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1
Introduction

Whenever an emerging structural material is developed, steel is often chosen to be
the ‘gold standard’ for performance or quality comparison [1]. Meanwhile due to
the rapidly rising requirements from various application fields, such as automotive,
infrastructure and high-tech industries, steel itself as the standard is also devel-
oping fast, especially during the past decades. The magic of steel is its countless
variations of microstructures and properties that come from the solid-state transfor-
mation and processing. Therefore, steel continuously gives proper combinations of
microstructures and properties with the evolving requirements for safety, durability
and economy [2]. Hence understanding the relationships between microstructures
and properties is of great significance.

The steelmaking history can be traced back to the classical era in Ancient Iran,
Ancient China, India and Rome, and exists for four millennia [3]. The modern
steelmaking appears around the 17th century, when pig iron was produced from a
blast furnace [4]. However, the production and processing of steel remained highly
skilled art until about one century ago. The knowledge and skill of steelmaking were
transferred by oral tradition for millennia, but have gradually become a matter of
science over the last century.

The focus of the investigation on steels mainly falls on the effect of steelmaking
and post-processing on the properties of steels for the early stage of scientific
research. With the development of different characterization techniques, more and
more attention is drawn to the microstructure of steels.

Within steel, automotive and related high-tech industries, there is always the
persuit of high-strength steels that are better than the conventional (mild) forming
steels. The higher strength leads to various advantages in weight, safety and en-
vironmental friendliness. In order to develop new steels, the steel industries make
use of multi-scale microstructure modelling to predict mechanical properties from
the microstructure features. Hence it is of great importance to study the contribu-
tions of microstructure features to the mechanical properties.

Microstructure is a rather complicated concept, which however can be distin-

1
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2 1. Introduction

guished by the defects. Based on the dimensions, defects in microstructures can
be classified into four categories, i.e. zero-dimensional vacancies and interstitials,
one-dimensional dislocations, two-dimensional grain boundaries and phase bound-
aries and three-dimensional phases, grains, precipitates and voids. In the numer-
ous related research literature studies, phases, grains and dislocations are the top
three mentioned microstructure features with relation to the properties of steels. A
homogeneous part of a structure, which has its uniform physical and chemical char-
acteristics, is named as phase. A constituent of a polycrystalline material, whose
crystallographic orientation differs from the neighboring constituents, is called a
grain. The line defect at the atomic scale in a crystal structure is termed disloca-
tion.

Mechanical properties mainly refer to the behavior and response of materials
under external loads. These are crucial for all application scenarios, and determine
the range of usefulness and the services that can be expected. The deformation and
fracture processes are the two main concerns of mechanical properties. Hence in
this thesis, deformation properties and fracture properties are the two main focuses,
for which the relations with microstructure features are discussed. The deformation
of metals is achieved by the propagation of dislocations through the crystal lattice.
The density of dislocations and the level of difficulty that hinders the movement
of dislocations both contribute to the deformation properties. Meanwhile, fracture
behavior is mainly guided by the intrinsic toughening mechanisms that are closely
related to the structure and bonding mechanics of the materials. Hence fracture
properties are determined not only by the kind of phases present in the material,
but also by the combinations and relative volume fractions of phases. Therefore,
a clear triangular structure appears just as presented in Fig. 1.1, which acts as the
research focus network of this thesis.

In order to study the relation between microstructure features and mechanical
properties, both of them need to be characterized. For mechanical properties, there
are various testing standards for both deformation and fracture-related properties.
Tensile test is the most commonly used testing method to determine deforma-
tion properties, while fracture properties are often connected with various fracture
situations, such as hole expansion, bending and impact cracking. There are key
parameters for each of these situations to characterize the fracture properties. For
microstructure features, most of the attention is drawn to the well-known points like
grain size, phase volume fraction, etc. However, there are certain aspects that are
not yet generally recognized to be important, such as grain size distribution. Mean-
while, there are also microstructure features like dislocation density, which remain
to be difficult to be determined precisely. Those are the complications of the study
on the relations between microstructure features and mechanical properties.

This thesis aims at the development of relations between the features of multi-
phase metallic microstructures of steels and the mechanical properties of the ma-
terial. The quantitative characterization of the microstructure will be more involved
than is now in use for estimations of the mechanical properties, which is a necessity
because of the complexity of multi-phase microstructures. Moreover, the predic-
tion of mechanical properties on the basis of microstructural features will involve
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Figure 1.1: Research focus network of this thesis. The three circles represent microstructure features,
deformation properties and fracture properties, respectively. The three arrows I, II and III represent
the three parts of this thesis, each representing the relationship between the corresponding corners.

both deformation properties like the yield stress and fracture properties like hole
expansion capacity, bendability and impact energy. Along the three arrows I, II
and III in Fig. 1.1, statistical approaches are used to find relations between mi-
crostructure features and mechanical properties. Meanwhile, the possible deeply
embedded relations between deformation and fracture are systematically studied.

Within this thesis, not only the experimental data obtained from the author
but also materials data from the literature and online databases are used for re-
search purposes. Meanwhile, besides the traditional statistical approaches, modern
machine learning algorithms are also implemented in this thesis to accelerate the
analysis and prediction of the relations. Besides the predictions, the interpretations
of the machine learning algorithms are also analyzed with various techniques, which
truly helps the understanding of the relationship analysis and the root behind the
machine learning predictions.

The research in this thesis deepens the insight into the mechanical behaviour
of the microstructure in multi-phase steels and improves property prediction, which
connects the microstructure features, deformation properties and fracture proper-
ties. Results in this thesis can be directly implemented in microstructure modelling
and will be directly available for researchers within the steel industry for developing
new materials.
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Outline
The research focus network of this thesis is shown in Fig. 1.1. The three anchor
circles represent the three main components of this thesis, i.e. microstructure fea-
tures, deformation properties and fracture properties. The three arrows indicate
the parts of this thesis. Hence the thesis is divided into three parts: Microstructure
to Deformation, Microstructure to Fracture and Deformation to Fracture.

Chapter 2 mainly focuses on the existing studies about various relationships be-
tween microstructure features and mechanical properties, which are summarized
based on the scale of the corresponding microstructure elements, i.e. phases/precipitates,
grains and dislocations. At the same time, the characteristics of these microstruc-
ture elements are also introduced.

Part I contains Chapter 3. This chapter studies the influence of microstructure
features on the hardness of Interstitial Free steel. The grain size distribution and
dislocation density are manipulated through different heat treatment routes com-
bined with controlled cold rolling. With the interesting variable selection tool LASSO,
the three microstructure features that most significantly influence the hardness of
Interstitial Free steel are revealed.

Part II contains Chapters 4 and 5. Chapter 4 focuses on the influence of phase
volume fractions and chemical content on the hole expansion capacity. Data from
the literature are used in this chapter. The hole expansion capacity is analyzed in
relation to individual phases, combination of phases and number of phases. Ma-
chine learning algorithms are implemented to predict the hole expansion capacity
with phase volume fractions and chemical content. Moreover, the influence of mi-
crostructure features on the hole expansion capacity is also revealed.

Chapter 5 follows a similar structure as the previous chapter, but focuses on
the bendability of the material. The influence of phase volume fractions on the
bendability is discussed in detail. Meanwhile on the prediction of bendability from
phase volume fractions and chemical content. Meanwhile, the influence of different
microstructure features on bendability is revealed.

Part III contains Chapter 6. The relationships between deformation properties
and fracture properties are studied. The online database offers a well-organized
dataset containing the Charpy impact energy and the tensile properties. The rela-
tions between the tensile properties and the Charpy impact energy are studied in
detail. Meanwhile, prediction models on the Charpy impact energy based on the
tensile properties are implemented. Furthermore, with the various interpretation
tools, the influence of tensile properties on the Charpy impact energy is analyzed
and discussed.

The final Chapter 7 concludes the thesis and gives the recommendations for pos-
sible future work. The possible physical background and connections are also dis-
cussed from the conclusions obtained from each chapter. Future recommendations
are discussed from three directions, i.e. microstructure & mechanical properties,
materials data management and machine learning.
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2
Microstructure influence on

mechanical properties

In the material sciences these are and have been,
and are most surely likely to continue to be heroic days.

Julius Robert Oppenheimer

T his chapter summarizes the influence of microstructure on mechanical
properties. In this chapter, various relationships between microstructure

features and mechanical properties are classified based on the microstruc-
ture features. Since no crystal structure is without defects, the microstruc-
ture features can be classified by the defects. Defects in crystals are di-
vided into four categories depending on the dimensions, which are three-
dimensional phases, grains, precipitates and voids, two-dimensional grain
boundaries and phase boundaries, one-dimensional dislocations and zero-
dimensional vacancies and interstitials. This chapter follows the first two
arrows in Fig. 1.1, explaining the studies on the relationship between mi-
crostructure features and both deformation and fracture properties. The sum-
marized relationship matrix is shown at the end of this chapter in Fig. 2.17.

7



2

8 2. Microstructure to Mechanical properties

2.1. Introduction
In order to organize the effects of microstructures on mechanical properties, this
chapter is going to discuss it in three steps, depending on the scale of the corre-
sponding microstructure elements, i.e. phase, grain and dislocation. Phase and
grain are two distinct concepts. Phase represents a homogeneous portion of a
system that has uniform physical and chemical characteristics. Grain represents
the constituent of a polycrystalline material where the crystallographic orientation
varies from grain to grain [1]. Dislocation is used to refer to the defect on the atomic
scale, which is the only one-dimensional defect. Based on these three scales, the
relationships between microstructures and mechanical properties are summarized
in the following sections.

2.2. Phase/Precipitation related
Phase is one of the most common microstructure features being investigated in
relation to mechanical properties. The following sections first introduce the char-
acteristics of phase and precipitation and then discuss the impact on mechanical
properties.

2.2.1. Phase characteristics
• Physical and chemical properties

Each phase has its own specific chemical and physical properties. The solute
element concentration is one important factor for the chemical property. The
physical property for a single phase in dual/multi- phase material is usually
indicated by the nano-hardness test, which is the hardness test performed on
a specific single phase area.

• Phase fraction and distribution

Only for dual-phase or multi-phase material, it is meaningful to discuss the
phase fraction and distribution. The volume fraction of phases is commonly
determined by the area fraction of phases in the two-dimensional cross-section
of the material [2]. The fraction and distribution information can be charac-
terized by either optical microscopy or electron backscatter diffraction (EBSD).

• Phase boundary

Phase boundaries exist when two or more phases meet each other. There
is a discontinuous and abrupt change in physical and/or chemical properties.
It is not a requirement that two phases have to differ in both physical and
chemical properties [1].

Strictly speaking, precipitate is also one kind of phase, which forms from the
original matrix phase. This process is called precipitation. In most metal alloys, the
complexity of the precipitation process is directly linked to the amount of alloying
elements [3]. The most important characteristics of precipitates are the volume
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fraction and morphology. To describe the volume fraction and morphology of pre-
cipitates, different parameters are developed. The easiest and most common way
to determine the volume fraction is to calculate the 2D area fraction of the precip-
itates. Jain et al. [4] calculate the volume fraction of the rod-shaped precipitates
within a TEM foil with

𝑓v = − ln(1 − 𝐴A) (
𝐷𝐿

𝐷𝐿 + (𝐷/2 + 𝐿)𝑡) , (2.1)

where 𝐷 is the diameter that is approximated as a circular section. 𝐿 is the rod
length. 𝑡 is the foil thickness and 𝐴A is the projected area fraction of precipitates,
which corresponds to the 2D area fraction.

Pohl et al. [3] used the form factor 𝑓 to describe the precipitate morphology,
which is given by

𝑓 = 4𝜋
𝐴p
𝑃2p
, (2.2)

where 𝐴p is the area of the precipitate and 𝑃p is the perimeter of the precipitate.
This form factor directly describes the roundness of the precipitates. It varies from
0, an ideally line-shaped precipitate, to 1, a perfect round precipitate.

2.2.2. Phase fraction influence
The phase fraction parameter is the most commonly mentioned factor in recent
literature. There are many studies [5–9] focus on the dual-phase steel, i.e. ef-
fect of ferrite phase and martensite phase on mechanical behaviors. The general
conclusions from these studies show the martensite phase has a positive effect on
the strength of the materials, while at the same time increasing the brittleness.
The ferrite phase tends to increase the ductility of the material, while not con-
tributing to the strength. While looking at another phase, i.e. retained austenite,
the story becomes more complicated. The influence of retained austenite fraction
(𝛾%) in stainless steel on the mechanical properties was investigated by Nakagawa
and Miyazaki [10]. This study shows a straightforward linear relation between the
amount of retained austenite and yield strength, tensile strength, elongation, re-
duction of area and impact energy. The linear relations are shown in Figs. 2.1
and 2.2 with the approximating equations

Yield strength (MPa) = 1192.3 − 13.6 × 𝑓𝛾 ,
Tensile strength (MPa) = 1250.1 − 9.3 × 𝑓𝛾 ,

Elongation (%) = 12.16 + 0.43 × 𝑓𝛾 ,
Reduction of area (%) = 64.25 + 0.14 × 𝑓𝛾 ,

Charpy absorbed energy (J) = 72.5 + 0.8 × 𝑓𝛾 .

(2.3)

Besides these linear relations, the relationship between retained austenite frac-
tion 𝑓𝛾(%) and fatigue limit is shown in Fig. 2.3. The fatigue limit decreases grad-
ually with the increase of retained austenite fraction. Different results were found
by Shanmugam et al. [11] as shown in Fig. 2.4. Since the result in [11] shows
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Figure 2.1: Effects of the amount of retained austenite on (a) the 0.2% yield and tensile strengths and
(b) the elongation and reduction of area [10].

Figure 2.2: Effect of the amount of retained austenite on the Charpy absorbed energy [10].
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Figure 2.3: Effects of the amount of retained austenite on fatigue limit [10].

the retained austenite fraction and carbon content product, the data is extracted
from [11] and the relationship between fatigue limit and retained austenite fraction
is shown in Fig. 2.5. It can be seen that two contradictory results have been dis-
covered on the relationship between retained austenite fraction and fatigue limit.
Different opinions have been shown in different conditions, in ductile iron with high
carbon content which hinders the strain-induced martensite formation [11], the in-
crease of fatigue limit is due to the high-strain hardening nature of the retained
austenite. The formation of persistent slip bands will be delayed, which delays the
nucleation of a fatigue crack. In transformation induced plasticity steel [12], the
reason is therefore the formation of very fine martensite particles in the local plastic
deformation zone near the crack. Also, the finely dispersed martensite particles re-
tard the propagation of crack. In martensitic precipitation hardening stainless steel
[10], no reason was given to the decrease of fatigue limit. It may be the reason that
the ductile retained austenite in the martensitic matrix plays as the crack initiation
point.

There are many studies focusing on the influence of phases on certain mechan-
ical properties. Here only a few typical examples are shown. An indication of how
the phase fractions have different impact on mechanical behavior is shown. Com-
pared to the study of the changing of mechanical properties based on changing
of certain phase fractions, more focus should be on the combination of different
phases, hence the investigation about the influence of multiple phases. For Ad-
vanced High-Strength Steels (AHSS), it is common to have more than two phases
appearing in the microstructure. In order to better control the mechanical proper-
ties, the interaction among those present phases would make a significant role in
controlling the mechanical behavior.
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Figure 2.4: Influence of retained austenite and carbon content on the fatigue limit (legend shows
austenization temperature °C/tempering temperature °C) [11].
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Figure 2.5: Influence of retained austenite fraction on fatigue limit (legend shows austenization tem-
perature °C/tempering temperature °C) (adapted from [11]).
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Figure 2.6: Influence of 𝜎 phase on the ductility and UTS [14].

2.2.3. Precipitation influence
In steel structures, there are various kinds of precipitates. A popular hardening
mechanism is called precipitation hardening, which is the treatment to increase the
strength of the materials by introducing second phase particles, i.e. precipitates.
Here the focus will be on the well-known 𝜎 precipitates, which exist in various kinds
of stainless steels with Cr content over 20wt% [13]. The influence of 𝜎 precip-
itates on the mechanical behavior has been long time discussed. It is generally
recognized that 𝜎 precipitate is a brittle phase that will decrease the toughness and
elongation. The presence of the 𝜎 precipitates is the main cause of the stainless
steel degradation [13].

Li et al. investigated the influence of 𝜎 precipitates on the ductility and UTS as
shown in Fig. 2.6. Similar results on the tensile strength and notch impact toughness
acquired by Pohl et al. are shown in Figs. 2.7 and 2.8. With the increase of volume
fraction of 𝜎 precipitates, both tensile strength and UTS are increased while ductility
and impact toughness are decreased. The abovementioned form factor 𝑓 for 750 °C,
850 °C and 950 °C with the 𝜎 precipitate volume fraction of 15 vol% are 0.36, 0.58
and 0.61 respectively, which means the higher annealing temperature leads to more
round-shape of the 𝜎 precipitates. This indicates that the rounder the shape of the
𝜎 precipitates, the less the reduction of impact toughness and the less influence on
tensile strength.

The study of precipitates is often mixed with those of focus on phase influences.
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Figure 2.7: Influence of 𝜎 precipitation and morphology on tensile strength with different isothermal
annealing temperature [3].

Figure 2.8: Influence of 𝜎 precipitation and morphology on the notch bar impact value with different
isothermal annealing temperature [3].
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It is reasonable to combine these two, but also interesting to look at precipitates
at a different angle. The study of precipitates should not be limited to the size and
volume, but focusing also on the shape, morphology and spatial distribution of the
precipitates.

2.3. Grain related
Within the phase, grains are the next scale to investigate the materials, which has
a pronounced influence on mechanical behavior. The following sections will first
introduce the characteristics of grains and then discuss the impact on mechanical
properties.

2.3.1. Grain characteristics
• Grain size and grain size distribution

The most common known feature of the grain is the grain size. In order to
determine grain size, there are mainly three different techniques. The first
two only determine the average grain size, which are the intercept method
and the grain size number method. The intercept method uses the straight
lines drawing on the micrograph with the same interline distance. The average
grain size is determined by the total line length divided by the number of grains
that are drawing through. The grain size number method determines the grain
size by comparing the micrograph under specific magnification (100×) with
the standard comparison charts, which are delivered by the American Society
for Testing and Materials (ASTM). The third one determines the individual
grain size based on the grain area, which is calculated either indirectly from
metallography picture analysis or directly from Electron backscatter diffraction
(EBSD). This method assumes that the grains are circular and grain size is the
circular diameter.

For grain size distribution, the size of the individual grains must be determined,
hence among those three methods, only the last one could determine the
grain size distribution. There is not yet a methodology that clearly shows how
to describe the grain size distribution. Therefore in Chapter 3, a detailed study
in grain size distribution is presented.

• Grain boundary

Similar to phase boundary, grain boundaries form when two or more grains
that show a difference in crystallographic orientation meet each other. Grain
boundary is usually only several atom distances wide, in which the atomic
mismatch is present due to the orientation change from one grain to the
other.

Grain boundaries could be classified into tilt or twist boundaries depending on
the relationship of misorientation angle and the boundary, either vertical for
a tilt boundary or parallel for a twist boundary. Depending on the degree of
misorientation, tilt boundary could be further classified into low angle grain
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boundary or high angle grain boundary. There is a special case called twin
boundary when the two adjacent grains are in mirror lattice symmetry.

Grain boundary has its energy which is a function of the degree of misorienta-
tion. The total grain boundary energy is closely related to the grain size since
the latter determines the total area of the grain boundary. The investiga-
tion on grain boundary characteristics contributing to mechanical properties
is called “grain boundary engineering”, which is proposed in the early 1980s
[15].

• Texture

A polycrystalline material has a “Texture” if the grains have a non-random dis-
tribution of crystallographic orientations. One simple example is the material
after rolling, which usually has a rolling texture. This is due to the alignment
of certain specific crystallographic planes parallel to the rolling surface and
the certain specific direction in that plane parallel to the rolling direction.

Texture could only be characterized by the use of x-rays to probe the average
texture of a specimen before the early 1980s. This technique is limited to only
giving the volume fraction of the grains which have a particular orientation
without the information of where those grains are located in the material. The
modern approach to texture was introduced in the early 1990s, which is called
microtexture. The technique used to determine microtexture is EBSD, which is
ideal to combine microstructure with crystallographic orientation information
[16, 17].

2.3.2. Grain size influence
Among the characteristics of a grain, grain size is the most commonly mentioned
factor in relation to mechanical properties. Almost 70 years ago, in the early 1950s,
Hall and Petch proposed the well-known Hall-Petch relation [18, 19], which gives
the relation of yield strength 𝜎y and average grain size 𝑑 at ambient temperature
as

𝜎y = 𝜎0y + 𝑘y ⋅ 𝑑−
1
2 , (2.4)

where 𝜎0y is known as the friction stress for the dislocation movement within the
polycrystalline grains while 𝑘y is the Hall-Petch slope describing the local stress
needed at the grain boundary for plastic flow. Eq. (2.4) also applies to cleavage
fracture stress at low temperatures.

For the explanation of the Hall-Petch relation, the most widely accepted model
is still the dislocation pile-up model, which is adopted in the paper of both Hall and
Petch [18, 19]. This theory states that yielding occurs when the stress concentration
at the grain boundary reaches the critical value. Hence the Hall-Petch relation is
explained with

𝜎y = 𝑀 ⋅ 𝜏0 +𝑀 ⋅ (𝜏c𝐺𝑏)
1
2 ⋅ 𝑑−

1
2 , (2.5)

where 𝑀 is the Taylor orientation factor. 𝜏0 is friction shear stress. 𝜏c is the critical
shear stress. 𝐺 is the shear modulus and 𝑏 is the length of the Burgers vector.
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Figure 2.9: Influence of grain size on the fatigue limit [23].

The grain size influence is account for the grain boundaries, which have the effect
of blocking, generating and absorbing dislocations. Hall-Petch relation explains the
blocking effect of grain boundaries on gliding dislocations.

Beside the dislocation pile-up model, there are also some other models which
could explain the Hall-Petch relationship. Li proposed the boundary source model
considering that grain boundary ledges are the source to the dislocations, which
form dislocation forest inside the grain [20]. Dislocation density model based on
two types of dislocations, statistically stored dislocations (SSD) and geometrically
necessary dislocations (GND) [21], assumes that SSDs are accumulated during uni-
form deformation while GNDs accumulate during non-uniform deformation. The
work hardening model assumes that the average slip distance of glide dislocations
is comparable to the grain size proposed by Meakin and Petch [22].

With the discovery of the Hall-Petch relation, a similar relation of grain size con-
tributing to hardness was found by Hall [24], as well as the ductile-brittle transition
in steel by Petch [25], the fracture toughness properties by Petch and Armstrong
[26], fatigue limit and low temperature creep by Armstrong [27]. Although Eq. (2.4)
was shown to be valid in many cases, there is also evidence that shows deviations
from Hall-Petch relation, especially at the ultra-fine/nano grain size region [28].

Chapetti et al. [23] combine the data from previous researchers and their own
research and give the results about grain size influence on the smooth (unnotched)
fatigue limit 𝜎eR as shown in Fig. 2.9. This data collection gives the following re-
lationship between smooth fatigue limit (MPa) and grain size (µm) in the form of
Hall-Petch relation as

𝜎eR = (180 ± 80) +
300
√𝑑

. (2.6)
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2.3.3. Grain size distribution influence
In the early stage of the development of the Hall-Petch relation, the majority of
researches focuses only on the mean grain size while the grain size distribution
is not well recognized. Researchers either neglect the influence of the grain size
distribution or assume one kind of grain size distribution function like log-normal,
which is frequently mentioned [29–32]. The coefficient of variation (𝐶𝑉) was pro-
posed by Kurzydłowski and Bucki [33], which involves the standard deviation (𝑆𝐷)
of grain size, meanwhile, they also stated that grain size range is also important to
mechanical properties besides the mean grain size. Berbenni et al. [34, 35] take
the consideration of relative dispersion parameter, defined as (𝐷max−𝐷min)/𝐷mean,
which includes the influence of grain size range. But there are just some qualita-
tive trends without a clear quantitative relationship discovered between the relative
dispersion parameter and mechanical behavior. Lehto et al. proposed the volume-
weighted average grain size 𝑑v, which indicates that the contribution of each grain
to the strength of the material is proportional to the volume of the grain. The
volume-weighted average grain size is defined and adapted in the Hall-Petch rela-
tion as follows [36]:

𝑑v =
1
𝑉T

𝑛

∑
𝑖=1
𝑉𝑖𝑑𝑖 , (2.7)

𝑑−1/2v = 𝑑−1/2(𝑐 + 𝑓Δ𝑑𝑑 ), (2.8)

𝜎y = 𝜎0y + 𝑘y𝑑−1/2v = 𝜎0y + 𝑘y𝑑−1/2(1 + 𝑓
Δ𝑑
𝑑 ), (2.9)

where 𝑉T is the total volume of the material and 𝑉𝑖 is the volume of grains corre-
sponding to the grain size 𝑑𝑖. Lehto et al. found that the volume-weighted average
grain size has the relation with mean grain size as Eq. (2.8) shows, where the 𝑐
and 𝑓 are the constants obtained from linear regression and 𝑐 ≈ 1.0 based on
the calculation. Meanwhile, the grain size dispersion parameter here is modified
from Berbenni et al. as: Δ𝑑/𝑑 = (𝑃99% − 𝑃1%)/𝐷mean, which is aimed to minimize
measurement uncertainty.

2.3.4. Texture influence
Since texture is the crystallographic orientation distribution of a polycrystalline ma-
terial, which indicates the degree of anisotropy of the material, it is also one of the
reasons for the anisotropy of the mechanical behavior. The influence of texture on
mechanical properties is usually analyzed qualitatively, e.g. [37, 38]. Wang et al.
[37] show the combination of grain size and texture effect on the yield stress of
commercial Mg–3Al–1Zn alloy (AZ31) as shown in Fig. 2.10, where both groups fol-
low the Hall-Petch relation nicely but have a significant difference of about 50MPa,
which is due to the texture difference induced by the different forming process.

