional to the effects.

Lastly, in order to state an appropriate success condition for goals such as
Experiment(rock1), we use a predicate Measured(X), which is true if either
SpectralProfile(X) or ThermalProfile(X) is true. This is easily implemented by an
appropriate rule in the agent’s beliefs.

5 Quantifying completeness

We can identify a number of factors which may contribute towards assessing the
completeness of a goal: resources, deadlines, number of actions/plans complete, time
elapsed, effects realised, etc. In this work we propose the use of two factors to determine
a quantifiable measure of completeness of a goal: resource consumption and, for
achievement goals, the effects of achieving the goal.

First, we use resource consumption to provide a measure of the level of effort the
agent has dedicated towards satisfying or repairing the goal. As discussed in Section 2,
there has been previous work on representing resource requirements and continuously
refining them as the agent executes its goals. We build on this existing work to provide a

 120 J. Harland et al.

quantifiable measure of completeness with respect to effort. Resource consumption
cannot directly measure progress: an agent might have expended considerable resources,
but made little progress towards a goal. Further while nonetheless resource consumption
is a natural and useful quantity to exploit, there are complicating factors especially in
realistic settings. For instance, a plan for a goal might fail, necessitating additional
resources to retry it or try another plan; and goals and more generally agents can interact,
such as the Mars rover needing to wait for another robot, and consuming battery power
while waiting. We discuss these points further in Section 8.

Second, the effects of an achievement goal capture its desired outcome, generally in
terms of conditions that should be true when the goal execution is complete (Sardiña and
Padgham, 2011; Thangarajah and Padgham, 2011). For example, the effect of a goal of
the Mars rover to perform a measurement on a rock is that the rock is measured. We use
the effects of the goal to provide a measure of the level of goal accomplishment, since the
purpose of an achievement goal is indeed to bring about its intended effects. Goal effects
more directly measure progress than resource consumption. As with resources, we build
on and extend existing work on representing and reasoning about the effects of goals and
plans (Thangarajah et al., 2003). In that prior work, effects are represented as Boolean
predicates, such as Measured in the rover example (Figure 4). However, there may be
instances where the conditions may be satisfied to a certain degree, such as 80% of the
measurement is completed. We extend the prior work in the literature to allow for this
representation.

Besides these two factors representing effort and accomplishment, we highlight two
other factors that might seem amenable to be used as a measure of completeness: the
number of actions performed by the agent and the time taken. To reason with the number
of actions seems tempting, in that it is relatively simple to identify them. However, not all
actions are the same; for example, moving the rover from one location to another is one
action, as is turning on a specific light. This means that resource consumption tends to be
a more useful measure, in that different actions may involve vastly different uses of
resources.

On the other hand, time can be measured with respect to the pace of goal execution.
However, to reason about the time required to execute a particular goal, an explicit
representation of the time taken to execute each action or an entire plan is needed. For
instance, Yao et al. (2016b) perform deadline-aware reasoning about intentions in a BDI
system. If this is the case, then it is possible to consider time as a type of resource and use
the same computational mechanisms we describe for resources, as we will illustrate. To
ensure tractable computation, however, we do not consider dedicated temporal reasoning
or projections (compare van Riemsdijk and Yorke-Smith, 2010; Yao et al., 2016b).

We first consider achievement goals, focussing on quantifying completeness in terms
of resource consumption and the effects of achieving the goal, and providing a
computational mechanism to do so. We then turn to maintenance goals, defining what
completeness means and showing how parts of our computational approach are useful
again for these new notions of completeness. As a preliminary step, we specify the
annotations on goals and plans that provide the basis for the computation.

 Quantifying the progress of goals in intelligent agents 121

Figure 4 GPT in the mars rover scenario, achievement goals only (see online version for colours)

N

ot
e:

 R
es

ou
rc

es
 a

nd
 e

ffe
ct

s a
re

 sh
ow

n
an

no
ta

te
d

on
 n

od
es

.

 122 J. Harland et al.

5.1 GPT annotations

5.1.1 Resources (Morley et al., 2006)
The resources consumed when a goal is executed or maintained by an agent depend on
the plans that are used to achieve or maintain the goal. As such, resource requirements
are not annotated on goals, but only at the plan level. Each plan will have ascribed the
resources necessary for the plan to complete execution, in line with the precedent in
Clement et al. (2007), Thangarajah and Padgham (2011) and Morley et al. (2006). Note
that this means that the GPT must be ground, i.e., all details known for it, at the time of
execution. These resource annotations do not include the resources required for executing
the sub-goals of the plan, if any. This declarative specification can be made by the agent
designer, or in some domains learned from past execution traces.

Definition 1: A set of resources  is a set of key-value pairs {(r1, α1), …, (rn, αn)}
where ri is the unique resource name and i ∈α is its corresponding value. □

Definition 2 (Thangarajah and Padgham, 2011): The resource requirement of a plan p,
denoted p is the set of total resource requirements of all the actions within p, in order
to successfully execute p (assuming that all actions succeed). □

For example, in Figure 4, plan measurementT has resource requirement {(memory, 50),
(time, 20)}.

p contains all the resource names and, for each, the aggregate total value. For
example, if p had one action which used 50 units of memory and another action which
used a further 25 units of memory, then in p is (memory, 75). Note that p does not
contain the resource requirements of the sub-goals within the plan, but only of its actions.

The above definition of resources takes the values of resources to be discrete. Our
methodology applies if i ∈α . In fact, we can accommodate lower and upper bound
range estimates, thanks to the computation of summary information described below
(compare Morley et al., 2006; Clement et al., 2007). Hence, with this extension, resource
annotations on plans can be single values (when the resource usage can be estimated
precisely by the designer) or ranges (when they cannot be estimated precisely).

We consider resources of two types: consumable and reusable (or renewable). The
former are those that are no longer available following use (e.g., drill bits) and the latter
are those that can be reused following usage (e.g., memory3).

We will need a means to aggregate resource values. We use straightforward addition,
since the domains of all resources are commensurate. Suitable aggregation operators can
be defined for ranges (Clement et al., 2007).

Definition 3 (Thangarajah and Padgham, 2011): The resource set aggregation operator
(⊕) is defined as: 1 2 1 2 1 2{(, () ()) | (() ())}r r r r dom dom⊕ = + ∈ ∪      where r is a
resource type and 1()r provides the value of r in the relational set 1 .⊆  □

Note that we assume () 0i r = if .ir ∉ So for example {(drill, 1), (memory, 20)} ⊕
{(memory, 40), (time, 50)} = {(drill, 1), (memory, 60), (time, 50)}.

While straightforward, our definition can suffer from interaction effects (when, e.g.,
two actions can be achieved with a single resource) and weighting of different resource
types’ values. Below we introduce weights for the resources.

 Quantifying the progress of goals in intelligent agents 123

5.1.2 Effects
Recall from Section 3.1.1 that we define the success condition of an achievement goal to
be a set of effects, S(G), where the conjunction of the effects must hold for the goal to be
complete. A plan p will have attached to it the effects attained by the actions of that plan
(Thangarajah et al., 2003) excluding the effects of any sub-goals that are executed by
other plans.

Previous work about effects reasoning defined the effects of a goal (or plan) as simple
predicates that are either true or false. As we have seen, this neglects effects which are
not discrete but fulfilled continuously to a certain degree. For example, a goal like
MeasurementS in Figure 4 involves performing a spectral profile on a target. A variant of
this goal with quantified effects might be considered 80% complete once it has analysed
80% of the target’s sample, which would result in an effect of (Measured, 80).

Let ε be the set of all effect-types relevant to the agent system.

Definition 4: An effect is a key-value pair (e, α) where e ∈ ε, the effect-type, is a unique
identifying label and ∈α is the degree to which the effect has to be attained for it to
be achieved. For discrete effects, α ∈ {0, 100}; for continuous effects, 0 ≤ α ≤ 100. □

For example, consider the effect-quantified variant of the goal MeasurementS which
drills a hole and then performs a spectral profile on the drilled sample. At 80%
completion of the analysis, its effects can be represented as: {(Hole-Drilled, 100),
(Measured, 80)}.

As with resources, we will need a means to aggregate effect values:

Definition 5 (Thangarajah and Padgham, 2011): The effects set aggregation operator
(⊕) is defined as: E1 ⊕ E2 = {(e, E1(e) + E2(e)) | e ∈ (dom(E1) ∪ dom(E2))}.

5.2 Quantifying completeness of achievement goals

In this section we introduce two measures of completeness for achievement goals in BDI
agents, based respectively on resources and effects. Our computational mechanisms
reason over dynamically-updated summary information on the GPT, derived from the
resource and effect annotations described above.

5.2.1 Summary information
In order to determine the level of completion of an achievement goal G at the current
time t, with respect to resources or effects, it is necessary to determine:

1 the resources consumed and effects attained thus far in executing G

2 the resources required and effect that should be attained in order for the goal to
complete from t.

The former step can be computed accurately, by monitoring the resource consumption
and checking the current state of the world for effects achieved. There might be a cost of
this checking, such as time or some resource consumption.

The latter step, of determining resources and effects needed to complete the goal, is
more complex. Recall from Section 3.1 that the nature of BDI agents means that there
can be multiple possible plans for accomplishing a particular goal, using different

 124 J. Harland et al.

resources and bringing about different effects, that plans may fail and unexpected events
may occur, and that plan selection is dynamic during execution (although, as above, for a
rational agent, we do not expect failure to be generally more common than success).
Consequently we cannot always say a priori precisely what resources will be needed to
accomplish a given goal.

Further, although no matter which way a goal is pursued, its effects ought to be
attained, the way in which the goal is achieved may result in further effects. Some of
these (side-)effects may be necessary no matter which way the goal is achieved; others
not. For example, the goal Experiment(rock1) results in the effect ArmPositioned(rock1)
no matter which plan is followed, while the effects SpectralProfile(rock1) and
ThermalProfile(rock1) depend on the choice of plan used.

The second step above therefore requires some form of look-ahead for both resources
and effects. It suffices for us to adopt and extend the efficient look-ahead mechanism of
Thangarajah and Padgham (2011) and Thangarajah et al. (2003) which uses summary
information to compute a lower and upper-bound of future resource usage and effects
attained.

5.2.1.1 Resource summaries
Previous work (Thangarajah and Padgham, 2011) used the notion of summary
information to (dynamically) estimate the necessary (lower-bound) and possible
(upper-bound) resource requirements of a goal. Necessary resources are those that are
used no matter which way the agent chooses to achieve the goal, while possible resources
are those that may be needed in the worst case. This worst case is the largest resource
consumption of the known plans, assuming that all the current plans succeed. This may
seem simplistic; however, the alternative is to consider some kind of failure modelling,
which is both not a feature of previous work and beyond the scope of the present paper.
Furthermore, if a failure results in a change to an agent’s plans, the resource estimates
can be easily recalculated once the revised plans are known.

We adopt the algorithms for computing and updating resource summaries introduced
in Thangarajah and Padgham (2011) and Morley et al. (2006) for our purpose. We do not
detail all the same algorithms here since it is not the contribution of this work and is not
necessary to understand the approach we present, but refer to the cited references for the
details. The most relevant algorithm is updating GPT summaries dynamically, given in
pseudocode as Algorithm 1.

