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PREFACE

With our current complex society and fast paced technological developments, the branch of
numerical analysis and scientific computing has played a paramount role in providing the
tools to translate (abstract) models into computer aided simulation. For example, for seis-
mic exploration, we need to understand how waves travel through the earth’s subsurface.
For nodules to show up on MRI and ultrasound, we need to know how electromagnetic
waves or sound travel and scatter through human tissue. For wireless communication, we
require insights into wave propagation at different frequencies. Scientists working on these
diverse topics have on thing in common: they all rely on accurate simulation tools.

At the heart of the previously mentioned applications lies the Helmholtz equation. While
the equation in itself, which is essentially the shifted Laplace equation, appears simple and
elegant, retrieving accurate and scalable numerical solutions leads to a wide array of is-
sues. Due to the shift, which represents the wavenumber, the operator and consequently
resulting discretized linear system matrix become indefinite. To ensure accurate solutions
and the minimization of numerical dispersion, we are required to use very fine grids. Con-
sequently, we end up with very large linear systems. Despite increased computer power,
direct solution methods are no viable alternative and we resort to iterative solvers. As the
wavenumber increases, the number of iterations to reach convergence increases as well,
leading to inscalabilty of the solver.

For more than 15 years, the industry has relied on using the Complex Shifted Laplacian
(CSL) as an effective preconditioner to accelerate the convergence. While this works effi-
ciently for medium sized wavenumbers, the number of iterations are still too high for prac-
tical applications and the problem sizes become too large when we move to modern high-
frequency problems and applications, such as numerical weather prediction models and
plasma fusion simulations. The main culprit behind the deteriorating performance of the
solver are the near-zero eigenvalues of the preconditioned matrix.

So how can we design simulation tools which remain scalable both in terms of the compu-
tational complexity and the wavenumber? Answering this question lies at the core of this
dissertation.

SCOPE

The bottleneck in designing iterative solvers lies in balancing the trade-off between accu-
racy and scalability. To work on these issues, we formulated three research pillars which
guide the progression of this dissertation. For accurate solutions, we require fine grids lead-
ing to uneconomical simulations which could take up days (accuracy). Moreover, solutions
always suffer from the so called 'pollution error’ due to numerical dispersion. For fast so-
lutions, we need iterative solvers which converge in steps independent of the wavenumber

ix
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(wavenumber independent convergence). We also require that the amount of computa-
tional work depends linearly on the problem size (linear complexity). At the same time, the
presence of heterogeneous media and variable frequencies further complicates the design
of numerical solvers. In these instances, no analytical solution is available.

The scope of this dissertation lies in sequential implementations and we will therefore not
discuss parallel scalability. Moreover, we distinguish between two research parts: one deal-
ing with the accuracy, which discusses the first research pillar (Part IT) and the second part
dealing with the numerical solvers (Part III). We mostly focus on using second order finite
differences schemes, and thus other discretization techniques unless states otherwise, are
not within the scope of this dissertation.

Given that the study of the accuracy and pollution error requires model problems where the
analytical solution is known, we will use different model problems for each chapter depend-
ing on the context. Thus, model problems using Sommerfeld boundary conditions will be
discussed in the numerical solver part (Part III).

Furthermore, the two-level and multilevel solvers we develop in this dissertation will also
be subjected to different model problems as, for example, the two-level method requires
more memory. To make things more clear, each chapter will start with a clear definition of
the model problems which will be discussed within the context of that chapter. Moreover,
notation-wise, due to the broad set of methods discussed in this dissertation, we will rein-
troduce notations at the beginning of each chapter. One reason for this is that describing
the accuracy issues, for example, allows for a more compact notation of the eigenvalues
compared to when we are dealing with eigenvalues of the systems in a multilevel hierarchy:.

Vandana Dwarka
Amsterdam, March 2022



SUMMARY

The bottleneck in designing iterative solvers for the Helmholtz equation lies in balancing
the trade-off between accuracy and scalability. Both the accuracy of the numerical solution
and the number of iterations to reach convergence deteriorate in higher dimensions and
increase with the wavenumber. To address these issues in this dissertation, we formulated
three research pillars: accuracy, wavenumber independent convergence and linear com-
plexity. Below, we summarize the core findings of this dissertation:

WAVENUMBER INDEPENDENT CONVERGENCE

We develop the first preconditioning technique which leads to close to wavenumber inde-
pendent convergence for very large wavenumbers in 1D, 2D and 3D. Building on a two-level
deflation projection method, we incorporated Quadratic Rational Bézier curves to con-
struct the deflation space and vectors (Chapter 7). As a result, the near-zero eigenvalues
of the coarse grid operator remain aligned with the fine-grid operator, keeping the spec-
trum of the preconditioned system clustered, leading to superior convergence properties
compared to previous methods.

LINEAR COMPLEXITY

For over 30 years, applied mathematicians have tried to make convergent (standard) multi-
grid solvers for the Helmholtz equation. Multigrid solvers use sequences of smaller prob-
lem sizes and are computationally cheap and easy to implement. Unfortunately, multi-
grid methods diverge for Helmholtz and solving this issue remained an open problem. Us-
ing standard smoothing techniques, combined with similar higher-order coarse spaces, we
constructed a fully convergent V- and W-cycle algorithm (Chapter 9). The key features of
the algorithm are the use of higher-order transfer operators (instead of deflation vectors in
the previous application) and a complex shift in the smoothing operator. While the method
converges and the preliminary results have been proven, much research can still be con-
ducted in this area, as this could support a paradigm shift in solving the complexity issue
for very large wavenumbers in 2D and 3D.

In light of this, we extended the two-level deflation solver to a multi-level deflation solver
to address both the issue of wavenumber and problem size dependence (Chapter 8). In
this part, we show better convergence properties and provide numerical experiments on
challenging 2D and 3D test problems to corroborate the theoretical results.

ACCURACY

Finally, we developed an unprecedented way to study the accuracy of the numerical solu-
tions by studying the eigenvalues of systems where the analytical solution is known (Chap-
ter 5). Expressing the pollution error in terms of these eigenmodes, enabled theoretical
accuracy studies and dispersion corrections in higher dimensions, irrespective of the wave
propagation angles. Something which was previously impossible. We also studied the ap-
plication of Isogeometric Analysis (IgA) to improve the accuracy and reduce the pollution
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error (Chapter 6). Our results showed that the use of IgA was able to significantly suppress
the pollution error compared to Finite Elements Discretizations of the same order.
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Het belangrijkste knelpunt in het ontwerpen van iteratieve solvers voor de Helmholtz vergeli-
jking ligt in het vinden van een balans tussen de nauwkeurigheid van de numerieke oploss-
ing en de schaalbaarheid van de solver. Zowel de nauwkeurigheid van de numerieke oploss-
ing, als het totaal aantal iteraties, verslechteren in rap tempo wanneer men multidimen-
sionele problemen wilt oplossen en naar mate het golfgetal groter wordt. Om deze proble-
men gericht te onderzoeken, worden in deze dissertatie drie onderzoekspijlers geaddreseerd:
nauwkeurigheid, golfgetal onafhankelijke convergentie en lineaire complexiteit. Hieronder
vatten we de bevindingen per pijler kort samen:

GOLFGETAL ONAFHANKELIJKE CONVERGENTIE

We hebben de eerste preconditionering techniek ontwikkeld waarbij we zo goed als golfge-
tal onafhankelijke convergentie krijgen voor grote golfgetallen in 1D, 2D en 3D toepassin-
gen. Hiervoor gebruiken we een two-level deflatie projectie methode waarbij we kwadratis-
che rationale Bézier krommen gebruiken om de deflatie ruimte en vectoren op te span-
nen. Als gevolg ligt het spectrum van de coarse-grid operator in het verlengde van de fine-
grid operator, met als resultaat dat spectrum van het complete gepreconditioneerde sys-
teem geclusterd blijft en een significante verbetering oplevert in convergentie gedrag ten
opzichte van andere methodes.

LINEAIRE COMPLEXITEIT

De afgelopen 30 jaar hebben veel toegepaste wiskundigen hun tijd en toewijding besteed
aan het werkend krijgen van een convergerend multigrid algoritme voor de Helmholtz vergeli-
jking. Multigrid solvers staan bekend om het gebruik van een serie aan steeds kleiner wor-
dende problemen en zijn hierdoor goedkoper in rekenkracht en makkelijk te implementeren.
Helaas divergeren multigrid methoden voor de Helmholtz vergelijking en is dit nogsteeds
een open probleem in de toegepaste wiskunde. De combinatie van hogere orde coarse
spaces en efficiente standaard smoothing technieken uit de klassieke multigrid literatuur,
blijken succesvol in het construeren van een volledig convergente V- en W-cycle algoritme
(hoofdstuk 9). De belangrijkste componenten van het algoritme zijn het gebruik van hogere
orde transfer operators, in plaats van de deflatie vectoren zoals in het vorige algoritme, en
een complexe shift in de smoothing operator. Ondanks dat de methode convergeert en de
eerste resultaten worden ondersteund door convergentie bewijzen, is er nog veel ruimte
voor verder onderzoek. Met name omdat een efficiente toepassing van multigrid methode
voor Helmholtz vergelijking een paradigm shift kan ondersteunen in het oplossing van het
complexiteitsvraagstuk voor toepassingen waarbij grote golfgetallen worden gebruikt in 2D
en 3D.

Mede vanwege het complexiteitsvraagstuk en de golfathankelijke convergentie, breiden we
tevens de two-level deflation solver uit naar een multi-level deflatie solver (hoofdstuk 8). In
dit deel bewijzen we betere convergentie eigenschappen en rapporteren we de resultaten

xiii
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van complexe numerieke experimenten voor 2D en 3D testproblemen die onze theoretische
resultaten onderschrijven en ondersteunen.

NAUWKEURIGHEID

Tot slot, hebben we unprecedente manier gevonden om de nauwkeurigheid van de nu-
meriek oplossing uit te drukken in de eigenwaarden van de operatoren waarvan de analytis-
che oplossing bekend is (hoofdstuk 5). Door de pollution error te bekijken vanuit het per-
spectiefvan de eigenmodes is het mogelijk om theorie te ontwikkelen die de nauwkeurigheid
en numerieke dispersie correcties in kaart kan brengen van multidimensionale problemen,
onathankelijk van de golf propagatie hoek. Dit was voorheen onmogelijk omdat de dis-
persiefout enkel opgesteld kon worden indien de hoek van propagatie bekend was. Voorts
bestuderen we ook de toepassing van isogeometrische analyse (IgA) om de nauwkeurigheid
te verbeteren en de 'pollution error’ te minimaliseren (hoofdstuk 6). Onze resultaten leggen
bloot dat het gebruik van IgA de pollution fout in sterke mate weet te onderdrukken in
vergelijking met standaard eindige elementen methode van dezelfde orde.
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BACKGROUND FUNDAMENTALS






INTRODUCTION

Each individual fact taken by itself,
can indeed arouse our curiosity,

or our astonishment or be useful to us
in its practical applications.

Hermann von Helmholtz




4 1. INTRODUCTION

At the heart of many fields like optics, acoustics, electrostatics and quantum mechanics, lies
the wave equation. It’s time-harmonic equivalent, the Helmholtz equation, has been stud-
ied to answer a variety of questions governing modern day applications. The Helmholtz
equation, named after its creator, Hermann von Helmholtz, German physician and physi-
cist, is a second order partial differential equation which models wave phenomena in the
frequency domain. These phenomena are widely studied in various engineering practices.
For example, for seismic exploration, we need to know how waves travel through the earth’s
subsurface. For nodules to show up on MRI and ultrasound, we need to know how elec-
tromagnetic waves travel and scatter through human tissue. For wireless telecommunica-
tions, we require insights into wave propagation at different frequencies. For cells to be
inactivated or loaded with DNA, we need an understanding of the permeability of the elec-
tromagnetic field on the cell membrane.

