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A B S T R A C T   

This study integrates the fatigue test and numerical prediction to derive a comprehensive probability-stress-life 
(P-S-N) curve for rib-to-deck (RD) welded joints in orthotropic steel decks. Fatigue tests of RD joints are con
ducted to measure fatigue strength and crack growth data. Based on the test, a probabilistic fatigue crack growth 
(PFCG) model is established to predict the distribution of fatigue life under various stress ranges. Two machine 
learning tools are adopted to assist the PFCG model-based prediction, i.e., the Gaussian process regression (GPR) 
and dynamic Bayesian network (DBN). The GPR is used to train a surrogate model solving stress intensity factors 
for the PFCG prediction, using 2,000 samples generated from finite element (FE) analyses. The trained model is 
then validated by a new dataset of 100 FE samples. An adapted DBN model is proposed to update the PFCG 
model with the fatigue crack growth data measured from ten specimens. According to the result, the application 
of GPR can reduce the solution cost of the PFCG prediction by approximately 1,875 times. Compared with the 
prior PFCG model, the updated posterior model shows an improved agreement with the test data, i.e., the 
maximum difference in fatigue strength between model prediction and test data decreases from 12% to 3%. 
Based on the posterior PFCG model, the P-S-N curve of RD joints is statistically derived using sufficient numerical 
samples.   

1. Introduction 

1.1. Research background 

Long-term deterioration analysis is the core supporting the life-cycle 
management of bridges to meet the designed serviceability [1]. Espe
cially, orthotropic steel decks (OSDs) in steel bridges are of particular 
concern due to premature fatigue cracking after several decades of 
exploitation under vehicle loads [2]. OSDs are highly integrated struc
tural systems fabricated with numerous welded joints [3]. Among the 
joints, the rib-to-deck (RD) joint has the longest welding length (e.g., 50 
times the bridge length) and is prone to fatigue, highlighting the 
importance of its fatigue deterioration prediction [45]. 

1.2. State-of-the-art 

1.2.1. Probability-stress-life curves for fatigue deterioration analysis 
Due to the significant complexity and uncertainties in fatigue of 

bridge joints, existing prediction approaches are mainly based on 
probability-stress-life (P-S-N) curves derived statically from fatigue tests 
[6]. For example, Pipinato et al. [7] performed fatigue tests of riveted 
joints removed from an aged steel bridge to investigate its fatigue 
cracking pattern and P-S-N category. On this basis, remain fatigue life of 
the joint was estimated [8]. However, it is budget- and time-consuming 
to construct the P-S-N curves by fatigue tests. The P-S-N curve usually 
employs the nominal stress that only covers the global behaviour of a 
specific joint type [9]. As a result, sufficient specimens are required for 
each type [10]. The advanced hot-spot stress approach can ease the 
situation by partially including the local behaviour to improve the 
transferability between similar joint types [11]. However, the number of 
specimens still plays a crucial role, and it is left to a designer’s own 
experience to judge the transferability. 

1.2.2. Fracture mechanics to predict fatigue crack growth - deterministic 
approaches 

Fracture mechanics (FM) has been applied as a promising alternative 
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to fatigue tests of welded joints [12]. The FM explicitly simulates fatigue 
crack growth in joints and shows less dependence on test data. Xin and 
Veljkovic [13] suggested the feasibility of FM in predicting fatigue crack 
growth in welded joints based on test data of smooth coupons. Mal
schaert [14] validated the application of finite element (FE)-based FM 
simulation in fatigue prediction of welded joints in steel bridges. Liu 
et al. [15] hired the FE-based stress analysis and FM simulation to 
investigate fatigue crack growth in RD joints. According to the result, the 
crack remains semi-elliptical, whereas the aspect ratio of crack depth to 
length decreases with the increase in crack sizes. Wang et al. [16] 
combined the analytic solution-based FM model with traffic monitoring 
data to investigate the fatigue performance of RD joints. Different con
trol strategies were investigated, and damage-based permit checking 
was proposed for a trade-off between durability and serviceability of the 
bridge. 

Generally, the FE-based fracture analysis requires extensive efforts in 
re-modelling and re-meshing the crack body during growth [12 17]. This 
can be overcome by applying the extended finite element method 
(XFEM), which enables automatic fatigue crack growth without re- 
meshing [18]. Nagy et al. [19] employed the XFEM to simulate fatigue 
crack growth in RD joints, validating its application in fatigue evolution. 
Similarly, Gupta et al. [20] combined the XFEM and virtual crack 
closure technique (VCCT) to predict the fatigue life of welded connec
tions in an aged bridge, wherein a satisfying agreement was observed 
between the prediction and inspection. As a matter of fact, the XFEM 
needs a highly refined meshing for the assumed cracking region to keep 
the simulation stable and converge, which escalates the computational 
complexity and even makes it intractable in probabilistic simulations. 

1.2.3. Fracture mechanics analysis with probabilistic modelling 
All the above works uses the deterministic FM analysis, which con

tradicts the random nature of fatigue cracking [21]. As a solution, the 
FM could be hired with probabilistic modelling. Righiniotis and Chrys
santhopoulos [22] established the probability distribution of fracture 
parameters and conducted the probabilistic assessment using the 
analytical FM solution to derive the P-S-N curve of four typical joints. 
The result showed a good agreement with codes-of-practice. Liu and 
Mahadevan [23] proposed a probabilistic method of fatigue prediction 
using the analytical FM solution and equivalent initial flaw size (EIFS). 
The distribution of EIFS was established based on the fatigue test data. 
Heng et al. [24] presented an FM-based probabilistic assessment 
approach of the RD joint using the analytical solution of SIFs. Through 
the approach, a large dataset of P-S-N was generated to derive the P-S-N 
curve of RD joints. 