Definition 6: The dynamically-updated resource summary of a goal G at time t is:

() (), ()t t t
R RRS G N G P G= (1)

where ()t
RN G is the set of necessary resources and ()t

RP G the set of possible resources
required to execute the goal from current time t. □

For example, the goal Survey(canyon) in Figure 4 has necessary resources
(Survey()) {(memory, 20), (time, 380)},t

RN canyon = and possible resources (Survey())t
RP canyon

{(drill, 20), (memory, 380), (time, 580)}.=
Note that both parts of the resource summary can change: the resource summary is

dynamically-updated as execution proceeds, and the actual use of resources becomes
known (rather than estimated). Note also that the necessary resources are the minimum

 Quantifying the progress of goals in intelligent agents 125

required, whereas the possible resources are the maximum required. This means that
.t t

R RN P≤
In Algorithm 1, for any node of the GPT, summary(r) for resource r ∈ returns the

pair (necessary, possible) of resource r, indexed by a count of the number of child nodes
using the resource.

We briefly explain the algorithm. Procedure delete simply deletes a node from the
GPT. Procedure update updates the resource summary of a node: both the necessary
and possible resources. The next three procedures use the concept of a node being
‘dirty’, i.e., its resource summary is in need of an update check, or not. Procedure
propagateDirty pushes the dirty flag from parent node to its children. Procedure
recompute performs the actual computation of how the resources at a node have
changed, clearing the dirty flag when done. Procedure decrementCount records that a
unit of a resource type is finished, and initiates upward propagation of this information
and of dirty status as appropriate. For further details, see (Thangarajah and Padgham,
2011); a more advanced algorithm is given by Morley et al. (2006).

5.2.1.2 Effect summaries (Thangarajah and Padgham, 2011)
The effect summaries of a goal are defined in terms of definite and potential effects:
definite effects are those that are brought about no matter which way the goal is achieved,
while potential effects are those that may potentially be brought about depending on the
way the goal is achieved.

Thangarajah et al. (2003) similar to their work on resource summaries, presented a set
of algorithms for deriving effect summaries at compile time and updating them
dynamically at run-time. The form of the algorithm is similar to Algorithm 1.

Definition 7: The dynamically-updated effects summary of an achievement goal G is:

() (), ()t t t
E EES G D G P G= (2)

where ()t
ED G is the set of definite effects and ()t

EP G is the set of potential effects that
will be brought about by pursuing the goal G at the current time t. □

For example, the goal Survey(canyon) has definite effects (Survey())t
ED canyon

{TargetList(canyon), ArmPositioned(target), Measured(target)},= and potential effects
(Survey()) {SpectralProfile(target), ThermalProfile(target)}.t

EP canyon = Note that ()t
ED G

and ()t
EP G are exclusive, and that the success condition of the goal is a subset of the

definite effects, i.e., () ().t
ES G D G⊆

5.2.1.3 Resource and effect weights
Our initial work (Thangarajah et al., 2014a) treated the different resources, e.g., battery
charge, drill bits, memory, etc. to be of equal importance, and likewise the
different effect-types, placing the emphasis on domain independence. In this article we
allow a domain-dependent weight rλ +∈ for each resource r and a weight eμ +∈
for each effect-type e, with default values 1. In this way we can model both the
domain-independent uniform resources and effects, and also allow customised
domain-specific weights.

 126 J. Harland et al.

The use of weights provides the agent designer with the flexibility to emphasise some
resources more than others in the calculation of completeness. The precise meaning of
these weights is therefore outside the scope of this paper; our task here is to ensure that
the calculations respect these weights.

5.2.2 Resources as a measure of completeness
The aim of our resource analysis is to provide an agent with a quantified measure of
effort with respect to the amount of resources consumed thus far in executing a goal, in
the context of the total resource requirements for achieving the goal. Hence we require
the agent to keep track of the total resources consumed in executing each goal. Note that
this is the resources for a single goal G: other goals might be using the same resources;
their usage is not ascribed to G.

Definition 8: Let Rt(G) be the set of resources consumed thus far up to current time t
solely by the execution of G. □

We write (Rt(G)) (r) for the value of resource r in Rt(G) at time t, i.e., the value αr (see
Definition 1).

Note that Rt(G) is monotonically increasing with t. It is natural to expect that a
corresponding decreased in Nt(G) over time, in that as G gets closer to completion, then
the resources required to complete it should decrease. While this is generally true, it may
be that Nt(G) does in fact increase; ultimately this is an estimate, and hence may be
incorrect.

5.2.2.1 Lower-bound resource consumption analysis
We use the necessary and possible resource summaries to provide a lower and
upper-bound resource consumption analysis, respectively.

The intuition of the lower-bound resource consumption analysis is: for every resource
that has been used by the current time t or is necessary in the future, calculate the
percentage of the value of that resource that has been consumed at time t. Aggregate the
percentage values to attain a single normalised value. Note that resources used so far for
goal G are added to resources still needed to achieve G.

Definition 9: The lower-bound resource consumption analysis of a goal G at the current
time t is:

()
()()

()

() ()

() ()

() ()
() () ()

()
t t

R

t t
R

t

r t t
Rr dom R G N Gt

lb
r

r dom R G N G

R G r
λ

R G N G r
CR G

λ
∈ ∪

∈ ∪

⊕
=




 (3)

where dom denotes the domain of the resource types set, i.e., the set of key values
(Definition 1), and ⊕ is the resource set aggregation operator (Definition 3). □

Note that the plausible intuition that t
lbCR is non-decreasing does not hold in general, as

will be seen in execution traces in the Mars rover scenario. The intuitive reason is that the
possible resources for one choice of plan may be less than the necessary resources for
another choice; see Table 1 for an example of this.

 Quantifying the progress of goals in intelligent agents 127

Algorithm 1 Dynamic update of GPT resource summaries

Procedure delete(node):
 update(node, 0, 0)/ /

 if node ≠ root then // remove the node from the parent’s child list
 node.parent.children := node.parent.children \ node
Procedure update(node, newSummary):
 if newSummary = node.summary then // no changes needed
 return
 foreach type ∈ do

 (nold, pold)count := node.summary(type)
 (nnew, pnew) := newSummary(type)
 if (nold ≠ nnew ∨ pold ≠ pnew) ∧ node ≠ root then
 if nnew = pnew = 0 then // resource no longer needed
 decrementCount(node.parent, type)
 else if node ≠ root then
 node.parent.dirty[type] :=

 propagateDirty(node.parent, type)
 node.summary := newSummary
Procedure propagateDirty(node, type):
 if node ≠ root ∧ !node.parent.dirty[type] then
 node.parent.dirty[type] :=

 propagateDirty(node.parent, type)
Procedure recompute(node):
 if such that node.dirty[type]type¬∃ ∈ = then 

 return // no dirty nodes
 foreach c ∈ node.children do
 recompute(c) // if there are child nodes recompute them first
 if node is a GoalNode then

c node.children
node.summary : .c summary

∈
= +

 if node is a PlanNode p then
 node.summary : node.plan.p node.child.summary= ⊕

 if node is a ParallelOperator node then
 node.summary := ⊕c⊕node.children c.summary
 if node is a SequenceOperator node then
 node.summary := ⊗c∈node.children c.summary
 foreach t such that node.dirty[type] =  do
 node.dirty[type] := ⊥ // updated hence not dirty any longer

 128 J. Harland et al.

Procedure decrementCount(node, type):
 (n, p)count := node.summary(type)
 node.summary(type) := (n, p)count–1
 if count – 1 = 0 then // resource no longer in use
 node.summary(type) := (0, 0)0
 if node ≠ root then
 decrementCount(node.parent, type)
 else
 node.dirty[type] := 
 if node ≠ root then
 propagateDirty(node.parent, type)

Source: Thangarajah and Padgham (2011)

5.2.2.2 Upper-bound resource consumption analysis
The computation is the same as for the lower bound, except instead of the necessary
resource summary we use the possible resource summary.

Definition 10: The upper-bound resource consumption analysis of a goal G at the current
time t is:

()
()()

()

() ()

() ()

() ()
() () ()

()
t t

R

t t
R

t

r t t
Rr dom R G P Gt

ub
r

r dom R G N G

R G r
λ

R G P G r
CR G

λ
∈ ∪

∈ ∪

⊕
=




 (4)

Note that as the necessary resources (())t
RN G will never exceed the possible resources

(()),t
RP G it will always be the case that ()t

lbCR G will be at least as large as ().t
ubCR G

This may seem counter-intuitive; it is important to keep in mind that this is an estimate of
the completion of the goal, and hence if it completes using only the necessary resources,
then the latter value may be less than 100%, as it may turn out that not all of the possible
resources are required. For example, if Rt(G) is 80, ()t

RN G is 20 and ()t
RP G is 70, then

() 80 /100t
lbCR G = and () 80 /150.t

ubCR G =
For example, consider the goal ExploreRegion(red1) at the point where

Experiment(rock1) has completed but neither Traverse(rock1, canyon) nor
Survey(canyon) has started. Let Rt(Experiment(rock1)) = {(drill,1), (memory,40),
(time,150)}.

Then we have the following:

• (ExploreRegion(1)) {(drill, 0), (memory, 120), (time, 480)}t
RN red =

• (ExploreRegion(1)) {(drill, 1), (memory, 150), (time, 860)}t
RP red =

and further:

 Quantifying the progress of goals in intelligent agents 129

• (1/ (1 0) 40 / (40 120) 150 / (150 480)) / 3 49.6%t
lbCR = + + + + + =

• (1/ (1 1) 40 / (40 150) 150 / (150 860)) / 3 28.6%.t
ubCR = + + + + + =

A point to note is that there are some occasions when we may have ()() ()()t t
DR G r N G r=

()() 0t
DP G r= = for some resource r and goal G. In such cases we will not consider r in

the calculation of t
lbCR and .t

ubCR So if we had Rt(Experiment(rock1)) = {(drill,0),
(memory,40), (time,150)} and (ExploreRegion(1)) {(drill, 0), (memory, 150),t

RP red =
(time, 860)} in the above example, we would calculate as below. This is because the
drill resource cannot in any way contribute to the completeness of the goal
ExploreRegion(red1), as there is never any change in the usage of this resource.

• (40 / (40 120) 150 / (150 480)) / 2 24.4%t
lbCR = + + + =

• (40 / (40 150) 150 / (150 860)) / 2 18.0%.t
ubCR = + + + =

Note that in the case where ()() ()() 0t t
DR G r N G r= = but ()() 0t

DP G r > we will ignore
any term involving the first two quantities in the calculation of ,t

lbCR but otherwise
proceed as above. This is because when there are no resources that have been consumed,
there is no relevant measure of completeness that we can compute. Accordingly, if we
have Rt(Experiment(rock1)) = {(drill, 0), (memory, 40), (time, 150)} then we calculate

t
lbCR as (40 / (40 + 120) + 150 / (150 + 480)) / 3 = 16.3%.

5.2.3 Effects as a measure of completeness
We now turn from resources, a measure of effort, to effects, a measure of
accomplishment. As we have discussed, the effects of a goal can be thought of as the
state of the world that the agent wants to achieve in order to accomplish the goal. For
instance, in the example at the end of Section 5.1.2, the rover’s goal to survey the area
may have the effects of area-surveyed and target-selected. The percentage of these
effects currently achieved gives a quantifiable measure of accomplishment. The issue at
hand is not how to express effects (e.g., the language used for S(G)) but how to quantify
goal completeness. For simplicity, we assume that all effects are expressed as atomic
formulae. We propose two computational approaches: the first based on the success
condition of the goal and the second on the effect summaries of the goal.