Meanwhile, Kim et al. [39] give further quantitative information on texture based
on the pole intensity and the relationship with tensile elongation of AZ31 as shown
in Fig. 2.11. Similar result was also reported by Iwanaga et al. [40]. Kim et al.
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Figure 2.10: Hall-Petch relation from two groups of samples of AZ31 alloy with substantial difference in
texture [37].

also recommend further detailed experimental research to find out the relation be-
tween texture intensity and ductility. Besides the increase of tensile elongation, the
reduction of (0002) texture intensity also lowers the yield strength [39, 40].

The study on the grain size effect has been popular for decades. There is also
the inverse Hall-Petch effect observed for nanocrystalline materials below a certain
grain size by many studies [41–47]. Despite the numerous investigations about the
grain size effect, not much attention was paid closely on the distribution of grain
size. This was limited by the characterization techniques before. But now with the
EBSD or 3D-EBSD, it is much easier to get the complete information on grain size
and its distribution. There will be much more to explore with the control of grain
size distribution and the corresponding mechanical behaviors. The same goes for
the texture, shape and morphology of grains.

2.4. Dislocation related
Dislocation was first used to refer to a defect on the atomic scale by Taylor in 1934
[48]. The dislocation is characterized by its line element s and Burgers vector b.
The line element is the unit vector in the tangential direction of the dislocation line
and the Burgers vector corresponds to the length and direction of the local atomic
displacement. The most important characteristics of dislocations are the density
and the structure.

2.4.1. Dislocation structure
Since dislocations are defects of crystalline structure at the atomic scale, high-
resolution imaging techniques are needed to reveal the dislocations. Based on
difficult specimen preparation, edge and screw dislocations could be revealed under
high-resolution transmission electron microscopy (HRTEM) and scanning tunneling
microscopy (STM) respectively. With the conventional TEM, dislocations appear as
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Figure 2.11: Tensile elongation of the rolled AZ31 sheets as a function of pole intensity in (0002) pole
figures, tensile specimens were cut at the angle of 0°, 45° and 90° to the rolling direction [39].

dark lines in the bright field image, due to the distortion of crystal lattice around the
dislocation core. Besides these techniques, dislocations can also be easily visualized
by optical microscopy by the so-called etch pits, which are obtained by preferential
etching on polished crystal planes [49]. This etch pits technique can be traced
back to the work of Horn [50] and Gevers et al. [51] in 1952. The places, where
dislocations intersect with the polished surface, are etched by a special etching
solution.

The effective segment length is the length between the pinning points as shown
in Fig. 2.12. The pinning points can be other intersected dislocations, solute ele-
ments or precipitates [52]. The dislocation effective segment length could be cal-
culated along with the dislocation density, which will be explained in the following
section.

2.4.2. Dislocation density
As the name expresses, dislocation density indicates the degree of accumulation
of dislocations, which is defined by the total length of the dislocation lines per
unit volume [53]. The unit for dislocation density is m−2. Dislocation density can
be determined by the dislocation spacing, which is determined by the intersection
of dislocation line with the crystal surface while assuming all the dislocations are
straight and parallel. If 𝑑 is the dislocation spacing, dislocation density 𝜌 could be
calculated by [53]:

𝜌 = 1
𝑑2 . (2.10)

The dislocation density in extensively annealed and in perfectly grown crystals
are found to be in the order of 1010m−2, which is caused by the crystal growth
process [53]. In the heavily deformed materials, the dislocation density could reach
values on the order of 1016m−2 [54], which is normally produced by cold working
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Figure 2.12: Atomic simulation of dislocation multiplication in a Frank-Read source under external loading
from the left (Adapted from [56]).

[1]. The most important dislocation multiplication mechanism is the Frank-Read
source [55], which is well simulated at the atomic scale by Shimokawa and Kitada
[56] in Fig. 2.12. In order to retain the crystalline structure of the material and
due to the internal stress field caused by dislocations, dislocation density cannot be
infinitely high.

Measuring the dislocation density
The mean dislocation spacing introduced in Eq. (2.10) cannot be used in reality
due to the extremely complicated distribution state of dislocations in real materials.
There are several methods that can be used to measure the dislocation density.

• Measurement based on TEM:

By using transmission electron microscopy (TEM), dislocations can be revealed
under certain diffraction conditions [16, 57, 58] due to the lattice distortion
around the dislocation line. Since dislocations appear as dark lines in the
bright field image, the total length in the measured volume can be calculated
which leads to the dislocation density. Since it is difficult to ensure that all
the dislocations could be revealed in the TEM micrograph and the dislocation
density may change due to the preparation of the extremely thin specimen,
as well as the difficulties in determining the exact thickness of the specimen
[59, 60], there are limitations to this method.

• Measurement based on XRD:

The characterization of dislocation density using X-ray diffraction (XRD) is
mainly based on the peak broadening effect induced by the strain of disloca-
tions. The well-known accessible methods of XRD line profile analysis are the
modified Williamson-Hall (MWH) method and the modified Warren-Averbach
(MWA) method [61, 62]. An improved analysis method proposed by HajyAk-
bary et al. [63] combines these two methods and gives a unique value of
dislocation density.
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Figure 2.13: (a) Tensile test curve with 𝜎0.2 and yield stress determined from (b), (b) Extended Kocks-
Mecking plot of the data in (a), showing a well-defined yield point [64].

• Measurement based on anelastic deformation behavior

Since the anelastic deformation is caused by dislocations within the mate-
rial, Arechabaleta et al. [52, 64] developed a method based on the extended
Kocks-Mecking plot, which is shown in Fig. 2.13(b). In addition to the de-
termination of the accurate measurement of the yield point, both dislocation
density and effective segment length can be calculated.

2.4.3. Dislocation density influence
The general principle for plastic deformation is the movement of dislocations. Mate-
rials are strengthened if the dislocation motion is hindered, which could be achieved
by different methods, such as grain size reduction, solid solution anchoring dislo-
cations and strain hardening increasing the dislocation density [65–67]. However,
due to the complexity in dislocation density determination, the quantitative rela-
tions between dislocation density and mechanical properties are less shown in the
literature compared to other microstructure features. Cong and Murata studied the
dislocation density on a low carbon steel with the relation to Vickers hardness as
shown in Fig. 2.14. The Vickers hardness increases with the increase of dislocation
density and carbon content. This is due to the strengthening of the martensite
phase with high dislocation density as the carbon content increases [62].

Kehoe and Kelly [59] gave the relation of the 0.2% proof stress with the square
root of the dislocation density, which is determined from micrographs of thin foils,
for ferritic and martensitic Fe-C alloys at 250K and 77K as shown in Fig. 2.15, which
shows a clear linear relationship. The so-called Taylor equation [48] describes the
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Figure 2.14: Influence of dislocation density and carbon content on hardness [62].

relation as
𝜎y = 𝜎0 + 𝛼𝑀𝐺𝑏√𝜌, (2.11)

where 𝛼 is a constant, that usually ranges from 0.15 to 0.4. 𝑀 is the Taylor factor.
𝐺 is the shear modulus and 𝑏 is the length of the Burgers vector. Arechabaleta et al.
[68] present a cheap and easy way to determine the yield strength and dislocation
density, which is also mentioned above, and the relationship is shown in Fig. 2.16,
which gives an accurate experimental validation of the Taylor equation.

Nevertheless, there is still much more to investigate about the dislocation den-
sity and structure on the statistical relationship, as well as the physical background.
While changing the dislocation density, it is not always possible to keep other mi-
crostructure features the same, such as grain size. Hence it is reasonable to com-
bine the effect of dislocation influence with other microstructure features.
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Figure 2.15: Variation of the 0.2% proof stress with the square root of the dislocation density for ferritic
and martensitic Fe-C alloys at 250K and 77K [59].
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Figure 2.16: Influence of dislocation density on yield strength [68].
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3
The combined influence of
grain size distribution and

dislocation density on
hardness of interstitial free

steel

It can scarcely be denied that the supreme goal of all theory
is to make the irreducible basic elements

as simple and as few as possible
without having to surrender the adequate representation

of a single datum of experience.

Albert Einstein

U nderstanding the relationship between microstructure features and me-
chanical properties is of great significance for the improvement and spe-

cific adjustment of steel properties. The relationship between mean grain
size and yield strength is established by the well-known Hall-Petch equa-
tion. But due to the complexity of the grain configuration within materials,
considering only the mean value is unlikely to give a complete representa-
tion of the mechanical behavior. The classical Taylor equation is often used

This chapter is based on the article: W. Li, M. Vittorietti, G. Jongbloed, J. Sietsma, The combined
influence of grain size distribution and dislocation density on hardness of interstitial free steel, Journal
of Materials Science & Technology 45, 35 (2019).
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to account for the effect of dislocation density, but not thoroughly tested in
combination with grain size influence. In the present study, systematic heat
treatment routes and cold rolling followed by annealing are designed for In-
terstitial Free (IF) steel to achieve ferritic microstructures that not only vary in
mean grain size, but also in grain size distribution and in dislocation density,
a combination that is rarely studied in the literature. Optical microscopy is
applied to determine the grain size distribution. The dislocation density is
determined through XRD measurements. The hardness is analyzed on its
relation with the mean grain size, as well as with the grain size distribu-
tion and the dislocation density. With the help of the variable selection tool
LASSO, it is shown that dislocation density, mean grain size and kurtosis
of grain size distribution are the three features that most strongly affect the
hardness of IF steel.

keywords
Interstitial free steel, Hardness, Grain size distribution, Dislocation density, LASSO
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3.1. Introduction
The most commonly known feature of the grain configuration in metallic microstruc-
tures is the grain size, which is also the most commonly mentioned factor in relation
to mechanical properties among all characteristics of grains. Almost 70 years ago,
in the early 1950s, Hall and Petch [1, 2] proposed the by now well-known Hall-Petch
relation, which gives the relation of yield strength 𝜎y and average grain size 𝜇d at
ambient temperature as:

𝜎y = 𝜎0y + 𝑘y ⋅ 𝜇d−1/2, (3.1)

where 𝜎0y is known as the friction stress for the dislocation movement within the
grains in a polycrystalline microstructure, while 𝑘y is the Hall-Petch slope describing
the local stress needed at the grain boundary for plastic flow [3]. Since the early
stage of the development of the Hall-Petch relation, the majority of studies focused
only on the mean grain size while the effect of the grain size distribution is not
well recognized. Researchers either neglect the additional information that may be
present in the grain size distribution, or assume one kind of grain size distribution
function like log-normal, which is frequently mentioned [4–7]. The coefficient of
variation 𝐶𝑉 = 𝑠/𝜇d of the grain size distribution was proposed by Kurzydłowski
and Bucki [8] to represent the grain size distribution, which involves the standard
deviation (𝑠) and mean (𝜇d) grain size. They state that, beside the mean grain
size, the grain size range is important to model mechanical properties. Berbenni
et al. [9], Nicaise et al. [10] consider a relative dispersion parameter, defined as
𝑝dis = (𝑑max − 𝑑min)/𝜇d, which includes the influence of the grain size range,
i.e. largest grain size 𝑑max and smallest grain size 𝑑min. But just some qualitative
trends are proposed between the relative dispersion parameter and mechanical
behavior without a clear quantitative relationship. Lehto et al. [11] propose to use
the volume-weighted average grain size 𝑑v, which indicates that the influence of
each grain on the strength of the material is proportional to the volume of the
grain. The volume-weighted average grain size 𝑑v is defined and included in a
Hall-Petch-like relation as follows:

𝑑v =
1
𝑉T

𝑛

∑
𝑖=1
𝑉𝑖𝑑𝑖 , (3.2)

𝑑−1/2v = 𝜇−1/2d (𝑐 + 𝑓 ⋅ 𝑝dism), (3.3)

𝜎y = 𝜎0y + 𝑘y𝜇−1/2d (𝑐 + 𝑓 ⋅ 𝑝dism), (3.4)

where 𝑉T is the total volume of the material, 𝑛 is the number of grains and 𝑉𝑖 is
the volume of grains of the grain size 𝑑𝑖. Lehto et al. found that the volume-
weighted average grain size has a relation with mean grain size as Eq. (3.3) shows,
where 𝑐 and 𝑓 are constants obtained from linear regression of experimental data,
which gives 𝑐 ≈ 1.0. The grain size dispersion parameter here is modified from
Berbenni et al. [9] as: 𝑝dism = (𝑃99% − 𝑃1%)/𝜇d. 𝑃99% and 𝑃1% are the grain sizes
at 99% and 1% probability levels, which is more robust than 𝑑max and 𝑑min. The
modified Hall-Petch equation is proposed as Eq. (3.4) by combining Eq. (3.1) and
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Eq. (3.3). Similar to the volume-weighted average grain size, Raeisinia and Sinclair
[12] propose a representative grain size 𝐷R, with relation to mean grain size as
follows:

𝐷R = 𝜇d exp(
9𝑆2
4 ), (3.5)

𝜎y = 𝜎0y + 𝑘y exp(
−9𝑆2
8 )𝜇−1/2d , (3.6)

where 𝑆 is the standard deviation of the assumed log-normal grain size distribution
function. Eq. (3.6) is the modified Hall-Petch equation with the representative grain
size incorporated. It helps in explaining why the Hall-Petch slope changes in some
cases. Here the representative grain size is calculated based on the assumption
that the grain size follows a log-normal distribution function.

General principle for plastic deformation is the movement of dislocations. Mate-
rials are strengthened if the dislocation motion is hindered, which can be achieved
by different methods, such as grain size reduction, precipitation, solid solution
anchoring dislocations and strain hardening by increasing the dislocation density.
However, due to the complexity of accurate dislocation density determination, the
quantitative relations between dislocation density and mechanical properties are
less validated in the literature compared to other microstructure features, such as
grain size. Taylor [13] proposed a relation between the 0.2% proof stress 𝜎y and
the square root of the dislocation density √𝜌 as follows:

𝜎y = 𝜎0 + 𝛼𝑀𝐺𝑏√𝜌, (3.7)

where 𝛼 is a constant, which usually ranges from 0.15 to 0.4, 𝑀 is the Taylor factor,
𝐺 is the shear modulus and 𝑏 is the length of the Burgers vector. Cong and Murata
studied the dislocation density in low carbon steel in relation to Vickers hardness,
which shows that the Vickers hardness increases with the increase of dislocation
density and carbon content. This is due to the strengthening of martensite phase
with high dislocation density as the carbon content increases and the solid solution
strengthening effect of carbon [14]. Kehoe and Kelly [15] determine the dislocation
density 𝜌 from TEM micro-graphs of thin foils, for ferritic and martensitic Fe-C alloys
at 250K and 77K, which shows a clear linear relationship between 𝜎y and √𝜌.
Arechabaleta et al. [16] present an accessible and easy way to determine the yield
strength and dislocation density, which gives an accurate experimental validation
of the Taylor equation and physical interpretation of the parameter 𝛼.

It is shown above that many researchers have shown that grain size distribution
does have pronounced influence on the strength of materials. But all the mentioned
studies concerning grain size distribution have their drawbacks. None of them ac-
tually indicates which parameters are the most important to describe the strength
effect of the grain size distribution. In the present paper, in order to establish
a relationship between grain size distribution, dislocation density and mechanical
properties, interstitial free (IF) steel is chosen to be the steel type to manipulate
the grain size distribution and dislocation density, minimizing the influence from
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Table 3.1: Chemical composition (wt.%) of the IF steel selected for this study.

Fe C Ti Mn Al Si Cr Si P

Bal. 0.005 0.081 0.077 0.055 0.052 0.016 0.011 0.003

other aspects, such as carbon content, precipitates and different phases. The fer-
rite grain size distribution and dislocation density are controlled through different
deformation and heat treatment routes. The study results in a combined relation
of mean grain size, grain size distribution and dislocation density with hardness.

3.2. Material and Methods
3.2.1. Material and processing
The chemical composition of the interstitial free steel is shown in Table 3.1. Different
heat treatment routes were applied on the as received hot-rolled IF steel plate
with sample dimensions of 10mm × 4mm × 2.5mm. The accurate temperature
control during the heat treatment was achieved by a Bähr dilatometer model DIL
805A/D. The detailed heat treatment routes can be seen from Table 3.2, where
the heat treatment temperature, time and cooling rate are indicated. ‘Q’ stands
for quenching to room temperature, as measured in the dilatometer, during which
the cooling rate above 300 °C is around −200 °C s−1. Heating and cooling rate
during the heat treatment, if not stated in the table, were controlled at 10 °C s−1

and −30 °C s−1, respectively.
In order to introduce the influence of dislocations, cold rolling was performed on

the 4mm thick hot-rolled plate. The plate was cold rolled to the final thickness of
3.00mm, 1.70mm and 1.13mm, causing a strain of 25%, 58% and 72%, respec-
tively. The 1.13mm cold rolled plate was subjected to annealing at 400 °C, 450 °C
and 600 °C for time ranging from 1.5min to 75min, followed by quenching to room
temperature with helium in the dilatometer.

3.2.2. Grain size distribution determination
The heat treated samples were mechanically ground with P800, P1200 and P2000
grit abrasive papers, followed by polishing with 3 µm and 1µm diamond paste.
In order to reveal the grain boundaries of IF steel, Marshall’s Reagent was used
first, with the etching time around 3 to 4 seconds, followed by a 20 second etch
in 2% nital [17]. The nital etching after using Marshall’s Reagent is necessary to
reveal the ferrite grain boundaries. The microstructure was captured by the light
optical microscope Olympus BX60M. The grain size analysis was conducted with the
ImageJ software, which detects the grain boundaries based on the image contrast
of the transformed binary pictures and gives the individual information of each
grain, including the visible grain area 𝐴𝑖. The grain size value for each grain 𝑖,
i.e. equivalent grain diameter 𝑑𝑖, was calculated by assuming that the area equals
that of a perfect circle with diameter 𝑑𝑖, where 𝑑𝑖 = 2√𝐴𝑖/𝜋. The mean grain size
𝜇d, standard deviation 𝑠, skewness 𝜇̃3 and kurtosis 𝜇̃4 of the grain size distribution
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based on 𝑛 grains are calculated with

𝜇d =
1
𝑛

𝑛

∑
𝑖=1
𝑑𝑖 , (3.8)

𝑠 = √
∑𝑛𝑖=1(𝑑𝑖 − 𝜇d)2

𝑛 − 1 , (3.9)

𝜇̃3 =
∑𝑛𝑖=1(𝑑𝑖 − 𝜇d)3

𝑛 ∗ 𝑠3 , (3.10)

𝜇̃4 =
∑𝑛𝑖=1(𝑑𝑖 − 𝜇d)4

𝑛 ∗ 𝑠4 − 3. (3.11)

These are the key values, i.e. quantitative measures, which describe the grain
size distribution. Skewness represents the asymmetry of the grain size distribu-
tion, which equals zero when the distribution is perfectly symmetric. Skewness is
negative when the low-value tail of the distribution is longer than the high-value
tail and positive when the high-value tail of the distribution is longer than the low-
value tail [18]. Kurtosis in this paper actually refers to “excess kurtosis”, which is
defined as kurtosis minus 3. Kurtosis measures the “tailedness” of the distribution,
which is equal to zero for normal distributions, regardless of the values of its pa-
rameters. It is positive for so-called leptokurtic distribution, with fatter tails and
negative for so-called platykurtic distribution, with thinner tails, compared to the
normal distributions [19].

3.2.3. Dislocation density determination by X-Ray diffraction
(XRD)

X-Ray diffraction measurements were conducted on a Bruker D8 Advance diffrac-
tometer with Bragg-Brentano geometry with Lynxeye position sensitive detector,
operating at 45 kV, 40mA, using Cu K𝛼 radiation (wavelength 𝜆 = 0.154 06 nm)
without the scatter screen. The scanning speed was controlled at 0.005 ° s−1 be-
tween 38° and 90° and 0.013 ° s−1 between 90° and 152°. The reflections obtained
for single phase body-centered cubic (bcc) ferrite structure are {110}, {200}, {211},
{220}, {310} and {222}. The samples were sticked with small amount of plasticine,
due to the small dimension, on a Si{510} wafer holder L40SiB. The obtained data
from two different scanning speed stages is merged in Bruker software Diffrac.EVA
4.2.2 and processed with X’Pert Highscore 2.2c. The correction for the instrumental
broadening is done by subtraction of the measured peak width of reference sam-
ple Lanthanum Hexaboride (LaB6)-SRM 660a. Peak fitting is processed with Topas
with the split Pearson VII function, in order to obtain the peak width. The disloca-
tion density calculation is based on the modified Williamson-Hall method, which is
explained in detail in [20, 21].
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3.2.4. Hardness measurement
In this study, mechanical properties are represented by the hardness value, which
was measured with the Struers DualScan 70 auto hardness machine using Vickers
hardness standards with 30N force in order to cover enough grains over the sam-
ple surface to reveal the macroscopic hardness of the test sample. There were 8
individual hardness measurements conducted on each sample to minimize the test
uncertainty.

3.2.5. Variable selection method: LASSO
Due to the large number of independent variables measured from microstructure
features, i.e. mean, standard deviation, skewness and kurtosis of the grain size
and dislocation density, and the limited data we can obtain from experiments, we
employ a statistical method called Least Absolute Shrinkage and Selection Operator
(LASSO), which gives the order of importance for the variables based on the in-
fluence of each microstructure variable on the target mechanical property. LASSO
was first introduced in the geophysics literature by Santosa and Symes [22] and
then independently rediscovered by Tibshirani [23]. LASSO, as a tool widely used
in the field of machine learning, is rarely adopted in materials science studies, es-
pecially in the experimental field, to perform variable selection. The few studies
using LASSO in materials science are computational studies [24–27]. Classically, if
there are only a few (or only one) explanatory variables, one can use the method of
least squares to estimate the regression parameters. If the number of parameters
comes close to or exceeds the number of data points, the least squares estimator
becomes unstable or is even not well defined anymore. LASSO is a popular method
to circumvent these problems, as it adapts the least squares criterion, leading to
a well-defined estimator and at the same time provides a way to select the most
relevant explanatory variables from the whole set.

In this study, the 𝑔𝑙𝑚𝑛𝑒𝑡 package in 𝑅 [28] was used. The LASSO prediction of
the target mechanical property 𝑓 at the point x is

̂𝑓𝐿𝐴𝑆𝑆𝑂(x) = ̂𝛽0 +
𝑝

∑
𝑗=1
𝛽̂𝑗𝑥𝑗 , (3.12)

where 𝑥𝑗 is the 𝑗th variable in the prediction point x, which is a vector containing
𝑝 variables measured on the microstructure. In order to use this technique and
referring to Eqs. (3.1) and (3.7), 𝜇d−1/2 and 𝜌1/2 were used as variables. The esti-
mate 𝛽̂𝑗 is the corresponding coefficient in the LASSO which minimizes the objective
function:

𝐿(𝛽0, 𝛽1, ..., 𝛽𝑝) =
𝑛

∑
𝑖=1
(𝑦𝑖 − 𝛽0 −

𝑝

∑
𝑗=1
𝛽𝑗𝑥𝑖𝑗)2 + 𝜆𝐻2r

𝑝

∑
𝑗=1
|
𝛽𝑗

𝛽𝑗,𝜆=0
|. (3.13)

Here 𝑛 is the number of the experimental data, 𝑥𝑖𝑗 is the 𝑗th variable of the 𝑖th
microstructure, 𝑦𝑖 is the target mechanical property measured on the sample cor-
responding to the microstructure with measurement x𝑖, 𝜆𝐻2r ∑

𝑝
𝑗=1 |

𝛽𝑗
𝛽𝑗,𝜆=0

| is called
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the shrinkage penalty which is controlled by the tuning parameter 𝜆 [23, 25] and in
which 𝐻r = 1HV. This tuning parameter 𝜆 determines the decrease of regression
coefficients. It can be seen in Eq. (3.13) that for a positive value of 𝜆, the fit will
yield lower values for 𝛽𝑗 than for 𝜆 = 0. This deteriorates the goodness of the fit.
At very large values of 𝜆, all fit parameters 𝛽𝑗 will become zero. With gradually
increasing 𝜆, the fit parameters that are least important for the trends in the target
parameter will decrease to zero more rapidly than the more important parameters.
We will present the LASSO analysis as a plot of 𝛽𝑗/(𝛽𝑗,𝑚𝑎𝑥−𝛽𝑗,𝑚𝑖𝑛) vs 𝜆 that shows
the change in 𝛽 values with 𝜆, with 𝛽𝑗,𝑚𝑎𝑥 and 𝛽𝑗,𝑚𝑖𝑛 the maximum and minimum
values in the applied 𝜆 range. This will be presented and analyzed for the present
study in Section 3.3.4.

3.3. Results and discussion
3.3.1. Microstructure and hardness
Based on the microstructure analysis, the 16 samples contain only the ferritic phase
without any other phases, as a typical micrograph shows in Fig. 3.1(a). The XRD
measurements also confirm the single phase conclusion by containing just the re-
flections from bcc structure. The heat treatment routes applied on the hot rolled
IF steel plates, as well as the cold rolled plates, result in pronounced differences in
hardness values, as shown in Table 3.2. The hardness varies from (58.6± 1.5)HV
up to (167.0± 1.9)HV. As shown clearly by the data, hardnesses are significantly
lower for the heat treated samples without cold rolling being applied compared
with those after cold rolling, which is due to higher dislocation density induced by
cold rolling. The only slowly cooled sample ‘1000 °C 10min 1 °C s−1’ has the lowest
hardness of (58.6± 1.5)HV due to the largest mean grain size obtained by slow
cooling and low dislocation density. Hardness increases with the increase of rolling
thickness reduction and decreases with increasing annealing temperature and time,
which is closely related to the dislocation density, as shown in following sections.