A common feature of the above works is that the analytical solution 
was applied instead of FE simulations. This can be explained by the 
exhaustive solution efforts in the probabilistic fatigue crack growth 
(PFCG) simulation. Due to significant uncertainties in fatigue, the PFCG 
simulation requires a large sample size, e.g., 106 or even more. As a 
result, the FE simulation becomes numerically intractable. However, the 
analytical solutions are derived for specific joints with specific config
urations [25], of which the adaptability is open to discussion. 

1.2.4. Integration of model prediction and test result 
Because of the aleatory uncertainty in fatigue deterioration and 

epistemic uncertainty in modelling, intrinsic gaps exist between the 
fatigue model prediction and test data [26]. The gap could be filled by 
integrating the numerical model and physical data. Straub [27] pro
posed a general framework of Dynamic Bayesian networks (DBNs) for 
the condition-based deterioration analysis. Zhu et al. [28] proposed a 
DBN framework for the fatigue diagnosis and prognosis of OSD and 
proved its feasibility via a case study. Heng et al. [29] established a 
primary DBN model for condition-based fatigue prediction of welded 
joints in steel bridges, which includes inspection results. Hu et al. [30] 
employed the Markov Chain Monte Carlo to update parameter distri
butions of the fatigue prediction model based on new test data. Silva 

et al. [31] used the extremely randomised tree to train a fatigue pre
diction model by integrating FE predictions and a collected test dataset. 
The trained model showed improved accuracy and generalisation ability 
in fatigue life prediction. Several up-to-date methods are also available 
to integrate the model and data, e.g., physic-guided neural network [32] 
and Bayesian deep learning [33]. However, the feasibility of these 
methods in fatigue prediction is still open to discussion. 

1.3. Existing research gaps 

Apart from the above efforts, notable research gaps still exist as 
follows. 

(1) A comprehensive P-S-N curve of RD joints is required for its long- 
term fatigue evaluation. The curve can be derived by fatigue tests of 
enough specimens, but it is budget- and time-inefficient. 

(2) The fracture mechanics could be combined with probabilistic 
modelling to establish the P-S-N model numerically. However, the need 
for a large sample size restricts the application of FE simulations. 
Analytical solutions can be applied to reduce the solution complexity, 
but it raises concerns about the adaptability and transferability of 
various solutions. 

(3) Machine learning algorithms can integrate the fatigue model 
prediction with physical test data to bridge their intrinsic gap. None
theless, previous efforts are at the framework- or prototype-level, lack
ing the application in solving practical assignments. 

1.4. Aim and methodology of the study 

This study aims to derive a comprehensive P-S-N curve of RD joints in 
OSDs, which supports the long-term fatigue evaluation. Fatigue tests and 
FE-based fracture analyses have been conducted and integrated via two 
machine learning tools, i.e., the gaussian process regression (GPR) and 
dynamic Bayesian network (DBN). 2,000 FE samples are used for the 
GPR-based model training, whereas the DBN-based updating utilises the 
fatigue crack growth data from ten specimens. The output not only 
provides a reference for the related research, design, and fabrication of 
welded connections but also highlights the application of machine 
learning in solving the traditional structural issue. 

2. Fatigue tests of rib-to-deck specimens 

2.1. Design of specimens 

Fatigue model tests have been carried out to investigate the fatigue 
cracking feature of RD joints, as shown in Fig. 1. Seven specimens are 
fabricated, including two specimens with conventional U-rib (called 
type-C) and five specimens with thickened edge rib (called type-T). The 
type-T has an improved welding penetration depth in the RD joint, 
which enhances its fatigue performance [32]. The specimen has a length 
and width of 1000 mm and 600 mm, respectively. The 16 mm-thick deck 
plate and 8 mm-thick trapezoidal rib (of which the edge is thickened to 
12 mm in type-T specimens) are connected via two RD joints. The 
structural steel Q345qD [34] (similar to S355NL [35]) is used in 
accordance with the matched welding wire ER50-6 [36]. Table 1 lists 
the basic mechanical properties of used materials. 

Submerged-arc welding by a semi-auto welder is used to fabricate all 
specimens together in an assembly. The assembly is then cut into seven 
specimens via electrical discharge machining. During welding, the RD 
joint undergoes an uneven heating-and-cooling process with restraints. 
The associated thermal-to-mechanics process results in significant 
welding residual stress in the RD joint [37]. Thus, the same welding 
parameters are used for all the specimens to keep the residual stress 
consistent. The welding current, voltage, and travel speed are 290 ± 20 
A, 29 ± 2 V, and 380 ± 20 mm/min, respectively. 

The three-point bending boundary has been employed to minimise 
the thermal stress induced by variation in ambient temperature. The 
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specimen is supported on a rigid test table, with two rubbery pads 
inserted between the specimen and table, as shown in Fig. 1. In order to 
simulate the critical state of RD joints, the actuator is placed close to the 
left joint, marked as the region of interest (RoI) in red in Fig. 1. Similarly, 
a rubbery pad is installed between the deck and actuator to distribute 
applied loads. 

2.2. Test implement 

An MTS servo-hydraulic machine [38] is used to generate the sinu
soidal cyclic loads in constant amplitude. Since the loading frequency by 
servo-hydraulic machines is usually less than 100 Hz, the frequency 
shows a minor effect on the fatigue behaviour of steels without strong 
corrosion [39 40]. Thus, the loading frequency is set as 4 Hz to facilitate 
the test implementation and measurement. Moreover, the test has been 
conducted in a structural laboratory during the daytime, by which the 
effect of thermal stress and corrosion could be minimised. Due to the 
prominent welding residual stress in RD joints, the stress ratio- 
dependent fatigue enhancement could be omitted according to IIW 
[9]. To this end, the ratio of minimum load to maximum load is deter
mined as roughly 0.3 for all the specimens. The applied loads are varied 
to produce test data under different stress ranges, as shown in Table 2. In 
the previous studies [4 24 41], a total of 11 specimens with the same 
configuration were tested, including 5 type C specimens and 6 type T 
specimens. For the consistent purpose, the specimens in this study are 
numbered from C6 and T7 for the type-C and type-T, respectively. 