5.2.3.1 Completeness based on the success condition
One way of determining the level of completeness of an achievement goal G, with
respect to accomplishment, is to determine the percentage of effects in the success
condition S(G) achieved at the current point in time.

In order to compute this measure the agent needs to know the current value of a given
effect, and to know the initial values of the effects in the success condition of the goal.

Definition 11: Let Bt(e) be a function that evaluates the current value α of the effect e ∈ ε
as known by the agent at the current time t. □

 130 J. Harland et al.

Unlike the success condition or effect summaries, where the value of the effect is what
needs to be accomplished in the future, the value of the effect determined by Bt(e) is the
current value of the effect e as estimated by the agent.

Definition 12: The initial set of effects for a goal G is Bi(G) = {(e, αi)|e ∈ ε}, where αi is
the value of e when the execution of G begins. □

We compute the level of completeness with respect to S(G) by calculating the percentage
of the value of each effect in S(G) currently achieved by the agent relative to the initial
value when the goal execution began and the value to be achieved. For an effect
e ∈ dom(S(G)), we write S(G)(e) to denote the value of e in S(G), and similarly for Bi(G).

Definition 13: The level of completion of a goal G at the current time t with respect to the
effects in the success condition is:

(())

(())

() ()()
()() ()()

()

t i

e i
e dom S Gt

S
ee dom S G

B e B G eμ
S G e B G e

CE G
μ

∈

∈

−
−

=



 (5)

For example, the goal Survey(canyon) in Figure 4 has S(Survey(canyon))
= {TargetList(canyon), Measured(target)}. If IdentifyTargets(canyon) has completed but
Experiment(target) has not commenced, we have:

• (Survey()) ((1 0) / (1 0) (0 0) / (1 0)) / 2 50%.t
SCE canyon = − − + − − =

Note that if desired, the agent designer could use weights in order to emphasise
some goals more than others. For example, if the completion of the goal
IdentifyTargets(canyon) is more important than the goal Experiment(target), due to
identified targets being able to be investigated later, the designer may wish for
the completion of Experiment(target) to weigh more heavily on the completion of
Survey(canyon) than Experiment(target).

A limitation of this approach is if S(G) is can change. For example, in one
formulation of the goals of the example, IdentifyTargets returns a target list of a priori
unknown length, and Experiment must be run on each item of the list. In this sense, the
progress based on the success condition depends on the interaction between the two
goals. We return to this point later. Note that the above definition is nonetheless well
defined, because it is defined in terms of the initial set of effects and their current values.

5.2.3.2 Completeness based on the effect summaries

The above computation ()t
SCE G does not take into consideration effects other than those

in the success condition of the goal G, even for those goals where some (side-)effects are
necessary in order to achieve the goal’s effects. We include these effects as part of the
quantification of completeness and use effect summaries to present a lower-bound using
the definite effect summary, and an upper-bound using the combined definite and
potential effect summaries (since they are exclusive).

Note that goal side-effects were also included in the resource summary approach of
Section 5.2.2. For effects, these are not relevant, as effects are either achieved or not.
Hence there is no consideration of side-effects in Definition 13.

 Quantifying the progress of goals in intelligent agents 131

We adopt the techniques developed by Thangarajah et al. (2003) for deriving and
updating the effect summaries, but generalise their formulae to operate on a set of effects
that are composed of key-value pairs and not simple predicates. This generalisation
changes the way in which the sets of effects are added (⊕) and merged (⊕). We gave the
redefined ⊕ operator as Definition 5 but omit the ⊕ operator as this work does not use it.

Definition 14: The lower-bound effect accomplishment analysis of a goal G at the current
time t is:

()
()

()

() ()()
()() ()()

()
()

t
E

t i

e t i
Ee dom D Gt

lb t
eEe dom

B e B G eμ
D G e B G e

CE G
D G μ

∈

∈

−
−

=



 (6)

Definition 15: The upper-bound effect accomplishment analysis of goal G at the current
time t is:

()()
()

() ()

() ()()
() () () ()()

()
() ()

t t
E E

t i

e t t i
E Ee dom D G P Gt

ub t t
eE Ee dom

B e B G eμ
D G P G e B G e

CE G
D G P G μ

∈ ⊕

∈

−
⊕ −

=
⊕




 (7)

where ⊕ is the effects set aggregation operator. □

For example, consider the goal Survey(canyon) in Figure 4 which has t
ED

(Survey()) {TargetList(canyon), ArmPositioned(target), Measured(target)},canyon = and
(Survey()) {SpectralProfile(target), ThermalProfile(target)}.t

EP canyon = If the sub-goal
IdentifyTargets(canyon) has completed but Experiment(target) has not commenced, and
none of the effects were true at the start of the goal execution, then we have:

• (Survey()) ((1 0) / (1 0) 2 (0 0) / (1 0)) / 3 33%t
lbCE canyon = − − + × − − =

• (Survey()) ((1 0) / (1 0) 4 (0 0) / (1 0)) / 5 20%.t
ubCE canyon = − − + × − − =

Note that ()t
ubCE G will typically be less than 100%, as it will be unusual for all potential

effects to be achieved. This value should thus be read in conjunction with the definite
effects measure to provide an estimate of completeness, rather than as specific
measurements of a precise quantity.

These two mechanisms, based respectively on resources and effects, are founded on
the efficient computation of summary information for achievement goals. They provide
us with, for resources, lower and upper bound analyses, and for effects, a success-based
analysis and lower and upper bound effect-based analyses. Note that the success-based
analysis (5) and the effect-based analysis bounds (6) and (7), are complementary: it is for
the agent to decide how to use them. For example, for Survey(canyon), we have seen that
the latter three analyses are respectively 50%, 33% and 20%.

We will illustrate these mechanisms on the scenario in Section 6. We next turn to
maintenance goals, which present a conceptually more difficult task.

 132 J. Harland et al.

5.3 Quantifying completeness of maintenance goals

By its nature, a maintenance goal is intended to persist in order to uphold its maintain
condition – until the goal is no longer relevant. In this sense, a maintenance goal is never
‘complete’ in the way an achievement goal can be. In this subsection we introduce two
notions of ‘completeness’ for maintenance goals in BDI agents. The intuition is that
‘completeness’ is in terms of the agent’s actions to maintain the goal, whether proactively
or reactively.

First, permanently complete (PC) refers to a goal no longer being relevant, and hence
the agent no longer needing to uphold the goal’s maintain condition (which means no
further action is ever taken with regards to this goal). By contrast, recovery complete
(RC) refers to the agent’s progress in restoring the maintain condition after it has been
violated; in other words, the achievement goal used to store the maintain condition has
completed successfully.

There are several reasons why it might be useful for an agent to have estimate of how
close a maintenance goal M is to completing its relevancy, and, while the goal is still
relevant but the maintain condition m is violated, of how close it is to completing the
restoration of the maintain condition. The first reason is to make an estimate of how
much longer M is still relevant, such as for how much longer a Mars rover will need to
conserve its battery life. If this period is relatively short, it may be appropriate to drop
this maintenance goal. The second reason is to consider the constraints on the agent’s
behaviour which may be required in order to maintain the maintain condition. For
example, if the battery can be recharged fully in a few minutes, then this allows a greater
range of behaviour than if it will take two hours, or knowing that a certain amount of
memory must be kept in reserve. The third reason is to use both these estimates to inform
its deliberation and planning about other goals, such as in anticipating resource conflicts
(Thangarajah et al., 2003). We will see that the methods introduce above for
resource-based estimation of the completeness of achievement goals can also be used to
predict potential violations of resource-related maintenance goals. Finally, to use the
estimates to help prioritise M in the case of goal conflict, such as because of a lack of
resources.

5.3.1 Defining progress for maintenance goals
5.3.1.1 ‘Completion’ of a maintenance goal
Consider a maintenance goal M = maintain(k, m, S, F). Granted that, by its nature, M is
intended to persist in order to uphold its maintain condition, what does it mean for such a
goal to be ‘complete’? Recalling Figure 2, we consider the two relevant goal states in
turn.

First, when the goal is in state Monitoring. In contrast to achievement goals,
maintenance goals are meant to persist. In this sense, they are never complete in
themselves; the agent is not attempting to achieve the success condition S.

However, if M’s success condition becomes true, then the purpose of the goal has
expired, and so the agent need not keep maintaining M. We call this situation PC. A goal
that is PC is no longer relevant: it is ‘complete’ in the sense that the purpose of the goal is
complete.

For example, consider the goal

 Quantifying the progress of goals in intelligent agents 133

1 maintain(at-base 30%, priority-science-targets-exist,
 battery-functioning).
M = ¬ > ¬

¬

With this goal, agent rover is not attempting to achieve ¬priority-science-targets-exist.
However, if it is true that ¬priority-science-targets-exist, then the purpose of goal M1 has
expired, and M1 is PC. This condition may be based on a list of currently known targets,
and one can then measure progress towards this condition becoming true by tracking
progress through this list. Note that it may also be appropriate to have the success
condition as at-base, so that the rover will actively seek to maintain its battery charge
whenever it is not at the base (not just when there are no more science targets). Progress
towards the success of at-base may be measured by proximity to the base, or by the
progress of a goal to make this condition true. If the failure condition becomes true,
likewise the agent need not keep maintaining M. For example, if it is true that
¬battery-functioning, then rover need not keep maintaining battery > 30%. This
situation is a failure case, and we do not class it as ‘completeness’ in any sense. Likewise,
the goal’s transition to state Terminated we also do not class as ‘complete’. Note that if a
goal fails or otherwise terminates, any quantification of its completeness becomes
irrelevant.

Second, we consider when a maintenance goal is in state Active. Here, if the maintain
condition m becomes false (or is predicted to become false), the agent acts to restore it
(respectively, to prevent its violation). If it succeeds in doing so, we call this situation
RC. RC is the analogy of completeness for achievement goals.

This notion of ‘completeness’ is decidedly non-monotonic: it can occur many times
during execution. In contrast, once a maintenance goal is permanently complete, it has
transitioned to state Satisfied and remains there.

5.3.1.2 ‘Progress’ of a maintenance goal
The next question is: what does ‘progress’ mean for a maintenance goal? That is, what
does it mean for M to be ‘more complete’ at time t’ than at time t < t’? Again we consider
the two relevant goal states in turn.

First, we consider when the goal is in state Monitoring. Again, in contrast to
achievement goals, the agent is not trying to progress M towards the accomplishment of
S. That said, for permanently complete, one could characterise progress by a measure of
how much S(M) is complete. The less informative alternative is to just say | S= ¬
means that the agent believes M is 0% PC, and | S= means that it believes M is 100%
PC.

Second, we consider when the goal is in state Active. When M becomes recovery
incomplete, the agent is then attempting to achieve either P or R in order to restore m or
proactively prevent its violation. As such, one could characterise progress in terms of
how close M is to being RC again by the completeness of P or R. When m becomes
violated, then the agent believes the goal is 0% RC. As the agent progresses towards
restoring m, it believes M is increasing (not necessarily monotonically) in percentage RC,
and on successful completion of P or R, then x believes M is 100% RC again.