But with our society facing new challenges, its relevance is becoming increasingly impor-
tant. Even more innovative and futuristic projects rely the study of charged particles with
electromagnetic fields, which are crucial for the advancement and understanding of nu-
clear fusion devices in our current energy transition. In particular, the study of more com-
plex wave phenomena in the time domain can be supported by studying the Helmholtz
equation.

1.1. HELMHOLTZ EQUATION

The Helmholtz equation can be derived from the wave equation, given that it models har-
monic wave propagation in the frequency domain through a homogeneous medium. We
start by considering the propagation of time harmonic waves, which is governed by (1.1)

, 1 02
(V= 32)0x1)=0 (1.1)

In equation(1.1) the vector x denotes the spatial variable in some subspace Q of R", which
represents the physical domain. The real constant ¢ and the real variable ¢ represent the
wave speed and time parameter respectively.

A solution to equation (1.1) can be obtained by separating the variables into a spatial and
time component

P(x 1) =u(x)T(r) (1.2)

Letting equation (1.2) represent a potential solution to equation(1.1), we substitute the pre-
vious equation into the former to obtain

(vzf—1 > )(u(x) T(1))=0 (1.3)
c? 0r? B '

Pu 1 T )

W TEer " .

Note that in order for the solution to satisfy equation (1.1), we have to equate both sides of
equation to a constant —k?. Rearranging the left hand side of equation (1.1), which now
is completely separated from the time component, we obtain the homogeneous Helmholtz
equation

(V> =k} u(x)=0 (1.5)
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Intuitively u(x) can best be interpreted as the wave function, whereas k stands for the
wavenumber, which relates the wavelength A and the angular frequency. General expres-
sions for the before mentioned are

2m

k
A

(1.6)

Practical applications of the Helmholtz equation often involve the non-homogeneous Helmholtz

equation. In this case the right hand side of (1.5) consist of a source function f(x)
f(x) =06(x—xs), (1.7)

where xg denotes the location of source in the domain. Additionally, in some applica-
tions, such as modeling phenomena through an inhomogeneous medium, a non-constant
wavenumber k(x) is enforced to capture different velocity profiles. Also, especially in geo-
physical applications, a damping constant is added to the wavenumber.

1.2. BOUNDARY CONDITIONS

Solving the Helmholtz equation on a bounded physical domain Q requires the reinforce-
ment of boundary conditions. In the absence of such conditions the problem becomes ill-
posed; the equation in its current form models the indefinite propagation of waves. There-
fore, we define either vanishing or reflecting boundary conditions at the boundary of Q,
which we denote by 0Q.

* Vanishing boundary conditions: vanishing boundary conditions can be modelled by
imposing homogeneous Dirichlet conditions

u(x) =0,xe0Q (1.8)

* Reflecting boundary conditions: reflecting boundary conditions can be modelled by
imposing homogeneous Neumann conditions, where n denotes the outward normal
unit vector with respect to the boundary 0Q

<g> u(x) =0,x€ 0Q (1.9)

on

¢ Mixed boundary conditions: mixed boundary conditions can be modelled by impos-
ing both homogeneous Dirichlet and Neumann conditions instantaneously. Within
the context of the Helmholtz equation, if the equation is solved on an infinite domain,
these mixed boundary conditions are often referred to as Sommerfeld Radiation con-
ditions, where i represents the imaginary unit

. J . .
rlg%o\/? <E + lk) u(x) =0,x€0Q (1.10)

This condition ensures uniqueness of the solution and represents that there are no in-
coming waves from infinity. To approximate the Sommerfeld conditions on bounded
domains, we use an approximation,

o . _ 5
(8_n+lk) u(x) =0,xe0Q, (1.11)
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where n denotes the outward normal unit vector with respect to the boundary 0Q.
This type of boundary condition is also known as the non-reflecting or absorbing
boundary condition and it models the wave disappearing at infinity.

1.3. APPLICATIONS

In order to illustrate the wide range of applications of the Helmholtz equation, we give an
example of a scattering problem and an example of a wave propagation problem. Scatter-
ing problems are considered to be both mathematical and diagnostic in nature. Inverse
problems are solved to extract hidden features of natural phenomena. Here, one starts with
some data and proceeds backwards to the source of that data. An important class of inverse
problems is the study of inverse scattering of plane waves from material objects. Here, the
data exists physically in the form of the scattered fields. The inverse problem is to deter-
mine the scatterer, which is governed by the Helmholtz equation. Similarly, the Helmholtz
equation is also used in the modelling of the propagation of electromagnetic waves.

1.3.1. WIFI ANTENNA

In Fig. 1.1 we observe the propagation and scattering of electromagnetic waves for a par-
ticular floor plan in a building. The WiFi router is placed in the lower right corner of the
floor and is modelled by an inhomogeneous source function. The source function will be
zero everywhere, except where the antenna is located, leading to a point-source function.
If walls are assumed to be concrete with a high refractive index, some absorption will be
visible and reflections will be stopped.

Figure 1.1: Wave propagation throughout the floor. Image from Jason Cole.

1.3.2. NUCLEAR FUSION

The study of electromagnetic waves in plasma are of paramount importance to propel the
development of alternative energy sources, such as nuclear fusion. In this field of study,
both cold and hot plasma problems are investigated. Cold plasma problems, in particu-
lar, have become ubiquitous in the study of radio frequency power in fusion plasma’s. For
magnetically confined fusion plasma’s, it is convenient to examine the wave propagation of
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the reduced Maxwell equations, which in fact leads to the Helmholtz equation. In Fig. 1.2 a
combination of radio waves is able to stabilize fusion.

Figure 1.2: Illustration of controlled plasma by the emittance of radio waves.

1.3.3. EARTHQUAKE SIGNALS

The increasing number of earthquakes has led earth scientists to develop new methods in
surface wave tomography in order to track phase fronts and map the travel times for earth-
quakes [1]. This method is based on the eikonal equation and is, therefore, referred to as
‘eikonal tomography’.

Eikonal tomography does not account for frequency effects such as wave interference or
backward scattering. This shortcoming potentially may lead to both systematic bias and
random error in the phase velocity measurements, which would be particularly important
atlonger periods studied with earthquakes. It is shown here that eikonal tomography can be
improved by additionally solving the Helmholtz equation as the latter allows the inclusion
of the effects of both wave interference and backward scattering. As a result, a geograph-
ically localized correction can be applied leading a reduction in the uncertainties in the
phase velocity maps of the earthquakes studied.
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Figure 1.3: Data obtained from earthquakes. Circles mark the location of the earthquakes. Image from [1].

1.4. SCIENTIFIC COMPUTING CONSIDERATIONS

The common denominator in assessing examples such as the ones from Section 1.3 across
so many different fields is numerical simulation. Simulation tools are developed through
the utilization of a broad set of both theoretical and applied mathematical expertise. It
enables savings in financial and computational resources before setting up costly experi-
ments. It can even serve as a proxy in certain cases where such experiments can not be
realized. While the general Helmholtz equation may appear very simple and elegant, re-
trieving the numerical solutions leads to a wide range of issues. Some problems are, to this
day, considered an open problem in applied mathematics after decades of research.

In particular, the underlying complexity of the numerical solver grows with the frequency,
which we have denoted as the wavenumber k. Despite increased computer power, direct
solution methods are no viable alternative and we resort to iterative solvers. The bottleneck
in designing iterative solvers lies in balancing the trade-off between accuracy and scalabil-
ity. For accurate solutions, we require fine grids leading to uneconomical simulations which
could take up days to weeks. For fast solutions, we need iterative solvers which converge in
steps independent of the frequency. We also require that the amount of computational work
depends linearly on the problem size. At the same time, the presence of heterogeneous me-
dia and variable frequencies further complicates the design of numerical solvers. In these
instances, no analytical solution is available.

1.4.1. RESEARCH PILLARS
To work on these issues, we determined three research pillars.

* We aim on constructing a scalable iterative solver where the number of iterations are
independent of the frequency or wavenumber (wavenumber independent conver-
gence).

e We also require that the computational work depends linearly on the problem size
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(linear complexity).

* Athigher frequencies the quality of the analytical solution improves, while the quality
of the numerical solution rapidly deteriorates. Consequently, we aim to develop new
ways to study the accuracy (accuracy).

1.5. DISSERTATION OUTLINE

In order to solve the Helmholtz equation numerically, some fundamental concepts from
numerical analysis themes are introduced in Part I. After introducing these themes such
as numerical discretization, the array of suitable iterative solvers and the current span of
multi-level solvers for the Helmholtz equation (1.5), we move our focus onto the study of
the accuracy and scalability of numerical solutions.

In Part IT and Part III we elaborate on the research pillars. Part II discusses the numerical
accuracy and Part III focuses on the first two pillars. In each respective chapter, a literature
overview will be presented as regards the topic concerned. Finally in Part IV we provide
our conclusions, discussions and outlook for this research topic. In particular, this thesis
consists of 4 parts and 11 chapters.
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The true and best way of learning any Art,

is not to see a great many examples done by another person,

but to possess ones self first of the principles of it,

and then to make them familiar, by exercising ones self in the practice.

Brook Taylor

11
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Solving the Helmholtz equation numerically requires the translation from the continuous
partial differential equation into its discrete counterpart. This process is what we refer to
as numerical discretization, which relies heavily on approximation theory developed by the
British Mathematician Brook Taylor. Several methods are at our disposal to discretize the
Helmholtz equation, such as the finite difference and finite element method respectively. In
this work we focus on the finite difference method, but a vast collection of works has been
dedicated to studying the finite element method for the Helmholtz equation. The latter is
particularly of interest in the case of complicated (geometric) domains.

2.1. FINITE DIFFERENCES
We elaborate on the concept of numerical discretization using the following one-dimensional
example. Starting with the one-dimensional case, we can naturally extend the discretization
to the two-dimensional case. We discretize the following continuous problem on a simple
finite domain using a second-order accurate central difference scheme

dZ

D _pu - f, xeo-(D) a1
u(x) = 0, x=0,
u(x) = 0, x=L,.

2.1.1. DISCRETIZATION OF THE GEOMETRY

For the discretization, we take Q, j, = [0,1] and we let n denote the number of elements on
an uniform grid consisting of n + 1 nodes, including the boundary 0Q; ;. Given the unit
interval, we get the following numerical domain, with step size h = %

1
Qllh:{(x,-)|xj:jh,h:;,1<j<n+1,nel\l\{0}}

In the two-dimensional case, our finite domain becomes the unit square domain Q, ;, =
[0,1] x [0,1]. A geometrical representation of these grids is illustrated below in Fig. 2.1.

Q Q Q
1,h 2,h 3h Figure 2.1: An
equidistant nu-
merical domain
——a————

with internal
nodes for 1D, 2D
and 3D.
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2.1.2. DISCRETIZATION OF THE PHYSICS

On both Q; ; and Q, j respectively, we introduce spatial grid vectors in order to approxi-
mate the source function f(x) and the wave function u(x). Due to the vanishing Dirichlet
boundary conditions, the numerical wave function will be completely defined at the inter-
nal grid nodes

f(x)~ f(xj) = fuj
u(x) ~ u(xj) = up,j,
erl,h-

2.1.3. LINEAR SYSTEM FORMULATION
We arrive at a linear system formulation after approximating the continuous second order
derivatives by central finite difference approximations. This scheme provides second order
accuracy @(h?) for smooth solutions on uniform grids. For the 1D case we have
—Up,j—1+2Uj — Up j+1
h2

2 .
—kKupj=fujpl<j<n—1,

Implementing a x-line lexicographic ordering of the internal nodes, allows us to assemble
the unknown grid values uy, ; and fj, ; into column vectors of dimension (n — 1) for the
1D case. Consequently, for the 1D problem, we construct a linear system of equations as
follows

Apup=[-1 2—K*R* —1|lup=fp

In the 1D case, the wave vector u; and source function fj, are vectors with length n — 1.
We have transformed the continuous partial differential Helmholtz equation into a linear
system of equations. Solving the Helmholtz boundary value problem now boils down to
solving the system

Apup = fp,
A€ R(n—l)x(n—l)'

uh,fh € R(n_l).