3.3.2. Grain size distribution
Following the microstructure image processing and analysis, the dimensions of
around 200 grains are obtained from each sample. An example of grain boundary
outlines and corresponding grain size distribution for sample ‘CR 3mm’ is shown in
Fig. 3.1(b) and (c). The detailed grain size data as well as the histograms of all
samples can be seen in Table 3.A.1 and Fig. 3.A.1 in the appendix. Both grain size
distribution data and histograms show that the distribution of grain size varies from
sample to sample, whereas it cannot always be well fitted with a log-normal distri-
bution function, as proposed and applied by many researchers [5, 7, 9, 29, 30]. The
skewness of all samples is positive, which corresponds to a longer high-value tail
of the grain size distributions. Only the sample with slow cooling ‘1000 °C 10min
1 °C s−1’ has a negative kurtosis, which corresponds to its thinnest tails as the first
histogram shows in Fig. 3.A.1 in the appendix. All other samples have positive
kurtosis, which means they have fatter tails compared to the normal distribution.
The box plot for grain size data of each sample can be seen in Fig. 3.2, whereas
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(a)

(c)(b)

Figure 3.1: (a): Typical micro-graph of sample ‘CR 3mm’; (b): the grain boundary outline drawing of
(a); (c): histogram of grain size of (a) with a log-normal fitting.
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Table 3.2: Heat treatment routes with corresponding hardness values and dislocation density. Heat
treatment route consists of temperature time and cooling rate, where ‘Q’ means quenching to room
temperature, ‘CR’ means cold rolling. The heating rate is 10 °C s−1. The cooling rate, if not stated, is
−30 °C s−1.

Mean Hardness Dislocation Dislocation
Heat treatment routes Hardness Std. density density error

(HV) (HV) (1012/m2) (1012/m2)
1000 °C 10min 1 °C s−1 58.6 1.5 1 -
1000 °C 10min 750 °C 5min Q 60.9 2.4 1 -
1000 °C 10min 800 °C 5min Q 62.0 1.3 1 -
1000 °C 10min 850 °C 5min Q 62.3 1.6 1 -
1000 °C 10min 700 °C 5min Q 64.9 0.9 1 -
1000 °C 10min 80 °C s−1 66.7 2.3 1 -
800 °C 5min Q 68.1 0.5 1 -
1000 °C 10min 200 °C s−1 69.1 1.7 3.1 0.9
700 °C 5min Q 75.9 3.2 1 -
400 °C 5min Q 80.1 1.3 1 -
CR 3mm 127.3 2.3 43 3
CR 1.7mm 139.9 2.2 75 4
CR 1.13mm 600 °C 75min Q 141.8 1.6 12 2
CR 1.13mm 450 °C 9min Q 159.6 2.4 60 4
CR 1.13mm 400 °C 9min Q 163.4 2.0 75 5
CR 1.13mm 167.0 1.9 72 4

the relation with hardness will be explained in the following section. The boxplot
clearly shows that cold rolled samples and those without austenitization stage, i.e.
heated up to 800 °C or lower, have lower mean grain size and narrower grain size
distribution. Samples that underwent austenitization at 1000 °C have larger mean
grain size and broader grain size distribution. This is also shown by the detailed
data in Table 3.A.1 in the appendix.

3.3.3. Dislocation density

The dislocation density, as shown in Table 3.2, is assumed to be 1 × 1012m−2 [31]
for the undeformed plates which is related to the detection limit of the applied XRD
method. It increases to 7.5 × 1013m−2 for cold rolled plates. With the increase
of strain, dislocation density increases. By elevating the temperature or extending
the time of the annealing treatment after cold rolling, dislocation density generally
decreases, except for the condition ‘1.13mm 400 °C 9min’.

3.3.4. Correlation of hardness with grain size distribution and
dislocation density
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Table 3.3: Part of the detailed grain size distribution data.

Heat treatment routes 𝜇𝑑 (µm) 𝑠 (µm) Skewness Kurtosis

1000 °C 10min 1 °C s−1 159.1 94.0 0.68 −0.20
1000 °C 10min 750 °C 5min Q 135.8 95.5 1.02 0.51
1000 °C 10min 800 °C 5min Q 145.0 113.3 1.13 0.41
1000 °C 10min 850 °C 5min Q 92.5 59.0 0.88 0.20
1000 °C 10min 700 °C 5min Q 123.9 111.7 1.59 2.24
1000 °C 10min 80 °C s−1 71.6 53.7 0.99 0.32
800 °C 5min Q 32.9 18.9 1.04 0.85
1000 °C 10min 200 °C s−1 122.5 70.0 0.75 0.20
700 °C 5min Q 32.4 20.3 0.86 0.39
400 °C 5min Q 31.0 18.8 0.81 0.45
CR 3mm 28.3 16.0 0.63 0.22
CR 1.7mm 24.2 20.1 1.25 1.42
CR 1.13mm 600 °C 75min Q 24.8 25.5 2.01 5.54
CR 1.13mm 26.8 24.5 1.51 2.19

General trend
The correlation of grain size and hardness can be seen in Figs. 3.2 and 3.3. The
boxplot in Fig. 3.2 indicates the grain size range from 25% to 75%, while the
whisker line shows the 1% to 99% range. The box middle line shows the median
value of grain size, while the square and the extended middle horizontal line show
the mean value. The trend of increasing hardness with decreasing mean grain size
is seen in Fig. 3.2, but can be found in a more quantitative manner in Fig. 3.3,
where the dotted line indicates the Hall-Petch trend for the microstructures that
were not plastically deformed. The relation of dislocation density and hardness is
shown in Fig. 3.3, which shows the generally positive effect of dislocation density on
hardness, which is linear with √𝜌, as expressed in the Taylor equation (Eq. (3.7)).
By combining the boxplot in Fig. 3.2 and dislocation density with hardness plot in
Fig. 3.3, it is clearly shown that cold rolled samples have much higher hardness
than those without cold rolling, which is due to higher dislocation density and lower
mean grain size.

Overall fitting with mean grain size and dislocation density
For a comprehensive relation between microstructure and mechanical properties,
the effect of mean grain size and dislocation density should be considered in com-
bination. Least squares linear regression leads to the following fit with the adjusted
R-squared of 0.91 and Root Mean Square Error (RMSE) of 11HV:

𝐻V = 𝐻0 + 𝑘d ∗ 𝜇d−1/2 + 𝑘𝜌 ∗ 𝜌1/2, (3.14)

where 𝑘d = 187.4HVµm1/2, 𝑘𝜌 = 1.1 × 10−5 HVm and 𝐻0 = 34.0HV. The weight
for hardness applied in the linear regression is the inverse of standard deviation of
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samples with austenization stage cold rolled samples

Figure 3.2: Grain size distribution box plot with the increasing order of hardness values from left to right.
The dots represent the size of all grains measured in corresponding sample.
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Figure 3.3: Hardness in relation to (a) mean grain size and (b) dislocation density. The dotted line in
(a) is based on the linear fitting of the values for samples without cold rolling. The dotted line in (b) is
based on the values of all samples.
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hardness. The RMSE is calculated based on the predicted hardness 𝐻p, individual
hardness values 𝐻i and number of samples 𝑁 with:

RMSE = √
∑𝑁𝑖=1(𝐻p − 𝐻i)2

𝑁 . (3.15)

Variable selection by LASSO
In order to establish a clear relation among hardness, grain size distribution and
dislocation density and also be able to predict hardness under similar conditions,
different variables describing both grain size distribution and dislocation density
are included in a linear model and the model is fitted using the LASSO method
(Section 3.2.5). These variables are, as defined before, dislocation density, mean
grain size, standard deviation, skewness and kurtosis of the grain size distribution,
which are introduced in the LASSO Eq. (3.12). For the LASSO test, 𝜇d and 𝜌 are
brought into the calculation as 𝜇d−1/2 and 𝜌1/2 in order to apply the linear fitting
scheme of the LASSO test equation, equivalent to Eq. (3.13). The resulting LASSO
plot is shown in Fig. 3.4. In the LASSO plot, from the left to the right direction,
the tuning parameter 𝜆 becomes larger, hence generates a higher penalty for the
fit parameter (𝛽) values, therefore the fit parameter values decrease, eventually to
zero. The variable that maintains a non-zero coefficient until the highest value of 𝜆
is the dislocation density, which therefore is recognized as the variable that has the
most significant impact on hardness. The following variables are mean and kurtosis
of the grain size distribution. Skewness does not appear in this LASSO plot, which
may be related to the relatively high correlation between skewness and kurtosis.

Final fitting with variables selected by LASSO
Based on the LASSO method, the mean square sum of residuals as a function of 𝜆 is
shown in Fig. 3.5 with the number of non-zero fit parameters (𝛽) along the top axis.
In general, the aim of model descriptions is to balance accuracy and simplicity. The
dashed line on the left in Fig. 3.5 represents the most accurate model, while the one
on the right represents the simplest model with an error within the standard error
of the most accurate model, i.e. the model with minimum number of coefficients
which gives a good accuracy. In this case, the entire range between the most
accurate model and the simplest model implies the use of three variables, which
are dislocation density, mean and kurtosis.

Therefore, hardness is fitted with a combination of the Hall-Petch equation and
the Taylor equation, while including the influence of the kurtosis 𝜇̃4. The model can
be expressed by:

𝐻V = 𝐻0 + 𝑘d ∗ 𝜇d−1/2 + 𝑘𝜌 ∗ 𝜌1/2 + 𝑘k ∗ 𝜇̃4, (3.16)

with adjusted R-Squared of 0.96 and RMSE of 7HV, where 𝑘d = 127.3HVµm1/2,
𝑘𝜌 = 9.9 × 10−6 HVm, 𝑘k = 7.2HV and 𝐻0 = 35.7HV. The positive value of 𝑘k
shows the positive effect on hardness from kurtosis of grain size distribution, which
means that fatter tails of grain size distribution contribute to higher hardness. A
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microstructure which has more grains at either low or high grain size values tends
to have higher hardness than a microstructure that has more grains having similar
grain size values.

As increasing the number of explanatory variable generally increases R-squared
and adjusted R-squared cannot represent the predictive capability of our model,
in order to judge the predictive capability of our model, predicted R-squared is
calculated, which is driven by the leave-one-out cross-validation [32]. Each data
point in turn is removed from the dataset for the fitting and the model is refitted
using the remaining data points. Then the hardness value of the removed data
point is calculated using the new model, hence leads to the predicted residual error
sum of squares, which calculates the predicted R-squared. When comparing the
models from Eqs. (3.14) and (3.16), the predicted R-squared is increasing from
0.79 to 0.88, which means that including extra explanatory variable, i.e. kurtosis,
does improve the predictive capability of our model, to an uncertainty of ±7HV.

Analysis of the Hall-Petch slope
From Eqs. (3.14) and (3.16), two Hall-Petch slopes have been generated: 𝑘d1 =
187.4HVµm1/2 and 𝑘d2 = 127.3HVµm1/2. The literature[33] indicates that the
Hall-Petch slopes for pure iron and low carbon steels range between 150MPaµm1/2

and 600MPaµm1/2. With 50 ppm solute carbon, the Hall-Petch slope is found to
be 560MPaµm1/2[33], which just match the IF steel with 50 ppm carbon content
in this study. Since yield strength can be determined with good precision from
Vickers hardness by 𝜎y = 𝐻V/3 [34, 35] and 1HV = 9.8MPa, the Hall-Petch slope
of 560MPaµm1/2 corresponds to 171.4HVµm1/2. Therefore, the obtained value 𝑘d1
and 𝑘d2 in this study are both reasonable and comparable with the literature data.

The slope obtained while only using mean grain size and dislocation density
(𝑘d1) is obviously higher than that using mean grain size, dislocation density and
kurtosis (𝑘d2). This is because the Eq. (3.16) takes the grain size distribution factor
kurtosis into the fitting. Since 𝜇d−1/2 and 𝜇̃4 are positively correlated (see Table 3.3)
and kurtosis has a positive influence on hardness, it is a mathematical consequence
that the Hall-Petch slope will be lower. This also indicates that the two aspects of
the grain size distribution effect on hardness have been separated by adding the
grain size distribution term kurtosis.

3.4. Conclusions
To understand how the combination of grain size distribution and dislocation density
influences the hardness of IF steel, a series of IF steel plates were given different
microstructures through different heat treatment routes in combination with cold
rolling. Based on the microstructure characterization and hardness measurement,
the following conclusions are drawn from this research.

• Different heat treatment routes and degrees of cold rolling change the dis-
location density and grain size distribution, which contribute to the variation
of hardness. Cold rolling plays a more significant role in increasing hardness,
due to the decrease of mean grain size and increase of dislocation density.
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• LASSO, as a relatively new method in experimental materials science, plays
an important role as the variable selection tool, which gives further insight
into the relative influence of different variables and selects for the simplest
model with good accuracy.

• The combined contribution of dislocation density and grain size distribution on
hardness of IF steel plates can be expressed by the equation 𝐻V = 𝐻0 + 𝑘d ∗
𝜇d−1/2+𝑘𝜌 ∗𝜌1/2+𝑘k ∗ 𝜇̃4, where 𝑘d = 127.3HVµm1/2, 𝑘𝜌 = 9.9 × 10−6 HVm,
𝑘k = 7.2HV and 𝐻0 = 35.7HV.
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Appendix
3.A. Descriptive statistics and histogram of all samples
The detailed grain size distribution data and all the histograms are shown here in appendix.

Table 3.A.1: Detailed descriptive statistics of the grain size for all samples.

Heat treatment N total Mean Standard Deviation SE of mean Skewness Kurtosis Minimum Median Maximum Range (Maximum - Minimum) P1 P99

1000 °C 10min 1 °C s−1 84 159.1 94.0 10.3 0.68 −0.20 23.5 145.1 402.8 379.3 23.5 402.8
1000 °C 10min 750 °C 5min Q 105 135.8 95.5 9.3 1.02 0.51 17.9 113.9 419.6 401.6 18.0 395.6
1000 °C 10min 800 °C 5min Q 93 145.0 113.3 11.7 1.13 0.41 23.3 96.8 493.0 469.7 23.3 493.0
1000 °C 10min 850 °C 5min Q 63 92.5 59.0 7.4 0.88 0.20 14.3 87.3 242.6 228.4 14.3 242.6
1000 °C 10min 700 °C 5min Q 102 123.9 111.7 11.1 1.59 2.24 11.0 84.3 552.9 541.9 11.4 461.3
1000 °C 10min 80 °C s−1 93 71.6 53.7 5.6 0.99 0.32 3.0 55.7 236.1 233.1 3.0 236.1
800 °C 5min Q 214 32.9 18.9 1.3 1.04 0.85 4.5 28.4 100.6 96.1 6.5 85.0
1000 °C 10min 200 °C s−1 107 122.5 70.0 6.8 0.75 0.20 18.2 108.3 353.2 335.0 20.6 318.1
700 °C 5min Q 198 32.4 20.3 1.4 0.86 0.39 1.4 29.2 102.9 101.5 2.2 92.6
400 °C 5min Q 214 31.0 18.8 1.3 0.81 0.45 1.5 28.3 96.3 94.7 3.1 80.2
CR 3mm 195 28.3 16.0 1.1 0.63 0.22 1.6 26.4 79.8 78.2 2.1 74.3
CR 1.7mm 273 24.2 20.1 1.2 1.25 1.42 1.3 19.4 94.5 93.2 1.5 92.2
CR 1.13mm 600 °C 75min Q 257 24.8 25.5 1.6 2.01 5.54 1.3 15.9 161.7 160.4 1.6 117.0
CR 1.13mm 284 26.8 24.5 1.5 1.51 2.19 1.3 19.4 130.5 129.2 1.7 104.2
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Statistics on Columns (07/03/2019 10:04:06)
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Figure 3.A.1: Detailed descriptive statistics and corresponding histogram of the grain size for all samples.
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4
Microstructure-property

relation and machine
learning prediction of hole
expansion capacity of high

strength steels

Success in creating AI would be the biggest event in human history.
Unfortunately, it might also be the last,
unless we learn how to avoid the risks.

Stephen Hawking

T he relationship between microstructure features and mechanical proper-
ties plays an important role in the design of materials and improvement of

properties. Hole expansion capacity plays a fundamental role in defining the
formability of metal sheets. Due to the complexity of the experimental pro-
cedure of testing hole expansion capacity, where many influencing factors
contribute to the resulting values, the relationship between microstructure
features and hole expansion capacity and the complexity of this relation is
not yet fully understood. In the present study, an experimental data set con-
taining the phase constituents of 55microstructures as well as corresponding

This chapter is based on the article: W. Li, M. Vittorietti, G. Jongbloed, J. Sietsma, Microstructure–
property relation and machine learning prediction of hole expansion capacity of high-strength steels,
Journal of Materials Science 56, 19228 (2021).

55



4

56 4. Hole expansion capacity

properties, such as hole expansion capacity and yield strength, is collected
from the literature. Statistical analysis of these data is conducted with the
focus on hole expansion capacity in relation to individual phases, combina-
tions of phases and number of phases. In addition, different machine learn-
ing methods contribute to the prediction of hole expansion capacity based on
both phase fractions and chemical content. Deep learning gives the best pre-
diction accuracy of hole expansion capacity based on phase fractions and
chemical composition. Meanwhile, the influence of different microstructure
features on hole expansion capacity is revealed.

keywords
microstructure constituents, hole expansion capacity, statistical analysis, machine
learning
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4.1. Introduction
Advanced high strength steels are widely used in industrial applications. Besides
high strength and good ductility, stretch-flangeability is an important mechanical
property which controls the quality of shaping many metallic components. Hence,
the hole expansion capacity (HEC), which describes the formability and edge crack-
ing resistance of sheet metals, is one of the most important mechanical properties
in for instance the automotive industry. Fig. 4.1 shows the most common test pro-
cedure for the determination of HEC following standard ISO 16630 [1]. The sheet
metal is first punched with an initial hole of diameter𝐷0 of 10mm. The punched hole
is then widened with a conical punch (60° angle) until the first through-thickness
crack appears, at the final hole diameter 𝐷h. The hole expansion capacity (𝜆) is
then calculated with

𝜆 = 𝐷h − 𝐷0
𝐷0

. (4.1)

The results are considered useful when the thickness of the sheet material is below
2.5mm, even though the standard allows thicknesses up to 6mm. Due to the
complexity of determining the hole expansion capacity, many testing factors, such
as punch edge quality [2–4] and crack determination [5], could influence the testing
result.

The HEC is not yet well understood in terms of its relationship with the mi-
crostructure of the metal. Many studies have been performed on the relations
between HEC and microstructure features, processing parameters and other me-
chanical properties, such as tensile strength and hardness [3, 5–8], but results
either are not convincing due to the limited number of data or do not give an over-
all picture on the effects of multiple phases due to the specific materials choices.
Meanwhile, recent progress in the field of HEC of multi-phase steels results in a bet-
ter understanding of the relation between HEC and fracture toughness, which can
be related to microstructure features through damage and fracture models [9, 10].
It has been shown that HEC is closely related to the capacity to resist the initiation
of micro-cracks and their propagation [11–13]. The connection of fracture behavior
and microstructure features and heterogeneities can then be extended to the un-
derstanding of the HEC behavior [14–17]. The study from de Geus et al. [15] shows
that fracture initiation correlates strongly with the local microstructural morphology.
Meanwhile, the laminography observations performed by Kahziz et al. [18] reveals
the damage evolution on both the punched and machined edges, which indicates
the possibility of building predictive models based on physical understanding.

Table 4.1 summarizes the present interpretation in the literature on the influence
of different phases on the HEC from various studies on multi-phase steels. Except
for ferrite and possibly austenite, all phases are reported to have a negative effect
on the hole expansion property. These effects are often explained by the hardness
difference between the hard phases and the soft phases, but with no clear physics-
based explanation [2, 6, 19].

The information obtained from Table 4.1 is rather limited and qualitative, since
the trends of changing HEC on different phases are always gathered from a very
limited number of data points (i.e. less than 10). Besides, the results shown in
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(a)

(b)

(c)

D0

Dh

Figure 4.1: Schematic illustration of HEC test after ISO 16630. The standard prescribes 𝐷0 = 10mm.
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Table 4.1: Reported influence of different phases on HEC for several multiphase steels.

Features Influence on the HEC

Ferrite Positive Polygonal ferrite is especially good. Higher
strength of the ferritic matrix is positive to
HEC. [3, 7, 19]

Martensite Negative Higher martensite volume fraction lowers
the HEC. HEC decreases from 30% to
15%, when martensite volume fraction in-
creases from 16% to 18%. [7, 19]

Bainite Negative Better than martensite and pearlite, but
still negative; more bainite gives rise to
lower HEC. [6, 7]

Grain boundary ce-
mentite, pearlite

Negative Microcracks often observed at the inter-
face of elongated pearlite or grain bound-
ary cementite. [6]

Retained austenite Ambiguous The stable or carbon-enriched retained
austenite films enhance the HEC due to the
reduction of the surface damage on hole-
punching and the promotion of the TRIP
effect on hole expansion. [21]

Voids and other im-
purities

Negative Voids and other irregularities found on the
edge surfaces lower the HEC. [3]

Table 4.1 only concern the relation of a single microstructure feature with hole
expansion capacity. When dealing with complex-phase steels, the combined effect
of the phases has not been studied yet.

In order to study the relations between hole expansion capacity and microstruc-
ture features in more detail, 55 groups of data containing the composition of phases
and chemical content corresponding with the HEC values are collected, as shown
in Table 4.A.1 (see Appendix A), from a final report of a research project of the
Research Fund for Coal and Steel [20]. As the original report does not make full
use of these data, it is valuable to have a deep look into these data and to derive
more comprehensive understanding in addition to Table 4.1. In the present paper,
HEC is fully investigated on its relation to phase fractions individually, to the combi-
nation of phases and to the number of phases. To quantify the relations, different
statistical regression methods are applied to enable prediction of the HEC on the
basis of both phase fractions and chemical content, while also giving the importance
ranking of different microstructure features.
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4.2. Data analysis
As shown in Table 4.A.1 (see Appendix A), the studied dataset contains 55 complex-
phase steel specimens’ results. For each specimen, the hole expansion capacity
(HEC, %) with phase fractions in volume percentage and chemical composition in
weight percentage are collected. The identified phases are martensite (M), ferrite
(F), tempered martensite (TM), upper bainite (UB), lower bainite (LB), carbide-
free bainite (CFB), bainite (B), pearlite (P) and retained austenite (RA). For these
microstructures, ferrite, martensite and bainite can be present as matrix phases,
while pearlite and retained austenite are always secondary phases. The average
standard deviation of measuring HEC three times on the same steel grade is ±9%,
which is calculated from the work by Chen et al. [22]. Meanwhile, there is also
research showing a standard deviation of of 15% on HEC values for martensitic
steels [23].

4.2.1. HEC in relation to volume fraction of phases
Volume fraction of individual phases
Based on the obtained data, the individual influence of phase volume fractions on
hole expansion capacity is shown in the scatter plots in Fig. 4.2. Fig. 4.2(a) and
(b) show the scatter plot of martensite (without tempered martensite) and ferrite
fraction in relation to hole expansion capacity, while Fig. 4.2(c) and (d) show the
total bainite (the sum of upper bainite, lower bainite, carbide-free bainite and bai-
nite) and retained austenite volume fractions in relation to hole expansion capacity.
The straight line in Fig. 4.2(b) is a linear fitting of all data points of ferrite volume
fraction and hole expansion capacity. All curved lines in Fig. 4.2 are based on the
𝑠𝑐𝑎𝑡𝑡𝑒𝑟.𝑠𝑚𝑜𝑜𝑡ℎ function in 𝑅 [24], which uses the 𝑙𝑜𝑒𝑠𝑠 (Local Polynomial Regres-
sion Fitting) function [25]. The lines are merely a guide to the eye for the main
trends.

As shown in Fig. 4.2(a), there is a clear valley in the plot of the relation between
HEC and martensite volume fraction, which indicates either low martensite volume
fraction (lower than 20%) or high martensite volume fraction (higher than 80%)
tends to have the possibility to reach relatively high HEC. Meanwhile, HEC is always
low when the martensite volume fraction falls between 20% and 70%. For ferrite
in Fig. 4.2(b), the relation is not as clear as for martensite, but a very distinct
observation is that only low HEC values are found above 50%. When ferrite volume
fraction is lower than 50%, there is no clear relation between HEC and ferrite volume
fraction. Low HEC values occur in the region where ferrite volume fraction is higher
than 50%, with only one exception: No. 23 in Table 4.A.1, that consists of a
large volume fraction of ferrite and secondary phase pearlite. An opposite trend to
martensite is shown in Fig. 4.2(c) when looking into the relation between the total
bainite volume fraction and HEC. High HEC values are found only between 30%
and 40% bainite. Fig. 4.2(d) shows the relation between HEC and the secondary
phase retained austenite. There are obviously two stages in the relation of HEC
with retained austenite volume fraction in Fig. 4.2(d). The lower volume fraction of
retained austenite shows higher HEC than the group of higher volume fraction. In
Fig. 4.2(d) the bainite fractions are also indicated for the microstructures. Relating
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Figure 4.2: HEC relation with martensite (a), ferrite (b), total bainite (c) and retained austenite (d)
volume fractions. The numbers in (d) given with the data points are the total bainite fraction in percent.
The green line shows the average HEC value, while the green shaded region shows the standard devi-
ation, of the microstructures without RA.

these values to Fig. 4.2(c), the relation between HEC and bainite fraction, it shows
that the microstructures with low RA fractions all lie in the optimum range of bainite
fraction. The values of HEC for zero retained austenite fraction, with the average
on the green line, lie within the shaded area in Fig. 4.2(d), at the level of the values
for 2-4% RA. The present data therefore does not give a conclusive view on the
influence of retained austenite on HEC.