 134 J. Harland et al.

5.3.2 Computing estimates
Having indicated two notions of completeness for maintenance goals, we now specify
metrics to measure progress in each case. We leverage the computational mechanisms for
achievement goal progress of Section 5.2 in order to compute estimates of the metrics.
This makes describing the computation quite simple, although, as for achievement goals,
the underlying mechanisms are sophisticated. Again we consider the two goal states in
turn.

5.3.2.1 When the goal is in state ‘Monitoring’
By definition, when a maintenance goal is in state Maintain, then m is true (and not
predicted to become false, in the proactive case). Hence, neither R nor P sub-goals are
active, and M is (100%) RC. Given that S(G) is not true, the goal is not (100%)
permanently complete. For the reasons given earlier, the agent may wish to estimate how
close the goal is to being PC.

If we characterise a metric of permanent completeness as how much the success
condition S is complete, then we can directly leverage the computation mechanism for
completeness based on the set (i.e., conjunction) of effects in the success condition
(Section 5.2.3).4 That is, the percentage PC of M at time t, denoted PCt(M), is estimated
based on estimating the percentage of effects in S(M) that are true at time t:

() ()t t
SPC M CE M= (8)

5.3.2.2 When the goal is in state ‘Active’
Given that a maintenance goal is not (100%) PC, then whenever the goal is in state
Active, it is not (100%) RC. Since the recovery goal R or preventative goal P are
achievement goals, we can leverage the computation mechanism for completeness for R
or P, in one of two ways. First, completeness according to the resource consumption in
restoring m (respectively preventing its violation). Second, completeness according to the
accomplishment of the effects in restoring (respectively preventing violation) m, based on
R’s (respectively P’s) success condition or on effect summaries for the goal (i.e., R or P).

Note that the recovery/preventative sub-goals of M are restricted such that to
themselves have no maintenance sub-goals (Harland et al., 2014). That is, plans to
accomplish R or P can contain only actions and achieve sub-goals.

5.3.2.3 Estimate based on resource consumption of R/P
In this case we have lower and upper-bounds as follows. Let G be the achievement goal R
or P as appropriate.

() ()t t
r lb lbRC M CR G− = (9)

() ()t t
r ub ubRC M CR G− = (10)

 Quantifying the progress of goals in intelligent agents 135

5.3.2.4 Estimate based on effects of R/P
We again have lower and upper-bounds, as follows.

() ()t t
e lb lbRC M CE G− = (11)

() ()t t
e ub ubRC M CE G− = (12)

6 Example

We now show a detailed execution of the Mars rover example from Section 4. We begin
with the simplified scenario that excludes maintenance goals, iteration and the resource
energy, and then study the full scenario. The purpose of this section is to demonstrate the
proposed mechanisms on a complex example.

6.1 Simplified scenario: achievement goals only

Recall the scenario as described in Section 4. The rover’s top-level goal is
A0 = ExploreRegion(red1), whose plan P1 = traverseAndStudy consists of three sequential
achieve sub-goals: A1 = Experiment(rock1), A2 = Traverse(rock1, canyon), and
A3 = Survey(canyon), as seen in Figure 4. Here our interest is in the calculations about the
completeness of each goal at every point in the execution process, and what insight that
may give us. For ease of illustration, we set weights λr and μe uniformly to be 1.

Note that to execute Experiment(rock1), the agent has to position the robot arm
appropriately (PositionArt(rock1)), and then choose which measurement method to use
(spectral or thermal). For illustration suppose the thermal method is used, which means
that the agent will execute PositionArm(rock1) followed by MeasurementT(rock1). For
the later goal Experiment(target), we will suppose the spectral method is used, and so
PositionArm(target) and MeasurementS(target) are executed.
Table 1 Resource and effect summaries in the simplified scenario

No. Goal N P DE PE
3, 5 PA(r1) 0, 0, 60 0,0,180 AP(r1) -
11, 13 PA(t) 0, 0, 60 0,0,180 AP(t) -
4 MS(r1) 1, 20, 40 1, 20, 80 SP(r1) -
12 MS(t) 1, 20, 40 1, 20, 80 SP(t) -
6 MT(r1) 0, 50, 20 0, 50, 30 TP(r1) -
14 MT(t) 0, 50, 20 0, 50, 30 TP(t) -
7 T(r1, c) 0, 0, 100 0, 0, 300 At(c) -
9 IT(c) 0, 100, 300 0, 100, 300 TL(c) -
2 E(r1) 0, 20, 80 1, 50, 260 AP(r1), M(r1) SP(r1), TP(r1)
10 E(t) 0, 20, 80 1, 50, 260 AP(t), M(t) SP(t), TP(t)
8 S(c) 0, 120, 380 1, 150, 560 TL(c), AP(t), M(t) SP(t), TP(t)
1 ER(red1) 0, 140, 560 2, 200, 1,120 TL(c), At(c),

M(t), M(r1)
SP(r1), TP(r1),

SP(t), TP(t)

 136 J. Harland et al.

As an initial step we calculate the resource and effects summaries from the GPT in Figure
4. This is straightforward, and the results of this process are in Table 1. Column no. refers
to the node numbering in Figure 4, column N is the necessary resources (respectively:
drill count, memory, time), column P is the possible resources, column DE is the definite
effects, and column PE is the potential effects.5

6.1.1 Execution
With the GPT resource and effect summaries computed, we can now proceed with
execution. Table 2 shows the important stages in one execution of the goals in the
scenario. For each goal, column CE shows the current effects which are true, including
success conditions, and both definite and potential effects. The notation in this column is:
S; DE; PE. We do not repeat effects in DE if they are in S. We now describe the trace of
this execution in detail.

The completeness of the goalsPositionArm(_), MeasurementS(_), MeasurementT(_),
Traverse(rock1, canyon) and IdentifyTargets(_) is straightforward, as for each goal a
single action is sufficient for their entire execution. For the others (Explore(red1),
Experiment(_), Survey(canyon)) we simply aggregate the consumed resources and effects
of the completed sub-goals, and then recursively aggregate the estimates for completion
of the incomplete sub-goals. This means we traverse the GPT, but we only need to
consider the children of incomplete sub-goals. For example, if MeasurementS(target) is
the only incomplete sub-goal of ExploreRegion(red1), then we aggregate the resources
and effects used by the completed goals Experiment(rock1), Traverse(rock1, canyon) and
Survey(canyon), and calculate the completion estimates for MeasurementS(target) in
order to find the completion estimate for ExploreRegion(red1). Similarly if the only
sub-goal of ExploreRegion(red1) that is complete is PositionArm(rock1), then the
consumed resources and effects for ExploreRegion(red1) are just those for
PositionArm(rock1), and the calculation of the remaining resources and effects is the
aggregation of those for all the other sub-goals.

To compute the completion estimates, note that initially, all Rt values are 0, and the
t
RN and t

RP values are as ascribed a priori on the GPT nodes. When a goal is completed,
the t

RN and t
RP estimates are both 0, and hence the t

ubCR and t
lbCR measures will be

100%. The possible resources will always be equal to or greater than the definite
resources, so t

ubCR will never exceed .t
lbCR As we discuss in Section 7.2, during the

execution of a goal, t
uR will increase, and t

RN and t
RP will (generally) decrease. Once a

goal is complete, its t
uR value may also be used to calculate the completeness values of

subsequent goals. For example, once Experiment(rock1) has completed, knowledge of
the resources it has used will be needed for the completeness calculations for
Traverse(rock1, canyon) and Survey(canyon).

 Quantifying the progress of goals in intelligent agents 137

Table 2 Example execution in the simplified Mars rover scenario

N
o.

G

oa
ls

Rt

t R
N

t RP

t lb
C

R

t ub
C

R

C
E

t s
C

E

t lb
C

E

t ub
C

E

0
Ex

pl
or

e(
re

d1
)

0,
 0

, 0

0,
 1

40
, 5

60

2,
 2

00
, 1

,1
20

0%

0%

-

0%

0%

0%

Ex
pl

or
e(

re
d1

)
0,

 0
, 0

0,

 1
70

, 5
60

1,

 2
00

, 1
,0

70

0%

0%

-
0%

0%

0%

1

Ex
pe

rim
en

t(r
oc

k1
)

0,
 0

, 0

0,
 5

0,
 8

0
0,

 5
0,

 2
10

0%

0%

-

0%

0%

0%

Ex
pl

or
e(

re
d1

)
0,

 0
, 1

20

0,
 1

70
, 5

00

1,
 2

00
, 8

90

9.
7%

4.

0%

-
0%

0%

0%

Ex

pe
rim

en
t(r

oc
k1

)
0,

 0
, 1

20

0,
 5

0,
 2

0
0,

 5
0,

 3
0

43
%

40

%

-;
A

P(
r1

);
-

0%

50
%

25

%

2

Po
sit

io
nA

rm
(r

oc
k1

)
0,

 0
, 1

20

0,
 0

, 0

0,
 0

, 0

10
0%

10

0%

-;
A

P(
r1

);
-

10
0%

10

0%

-
Ex

pl
or

e(
re

d1
)

0,
 5

0,
 1

45

0,
 1

70
, 4

80

1,
 2

00
, 8

60

26
%

13

%

M
(r1

);
TP

(r1
);

-
25

%

25
%

25

%

Ex
pe

rim
en

t(r
oc

k1
)

0,
 5

0,
 1

45

0,
 0

, 0

0,
 0

, 0

10
0%

10

0%

M
(r1

);
A

P(
r1

);
TP

(r1
)

10
0%

10

0%

75
%

3

M
ea

su
re

m
en

tT
(r

oc
k1

)
0,

 5
0,

 2
5

0,
 0

, 0

0,
 0

, 0

10
0%

10

0%

M
(r1

);
TP

(r1
);

-
10

0%

10
0%

-

Ex
pl

or
e(

re
d1

)
0,

 5
0,

 3
45

0,

 1
20

, 3
80

1,

 1
50

, 5
60

38

.5
%

21

%

M
(r1

),
A

t(c
);

-;
TP

(r1
)

50
%

50

%

37
.5

%

4
Tr

av
er

se
(r

oc
k1

, c
an

yo
n)

0,

 0
, 2

00

0,
 0

, 0

0,
 0

, 0

10
0%

10

0%

A
t(c

);
-;

-
10

0%

10
0%

-

Ex
pl

or
e(

re
d1

)
0,

 1
50

, 6
45

0,

 2
0,

 8
0

1,
 5

0,
 2

60

88
.6

%

48
.8

%

M
(r1

),
A

t(c
),

TL
(c

);
-;

TP
(r1

)
75

%

75
%

50

%

Su
rv

ey
(c

an
yo

n)

0,
 1

00
, 3

00

0,
 2

0,
 8

0
1,

 5
0,

 2
60

81

%

40
%

TL

(c
);

-;
-

50
%

33

%

20
%

5

Id
en

tif
yT

ar
ge

ts(
ca

ny
on

)
0,

 1
00

, 3
00

0,

 0
, 0

0,

 0
, 0

10

0%

10
0%

TL

(c
);

-;
-

10
0%

10

0%

-
Ex

pl
or

e(
re

d1
)