According to the survey on a list of similar fatigue tests [24 42 43], 
the strain near cracking sites drops proportionally with the increase in 
crack depth. Thus, the strain drop has been monitored along the joint by 
installing an array of strain gauges near the deck toe, as shown in Fig. 2. 
Both the nominal and hot-spot stress ranges are considered in deriving 

the fatigue strength of RD joints. The hot-spot stress is determined by the 
“0515” criteria suggested by IIW [11], as shown in Equation (1): 

Δσhs = 1.5 • Δσ0.5t − 0.5 • Δσ1.5t (1) 

where Δσhs denotes the hot-spot stress range; t is thickness of deck, i. 
e., 16 mm; Δσ0.5t and Δσ1.5t are the stress range measured at the points 
0.5t (8 mm) and 1.5t (24 mm) away from the deck toe. 

The nominal stress range is determined by remote gauges (Δσ1.5t) 
due to the ignorable notch effect at that distance [11]. Meanwhile, the 
strain measured in an un-loaded steel plate is used for temperature 
compensation. The strain range is recorded for 1 min every half an hour 
(about 7,200 cycles). According to Luo et al. [44], a limit of 5% drop in 
strain ranges has been hired to identify cracking during the test. Besides 
the strain drop, the dye penetration (DP) check [45] is also performed to 
detect fatigue cracks. At the early stage, the DP check is conducted every 
50,000 cycles. After cracking is confirmed, the check is carried out every 
10,000 cycles. Once the crack penetrates through the thickness of the 
deck, the test is terminated, and the corresponding number of loading 
cycles is regarded as fatigue endurance. 

2.3. Test result 

The weld toe-to-deck cracking has been observed in all seven spec
imens, as shown in Fig. 3. The crack initiates at the weld toe on the 
bottom of the deck and then grows with cycles in both the thickness and 
length directions. In the elevational view, one or two symmetrical cracks 
have been observed, of which the cracking centre was about 100 ~ 150 
mm away from the specimen edge. 

The measured stress range and the number of cycles are summarised 
in Fig. 4a and b, along with the test data of 11 specimens from the 
previous studies [42441]. Based on the data, the mean S-N curve is 
derived and included in Fig. 4. Due to the limited number of specimens, 
the power index of m = 3 is applied in the derivation, as suggested by 
[9]. According to the result, the fatigue strength of RD joints is notably 

Fig. 1. Test specimen and setup: (a) Schematic; (b) Photography.  

Table 1 
Basic mechanical properties of materials.  

Material Grade Elastic 
modules 

Yield 
strength 

Ultimate 
strength 

Elongation 
after 
fracture (MPa) 

Base Q345qD 2.06 × 105 345 490 0.20 
Weld ER50-6 2.06 × 105 432 573 0.31  

Table 2 
Loading protocols (Unit: kN).  

ID Fmax 
1 Fmin 

2 ΔF 3 ID Fmax Fmin ΔF 

C6 15 50 35 T9 19 65 46 
C7 15 50 35 T10 19 65 46 
T7 15 50 35 T11 22 74 52 
T8 18 60 42      

1 : Maximum load; 
2 : Minimum load; 
3 : Load range 

Fig. 2. Strain gauges installed at the region of interest.  
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higher in type-T specimens than that in type-C specimens. In the case of 
nominal stress, the mean fatigue strength at 2 million cycles is 124 MPa 
in type-T and 102 MPa in type-C, i.e., 22 % improvement in Type-T. A 
similar result can be found in hot-spot stress, wherein the mean strength 
increases by 20% in type-T (from 128 MPa to 154 MPa) compared with 
type-C. 

Fig. 5 lists the drop percentage in strain ranges installed along the 
deck toe. As discussed in Section 2.2, the strain drop can approximate 
the crack depth. Furthermore, by introducing a strain drop limit of 5% to 
identify crack initiation, the crack length can be estimated by the in
terval length between crack-initiated points. Due to the malfunction of 
several key gauges in specimen C7, its monitored data has been 
excluded. The result shows that single-cracking is observed in all the 
specimens but T10, in which two distinct cracks are observed. However, 
another minor crack (or flaw) may also co-exist in these specimens but 
may be too small to identify by the strain drop. During the growth, the 
fatigue crack stays almost semi-elliptical. The crack growth rate is 
relatively slow at the early loading stage, while it becomes more and 
more rapid with the number of cycles. The growth rate is remarkably 
higher in the crack length than in the crack depth. As a result, the aspect 
ratio of crack depth to length declines with the number of cycles, as 
shown in Fig. 5. 

It is very interesting to note that the measured fatigue crack shape 
and its variation during the growth are highly comparable with the 
numerical prediction in [15]. Apart from the listed measurement, 
additional fatigue crack growth data can also be found in the previous 
experiment [24], in which four specimens were fabricated with the same 
configuration and tested under a similar boundary condition. Those data 
will also be incorporated in the subsequent investigation due to the high 
similarity. 

3. Probabilistic fatigue crack growth model 

3.1. Fatigue crack growth model 

Based on the test, the fatigue crack growth (FCG) model has been 
established using the fracture mechanics, as shown in Fig. 6. Two crack- 

like initial flaws are assumed at the deck toe, named C1 and C2, with the 
centre sited 125 mm away from the edge. In accordance with the test 
observation, semi-elliptical cracks are assumed in the FCG model. Thus, 
the crack is idealised by a two degree-of-freedom (DOF) model con
sisting of the crack depth a and crack half-length c. 