2.1.4. DISCRETIZATION OF THE BOUNDARY CONDITIONS

In Chapter 1 we described the common boundary conditions used in order to solve the
Helmholtz equation. So far we have used Dirichlet boundary conditions for discretization
purposes, but Sommerfeld boundary conditions are an integral part of well-posed Helmholtz
boundary value problems. Numerically this condition is fulfilled approximately as an infi-
nite domain is always reduced to a finite domain. Recall from Section 1.2 that the Sommer-
feld boundary condition is modelled by

< d > u(x) = —iku(x), xeoQ 2.2)

on
We start by discretisizing Eq. (2.2) for the 1D case. We again use a centered second order
difference scheme to approximate the first order derivative. This translates to
ou Uy — Uy

— —iku~

T o iku; =0, (2.3)




14 2. NUMERICAL DISCRETIZATION

where u is called a ghost-point to the left of u;, given that the indices in our discretization
scheme go from j =1 to j = n+ 1 whenever the boundary nodes are included. The ghost
point can be eliminated by observing that ug = uy —2hiku,.

2.1.5. LINEAR SYSTEM PROPERTIES

The matrix A obtained after discretization of the Helmholtz equation has several character-
istic properties. Depending on whether Dirichlet or Sommerfeld boundary conditions are
used, the matrix can be either real- or complex-valued. While A is (complex) symmetric, it is
non-normal and non-Hermitian in case Sommerfeld conditions are used. If homogeneous
Dirichlet boundary conditions are used, the matrix remains normal and thus self-adjoint.
One can immediately notice that the coefficient matrix A is in fact the discretized Laplacian
including a term involving — k?

A=—A—FKI, (2.4)

where I represents the identity matrix and A the discretized Laplacian. For large enough k2,
the matrix becomes highly indefinite. As a result, the real part of the (complex) eigenvalues
of A can be negative as well and the condition number of the matrix A becomes inevitably
large. This is why Helmholtz problems are often referred to as being ill-conditioned.

SPECTRUM

When homogeneous Dirichlet boundary conditions are enforced, we can easily construct
closed form expressions of the eigenvalues of the matrix A. In this case, looking closely at
Eq. (2.4) reveals that the eigenvalues of the Helmholtz operator are similar to the eigenval-
ues of the Laplace operator including a shift —k?. Thus, we obtain the following expressions
for the 1D continuous (1/) and discrete ()fl ) eigenvalues

M=jn® =k j=1,23,... 25
A~ 1
A]::EE(z_zcogjnh)—th%,j::szu,n—l. (2.6)

The eigenvectors of the matrix A are

sinzjh
sinnj2h

>

sinzj(n—1)h

1<j<n-—1. @.7)

In case of homogeneous Dirichlet conditions, we explicitly need to ensure that j2z? # k?
and i’n? + j?n® # k?, which would imply resonance and unbounded oscillations in the
absence of dissipation. In the latter case, the problem would become ill-posed due to zero
eigenvalues being present. The use of these homogeneous Dirichlet conditions in this work
will serve as a theoretical test problem in order to determine preliminary convergence and
accuracy properties.
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2.1.6. HIGHER-DIMENSIONS
The discretization for a 2D problem follows naturally from the 1D case. Using a second-
order finite difference scheme, we obtain

—Up,i(j—1) ~ Un,(i—1)j T AUnij  Upi(j+1) ~ Un(i+1);
h2
The lexicographic ordering for the 2D case results in a mapping from a 2-index coordinate
to a single index coordinate as illustrated in Fig. 2.2.

—KPupij=faij 1<i,j<n-—1

=18
j=1 Figure 2.2: 1I-
lustration of lexi-
cographic order-
ing.
@) =32 1=9 &
=1

I=i+(-Dn+1)
1<ij<n+1

The approximations of the derivatives on Q, j can also be written in the following stencil
notation

—1
1
[Ahuh]lgi,jgnzﬁ —1 4=k =1 | [wn]i<y j<n = [fudi<ijn-
—1

Using the lexicographic ordering, we formulate a linear system of equations.Note that now,
the vectors have length (n — 1)2. The extension to 3D can be derived analogously. Solving
the Helmholtz boundary value problem now boils down to solving the system

Aptp = fn

Ap € [R(nfl)2 x(n—1)? ’

)2

up, fn ER(n D*,
DISCRETIZATION OF THE BOUNDARY CONDITIONS
The 2D boundary condition can be discretized by

ou Up2j— Unoj
on 2h

In this case, we again define a stencil for the boundary nodes uy 1 j, for2< j<n-—1as

— ikuh,lj =0. (2.8)

oL -1 0
7 0 4—Kk2h%2+2hik —2|, 2.9)
0 -1 0
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whereas for the corner point uy,;; we obtain the stencil

L -2 0
7z 0 4—Kk2h%2+4hik —2|. (2.10)
0 0 0

Repeating the above process for the other boundary nodes results in a complex symmet-
ric linear system. The complex symmetry is obtained by dividing the non-corner stencil
(Eq. (2.9)) and the corner stencil (Eq. (2.10)) points by 2 and 4 respectively.

SPECTRUM
If we use homogeneous Dirichlet conditions, we again determine the analytical eigenvalues.
In this case, the eigenvalues for the 2D system are given by

A = 2a® 4 P — k%0, j=1,2,3,... (2.11)
|
A= (4—2cos(inh) —2cos(jmh) — k*h?),i,j=1,2,...,n—1. (2.12)

Note that also here we need to warrant for the case where k? = i?7% + j2n2, as this would
imply resonance. Thus, whenever we use this model problem, we explicitly check whether
the matrix remains non-singular.

2.2. FINITE ELEMENTS

In this section we briefly explain the finite element discretization (FEM) of the Helmholtz
equation using piece-wise linear elements. The main idea behind the method is to use
simple basis functions (piece-wise linear) to construct local elements which approximate
the solution on these subdomains. The combination of the subdomains then leads to a
global system, which can also be represented by a linear system of equations. We discretize
the same model problem.

2.2.1. DISCRETIZATION OF THE GEOMETRY

We again start with a discretization of the geometry where we take the domain Q, j;, = [0,1]
and divide it into 2" = N elements with length h = %, which we denote by e;. In this case,
ej represents the interval [x;, x; + 1] and is an element within the physical domain. The end
point of the interval xx 1, is located at the last element ey.

Thus, in 1D the interval is divided into elements and in 2D the discrete domain is divided

into triangles, see Fig. 2.4 for an example.

BASIS FUNCTIONS
Moving on with the 1D example, we define piece-wise linear basis functions on each ele-
ment.

X—Xj—1
Xj—1SX<Xj
Xj —X
pj(x) =9 5= x;<x<xjyn Pilxi)=0ij, 2.13)
0 elsewhere

where §;; is the Kronecker delta function. Fig. 2.5 shows the global shape functions over the
space containing all elements.
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x.
j+2
(Xj+2. Yj+2)

e.
)
&
Xj Xj+1 X X+t
(xjﬂyj) (xj+1:yj+1)
Figure 2.3: Illustration of an element e on Q; j (L) and Q3 j,
(R). Note that in the 2D case we need 1 more node to con-
struct an element and the nodes are 2D-coordinates rather
than points.
10
P
9,
P
gL~ y 4
- 2
— Figure 2.4: Example of triangular-
6 - d ization of the unit square. The
il - domain is divided into equally
spaced triangle elements to create
4 e rFa the depicted mesh.
I L Pt
2 r
v ¥
e s
i 2 3 4 & & f 8 8 10

¥©0 Pj PN+1

Zo

Y

Tj—1 Tj Tj4a ITN+1

Figure 2.5: Shape functions ¢ for elements on the unit interval.
These are also known as hat functions.
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2.2.2. DISCRETIZATION OF THE PHYSICS

Before we obtain a discretized version of the solution, we need to put the original PDE into
the weak form. In order to do this, we assume there exist a test function w, which obeys the
same boundary conditions as our original solution function u. We also assume that there
exist a set of basis functions such that # and w can be represented by this same basis. We
multiply Section 2.1 by w and integrate both sides. This gives

1 224 1 1
—J w—zdx—sz wudx:f wfdx (2.14)
o dx 0 0
Integration by parts gives the weak formulation of our boundary value problem
dul’ Vdw du ! !
—|w— ——dx—k dx = dx. 2.15
[wdx]O+L Jx dx x qu x wa X (2.15)

Given that w satisfies the same boundary conditions as v, the first term vanishes. Next,
we need to find a suitable basis for # and w such that both functions can be written as a
superposition of the basis functions. This will allow us to represent the discrete solution as
the sum of the elements of the basis by solving the integrals corresponding to each element.
If we denote the basis functions by ¢, then we can write

N

wwwh:th'i(pi, 9i(0)=0, ¢;(1)=0 (2.16)
i=1
N

uxup =Y upjpj, @j(0)=0, ¢;(1)=0. 2.17)
j=1

Substituting Eq. (2.16) and Eq. (2.17) into Eq. (2.15) gives us the discretized version of the
weak form

N

1 1 1
do; de;
E uh,j[ ﬂﬂdx—sz (p,-(pjdx] :J pifdx i=1,2,...N. (2.18)
a o dx dx 0 0

2.2.3. LINEAR SYSTEM FORMULATION
Note that the formulation in Eq. (2.18) is equivalent to solving a linear system of equations
Apup = fr, where

1
uy = uhvflSjSN’ fn= |:J (pifdx] , (2.19)
0

1<i<N

1 1

do; de;

Ap = [J ﬂﬂdx—sz (pﬂpjdX] .
o dx dx 0 1<i,j<N

For the remainder of this section, we proceed by dropping the subscript & for the linear
system matrix A. We can split the matrix A in terms of a stiffness matrix K and mass matrix
M by writing

1 1
do; do;j
K:[ ﬂﬂdx} , M:U (pi(pjdx] . (2.20)
o dx dx 1<i,j<N 0 1<i,j<N
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ELEMENT MATRIX

Given that the basis functions are defined in an element-wise manner, the integrals can also
be evaluated element-wise. Moreover, the shape functions ¢; have small support, which
implies that most of the coefficients in A will be zero. Note that for an arbitrary element
ej = [xj,xj41], there will only be two non-zero piece-wise linear shape functions. Using
this, we thus obtain

1 N

do: do; do: do;

KZU ﬂﬂdx] =Zf dgi d%; (2.21)
o dx dx 1<ij<N e dx dx

Thus, instead of the global linear system in Eq. (2.20), we obtain the element-matrix A/ =
K7 + M/, with respect to element ¢ ;

. J J X+l do: do;
¥ [’;}1 ’;}Z], kij = (J %%dx) , 2.22)
21 22 Xj i,j€le;]
) j J Xj+1
M] = |:m}1 m]2:| , mij = (kzj‘ (pl<p]dx> . (223)
My My X i,jele;|

Here, |e;| denotes the cardinality of the nodes in element ¢;. Using the piece-wise linear
basis functions, we get the following stencil for the element-matrix

11 -1 o121
== i
K h [_1 1 ], M 5 [1 2] (2.24)

GLOBAL MATRIX ASSEMBLY

The global matrix can be assembled by looping over all the mesh elements and adding their
respective contributions. An advantage of this method is that all the information to solve
the Helmholtz equation is now stored locally. For the right-hand function given in Eq. (2.26),
a numerical quadrature rule has to be used to obtain the element vector and global right-
hand vector respectively. The term in Eq. (2.26) contains an integral with f(x) and can also
be numerically integrated and stored locally to give the element vector. Assembly in the
same way then leads to the global right-hand vector.