0,
 1

50
, 6

45

1,
 2

0,
 1

00

1,
 2

0,
 2

60

58
.3

%

53
.2

%

M
(r1

),
A

t(c
),

TL
(c

);
-;

TP
(r1

)
75

%

75
%

50

%

Su
rv

ey
(c

an
yo

n)

0,
 1

00
, 3

00

1,
 2

0,
 1

00

1,
 2

0,
 2

60

52
.8

%

45
.6

%

TL
(c

);
-;

-
50

%

33
%

20

%

6

Ex
pe

rim
en

t(t
ar

ge
t)

0,
 0

, 0

1,
 2

0,
 1

00

1,
 2

0,
 2

60

0%

0%

-
0%

0%

0%

Ex

pl
or

e(
re

d1
)

0,
 1

50
, 7

65

1,
 2

0,
 4

0
1,

 2
0,

 8
0

61
.1

%

59
.6

%

M
(r1

),
A

t(c
),

TL
(c

);
-;

TP
(r1

)
75

%

75
%

50

%

Su
rv

ey
(c

an
yo

n)

0,
 1

00
, 4

20

1,
 2

0,
 4

0
1,

 2
0,

 8
0

58
.2

%

55
.8

%

TL
(c

);
A

P(
t);

 -
50

%

67
%

40

%

Ex
pe

rim
en

t(t
ar

ge
t)

0,
 0

, 1
20

1,

 2
0,

 4
0

1,
 2

0,
 8

0
25

%

20
%

-;

A
P(

t);
 -

0%

50
%

25

%

7

Po
sit

io
nA

rm
(ta

rg
et

)
0,

 0
, 1

20

0,
 0

, 0

0,
 0

, 0

10
0%

10

0%

A
P(

t);
 -;

 -
10

0%

10
0%

-

Ex
pl

or
e(

re
d1

)
1,

 1
70

, 8
25

0,

 0
, 0

0,

 0
, 0

10

0%

10
0%

M

(r1
),

A
t(c

),
TL

(c
),

M
(t)

; -
; T

P(
r1

),
SP

(t)

10
0%

10

0%

75
%

Su

rv
ey

(c
an

yo
n)

1,

 1
20

, 4
80

0,

 0
, 0

0,

 0
, 0

10

0%

10
0%

TL

(c
),

M
(t)

; A
P(

t);
 S

P(
t)

10
0%

10

0%

80
%

Ex

pe
rim

en
t(t

ar
ge

t)
1,

 2
0,

 1
80

0,

 0
, 0

0,

 0
, 0

10

0%

10
0%

M

(t)
; A

P(
t);

 S
P(

t)
10

0%

10
0%

75

%

8

M
ea

su
re

m
en

tS
(ta

rg
et

)
1,

 2
0,

 6
0

0,
 0

, 0

0,
 0

, 0

10
0%

10

0%

SP
(t)

; M
(t)

; -

10
0%

10

0%

-

 138 J. Harland et al.

Figure 5 GPT in the Mars rover scenario including maintenance goals (see online version
for colours)

 Quantifying the progress of goals in intelligent agents 139

In the execution of ExploreRegion(red1), t
uR is initially 0, and the t

RN and t
RP estimates

are as in stage 0. Experiment(rock1) is then adopted and executed. The t
RN and t

RP
estimates for Experiment(rock1) are refined in stage 1, as the rover has decided that the
thermal profile will be used. After the goal PositionArm(rock1), the estimates for the
completion of Experiment(rock1) are updated. Once MeasurementT(rock1) is completed
(stage 2), Experiment(rock1) is also complete (stage 3). The next goal is Traverse(rock1,
canyon), which completes (stage 4) using 200 units of time. Survey(canyon) is next,
which leads to the execution of the goal IdentifyTargets(canyon), for which the definite
and possible resource estimates are the same. The next goal is Experiment(target), which
unlike the instance for Experiment(rock1), chooses the spectral option, and hence results
in the execution of the goals PositionArm(target) (stage 7) and MeasurementS(target)
(stage 8), which completes the execution.

6.2 Full scenario: achievement and maintenance goals

The simplified scenario neglects the resource energy, and omits the rover’s maintenance
of its battery charge. Until now we also assumed the canyon area has only a single
science target of interest. Figure 5 shows the full scenario. Differences from Figure 4 are
in highlighted in red text. Note the two maintenance goals depicted in the top-right of the
figure.

Consider the rover’s top-level maintenance goal for this sol:

1 maintain(at-base, battery ,30% priority-targets-exist(1)
priority-targets-exist(), battery-functioning)

M rock
canyon

= ¬ >
∨ ¬

M1 has context condition k of ¬at-base; maintain condition m of battery > 30% – the rover
must keep its battery charge at least 30% of maximum, which is sufficient to get back to
its base; success condition S of ¬priority-science-targets-exist – this means the goal is
relevant as long as its context is true and the rover believes that high-priority science
targets exist in its current target area(s); and failure condition that the battery is
non-functional. In addition, the rover has goals such as R = PauseAndRecharge – the
rover stops movement and science and waits until solar cells have recharged battery
sufficiently – and P = ConserveEnergy – for which the rover might move more slowly, or
deprioritise some science targets. For ease of illustration, we will focus on the
PauseAndRecharge goal and a reactive semantics for M1.

6.2.1 Execution
For the region of interest red1, the rover knows from previous surveys that the region
contains rock1 and canyon, but it does not how many science targets there will be
in the latter. The success condition of M1 is therefore priority-targets-exist(rock1)
∨ priority-targets-exist(canyon). At the start of mission execution, all the effects in S(M1)
are false, so M1 is 0% permanently complete.

Part-way through execution of plan P1 = traverseAndStudy for achievement goal A0
this sol, just after positionArm(rock1) succeeds, the maintain condition m is violated. The
rover therefore adopts the achieve goal R to repair m. M1 is 0% RC at this point. R leads
to the suspension of P1 and so A1 and its sub-goals, which are resumed once R succeeds
and M1 is 100% RC again.

 140 J. Harland et al.

Later, once Experiment(rock1) succeeds, the first part of M1’s success condition is
true, and the rover computes that M1 is now 50% permanently complete. This is clearly
an estimate, since there could be more science targets in priority-targets-exist(canyon)
than in priority-targets-exist(rock1), or it could take more effort to study one target in the
latter than in the former. That is, the rover has only an estimate of how much progress has
been made on M1 and it must keep maintaining M1 until S(M1) is fully true.

Given the estimation that M1 is 50% complete, the rover notes that it already has had
to recharge once. Hence, based on its estimate, the rover may decide to choose a plan for
Transverse(rock1, canyon) that involves travelling at lower speed than normal, because it
predicts that it has limited battery charge left before it will likely to pause and charge
again.

6.2.2 Multiple targets in the canyon
We extend the latter part of the scenario as previously presented by having the rover
select not one single target in the canyon (from the found target list) and perform
Experiment(target), but, perhaps more realistically, to work through all targets targeti in
the target list and perform Experiment(targeti) on each one. This means the bottom-right
node of the GPT becomes an iterative goal ‘for each targeti in targetList, do
Experiment(targeti)’.6

This sol, the rover finds four priority science targets in the canyon through goal
IdentifyTargets(canyon). Hence, S(M1) can be expanded to priority-targets-exist(rock1)
∧ priority-targets-exist(target1) ∧…∧ priority-targets-exist(target4). Note that such
refinement of terms in the success condition means that the relevance (PC) estimates of
M1 are non-monotonic. Before any of the canyon targets are investigated, the
completeness of M1 has fallen from 50% to 20% (i.e., rock1 is done but four canyon
targets remain). As the rover proceeds with Experiment(targeti), the progress estimate for
M1 can be further updated.

6.2.3 Battery recharging
In the full scenario we must consider the resources required to perform the battery
recharging process. In particular, suppose that a certain amount of memory is required by
the recharge process, and so it is necessary that a certain amount of memory be available
whenever M1 is Active. One possibility would be to ensure that the first step of the
recovery goal PauseAndRecharge includes pausing all other goals, in order to ensure that
the memory is available. Another possibility, which enables more rational and proactive
resource management, is to introduce a second maintenance goal M2, whose task is to
ensure that sufficient memory is available (indicated by memory-high). This means we
have:

2 maintain(battery 50%, memory-high, at-base, battery-functioning)M = < ¬

The idea is for M2 to maintain a certain amount of free memory, which will be required
when M1 becomes active. Since M2 needs only monitor memory levels when the rover is
nearing the time for the battery to be recharged, M2 only enters the Monitoring state when
the battery level drops below 50%, at which point it begins monitoring the memory level.
Initially the goal is RC and not PC. If the memory falls too low (indicated by
memory-high becoming false), then M2 is no longer RC; it becomes Active. The recovery

 Quantifying the progress of goals in intelligent agents 141

goal for M2 suspends the Explore(red1) goal, which frees up the memory to allow the
battery to be recharged. As a result, the battery may be recharged even before the level
drops below 30%, since waiting until this happens will only lower the level of available
memory even further. Once the battery is recharged, M1 returns to the Monitoring state,
M2 returns to the Inactive state, and ExploreRegion(red1) is resumed. We have not
included the details of this variation on the scenario, which is similar in many respects to
what is shown above.

6.2.4 Discussion
It should be noted that the estimates used for measuring the completeness of achievement
goals are similar to the considerations needed for the activation of resource-based
maintenance goals, such as M1 and M2. In particular, as this scenario shows, we can use
the estimates for the resources needed to complete, e.g., Survey(canyon), to also estimate
whether the battery will drop below the crucial level of 30% during the execution of this
goal, i.e., whether M1 will become non-RC, and hence whether the battery should be
proactively recharged during the execution of the goal. This could be achieved by
incorporating such resource estimations into the procedure π supplied by the agent
designer for maintenance goals.

We could also use similar methods to prioritise some goals over others (i.e., those
which will use less energy) when the battery level is getting low, or to allow a temporary
violation of a maintain condition. The latter may occur when the goal Survey(canyon) is
nearing completion, and only requires sub-goal MeasurementS(target4) to be performed.
If, for instance, the agent estimates that the battery level will fall to no less than 27%
while this is done, the agent may decide to continue with MeasurementS(target4) before
recharging. There are a number of similar variations that we could consider similarly; the
point to note is that estimating the completeness of achievement goals (via t

lbCR and
t
ubCR) and the progress of maintenance goals have a close correspondence. Thia requires

a mechanism for priotising certain goals over others, which is outside the scope of this
paper.

7 Discussion

This section discusses implementation of our reasoning mechanisms, monotonicity and
completeness, and reconciles our computational approach with a previous theoretical
perspective.

7.1 Implementation

We have implemented our computational approach in the abstract agent language CAN
(Winikoff et al., 2002; Sardiña and Padgham, 2011), and have used it to experiment on
the above scenario. It is worth noting that the state-based techniques of Harland et al.
(2014) simplify this process, in that it is relatively simple to specify rules such as one that
requires ExploreRegion(red1) to be suspended when either M1 or M2 are Active, or that
the activation of M2 requires proactive activation of M1 (i.e., even if the maintain
condition of M1 is not yet violated).