The dataset is unfortunately very limited on pearlite. Only three microstructures
contain pearlite, of which one is the exceptional No. 23. The other two are No. 26
(15% P, 84% F, 1% M, 𝜆 = 48%) and No. 29 (10% P, 80% F, 10% M, 𝜆 = 28%).
The difference between these two HEC values is therefore primarily the result of
the difference in martensite and pearlite fractions. The reduction from 𝜆 = 48% for
1% martensite to 𝜆 = 28% for 10% martensite is stronger than the general trend
in Fig. 4.2(a), which points at a positive effect of pearlite on the HEC.
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Figure 4.3: HEC relation with difference between hard and soft phase fractions (a) and HEC difference
for two groups with respect to the volume fraction of hard and soft phase (b).

Difference between volume fraction of phases
Many researchers proposed that the HEC is closely related to the difference in me-
chanical behavior between hard and soft phases [2, 6, 7, 19]. Here we assume
that the ferrite and retained austenite are soft phases while martensite, bainite and
pearlite are hard phases. The relation between HEC and the volume fraction dif-
ference is shown in Fig. 4.3(a). The scatter plot shows an increase of HEC when
the hard phase volume fraction is increasing. When the data set is divided into
two groups, as the boxplot in Fig. 4.3(b) shows, the microstructures in the group
with more than 50% volume fraction of hard phase have significantly higher HEC
than the group with more than 50% volume fraction of soft phase. This indicates
that HEC displays a relation with the strength of materials. The lack of high HEC
values for microstructures with a higher fraction of soft phases coincides with the
observation in Fig. 4.2(b).

The one exception mentioned in Section 4.2.1, No. 23 in Table 4.A.1, is also
marked in Fig. 4.3. It clearly shows that this No. 23 sample is an outlier with
exceptionally high HEC while containing more soft phase, which is considered to be
an artefact of the testing procedure. Hence in the following statistical analysis, this
No. 23 sample is deleted from the dataset.

4.2.2. HEC in relation to combinations of phases
As discussed in the previous section, certain phases (ferrite and martensite) have a
distinct impact on HEC. The phase compositions with the increasing order of HEC are
plotted in Fig. 4.4 with both combined and non-combined fractions of similar phases
(applied for martensite and for bainite). Considering samples which have relatively
high HEC, two kinds of phase composition are occurring frequently, either fully or
nearly fully martensite, or a combination of ferrite, martensite and bainite with the
volume ratio around 2:1:1. This indicates the significant contribution of marten-
site and bainite to HEC. It is also found that most two-phase martensite/ferrite
microstructures, especially with a high ferrite fraction, have low HEC values.
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Figure 4.4: Phase composition with increasing HEC order, (a): all the individual phase are present, (b):
combining all the martensite together and all the bainite together.
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Figure 4.5: HEC relation with number of phases (a) and with number of phases while combining all
bainite and all martensite (b).

4.2.3. HEC in relation to number of phases
Fig. 4.5 shows the box-plot of HEC in relation to number of phases. In order to
quantify this relationship, a linear regression model with the number of phases as
explanatory variable and the HEC as the response variable is introduced. The num-
ber of phases is recognized as a factor, i.e. categorical variables. The number
of phases has either 5 or 4 categories, corresponding to the non-combined phase
fractions or the condition of combining all bainite and all martensite. In Table 4.2,
the t-value is the estimate (2nd column, the coefficient for each input variable)
divided by its standard error (3nd column). By comparing this t-value to the Stu-
dent’s t distribution, the p-value can be calculated [26]. A small p-value (typically
below 0.05) indicates that there is a relation between the explanatory variable and
the response variable. The intercept of the linear model is at the one-phase cat-
egory, which indicates that the one-phase category is set as the baseline. The
model shows the change of HEC values of increasing number of phases based on
the one-phase category.

Fig. 4.5 shows that the one-phase category has the highest HEC values, while in
Table 4.2, the p-values (last column) for one, two, three, four phases in non-combed
phase fractions (a) and one, two and three phases in combining all bainite and all
martensite condition (b) are all below 0.05, which indicates that it is highly unlikely
that the coefficient is equal to zero instead of the current value of the estimate
[27, 28]. Since the values of the estimate are all negative except for the one-
phase condition, it indicates that the one-phase category has the highest HEC. In
this dataset, only the pure martensite structure appears in the one-phase category,
hence the result suggests that for pure martensite structure, the hole expansion
capacity is significantly higher with respect to HEC values for microstructures with
two, three phases or four phases, as shown in Fig. 4.5 and Table 4.2. Only the five
phases without combining and four phases with combining have increased HEC,
since these structures belong to the ones mentioned in Section 4.2.2 which have
the combination of ferrite, martensite and bainite with the volume ratio around
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Table 4.2: Summary of results for linear regression between Number of phases and HEC for both non-
combing phase (a) and combining all bainite and all martensite (b), corresponding to Fig. 4.5.

(a) Number of phases Estimate Std. Error t value P

1 (Intercept) 74 7.3 10.04 0.0000
2 -31 8.3 -3.70 0.0005
3 -39 9.3 -4.16 0.0001
4 -27 9.5 -2.87 0.0060
5 -14 9.7 -1.39 0.1698

(b) Number of phases Estimate Std. Error t value P

1 (Intercept) 74 7.3 10.14 0.0000
2 -30 8.2 -3.72 0.0005
3 -36 8.5 -4.19 0.0001
4 -14 9.2 -1.56 0.1253

2:1:1. These microstructures all have a low volume fraction of retained austenite
and both martensite and tempered martensite are present.

4.2.4. LASSO selection of importance phases
Because of the large number of phases and a single target variable, hole expansion
capacity, a statistical method called Least Absolute Shrinkage and Selection Oper-
ator (LASSO) is employed as described comprehensively in previous work [29] and
in appendix Section 4.B.1.

The LASSO regression is performed on only the matrix phases, i.e. martensite,
ferrite and bainite. In order to avoid the collinearity, the samples with only ferrite
and martensite phases are excluded in this regression. Collinearity is a condition
where two or more independent variables are highly correlated, which tends to
inflate the coefficient for one variable, hence leads to wrong estimates of the coef-
ficients [26]. In Fig. 4.6, with the decrease of the LASSO penalty parameter log(𝜆e)
[29], more input variables (phases) are included in the linear regression. The first
four phases showing up on Fig. 4.6 from the high-𝜆e side of the graph are lower
bainite, martensite, upper bainite and ferrite. Since in the LASSO analysis just a
linear function between HEC and the phase volume fractions is adopted, LASSO
is not sufficient to fully explain the relationships, but LASSO does give an indica-
tion of certain phases which make the most significant contribution to the influence
on HEC, namely lower bainite, martensite, upper bainite and ferrite. Meanwhile,
LASSO shows that lower bainite and upper bainite have a clear positive effect on
hole expansion capacity and martensite has a negative effect. Here the negative
effect from martensite seems to be different from the trend seen in Fig. 4.2(a).
This is because the samples with only martensite and ferrite have more than 50%
of martensite, which are not included in the LASSO regression. Hence the negative
effect of martensite from LASSO only show the effect for 0-50% martensite, which
is therefore the same as the trend seen in Fig. 4.2(a).



4

66 4. Hole expansion capacity

−3 −2 −1 0 1 2

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

log(λe)

Co
e�

ci
en

ts

M

F

TM

UB

LB

CFB

B

M

F

TM

UB

LB

CFB

B

Figure 4.6: LASSO plot on the influence of different phase fractions on HEC.
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4.3. Prediction of HEC with both phase fraction and
chemical contents

Machine learning has been widely adopted in various applications in materials sci-
ence due to its powerful data processing and high prediction performance [30–36].
In order to predict the HEC with both phase fractions and chemical content based
on the data gathered in Table 4.A.1, we selected five different machine learning
methods:

1. Linear regression (lm)

2. Linear regression with Elastic Net regularization (glmnet)

3. Conditional Inference Tree regression (ctree2)

4. Random Forest regression (cforest)

5. Deep learning (keras)

Detailed information on these methods can be found in appendix Section 4.B. The
first four methods are applied using the ‘caret’ library [37], adopted in the 𝑅 [24]
environment. For the first four methods, 10-fold cross validation is repeated five
times. There is no tuning parameter in lm. For glmnet, the tuning grid for mixing
percentage 𝛼 is ten grids from 0 to 1 and 50 grids from 0.0001 to 50 for regular-
ization parameter 𝜆. For ctree2, the tuning grid for max tree depth 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ is
five grids from 1 to 5 and ten grids from 0 to 1 for (1 minus p-value) threshold
𝑚𝑖𝑛𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛. For cforest, the tuning grid for randomly selected predictors 𝑚𝑡𝑟𝑦 is
15 grids from 1 to 15. Deep learning is applied using the ‘keras’ library [38], which
uses TensorFlow [39] as backend in python. The network consists of two hidden
layers. Both hidden layers are dense layers with 100 and 50 neurons respectively.
Both hidden layers use the activation function relu [40]. The model compiles with
optimizer Adam [41]. The training epoch is 600 with batch size of 32 and validation
split of 5%. The modeling process follows a route consisting of five steps:

1. data partitioning into training and testing set (random: 90% of the data in
the training set, 10% in the testing set);

2. feed training data to train the model,

3. predict testing target (HEC) using the trained model;

4. calculate the performance (calculate RMSE on both training and testing data);

5. repeat step 1-4 10 times (10-fold cross validation) and calculate the mean
performance, i.e. the average RMSE on both training and testing data over
10 repeated runs.
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In step 4, the RMSE is calculated on both training dataset and testing dataset based
on the predicted hole expansion capacities 𝜆p,𝑖, the real hole expansion capacities
𝜆r,𝑖 and number of samples 𝑁 in the dataset as follows:

RMSE = √
∑𝑁𝑖=1(𝜆p,𝑖 − 𝜆r,𝑖)2

𝑁 . (4.2)

4.3.1. Machine learning model performance
The performance of all five machine learning models is shown in Fig. 4.7. The two
linear regression methods (1&2) and the Conditional Inference Tree regression (3)
clearly perform the worst with a high RMSE (root mean square error) on the testing
dataset. The deep learning model shows the best performance with the lowest
RMSE. The HEC prediction accuracy of the deep learning model is ±16%. Com-
paring to the hole expansion testing error range of the experimental data acquired
by Chen et al. [22], where the average standard deviation of testing three times
on the same steel grade is ±9%, and the 15% standard deviation of experimen-
tal HEC values for martensitic steels [23], due to various testing conditions, such
as edge surface quality and first crack determination timing, it can be concluded
that deep learning predictions reach a similar degree of accuracy as experiments,
where the 9% accuracy for the training dataset indicates an experimental accuracy
of that magnitude. In Fig. 4.8, the deep learning predicted HEC is plotted against
the experimental HEC, with the experimental test error shown in the bottom-right
corner. It can be seen that based on the learning from the training data points,
deep learning can give confident prediction of the testing data points. With the
improvement of the experimental data quality and increase of quantity of the data,
the authors believe that the prediction accuracy can be further enhanced.

4.3.2. Machine learning model interpretation
The Conditional Inference Tree regression model and Random Forest regression
model both give rise to a ranking of importance of the independent variables,
which is shown in Fig. 4.9. The feature importance based on the Conditional Infer-
ence Tree is calculated by the sum of the reduction of variance to the parent node
weighted by the probability of reaching that node caused by the certain feature. A
higher value indicates high importance. Random Forest averages the importance
of each feature from each tree to obtain the rank of importance of all features.

Ferrite, martensite and lower bainite are the three most important phases that
affect the HEC, while Mn and Cr are the two chemical elements that most strongly
affect the HEC. The possible reason why Mn and Cr are the most important chemical
elements is that both have a positive effect on the phase fraction of lower bainite
(with a Pearson correlation coefficient of 0.31). The Pearson correlation coefficient
can theoretically range from -1 to 1. A value of 1 means total positive linear correla-
tion, a value of -1 means total negative linear correlation and a value of 0 means no
linear correlation [27, 42]. The effect of Mn and Cr is also shown by Guo et al. [43]
who state that Mn improves strength to certain extent while Cr improves ductility of
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Figure 4.7: Performance comparison of all five machine learning methods.
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Figure 4.9: Variable importance plot for both conditional inference tree regression model and random
forest regression model. Phases are depicted in blue, chemical elements in red.

bainitic steels. Higher ductility has positive effect on hole expansion capacity [44]
while higher strength leads to lower hole expansion capacity [22].

With the Conditional Inference Tree regression model, a decision tree can be
built as shown in Fig. 4.10. At each node of the decision tree, one specific input
variable is selected, according to algorithms mentioned in appendix Section 4.B.2,
to separate the dataset into two subsets. For each node, the separation criterion,
the root mean square error of samples in the node, the number of samples and the
mean HEC value of all samples in the node are shown in the node box. The left
arrow from the node box indicates the condition for separation is true, while the
right arrow indicates it is false. Node 0 contains all 54 samples; its criterion is a
martensite phase fraction smaller than 97.5%. This criterion is true for 48 samples
with an average HEC of 45%, as shown in node 1, it is false for 6 samples with an
average HEC of 74%, as shown in node 16. The samples of each of these nodes
are further seperated on the basis of subsequent criteria. The color of the node
indicates its average HEC values.

From the decision tree, the trend of the influence of different independent vari-
ables is evidenced. It shows that the changing of HEC with different variables is
not monotonic. Table 4.3 summarizes the information from the decision tree based
on the range of the HEC values corresponding to the phase fractions and chemical
contents. Node 13 and node 18 in Fig. 4.10 classify the highest HEC with either
fully martensitic structure or the combination of martensite, lower bainite and fer-
rite. Meanwhile, node 8 in Fig. 4.10 classifies the lowest HEC with more than 31.5%
ferrite, less than or equal to 13.7% lower bainite and a martensite volume fraction
between 11.5% and 97.5%.
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Figure 4.10: The conditional inference tree regression model plot, phase fractions in percentage and
chemical content in weight percent. Colors indicate the magnitude of the average HEC in the node.

Table 4.3: Summary of the conditional inference tree based on the range of HEC values.

No. HEC (%) Phase fraction (%) and chemical content (wt%) node

I 25 11.5 < 𝑓M ⩽ 97.5; 𝑓LB ⩽ 13.7; 𝑓F > 31.5 node 8

II 40-50
𝑓M ⩽ 97.5; 𝑓LB ⩽ 13.7; 𝑓F ⩽ 31.5; 𝑐Nb > 0 node 5

𝑓M ⩽ 11.5; 𝑓LB ⩽ 13.7; 𝑓F > 31.5 node 7
𝑓M ⩽ 97.5; 𝑓LB > 13.7; 𝑓F ⩽ 33.3 node 10

III 60-70 𝑓M ⩽ 97.5; 𝑓LB ⩽ 13.7; 𝑓F ⩽ 31.5; 𝑐Nb = 0 node 14
𝑓M > 97.5; 𝑐Cr ⩽ 0.2 node 17

IV over 70 𝑓M ⩽ 97.5; 𝑓LB > 13.7; 𝑓F > 33.3 node 13
𝑓M > 97.5; 𝑐Cr > 0.2 node 18
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4.4. Discussion
Comparing the summary in Table 4.1 and the statistical analysis in Section 4.2.1,
there are some clearly contradictory results. The summary in Table 4.1 shows that
only ferrite has a positive effect on hole expansion capacity while all other phases
have a negative effect. But the analysis from a large number of data, as presented in
the present paper, shows more complicated effects due to varying volume fractions
of different phases, other than simply positive or negative. This is mainly due to
the limitation of the range of data in studies in Table 4.1. Most of the studies only
observe a certain fraction range of certain phases, which is not representing the
effect on HEC across the whole volume fraction range. The effect of phase fractions
on HEC is complicated and cannot be expressed by simple monotonic functions.

Taking into account the analysis in Section 4.2, in whichever way the data is
looked at, the most important phases which contribute to HEC are ferrite, marten-
site and lower bainite. Considering that many studies relate the HEC to the dif-
ference in hard/soft phases, these three phases actually take the most important
role in hard/soft phases in steels, especially ferrite and martensite, which are most
commonly seen the softest phase and the hardest phase. Statistics show that the
higher the fraction of the hard phase is, the higher the HEC is. This reflects that
the HEC is a strength-related mechanical property. The HEC value shows a vally
at the intermediate volume fraction of martensite which is possibly related to the
minimum fracture stain in dual phase steels with the similar condition of martensite
[45, 46]. This can be explained by damage nucleation and crack growth mechanics
being favored by strength mismatch and the related increase of the local stress tri-
axiality. Meanwhile, certain combinations of phases also give high HEC, such as the
combination of ferrite, martensite and bainite with the volume ratio around 2:1:1.
This high HEC can be accounted for by the accommodation of stress by this spe-
cific volume combination of hard and soft phases, where the hard phase gives the
overall strength and soft phase gives ductility for expansion under stress without
cracking. But the ferrite/martensite combinations do not perform very well. Al-
though with the analysis in this paper, the complicated relations between HEC and
microstructure features are clearly shown, it is not possible to give a simple relation.
However, with the help of Deep learning, a reliable prediction (with an accuracy of
±16% on HEC, which is similar to the experimental accuracy) can be made with
the combination of the volume fraction of each phase and chemical content. Still,
the accuracy of the prediction model highly depends on the amount of the data
gathered and the accuracy of the data. Even though the dataset used in this study
is a large dataset in the context of materials science, it is definitely limited and small
in the field of so called big data and traditional machine learning. Nevertheless, the
present study shows that meaningful results can also be achieved with limited data
sets. The authors believe that significant improvement of the prediction model can
be made if the data will be enhanced, both in the amount and in the quality.

In this study, since the obtained dataset only contains the phase volume frac-
tions and the chemical composition, the data analysis and prediction of HEC are only
based on these two microstructure features. Even without considering many other
microstructure features, such as grain size distribution, texture and grain morphol-
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ogy, which are normally considered to have distinct impact on mechanical behavior,
this study shows valuable results with limited materials information.

4.5. Conclusions
This study focuses on data acquired from literature to investigate the relation of
phase volume fractions and chemical compositions with hole expansion capacity.
The findings in this paper can guide some new physical investigations to unravel
the root causes of the HEC behavior, and consequently to the development of better
steels. The following conclusions are drawn based on the analysis from different
perspectives.

• The effect of phase fractions on HEC is complicated and cannot be expressed
by simple monotonic functions. For martensite, volume fractions between
20% and 70%will lead to a low HEC. HEC slightly decreases with an increasing
volume fraction of ferrite. Around 30% bainite gives a high HEC.

• Certain phases make significant contribution to the HEC, most prominently,
ferrite, martensite and lower bainite.

• The higher the volume fraction of harder phases is, the higher the HEC is.

• Purely martensitic microstructure or microstructure with lower bainite tend to
have higher HEC compared to other combinations of phases. High HEC can
also be achieved with the combination of ferrite, martensite and bainite with
the volume ratio around 2:1:1.

• The applied Deep learning model has better performance (with the prediction
accuracy of ±16% on HEC) over the linear regression models and tree regres-
sion models on the prediction of HEC based on phase fraction and chemical
content.
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Appendix
4.A. Raw data from literature
The collected and organized data from the work of Ryde et al. [20] about the hole expansion capacity with chemical compo-
sition and phase fractions is shown in Table 4.A.1.

Table 4.A.1: Raw data from the literature with hole expansion capacity (HEC, %) with phase fractions in percentage and chemical content in wt%, the
phases are martensite, ferrite, tempered martensite, upper bainite, lower bainite, carbide-free bainite, bainite, pearlite and retained austenite.

No. HEC M F TM UB LB CFB B P RA C Mn Si Cr Mo Nb

1 52 100.0 0 0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
2 67 80.0 20.0 0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
3 88 100.0 0 0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
4 73 100.0 0 0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
5 51 94.0 6.0 0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
6 87 100.0 0 0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
7 72 100.0 0 0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
8 33 95.0 5.0 0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
9 69 100.0 0 0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
10 42 70.0 30.0 0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
11 33 60.0 40.0 0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
12 83 82.0 18.0 0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
13 33 67.0 33.0 0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
14 26 61.0 39.0 0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
15 73 86.0 14.0 0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
16 29 83.0 17.0 0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
17 23 66.0 34.0 0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
18 44 94.0 6.0 0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
19 38 33.0 60.0 0 0 0 7 0 0 0 0.110 2.10 0.15 0 0.20 0.020
20 24 19.0 79.0 0 0 0 2 0 0 0 0.135 1.50 0.50 0 0 0.015
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Table 4.A.1: (continued)

No. HEC M F TM UB LB CFB B P RA C Mn Si Cr Mo Nb

21 22 47.0 37.0 0 0 0 16 0 0 0 0.140 1.70 0.18 0.3 0.15 0
22 24 36.0 62.0 0 2 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
23 84 0 86.0 0 0 0 0 0 14 0 0.135 1.50 0.50 0 0 0.015
24 16 41.0 54.0 0 5 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
25 71 10.0 40.0 0 20 0 30 0 0 0 0.110 2.10 0.15 0 0.20 0.020
26 48 1.0 84.0 0 0 0 0 0 15 0 0.135 1.50 0.50 0 0 0.015
27 59 10.0 0 0 90 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
28 46 7.0 30.0 0 0 33.0 30 0 0 0 0.110 2.10 0.15 0 0.20 0.020
29 28 10.0 80.0 0 0 0 0 0 10 0 0.135 1.50 0.50 0 0 0.015
30 49 5.0 0 0 5 80.0 10 0 0 0 0.140 1.70 0.18 0.3 0.15 0
31 19 13.0 37.0 2.6 0 0 42 5.4 0 0 0.170 1.70 0.18 0.3 0.15 0
32 17 13.0 37.0 2.6 0 0 42 5.4 0 0 0.170 1.70 0.18 0.3 0.15 0
33 56 15.0 12.0 0 0 0 29 44.0 0 0 0.170 1.70 0.18 0.3 0.16 0
34 47 4.0 42.0 15.0 0 0 27 12.0 0 0 0.110 2.10 0.15 0 0.20 0.020
35 58 7.0 36.0 0 0 0 57 0 0 0 0.140 2.10 0.20 0.3 0 0.020
36 35 0 76.0 24.0 0 0 0 0 0 0 0.144 1.52 0.48 0 0 0.018
37 30 0 20.0 80.0 0 0 0 0 0 0 0.172 1.59 0.51 0 0 0.017
38 71 0 30.0 70.0 0 0 0 0 0 0 0.170 1.63 0.47 0 0 0.017
39 44 0 3.5 96.5 0 0 0 0 0 0 0.178 1.41 0.44 0 0 0.016
40 40 0 14.0 86.0 0 0 0 0 0 0 0.135 1.53 0.18 0 0 0.015
41 25 0 72.0 28.0 0 0 0 0 0 0 0.125 1.52 0.20 0 0 0.015
42 34 0 46.0 54.0 0 0 0 0 0 0 0.125 1.52 0.20 0 0 0.015
43 23 0 84.0 16.0 0 0 0 0 0 0 0.125 1.52 0.20 0 0 0.015
44 44 0 45.0 40.0 0 0 0 15.0 0 0 0.130 1.00 0.20 0 0 0.015
45 48 0 49.0 10.0 0 0 0 41.0 0 0 0.130 1.00 0.20 0 0 0.015
46 75 2.0 49.8 20.6 0 27.4 0 0 0 0.2 0.140 2.10 0.20 0.3 0 0.020
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Table 4.A.1: (continued)

No. HEC M F TM UB LB CFB B P RA C Mn Si Cr Mo Nb

47 84 1.0 44.0 19.4 0 34.6 0 0 0 1.0 0.140 2.10 0.20 0.3 0 0.020
48 83 1.5 45.0 20.8 0 32.0 0 0 0 0.7 0.140 2.10 0.20 0.3 0 0.020
49 76 1.0 36.6 24.1 0 37.9 0 0 0 0.4 0.140 2.10 0.20 0.3 0 0.020
50 79 2.0 38.0 23.6 0 35.9 0 0 0 0.5 0.140 2.10 0.20 0.3 0 0.020
51 32 2.5 36.0 0 0 0 0 59.0 0 2.5 0.170 1.70 0.18 0.3 0.15 0.015
52 40 4.5 22.0 0 0 0 0 70.0 0 3.5 0.170 1.70 0.18 0.3 0.15 0.015
53 44 4.2 10.0 0 0 0 0 84.0 0 1.8 0.170 1.70 0.18 0.3 0.15 0.015
54 40 3.3 13.0 0 0 0 0 80.8 0 2.9 0.170 1.70 0.18 0.3 0.15 0.015
55 39 1.9 20.0 0 0 0 0 74.9 0 3.2 0.170 1.70 0.18 0.3 0.15 0.015
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4.B. Principles of regression methods
4.B.1. Linear regression with Elastic Net regularization (glm-

net)
The Elastic Net regression of the target mechanical property 𝑓 at the point x is

̂𝑓ElasticNet(x) = ̂𝛽0 +
𝑝

∑
𝑗=1
𝛽̂𝑗𝑥𝑗 , (4.B.1)

where 𝑥𝑗 is the 𝑗th variable in the prediction point x and 𝑝 is the number of inde-
pendent variables. The estimate 𝛽̂𝑗 is the corresponding coefficient in the Elastic
Net which minimizes the objective function:

𝐿(𝛽0, 𝛽1, ..., 𝛽𝑝) =
𝑛

∑
𝑖=1
(𝑦𝑖 − 𝛽0 −

𝑝

∑
𝑗=1
𝛽𝑗𝑥𝑖𝑗)2 + 𝜆e

𝑝

∑
𝑗=1
(𝛼|𝛽𝑗| + (1 − 𝛼)𝛽2𝑗 ). (4.B.2)

Here 𝑛 is the number of the data points, 𝑥𝑖𝑗 is the 𝑖th observation corresponding to
the 𝑗th variable, 𝑦𝑖 is the target mechanical property corresponding to the data point
x𝑖. Different from the LASSO method which is used in the previous work [29], here
the shrinkage penalty has two parts [47], namely LASSO penalty (magnitude 𝛼)
and Ridge penalty (magnitude 1−𝛼). The Lasso penalty is indifferent while solving
the problem among a set of strong but correlated variables. The Ridge penalty, on
the other hand, tends to shrink the coefficients of correlated variables toward each
other. The Elastic Net penalty is a combination of the two, also a compromise [48].
The two regularization parameters (𝛼 and 𝜆e) are optimized within a certain tuning
grid during the training process.