The stress intensity factors (SIFs) at the crack tip and edge is assumed 
to as the major driven force for the crack growth. The modified Paris rule 
[46] has been employed to predict the crack growth per cycles, as 
illustrated in Equation (2): 

da
dN

= C • (ΔKa − ΔKth)
m
,

dc
dN

= C • (ΔKc − ΔKth)
m (2) 

where a and c are the crack depth and half-length, respectively; N is 
the number of loading cycles; C and m are the crack growth rate and 
power index; ΔKa and ΔKc are the SIF range at the crack tip and edge, 
respectively; ΔKth is the fatigue limit below which the crack arrests. 

Based on Equation (1), the fatigue life can be solved by integrating 
the crack depth and length from initial to critical size. For numerical 
implementation, the above integration is approximated by a series of 
discrete solution steps with a small increment in crack sizes (e.g., this 
study uses a limit of 0.01 mm and 0.1 m in crack depth and length, 
respectively), as shown in Equation 3: 

at =
∑nt

i=0
(C • (ΔKa − ΔKth)

m
) • ΔNi

ct =
∑nt

i=0
(C • (ΔKc − ΔKth)

m
) • ΔNi

(3a-3b) 

where at and ct are respectively crack depth and half-length at time t; 
nt is the number of discrete solution steps; and ΔNi is the increment in 
the number of cycles at ith solution step, which meets the requirement of 
the limit in crack size increment. 

3.2. Probabilistic modelling of fracture parameters 

The proposed FCG model is combined with probabilistic modelling 
to establish a probability fatigue crack growth (PFCG) model for RD 
joints. In the PFCG model, the uncertainty in the initial flaw size and 
Paris law is modelled via random variables. The initial flaw size is 
expressed by the initial flaw depth and the ratio of depth to length, 
through which the correlation between the flaw depth and length is 
implicitly simulated [46]. The initial flaw size distribution is decided 
after [47], as shown in Fig. 7a and b. Since the crack growth rate and 
power index are correlated, the uncertainty is fully included in the 
growth rate while the power index is set as 3, as suggested by [46]. 
Similarly, the crack growth rate is reproduced using the mean and 
design value from BSI 7910 [46], as shown in Fig. 7c. In the case of 
fatigue limit, the distribution is determined after [48], as shown in 
Fig. 7d. 

3.3. Computational procedures of the PFCG model 

The proposed PFCG model is calculated in two steps, as shown in 

Fig. 3. Fatigue cracking pattern of RD joints.  

Fig. 4. S-N results of the two types of specimens: (a) Nominal stress; (b) Hot-spot stress.  
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Fig. 8. In the first step, the sampling of variables is conducted using the 
probabilistic distributions in section 3.2. Since two initial flaws, C1 and 
C2, are assumed, the sampling of flaw sizes is independently carried out 
for the two flaws. Meanwhile, the two flaws share the sampled crack 
growth rate and fatigue limit since they are within the same specimen. 
Based on the sampling, fatigue crack growth is simulated via fracture 
mechanics. 

As the continuous probability distribution has been applied, there is 
an extremely small probability that the initial flaw exceeds the critical 
size. This is of no doubt a mathematical issue in numerical simulation, 

which is abnormal and impossible in reality. In this case, the sample is 
also regarded as a run-out. Otherwise, the cracking-driven force, SIFs, 
will be calculated to predict the increment in crack sizes via the modified 
Paris law in Equation (1). Since fatigue limit is used, the crack arrest 
occurs when the SIFs are below the limit, and the sample is also treated 
as the run-out. Else, the simulation continues to the next loop until the 
critical size is reached. 

Fig. 5. Measured strain drops in different specimens: (a) C6; (b) T7; (c) T8; (d) T9; (e) T10; (f) T11.  
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4. GPR-assisted fracture analysis 

In this part, a Gaussian process regression (GPR) model of SIFs pre
diction is trained and validated by a dataset generated from FE-based 
fracture analyses. With the GPR model, the PFCG simulation can be 
conducted with a satisfactory trade-off between accuracy, efficiency, 
and flexibility. 

4.1. Parametric FE-based fracture analysis 

FE models of the test specimen have been modelled using the soft
ware ANSYS-APDL [49], as shown in Fig. 9. The multi-scale modelling 
has been used to achieve a trade-off between efficiency and accuracy. 
The FE model consists of three parts, i.e., the global model, sub-model, 
and crack body. The global model is used to transfer the boundary and 
the stress conditions to the crack body. Thus, it is meshed with a rela
tively coarse element size, i.e., 4 × 4 mm in cross-section and 8 mm in 
length. Between the relatively coarse global model and highly refined 
crack body, a refined sub-model is constructed to provide a smooth 
transition in element sizes. A user-subordinate is coded to mesh the sub- 
model and crack body automatically with various crack sizes. Especially, 
the user-subordinate adopts an adaptive meshing strategy that varies the 
element size from 5% of the crack depth to 2 mm in the out layer of the 
sub-model. Surface-to-surface contact [50] is used to coordinate the 
nodal displacement between the global model and sub-model, whereas 
the crack body is connected to the sub-model via sharing nodes. 

The fatigue cracking of RD joints falls into the region of high-cycle 
fatigue (HCF), since the number of loading cycles is well above 104. 
Thus, the linear-elastic material model is applied in the FE simulation as 
suggested by Taylor and Hoey [51]. The properties of the material model 
are determined according to Table 1. Because of the application of the 
two DOFs crack model (see Fig. 6) and linear-elastic material model, the 
SIF at the crack tip (ΔKa) and edge (ΔKc) can be expressed by Equation 
(4): 

ΔKa = Δσ • Ya(a, c) •
̅̅̅̅̅
πa

√
,ΔKc = Δσ • Yc(a, c) •

̅̅̅̅̅
πa

√
# (4) 

where a and c are crack depth and half-length, respectively; Δσ de
notes the applied stress range; Ya and Yc represent the correction factor 
at the crack tip and edge, respectively. 