2.2.4. DISCRETIZATION OF THE BOUNDARY CONDITIONS

So far we have assumed homogeneous Dirichlet conditions. However, as mentioned previ-
ously, for the Helmholtz equation, homogeneous Sommerfeld conditions on one end can
also be applied. In this case, the variational formulation of the internal approximation be-
comes

& Ydg; do; o ! ; ! .
uj [ —— ——dx—k J pipjdx+ lk(pi(l)(pj(l)] =J pifdx i=12,..N+1.
d.x dx 0 0
(2.25)
In this case, we include the basis function for the node xy+1,9n+1 as well which can be
visualized as half a triangle at the end of the interval (see Fig. 2.5). As a result, we need to

j=1
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solve a linear system Au = f,Ae CNV+L where we have

1
u=ujcicntr = UO <pifdx] , (2.26)

1<iSKN+1

1 1
A=[ , d_xlﬁdx_k L pipjdx+ikei(1)p;(1)

1<i,j<N+1

Again, in terms of the element matrix, we obtain Al = KJ + M7 + RJ for element e i, where
R/ now contains the contributions of the boundary terms. We thus have

[k K it dg; do;
%1 %2 - 2Yi 7y
Lf21 22 Xj ijelej]
ro.J J Xj+1
. m m J
M = } j ], mjj= (J (p,-(pjdx) , (2.28)
LMy M3y xj i,jele)]
. i
RI— "0 T2 = (i) (1), (2.29)
ji B E ij i Pj z,]€|ej| . :
LT21 T2

2.2.5. HIGHER-DIMENSIONS
In 2D or 3D, if we let the domain be represented by Q and the boundary by 0Q =T'; U T,
then the weak formulation of our model problem becomes

fVu-deQ—J kzuwdQ—ikJ uwdr:f fw dQ. (2.30)
Q Q IV Q

Note that here the Sommerfeld condition is enforced on I';, where the homogeneous Dirich-
let condition is enforced on I';. Next, a geometry function F is then defined to parameterize
the physical domain Q by describing an invertible mapping to connect the parameter do-
main Qg = (0,1)? with the physical domain Q.

F=Qy—Q, F(n)=(xyp). (2.31)
Q' =F (Qf
1 P (%)
F
= =
n )

ng Q, | e Q

Figure 2.6: Example of the geometry function F and its parametriza-
tion of the unit square.
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Next, a Lagrange polynomial basis is constructed on the parameter domain Qg, where the
basis functions are now taken over a reference element e j instead of the element e; in the
physical domain. Using these basis functions, we obtain the discretization of the interior

K= [gﬁwi-v(pj dQ(e)]

y M= f pipjdQ(e), (2.32)
1<i,j<N e

and

ZJ @ip;jdlz(e) (2.33)

1<i,j<N

of the boundary. We thus obtain the following global linear system
Au= (K+—kK*M+—ikR)u=f. (2.34)

A few remarks are in place. The basis functions are applied to reference parametrized ele-
ments ey and thus the integration is done locally per element. Given that F is invertible, the
integration can then be mapped to the physical domain. In this way, the global linear sys-
tem can still be solved with respect to the physical domain, which is also why the integrals
in Eq. (2.32) and Eq. (2.33) are stated with respect to the elements in the physical domain.

2.3. NUMERICAL DISPERSION

One difficulty we encounter when trying to solve the Helmholtz equation numerically is
that of the pollution error. Whether we use the finite difference or finite element method,
the accuracy of the resulting solution strongly depends on the granularity of the grid. For
larger k there appears to be a difference between the analytical wavenumber k and its non-
continuous counterpart. This effect aggravates as the wavenumber k increases as a result
of the solutions becoming more oscillatory in nature. Due to this, the numerical solution
contains phase differences relative to the analytical solution. In order to understand this
effect, a measure of the pollution error is given in terms of the the step-size or mesh-width
h relative to the wavenumber k. The smaller £, the less pollution error we have. However,
as h gets smaller, the linear system of equations becomes larger and retrieving the solution
becomes more computationally difficult. In this work we focus on the pollution error after
using a finite difference discretization, but the original pollution studies were conducted
using finite elements discretization. This will be the main topic of Part II.
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Mathematics, like a millstone,

grinds everything placed under it and,

just as you won’t get wheat flour

by grinding Deadly Nightshade,

you won’t get the truth from the false premises,
even if you cover the page with formulae.

Alexei N. Krylov
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After discretization, we obtain a linear system Au = f. Given that our coefficient matrix A
is indefinite, we are limited in our choice of iterative methods. Moreover as the wavenum-
ber k increases, the problem size increases as well in order to guarantee accurate solutions.
Direct numerical solution methods, such as the lower-upper (LU) factorization method, be-
come impractical for solving medium sized 2D and 3D problems. Despite these drawbacks,
direct numerical solution methods can serve as subdomain solvers in domain decomposi-
tion methods and multigrid methods, which we will come to in Chapter 4.

In this work, we focus on Krylov subspace methods as the underlying method of choice,
given that basic iterative methods suffer from reluctant convergence behavior or even di-
vergence in the case of indefinite Helmholtz problems. We also discuss the inclusion of a
preconditioner and its effect on convergence.

3.1. KRYLOV SUBSPACE METHODS

Consider a general linear system

Au=f,
AeC™" y, fecC”. (3.1

Definition 1. (Petrov-Galerkin Method) Given a linear system Au = f, let A be a matrix in
C" ", u, f vectors inC". Then a solution of equation 3.2 can be approximated by

y=up+sseScC”" (3.2)

where wy is a predefined initial approximation and S is denoted as the search space. Letr € C"
be defined as the residual vector such that we can define a constraint space C satisfying

r=f—AylcCcccC". 3.3)

Then a Petrov-Galerkin method is well defined if {C, AS) is nonsingular for any C and Y,
whereC,Y < C".

Here (o) denotes the standard inner product defined on the complex space. If the latter
condition is satisfied, we get an approximate solution using the following theorem

Theorem 1: Petrov-Galerkin Method

Let A be a matrix in C"*", u, f vectors in C" such that the Petrov-Galerkin method
with search space S and constraint space C is well-defined. Then the approximate
solution y and the corresponding residual r that satisfy Definition 1 are given by

y=up+S(C,AS) " NC, o), (3.4)

r=f—Ay=Pci 4570 (3.5)

where ry = f — Auy is the initial residual. Furthermore, the linear system from Defi-
nition 1 is solved if and only if ry € AS
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Proof. For a proof of this theorem, see [2] corollary 2.26, p. 23. [ |

Using Theorem 1, we now have a practical way to find an approximate solution y ~ x which
solves the linear system Au ~ Ay = f. However, we would like to find an approximate
solution which is not only optimal, but also unique. For this purpose, we use the following
theorem

Theorem 2: Well-definedness and Optimality

Consider a linear system Au = f with A a matrix in C"*", u, f vectors in C". Fur-
thermore, let ug € C" be the inital guess vector and let S be an n—dimensional sub-
space. Then Petrov-Galerkin method with search space S and constraint space C
is well defined and defines an unique approximate solution y + ug € S if one of the
following conditions holds:

1. C=S§,Sn A (A)={0}, Ais self-adjoint and positive semi-definite. Then
—yl,= inf |u—z|,,
Ju=yla=_inf Ju-sl,
where | o] , is the norm defined by | z| , = \/{z, Az).
2. C=AS,Sn AN (A)={0}. Then

If = Ayl =_int |7~ Az.

Proof. For a proof of this theorem, see [2] lemma 2.28, p. 23. |

Note that either the residual or the difference between the true and approximate solution
is minimized, and thus we obtain an optimality certificate for constructing an approximate
solution to the original linear system 3.2.

We now proceed by giving the definition of a general Krylov subspace, using an arbitrary
vector ve C™:

Definition 2. (Krylov Subspace) Given a linear system Au = f, with u, f, v vectors inC" Then
the m-th Krylov subspace is defined by

K (A, v) =span{v, Av,...A" v},
Ko(Av)=1{0},m>1. (3.6)

If the vectors from Definition 2, i.e. v, Av, ..., A" v are linearly independent, they form a
basis for the Krylov subspace %7, (A, v). Furthermore, it has been shown in [2] that there
exists a minimal index d at which the Krylov subspace becomes invariant, i.e., A#;(A, v) C
HK4(A,v). As aresult, applying A to v will not result in an additional vector which can span
the Krylov subspace any further. Using this index d, it has also been shown that a Krylov
subspace, for a nonsingular matrix A, has the following properties:

1. Dimension: dim %, (A, v) =mform<d < n.

2. Nested sequence of subspaces: Ky,—1(A,v) € Hm(A,v) for m = 1.
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3. The following statements are equivalent:

o AKX (A v)=H4(Av)

© Ha(Av)nAN(A)={0}

e ve AKX (A V)
A Krylov subspace method is essentially an iterative implementation of the Petrov-Galerkin
method over the Krylov subpace from Definition 2 using v = ry. It was developed by the
Russian Mathematician Alexei Krylov in 1931.
If we take the Krylov subspace K, as a basis for the search space as defined in Definition 1

and apply Theorem 2 up to the point where the subspace becomes invariant, we arrive at
the heart of all Krylov subspace methods.

Corollary 2.1: Krylov Subspace Method

Consider a consistent linear system Au = f with Ae C"*" and f € C". Let up € C" be
an initial guess corresponding to the initial residual ro = f — Aug. Let d < o0 be the
minimal index at which A%, (A, ro) € #4(A,10) and let #;(A,r9) N A (A) = {0}.
The sequence of iterates {u, } me1,. 4 that satisfy

Um = Up+ Sm, SmES=Hm(A 1),

rm:=f—Aupm L Cp,

is well defined and 1, is a solution of the linear system Au; = f if one of the follow-
ing conditions holds:

1. Cp = Zm(A,v), Ais self-adjoint and positive semidefinite. Then the iterates
un, satisty the optimality property

Uu—u = inf U—2z|,. (3.7
lu—unla= _ inf ezl

2. Cp = A& (A 1rg). Then the iterates u,, satisfy the optimality property

If — Aup| = inf If — Az|. (3.8)
2€uUy+Hm(Aro)

Proof. In both cases the well-definedness and optimality of the approximate solutions fol-
low from Theorem 2. Au; = f follows from Theorem 1 and using the second property of
the Krylov subspaces. For more details, see [2] corollary 2.41, p. 31. [ ]

Theoretically, for m < d < n, the vectors ry, Arg,..A™ 'ry are linearly independent. They
also form a basis for the Krylov subspace £, (A, ro). However, numerically this basis be-
comes indistinguishable from linear independence as the computation of the vector A’rg
using the power method usually points in the direction of the dominant eigenvector as i in-
creases. As aresult, if n is large, most of the vectors in 7, (4, r) will point to the same direc-
tion, rendering an ill-conditioned basis. Consequently, a Krylov subspace method is always
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constructed by implementing an basis orthonormalization process, such as the Arnoldi or
Lanczos method (modified Gram-Schmidt), see [3] and [4].

As a result of Corollary 2.1, different iterative Krylov subspace methods can be obtained
by varying the constraint space C to be equal to either %7, or A.%},. Indefiniteness of the
coefficient matrix A restricts the applicability of several Krylov subspace methods for the
Helmholtz equation, which are based on equation 3.7 from Corollary 2.1. For example, the
well known CG-method' requires the input of a symmetric and positive-definite coefficient
matrix A. In case of a complex matrix, we require A to be Hermitian.

3.2. GMRES-METHOD

The GMRES-method is based on the MINRES-method. The MINRES method was partic-
ularly developed as an extension of the Lanczos method to solve a linear system with a
self-adjoint but indefinite coefficient matrix A. The GMRES method was proposed for gen-
eral matrices, interchanging the Lanczos method for the Arnoldi method. Both methods are
characterized by minimizing the residual norm over the Krylov subspace. In essence, this
translates into the minimization problem from Corollary 2.1, equation 3.8, which we now
reformulate specifically as

Theorem 3: Minimized residual

Consider a consistent linear system Au = f with Ae C"*" and f € C". Let ug e C"
and ro = f — Aug be such that d < o0 and #;(A,ry) n A (A) = {0} are fulfilled.
Then, for S, = Zn(A, 1g) and Cp, = AZ (A, 1), the iterates uy, = ug + Sm, Sm €
Hm(A, ro) minimize the residual norm, i.e.

| f— Aum| = inf | f— Az, (3.9)
zE€uUo+ Hm(Aro)

and uy is a solution for the linear system .