4.B.2. Conditional Inference Tree regression (ctree2)
A decision tree is a model in the form of a tree structure, which breaks the data set
into smaller and smaller subsets, hence the tree structure is built up. In order to
build a tree structure, the most important two main steps are needed: to choose
the feature and to find the condition to split, i.e. the partitioning algorithm. The
most popular implementations of the recursive partitioning criteria, such as ‘CART’
[49] and ‘C4.5’ [50], have the problem of overfitting and a selection bias towards
covariates with many possible splits [51]. Therefore, the Conditional Inference Tree
regression, also known as Unbiased Recursive Partitioning, was introduced [51].
Unlike selecting the variable and deciding split criteria based on Gini Impurity [49] or
Information Gain [50], it uses a significance test procedure, e.g. permutation tests
[52]. Conditional Inference Tree is proved to be well suited for both explanation
and prediction.

4.B.3. Random Forest regression (cforest)
A random forest is a meta-estimator (i.e. it combines the result of multiple pre-
dictions) which aggregates many decision trees. It is a bagging technique, i.e.
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Bootstrap Aggregation, which is done with random sampling with replacement and
aggregation of the outputs at the end without preference to any model. Therefore,
the cforest model used in this paper is a Conditional Random Forest which can be
simply seen as averaging multiple Conditional Inference Tree results [48, 51, 53].

4.B.4. Deep learning (keras)
Deep learning refers to deep neural networks. It is an artificial intelligence function
involving multiple units, called neurons, which are connected to each other like
a web, to make the data processing in a nonlinear approach. Fig. 4.B.1 shows
an example of the neural network which uses all 15 microstructure features to
predict the hole expansion capacity. The first 15 input neurons build up the input
layer, while the output layer, in this case, is just one neuron, i.e. Hole Expansion
Capacity. The hidden layers are in the middle. Fig. 4.B.1 shows two hidden layers,
while in the actual case, two hidden layers of 100 and 30 neurons are applied. This
kind of fully connected neural network is called multilayer perceptron. Data flows
from the input layer through the hidden layers and finally arrives output layer. The
mathematics for calculating the value 𝑌 of each neuron from the neurons in the
previous layer is [48, 54]:

𝑌 = 𝐹(𝐵 +
𝑛

∑
𝑖=1
𝑤𝑖𝑥𝑖), (4.B.3)

where 𝑤𝑖 is the weight for the neuron with value 𝑥𝑖, 𝑛 is the number of neurons,
and 𝐵 is the bias of each layer, which is a constant for each layer. 𝐹 is the activation
function, relu is used in this study, which adds complexity and dimensionality to
the neuron network. While the network is trained by feeding it with input data,
the weight and bias will be learned to correct themselves to minimize the loss
function by the technique called back propagation. The loss function, in this case,
is the mean squared error between the network calculated HEC and the real HEC
corresponding to the input microstructure.
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Figure 4.B.1: An example of the neural network with the input variables and output variable used in
Section 4.3.
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Machine learning prediction

of bendability and the
corresponding

microstructure-property
relation analysis of high

strength steels

Notice that the stiffest tree is most easily cracked,
while the bamboo or willow survives by bending with the wind.

Bruce Lee

B endability, while being an important factor affecting the application of
advanced high strength steels in various industries, is not yet well ex-

plained in terms of relationship with microstructure features, due to the lack
of overview on various phases and the lack of data containing bothmicrostruc-
ture features and bendability. In this study, an experimental data set con-
taining the phase volume fractions and the chemical composition of the mi-
crostructure as well as corresponding property, i.e. bendability, is collected
from the literature. Statistical analysis on these data is conducted with the
focus on bendability in relation to individual phases, combinations of phases
and number of phases. In addition, different machine learning methods are
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applied to predict bendability based on both phase fractions and chemical
composition. The results show that the tree-based models give the best pre-
diction of bendability. Meanwhile, the influence of different microstructure
features on bendability is revealed by quantifying and comparing the differ-
ent effects.

keywords
bendability, microstructure constituents, statistical analysis, machine learning
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5.1. Introduction
Advanced high strength steels are widely adopted in different industries, such as
automotive, aerospace and construction [1, 2]. With the complex shapes being
needed in the specific user cases, high standards of forming properties are required,
such as bendability, which describes the ability of materials to undergo bending
force without cracking initiation along the bending line [3]. As shown in Fig. 5.1,
the three point bending test according to ISO7438 standard [4] is carried out with
a punch forcing the sheet material onto two rollers. The thickness of the testing
materials should be less than 25mm. The distance between the two rollers should
be three times the thickness of the test materials plus the diameter/thickness of the
punch. The punch stops at the point where the crack initiates along the bending
line. In order to ensure the plain strain condition throughout the bending process,
the width and length of the sheet should be at least 20 times the sheet thickness. A
better bendability is shown by a smaller minimum bending radius, which is normally
characterized by the inner radius 𝑅i. To compare the bendability for materials with
different thickness, the minimum bending radius is usually divided by the thickness
of the material 𝑡, hence leads to the ratio 𝑅i/𝑡 [5]. A lower 𝑅i/𝑡 corresponds to a
better bendability.

Various studies have shown that different materials features, such as phases,
precipitates and surface roughness, have influence on the bendability [6–11]. How-
ever, due to the lack of data points with bendability and corresponding microstruc-
ture features, and the lack of a general view over multiple phases, these results
are not sufficient to fully understand the bendability in relation to microstructure
features. In order to study further the relations between bendability and microstruc-
ture features, 44 sets of data containing the volume fraction of phases and chemical
composition as well as the bendability are collected, as shown in Table 5.A.1, from
an RFCS final report [12]. Since the original work did not focus on the specific rela-
tion between bendability and microstructure features, this chapter will look in detail
into this relation and apply machine learning algorithms to predict bendability from
phase volume fractions and chemical compositions. In addition, the importance of
the different microstructure features are shown and discussed.

5.2. Data analysis
As shown in Table 5.A.1 (see Appendix), the obtained dataset contains data from
44 low-alloy steel specimens [12]. For each specimen, the minimum bending ratio
(bendability) 𝑅i/𝑡 with phase fractions in volume percentage and chemical composi-
tion in weight percentage are collected. The phases are martensite (M), ferrite (F),
tempered martensite (TM), upper bainite (UB), lower bainite (LB), carbide-free bai-
nite (CFB), bainite (B) and pearlite (P). The present study is based on this collected
dataset.

5.2.1. Bendability in relation to volume fraction of phases
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Figure 5.1: Schematic drawing of bending test.

Volume fraction of individual phases
Based on the obtained data in Table 5.A.1 (see Appendix), the individual influence
of phase fractions on the bendability is shown in Fig. 5.2 with the scatter plot of
both martensite and ferrite volume fraction with the bendability. The straight lines
show the linear fitting of all data points between martensite and ferrite fractions in
relation to the bendability. The legend used on each sample point represents the
most abundant phase except martensite in Fig. 5.2(a) and ferrite in Fig. 5.2(b).

As shown in Fig. 5.2, there is clear influence from both martensite and ferrite
on bendability. Martensite has a negative influence. With higher volume fraction
of martensite, 𝑅i/𝑡 increases, i.e. the bendability becomes worse. Meanwhile, the
ferrite volume fraction has the opposite effect. But since the scatter plot shows
strong deviations from the linear regression line, this only gives the trend of the
influence. As shown in Fig. 5.2(a), all specimens which have more than 65% volume
fraction of martensite have bendability value large than 3, which indicates the poor
bendability for those samples. Meanwhile for ferrite in Fig. 5.2(b), those with more
than 50% volume fraction of ferrite have good bendability.

While looking at the most abundant phase except martensite in Fig. 5.2(a), most
of the samples have ferrite as the most abundant phase. Among the other cases,
two samples with lower bainite as the most abundant phase except martensite have
better bendability than other samples with upper bainite, bainite or carbide-free
bainite as the most abundant phase except martensite. This could be associated
with the carbide formation within bainitic ferrite in the lower bainite microstruc-
ture. While looking at the most abundant phase except ferrite in Fig. 5.2(b), half
of the samples have martensite as the most abundant phase except ferrite. In
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Figure 5.2: Bendability relation with martensite (a) and ferrite (b) volume fraction. The legend represents
the most abundant phase except martensite in (a) (or ferrite in (b)) for each sample.

those cases, only a few of them, which have large fraction of ferrite present (more
than 40%), have good bendability. This again indicates the negative effect of the
martensite phase. Among the other cases in Fig. 5.2(b) that the samples with tem-
pered martensite as the most abundant phase except ferrite generally have good
bendability, while there are two exceptions, which could be caused by the degree
of tempering of these specific samples on which the original dataset does not give
information. Meanwhile, samples with pearlite as the most abundant phase ex-
cept ferrite also exhibit good bendability. These three cases are all associated with
more than 80% volume fraction of ferrite. Combining other cases located at the
lower right corner of Fig. 5.2(b), it is shown that samples with around 80% volume
fraction of ferrite and either pearlite, martensite or tempered martensite as the
secondary phase show excellent bendability. It is generally well-known that ferrite
phase has good ductility but low strength. It is interesting to see in Fig. 5.2(b),
that the samples on the lower left corner with presence of tempered martensite as
the most abundant phase except ferrite have good bendability. Comparing to those
good bendability samples with higher volume fraction of ferrite, these cases have
better strength performance, which could be beneficial if not only the bendability
is required, but also the strength of the samples is a requirement.

Difference between volume fraction of phases
Due to the limited number of specimens which contain bainite and pearlite, there is
no clear relation directly associated to bendability, therefore the phases are sorted
into two groups, i.e. soft phase and hard phase. Here except ferrite, all other
phases shown are assumed to be hard phase, including martensite, bainite and
pearlite. The relationship between bendability and the soft and hard phases is
shown in Fig. 5.2 (b) and Fig. 5.3. When separating the data points into two
groups, i.e. more soft phase and more hard phase, a clear distinction between
these two groups is shown in the box plot in Fig. 5.3. The group containing more
soft phase (the left box) has a mean value of the minimum bending ratio 𝑅i/𝑡 below
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Figure 5.3: Bendability relation with hard and soft phases.

1, while the group containing more hard phase (the right box) has a mean value
of 𝑅i/𝑡 over 3. This indicates the significant beneficial effect of soft phase on the
bendability.

5.2.2. Bendability in relation to combinations of phases
In order to check if the different phase volume fractions have combined effects on
the bendability, the phase compositions are plotted with a stacked bar plot in the
order of increasing bendability, as shown in Fig. 5.4. While Fig. 5.4 (a) shows all
individual phases, Fig. 5.4 (b) has all the martensite and all the bainite combined.

It is clearly shown that the ferritic matrix has beneficial effect on the bendabil-
ity, while martensitic structure has negative effect. When ferrite is present with
volume fraction of more than 50%, the presence of the secondary phases makes
significant changes to the bendability. Among those secondary phases, pearlite
has a significant positive contribution to bendability comparing to martensite and
bainite. But since there are only three samples with pearlite present in the whole
dataset, the influence of the fraction of pearlite on bendability is hard to reveal
here. The presence of a similar fraction of tempered martensite does not always
show good bendability. This could be caused by the degree of tempering in the
processing of the microstructure. Combination of ferrite and pearlite, combination
of ferrite and martensite, and combination of these three phases all contribute to
better bendability. In these good combinations, ferrite has around 80% volume
fraction.

5.2.3. Bendability in relation to number of phases
Fig. 5.5 shows the box-plot of bendability in relation to number of phases. The
number shown above the median line is the average ferrite volume fraction in the
corresponding group. In order to quantify this relationship, we introduce a linear
model with number of phases as the explanatory variable and bendability as the
response variable, the relationship is shown in Table 5.1. The number of phases
has either 5 or 3 categories, corresponding to the non-combined phase fractions
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Figure 5.4: Phase composition with increasing Bendability order, (a): all the individual phase are present,
(b): combining all the martensite together and all the bainite together.
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Figure 5.5: Bendability relation with number of phases, without combination (a) and with combination
of all martensite and all bainite (b). The number shows above the median line is the average ferrite
volume fraction in the corresponding group.

or the case of combining all bainite and all martensite. Detailed explanation of the
t-value and p-value can be found in Section 4.2.3. Typically a p-value less than 0.05
indicates that there is a relation between the explanatory variable and the response
variable. Since all p-values in Table 5.1 are distinctly smaller than 0.05, it is obvious
that with the increasing of number of phases, the bendability ratio decreases, hence
better bendability. This shows that complex-phase steels generally have better
bendability. In the case of decreasing bendability with 5 phases present in Fig. 5.5,
it is because in this case, large faction of ferritic matrix was replaced with martensite
and bainite, which have negative a effect on the bendability.

Looking into the numbers above the median line in Fig. 5.5, which represent the
average ferrite volume fraction of the corresponding group, it can be seen that the
influence from the number of phases cannot be explained only by the change of
volume fraction of ferrite in the case of separating all bainite and all martensite in
Fig. 5.5(a). In the case of combination of all martensite and all bainite in Fig. 5.5(b).
The influence of the number of phases follows the same trend as the influence of
volume fraction of ferrite, i.e. the higher the volume fraction of ferrite is, the better
the bendability is.

5.3. Prediction of bendability with both phase frac-
tion and chemical content

With the powerful prediction performance shown by machine learning applied in
the materials science field [13–19] and in order to predict the bendability based on
microstructure features gathered in Table 5.A.1, five machine learning methods are
chosen to be applied in this case:

1. Linear regression (lm)

2. Linear regression with Elastic Net regularization (glmnet)
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Table 5.1: Results summary for linear regression between Number of phases and bendability for both
separated phases (a) and with combination of all martensite and all bainite (b), corresponding to Fig. 5.5.

(a) Number of phases Estimate Std. Error t value P

1 (Intercept) 5.0 0.59 8.47 0.0000
2 -2.2 0.67 -3.35 0.0018
3 -3.9 0.76 -5.09 0.0000
4 -4.1 0.93 -4.34 0.0001
5 -2.6 1.02 -2.54 0.0151

(b) Number of phases Estimate Std. Error t value P

1 (Intercept) 5.0 0.60 8.32 0.0000
2 -2.3 0.67 -3.43 0.0014
3 -3.7 0.71 -5.15 0.0000

3. Conditional Inference Tree regression (ctree2)

4. Random Forest regression (cforest)

5. Deep Learning (keras)

A similar procedure as shown below and the applied libraries (‘caret’ in R and ‘keras’
in Python) are described in the hole expansion capacity Section 4.3 and the machine
learning methods details can be found in Section 4.B. In short, the procedure is as
follows.

1. Data partitioning into training and testing set (random: 90% of the data in
training dataset, 10% of the data in testing dataset),

2. Feed training data to train the model,

3. Predict testing target (Bendability) using the trained model,

4. Calculate the performance (calculate RMSE on both training and testing data),

5. Repeat process 1-4 for 10 times for randomly chosen training and testing
dataset (10-fold cross validation) and calculate the mean performance.

5.3.1. Machine learning model performance
The performance of the machine learning models is shown in Fig. 5.6. All five mod-
els have similar prediction accuracy on the training dataset. But on the prediction
performance of the testing dataset, the two linear models (lm and glmnet) and
the deep learning model have worse performance comparing to the two tree-based
models (ctree2 and cforest). With the two tree based models, the accuracies of the
prediction of bendability 𝑅i/𝑡 are both ±1.
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5.3.2. Machine learning model interpretation
Based on the two tree-based models, the combined ranking of importance is shown
in Fig. 5.7, where the zoomed-in plot shows the detailed information from the lower
left corner. The Conditional Inference Tree’s feature importance is calculated by the
sum of the reduction of variance to the parent node weighted by the probability
of reaching that node that is caused by the certain feature. Higher value indicates
high importance. Random Forest takes the feature importance from each tree and
averages the importance to obtain the rank of importance of all features. It is clearly
shown that the martensite fraction plays the most important role in determining
the bendability. Ferrite ranks second. This shows the significant influence of hard
phase, especially martensite, on the bendability. The zoomed-in plot shows that
the other phase fractions and chemical content have significantly less influence on
bendability based on the two tree-based prediction models.

Fig. 5.8 shows a tree built from the conditional inference tree model. It can be
seen that from the top node 0, martensite volume fraction already has huge impact
on the bendability. The two nodes below, node 1 and node 8, show the mean value
of bendability of 1.4 and 4.7, respectively, by the separation criteria of martensite
volume fraction of 66%. Further looking down the tree, the best bendability shows
up with tempered martensite volume fraction below 1%, ferrite volume fraction
above 70% and hence martensite volume fraction below 30%. This corresponds
to the findings in Section 5.2.2. The worst bendability shows up with martensite
volume fraction between 66% and 84% in combination of more than 0.14 wt% of
carbon content. If considering the bendability of 1.3 as the threshold, nodes 3, 4
and 6 represent the microstructures with good bendability. Those microstructures
all contain less than 66% martensite. Nodes 3 and 4 have less than 1% tempered
martensite (no tempered martensite present in these cases), while node 6 has more
than 1% of tempered martensite and less than 1.5 wt% Mn.

5.4. Discussion
Considering the data analysis done in the previous sections, it seems that prediction
of bendability based on the phase volume fractions and chemical content is not a
simple task. While only knowing the phase volume fractions and chemical content,
it is hard to get a precise prediction of bendability 𝑅i/𝑡, comparing to the previous
prediction on hole expansion capacity in Chapter 4. The prediction accuracy of the
Conditional Inference Tree regression and Random Forest regression are both ±1,
which only gives a relatively large range prediction. There are multiple reasons
for this limitation of prediction. One could be the limited number of data points.
Giving more data for the training of the model, it could have better performance,
especially for the deep learning model. The other could be the reason that only
phase fractions and chemical content cannot describe the bendability adequately.
Since it can be seen from Fig. 5.4 that even for some similar combination of phase
fractions, there is still significant variations of the experimental bendability. Besides
phase volume fractions and chemical content, there would be many other influenc-
ing factors on bendability, such as grain size, grain morphology, texture and even
surface condition. This is the limitation of the current used dataset.
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Figure 5.6: Performance comparison of all five machine learning models on the prediction of bendability.

Figure 5.7: Variable importance plot for both conditional inference tree regression model and random
forest regression model on bendability.
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Figure 5.8: The conditional inference tree regression model plot on prediction of bendability, phase
fractions in percentage and chemical content in weight percent. Colors indicate the magnitude of the
average bendability in the node.

While the prediction modelling gives the most important variables to be marten-
site and ferrite, it justifies the findings in Section 5.2. Generally, the soft phase
ferrite contributes positively to bendability while the hard phase martensite has the
opposite effect. This is highly related to the ductility of the phases. Increasing
strength often leads to the degradation of ductility. Bendability is closely related
to both material strength and ductility. On the one hand, better ductility leads to
smaller inner bending radius, hence better bendability. On the other hand, higher
strength of the material only increases the force needed for bending, while it does
not increase the bendability.

5.5. Conclusions
This study concentrates on investigation of the relationship among the data col-
lected from literature about microstructure features with corresponding bendability
values. The following conclusions can be drawn from the research.

• Prediction of bendability only based on phase volume fractions and chemical
content cannot be done as accurately as experimental determination. The
prediction accuracy is ±1 on 𝑅i/𝑡.

• Based both on the prediction models and the data analysis, martensite and
ferrite are recognized to be the most important microstructure features for
bendability among phase fractions and chemical content.

• Soft phase mainly contributes positively to bendability, while hard phase con-
tributes negatively.
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• Complex-phase steels generally have better bendability, especially under cer-
tain combination of phase, such as combination of ferrite and pearlite, combi-
nation of ferrite and martensite, and combination of these three phase, with
the condition of ferrite being the matrix phase and have volume fraction above
70%.
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Appendix
5.A. Raw data from literature
The collected and organized data from the work of Ryde et al. about the bendability with chemical composition and phase
fractions is shown in Table 5.A.1.

Table 5.A.1: Raw data from the literature with bendability with phase fractions in percentage and chemical content in wt%, the phases are martensite (M),
ferrite (F), tempered martensite (TM), upper bainite (UB), lower bainite (LB), carbide-free bainite (CFB), bainite (B) and pearlite (P).

No. 𝑅i/𝑡 M F TM UB LB CFB B P C Mn Si Cr Mo Nb

1 6.7 100.0 0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
2 5.3 80.0 20.0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
3 6.7 100.0 0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
4 4.7 100.0 0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
5 4.0 94.0 6.0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
6 5.0 100.0 0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
7 2.7 100.0 0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
8 3.0 95.0 5.0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
9 4.2 100.0 0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
10 5.0 70.0 30.0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
11 1.1 60.0 40.0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
12 6.7 82.0 18.0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
13 4.0 67.0 33.0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
14 1.3 61.0 39.0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
15 5.0 86.0 14.0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
16 3.0 83.0 17.0 0 0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
17 1.7 66.0 34.0 0 0 0 0 0 0 0.135 1.50 0.50 0 0 0.015
18 4.2 94.0 6.0 0 0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
19 0.8 33.0 60.0 0 0 0 7.0 0 0 0.110 2.10 0.15 0 0.20 0.020
20 0.7 19.0 79.0 0 0 0 2.0 0 0 0.135 1.50 0.50 0 0 0.015
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Table 5.A.1: (continued)

No. 𝑅i/𝑡 M F TM UB LB CFB B P C Mn Si Cr Mo Nb

21 1.7 47.0 37.0 0 0 0 16.0 0 0 0.140 1.70 0.18 0.3 0.15 0
22 1.3 36.0 62.0 0 2.0 0 0 0 0 0.110 2.10 0.15 0 0.20 0.020
23 0.5 0 86.0 0 0 0 0 0 14.0 0.135 1.50 0.50 0 0 0.015
24 1.7 41.0 54.0 0 5.0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
25 0.8 10.0 40.0 0 20.0 0 30.0 0 0 0.110 2.10 0.15 0 0.20 0.020
26 0.5 1.0 84.0 0 0 0 0 0 15.0 0.135 1.50 0.50 0 0 0.015
27 1.2 10.0 0 0 90.0 0 0 0 0 0.140 1.70 0.18 0.3 0.15 0
28 0.8 7.0 30.0 0 0 33.0 30.0 0 0 0.110 2.10 0.15 0 0.20 0.020
29 0.7 10.0 80.0 0 0 0 0 0 10.0 0.135 1.50 0.50 0 0 0.015
30 1.0 5.0 0 0 5.0 80.0 10.0 0 0 0.140 1.70 0.18 0.3 0.15 0
31 1.2 13.0 37.0 2.6 0 0 42.0 5.4 0 0.170 1.70 0.18 0.3 0.15 0
32 3.0 13.0 37.0 2.6 0 0 42.0 5.4 0 0.170 1.70 0.18 0.3 0.15 0
33 1.2 15.0 12.0 0 0 0 29.0 44.0 0 0.170 1.70 0.18 0.3 0.16 0
34 3.0 4.0 42.0 15.0 0 0 27.0 12.0 0 0.110 2.10 0.15 0 0.20 0.020
35 1.7 7.0 36.0 0 0 0 57.0 0 0 0.140 2.10 0.20 0.3 0 0.020
36 0.7 0 76.0 24.0 0 0 0 0 0 0.144 1.52 0.48 0 0 0.018
37 1.0 0 20.0 80.0 0 0 0 0 0 0.172 1.59 0.51 0 0 0.017
38 3.5 0 30.0 70.0 0 0 0 0 0 0.170 1.63 0.47 0 0 0.017
39 1.0 0 3.5 96.5 0 0 0 0 0 0.178 1.41 0.44 0 0 0.016
40 3.5 0 14.0 86.0 0 0 0 0 0 0.135 1.53 0.18 0 0 0.015
41 1.7 0 72.0 28.0 0 0 0 0 0 0.125 1.52 0.20 0 0 0.015
42 1.7 0 46.0 54.0 0 0 0 0 0 0.125 1.52 0.20 0 0 0.015
43 1.7 0 84.0 16.0 0 0 0 0 0 0.125 1.52 0.20 0 0 0.015
44 1.0 0 45.0 40.0 0 0 0 15.0 0 0.130 1.00 0.20 0 0 0.015
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6
Relationship between

deformation properties and
fracture properties

We are like islands in the sea,
separate on the surface but connected in the deep.

William James

T he relationship between the deformation properties and the fracture prop-
erties is an interesting topic. Considering the cost and the complication

of the testing process for fracture properties, it is valuable to evaluate the re-
lationship between these two kinds of properties in order to predict fracture
properties based on deformation properties. This chapter focuses on experi-
mental data which contains both types of mechanical properties. The study
on the relationships between Charpy impact energy and common tensile test
properties is covered in this chapter. The focus of this chapter is not only
on establishing the relation but also on the prediction of the Charpy impact
energy from tensile properties using machine learning models and the inter-
pretation of the model.