Based on the above equation, the crack depth a and half-length c is 
selected as input features in training the GPR model. The output label is 
determined as the normalised SIF range ΔK solved under the unit stress 
of Δσ = 1MPa, which increases the generalisation ability of the model. 
To this end, the FE analysis aims at the derivation of SIFs for cracks with 
various depths and lengths. This requires no re-meshing effort due to 
pre-assignment of fatigue cracks. The contour integral (CI) [52] is 
leveraged in solving the above SIFs. The CI has an improved solution 
efficiency over the XFEM, despite the need for a pre-defining cracking 
path. A total of 6 contours are integrated, and the SIF is determined by 
averaging the second to sixth contours that show stability and 
consistency. 

The minimum and maximum crack depth are respectively set as 0.1 
mm and 15 mm (from 0.6% to 94% deck thickness), due to the limitation 
in meshing capacity of the FE model. Similarly, the crack length is 
limited to the minimum value between 50 times crack depth and 120 
mm. The number of values is determined as 50 for crack depth and 40 for 
length. Thus, the parametric FE analysis generates a dataset of 50 × 40 
= 2,000 points in total, as listed in Table 3. As shown by Equation (1), 
the crack grows at an escalating rate with the increase in crack size. To 
this end, the non-uniform interval is utilised in the discretisation to 
densify the training data points at the region of small crack size. 

4.2. Construction and application of GPR surrogate model 

The Gaussian process regression (GPR) [53] is a powerful machine 
learning tool, by which the prediction can be made based on the 
covariance of inputs. In the GPR, the covariance between data points is 
expressed in terms of the kernel function [54]. The method assumes that 
the overall response consists of an explicit basis function and a latent 
function, as expressed by Equation 5: 

g(ẋ) = ξ(ẋ)T θ̇ + f (ẋ)
f (ẋ) ∼ GP(0, r(ẋ, ẋ’) )

(5a-5b) 

where g(ẋ) is the basis function on a nd × 1 input vector ẋ; θ̇ is a np ×

1 vector about the factors in the basis function; ξ(ẋ) stands for the 
explicit function to transfer ẋ from Rnd to Rnp space; f(ẋ) is the lament 
function following the zero-mean Gaussian process; and r(ẋ, ẋ’

) is the 
kernel function depicting the covariance between input vectors. 

Fed with training data, the parameters in both basis and latent 
functions of the GPR model could be derived via the maximum likeli
hood estimation. Herein, predictions can be made using the trained GPR 
model at new inputs. The GPR can be regarded as an updated version of 
the Kriging interpolation [55] that is widely applied in Geostatistics, 
except for a slight difference in their mathematic expression. Another 
alternative to the GPR is the deep neural network (DNN), which is very 
hot now. The DNN can handle big data but needs iterative optimization 
of parameters such as weights and biases. Unlike the DNN, the GPR is a 
nonparametric method that avoids iterations. However, the GPR is 
limited in dealing with massive data due to its computational 
complexity of O(N3) [54]. Due to the limited train data (i.e., 2,000 
points) in this study, the GPR is suitable and selected for training the 

Fig. 6. Fatigue crack growth model.  

Fig. 7. Probability distribution of fracture parameters: (a) Initial flaw depth [47]; (b) Initial flaw size ratio [47]; (c) Crack growth rate [46]; (d) Fatigue limit [48].  
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surrogate model. 
Although numerous efforts are avoided to optimise model parame

ters by the GPR, the selection of kernel functions is still required among 
several available types. In general, the kernel functions could be clas
sified into two types: (1) the function with a uniform length scale; (2) the 
automatic relevance determination (ARD)-based function with separate 

length scales on each predictor. The commonly used kernels include the 
exponential (Exp), squared exponential (SE), Matern32 (Ma32), 
Matern52 (Ma52), Rational Quadratic (RQ), and their ARD-based form. 
Comparisons have been conducted to investigate the influence of the 
above kernels. A total of 100 testing data points are sampled and 
calculated using the FE model. The performance of different kernels is 
evaluated via the root mean square error (RMSE), as shown in Fig. 10. 
The first letter “C” and “T” respectively denote the type C and T speci
mens, followed by the words “Ka” and “Kc” depicting the SIFs at the 
crack tip and edge. 

The result shows that all the minimum RMSE is obtained under the 
ARD-Exp kernel. Thus, the kernel has been employed in the subsequent 
study. Meanwhile, the RMSE is no larger than 0.31 between the GPR 
prediction and test, which validates the effectiveness of the trained GPR 
model to surrogate the FE-based fracture analysis. For better visual
isation, the GPR model of type C specimens is plotted in Fig. 11, along 
with the training and testing data. After the training and validation, the 
GPR models can be used to calculate the SIFs required in the PFCG 
model. 

Fig. 12 summarises the overall procedures to construct and apply the 
GPR model. With the GPR model, solution costs can be effectively 
reduced, which enables the implementation of the PFCG model. For 
instance, one FCG simulation may take about 300 ~ 500 solution steps. 
When using a 10-cores workstation (Intel i9-10900 K), roughly 150 s are 
required for a single step. In total, around 45,000 ~ 75,000 s (12.5 ~ 
20.8 h) will be spent in predicting one datapoint. It is true that the FE- 
based simulation is much faster than the physical fatigue test, which 
usually costs 1 or 2 weeks to examine a single specimen. But it is still not 
efficient enough to apply in the PFCG model, as discussed before. 
Alternatively, the GPR model only spends about 0.05 ~ 0.08 s to 
perform a single solution. Thus, the prediction of a single specimen 
could be completed within 40 s, i.e., about 1875 times improvement in 
the computational efficiency compared with the FE-based analysis. 

4.3. Result of prior PFCG model 

Since the test data are not included yet, the established PFCG model 
is defined as the prior model, i.e., the model with prior knowledge only 

Fig. 8. Computational procedures of the PFCG model.  

Fig. 9. Multi-scale FE model with crack body.  

Table 3 
Range of parametric FE analysis.  