Proof. Applying Theorem 2 and Corollary 2.1 leads to the GMRES-method. For more de-
tails, please refer to [2], section 2.9.1. [ ]

Note that Theorem 3 only holds for ug and r satisfying d < co and #; (A, ro) n A (A) = {0}.
However, as long as A is non-singular, these conditions are automatically satisfied and the
GMRES-method is well-defined for any initial choice uy [2]. Consequently, in upcoming
sections we will present the results assuming that the coefficient matrix A is non-singular.

3.2.1. ARNOLDI’S-METHOD
We have previously mentioned that the application of Krylov subspace methods goes hand
in hand with an orthonormalization procedure in order to obtain a well-conditioned ba-

IThe Conjugate Gradient method falls into the first category of Corollary 2.1, i.e. equation 3.7 and minimizes the
error in terms of the A-norm. Where the GMRES-method uses an Arnoldi procedure for orthonormalizing the
Krylov basis vectors, the CG-method uses the Lanczos method. The CG-method is widely used for large sparse
SPD systems due to its superlinear convergence behavior. For more information, please refer to [5] section 7.1.3
and [2] section 2.8.
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sis for the Krylov subspace. As the GMRES-method is applicable to general and thus non-
symmetric matrices, the Arnoldi procedure is used to construct a set of orthonormal basis
vectors, which in algorithmic form is given below

Algorithm 1: Arnoldi’s Orthonormalization Algorithm

Initialization:
Choose vy with |v;| =1
for j=1,2,..ndo

wij:= AU]'
fori=1,2,..jdo
hi,j::(wj,v,-)
w]'1= wj—hi,jv,-
end
hjtj=|w]
e _Ww
Vit = Ry
end

Each step in the algorithm multiplies v; by A and orthonormalizes the vector w; with re-
spect to all previous Arnolid vectors v; from i = 1 to j. Using the Arnoldi method, we arrive
at two widely used propositions, see [6], p. 129.

Theorem 4: Orthonormal basis

Assume that Arnoldi’s algorithm does not stop before the m—th step, then the vec-
tors vy, vy, ..., Uy, form an orthonormal basis of the Krylov subspace %7, (A, v1).

Theorem 5: Hessenberg matrix

Let V,, be the m x m matrix with column vectors vy, vs,...,v;. Let I/{\m be the
((m+1) x m) Hessenberg matrix whose nonzero entries h; ; are defined by Arnoldi’s
method and let e, = {0,0,..., l}T. If we let H,, be the matrix obtained from H,, by
deleting its last row, then the following relation holds

AV = VinHp + Wimem ", (3.10)
= Ving1 Hpy (3.11)
Vi L AV, = Hpy,. (3.12)

We can implement Arnoldi’s method into Theorem 3, by noting that iterate vectors u,, can
be written as u,, = uy + Vi, $m, where s, is a vector in C"™ and V}, is an orthonormal basis
for the Krylov subspace. If we let § = | o] and vy = 1o/ | ro|, we use Eq. (3.11) to obtain

|f = Aum| = | f — Altto + Vinsm)|
=||ro — AVipsmll,
=||Bv1— Vins1Hmsm

= |Vins1(Ber — Hpsm)| - (3.13)

’
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By definition, the columns of V,,; are orthonormal and we can rewrite equation 3.13 as
follows

|Vint1(Ber — Hysm) | = |Ber — Hnsm| - (3.14)

The optimality property from equation 3.9, Theorem 3 becomes

|f = Aum| = | Ber — Hnsml ,,» (3.15)

=min |fe; — Hypz

As aresult, the approximate solution is the unique z vector which minimizes F(z) = minecn H Ber — fl\mzH

over £ m(A, ro) which iteratively reduces to finding
sm = argmin |Be; — Hpz| .
m gzeC" Hﬁ 1 m H

3.2.2. GMRES-ALGORITHM
The GMRES-method can be implemented using the following algorithm:

Algorithm 2: GMRES-method Au = f

Initialization:
Choose ug and compute ro = f — Aug, by = ||ro|| and vy = ro/by
for j=1,2,.ndo
wj:= Av;j
fori=1,2,..jdo
hi,j = (w]', I/i)
w]' = LUj — hi,jl/i

end

hjja,ji= HlﬁUH

Vjit1:= hjt1,j
end

Note that this includes the Arnoldi orthonormalization algorithm. The GMRES-method is
stable and only breaks down if hj 1, ; = 0. However, if kj;1,; = 0 then u; = u and we re-
trieve the exact solution.

3.2.3. CONVERGENCE

In this section we briefly describe the convergence properties of the GMRES-method, which
is based on the following theorem
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Theorem 6: GMRES Convergence

Let P, be the space of all polynomials of degree less than m and let o0 =
{A1,12,...,A,} represent the spectrum of A. Moreover, we define

em=  min  max|p(1;)].

pEPm,p(0)=1A;€0

Suppose that A is diagonalizable so that A= XDX ! where D is a diagonal matrix
containing {11, Ay, ..., A, }. Then the residual norm of the m—th iterate satisfies

[rmlly _ - [XP(D)X"rol,

= < K(X)em|roll,, (3.16)
Iroll,  pePmp(0)=1 Irol, e

where K(X) = || X, | X7 ,.

Proof. For aproof see [5], Theorem 7.3.1. and [7], section 3.1. [ ]

It has been stated that it would be impossible to predict the convergence behavior of the
GMRES-method solely in terms of the eigenvalues of A [8]. In fact, the author argues that in
case convergence is monitored through the spectrum, additional assumptions on departure
from normality are a necessity. [7] have presented an extensive overview of the convergence
properties of Krylov subspace methods. The problem with non-normality seems to be re-
lated to ill-conditioned eigenvectors resulting in very large K(X) due to | X~ 'ro| > |rol|.
As a result, the bound in equation 3.16 may not be sharp and information regarding the
convergence may be disconnected from spectral properties. However, [9], [7] and [10] all
argue that for a large class of matrices, such as general normal and Hermitian matrices, the
convergence results in terms of the spectral distribution properties hold. [7] even empha-
size that theoretically, non-normality of a matrix does not lead to slower convergence, as
for each non-normal matrix A there exists a normal matrix B with the same convergence
behavior.

For normal matrices A in general, the eigenvectors form an orthonormal set making X in
equation 3.16 well-conditioned. Due to the orthonormality, the eigenvalues have a pre-
dominant influence on the rate of convergence. Consequently, clustering and favorably
distributed eigenvalues stimulate convergence, while eigenvalues close to the origin im-
pede convergence.

The GMRES-method is considered inefficient in case alarge number of iterations are needed.
Due to its long recurrences, it requires increasing memory storage and computational force
for the orthonormalization process. Several remedies have been opted to circumvent this
drawback, such as for example restarted GMRES [11].

In this disseration we have mainly focus on GMRES, but other Krylov subspace methods can
also be used, such as Biconjugate Gradient stabilized (Bi-CGSTAB) and Induced Dimension
Reduction (IDR) [12-14]. Especially for subsequent parallelization strategies, the use of IDR
methods could provide more efficiency as the method uses a shorter chain of recurrences
[15].
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3.2.4. PRECONDITIONERS

In order to accelerate the convergence, preconditioning techniques are available for itera-
tive methods. The study of preconditioning techniques for Krylov subspace methods, such
as GMRES, comprises a large part of of numerical analysis and scientific computing. Essen-
tially, a preconditioner matrix M is designed in order to accelerate convergence by requiring
that the (spectral) properties of the linear system M ! Au = M~ f are more favourable. For
GMRES, a preconditioned variant can be obtained by applying GMRES to the following lin-
ear system

M YAu=M"1f< AMy = f,u= My,
AeC™ " u,x, feCh

where M is an invertible matrix in C"*". In general, subject to the points discussed about
the normality conditions in Section 3.2.3, a matrix M is eligible as a preconditioner if the
eigenvalues of M1 A are clustered around (1,0) in the complex plane and M~y can be
obtained at low cost. The algorithm for preconditioned GMRES is given in Algorithm 3. The
preconditioning step is indicated in red.

Algorithm 3: Preconditioned GMRES-method M~ 'Au=M"'f
Initialization:
Choose up and compute rg = f — Aug, by = ||ro|| and v1 = ro/by
for j=1,2,..ndo
zj = Al/j
wj=M 'z;
fori=1,2,..jdo
hi,j = (ll/j, l/l')
LU]' = LUj — hi,jl/i

end

hjgj= Hbsz

VIt Ry
end

3.3. PRECONDITIONING FOR THE HELMHOLTZ PROBLEM

Preconditioning for the Helmholtz problem has been studied widely throughout the years.
Suitable Krylov subspace methods generally do not perform well without incorporating a
preconditioner. Several preconditioners have been tailored for the Helmholtz problem.

An important class is mentioned in [16] and [17], where an incomplete LU factorization
of the coefficient matrix A serves as a preconditioner. However, ILU preconditioners are
notoriously known to cause fill-in, destroying the original sparsity of the coefficient matrix
and can especially become problematic for large wavenumbers.

An alternative has been opted by [18], [19] and [20], where an analytical ILU factorization
has been proposed. A drawback of the AILU preconditioner is its applicability to constant
wavenumber problems as it diverges for non-constant wavenumber problems.

Finally, a class of preconditioners has been constructed which focuses on the operator in
question. In [21] the preconditioner matrix M is equal to the discretizized Laplacian opera-
tor, which is equivalent to letting k = 0. [22] have further developed this class by including
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a positive real shift.

For large wavenumbers it seems that the most effective and robust results can be achieved
by combining a real and complex shift in the Laplacian operator based preconditioner. [23]
and [24] have first examined the behavior of the Complex shifted Laplacian (CSL) precondi-
tioner for the Helmholtz equation, which is still considered the industry standard. However,
despite achieving a substantial speed-up, small eigenvalues of the preconditioned system
rush to zero for the Helmholtz problem as the wavenumber increases instead of remaining
clustered near the point (1,0) in the complex plane.

A different approach, which is mainly used to solve the problem in parallel, can be found by
using preconditioning techniques based on domain decomposition methods. This branch
of preconditioners has recently received a lot of attention and is largely based on the work
in [25]. These methods split the computational domain into subdomains and solve a local
sub problem using a direct method. However an iterative method could also be used at the
level of the subdomains [26].

Balancing between wavenumber independent convergence and practical constraints cre-
ated the opportunity to consider a deflation strategy, which lies at the basis of the methods
developed in this thesis (see Chapter 7 and Chapter 8). Its use for time-harmonic wave
problems was first proposed in[27]. Deflation, in essence, aims to move the unwanted
eigenvalues to zero or one and has been studied widely, see ([28], [29],[30]).

3.3.1. CSL PRECONDITIONER
Let A be the resulting coefficient matrix after discretization. Recall that we can write A in
terms of the discrete Laplacian operator —A and the n x n identity matrix I: as:

A=—A—Kk*I,AeC"™" (3.17)
The CSL preconditioner is accordingly defined as
M=—A—(B1+iB2)k*I, A,eC"™", By,Bre0,1] (3.18)

where i denotes the imaginary unit and §; and 3, represent the real and complex shift re-
spectively. Initially, the coefficient matrix A is an indefinite real symmetric matrix in the
absence of Sommerfeld radiation conditions. For the sake of brevity, we introduce a nota-
tion for the preconditioned linear system Ax = M~ 'Ax=b=M"'b.