 142 J. Harland et al.

The implementation consists of around 2,000 lines of Prolog, and is available from
the authors’ website at: https://titan.csit.rmit.edu.au/~e24991/orpheus/. It has been tested
under Ciao and SWI-Prolog. Execution time on the scenario is negligible, compared to
the time without the extra code for the completeness calculations. Once the CAN
execution rules were implemented, it was a simple task to translate the rules into
executable code in Prolog. CAN is an established formalism for specifying and reasoning
about processes in agent systems based on the BDI framework. This allows us the
necessary precision to reason about particular points in the execution of an agent’s plans
without having to commit ourselves to a specific programming language. This particular
implementation is not intended as a substitute for such languages, but as a means of
experiment with our techniques and checking that the mechanisms introduced perform in
the intended manner.

While our computational mechanisms are straightforward to implement, they give
significant insight into the behaviour of the goals, as demonstrated in the Mars rover
scenario. In particular, the relative values of the various completeness measures together
with the consumed resources and effects achieved provide information for the agent’s
deliberation.

Recall that our emphasis is not on raw computational efficiency, but on finding
principled, tractable ways to quantify completion estimates for goals. Hence we do not
perform efficiency comparisons with other methods: indeed there are none to directly
compare with, as previous works (Thangarajah and Padgham, 2011; Morley et al., 2006),
etc. do not account for partial completeness, while van Riemsdijk and Yorke-Smith
(2010) do not provide computational mechanisms.

Regarding implementation in a deployed agent programming language, a suitable
candidate is for example GOAL (Hindriks, 2009). van Riemsdijk and Yorke-Smith
(2010) discuss (but do not undertake) what is necessary to implement reasoning with
partial satisfaction (of achievement goals) in GOAL. They point out that modifying the
language to include the possibility to reason about partial goal satisfaction will likely
involve providing a new notion of goal, analogous to the proposed by van Riemsdijk and
Yorke-Smith (2010). The completeness metrics such as t

lbCR and t
SCE can be computed

over the agent’s belief base; annotations of the program text analogous to the annotations
of the GPT may be useful. Then, one can investigate how deliberation such as action
selection change according to this new notion of goal and the new information available
from the completeness estimates, i.e., whether the existing mechanism in GOAL can in
essence be used or whether other mechanisms are required.

7.2 Monotonicity and completeness

Observe the non-monotonic change between stages 5 and 6 of the detailed trace of
Table 2. The t

RN estimates for ExploreRegion(red1) and Survey(canyon) increase, and
the t

RP estimates decrease, due to the plan selection process for Experiment(rock1).
Before it is known which of the two choices will be made, the t

RN and t
RP estimates are

based on the minimum and maximum values across both choices. When a choice of a
particular branch is made (stage 6), the estimates can be made more precise, as these now
only need to take into account the particular branch chosen. This shows that the plausible
intuition that the t

lbCR is non-decreasing does not hold in general.7

 Quantifying the progress of goals in intelligent agents 143

It should also be noted that we do not dynamically update the effect estimates, which
contrasts with our treatment of the resource estimates. In particular, in the transition from
stage 5 to stage 6, as discussed above, it is known what branch of the GPT will be used;
the resource estimates are updated accordingly but the effect estimates remain the same.
The reason for this is that in general we do not know at what point the definite and
possible effects become true. In the above scenario, it is clear that the effects
SpectralProfile(rock1) and ThermalProfile(rock1) are not only mutually exclusive, but
only become true at the very end of the execution of the relevant plan. However in
general we do not know such specific information, i.e., whether possible effects are
exclusive or not, and how closely their success is related to the overall success of the
goal. This means that when a plan fails, it could potentially have made some of the
definite and possible effects true despite its failure. While it may be interesting to explore
the use of dynamically-updated effect summaries in future work, we have not done so
here as we have been unable to see how to do this in a domain-independent way.

A related issue is the way in which success conditions, definite effects, and potential
effects are specified. In the above, effects are assumed to be just atoms and success
conditions are sets of atoms. This makes it straightforward to measure discrete effects by
simply counting formulae. It is arguably more natural to use more complex formulae for
success conditions, such as SpectralProfile(rock1) ∨ ThermalProfile(rock1) as one of the
success conditions for Experiment(rock1), rather than using the predicate Measured as
above. This may allow for potentially richer methods of measuring effects than the
simple measure used here.

7.3 Theoretical perspective

In this subsection, we reconcile our computational approach, denoted ‘Hetal’, with the
theoretical framework of van Riemsdijk and Yorke-Smith (2010) (‘vRYS’). Our
motivation is to ask whether our development of the former can provide the
computational mechanism missing in the latter. In doing so, we instantiate vRYS’s
theoretical framework to a computationally feasible approach.

The scope of vRYS is greater than ours in this article, in that it studies how an agent
can use goal completeness information, for instance in ‘goal adaptation’. In Hetal we ask
instead how to compute goal completeness estimates. The two lines of work have in
common the GPT as the basic reasoning structure. Both place attributes on (leaf) nodes
which specify factors such as utility and resource usage. Both perform aggregation from
leaf to higher-level nodes. vRYS explicitly include aggregation functions for each factor,
and default aggregation functions in AND and OR cases, if no specific function is
specified. vRYS consider goals only but mention the ‘means’ by which a goal can be
achieved; Hetal explicitly include plans also – which is necessary to obtain a
computational mechanism. vRYS consider only achievement goals.

The key question is what defines (full) completeness of a goal G. vRYS suppose each
goal has a progress metric, denoted as a set A with a partial order ≤ (usually total w.r.t.
amin), and further a minimum value, amin ∈ A, the completion value, that should be
reached in order to consider the goal to have been completely satisfied. By contrast, Hetal
hold the classical view that completeness is defined by the success condition.

Since vRYS do not use the logical conjunction of effects in S(G) to define
completeness, they require each goal to have a progress appraisal function ψ from ,
the set of states, to A. In addition, they posit an accompanying upper bound function,

 144 J. Harland et al.

which we will denote ψU, that takes into account the means m that ‘will be used for
pursuing the goal’: ψU ‘yields (an estimation of) the maximum value in A reachable’ from
a state s ′′∈ with means m. They also mention but do not develop a lower bound
function which we will denote ψL. vRYS recognise that all three functions may be
estimates, which concurs with the principles of Hetal’s mechanism.

Hetal explicitly compute lower and upper-bounds. These bounds can be seen as
equivalent to vRYS’s ψ (or ψL) and ψU for the progress metric. While vRYS consider
only a single such ‘metric’, Hetal compute multiple metrics – multiple resources and
multiple effects. However, vRYS note “Besides the metric chosen as the progress metric,
the agent (or designer) might have interest in others: e.g., progress may be defined in
terms of tracks searched, but time taken could be an additional relevant factor in the
team’s decisions” (van Riemsdijk and Yorke-Smith, 2010).

From this analysis we conclude that the general philosophy of the two lines of work
seem compatible. The computation mechanisms of Hetal for lower and upper-bounds can
be seen as computing the ψL and ψU bounds of the progress metric of vRYS. That is, if
one metric of those computed by Hetal is designated as the progress metrics for a goal in
vRYS’s framework, then Hetal provide the computational mechanism that is lacking in
vRYS’s framework.

In more detail, consider an achievement or maintenance goal G being pursued by an
agent using a plan that in vRYS’s notation is the meansm.8 First, in the case of (the usage
of) a resource r being selected as the progress metric, we have: 9() () ,t

L lbψ G CR G= ψ(G)
= Rt(G), and () ().t

U ubψ G CR G= Second, in the case of success-condition effects, we
have: () (), () (),t t

L Slbψ G CE G ψ G CE G= = and () ().t
U ubψ G CE G= Note that for

maintenance goals, the resource-based metric and the effects-summary-based metric
apply to its recovery completeness, while the success-condition-based metric applies to
both its recovery and its permanent completeness.

An important point of difference between the two lines of work is the key question of
what constitutes completeness of an achievement goal. vRYS give the agent designer the
ability to define completeness through the choice of which metric (which could be one of
those of Hetal) constitutes the designated progress metric for a goal, together with the
designated amin value. Hetal, by contrast, give this ability through what the agent designer
specifies in S(G). Hence, to reconcile the framework of vRYS with the classical view,
S(G) should be set to be the condition that corresponds to ψ(G) ≥ amin.

Let us make two final remarks. First, if a different metric than resources or effects is
selected as the progress metric for a goal, then the metrics computed by Hetal can be
useful in agent deliberation, although not defining completeness – as vRYS remark
(van Riemsdijk and Yorke-Smith, 2010).

Second, in line with Hetal’s computation of multiple metrics, an interesting extension
of the vRYS framework would be to have multiple progress metrics, i.e., to choose more
than one metric to be the progress metric for a goal. The question then is how to define
completeness (since they do not use S(G)), the simplest approach being min() i

iψ G a≥ for
all progress metrics i.

 Quantifying the progress of goals in intelligent agents 145

8 Conclusions

The practice of BDI agent systems is that goal accomplishment is discrete. This article
contributes a principled mechanism for computing completeness of top-level goals of a
BDI-style agent in order to inform the agent’s deliberation. The overall aim in our work
is to provide an approach that is principled and generic and that can be used
computationally to quantify a measure of completeness for both goals of accomplishment
(achievement goals) and goals of monitoring (maintenance goals). By enabling an agent
to compute a finer-grained approximation of the level of completeness of its goals, we
endow agents to make more nuanced and potentially more suitable decisions. For
example, when reasoning to resolve goal conflicts (Thangarajah and Padgham, 2011), the
agent may choose to continue with the goal that is more complete than the other.

As a further, specific example, in the Mars rover scenario, given an imminent
deadline such as the approach of dusk, it may be reasonable to terminate the execution of
IdentifyTargets(canyon) once a sufficient fraction of the canyon has been surveyed, or if
a sufficient number of targets has been found. This would allow the top-level goal
(ExploreRegion(red1)) to be completed before the deadline, despite not having fully
explored the canyon for all possible targets. The information computed at run-time by our
approach provides a quantifiable basis for such decisions.

First, our approach leverages previous work on resource and effects summarisation
but we go beyond by accommodating both dynamic resource summaries and goal effects,
while also allowing a non-binary quantification of goal completeness. We can
accommodate BDI agents with generative planning capabilities (Sardiña and Padgham,
2011), since we compute dynamically from the GPT.

Second, we examine what it means for a maintenance goal to be ‘complete’, and
compute estimates of the notions of permanently complete and RC, leverage recent work
on computing completeness of achievement goals. Throughout, our implementation, in
the abstract agent language CAN, enjoys low computational overhead.

Third, we examine our work on practical computation of progress estimates in the
light of an earlier theoretical framework on BDI goal completeness. We showed that
computation of lower and upper-bounds of Thangarajah et al. (2015) can be seen as
computing the bounds on the progress metric of van Riemsdijk and Yorke-Smith (2010),
depending on the choice of progress metric. As a by product of this reconciliation, we
implicitly extended the reach of the theoretical framework to include maintenance goals.
We also instantiated the theoretical framework to a computationally-feasible approach.

8.1 Assumptions and limitations

The assumptions and limitations of this article are summarised as follows:

1 We assume that the agent’s beliefs are generally true. However the agent does not
have knowledge of the world, only beliefs.

2 We assume that the agent is rational and optimistic, but that its goals do not always
succeed.

3 For a maintenance goal, we assume that the success of either a preventive or
recovery goal is sufficient to restore the maintenance condition, and that these goals
will typically succeed.