Variable Symbol Range (mm) Nv DV(v) 2 

Crack depth a 0.1 ~ 15 50 exp(a)
Crack length c a ~ min(50a,120) 40 exp(c)

1: Number of values 
2 : Discretisation function; 

Fig. 10. Performance of various covariance function.  
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[56]. Based on the prior PFCG model, S-N data are generated under ten 
stress ranges, and 200 samples are simulated in each range. Fig. 13 
shows the typical crack growth pattern predicted by the prior model. 
The result shows two cracking types, i.e., dual cracking and solo 
cracking. In the dual cracking pattern, two cracks co-exist while the 
larger crack causes failure. The solo cracking pattern also shows two 
cracks, including a large crack and a tiny one. However, the tiny crack is 
too small to identify by traditional means and has little influence on the 
fatigue performance of the RD joint. Thus, the pattern with a tiny sec
ondary crack is simplified as the solo cracking pattern. In the qualitative 
view, the result by the PFCG model is highly consistent with the cracking 
pattern observed and measured from the experiments, as shown in 

Fig. 5, indicating the effectiveness of the PFCG model in predicting the 
cracking pattern of the tested specimens. 

Based on the statistical approach suggested in [9], the result by the 
prior PFCG model is used to derive numerical P-S-N curves, including 
the mean curve and the design curve with a survival rate of 97.7%. The 
power index of m = 3 is also employed for the consistency with the 
experimental P-S-N curve. Figs. 14 and 15 show derived P-S-N curves in 
nominal stress and hot spot stress, respectively. 

Compared with the experimental S-N curve in which the type T 
specimen illustrates a notable enhancement, the numerical curve by the 
prior PFCG model only results in a slight difference between the type C 
and type T specimen. Further comparison is made between the type C 
and type T specimens using the fatigue strength at 200 million cycles 
[56]. In terms of the nominal stress, both the mean and design curves of 
the type T specimen are about 4% higher than that of the type C spec
imen. Similarly, in terms of the hot-spot stress, the type-T specimen also 
illustrates a fatigue strength around 4% higher than that of the type-C 
specimen. A comparison is also made between the numerical result 
and the test data, as shown in Fig. 4. The numerical mean strength of 
type C specimens is 8% higher in nominal stress and 2% higher in hot- 
spot stress than that of test data. By contrast, the numerical value of 
type-T specimens is reduced by 9% in nominal stress and 12% in hot- 
spot stress, compared with the test data. Thus, calibration is required 
on the prior PFCG model to bridge the gap between fatigue test and 
numerical simulation, which is the key topic in the following sections. 

5. Dynamic Bayesian network (DBN)-enhanced FCG analysis 

5.1. Adaptation of DBN structure to fatigue deterioration 

The Dynamic Bayesian network (DBN) [58] is a powerful tool for 
uncertainty propagation and quantification in probabilistic models. 

Fig. 11. Comparison of the SIF under 1kN force between the GPR prediction and FE results in Type C specimens, solved for: (a) Crack tip; (b) Crack edge.  

Fig. 12. Overview on the construction and application of the GPR model.  

Fig. 13. Typical cracking patterns predicted by PFCG model.  
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Fig. 16a depicts the general structure of the DBN. The DBN is naturally 
suitable for structural deterioration issues, and a list of fundamental 
works has already been made [59] (also confirmed by the literature [27 
28 29] discussed before). With the DBN, uncertainties can be propagated 
between variables to conduct the forward prediction from state-to- 
response and the backward updating from evidence-to-state. Since the 
specimens have been fabricated by the same manufacturer under the 
same welding procedure, the correlation in the fatigue limit ΔKth should 
be accounted for according to Maljaars and Vrouwenvelder [60]. The 
coefficient of correlation is determined as ρΔKth

= 0.75, based on the 
estimation of the entire distribution in [48] and the statistics from 
limited specimens in [61]. In simulating the correlation, a hierarchical 
model [62] is introduced to augment the DBN, as shown in Fig. 16b. 

In the hierarchical model, a common uncertainty parameter αV is 
proposed. The marginal distribution of correlated variables is assumed 
to be conditional on αV. The parameter αV is assumed to follow the 
standard Gaussian distribution, and the cumulative distribution function 
(CDF) of variables can be expressed in the marginal form FV|α(x), as 
shown in Equation (6): 

FV|α(x) = Φ

(
Φ− 1(FV(x) ) −

̅̅̅̅̅ρG
√

• α
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρG

√

)

(6) 

where FV(x) is the uncorrelated CDF of variable v; Φ and Φ− 1 are the 
CDF and inverse CDF of standard Gaussian distribution, respectively; ρG 
is the equivalent correlation coefficient in standard Gaussian space, 
which is determined according to [64]. 

5.2. Development of DBN for PFCG model 

The DBN is constructed for the PFCG model with the common un
certainty parameter, as shown in Fig. 17. The developed DBN consists of 
4 types of nodes, including the variable node, deterministic node, 
functional node, and evidenced node. 

The employed nodes are summarised in Table 4, including the var
iable, deterministic, functional and evidenced nodes. The initial value of 
variable nodes is determined as discussed before in Section 3.2 on the 
PFCG model and Section 5.1 on the common uncertainty parameter. 
During the DBN simulation, the functional nodes are solved step-by-step. 

Fig. 14. Nominal S-N derived by the prior PFCG: (a) Type-C; (b) Type-T.  

Fig. 15. Hot-spot S-N derived by the prior PFCG: (a) Type-C; (b) Type-T.  

Fig. 16. DBN for fatigue deterioration: (a) general structure; (b) hierarchical model.  
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The evidenced nodes are determined after the measurement in Section 
2.3. It is worth notating that the DBN at the first time slice (t = 0) is 
different from the one at rest time slices since the initial flaw length is 
conditional on the initial flaw depth. 