The preconditioned system has a convenient way of relating the eigenvalues of the matrix
A to the eigenvalues of the transformed system A given that A and M~! commute

A=M"'A
=M (M+ (B +ip2—1)k°T)
=I+(pr1+ifa—1)k*M!
=(M+(B1+iB— VK I)M ' = AM™!
(3.19)
As it has been pointed out in the previous chapter, the use of homogeneous Dirichlet con-

ditions leads to a normal and symmetric matrix. This implies that both A and M share
an orthonormal basis of eigenvectors, the eigenvalues of the preconditioned system A are
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given by

Aa

/’\/A:A,M—IA:A/M—I/ILA: /1 (3.20)

M
The eigenvalues for the discretized Helmholtz operator are given in Section 2.1.5.1. In the
case homogeneous Dirichlet conditions are used, the preconditioned system shares the
same orthonormal eigenvectors as the original coefficient matrix A and we obtain an el-
egant expression for the eigenvalues of the preconditioned system as well. Thus in 1D, for
the continuous operator we have

J
JPr? = (Pr+ip2
Note that in case of a zero eigenvalue, the matrix A is singular. The eigenvalues for the
discretized Helmholtz operator can be constructed from the eigenvalues of the discretized

Laplacian. If we let A j(L) denote the eigenvalues of the Laplacian, then in 1D, the precon-
ditioned system has the following eigenvalues

M (A) = )kz,ﬁl,ﬁze[o, 1]. (3.21)

M (L) 2—2cos(jmh)), j=1,2,...n—1,

1
:ﬁ(

=M (MA) = V(L) -k
AJ(L) = (B1+ip2) k2

, B1,B2€[0,1]

3.3.2. OPTIMAL SHIFT

Various options for the shift parameters §; and 8, have been considered, while respecting
the condition that 1, 82 € [0,1]. When the real shift parameter f; is set to 1 the condition
number of the preconditioned coefficient matrix A is minimized [31]. Letting f; = 1 leads
to a tight circular distribution of the eigenvalues, remedying the high indefiniteness of the
original coefficient matrix A and eventually positively affecting rate of convergence iterative
Krylov subspace methods 2.

Unless the shift is kept @ (k) and the preconditioner is inverted exactly, the small eigen-
values of the preconditioned system still rush to zero as the wavenumber increases [32].
In order to properly manage the computational costs, in practice one multigrid iteration
is used to obtain an approximation of the inverse, which will be the main focus of Chap-
ter 4. Using rigorous Fourier analysis, it has been shown that the use of multigrid to obtain
a cost effective preconditioner came at the price of having to keep the complex shift rather
large, i.e. of @(k?). A more recent analysis provided a generalization for this claim without
having to restrict to Dirichlet boundary conditions [33]. In light of this, [34] have studied
the optimal complex shift parameter 3, affirming that the complex shift parameter can be
interpreted as the radius of the circular eigenvalue distribution when f; is fixed at 1. How-
ever, a word of caution is in place as decreasing the magnitude of 8, leads to the matrix M
resembling the original coefficient matrix A, making the inversion and implementation of
the preconditioner redundant. [34] postulate that the optimal shift (8, 82) is obtained by
letting B; = 1 and B2 = 0.5, causing the real part of the eigenvalues to be bounded below by
0 and above by 1, while allowing the complex part to vary between —0.5i and 0.5i.

2Choosing f; any larger than 1 would lead to a more indefinite preconditioner matrix M than the original matrix
A.
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Figure 3.1: One-dimensional spectrum of CSL preconditioned system in the complex
plane with B2 = 0.5. Left we have k = 50 and right we have k = 250. The grid resolu-

tion has been set at kh = 0.625.

I(Aar-14)
S(Aar14)

Fig. 3.1 is illustrative of the problem at hand. For increasing k, we observe that small eigen-
values start moving towards the origin. Taking k = 250 already shows that the clustering
near the origin starts becoming more dominant. When k grows very large, this effect accu-

mulates.
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This story (creation of multigrid) is related to the history
of the establishment of computational mathematics
where in the era of the first computers,

the history still has to be written.

Radii Petrovich Fedorenko

35
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In this chapter we describe the basic idea behind multigrid methods and how they are used
in solving the Helmholtz equation. The first multigrid method was developed during the
seventies by Russian mathematician Radii Petrovich Fedorenko. Ever since, the method has
become an industry standard in solving a class of partial differential equations.

To illustrate the mathematical properties of the methods, we use the 1D Helmholtz equation
accompanied with Dirichlet conditions as an example. The main idea behind the use of dif-
ferent grid refinement levels in multigrid methods was the notion that the low-frequency
modes of the iteration error from solving a linear system using Basic Iterative Methods
(BIMs) was not being reduced sufficiently. These low-frequency modes are related to the
eigenvectors corresponding to the small eigenvalues of the linear system. To understand
these low- and high-frequency error components, we consider the linear system obtained
from discretisizing a simple one-dimensional Poisson problem

Au=f,AeR"™" u, feR".

The eigenmodes can be divided into low and high-frequency modes. The low-frequency
modes are slowly varying grid vectors that correspond to the small eigenvalues of A. The
eigenvectors of the matrix A are

sinzjh
sinnj2h
J_ .
Vp = : )
sintj(n—1)h

1<j<n—1 @.1)

For now we assume n — 1 to be even. The eigenvectors are sine-functions applied to the
grid vectors x = [x;] = ih, with i = 1,2,...,n — 1. For increasing j, the eigenvectors become
more oscillatory. The indices j = 1 to § — 1 therefore adhere to the low-frequency modes,
whereas the remaining eigenmodes represent high-frequency modes. By transferring these
low-frequency eigenvectors onto a coarse grid, their smooth components become oscilla-
tory and can be reduced.

4.1. TWO-GRID METHOD

The key ingredient of multigrid methods is the use of coarser grids, where smooth com-
ponents become oscillatory. Note that the eigenvectors of the discretisized 1D Helmholtz
operator with Dirichlet conditions coincide with the eigenvectors of the Laplacian given in
equation 4.1.

4.1.1. COARSE GRID CORRECTION

We first start by constructing intergrid transfer functions, which will allow us to move from
the fine grid with stepsize # to the coarse grid with stepsize H = 2h and vice versa. Using
standard linear interpolation, we define the coarse grid vector uy = [ugy,, ..., ug, | from Qg
to the fine grid Qj, such that

0 —Qp up—Ihuy 4.2)
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such that
[unl;/ if i is even,
e i=1,...,n—-1 4.3)
% ([uH](i—l)/z + [uH](i_l)/z) if i is odd,
with matrix representation
1 _
2
1 1
- % . c < (m)/2—1 (4.4)
1
2
1

Using the eigenvectors given in equation 4.1, we obtain the following theorem

Theorem 7: Coarse grid eigenvectors

The coarse-grid eigenvectors are mapped by the interpolation operator I 1’21 accord-
ing to
noj N2 2 n—1—j . no.
If vl = (c!) vil—(sf)zvz /) ]=l,...,§—], (4.5)
where we define
. imh : ith n
cl = cos]—, sl = sin]—, j=1...,=—1. (4.6)
2 2 2
Proof. The proofis given in [35] |

As a result, the coarse-grid modes v;{ are mapped to a linear combination of their fine grid

counterparts vi; and a complementary mode vi:, where j' := n—1— j. Moreover, we have
=5 s =c, j=1,=—1, 4.7)

In order to transfer fine-grid functions to a coarse grid, we define the restriction operator
I Qu—Qu, w— I uy (4.8)

by

[ ) = 5 ([anogr + 20l + Lunlygg)s 1= T3 — 1. (4.9

N

The associated matrix representation is given by I/ = 1 [1% ] " The following theorem can
be proven for I,Il{, see [35], p. 20.
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Theorem 8: Fine grid eigenvectors

The fine-grid eigenvectors are mapped by the restriction operator I ,’l{ according to
I 2 (c))? VH, j:I,...,g—l, (4.10)
N = (5120l j:l,...,g—l, @.11)
I,Il{ UZ+1 =0. 4.12)
Proof. The proofis given in [35]. |

Let uy, be an approximate solution to our model problem. Then the coarse-grid correction
of uy, can be obtained by solving the error equation Ayey, = f — Apuy = r on the coarse
grid. We start by defining a coarse-grid representation Ay of A; and solve for A;I {t{ Th,
where ry, is first restricted to the coarse grid. Ap is more commonly referred to as the
Galerkin Coarsening Matrix. Note that A;III;;I r, approximates the error ey = A;lrh on
Qp. As alast step, ey, is interpolated to the fine grid by

up — up+ I A I (b— Apuy), (4.13)
with the associated error propagation operator
C:=1-ILA; 1 A (4.14)
We thus get the following recursive relation for the error
i1 .
e{l = C{l e (4.15)

It has been noted that C spans two invariant subspaces corresponding to the index set j =
l,...,5 —1land j' = n—1— j. Recall that the eigenvalues of the 1D Laplacian operator on
Q, and Qg are given by

Aﬁl_;z inzgsz, j=1..,n—1 (4.16)
and 4 jnH n
Ag:ﬁsinZT—kz, j=1ns L (4.17)
Letting span { v{; v;: } denote an invariant subspace, i.e.
clvlvl | = vl el j=1n g1, (4.18)
col? =2, (4.19)

we can write C from equation 4.14 as follows

_ 47 j2’1h

f o] TR e e | A 0.121(CJ)H ()3t
‘ [0 1] [‘“])ZLL[(C) (S)][O %1 (CP(sTpM 1— (sl
A Ay



4.1. TWO-GRID METHOD 39

Moreover, the following theorem can be proven,

Theorem 9: Coarse grid correction

The eigenvalues of the 2 x 2 blocks from equation 4.20 representing the coarse grid
correction operator are given by

. V447 NI
A(CQ={1-M,1},]’=1,...,21 4.21)

)
AH

with eigenvectors

, )2 . (s7)? ((cf)? — 1k
p_| () je_ 4 2
w' = [ and w’/“ = 7 ) . w2 |- (4.22)
2

Proof. The proofis given in [35]. |

If k is zero, we obtain the discrete 1D Laplace operator and the expressions from equation
4.16, 4.17 and 4.20 simplify to

/lj 4(s))? 1 A 4(cs/)? 1
—]}.1=(8_‘—)‘2= N2 as well as —?=(C_;?2=T, j=1,...,g—1, (4.23)
AL (2sich)? (e)) M, (2sich)? (sT)

and therefore

Cj_[l—(cj)z (c/)? ]_[(sfj)z (cfj)z], P @.24)

(s 1= (2] () (&) 2

For k = 0, the operator C is an orthogonal projection and has only two eigenvalues 0 and 1.
Also, the eigenvectors corresponding to the 0 and 1 block respectively are

o [

For small j, w/! reduces to approximately [0,1]7 since (c/)? ~ 1 and (s/)? ~ 0. As such,
the eigenmode w/! eliminated by the coarse grid correction is closely aligned with the low-
frequency eigenmode vil. This alignment becomes less as j increases.

In case the wavenumber k > 0 is positive, the unit eigenvalues of C remain, but the zero
eigenvalue starts to shift. As a result, low-frequency modes corresponding to small eigen-
values of the Helmholtz operator may be partially unaffected by the coarse grid correction.