Keywords
Charpy impact energy, tensile properties, random forest, Partial Dependence Plot,
Accumulated Local Effects Plot, SHapley Additive exPlanations
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6.1. Introduction
Deformation properties and fracture properties are two kinds of important mechan-
ical properties of steels. The first two parts of this thesis study the influence of
microstructure features on selected mechanical properties, both deformation re-
lated and fracture related. The third part of this thesis is focusing on the rela-
tionship between deformation properties and fracture properties. This should give
insight into these complicated relations and hence deepen the understanding of the
mechanical behavior of steels. Although the relation between deformation proper-
ties and fracture properties has not yet been extensively studied, there are studies
showing relations between specific properties. Various studies [1–4] summarized
the relation between yield strength and Charpy impact energy for various kinds of
steels, where yield strength is generally negatively correlated to Charpy impact en-
ergy. The fracture properties are generally controlled by the inherent resistance to
crack initiation and growth [1, 5]. Interestingly in the work done by Liao et al. [6]
on Mg alloys, the Charpy impact energy is enhanced when the mean grain size is
decreased under 3 µm, and in the meantime, yield strength is increased with the
decreasing of mean grain size. Moreover, Cao et al. [7] achieved ultrahigh Charpy
impact energy with high tensile strength with ferrite/martensite laminated steels.
These contradictory results show the complicated relations between Charpy impact
energy and the tensile properties.

In order to have better understanding of the relations, a large number of ex-
perimental data is required. Due to the complicated process of gathering com-
plete datasets by doing individual mechanical tests, publicly available datasets are
valuable. There are various kinds of materials data sources available both in the
literature and from online databases, which contain microstructure features and
mechanical properties [8].

For the study of the relation between deformation properties and fracture prop-
erties, a systematically obtained dataset is required. The dataset used in this
chapter was collected by Dr. Gareth Conduit, who is now working at the Uni-
versity of Cambridge, from various publicly available data sources [9]. The whole
dataset contains the chemical composition and various mechanical properties (yield
strength (YS), ultimate tensile strength (UTS), uniform elongation (UE), Charpy im-
pact energy (𝐾V) and fracture toughness (𝐾Ic)) of 821 Advanced High-Strength
Steels (AHSS), which is now available on the website https://citrination.com [9].

In this chapter, the related deformation and fracture properties are briefly in-
troduced in Section 6.2, followed by the relation analysis between properties in
Section 6.3 based on the obtained dataset. The prediction of Charpy impact energy
is described in Section 6.4 and the interpretation of the machine learning model is
explained in detail in Section 6.5.

6.2. Deformation and fracture properties
6.2.1. Tensile properties
Tensile test is the most commonly used mechanical testing method to characterize
the mechanical properties of materials. In general, the sample is subjected to
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Figure 6.1: Tensile test specimen before and after pulling (left) and tensile test process (right) (Adapted
from [10]).

controlled strain until fracture. A typical method to characterize the tensile behavior
is through stress-strain curves as schematically shown in Fig. 6.1. The engineering
stress 𝜎 is defined as the ratio between applied force 𝐹 and original cross-section
area 𝐴0, given by 𝜎 = 𝐹/𝐴0. The engineering strain 𝜖 is defined as the ratio
between elongation and original gauge length 𝑙0, given by 𝜖 = (𝑙 − 𝑙0)/𝑙0, where 𝑙
is the instantaneous length of the gauge.

Fig. 6.1 shows a schematic engineering stress-strain curve. As the loading
increases, materials first behave elastically. The engineering stress-strain curve
shows an approximately linear region. The linear relationship in the first region
of the stress-strain curve is known as Hooke’s law [11]. The ratio between elas-
tic stress and strain is the modulus of elasticity, also known as Young’s modulus,
𝐸 = 𝜎/𝜖, which is the slope of the curve in the elastic region. In practice, the
yield strength 𝜎y is hard to determine due to the gradual transition from the elastic
region to the plastic region. By drawing a line parallel to the elastic region at the
offset strain of 0.2%, the yield strength is defined as the stress at the intersection of
the offset line with the engineering stress-strain curve [10, 12]. The yield strength
given in the database can be assumed to be determined by this method. Once
the yield strength is reached, plastic deformation starts. Until reaching the ulti-
mate tensile strength 𝜎u (UTS), which marks the highest engineering stress during
a tensile test, the elongation is uniform. At the UTS necking starts and deformation
becomes local. Young’s modulus, YS and UTS are all strength-related properties,
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Figure 6.2: Charpy test set up and specimen dimensions (adapted from [10]).

while UE and total elongation indicate the ductility of the material. The area under
the stress-strain curve ∫𝜎d𝜖 in principle represents the toughness of the material.

6.2.2. Charpy impact energy
The most commonly used method to determine toughness is the Charpy test, due
to its easy set-up and simple experimental procedure. The Charpy test set-up
and specimen can be seen in Fig. 6.2. The specimen is supported at both ends
on the platform. The hammer is released from a fixed position and breaks the
specimen at the notch, which requires energy. Depending on the rising height of
the hammer after breaking the notched specimen, the consumed impact energy
(𝐾V, since the notch is V-shaped) can be calculated. Due to the dependence of
the impact energy on the specimen dimension, materials are tested under stan-
dard specimen dimensions, i.e. the standard full-size Charpy test specimen CVN
(10mm × 10mm × 55mm), and the toughness is given by the energy required to
break a sample of these dimensions.

6.3. Relations between properties
Looking from the angle of energy absorption for both tensile test and Charpy test,
there are certain correlations between them. During the Charpy test, the speci-
men deforms at high strain rate until fracture. Hence the measured Charpy impact
energy is the sum of energy absorbed in both deformation process and fracture
process. Comparing to the tensile test, by only recording the yield strength, ulti-
mate tensile strength and uniform elongation, only the deformation energy is taken
into consideration, where deformation occurs in a simpler loading mode than in
a Charpy test and at a lower stain rate. Since the actual fracture process is not
included in the tensile properties, the relation with the Charpy impact energy is
expected to be only partial.
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The dataset used in this study mainly focuses on austenitic stainless steels with
addition of Cr, Ni and Mo. The complete dataset after cleaning is shown in appendix
Table 6.A.1. The cleaning of the raw dataset is done by removing the entries with
missing values in tensile properties or Charpy impact energy. The cleaned dataset
contains 263 entries, which have full information on tensile test properties and
Charpy impact energy data. Since the yield strength and ultimate tensile strength
are both in the range of 1000MPa to 2100MPa and the uniform elongation is in the
range of 4% to 24%, this dataset only represents advanced high strength steels.

In order to identify the relation between tensile properties and Charpy im-
pact energy, first the pair plot is applied on the complete dataset as shown in
Fig. 6.3. Here the area under the tensile curve (𝐴d) is calculated from yield strength
(𝜎y), ultimate tensile strength (𝜎u) and uniform elongation (𝜖u), with the equation
𝐴d = 𝜎y ∗ 𝜖u +0.5 ∗ (𝜎u −𝜎y) ∗ 𝜖u. 𝐴d is thus approximated by the sum of a rectan-
gle (side lengths yield strength and uniform elongation) and a right triangle (side
lengths uniform elongation and difference between yield strength and ultimate ten-
sile strength). The plots on the diagonal are the distributions of the corresponding
property, while the other plots are the relation plots between corresponding proper-
ties on each row and column. The distribution plots of UTS and YS are schematically
similar while the distribution plots of 𝜖u and 𝐴d are also similar. However 𝐾V shows
a much different distribution. These can be directly connected to the relation be-
tween corresponding properties. There is a clear positive relation between yield
strength and ultimate tensile strength. Both yield strength and ultimate tensile
strength have negative relation with uniform elongation. Such relations are well
known. When considering the fourth row, the relation of tensile properties with 𝐴d,
only the uniform elongation shows pronounced positive effect on 𝐴d. The focus
in this study is on the four plots on the bottom row, shows the relations between
Charpy impact energy and each tensile property. For these the trends are not so
clear. Delimiting lines are qualitatively indicated on the bottom row of Fig. 6.3,
where all data points are located in a triangle, which indicates an upper limit for
Charpy impact energy at certain values for yield strength, ultimate tensile strength
and uniform elongation. This indicates that Charpy impact energy is highly strength
related.

Fig. 6.4 shows a colored scatter plot with corresponding contour plot for UTS and
uniform elongation, where the color indicates the value for Charpy impact energy.
There is a trend that data points are located near the diagonal line, which follows the
common rule that the increase of strength often implies a decrease of the ductility,
as was already seen in the same plot in Fig. 6.3. More interestingly, it can be seen
from the contour plot that Charpy impact energy generally increases with increasing
ductility, but with exceptions at the low UTS and high UE ranges. When the uniform
elongation is over 20%, it shows a decrease of Charpy impact energy with further
increasing uniform elongation.

Fig. 6.5 shows the relation between deformation energy and Charpy impact
energy (on a log-scale). Here the deformation energy is calculated from 𝐴d, which
yields the deformation energy per unit volume, and the established deformation
volume in a Charpy sample. It is assumed that the deformed volume of the Charpy
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Figure 6.3: Pair plot between deformation properties and fracture properties on the complete dataset.

test specimen is 10mm×8mm×0.1mm, where the fracture surface has an area of
10mm×8mm and the thickness of the deformed region around the fracture plane is
assumed to be 0.1mm [1]. The black solid line indicates the value at which Charpy
impact energy would equal deformation energy. It is clearly shown that Charpy
impact energy is significantly higher than the deformation energy. Since Charpy
impact energy is the sum of the deformation energy and the fracture energy, this
indicates that the fracture energy takes the main role in controlling the Charpy
impact energy.

In addition, the loading mode differs in tensile test and Charpy test, and strain
rate in a Charpy test is significantly higher than in a tensile test [13]. This leads
to the difficulty in finding the relations between Charpy impact energy and tensile
properties. Nevertheless in the following section, it is investigated with various
techniques whether prediction of Charpy impact energy only from tensile properties
can be done, followed by the analysis based on the prediction models.

6.4. Prediction of Charpy impact energy
In order to predict the Charpy impact energy based on the four tensile properties,
i.e. yield strength, ultimate tensile strength, uniform elongation and area under
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Figure 6.4: Charpy impact energy colored scatter plot between UTS and UE.
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Figure 6.5: Relation between the estimated deformation energy and Charpy impact energy. The solid
line represents the location where deformation energy equals to Charpy impact energy.
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the tensile curve, the 263 entries of data containing both Charpy impact energy
and tensile test properties are divided into 80% training dataset and 20% test-
ing dataset. The machine learning algorithms that were previously applied in the
chapters 4&5 (details in Chapter 4 Section 4.B) are applied and tested. Among
them random forest gives the best prediction accuracy of the Charpy impact en-
ergy based only on the tensile test properties. The RandomForestRegressor from
scikit-learn Machine Learning in Python library [14] is used to apply the random
forest regression model. After repeating the random forest model 10 times on dif-
ferent separations of training dataset and testing dataset, the root mean square
error (RMSE) is 17 J on the training dataset, and 30 J on the testing dataset. One of
the random forest prediction plots of the Charpy impact energy is shown in Fig. 6.6.
It shows the experimental Charpy impact energy versus the random forest model
predicted values for both the training dataset and the testing dataset. The legend
on the bottom right shows a typical value of the experimental uncertainty of the
Charpy test (±20 J) [15], which gives an indication of the best achievable prediction
accuracy of the random forest model. The general trend of the points follows the
diagonal line that indicates the perfect prediction, while still some of the samples
have significant deviations between the real value and the predicted value. Fig. 6.7
shows the error distribution of the random forest prediction on the testing dataset
of all ten models, which is calculated as the difference between real testing values
and random-forest predicted testing values. Fig. 6.7(a) shows the histogram of
error combined with two normal distributions with mean of zero and standard devi-
ation of 20 J and 30 J respectively. It can be seen that the error distribution of the
prediction model is slimmer than the normal distribution with standard deviation of
30 J. This indicates that more samples are predicted well when the error is close
to zero and meanwhile there are also more large errors comparing to the normal
distribution. In Fig. 6.7(b), the barplot shows the histogram of the absolute error
while the stepped line plot shows the accumulated distribution. When comparing
with the experimental uncertainty of the Charpy test, i.e. ±20 J, nearly 60% of
the testing samples have a smaller prediction error. More than 75% of the testing
samples have a prediction error lower than 30 J. There is indeed about 1% which
have a prediction error larger than 80 J. Therefore, random forest model gives rea-
sonable prediction accuracy of Charpy impact energy from tensile properties when
comparing to the accuracy that can be achieved in experiments.

6.5. Interpretation of random forest model

To understand the machine learning model, i.e. to explain the algorithm, there
are several methods which can be applied. Here three different methods, partial
dependence plot, accumulated local effects plot and the shapley additive expla-
nations, are introduced, where the latter two methods are mainly used to further
understand the random forest model. Both the advantages and the disadvantages
of these methods are discussed in the following sections.
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Figure 6.7: Error distribution of the Random Forest prediction on the testing dataset of all ten models.
Two normal distributions with standard deviation of 20 J and 30 J are shown in (a). (b) shows the
absolute error distribution and the accumulated distribution.
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6.5.1. Partial Dependence Plot (PDP)
In order to understand the relation between deformation properties and fracture
properties, prediction is not enough. The partial dependence plot is introduced first,
since it is the most intuitive method to explain the prediction model. In general
terms, the partial dependence function for regression is defined as:

𝑓𝑆(𝑥𝑆) = 𝐸 [𝑓(𝑥𝑆 , 𝑋𝐶)] = ∫𝑝(𝑥𝐶)𝑓(𝑥𝑆 , 𝑥𝐶)𝑑𝑥𝐶 . (6.1)

𝑓 is the machine learning model which we want to explain. The complete feature
set, which is used in the machine learning model, in the present case containing
𝜎y, 𝜎u, 𝜖u and 𝐴d, is divided into two feature sets 𝑆 and 𝐶. Set 𝑆 contains the
features which we intend to plot in the PDP, that usually only contains one or two
features, and set 𝐶 contains the other features. 𝑝(𝑥𝐶) is the marginal density of
𝑋𝐶. Partial dependence marginalizes the machine learning model output over the
other features in set 𝐶, in order to give the function which only depends on the
features in set 𝑆. The partial dependence function 𝑓𝑆 is calculated by the Monte
Carlo method, i.e. estimating 𝑓𝑆 by calculating the averages in the data set as:

̂𝑓𝑆(𝑥𝑆) =
1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑥𝑆 , 𝑥(𝑖)𝐶 ), (6.2)

where 𝑛 is the number of data points in the dataset and 𝑥(𝑖)𝐶 are the actual feature
values in the set 𝐶 for the 𝑖th data point. This partial function gives the average
machine learning model output depending on the given value/values for feature 𝑆
that we are interested in [16]. The partial dependence plot can be calculated with
the PDPbox library [17–19].

Partial dependence has a relatively intuitive computation process. The partial
dependence function gives the average prediction output by assuming that all train-
ing data points have the same value of each feature in feature set 𝑆. Hence the
interpretation of the partial dependence plot is easy. It represents the change of
the predicted parameter if only the features in feature set 𝑆 are changing, which
leads to the relation of the predicted parameter with the features in feature set 𝑆.

This intuitive computation process also leads to its huge disadvantage, if the
features in set 𝑆 have correlations with features in set 𝐶. In this case, the UTS,
YS, UE and 𝐴d all have correlations to a certain degree. This makes the partial
dependence plot unrealistic. For example, when the feature in set 𝑆 is UTS, the
partial dependence function will calculate the average value of all data points with a
certain low UTS value. In this case, the data points with high YS values will become
meaningless since YS and UTS have a positive correlation. Therefore, another
interpretation method in the following section should be considered to overcome
this disadvantage.

6.5.2. Accumulated Local Effects (ALE) Plot
The disadvantage of the partial dependence plot which is mentioned in the previous
section can be avoided using the accumulated local effect plot [20]. The formula
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to define ALE is:

𝑓𝑥𝑆 ,𝐴𝐿𝐸(𝑥𝑆) =∫
𝑥𝑆

min(𝑥𝑆)
𝐸 [𝛿𝑓(𝑋𝑆 , 𝑋𝐶)𝛿𝑋𝑆

|𝑋𝑆 = 𝑧𝑆] 𝑑𝑧𝑆 − 𝐶

=∫
𝑥𝑆

min(𝑥𝑆)
∫𝑝(𝑥𝐶|𝑧𝑆)

𝛿𝑓(𝑥𝑆 , 𝑥𝐶)
𝛿𝑥𝑆

𝑑𝑥𝐶𝑑𝑧𝑆 − 𝐶,
(6.3)

where the constant 𝐶 is used to center the effect of ALE which will be explained in
detail later. 𝛿𝑓(𝑥𝑆 ,𝑥𝐶)

𝛿𝑥𝑆
is the local effect, i.e. the gradient, of 𝑓 with respect to 𝑥𝑆.

Set 𝑆 = {𝑗} in this case only contain one feature, where 𝑗 is the index of the feature.
While PDP averages the prediction over the marginal distribution of 𝑥𝐶, i.e. with-

out any reference to 𝑥𝑆, ALE plot applies a conditional distribution. In the meantime,
ALE does not average the prediction, but averages the changes over the conditional
distribution 𝑝(𝑥𝐶|𝑥𝑆), which means that the distribution of 𝑥𝐶 at given restrictions
for 𝑥𝑆, i.e. the distribution of 𝑥𝐶 with reference to 𝑥𝑆. If there is no correlation
between features in 𝑥𝐶 and 𝑥𝑆, the conditional distribution is just the marginal
distribution. But if there is dependence between the features in 𝑥𝐶 and 𝑥𝑆, the con-
ditional distribution is different from the marginal distribution. This helps to isolate
the effect of 𝑥𝑆 from the influence of other correlated features in 𝑥𝐶. Finally, the
last integral reflects the word ‘accumulated’ in ALE. The local effects are integrated
over the range of 𝑥𝑆 to reveal the global effect of the feature in set 𝑆.

In reality, not all models that we want to explain have a gradient, like the ran-
dom forest model used in this case. However, the estimation of ALE plots works
on models both with and without gradients by dividing the features into several
intervals based on the quantiles and calculating the prediction difference between
the starting point of the interval and the end point of the interval. The uncentered
ALE is calculated by:

̂𝑓̃𝑗,𝐴𝐿𝐸(𝑥) =
𝑘𝑗(𝑥)

∑
𝑘=1

1
𝑛𝑗(𝑘)

∑
𝑖∶𝑥(𝑖)𝑗 ∈[𝑧𝑘−1,𝑗 ,𝑧𝑘,𝑗)

[𝑓(𝑧𝑘,𝑗 , 𝑥(𝑖)⧵𝑗 ) − 𝑓(𝑧𝑘−1,𝑗 , 𝑥
(𝑖)
⧵𝑗 )] , (6.4)

where 𝑗 is the index of the feature and 𝑘𝑗(𝑥) is the index of the interval in which
𝑥 is located. 𝑛𝑗(𝑘) is the number of data points within the interval. The interval,
in which 𝑥 is located, has the range [𝑧𝑘−1,𝑗 , 𝑧𝑘,𝑗). The calculation of 𝑓(𝑧𝑘,𝑗 , 𝑥(𝑖)⧵𝑗 ) −
𝑓(𝑧𝑘−1,𝑗 , 𝑥(𝑖)⧵𝑗 ) is the prediction difference between starting point of the interval and
the end point of the interval, where 𝑥(𝑖)⧵𝑗 indicates the features other than the 𝑗th
feature. The first sum in Eq. (6.4) accumulates the average prediction difference
from the 1st interval to the interval in which 𝑥 is located. For instance, if 𝑥 is in the
third interval, the uncentered ALE calculates the sum of the prediction difference in
the first interval, second interval and third interval. Here for instance, for the feature
space 𝑥𝑆 containing UTS in Fig. 6.8(a), UTS is divided into 8 intervals (bins) which
contain the same number of data points. If a UTS value is within the second interval,
12.5% to 25%, we first calculate the prediction difference when we replace the UTS
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value with the grid UTS value at 12.5% and 25% for all data points located within
this interval. Then the mean difference is calculated by dividing by the number
of data points in this interval. Then due to the first sum on the left, the same
calculation has to be performed again in the first interval (0 to 12.5%). Finally the
two mean prediction differences are summed to get the uncentered ALE value of
UTS at this specific value.

To make the mean of the effect to be zero, uncentered ALE is centered by
subtracting the mean value of all uncentered ALE values as:

̂𝑓𝑗,𝐴𝐿𝐸(𝑥) = ̂𝑓̃𝑗,𝐴𝐿𝐸(𝑥) −
1
𝑛

𝑛

∑
𝑖=1

̂𝑓̃𝑗,𝐴𝐿𝐸(𝑥
(𝑖)
𝑗 ), (6.5)

where 𝑛 is the number of data points. To interpret the ALE values, it is recognized as
the main effect of the feature at a certain value comparing to the average prediction
over the whole dataset.

Fig. 6.8 shows the ALE plot for the random forest model on all four tensile test
properties. The plot is calculated with the ALEPython library [20, 21]. The bins
in Fig. 6.8, indicated by the vertical white lines, represent the intervals in the ALE
calculation process. The calculation of ALE averages 50 replicas, each of which
randomly samples 60% of the data points from the dataset. From the four ALE
plots, it can be seen that UTS and YS have negative effects on Charpy impact
energy while UE and 𝐴d have positive effects on Charpy impact energy. Comparing
the magnitude of the ALE values of YS and UTS, it shows that UTS has a much
more pronounced negative effect than YS. From the ALE plot, it is clear how each
of the input feature affects the Charpy impact energy.

6.5.3. SHapley Additive exPlanations (SHAP)
SHAP (SHapley Additive exPlanations) is a method proposed by Lundberg and Lee
[22] to explain the individual predictions of a model. SHAP calculates the contribu-
tion of each feature on the prediction output for every sample in the dataset. It is
based on the Shapley values [23], which came out from a unique question in game
theory: How to assign payouts to each player, while players work in coalition to
win a certain profit, depending on their contribution to the total payout?

For a function 𝑓, which uses 𝑝 features as the complete feature set 𝐹, in order
to calculate the SHAP value for feature 𝑖, first all subsets 𝑀 of the set 𝐹 ⧵ {𝑖}
(the complete feature set without the feature 𝑖) are enumerated. The number of
possibilities to select a set 𝑀 ⊆ 𝐹 ⧵ {𝑖} is (𝑝−1|𝑀| ), where the number of features in set
𝐹 ⧵ {𝑖} is 𝑝 − 1 and the number of features in set 𝑀 is |𝑀|. Then the SHAP value
𝜙𝑖,𝑥 for feature 𝑖 to an individual data point 𝑥 is calculated with:

𝜙𝑖,𝑥 =
1
𝑝 ∑
𝑀⊆𝐹⧵{𝑖}

1
(𝑝−1|𝑀| )

𝐶(𝑖|𝑀)(𝑥𝑀∪{𝑖}), (6.6)

where for each set 𝑀 ⊆ 𝐹 ⧵ {𝑖}, 𝐶(𝑖|𝑀)(𝑥𝑀∪{𝑖}) is the contribution of feature 𝑖
calculated by 𝐶(𝑖|𝑀)(𝑥𝑀∪{𝑖}) = 𝑓(𝑥𝑀∪{𝑖})−𝑓(𝑥𝑀). It means the prediction difference
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Figure 6.8: Accumulated Local Effects Plot of random forest model for UTS (a), YS (b), UE (c) and 𝐴d
(d) on Charpy impact energy.
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between before adding and after adding the feature 𝑖 into the set𝑀 of features. The
question here is that most prediction models do not accept the arbitrary patterns
of missing values, so that 𝑓(𝑥𝑀) needs to be estimated. In order to estimate the
SHAP with tree-based models, Lundberg et al. [24, 25] proposed TreeSHAP. In this
case, 𝑓(𝑥𝑀) is approximated with the conditional expectation 𝐸(𝑓(𝑥)|𝑥𝑀), where
the features in set 𝑀 are fixed and the features in the complementary set are
sampled from the complete dataset. Hence the prediction difference is calculated
as:

𝐶(𝑖|𝑀)(𝑥𝑀∪{𝑖}) = 𝐸[𝑓(𝑋)|𝑋𝑀∪{𝑖} = 𝑥𝑀∪{𝑖}] − 𝐸[𝑓(𝑋)|𝑋𝑀 = 𝑥𝑀]. (6.7)

Here in the present case, the 𝑝 features are 𝜎y, 𝜎u, 𝜖u and 𝐴d. To calculate
the SHAP value for feature 𝜎u, the set 𝐹 ⧵ {𝑖} contains 𝜎y, 𝜖u and 𝐴d. The subsets
of set 𝐹 ⧵ {𝑖} can contain one, two or three (|𝑀|) elements. Hence the number of
subsets of set 𝐹⧵{𝑖} of size 1, 2 and 3 are (31) = 3, (

3
2) = 3 and (

3
3) = 1 respectively.

For each subset, the difference of prediction before and after adding 𝜎u into this
subset is calculated. Then the mean difference for |𝑀| = 1, |𝑀| = 2 and |𝑀| = 3
is calculated. Finally these three mean differences are summed up and divided by
the number of features (four).

According to the name, Additive exPlanations, SHAP values obey the local accu-
racy property, such that:

𝑓(𝑥) = 𝐸(𝑓(𝑋)) +
𝑝

∑
𝑖=1
𝜙𝑖,𝑥 , (6.8)

where 𝐸(𝑓(𝑋)) is the expectation (average prediction) value for all data points. This
means that the sum of the SHAP values for each feature plus the baseline (expec-
tation of all model outputs) equals to the final prediction value of the corresponding
data point. Hence the prediction of each data point is correctly distributed to each
feature.