5.3. Adaption of the solution algorithm 

The inference algorithm is the core for uncertainty propagation in 
DBNs. The algorithm can be classified into the exact inference and 
approximate inference [65]. For DBNs constructed with continuous 
variables, the exact inference is usually not available [58], which may 
cause non-convergence problems in dealing with deterioration issues 
[66]. Thus, the variable in the DBN is discretised with non-uniform in
tervals. Fig. 18 shows the probability mass function of the initial crack 
depth transformed from the original probability distribution function. 

The intervals are divided into the lower part, core part and upper 
part to approximate the different regions with different resolutions, by 
which a trade-off can be achieved between accuracy and efficiency. The 
core part is centred on the mean μ in Gaussian space, and its radius is set 
as the product of the characteristic value KV and the stand deviation σ in 
Gaussian space. The percentage PV of intervals is allocated to the core 
part for intensification. The remaining intervals are assigned to the 

lower and upper parts according to their length. Table 5 summarises the 
variables and discretisation details. 

A notable feature of the FCG process is the time-dependent variation 
in crack sizes. Thus, an adaptive interval is applied to the crack depth 
and half-length to improve accuracy. At the end of each time slice, the 
interval of crack sizes is re-discretised according to their new distribu
tion. Fig. 19 shows the evolution in the interval of the crack depth in 
specimen C6 during the PFCG simulation (without updating). The core 
part moves right with cycles, suggesting the growth in crack depth. 

The classic algorithm frontier [67] is applied to the constructed DBN 
to conduct exact inference. Since the DBN has a common uncertainty 
factor αV to model the correlation, the original frontier algorithm is 
modified to enable the parallel updating of αV by data from individual 
specimens, as illustrated by Equation 7: 

Li = P
(
Ei

1:t|αV
)
∝

P
(
αV |Ei

1:t

)

P(αV)

P
(
αV |E1:N

1:t

)
= P(αV) • P

(
Ei

1:t|αV
)
∝P(αV) •

∏N

i=1
Li

(7a-7b) 

where N denotes the number of specimens; Ei
1:t and E1:N

1:t are the 
evidenced data from an individual specimen and all specimens, 
respectively; Li is the likelihood of specimens under the evidence Ei

1:t. 

Fig. 17. DAG of the DBN for the PFCG model.  

Table 4 
Nodes in the DBN.  

Node Type Description Distribution 

αΔKth Variable Common uncertainly factor of 
fatigue limit 

N(0,1)

ΔF Deterministic Range of applied cyclic force By choices 
a0

t Variable Initial crack depth at time t a0
0 LogN(0.15,0.1)

c0
t Variable Initial crack half-length at time 

t 
a0

0/c0
0 LogN(0.62,

0.25)
C Variable Crack growth rate LogN(3.3,1.6) •

10− 13 

ΔKth Variable Fatigue limit LogN(140,56)
ΔKa,

ΔKc 

Functional Calculated SIFs at crack tip and 
edge 

By calculations 

Δat ,Δct Functional Crack size increment at time t By calculations 
a1

t ,c1
t Variable Final crack depth and length at 

time t 
By calculations 

ae
t , ce

t Evidenced Observed crack depth and 
length at time t 

By measurements  

Fig. 18. Discretisation of initial crack depth.  
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On this basis, the correlated variable (i.e., fatigue limit ΔKth in this 
study) can be updated with the data from all the specimens by condi
tioned sampling using Equation (6). 

5.4. Result and discussions 

5.4.1. DBN-based model updating 
Based on the adapted DBN and inference algorithm, the prior PFCG 

model can be calibrated using the measured crack growth data. Fig. 20 
shows the prediction of crack sizes in specimen T7, in which the 

calibration is made with the input of test data. Apart from the mean 
value, the upper and lower limits corresponding to the 97.7% survival 
rate are also included in Fig. 21 to reveal the evolution of uncertainties. 
Since no measurement is available for the crack size before the loading 
cycles of 1.5 million, the mean prediction follows the original PFCG 
model. Once the measured data are involved, a sudden change can be 
observed in the prediction curves, leading to convergence at the test 
measurement. After that, the prediction curves diverge with the number 
of cycles until they converge again at the next measurement. The pre
diction curve gradually matches with the test data, especially in means. 
As a result, the prior PFCG model is updated with measurement, which is 
defined as the posterior PFCG model. 

Further comparison is carried out between the prior and posterior 
distribution of the fatigue limit. Fig. 21 shows the comparison in spec
imen T7. Compared with the prior distribution, the posterior 

Table 5 
Variable and discretization.  

Name Symbol Distribution Range NInt 
1 DV(v) 2 KV 

3 PV 
4 

Crack depth a Lognormal 0.01–40 (mm) 50 Exp.5 2  0.75 
Crack length c Lognormal 0.01–300 (mm) 50 Exp. 2  0.75 
Growth rate C Lognormal (4–200) × 10-14 20 Exp. 2  0.75 
Fatigue limit ΔKth Lognormal 20–420 (N • mm− 3/2) 20 Exp. 2  0.75 
Common uncertainty αΔKth Standard gaussian − 4–4 20 Uni. 6 2  0.75  

1 Number of intervals; 
2 Discretisation function; 
3 Characteristic value; 
4 Percentage of core region; 
5 Exponential; 
6 Uniform. 

Fig. 19. Adaptive intervals of crack depth in specimen C6.  

Fig. 20. Comparison of crack sizes between predicted mean and test of specimen T7: (a) Crack depth; (b) Crack half-length.  

Fig. 21. Prior and posterior distribution of fatigue limit in specimen T7.  

J. Heng et al.                                                                                                                                                                                                                                    



Engineering Structures 265 (2022) 114496

12

distribution shifts right, indicating an underestimated fatigue limit. The 
result can be related to the factor that the prediction of crack size is 
initially much higher than the measured size in specimen T7, as shown 
in Fig. 20. As the measurement is involved, the distribution of the fatigue 
limit is updated, and the posterior PFCG model gradually matches with 
the test data. 