ERROR PROPAGATION

We show this by means of an example. Suppose the small eigenvalues of C corresponding
to the eigenvectors in the low-frequency range are of order ¢, with 0 < € << 1. Thus, for a
lower index j up to some index j*, where j < j* < £ — 1, we assume that the eigenmodes
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w’'! corresponding to the zero eigenvalue of the operator C/ and the low-frequency modes

J

Vh

are closely aligned. From equation 4.15 we know that the error propagates as follows
elt'=Cley. (4.26)

If we decompose the initial error ej in terms of the eigenvectors of A;, we obtain

ivi 1"

Y'v . .

ehoz j/ I}/ fOl‘]=1,---;]*;
YU,

where y/ corresponds to suitable coefficients for the low-frequency range and yj/ repre-
sents the coefficients with respect to the high-frequency range. Similarly, for e{lﬂ we write

vl "

; v

| B s
Y v,

Applying the coarse-grid error propagation matrix C/ according to equation 4.26 thus gives

Yivl r yivl r
-~ ?/ =Cl| 7, ’]?/ (4.27)
Y, Yl v,

Multiplying by w/! = [1,0]” on both sides gives

e{f wht = Z\, h, :)/11/;1.
J y] 0
Yy

The left hand side of equation 4.27 becomes

. T
Jqd
Cj [ Yj, U?/] [(1)]
Vet

Using that w/'! = [l,O]T is an eigenvector of C/ corresponding to j = 1 up to j = j* we can
rewrite the expressions into

. T . T
iy 4] -4 e
h 0 h Y]/ U{l 0 »)/]/ UI]’l 0 h

Thus, if € is not equal to zero, the initial low-frequency modes for j =1 to j = j*, do not
get removed and propagate further as the error develops. In fact, for k > 0 some of these
low-frequency modes, instead of being projected onto zero, become amplified and do not
partake in the error smoothing process.
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4.1.2. SMOOTHING

So far, we have focused on the low-frequency error components. The coarse grid correction
operator generally takes care of these modes. In order to reduce the high-frequency error
components, the coarse grid correction scheme is often complemented with a smoother.
Basic iterative methods such as weighted Jacobi or Gauss-Seidel are often used as smoothers.
While these smoothers work efficiently for the Laplace equation, several problems arise in
case of the Helmholtz equation. If we take the general form of the weighted Jacobi scheme,
the iteration matrix is given by

Sjac=1—wD A, (4.28)

where w € R and D is the diagonal matrix containing the diagonal of the matrix A. Note that
we can represent wD™ ! as

2 — k?h?
1,_(2-kh)

1. 4.29
w wh? 4.29)

As Aand D are simulaneously diagonalizable, the eigenvalues for j = 1,2,...,n—1 of Eq. (4.28)
are given by

J
i hZJLA

Spac 1— wm (430)

Given that A is indefinite, we know that the eigenvalues are both negative and positive.
As the Jacobi scheme is a stationary iterative method, it converges if p(Sjac) < 1, where
denotes the spectral radius, which implies that the largest eigenvalue in magnitude should
be strictly less than 1. However, for w > 0 and k2h? < 4/2, this can only be satisfied if each

eigenvalue Ai‘ in Eq. (4.30) is positive. Hence, there is no w which can satisfy
2A;(4)
2—k2h?

p(S]AC):max{‘l—w ,Vj:1,2,...n}<1, (4.31)

simultaneously for the positive and negative eigenvalues of A.

TwO-GRID ITERATION

The combination of the coarse grid correction and the smoother gives us the iteration op-
erator B of the two grid cycle. If for simplicity we consider pre-smoothing only, then the
two-grid cycle can be represented by a fixed point iterative method with

B = 8"k}, where K[! = I, — I}, A 1 A, (4.32)

as its iteration matrix. Here, I Z and I f denote the interpolation and restriction operator
respectively, Ay is the coarse grid linear system and S is the smoothing operator.

4.1.3. ALGORITHM

We arrive at the full two-grid method, which is also called a two-grid cycle by combining the
coarse grid correction scheme with a smoothing scheme. The algorithm is given in Algo-
rithm 4, where v; and v, denote the number of pre- and post-smoothing steps respectively.
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Algorithm 4: Two-grid cycle: u;kH) = TG(u’é,Ah,f,vl,vz)

iy =S (uf, Ap, f) > Pre-smoothing
ru =Rry=R(f — Apiiy) > Restrict residual
ey = AI_{1 rg = Direct solve on Qg
fti = ﬂﬁ +ép > Prolong residual
uZ =3 (aﬁ,Ah,f) = Post-smoothing

In Algorithm 4, S respresents the smoothing operator. To obtain a better overview of how
the two-grid cycle works, a schematic representation is given in Section 4.1.3. Note that the
cycle depicted represents one two-grid cycle iteration.

Pre-smoothing Post-smoothing

Direct Solve

Figure 4.1: Schematic overview of the two-cycle multigrid algorithm.

4.1.4. CONVERGENCE

The two grid cycle converges if p(B,iI ) < 1. In fact the smaller the spectral radius, the faster
the convergence. We extend the analysis of the eigenvalues from Section 4.1.1 to now in-
clude the effect of the smoother. Using the same ordering of the orthonormal basis, we
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again obtain 2 x 2 blocks for the eigenvalues of B{j .

Vi

- lfwhz% 0 1 0 (CJ)Z 1 ‘9 2 /1{1 0
o[t g enft )

2—k2n? H
(4.33)
j V1 A . At
1—wh? b 0 1= () (c)?(sT)?
= e tn A 434
B /'lj, . X Aj . Aj ’ ( . )
0 1—oh? e ] [ (PP 1-(s)'
H H
A\ v . /1]' S\ V 2
ey | (1) (12 ()" @
I Ay A, ,
i it , with (4.35)
2=k IV (Y2 (s7)2 " jyat
(M) (l)(s)) 3 (2) 1= ()3
ol i=cosIZ2, s i=sin 2l j=1,...,ﬁ—1. (4.36)
2 2 2

In this case the non-unit eigenvalues are given by the trace of each respective block in
Eq. (4.20). Table 4.1 contains the spectral radius for various k using only pre-smoothing.

Table 4.1: Spectral radius p(B}Il{ ) of the two-grid operator for the 1D Helmholtz equation using h = 27> using
Eq. (4.36). v denotes both the number of pre- and post-smoothing steps.

Wk | k=0 k=137 k=431 k=36n
1 0.333 0.336 0.409 0.885

2 0.111 0.117 0.239 1.853
3 0.079 0.077 0.262 1.645
4 0.062 0.061 0.248 1.634
5 0.051 0.049 0.256 1.583

From Table 4.1 we observe that already for k > 3.6 the two-grid cycle diverges. Conse-
quently, the two-grid cycle is unsuitable as a solver for the Helmholtz equation, but works
efficiently for Poisson type problems.

4.2. MULTIGRID

The extension from a two-grid method to a multigrid method is fairly straightforward. The
first step is to extend the two grids to a collection of coarser grids. In practice this translates
to coarsening until we reach only one grid point. Apart from Qj, which is the finest grid, we
construct

off — {(xi)xi =i(2™'H)=i2"hh=n"t1<i<n-— 1},

where m denotes an integer representing the total number of levels or grids needed. So for
example, if we need m levels or grids including the finest one, we obtain the set

Q= {Q{’U—l,z,...m—l}u ar,
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where Q) = {(xl-)xi =ihh=n"1<i<n- 1}. Apart from the two-grid interpolation

1" operator, we define

ol ol Wit Sttt (4.37)
such that we construct a collection of Galerkin coarsened matrices. We previously had A
and A for the two-grid cycle. We now construct a family of Galerkin matrices EI, EX,.. . EH,

where we define E% = I$+1Efnl_1],’;f+1, with Eé{ = A such that we obtain

E—{ElH|l—1,2,...m—1}. (4.38)

The next step is to apply the two-grid cycle recursively. In general convergence of the multi-
grid method is regarded to be feasible if the spectral radius of the two-grid method is less
than 1 [36].

4.2.1. ALGORITHM

The multigrid algorithm is given in Algorithm 5. Observe that line number 3 in Algorithm
4, is now replaced with a recursive application of the two-grid cycle. Instead of solving the
equation ey = A;Il ry directly on QF, we apply the two-grid cycle and repeat the steps until
we reach the coarsest grid. There (see line 2), a direct solve is performed and the solution is
prolonged back onto the fine grid.

Algorithm 5: Multigrid V-cycle: u,&kﬂ) = TG(u];L, Ap, fov1,v2, m)
if coarse level then
Solve Apup = f = Direct solve on Q,,
else
ﬂ’}i =" (uz,Ah,f) = Pre-smoothing
ry=Rrp=R (f —Ap ﬁ’hc) = Restrict residual
e{{ =TG (0,EA;J, rleEerfl_lvl,vz,m> ,1=1,2,...,m > Recursion
IZZ = ﬂ’; + Pelt, = Prolong and coarse grid correction
uZ =§"2 (ﬁ}’;, Ap, f) > Post-smoothing
end
end

In Algorithm 5, R and P stand for the two-grid restriction and prolongation operators mov-
ing between levels [ — 1 and [ respectively.

4.3. MULTIGRID PRECONDITIONING

We have established that multigrid as a stand-alone solver for Helmholtz problems diverges.
However, multigrid can still be used as a preconditioner, especially when we include a com-
plex shift like in the CSL. Table 4.2 contains the two-grid spectral radius when we use the
CSL matrix M instead of the linear system corresponding to the Helmholtz equation.
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Table 4.2: Spectral radius p(B}II{ ) of the two-grid operator using only pre-smoothing for the 1D Complex Shifted

Laplacian with shifts (81, 82) = (1,0.5) and h = 27°. v denotes both the number of pre- and post-smoothing
steps. Weighted Jacobi is used as a smoother with w = %

VWo(Bf) | k=0 k=137 k=437 k=637
1 0.333  0.497 0.486 0.485
2 0.111  0.422 0.441 0.478
3 0.079  0.337 0.350 0.385
4 0.062  0.295 0.319 0.376
5 0.051  0.259 0.289 0.364

The results show that the scheme is convergent for all values of k as the spectral radius is
always strictly less than 1. Because the scheme is convergent, we can extend the two-grid
method to a multigrid method for the CSL.

4.3.1. ALGORITHM

In Section 3.3.1 we showed that if we want to solve the original Helmholtz equation, we can
use CSL as a preconditioner. Unlike multigrid as a stand-alone solver, we incorporate the
multigrid method as a preconditioning step in order to avoid computing M ! exactly. We
therefore need to combine it with an iterative method, such as GMRES. By doing so, we
obtain an approximation to the exact inverse of M. In the preconditioned GMRES algo-
rithm, which we again state below, this boils down to solving the equation Mw; = z;, with
zj = Av; with a few multigrid iterations.

Algorithm 6: Preconditioned GMRES-method M~ 'Au=M"1f

Initialization:
Choose ug and compute ro = f — Aug, by = ||19|| and vy = ro/by
for j=1,2,..ndo
zj:= Av;j
w;j:= Mflzj = Solve Mw; = z; with multigrid
fori:=1,2,...,jdo
hi'j = (w]', Ul')
wj:=wj—h;;v;

end

hjja,ji= leUH

Vit1 = Ty
end

4.3.2. CONVERGENCE

The inclusion of a preconditioner in the algorithm is considered in order to accelerate con-
vergence of an iterative method, such as GMRES. To illustrate this, Table 4.3 contains the
number of iterations to reach convergence for both GMRES with and without CSL precon-
ditioning.
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Table 4.3: Number of iterations to reach convergence with (L) and without (R) CSL for the 1D Helmholtz equation.
The shift has been set f; = 1 and 2 = 1. The iteration is stopped once the relative residual has reached a tolerance
of 108, With CSL (L) uses one multigrid V-cycle to approximate the inverse, with one pre- and post-smoothing
step. Weighted Jacobi is used as a smoother with w = 1.5.

k | wCSL w/oCSL
10 9 9

50 24 41
100 38 81
200 66 161
400 118 321

We can make several observations. First of all, note that GMRES without CSL converges in
exactly 7 iterations, which will be way too high in 2D and 3D applications.

For GMRES with CSL, the number of iterations grows linearly with the wavenumber k. The
number of iterations with the CSL is significantly lower, which is more beneficial for GM-
RES. GMRES becomes more and more expensive as the number of iterations increases. With
each added iteration, the storage and orthogonalization costs accumulate. Unlike other
Krylov subspace methods, GMRES has better optimality conditions at the expense of hav-
ing long recurrences, which is why a lower iteration count is preferred. This effect is even
more pronounced once we move to 2D and 3D problems.