 146 J. Harland et al.

4 We assume that effect and resource summaries on leaf nodes are provided by the
agent designer.

5 We assume that the value of a resource is zero if the resource is not in a resource
subset.

6 We assume that all goal effects are expressed as atomic formulae.

7 We assume that effects are atoms and that success conditions are sets of atoms.

8.2 Future work

This article leads to a number of extensions and future directions, which we now briefly
describe.

First, some potential aspects for further work relate to the potentially non-monotonic
nature of effects. Despite having made one or more effects become true, these effects
could be undone by either interactions between plans (Thangarajah et al., 2003), by
another agent, or by interactions with the environment, such as wind moving rocks
around after the agent has positioned its robot arm, or an identified target being moved
from its initial location. This means the calculations above would need to take into
account the need to re-establish effects which had been previously made true. Further,
additional resources beyond those estimated previously might be needed for the plan to
succeed.

Second, a further observation that may be made about the example involving the wind
moving the rocks is the need for preconditions to be maintained. In other words, there is
often an implicit connection between goals, such as PositionArm(rock1) and
MeasurementS(rock1) in Figure 4, in that we assume that PositionArm(rock1) remains
true during the execution of MeasurementS(rock1). This suggests that an interesting line
of further work would be to consider a more complex plan that involved maintaining any
necessary pre-requisites for the duration of the plan; the cost of re-establishing these, as
discussed above, would then become the cost of maintaining the relevant pre-requisite
conditions.

Third, as noted above, the traditional notion of accomplishment for achievement
goals are discrete, i.e., it is either achieved or not. In some circumstances, it may be
appropriate to consider a ‘less binary’ notion of success. For example, for M1 in the rover
scenario above, consider when the battery level drops to 29% and so the rover recharges.
However, as this will interrupt the achievement of other goals, it may be that it is not
strictly necessary to recharge the battery in full to complete the day’s schedule. If it is
known that completing the schedule will require only say 90% of the battery charge, it
may be better to cease recharging when this level is achieved, and spend the time saved
on science opportunities. This will involve considering the goal ‘complete enough’,
rather than strictly complete.

Fourth, another line of further work is suggested by the discussion in Section 6.2 on
iterative goals, and in particular how they may apply to the issue of finding and analysing
science targets. The notion of an iterative goal, either triggered by a rule of some sort or
as an extension of the notion of a maintenance goal, is something that we intend to
explore further. Some related issues concern the relationships between the various
components of a maintenance goal. For example, it seems natural to consider
maintenance goals in which the success condition is the negation of the context condition,

 Quantifying the progress of goals in intelligent agents 147

so that there is a direct and intuitive connection between what triggers activity and what
ceases it. It also seems natural to consider maintenance goals in which the success
condition of the recovery goal implies the maintenance condition, so that there is a formal
reflection of the intuitive goal that the achievement of the recovery goal will in fact
restore the desired state. For M1 and M2 above, it is clear that restoring the battery level to
100% will ensure any specified level of minimum charge is reached; in other examples, it
may not be so obvious.

Fifth, one can consider the resource costs for failed plans for achievement goals
(including repair and preventative goals). For example, if the Mars rover attempts a
spectroscopic analysis, but finds that it fails, it may still consume energy, drill bits,
memory and time in doing so. This means that we need to adjust the calculations for the
definite and potential resource estimates for completing the goal to take the resources
used in failed sub-goals into account.

Sixth, for maintenance goals, there is the possibility of leveraging look ahead
predictions in order to refine progress estimates, based the likelihood or number of
predicted future maintain condition violations. As discussed in Section 5.3, reasoning
about predicted resource use may be useful for resolving conflicts and improving
resource utilisation.

Seventh, as noted in Section 2, there are two bodies of literature for which the
connections with our work are interesting to explore: the works on reasoning about time
in agent programming languages, and the works on the degree of completeness of fuzzy
goals.

Lastly, a further conclusion of our work is that measuring the progress of an agent
that has maintenance goals can lead to ‘higher-level’ considerations of progress. For
example, potentially a maintenance goal could be active for the entire existence of the
agent, which in the Mars rover scenario could be a mission of several months. Given that
the rover’s activity is restricted to daytime hours, the agent’s activity over the course of
the mission involves a regular cycle of returning to its base each night. It would seem
natural to integrate a regular update of the overall progress of its mission, based largely
on techniques similar to those discussed here, to allow it to compare the current sol’s
progress to previous sols, as well as to estimate its overall progress. For example, at the
end of a given sol, the rover may compare the time spent in reactively charging the
battery that sol to previous ones, as well as proactive recharging, in order to determine
whether its battery use could be better managed. This may also include a comparison of
the completion estimates with their actual values, again to potentially improve the
accuracy of its predictions and hence of its goal management.

Acknowledgements

We thank the reviewers for their comments which helped to improve this article. We
thank the reviewers at AAMAS’14, ECAI’14 and AAMAS’15, where fragments of this
work appeared. JT acknowledges the ARC Discovery Grant number DP1094627.
NYS acknowledges the AUB University Research Board Grant number 102853. NYS
thanks the Operations group at the Cambridge Judge Business School and the fellowship
at St Edmund’s College, Cambridge. This work was partially supported by TAILOR, a
project funded by EU Horizon 2020 research and innovation program under Grant
number 952215.

 148 J. Harland et al.

References
Aha, D.W. (2018) ‘Goal reasoning: foundations, emerging applications, and prospects’, AI

Magazine, Vol. 39, No. 2, pp.3–24.
Alechina, N., Bulling, N., Logan, B. and Nguyen, H.N. (2017) ‘The virtues of idleness: a decidable

fragment of resource agent logic’, Artificial Intelligence, Vol. 245, pp.56–85,
https://doi.org/10.1016/j.artint.2016.12.005.

Baral, C., Eiter, T., Bjaereland, M. and Nakamura, M. (2008) ‘Maintenance goals of agents in a
dynamic environment: formulation and policy construction’, Artificial Intelligence, Vol. 172,
Nos. 12–13, pp.1429–1469.

Barkan, M. and Kaminka, G.A. (2019) ‘Towards predictive execution monitoring in BDI recipes’,
in Proceedings of 18th International Conference on Autonomous Agents and MultiAgent
Systems, (AAMAS’19), pp.1808–1810.

Bordini, R.H., Bazzan, A.L.C., de Oliveira Jannone, R., Basso, D.M., Vicari, R.M. and
Lesser, V.R. (2002) ‘AgentSpeak(XL): efficient intention selection in BDI agents via
decision-theoretic task scheduling’, in Proc. of AAMAS’02, pp.1294–1302.

Bratman, M.E. (1987) Intention, Plans and Practical Reason, University of Chicago Press,
Chicago, IL.

Braubach, L., Pokahr, A., Moldt, D. and Lamersdorf, W. (2004) ‘Goal representation for BDI agent
systems’, in Proc. of ProMAS’04, LNCS, No. 3346, pp.44–65.

Broersen, J.M., Dastani, M., Hulstijn, J., Huang, Z. and van der Torre, L.W.N. (2001) ‘The BOID
architecture: conflicts between beliefs, obligations, intentions and desires’, in Proc. of
Agents’01, pp.9–16.

Clement, B.J., Durfee, E.H. and Barrett, A.C. (2007) ‘Abstract reasoning for planning and
coordination’, J. Artificial Intelligence Research, Vol. 28, pp.453–515, https://doi.org/
10.1613/jair.2158.

Collins, J., Ketter, W. and Gini, M.L. (2009) ‘Flexible decision control in an autonomous trading
agent’, Electronic Commerce Research and Applications, Vol. 8, No. 2, pp.91–105.

Darimont, R., Delor, E., Massonet, P. and van Lamsweerde, A. (1997) ‘iGRAIL/KAOS: an
environment for goal-driven requirements engineering’, in Proc. of 19th International
Conference on Software Engineering (ICSE’97), pp.612–613.

Dastani, M., van Riemsdijk, M.B. and Meyer, J-J.C. (2006) ‘Goal types in agent programming’, in
Proc. of ECAI’06, pp.220–224.

de Silva, L., Sardina, S. and Padgham, L. (2009) ‘First principles planning in BDI systems’, in
Proc. of AAMAS’09, pp.1105–1112.

Duff, S., Harland, J. and Thangarajah, J. (2006) ‘On proactivity and maintenance goals’, in Proc. of
AAMAS’06, pp.1033–1040.

Duff, S., Thangarajah, J. and Harland, J. (2014) ‘Maintenance goals in intelligent agents’,
Computational Intelligence, Vol. 30, No. 1, pp.71–114.

Evertsz, R., Thangarajah, J., Yadav, N. and Ly, T. (2015) ‘A framework for modelling tactical
decision-making in autonomous systems’, Journal of Systems and Software, Vol. 110,
pp.222–238.

Georgeff, M. and Rao, A. (1998) ‘Rational software agents: from theory to practice’, in Agent
Technology: Foundations, Applications, and Markets, Chapter 8, pp.139–160, Springer,
New York.

Grosz, B.J. and Hunsberger, L. (2006) ‘The dynamics of intention in collaborative activity’,
Cognitive Systems Research, Vol. 7, Nos. 2–3, pp.259–272.

Haddawy, P. and Hanks, S. (1992) ‘Representations for decision theoretic planning: utility
functions for deadline goals’, in Proc. of KR’92, pp.71–82.

Harland, J., Morley, D.N., Thangarajah, J. and Yorke-Smith, N. (2014) ‘An operational semantics
for the goal life-cycle in BDI agents’, Autonomous Agents and Multi-Agent Systems, Vol. 28,
No. 4, pp.682–719.

 Quantifying the progress of goals in intelligent agents 149

Harland, J., Morley, D.N., Thangarajah, J. and Yorke-Smith, N. (2017) ‘Aborting, suspending, and
resuming goals and plans in BDI agents’, Autonomous Agents and Multi-Agent Systems,
Vol. 31, No. 2, pp.288–331.

Herzig, A., Lorini, E., Perrussel, L. and Xiao, Z. (2017) ‘BDI logics for BDI architectures: old
problems, new perspectives’, KI, Vol. 31, No. 1, pp.73–83.

Hindriks, K.V. (2009) ‘Programming rational agents in GOAL’, in Fallah-Seghrouchni, A.E., Dix,
J., Dastani, M. and Bordini, R.H. (Eds.): Multi-Agent Programming, Languages, Tools and
Applications, pp.119–157, Springer, Cham, Switzerland.

Hindriks, K.V. and van Riemsdijk, M.B. (2008) ‘Satisfying maintenance goals’, in Proc. of
DALT’07, LNCS, Vol. 4897, pp.86–103.

Hindriks, K.V., Jonker, C. and Pasman, W. (2008) ‘Exploring heuristic action selection in agent
programming’, in Proc. of ProMAS’08, LNCS, Vol. 5442, pp.24–39.

Hindriks, K.V., van der Hoek, W. and van Riemsdijk, M.B. (2009) ‘Agent programming with
temporally extended goals’, in Proc. of AAMAS’09, pp.137–144.