Fig. 6.9 shows the summary plot of SHAP value for the random forest model.
This plot combines the feature importance and the feature effects. The features
are ranked from top to bottom with decreasing importance, which is calculated by
adding the absolute value of all SHAP values of the corresponding feature over the
whole dataset. The color indicates the feature value, from low (blue) to high (red).
The points which are overlapping are jittered in the vertical direction to give the
sense of the distribution of SHAP values for each feature. The high UTS values
contribute negatively to Charpy impact energy, while UE and 𝐴d behave in the
opposite direction. This confirms the finding in Section 6.3. The effect of YS is not
so clear in this case since there are low-YS (blue) points across the range of SHAP
values and the high-YS (red) points accumulate near the zero-SHAP range.

Since UTS is the most important feature according to SHAP importance rank-
ing, the SHAP dependence plot of UTS with the SHAP values is shown in Fig. 6.10,
with the two-color interactive features UE and YS. In these two subplots (a) and
(b), the scatter plot is the UTS value versus the corresponding SHAP values for
UTS, while the color indicates the value of UE in (a) and YS in (b). The scatter
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Figure 6.9: Summary of SHAP value magnitudes over all samples for the random forest model prediction
of Charpy impact energy.

plots in Fig. 6.10(a) and (b) show that with the increase of UTS until 1400MPa,
the influence of UTS on Charpy impact energy transforms from positive to negative
comparing to the average prediction. For UTS higher than 1400MPa, UTS keeps
the same SHAP values, while they are corresponding to the sample with low uni-
form elongation values (blue points Fig. 6.10(a)) and high YS values (red points
Fig. 6.10(b)). This indicates that for samples with low UE and high YS, increasing
UTS does not significantly affect the Charpy impact energy.

6.6. Discussion
With the analysis of relations between properties, besides some of the qualitative
trends, it is difficult to express the relationship between Charpy impact energy and
tensile properties directly by comparing Charpy impact energy with each of the
tensile properties. By calculating the deformation energy from the tensile test,
it is shown that fracture energy may take the main role in controlling the Charpy
impact energy. Meanwhile, due to the difference in loading mode and the significant
deviation in stain rate between tensile test and Charpy test, it is even harder to direct
relate these properties.

Based on the dataset which is acquired, the prediction of Charpy impact energy
based on four tensile test properties is applied with random forest model. The ac-
curacy of predicting the Charpy impact energy is ±30 J. With the reference of [15],
which shows a ±20 J uncertainty on experimental Charpy impact energy consid-
ering all kinds of uncertainty processes during the test, the random forest model
shows a prediction, relying on the tensile test properties only, with an uncertainty
that is larger than experimental determination, but still displays a clear trend over
the considered range of 200 J.
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Figure 6.10: SHAP value interactive plot between UTS and UE (a) and YS (b) for the random forest
model prediction of Charpy impact energy.

The interpretation of the random forest model indicates that the tensile test
properties have different influence on Charpy impact energy, which is in line with the
physical background. UTS and YS has profound negative impact on Charpy impact
energy, while UE and 𝐴d have significant positive influence. This indicates that the
energy absorbed during Charpy test is highly correlated with the overall strength
and ductility of the material. The reason why materials with higher UTS and lower
UE have smaller Charpy impact energy could be connected to not only the plastic
deformation, but also to the fracture behavior during Charpy tests. Materials with
high UTS combined with low UE display mostly or purely brittle fracture. This very
limited plastic deformation leads to lower Charpy impact energy. From Fig. 6.10, it
can been seen that the influence of UTS on Charpy impact energy becomes stable
while reaching 1400MPa. The effect of UTS is still negative at this point, but it does
not change if the UTS increases further. These samples are recognized as the ones
with high YS and low UE. This shows that in case of the brittle fracture, UTS does
not affect the Charpy impact energy.

6.7. Conclusions
This chapter combines deformation properties and fracture properties. With the
obtained dataset, detailed data analysis is performed on the relationships between
Charpy impact energy and tensile properties. Meanwhile, based on the data of ten-
sile test properties and Charpy impact energy, random forest model is applied to
realize the prediction of Charpy impact energy based on ultimate tensile strength,
yield strength, uniform elongation and area under the tensile curve. While ran-
dom forest model gives a reasonable prediction, the interpretation of the model is
conducted with the accumulated local effects plot and the shapley additive expla-
nations. The following conclusions are drawn from the study.

• Fracture energy takes a more important role than deformation energy in con-
trolling the Charpy impact energy. Meanwhile, due to the difference in loading



References

6

119

mode and stain rate, it is difficult to find direct relations between Charpy im-
pact energy and tensile properties.

• Random forest model predicting Charpy impact energy based only on UTS,
YS, UE and 𝐴d gives an accuracy of ±30 J.

• ALE and SHAP can be used to interpret prediction models in the materials
science field, which is not commonly adopted. This gives insight into the
prediction model.

• UTS and YS have a profound negative effect on Charpy impact energy while
UE and 𝐴d have significant positive effect on Charpy impact energy.

• For Advanced High Strength Steels that display brittle fracture the effect of
UTS on Charpy impact energy is limited.

References
[1] R. O. Ritchie, The conflicts between strength and toughness, Nature Materials

10, 817 (2011).

[2] Y. Kimura, T. Inoue, and K. Tsuzaki, Tempforming in medium-carbon low-alloy
steel, Journal of Alloys and Compounds 577, S538 (2013).

[3] Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki, Inverse Temperature Dependence
of Toughness in an Ultrafine Grain-Structure Steel, Science 320, 1057 (2008).

[4] T. Inoue, Y. Kimura, and S. Ochiai, Shape effect of ultrafine-grained struc-
ture on static fracture toughness in low-alloy steel, Science and Technology of
Advanced Materials 13, 035005 (2012).

[5] Y. Tomita, Development of fracture toughness of ultrahigh strength, medium
carbon, low alloy steels for aerospace applications, International materials
reviews 45, 27 (2000).

[6] J. Liao, M. Hotta, K. Kaneko, and K. Kondoh, Enhanced impact toughness of
magnesium alloy by grain refinement, Scripta Materialia 61, 208 (2009).

[7] W. Cao, M. Zhang, C. Huang, S. Xiao, H. Dong, and Y. Weng, Ultrahigh Charpy
impact toughness (~450J) achieved in high strength ferrite/martensite lami-
nated steels, Scientific Reports 7, 41459 (2017).

[8] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, Machine
learning for molecular and materials science, Nature 559, 547 (2018).

[9] G. Conduit, Mechanical properties of some steels, id: 153092 - version 3,
(2017).

[10] S. Kalpakjian and S. Schmid, Manufacturing Engineering & Technology (2009)
pp. 56–87.

http://dx.doi.org/10.1038/nmat3115
http://dx.doi.org/10.1038/nmat3115
http://dx.doi.org/10.1016/j.jallcom.2011.12.123
http://dx.doi.org/ 10.1126/science.1156084
http://dx.doi.org/10.1088/1468-6996/13/3/035005
http://dx.doi.org/10.1088/1468-6996/13/3/035005
http://dx.doi.org/10.1179/095066000771048791
http://dx.doi.org/10.1179/095066000771048791
http://dx.doi.org/10.1016/j.scriptamat.2009.03.044
http://dx.doi.org/10.1038/srep41459
http://dx.doi.org/10.1038/s41586-018-0337-2
https://citrination.com/datasets/153092


6

120 References

[11] J. Rychlewski, On hooke’s law, Journal of Applied Mathematics and Mechanics
48, 303 (1984).

[12] G. Gottstein, Physical Foundations of Materials Science (Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2004).

[13] E. Lucon, Experimental assessment of the equivalent strain rate for an instru-
mented charpy test, Journal of Research of the National Institute of Standards
and Technology 121, 165 (2016).

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn:
Machine learning in Python, Journal of Machine Learning Research 12, 2825
(2011).

[15] M. Lont, The determination of uncertainties in charpy impact testing, UNCERT
COP 6 (2000).

[16] C. Molnar, Interpretable Machine Learning (Lulu.com, 2020).

[17] J. Li, python partial dependence plot toolbox, (2018).

[18] J. H. Friedman, Greedy function approximation: a gradient boosting machine,
Annals of statistics , 1189 (2001).

[19] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, Peeking inside the black box:
Visualizing statistical learning with plots of individual conditional expectation,
Journal of Computational and Graphical Statistics 24, 44 (2015).

[20] D. W. Apley and J. Zhu, Visualizing the effects of predictor variables in black
box supervised learning models, (2016).

[21] M. Jumelle, A. Kuhn-Regnier, and S. Rajaratnam, Python accumulated local
effects package, (2020).

[22] S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model pre-
dictions, in Advances in Neural Information Processing Systems 30, edited by
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Curran Associates, Inc., 2017) pp. 4765–4774.

[23] L. Shapley, A value for n-person game, Contributions to the theory of games
2, 307 (1953).

[24] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal, and S.-I. Lee, From local explanations to global
understanding with explainable AI for trees, Nature Machine Intelligence 2,
56 (2020).

[25] S. M. Lundberg, G. G. Erion, and S.-I. Lee, Consistent individualized feature
attribution for tree ensembles, (2018).

http://dx.doi.org/https://doi.org/10.1016/0021-8928(84)90137-0
http://dx.doi.org/https://doi.org/10.1016/0021-8928(84)90137-0
http://dx.doi.org/10.1007/978-3-662-09291-0
http://dx.doi.org/10.6028/jres.121.007
http://dx.doi.org/10.6028/jres.121.007
https://www.npl.co.uk/getmedia/73d00151-1e60-451e-a666-813861b51225/cop06.pdf
https://www.npl.co.uk/getmedia/73d00151-1e60-451e-a666-813861b51225/cop06.pdf
https://christophm.github.io/interpretable-ml-book/
https://pdpbox.readthedocs.io/en/latest/
https://www.jstor.org/stable/2699986
http://dx.doi.org/10.1080/10618600.2014.907095
http://dx.doi.org/10.48550/ARXIV.1612.08468
http://dx.doi.org/10.48550/ARXIV.1612.08468
https://github.com/blent-ai/ALEPython
https://github.com/blent-ai/ALEPython
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://dx.doi.org/ 10.1038/s42256-019-0138-9
http://dx.doi.org/ 10.1038/s42256-019-0138-9
http://dx.doi.org/10.48550/ARXIV.1802.03888
http://dx.doi.org/10.48550/ARXIV.1802.03888


Appendix

6

121

Appendix
6.A. Cleaned experimental dataset

Table 6.A.1: Cleaned dataset from public datasets [9], the area under the tensile curve is calculated
from yield strength 𝜎y, ultimate tensile strength 𝜎u and uniform elongation 𝜖u by 𝐴d = 𝜎y ∗ 𝜖u + 0.5 ∗
(𝜎u − 𝜎y) ∗ 𝜖u.

No. YS (MPa) UTS (MPa) UE (%) 𝐴d (MJ*m−3) 𝐾V (J)
1 1414.5 1465.5 15.0 216.0 64.4
2 1342.9 1661.7 18.0 270.4 10.8
3 1367.0 1493.8 14.4 206.0 72.5
4 1150.6 1156.1 15.0 173.0 113.2
5 1999.5 2068.4 8.0 162.7 3.4
6 1207.1 1228.5 15.0 182.7 79.3
7 1106.5 1134.1 18.0 201.7 111.9
8 1908.5 2023.6 6.0 118.0 11.5
9 1078.3 1138.9 16.0 177.4 113.9
10 1575.7 1714.9 16.5 271.5 68.2
11 1207.8 1223.7 16.0 194.5 101.7
12 1529.6 1639.8 16.0 253.6 67.4
13 1791.4 1915.4 4.0 74.1 4.1
14 1263.6 1279.5 16.0 203.4 104.4
15 1149.3 1223.7 19.0 225.4 104.4
16 1149.9 1188.5 17.0 198.8 71.9
17 1274.7 1333.2 15.0 195.6 138.3
18 1222.3 1351.1 16.0 205.9 167.4
19 1506.8 1541.3 14.0 213.4 78.0
20 1036.9 1054.9 19.0 198.7 169.5
21 1738.0 1841.0 9.0 161.1 22.0
22 1343.6 1405.6 18.0 247.4 88.1
23 1194.0 1223.7 15.0 181.3 76.9
24 1692.9 1764.5 13.0 224.7 36.6
25 1288.4 1316.0 16.0 208.4 70.5
26 1600.5 1675.6 12.0 196.6 47.5
27 1200.2 1276.0 17.0 210.5 100.3
28 1304.3 1466.2 16.2 224.4 17.6
29 1309.0 1370.0 12.8 171.5 54.0
30 1254.0 1316.0 19.0 244.2 66.4
31 1236.1 1249.2 15.0 186.4 100.3
32 1736.3 1839.6 9.0 160.9 22.0
33 1218.8 1260.2 18.0 223.1 85.4
34 1260.9 1288.4 17.0 216.7 47.5
35 1113.4 1190.6 17.5 201.6 202.0
36 1081.7 1147.9 16.0 178.4 132.9
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Table 6.A.1: (continued)

No. YS (MPa) UTS (MPa) UE (%) 𝐴d (MJ*m−3) 𝐾V (J)
37 1197.5 1229.2 18.0 218.4 126.8
38 1329.8 1384.9 17.0 230.7 99.0
39 1378.0 1412.5 17.0 237.2 128.8
40 1555.8 1646.7 16.0 256.2 65.1
41 1267.8 1329.8 18.0 233.8 172.2
42 1285.7 1320.1 15.0 195.4 58.3
43 1226.4 1329.8 17.0 217.3 27.1
44 1437.3 1459.3 16.0 231.7 40.9
45 1660.5 1887.9 6.0 106.5 18.6
46 1329.8 1384.9 17.0 230.7 151.8
47 1456.5 1512.4 16.0 237.5 77.7
48 1143.7 1350.4 17.0 212.0 44.1
49 1615.7 1746.6 15.0 252.2 25.8
50 1731.0 1855.0 10.0 179.3 19.7
51 1309.1 1364.2 17.0 227.2 40.7
52 1138.9 1194.7 17.0 198.4 74.6
53 1212.6 1240.2 17.0 208.5 111.2
54 1404.2 1429.0 15.0 212.5 44.5
55 1254.0 1281.5 15.0 190.2 65.1
56 1183.0 1218.2 15.0 180.1 96.3
57 1512.4 1649.5 13.0 205.5 57.4
58 1213.3 1233.3 16.0 195.7 112.5
59 1593.7 1730.8 13.0 216.1 55.7
60 1272.6 1318.1 17.5 226.7 98.3
61 1274.7 1329.8 19.0 247.4 147.8
62 1371.1 1398.7 17.0 235.4 168.1
63 1475.8 1529.6 16.0 240.4 44.1
64 1267.8 1322.9 19.0 246.1 180.3
65 1340.8 1353.2 13.0 175.1 65.8
66 1390.4 1413.8 15.0 210.3 80.3
67 1451.7 1494.4 16.0 235.7 32.5
68 1091.4 1140.3 22.0 245.5 76.6
69 1316.0 1371.1 19.0 255.3 136.9
70 1267.8 1288.4 17.0 217.3 100.3
71 1309.8 1345.6 15.0 199.2 61.0
72 1260.9 1288.4 17.0 216.7 63.7
73 1715.6 1894.8 13.0 234.7 33.2
74 1247.1 1302.2 17.0 216.7 35.3
75 1593.7 1655.7 11.0 178.7 31.2
76 1357.3 1398.7 17.0 234.3 66.4
77 1343.6 1405.6 18.0 247.4 40.7
78 1729.4 1770.7 8.0 140.0 11.5
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Table 6.A.1: (continued)

No. YS (MPa) UTS (MPa) UE (%) 𝐴d (MJ*m−3) 𝐾V (J)
79 1083.8 1108.6 16.0 175.4 113.2
80 1662.0 1889.0 6.0 106.5 18.6
81 1384.9 1489.6 13.8 198.3 62.4
82 1722.5 1846.5 10.0 178.4 9.1
83 1316.0 1371.1 19.0 255.3 85.4
84 1243.6 1267.1 17.0 213.4 109.5
85 1683.0 1990.0 14.0 257.1 37.1
86 1675.0 1779.0 9.0 155.4 9.5
87 1260.9 1316.0 18.0 231.9 147.8
88 1389.7 1542.7 13.1 192.1 33.9
89 1254.0 1316.0 19.0 244.2 149.1
90 1378.0 1412.5 17.0 237.2 63.7
91 1316.0 1371.1 19.0 255.3 165.4
92 1378.0 1412.5 17.0 237.2 93.6
93 1626.7 1799.0 11.0 188.4 39.7
94 1260.9 1288.4 17.0 216.7 66.4
95 1309.1 1364.2 17.0 227.2 101.7
96 1324.3 1351.8 16.0 214.1 51.5
97 1195.4 1220.9 16.0 193.3 69.8
98 1233.3 1281.5 16.0 201.2 36.6
99 1406.9 1481.4 16.5 238.3 77.7
100 1061.7 1079.0 18.0 192.7 142.4
101 1005.9 1033.5 21.0 214.1 91.5
102 1167.2 1220.9 17.5 209.0 125.8
103 1383.5 1424.9 15.0 210.6 69.1
104 1311.0 1375.0 14.4 193.4 78.0
105 1368.4 1424.2 16.0 223.4 20.3
106 1313.0 1378.0 13.4 180.3 55.0
107 1371.1 1398.7 17.0 235.4 74.6
108 1874.1 1970.5 10.0 192.2 23.0
109 1393.0 1641.0 12.0 182.0 30.8
110 1035.6 1097.6 14.0 149.3 130.2
111 1618.5 1752.1 15.4 259.5 61.7
112 1420.0 1455.9 12.0 172.6 14.2
113 1130.0 1212.6 14.0 164.0 26.7
114 1309.1 1364.2 17.0 227.2 29.8
115 1579.2 1659.1 12.0 194.3 44.7
116 2006.0 2130.0 5.0 103.4 13.8
117 1260.9 1316.0 18.0 231.9 81.3
118 1729.4 1943.0 6.0 110.2 8.8
119 1343.6 1405.6 18.0 247.4 109.8
120 1274.7 1329.8 19.0 247.4 150.5
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Table 6.A.1: (continued)

No. YS (MPa) UTS (MPa) UE (%) 𝐴d (MJ*m−3) 𝐾V (J)
121 1750.1 1812.8 5.0 89.1 25.8
122 1639.8 1786.6 13.0 222.7 50.3
123 1254.0 1316.0 19.0 244.2 97.6
124 1684.6 1754.2 10.0 171.9 28.5
125 1998.1 2087.7 10.0 204.3 18.6
126 1309.1 1364.2 17.0 227.2 65.1
127 1212.6 1240.2 17.0 208.5 120.7
128 1473.8 1643.3 15.5 241.6 74.7
129 1189.9 1234.0 18.0 218.2 100.3
130 1154.8 1228.5 17.0 202.6 105.1
131 1415.2 1502.7 16.5 240.7 78.2
132 1300.8 1351.1 14.0 185.6 141.7
133 2005.0 2129.0 5.0 103.4 13.8
134 1212.6 1240.2 17.0 208.5 105.8
135 1729.4 1853.4 10.0 179.1 19.7
136 1109.3 1178.2 12.0 137.2 5.4
137 1258.8 1289.1 15.0 191.1 103.0
138 1555.8 1598.5 12.0 189.3 8.8
139 1212.6 1240.2 17.0 208.5 74.6
140 1212.6 1240.2 17.0 208.5 103.0
141 1107.9 1147.2 18.0 203.0 82.7
142 1172.0 1213.3 18.0 214.7 88.8
143 1999.0 2089.0 10.0 204.4 18.6
144 1274.7 1336.7 15.0 195.9 138.3
145 1274.7 1329.8 19.0 247.4 71.9
146 1198.0 1299.0 16.3 203.5 80.0
147 1506.8 1546.8 14.0 213.8 38.0
148 1150.6 1168.5 17.0 197.1 154.6
149 1285.0 1484.1 15.6 216.0 31.2
150 1222.3 1244.3 16.0 197.3 92.9
151 1247.1 1302.2 17.0 216.7 54.2
152 1198.2 1240.2 17.0 207.3 80.7
153 1672.9 1852.0 13.3 234.4 42.6
154 1343.6 1405.6 18.0 247.4 71.9
155 1267.8 1322.9 19.0 246.1 184.4
156 1434.5 1502.0 16.0 234.9 88.9
157 1153.4 1219.5 20.0 237.3 121.3
158 1635.0 1803.1 15.0 257.9 48.3
159 1288.4 1309.1 16.0 207.8 74.6
160 1212.6 1240.2 17.0 208.5 101.7
161 1288.4 1309.1 16.0 207.8 112.5
162 1731.0 1944.0 6.0 110.2 8.8
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Table 6.A.1: (continued)

No. YS (MPa) UTS (MPa) UE (%) 𝐴d (MJ*m−3) 𝐾V (J)
163 1113.4 1190.6 17.5 201.6 162.7
164 1793.0 1917.0 4.0 74.2 4.1
165 1288.4 1316.0 16.0 208.4 56.9
166 1230.6 1262.2 16.0 199.4 69.4
167 1399.4 1479.3 18.0 259.1 93.6
168 1141.7 1203.7 19.0 222.8 93.6
169 1269.0 1483.0 14.5 199.5 19.0
170 1462.7 1533.0 12.0 179.7 2.7
171 1073.5 1093.4 16.0 173.4 136.3
172 1267.8 1285.0 15.0 191.5 86.8
173 1267.8 1316.0 18.0 232.5 161.3
174 1688.1 1750.1 12.0 206.3 33.5
175 1021.0 1128.8 23.6 253.7 27.1
176 1390.4 1413.8 15.0 210.3 54.2
177 1391.8 1639.8 12.0 181.9 30.8
178 1216.8 1249.8 17.0 209.7 124.1
179 1254.0 1286.4 16.0 203.2 71.2
180 1557.1 1646.7 14.7 235.5 69.6
181 1288.4 1316.0 16.0 208.4 47.5
182 1260.9 1316.0 18.0 231.9 174.9
183 1212.6 1240.2 17.0 208.5 141.0
184 1233.3 1281.5 16.0 201.2 33.9
185 1316.0 1371.1 19.0 255.3 52.9
186 1232.0 1566.2 14.7 205.7 8.1
187 1416.6 1554.4 13.8 205.0 42.0
188 1205.8 1281.5 16.0 199.0 19.0
189 1194.0 1235.4 17.0 206.5 127.4
190 1243.0 1289.8 18.0 228.0 77.3
191 1267.8 1316.0 18.0 232.5 105.8
192 1254.0 1281.5 15.0 190.2 97.6
193 1371.1 1398.7 17.0 235.4 130.2
194 1329.8 1384.9 17.0 230.7 62.4
195 1232.0 1490.7 15.5 211.0 19.0
196 1371.1 1398.7 17.0 235.4 108.5
197 1169.2 1181.6 18.0 211.6 111.2
198 1212.6 1244.3 18.0 221.1 90.6
199 2043.6 2112.5 9.0 187.0 20.3
200 1260.9 1288.4 17.0 216.7 81.3
201 1254.0 1316.0 19.0 244.2 112.5
202 1254.0 1281.5 15.0 190.2 74.6
203 1493.1 1632.9 16.0 250.1 57.4
204 1019.0 1019.0 19.0 193.6 180.3
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Table 6.A.1: (continued)

No. YS (MPa) UTS (MPa) UE (%) 𝐴d (MJ*m−3) 𝐾V (J)
205 1172.0 1198.2 16.0 189.6 94.9
206 1267.8 1316.0 18.0 232.5 71.9
207 1267.8 1316.0 18.0 232.5 86.8
208 1553.7 1670.8 15.8 254.7 60.3
209 1212.6 1240.2 17.0 208.5 88.1
210 1260.9 1316.0 18.0 231.9 66.4
211 1645.3 1719.7 11.0 185.1 36.6
212 1188.5 1230.6 17.0 205.6 103.0
213 1167.9 1234.7 19.0 228.2 127.4
214 1267.8 1288.4 17.0 217.3 108.5
215 1243.0 1292.6 16.0 202.8 70.5
216 1288.4 1309.1 16.0 207.8 123.4
217 1233.3 1281.5 16.0 201.2 55.6
218 1267.8 1288.4 17.0 217.3 69.1
219 1081.1 1678.6 5.8 80.0 12.2
220 1288.4 1309.1 16.0 207.8 103.0
221 1233.3 1281.5 16.0 201.2 61.0
222 1717.0 1772.0 13.0 226.8 33.2
223 1320.8 1493.1 14.0 197.0 13.6
224 1074.9 1342.9 17.9 216.4 8.1
225 1357.3 1398.7 17.0 234.3 88.1
226 1658.4 1762.5 16.0 273.7 57.2
227 1513.7 1651.5 16.0 253.2 44.7
228 1688.1 1863.1 13.8 245.0 43.4
229 1357.3 1398.7 17.0 234.3 40.7
230 1674.3 1777.6 9.0 155.3 9.5
231 1515.8 1606.7 15.0 234.2 74.6
232 1126.5 1188.5 17.0 196.8 120.7
233 1267.8 1329.8 18.0 233.8 183.0
234 1378.0 1412.5 17.0 237.2 142.4
235 1724.0 1848.0 10.0 178.6 9.1
236 1584.7 1688.1 14.0 229.1 63.2
237 1731.0 1820.0 10.0 177.6 25.4
238 1729.4 1819.0 10.0 177.4 25.4
239 1288.4 1316.0 16.0 208.4 89.5
240 1451.7 1503.4 16.5 243.8 99.0
241 1875.0 1972.0 10.0 192.4 23.1
242 1304.3 1338.7 14.0 185.0 51.5
243 1553.7 1667.4 15.5 249.6 57.4
244 1247.1 1302.2 17.0 216.7 63.7
245 1282.2 1344.2 16.0 210.1 61.0
246 1657.7 1826.5 11.0 191.6 42.3



6.A. Cleaned experimental dataset

6

127

Table 6.A.1: (continued)

No. YS (MPa) UTS (MPa) UE (%) 𝐴d (MJ*m−3) 𝐾V (J)
247 1666.0 1838.3 12.0 210.3 39.2
248 1174.7 1216.8 17.0 203.3 120.7
249 1032.1 1063.1 20.0 209.5 203.4
250 1254.0 1281.5 15.0 190.2 85.4
251 1267.8 1288.4 17.0 217.3 81.3
252 1559.9 1742.5 15.5 255.9 60.1
253 1731.0 1772.0 8.0 140.1 11.5
254 1267.8 1329.8 18.0 233.8 193.9
255 1099.6 1444.5 14.5 184.4 20.3
256 1625.4 1805.2 15.5 265.9 55.9
257 1137.5 1208.5 18.0 211.1 117.3
258 1247.1 1302.2 17.0 216.7 31.2
259 1274.7 1329.8 19.0 247.4 74.6
260 1088.6 1419.3 10.0 125.4 12.2
261 1105.8 1169.2 15.0 170.6 107.1
262 1524.8 1581.3 13.0 201.9 50.2
263 1185.1 1453.8 18.0 237.5 48.1
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Conclusions, general

discussion and
recommendations

This thesis is based on the research of the project “MICtoMEC: Extensive quan-
tification of microstructure features and statistical relations with mechanical be-
haviour -from statistical relations to physical understanding-”, which was carried
out under project number S41.5.14547a in the framework of the Partnership Pro-
gram of the Materials innovation institute M2i (www.m2i.nl) and the Technology
Foundation TTW, which is part of the Netherlands Organization for Scientific Re-
search (www.nwo.nl). This project aims at the development of relations between
the intricate and 3D features of multi-phase metallic microstructures of Advanced
High-Strength Steels (AHSS) and the mechanical properties of the material, as well
as a physical interpretation of these relations.