The prior and posterior distributions of the fatigue limit are illus
trated in Fig. 22a and b for type-C and type-T specimens, respectively. In 
type-C specimens, the posterior distribution shifts left compared with 
the prior distribution (see Fig. 22a), indicating an overestimated fatigue 
limit. Accordingly, the fatigue life predicted by the original PFCG model 
is also overvalued, as evidenced in section 4.3. The posterior distribution 
becomes sharper than the prior distribution due to the reduced standard 
deviation, indicating the decrease in the uncertainty in the fatigue limit. 
As a result, the prediction accuracy also improves due to uncertainty 
propagation. 

By contrast, the posterior distribution of type-T specimens shift right 
compared with the prior distribution (see Fig. 22b), suggesting an 
underestimated fatigue limit. Similarly, this could explain that the fa
tigue life prediction by the prior PFCG model is underrated. The un
certainty is also reduced as the standard deviation declines in the 
posterior distribution. As a result, the DBN updating can bridge the 
intrinsic gap between test data and the PFCG model. 

5.4.2. S-N result by the posterior PFCG model 
Based on the updated posterior PFCG model, P-S-N data are gener

ated for type-C and type-T specimens. Figs. 23 and 24 show the gener
ated P-S-N data and the mean and design curves derived using the same 
method as depicted in section 4.3. Compared with the result by the prior 
PFCG model (see Figs. 14 and 15), the P-S-N curve by the posterior 
model shifts down in type-C specimens and rises up in type-T specimens. 
Similar to the previous discussion, the comparison is also conducted 
between the test data and numerical simulation, using the mean fatigue 
strength at 2 million cycles. In type-C specimens, the difference is about 
3% in both nominal and hot-sport stress. In type-T specimens, the dif
ference becomes no more than 2%. In general, the maximum difference 
between the test and simulation is reduced from 12% to 3% since the 
prior PFCG model is updated into a posterior model. As a result, a 
notable improvement can be expected in the agreement between test 
data and predictions. 

Meanwhile, fatigue design curves are established for RD joints, as 
shown in Figs. 23 and 24. For feasibility and conservativeness in engi
neering practices, the design curve of RD joints in type-C is recom
mended as FAT 75 in nominal stress and FAT 90 in hot-spot stress. This 
numerical result is highly similar to the design curve in the code 
AASHTO LRFD [68], in which FAT 70 and FAT 90 are respectively 
suggested in nominal stress and hot-spot stress. Similarly, the design 
curve of RD joints in type-T is suggested as FAT 90 in nominal stress and 
FAT 110 in hot-spot stress. 

6. Conclusion and future suggestion 

This study proposes a probabilistic fatigue crack growth (PFCG) 
model based on the fatigue test of rib-to-deck (RD) welded joints in 
orthotropic steel decks. The seven tested specimens are in two types, i.e., 
the type with conventional U-rib (type-C) and the type with thickened- 
edge U-rib (type-T). The proposed PFCG model is implemented using the 
Gaussian process regression (GPR) and updated by the dynamic 
Bayesian network (DBN) with the crack growth data measured from ten 
specimens (including four similar specimens tested in the previous 
study). The updated posterior PFCG model is employed to predict the 
fatigue life distribution of RD joints under various stress ranges, which 
supports the numerical derivation of probability-stress-life (P-S-N) 
curves. Based on the above works, the following conclusions can be 
drawn.  

(1) The observed fatigue cracking pattern is similar to previous 
studies, i.e., the semi-elliptical crack initiates from the deck toe 
and then propagates in the thickness and length of the deck until 
failure. Compared with type-C specimens, the fatigue strength of 
RD joints in type-T specimens increases by 22% and 20% in 
nominal stress and hot-spot stress, respectively.  

(2) A GPR model is trained by 2,000 FE samples to predict stress 
intensity factors for the PFCG simulation. The trained model is 
validated against 100 new FE samples, which shows satisfactory 
accuracy. Compared with the traditional step-by-step fatigue 
crack growth simulation, the FE-trained GPR model reduces the 
solution cost by approximately 1,875 times.  

(3) A DBN is constructed to update the PFCG model with the fatigue 
crack growth data measured from ten specimens. Both the 
network structure and solution algorithm of the DBN is modified 
according to the PFCG model. By updating the prior PFCG model 
into a posterior model, the maximum discrepancy in the fatigue 
strength between prediction and test is reduced from 12% to 3%.  

(4) Based on the updated posterior PFCG model, numerical P-S-N 
curves are derived for the classic type-C RD joint and the novel 
type-T RD joint. By adopting a survival rate of 97.7%, the fatigue 
design curves FAT 75 and FAT 90 are recommended for type-C 
RD joints in nominal stress and hot-spot stress, respectively. 
The type-T RD joint is suggested to check against the fatigue 
design curves FAT 90 and FAT 110 in nominal and hot-spot stress, 
respectively. 

This study highlights the application of machine learning tools to 
assist the fatigue prediction of welded joints and update the fatigue 
model with measurements. The PFCG model in the present work is 
simplified to focus on a pioneered exploration and prototype verifica
tion. In further efforts, the more advanced XFEM can be used to include 
more physical details such as residual stress, multi-point crack initiation 

Fig. 22. Type-level prior and posterior distribution of fatigue limit: (a) type-C; (b) type-T.  
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and coalescence, variation in crack front, crack closure, etc. Also, it is 
crucial to investigate the long-term fatigue deterioration of steel bridges 
(e.g., remain fatigue life estimation) based on the proposed P-S-N 
curves. Meanwhile, the training data in this study are from numerical 
predictions and laboratory tests, which leads to limitations in evaluating 
on-site steel bridges. Future works are recommended to incorporate the 
field data (e.g., by monitoring or inspection) along with the prediction 
and test. Besides, the GPR and DBN are combined in this study due to 
their proven feasibility. The application of more advanced algorithms 
can be explored in future works to enhance small sample-based training, 
such as the physic-guided neural network and Bayesian deep learning. 
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