Holton, R. (2008) ‘Partial belief, partial intention’, Mind, Vol. 117, No. 465, pp.27–58.
Horling, B., Lesser, V.R., Vincent, R. and Wagner, T. (2006) ‘The soft real-time agent control

architecture’, Autonomous Agents and Multi-Agent Systems, Vol. 12, No. 1, pp.35–91.
Hsu, C., Wah, B.W., Huang, R. and Chen, Y. (2007) ‘Constraint partitioning for solving planning

problems with trajectory constraints and goal preferences’, in Proc. of IJCAI’07,
pp.1924–1929.

Huang, Z. and Bell, J. (1997) ‘Dynamic goal hierarchies’, in Proc. of the 1997 AAAI Spring Symp.
on Qualitative Preferences in Deliberation and Practical Reasoning, pp.9–17.

Ingrand, F.F., Chatila, R., Alami, R. and Robert, F. (1996) ‘PRS: a high level supervision and
control language for autonomous mobile robots’, in Proc. of ICRA’96, pp.43–49.

Jha, S., Raman, V., Sadigh, D. and Seshia, S.A. (2018) ‘Safe autonomy under perception
uncertainty using chance-constrained temporal logic’, J. Automated Reasoning, Vol. 60, No. 1,
pp.43–62.

Jiang, J., Thangarajah, J., Aldewereld, H. and Dignum, V. (2014) ‘Reasoning with agent
preferences in normative multi-agent systems’, in Proc. of AAMAS’14, pp.1373–1374.

Kamali, K., Fan, X. and Yen, J. (2007) ‘Towards a theory for multiparty proactive communication
in agent teams’, Intl. J. of Cooperative Information Systems, Vol. 16, No. 2, pp.271–298.

Kamar, E., Gal, Y. and Grosz, B.J. (2009) ‘Incorporating helpful behavior into collaborative
planning’, in Proc. of AAMAS’09, pp.875–882.

Kaminka, G.A., Yakir, A., Erusalimchik, D. and Cohen-Nov, N. (2007) ‘Towards collaborative
task and team maintenance’, in Proc. of AAMAS’07, pp.1–8.

Katarzyniak, R. and Popek, G. (2013) ‘Integration of modal and fuzzy methods of knowledge
representation in artificial agents’, International Journal of Software Engineering and
Knowledge Engineering, Vol. 23, No. 1, pp.13–30.

Khan, S.M. and Lespérance, Y. (2010) ‘A logical framework for prioritized goal change’, in Proc.
of AAMAS’10, pp.283–290.

Lesser, V.R., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D.E.,
Podorozhny, R.M., Prasad, M.V.N., Raja, A., Vincent, R., Xuan, P. and Zhang, X. (2004)
‘Evolution of the GPGP/TÆMS domain-independent coordination framework’, Autonomous
Agents and Multi-Agent Systems, Vol. 9, Nos. 1–2, pp.87–143.

Letier, E. and van Lamsweerde, A. (2004) ‘Reasoning about partial goal satisfaction for
requirements and design engineering’, in Proc. of SIGSOFT’04, pp.53–62.

Logan, B., Thangarajah, J. and Yorke-Smith, N. (2017) ‘Progressing intention progression: a call
for a Goal-Plan Tree contest’, in Proc. of AAMAS’17, pp.768–772.

Morley, D. and Myers, K. (2004) ‘The SPARK agent framework’, in Proc. of AAMAS’04.
Morley, D., Myers, K.L. and Yorke-Smith, N. (2006) ‘Continuous refinement of agent resource

estimates’, in Proc. of AAMAS’06, pp.858–865.

 150 J. Harland et al.

Myers, K.L. and Yorke-Smith, N. (2005) ‘A cognitive framework for delegation to an assistive user
agent’, in Proc. of AAAI 2005 Fall Symposium on Mixed-Initiative Problem-Solving
Assistants, pp.94–99.

Roberts, M., Borrajo, D., Cox, M. and Yorke-Smith, N. (2018) ‘Special issue on goal reasoning’,
AI Communications, Vol. 31, No. 2, pp.115–116.

Rönnquist, R. (2007) ‘The goal oriented teams (GORITE) framework’, in Proc. of ProMAS’07,
LNCS, Vol. 4908, pp.27–41.

Sardiña, S. and Padgham, L. (2011) ‘A BDI agent programming language with failure handling,
declarative goals, and planning’, Autonomous Agents and Multi-Agent Systems, Vol. 23, No. 1,
pp.18–70.

Shen, S., O’Hare, G.M.P. and Collier, R.W. (2004) ‘Decision-making of BDI agents, a fuzzy
approach’, in Proceedings of 1st International Conference on Computer and Information
Technology (CIT’04), pp.1022–1027.

Smith, D.E. (2004) ‘Choosing objectives in over-subscription planning’, in Proc. of ICAPS’04,
pp.393–401.

Thangarajah, J. and Padgham, L. (2011) ‘Computationally effective reasoning about goal
interactions’, J. Automated Reasoning, Vol. 47, No. 1, pp.17–56.

Thangarajah, J., Harland, J. and Yorke-Smith, N. (2007) ‘A soft COP model for goal deliberation in
a BDI agent’, in Proc. of CP’07Workshop on Constraint Modelling and Reformulation
(ModRef’07), pp.61–75.

Thangarajah, J., Harland, J. and Yorke-Smith, N. (2015) ‘Estimating the progress of maintenance
goals’, in Proc. of AAMAS’15, pp.1645–1646.

Thangarajah, J., Harland, J., Morley, D.N. and Yorke-Smith, N. (2014a) ‘Quantifying the
completeness of goals in BDI agents’, in Proc. of ECAI’14, pp.879–884.

Thangarajah, J., Harland, J., Morley, D.N. and Yorke-Smith, N. (2014b) ‘Towards quantifying the
completeness of BDI goals’, in Proc. of AAMAS’14, pp.1369–1370.

Thangarajah, J., Padgham, L. and Winikoff, M. (2003) ‘Detecting and avoiding interference
between goals in intelligent agents’, in Proc. of IJCAI’03, pp.721–726.

Thangarajah, J., Winikoff, M., Padgham, L. and Fischer, K. (2002) ‘Avoiding resource conflicts in
intelligent agents’, in Proc. of ECAI-02, pp.18–22.

van der Hoek, W., Jamroga, W. and Wooldridge, M. (2007) ‘Towards a theory of intention
revision’, Synthese, Vol. 155, No. 2, pp.265–290.

van Riemsdijk, M.B. and Yorke-Smith, N. (2010) ‘Towards reasoning with partial goal satisfaction
in intelligent agents’, in Proc. of ProMAS’10, LNCS, Vol. 6599, pp.41–59.

van Riemsdijk, M.B. and Yorke-Smith, N. (2012) ‘Towards reasoning with partial goal satisfaction
in intelligent agents’, in Programming Multi-Agent Systems VIII, LNCS, Springer, New York,
Vol. 6599, pp.41–59.

Vikhorev, K., Alechina, N. and Logan, B. (2011) ‘Agent programming with priorities and
deadlines’. in Proc. of AAMAS’11, pp.397–404.

Visser, S., Thangarajah, J., Harland, J. and Dignum, F. (2016) ‘Preference-based reasoning in BDI
agent systems’, Autonomous Agents and Multi-Agent Systems, Vol. 30, No. 2, pp.291–330.

Vukovic, M. and Robinson, P. (2005) ‘GoalMorph: partial goal satisfaction for flexible service
composition’, International Journal of Web Services Practices, Vol. 1, Nos. 1–2, pp.40–56.

Wilson, M.A., McMahon, J., Wolek, A., Aha, D.W. and Houston, B.H. (2018) ‘Goal reasoning for
autonomous underwater vehicles: responding to unexpected agents’, AI Communications,
Vol. 31, No. 2, pp.151–166.

Winikoff, M. (2005) ‘JACK intelligent agents: an industrial strength platform’, in Multi-Agent
Programming, pp.175–193, Springer, New York.

Winikoff, M., Padgham, L., Harland, J. and Thangarajah, J. (2002) ‘Declarative and procedural
goals in intelligent agent systems’, in International Conference on Principles of Knowledge
Representation and Reasoning, Morgan Kaufman, San Francisco, California, USA.

 Quantifying the progress of goals in intelligent agents 151

Yao, Y. and Logan, B. (2016) ‘Action-level intention selection for BDI agents’, in Proc. of
AAMAS’16, pp.1227–1236.

Yao, Y., de Silva, L. and Logan, B. (2016a) ‘Reasoning about the executability of Goal-Plan
Trees’, in Proc. of EMAS’16, LNCS, Vol. 10093, pp.176–191.

Yao, Y., Logan, B. and Thangarajah, J. (2016b) ‘Intention selection with deadlines’, in Proc. of
ECAI’16, pp.1700–1701.

Yao, Y., Logan, B. and Thangarajah, J. (2016c) ‘Robust execution of BDI agent programs by
exploiting synergies between intentions’, in Proc. of AAAI’16, pp.2558–2565.

Zhou, Y. and Chen, X. (2004) ‘Partial implication semantics for desirable propositions’, in Proc. of
KR’04, pp.606–612.

Zhou, Y., van der Torre, L. and Zhang, Y. (2008) ‘Partial goal satisfaction and goal change: weak
and strong partial implication, logical properties, complexity’, in Proc. of AAMAS’08,
pp.413–420.

Notes
1 We thank an anonymous reviewer for this point.
2 One could also include the look ahead function π in the goal syntax, whereupon the look ahead

function could differ by goal.
3 Although note that in the timescale of the scenario of Section 4, memory is not reused.
4 Since x is not trying to achieve S, completeness based on resource usage is irrelevant, as x is

not intentionally expending resources to accomplish S. Likewise, completeness based on effect
summaries is irrelevant.

5 We abbreviate rock1 to r1, target to t, canyon to c, ArmPositioned(_) to AP(_),
SpectralProfile(_) to SP(_), etc.

6 While there is no explicit loop construct in the CAN (Sardiña and Padgham, 2011)
language used in our implementation, described below, such a construct is easily be simulated
by a particular combination of a goal and plan. Specifically, to execute a plan such as
‘while C do P’, we adopt the CAN goal loopP = achieve(C, ¬C, ¬C), with the corresponding

; ? .P C fail¬  The goal loopP is activated when C is true, and is dropped when ¬C is true.
The plan for loopP will perform P and then pose the query ?¬C. If this succeeds, ¬C is true,
the plan for loopP terminates, and loopP succeeds. Otherwise, the query fails, and the 
construct ensures that the plan ; ?P C fail¬  fails. Due to the semantics of CAN, this means
that the plan for loopP is restarted, and P and the subsequent query are performed again. This
process will only halt when C becomes true. Based on this kind of rule, one could add an
explicit while construct to CAN.

7 A similar occurrence is found in the change from stage 0 to 1, but as no goals have completed
at this point, all the completion estimates are 0% despite this narrowing of the resource
estimates.

8 For a maintenance goal, the plan/means is that used for the R or P sub-goal when it becomes
active.

9 There is a caveat in the case of resources: 1t
lbCR = does not imply that the goal is complete

w.r.t. S(G) – the moment a plan uses all the necessary resources does not imply the plan is
complete at the moment – whereas vRYS have ψL ≥ amin implies ψ ≥ amin. That is, Hetal’s
resources lower bound estimate is not a strict lower bound w.r.t. completeness if used in the
way proposed. In the case of effects, t

lbCR is a strict lower bound provided effects are
monotonic.