Due to the complexity of the relevant aspects of the microstructures and vari-
ous mechanical properties, this thesis focuses on a triangular relation as shown in
Fig. 7.1, reflecting the comprehensive approach. Hence the thesis is divided into
three parts:

• Microstructure to Deformation: The first part of the thesis (Chapter 3) aims at
the relationship between microstructure features and a deformation-related
property, i.e. hardness.

• Microstructure to Fracture: The second part of the thesis (Chapters 4 and 5)
focuses on the microstructure features’ influence on fracture-related mechan-
ical properties, i.e. hole expansion capacity and bendability.

• Deformation to Fracture: The third part of the thesis (Chapter 6) connects
deformation properties from tensile tests to the fracture property, i.e. Charpy
impact energy.
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III

Figure 7.1: Research focus network of this thesis. The three circles represent microstructure features,
deformation properties and fracture properties, respectively. The three arrows I, II and III represent
the three parts of this thesis, each representing the relationship between the corresponding corners.

In all three parts, relationships are investigated based on experimental data,
which is not only the experimental dataset obtained with experiments within this
project, but also the research datasets gathered from literature and online databases.
In order to study the hidden information in those datasets, not only the traditional
data analysis methods are used, but also machine learning and the interpretation
of the machine learning models are implemented in this thesis. In the following
sections, after summarizing the conclusions with general discussion on these three
parts, the limitations and recommendations for future research are discussed.

7.1. Conclusions and general discussion
Part I: Microstructure to Deformation
One of the aims of the original project is to further extend the quantitative character-
ization of the microstructures. The first part of the thesis (Chapter 3) connects the
deformation property hardness with grain size, grain size distribution and dislocation
density, focusing on the grain size distribution, which is far less discussed than the
average grain size, mentioned with the famous Hall-Petch relation (Eq. (3.1)). In
order to understand how the combination of grain size distribution and dislocation
density influences the hardness of IF steel, a series of IF steel plates were given dif-
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ferent microstructures through various heat treatment routes in combination with
cold rolling. It is shown that cold rolling plays a more significant role than heat
treatment in increasing hardness, due to the decrease of mean grain size and in-
crease of dislocation density. The combined contribution of dislocation density and
grain size distribution on hardness of IF steel plates can be expressed by extended
version of Hall-Petch relation and Taylor equation, which adds the contribution of a
grain size distribution parameter, kurtosis.

In the relation between microstructure features and deformation properties, the
key point is the movement of dislocations. In order to have higher hardness, the
movement of dislocations has to be limited. Cold rolling increases the dislocation
density directly. Smaller grain size leads to higher grain boundary to dislocation
ratio. These all contribute to the difficulty for dislocations to move, hence increasing
the hardness. Meanwhile, for kurtosis, the positive effect of kurtosis can also be
explained with grain boundary density. With increasing kurtosis the tails of the
grain size distribution are stronger, which means there are more extremely small or
large grains. This leads to higher grain boundary density than for distributions with
smaller kurtosis, hence higher grain boundary to dislocation density ratio.

In this part, besides the traditional linear regression methods, LASSO is intro-
duced, which acts as a variable selection tool for the linear model. LASSO adds a
shrinkage penalty term to the loss function of the linear regression model and se-
lects the variables based on the importance by changing the penalty term. LASSO
is an interesting tool for materials scientists since linear models are widely imple-
mented.

Part II: Microstructure to Fracture
The second part of the thesis (Chapters 4 and 5) focuses on the relation between
microstructure features and fracture properties, namely hole expansion capacity
and bendability. This part focuses on data acquired from literature to investigate
the relation of phase volume fractions and chemical compositions with hole ex-
pansion capacity and bendability. In this part, different kinds of machine learning
algorithms are implemented to predict fracture properties based on microstructure
features. For both hole expansion capacity and bendability, statistics show that not
only the volume fraction of certain phases, but also the combinations of certain
phases contribute to the fracture properties.

On the relations between fracture properties and phase fractions, ferrite and
martensite show the most pronounced impact. Meanwhile, the influence of phase
fractions on fracture properties cannot be easily described with monotonic functions.
It occurs often that certain combination of phases contributes significantly to frac-
ture properties. Taking into account the hardness difference among the phases,
for both bendability and hole expansion capacity, the volume fractions of harder
phases contribute positively. At the same time, the fracture initiation and the crack
growth are both favored by the strength mismatch of phases. These observations
indicate that the fracture properties are highly strength-related.

In this part, for the case of both the bendability and the hole expansion capacity,
it is shown that prediction of the fracture-related properties based only on the phase



7

132 7. Conclusions, Discussion and Recommendations

fractions and chemical content is not an easy task. For hole expansion capacity,
a deep learning model achieves a prediction accuracy close to the experimental
accuracy, while for bendability, the prediction accuracy is not as good as for the
case of hole expansion capacity. This could be on account of the lack of data points
and also the variation of bendability even with the same/similar combination of
phases. Nevertheless, machine learning prediction models show huge advantages.
Even though the dataset used in this part of the thesis cannot be recognized as
so-called big data, it is meaningful that this amount of data in materials science
field already shows nice prediction ability in some cases with the help of different
machine learning prediction models. It is believed that significant improvement
can be achieved with the enhancement of the dataset, both in the amount and the
quality.

Part III: Deformation to Fracture
The third part of the thesis (Chapter 6) relates deformation properties and fracture
properties. In this part, not only the relation analysis and prediction performance
are included, but also the detailed interpretation of the machine learning prediction
model is covered with various techniques. With the obtained dataset, detailed data
analysis is performed on the relationships between Charpy impact energy and ten-
sile properties. Meanwhile, based on the data of tensile test properties and Charpy
impact energy, a random forest model is applied to realize the prediction of Charpy
impact energy based on ultimate tensile strength, yield strength, uniform elongation
and area under the tensile curve. While random forest model gives a reasonable
prediction, the interpretation of the model is conducted with the accumulated local
effects plot and the shapley additive explanations.

For Charpy impact energy, the fracture energy part takes a more important role
than the deformation energy part. This is one of the reasons why it is difficult
to predict the Charpy impact energy solely based on the tensile properties. Other
possible causes can be the differences in strain rate and the loading modes. Despite
the difficulties, random forest model gives a prediction accuracy for Charpy impact
energy of ±30 J, which is close to the experimental uncertainty.

Even though most of the machine learning models are like black boxes, there
are different methods to dig into the boxes. In this part of the thesis, three differ-
ent methods are introduced and both the advantages and disadvantages of these
methods are discussed along with the interpretation of the random forest model.
Besides the prediction of Charpy impact energy, those interpretation methods in-
deed give more insight into the prediction model, hence helping to understand the
physical connections of the tensile properties and Charpy impact energy. The in-
terpretation methods show that ultimate tensile strength and yield strength have
negative relation, while uniform elongation and the area under the tensile curve
have positive relation with Charpy impact energy. Moreover, the influence of ulti-
mate tensile strength becomes negligible when the advanced high strength steels
show brittle fracture. These interpretations indicate that Charpy impact energy
is strength-related, but not exclusively dependent on strength. Other factors like
fracture mode can also contribute to the magnitude of the Charpy impact energy.
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7.2. Recommendations
Microstructure & Mechanical properties
Besides theories like the Hall-Petch relation and the Taylor equation, many stud-
ies only investigate the qualitative relations between microstructure features and
mechanical properties. Within this thesis, while the focus is on the statistical rela-
tions between Microstructure & Mechanical properties, only a limited number of mi-
crostructure features and mechanical properties are included and discussed. How-
ever, in order to further investigate the relations, it should be better to extend the
scope of both microstructure features and mechanical properties.

In the case of microstructure features, it is common to include aspects like
chemical content, phase volume fraction, grain size, dislocation density, etc. In
this thesis, an uncommon feature like grain size distribution is included. There
are certainly more of these that could be utilized in the study of microstructure-
properties relations. Possible suggestions are texture, grain shape, grain boundary
density, inclusion characteristics, etc. With the characterization of the microstruc-
ture features, traditional methods mainly have two strategies, either viewing from
the 2D section of the material, such as optical microscopy and scanning electron
microscopy (SEM), or measured from 3D but only using the average data from cer-
tain volume, such as XRD. With the development of 3D characterization techniques,
such as 3D-EBSD, atom probe tomography (APT) and 3D Synchrotron Laminogra-
phy, 3D laboratory-based X-ray diffraction contrast tomography (LabDCT), more
and more 3D microstructure features can be recorded systematically. Hence it will
be beneficial and effective to study the influence on the properties directly from
these 3D microstructure features.

In the case of mechanical properties, it is indeed good to include different kinds
of mechanical testing methods, and meanwhile to take different aspects of the
testing results into account. But viewing from a broader scope, the properties of
materials are not limited to being only mechanical. It is of great importance to study
more angles of the properties of materials, such as corrosion resistance, thermal
properties, electrical and magnetic properties, etc.

Materials data management
Data is so important for materials science research that more attention should be
given to materials data management. In terms of management of the materials
data, there are three aspects during the lifecycle of the data, namely creating,
storing and sharing, which shall be taken into consideration.

In the stage of creating data, it is important to keep the standards consistent.
It is challenging in the field of materials science to record all data systematically.
However, this is the starting point, hence the base of good materials data manage-
ment. Currently, there are standards for various testing methods of materials, but
within those standards, there is no information that focuses on the way of recording
the data. The data recording standards should at least specify the standard data
entries which need to be recorded for specific experiments.

In the stage of storing data, the database structure and the data safety can be
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the two main points to be considered. Since materials data comes from so many
different directions, it is challenging to decide on the materials database structure.
A good idea would be to have a database that uses different key nodes to connect
all the possibly related data entries. On the consideration of data safety, there are
many detailed aspects that may need consideration. But this part is more common
to all different fields which implement their database. For the materials science
field, the guarantee of not losing the data is probably more important than the
prevention of data theft, since here the focus is on those data which is intended to
be freely used by researchers all over the world.

The last stage of sharing data is certainly the key point of the materials data
management. Without sharing, the data created and stored cannot be utilized
by more researchers. Taking the materials data volume into consideration, it is
certainly impossible to have one place to store all materials data. Hence the sharing
stage is like a free trading market. Like the real market and the online shopping
websites, some digital marketplaces can be organized to share information about
the metadata of the databases from different contributors in the world.

Finally, the motivation of contributing to this materials data management has to
be mentioned. The ideal world would be where everybody is willing to contribute to
a certain aspect of the management process, but the reality is skinny. Regulations
made by authorities may be one of the solutions to this motivation problem. Benefits
of the contribution may be another direction for solutions.

Machine learning
Machine learning in general is to use the computer algorithms, which could improve
automatically by the use of data and without being explicitly programmed to do so,
to enhance the accuracy of the prediction. In this thesis, machine learning algo-
rithms are implemented to predict the mechanical properties based on the obtained
datasets.

For the future research directions about machine learning enhancing materials
science studies, there are possible directions from the part of the datasets, the
machine learning algorithms and the interpretation of algorithms.

From the dataset part, it is almost always beneficial to feed the machine learn-
ing algorithms with more training data. However, limited datasets should not be
ignored, which could still be valuable if treated properly. The attention should also
be drawn to the quality of the datasets, which need proper pre-processing before
the training process. This part is closely related to the previous sections on the
materials data management, which directly determines the quality of the datasets.

From the part of the machine learning algorithms, it may not be a good idea
to create completely new algorithms for materials scientists. However, interdisci-
plinary collaboration is essential. It is much more efficient to make use of the fast-
developing machine learning algorithms from the computer science field or from
other fields. There is still a limited number of studies that focus on the implemen-
tation of machine learning techniques in the studies of materials science research
fields. Besides the prediction from the learning of datasets, machine learning can
also accelerate the study of other aspects of materials science. For example, the
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use of machine learning algorithms to enhance the quality of the simulation results,
or to accelerate the simulation process. Applying machine learning to the design of
new materials is also an important topic nowadays.

After the prediction with machine learning algorithms, it is always beneficial
to take a step into the algorithms to understand the connections, which may be
helpful in the understanding of the hidden physical background. Machine learning
algorithms should not remain as black boxes to materials scientist, otherwise, the
contribution of machine learning is massively limited in this field. In the last part
of this thesis, there are several ways introduced to dig into the algorithms. How-
ever, the study is still limited and further enhancement of this part can be of great
importance.





Summary

Multi-phase metallic materials such as Advanced High-Strength Steels (AHSS) are
of great importance in a wide variety of high-tech industries due to their higher
strength compared to conventional (mild) forming steels. The higher strength leads
to various advantages in weight, safety and environmental friendliness. In order to
develop new AHHS steels, the steel industries make use of multi-scale microstruc-
ture modelling to predict mechanical properties from the microstructure features.

This thesis aims at the development of relations between the features of multi-
phase metallic microstructures of steels and the mechanical properties of the ma-
terial. The quantitative characterization of the microstructure will be more involved
than is now in use for estimations of the mechanical properties, which is a ne-
cessity because of the complexity of multi-phase microstructures. Moreover, the
prediction of mechanical properties on the basis of microstructural features will be
extended beyond the usual limitation of the yield stress to properties like hole ex-
pansion capacity and impact energy. Statistical approaches combined with machine
learning algorithms are used to find relations between microstructure features and
mechanical properties. Interpretations of the machine learning algorithms are also
discussed and the possible deeply embedded relations among mechanical proper-
ties are systematically studied.

The research in this thesis deepens the insight into the mechanical behaviour of
the microstructure in multi-phase steels and strongly improves property predictions,
not only based on microstructure features, but also on deformation properties.
Results of this thesis can be directly implemented in microstructure modelling and
are directly available for researchers within the steel industry for developing new
materials.

As shown in the research focus network in Figs. 1.1 and 7.1, the three main
components of this thesis are microstructure features, deformation properties and
fracture properties. The three arrows indicate the three parts of this thesis. Hence
the thesis is divided into three parts: Microstructure to Deformation, Microstructure
to Fracture and Deformation to Fracture.

In Chapter 2, the existing studies about various relationships betweenmicrostruc-
ture features and mechanical properties are summarized based on the scale of the
corresponding microstructure elements, i.e. phases/precipitates, grains and dislo-
cations. Meanwhile, the characteristics of these microstructure elements are also
introduced. Both qualitative and quantitative studies are discussed in this chap-
ter. It is shown that most of the studies focus on the qualitative relations between
microstructure features and mechanical properties.

Part I contains Chapter 3. Here the influence of microstructure features on
the hardness of Interstitial Free steel is studied. Through different heat treatment
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routes combined with controlled cold rolling, the grain size distribution and dislo-
cation density are manipulated, which is then qualitatively measured with optical
microscopy and X-ray diffraction measurements. With the newly introduced vari-
able selection tool LASSO, it is revealed that dislocation density, mean grain size
and kurtosis of grain size distribution are the three microstructure features that
most significantly influence the hardness of Interstitial Free steel.

Part II contains Chapters 4 and 5. In Chapter 4, the study focuses on the
influence of phase volume fractions and chemical content on the hole expansion
capacity. The data analysis is based on collected datasets from the literature. The
hole expansion capacity is analyzed in relation to individual phases, combination
of phases and number of phases. Meanwhile, several selected machine learning
algorithms are implemented to predict the hole expansion capacity with phase vol-
ume fractions and chemical content. Among these algorithms, deep learning gives
the best prediction accuracy, which is comparable to the accuracy of the experi-
mental determination. Based on the machine learning algorithms, the influence of
microstructure features on the hole expansion capacity is also revealed.

Chapter 5 follows a similar structure as the previous chapter, but focuses on the
bendability of the material. The dataset for bendability analysis is also collected
from the literature. The influence of phase volume fractions on bendability is dis-
cussed in detail. Meanwhile, on the prediction of bendability from phase volume
fractions and chemical content, two tree-based algorithms give the best result. Al-
though the accuracy of the prediction of bendability is not as good as that of hole
expansion capacity, the influence of different microstructure features on bendability
is revealed.

Part III contains Chapter 6. Here the focus moves to the relationship between
deformation properties and fracture properties. A well-organized dataset contain-
ing the Charpy impact energy and the tensile properties is obtained from the online
database. The relations between the tensile properties and the Charpy impact en-
ergy are studied in detail. Meanwhile, prediction models on the Charpy impact en-
ergy based on the tensile properties are implemented. While random forest model
gives the best prediction accuracy in this case, the interpretation of the predic-
tion model is extensively discussed in this chapter. With the various interpretation
tools, the influence of tensile properties on the Charpy impact energy is analyzed
and discussed.

Chapter 7 concludes the whole thesis and gives recommendations for possi-
ble future works. The conclusions and general discussion are also following the
three parts structure of the thesis. Based on the conclusions obtained from each
chapter, the possible physical background and connections are also discussed. Fu-
ture recommendations are discussed from three directions, i.e. microstructure &
mechanical properties, materials data management and machine learning.



Samenvatting

Meerfasige metalen zoals geavanceerde hogesterktestalen (AHSS) zijn van groot
belang in een grote verscheidenheid van hightechindustrieën vanwege hun hogere
sterkte in vergelijking met conventionele (zachte) vervormingsstalen. De hogere
sterkte leidt tot verschillende voordelen op het gebied van gewicht, veiligheid en
milieuvriendelijkheid. Om nieuwe AHHS staalsoorten te ontwikkelen, maken de
staalindustrieën gebruik van multischaal microstructuurmodellering om de mecha-
nische eigenschappen te voorspellen op basis van de microstructuurkenmerken.

Dit proefschrift beoogt de ontwikkeling van relaties tussen de kenmerken van
meerfasige metallische microstructuren van staal en de mechanische eigenschap-
pen van het materiaal. De kwantitatieve karakterisering van de microstructuur be-
treft een bredere range dan nu gebruikelijk is voor schattingen van de mechanische
eigenschappen, hetgeen noodzakelijk is vanwege de complexiteit van meerfasige
microstructuren. Bovendien zal de voorspelling van mechanische eigenschappen op
basis van microstructurele kenmerken worden uitgebreid tot meer dan de gebrui-
kelijke beperking van de vloeispanning tot eigenschappen zoals Hole Expansion Ca-
pacity en kerfslagenergie. Statistische benaderingen gecombineerd met algoritmen
voor machine learning worden gebruikt om relaties te vinden tussen microstructuur-
kenmerken en mechanische eigenschappen. Interpretaties van de machine learning
algoritmen worden ook besproken en de mogelijke diep verankerde relaties tussen
mechanische eigenschappen worden systematisch bestudeerd.

Het onderzoek in dit proefschrift verdiept het inzicht in het mechanisch gedrag
van de microstructuur in meerfasige staalsoorten en verbetert sterk de voorspel-
ling van eigenschappen, niet alleen gebaseerd op microstructuurkenmerken, maar
ook op vervormingseigenschappen. Resultaten van dit proefschrift kunnen direct
worden toegepast in microstructuurmodellering en zijn direct beschikbaar voor on-
derzoekers binnen de staalindustrie voor het ontwikkelen van nieuwe materialen.

Zoals te zien is in het onderzoeksschema in Fig. 1.1 en 7.1, zijn de drie belang-
rijkste onderdelen van dit proefschrift: microstructuurkenmerken, vervormingsei-
genschappen en breukeigenschappen. De drie pijlen geven de drie onderdelen van
dit proefschrift aan. Vandaar dat het proefschrift in drie delen is verdeeld: Micro-
structuur tot Vervorming, Microstructuur tot Breuk en Vervorming tot Breuk.

In hoofdstuk 2 worden de bestaande studies over verschillende relaties tussen
microstructuurkenmerken en mechanische eigenschappen samengevat op basis van
de schaal van de relevante microstructuurelementen, d.w.z. fasen/precipitaten,
korrels en dislocaties. Ook worden de karakteristieken van deze microstructuurele-
menten geïntroduceerd. Zowel kwalitatieve als kwantitatieve studies worden in dit
hoofdstuk besproken. Het blijkt dat de meeste studies zich richten op de kwalita-
tieve relaties tussen microstructuurkenmerken en mechanische eigenschappen.
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Deel I omvat hoofdstuk 3. Hier wordt de invloed van microstructuurkenmerken
op de hardheid van Interstitial Free staal bestudeerd. Door middel van verschil-
lende warmtebehandelingen in combinatie met gecontroleerd koudwalsen worden
de korrelgrootteverdeling en de dislocatiedichtheid gemanipuleerd, die vervolgens
kwalitatief worden gemeten met optische microscopie en röntgendiffractie. Met het
nieuw geïntroduceerde variabele selectiehulpmiddel LASSO, wordt onthuld dat de
dislocatiedichtheid, de gemiddelde korrelgrootte en de kurtosis van de korrelgroot-
teverdeling de drie microstructuurkenmerken zijn die de hardheid van interstitieel
vrij staal het meest significant beïnvloeden.

Deel II omvat de hoofdstukken 4 en 5. In hoofdstuk 4 richt de studie zich op
de invloed van fasevolumefracties en chemische samenstelling op Hole Expansion.
De gegevensanalyse is gebaseerd op verzamelde datasets uit de literatuur. De Hole
Expansion Capacity wordt geanalyseerd in relatie tot individuele fasen, combinatie
van fasen en aantal fasen. Ook worden verschillende algoritmen voor machine
learning geïmplementeerd om de Hole Expansion Capacity te voorspellen op basis
van volumefracties van fasen en chemische samenstelling. Van deze algoritmen
geeft deep learning de beste voorspellingsnauwkeurigheid, die vergelijkbaar is met
de nauwkeurigheid van de experimentele bepaling. Op basis van de algoritmen
voor machine learning wordt ook de invloed van microstructuurkenmerken op de
Hole Expansion Capacity onthuld.

Hoofdstuk 5 volgt een vergelijkbare structuur als het vorige hoofdstuk, maar
richt zich op de buigbaarheid van het materiaal. De dataset voor de buigbaar-
heidsanalyse is ook verzameld uit de literatuur. De invloed van fasevolumefrac-
ties op de buigbaarheid wordt in detail besproken. Voor de voorspelling van buig-
baarheid uit fasevolumefracties en chemische samenstelling, geven twee random-
forest-gebaseerde algoritmen het beste resultaat. Hoewel de nauwkeurigheid van
de voorspelling van de buigbaarheid niet zo goed is als die van de Hole Expan-
sion Capacity, wordt de invloed van verschillende microstructuurkenmerken op de
buigbaarheid gepresenteerd.

Deel III omvat hoofdstuk 6. Hier wordt de aandacht gericht op de relatie tussen
vervormingseigenschappen en breukeigenschappen. Een goed geordende dataset
met de Charpy-slagenergie en de trekeigenschappen wordt verkregen uit een on-
line database. De relaties tussen de trekeigenschappen en de Charpy-slagenergie
worden in detail bestudeerd. Daarnaast worden voorspellingsmodellen voor de
Charpy-slagenergie op basis van de trekeigenschappen geïmplementeerd. Daar
het random forest model in dit geval de beste voorspellingsnauwkeurigheid geeft,
wordt de interpretatie van het voorspellingsmodel in dit hoofdstuk uitgebreid be-
sproken. Met de verschillende interpretatie-instrumenten wordt de invloed van de
trekeigenschappen op de Charpy-slagenergie geanalyseerd en bediscussieerd.

Hoofdstuk 7 besluit het gehele proefschrift en geeft de aanbevelingen voor mo-
gelijke toekomstige studies. De conclusies en algemene discussie volgen ook de
driedelige structuur. Op basis van de conclusies uit elk hoofdstuk worden ook
de mogelijke fysische achtergronden en verbanden besproken. Toekomstige aan-
bevelingen worden besproken vanuit drie richtingen, te weten microstructuur &
mechanische eigenschappen, databeheer en machine learning.
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