In Section 3.3.1 we inspected the spectrum of the CSL preconditioned system and observed
that as the wavenumber k increases, the eigenvalues of M —1 A with exact inversion start
moving towards the origin. The deteriorating GMRES convergence can be ascribed to this
aspect, granted that for normal matrices, GMRES convergence is predominantly governed
by the clustering of the eigenvalues. Improved convergence can be anticipated if the eigen-
values are close to (1,0) in the complex plain. Evidently, if we use the exact inverse of the
CSL combined with a small complex shift, the spectrum stays clustered near this point due
to the closer resemblance of M and A [32].
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52 5. POLLUTION ERROR

In Chapter 2 we have discussed the process of discretisizing the Helmholtz equation. In the
absence of any numerical errors, the waves modelled by the Helmholtz equation will prop-
agate without any dissipation or dispersion. However, as mentioned previously, shifting
from the continuous problem to its discrete counterpart, gives rise to the pollution error.
In essence, the pollution effect is directly related to numerical dispersion errors due to dif-
ferences between the actual and numerical wavenumber [38-41]. This error grows with the
wavenumber as in the high-frequency range the solutions become very oscillatory.

As a result of this discrepancy, there may be large errors between the actual solution and
the obtained numerical solution. Therefore, the solution obtained using fast and efficient
solvers, may therefore still be inaccurate. The fact that the pollution effect for finite element
and finite difference methods can not be avoided in higher-dimensions adds to the problem
[39]. No simple solution exists, as it has been shown that for a certain accuracy, the number
of grid points needed to retain that accuracy grows along with the wavenumber. However, it
grows slower than the order of accuracy of the schemes. In particular, if we let k denote the
wavenumber, n the problem size in one-dimension and p the order of a finite difference or
finite element scheme, then

n=Ck(pTH>,

where C is a constant that only depends on the accuracy achieved [42]. Therefore, if we wish
to increase k while keeping the accuracy of the same order, we need to increase n as well,
which leads to larger linear systems.

In this chapter we derive the analytical solution to our model problem and derive the bounds
which reveal the pollution error. We also provide an overview of studies dealing with the
pollution error so far.

5.1. PROBLEM DEFINITION

In this section we start by defining two model problems. Following a similar approach in the
literature, we use the constant wavenumber model with Dirichlet conditions, such that the
analytical solution and eigenvalues can be derived [43-51]. We therefore start by focusing
on a 1D model problem, which we denote by MP 1.

MP 1

—dzu—kzu—é(x—x')er—[OL]CR (5.1)
dxz - ’ - ’ ] .

u(0) =0, u(L) =0, ke R\{0}.

Working on the unit-domain (L = 1), the second order difference scheme with step-size
h= % leads to

—uUj_1+2uj—uj4
h2

—kzuj =fij=123,...,n, xj= jh.

Using a lexicographic ordering, the linear system can be formulated exclusively on the in-
ternal grid points due to the homogeneous Dirichlet boundary conditions. We obtain the
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following system and eigenvalues
1
Au= ﬁtridiag[—l 2—k*h* —1Ju=f,

NP |
M = 5 (2=2cos(jnh)) = k*, j=1,2,...n. (5.2)

In order to investigate the pollution error in higher dimensions, we define MP 2 to be the 2D
version of the original model problem on the standard 2D square unit domain Q = [0,1] x
[0,1] with constant wavenumber k.

MP 2

—Au(x,y)— kzu(x,y) =5(x— %,y— %), (x,y)eQ\0Qc R?, (5.3)

u(x,y)=0,(x,y)€oQ,

Next to find the error bound, we need an expression for the analytical solution. Given that
we have used Dirichlet boundary conditions, these can be derived in the section below.

5.2. ANALYTICAL SOLUTION

We can express the exact solution to MP 1 in terms of the Green’s function G(x,x’) given
that this contains the eigenvalues. We need to use the Green’s function given that we are
working with the non-homogeneous Helmholtz equation. We therefore seek a solution of
the form

L
u(x) = J G(x,x') f(x)dx, (5.4)
0
where the Green'’s function satisfies

(d_z - k2> G(x,x') = 6(x— ).

dx?

To obtain the Green’s function, we need to rewrite the differential operator from MP 1 in the
Sturm-Liouville form [52]. Let £ (x) be the general Sturm-Liouville operator

d

20) = 42 [P 52| + a0 55)

Setting p(x) = —1and g(x) = —k?, we obtain the Sturm-Liouville operator for the Helmholtz
boundary value problem, which we denote by £ (x). Using the Sturm-Liouville operator for
the Helmholtz problem, we can rewrite the problem as

The related eigenvalue problem is

ZL(x)u(x) = Au(x).
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Using the eigenfunction expansion, we can rewrite MP 1 (5.1) as

dZ
<d 2-1—/1) j(x)=0,
Normalizing with a factor \/% gives the following solution

. N2
2 .
uj(x)—\/;sin (%) with A/ = <%> ,j=12,3,....

Integrating over the eigenfunctions for the eigenvalue problem gives

2 L . .
—J sin (ﬂ> sin (ﬂ> dx=106jj. (5.6)
LJ L L

The Green’s function for equation 5.6 is given by

228111(]L )sm(”’Lx)

_2 2, 2.2 o

L ¥, Jk©# jen,j=1,2,3,.... (5.7)
Consequently on the unit interval, G(x, x") satisfies

L(x)G(x,x')=6(x—x'),xeQ=[0,1]cR, (5.8)

G(0,x')=G(1,x') =0, xe 0Q.

In the event that k? = j27?, the eigenfunction expansion would become defective as this
would imply resonance and unbounded oscillations in the absence of dissipation. There-
fore, we explicitly need to warrant for the latter case and impose the extra condition k? #
J 2n? asserting that our Green’s function exists.

Equation 5.7 immediately provides us with an expression for the analytical eigenvalues. It is
apparent that within the bounded domain [0, 1] there are an infinite number of eigenpairs.
We employ this expression for the eigenvalues in upcoming sections, where we compare
them with the numerical eigenvalues for the linear system of equations. We have expressed
the exact solution to MP 1 as an eigenfunction expansion using Green’s function. A similar
approach will allow us to obtain the exact solution for the 2D MP 2, which is given by

u(x,y) =J f(xy)G(x, 3,2,y )dx'ay, (5.9)
Q
. / ’ ’or /
=] 6(x—x,y—x)G(x,y,x,y )dx (5.10)
Q
=G(x,3,x,y). (5.11)

The Green's function G(x, y,x’, ¥) on the unit square becomes

. . / . /
i i sin(%)sin(lix)sm(] y)sin(%)

, (5.12)
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and satisfies

£(x,y)G(x,,x,y) =8(x—x',y =)
G(x,0,x,y)=G(x,1,x,y) =0, ye oQ
G(0,y,x,y)=G(1,y,x,y) =0, xe0Q
(x,y)eQ=1[0,1] x [0,1]  R?, (5.13)

where £ (x, y) is the 2D Sturm-Liouville operator corresponding to the Helmholtz equation
from MP 2.

5.3. ERROR BOUNDS

We now briefly explain the classical error bound for the pollution error. It was mentioned,
that in order to keep the pollution error at bay, the grid should be refined such that k3h? <
1 [38, 53]. Such a severe restriction on the step-size is necessary, as the accuracy of the
numerical solution deteriorates rapidly if the wavenumber increases. In fact, the numerical
wave has dispersive properties, which are not present in the analytical wave. Consequently,
a phase shift occurs which forms the primary source of error in the pollution term. Thus, in
the case FEM and FDM solutions, a phase lag between the computed and the exact wave is
directly related to the dispersive character of the discrete medium (i.e. the computed wave
does not propagate at the speed of sound), which causes a difference between the exact and
numerical wavenumber. This effect accumulates into the pollution term as k increases.

5.3.1. NUMERICAL DISPERSION
To understand how the pollution error depends on the numerical dispersion and conse-
quently on the wavenumber k, note that the dimensionless wavenumber is represented by

2nf
k = T
A
where 27 f denotes the angular frequency and A denotes the phase velocity. Discretisizing
the 1D Helmholtz equation leads to

u-+172u-+u-_1
(’ hz’ 1 )kzujzo. (5.14)

Moreover, a general continuous solution is given by
u(x)=e'*~, (5.15)
Evaluation of expression 5.15 in the discrete points gives
uj = et (5.16)

Here i denotes the imaginary unit and k represents the perturbed wavenumber due to hav-
ing a velocity which is different from the speed of sound. Substituting expression 5.16 into
5.14 results in

—Ujp1+2uj—uj = ek (fe”_‘h +2— eiikh) =2 (cos (l~ch) — 1) ek (5.17)
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Equation 5.17 is a good approximation of the exact solution if k solves

2 (cos (kh) —1)
— K =o. (5.18)

Applying Taylor’s expansion on the cosine term and substituting into equation 5.18 gives
k—k=0(k*h*)
The a priori error estimation due to |l~c — k| # 0 becomes
error ikxj _ ikx;

e < Cklk—k| < CE*R2. (5.19)

- ‘1 _ pi(k—k)x;

pollution =

The factor Ck®h? can be decomposed as follows. @(k? h?) provides the error in the numer-
ical wave speed for a wave travelling one period. The extra factor k is called the pollution
error and corrects the total pollution error by scaling the error over one wavelength by the
total number of wavelengths travelled over the entire numerical domain [41, 53].
In [38] it is noted that the error given in equation 5.19 mainly relates to the dispersion
caused by the differing wavenumbers. The total error for the discretized 1D Helmholtz op-
erator is given by

eITOT ] = WITIM < Cikh+ Gk h?, kh<1. (5.20)
While applying the rule of thumb kh < 0.625 is sufficient for keeping the first term under
control, it does not harbour properly against the propagation of the pollution error which
grows with k, even if kh is kept small enough. Thus, it has been advocated to set the grid
resolution to k®h? < e instead of kh < 0.625. [38] and [41] have proved that while it is possi-
ble to eliminate the pollution effect in 1D Helmholtz problems by implementing a modified
wavenumber, a similar conclusion can not be extended to higher dimensional problems,
see Section 5.4 for more details. As a result, much research has been conducted towards
minimizing the pollution error. Note that the bound in equation 5.20 also holds in higher
dimensions, as long as the second order finite difference method is used. For any general
p-th order scheme, we obtain the following error bound:

eITOTq] = W < Crkh+ Cok(kPhP), kh < 1. (5.21)

5.3.2. LITERATURE OVERVIEW

The literature has proposed several ways to mitigate this persisting issue. One branch has
focused on formulating new higher-order discretization schemes. Among the first are a ro-
tated 9-point finite difference scheme [54]. This method is extended by including a 'per-
fectly matched layer’ (PML) [55]. In both works, optimal parameters for the difference
scheme were computed in order to improve the accuracy of the numerical solution. A simi-
lar strategy was used for the three-dimensional Helmholtz operator, where the 9-point sten-
cil was extended to a 27-point stencil [56]. Furthermore, some line of work developed accu-
rate higher order schemes for the one- and 2D Helmholtz equation, under the assumption
that separation of variables can be used [43-46].
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In line of this strategy lies the use of compact finite diference schemes [42, 47, 57, 58].
One advantage of the compact scheme is that no additional boundary conditions are re-
quired due to having a larger stencil. While both compact fourth- and sixth-order schemes
were developed in the literature, it has been shown that at best sixth-order accuracy can be
achieved using compact stencils for the Poisson, and thus inherently, the Helmholtz equa-
tion [59]. Apart from using compact higher-order finite difference schemes, others have
incorporated wave-ray theory to obtain more accurate solutions [60] or have constructed a
modified wavenumber which is closer to the exact wavenumber in order to reduce the nu-
merical dispersion [61]. When using such strategies, all methods depend on a pre-specified
propagation angle to provide an accurate solution, as the exact propagation angle is un-
known. As a result, for specified angles an accurate solution can be obtained by either
incorporating a modified wavenumber or by switching to a higher-order dispersion cor-
rected discretization. A combination of both has been studied by [61], where the standard
5-point stencil is replaced by a parametrized 9-point difference scheme including a mod-
ified wavenumber. Recently, using an asymptotic dispersion correction for 2D constant
wavenumber problems, these methods have shown to provide up to sixth order accuracy
for plane waves given an angle of propagation [51].

5.4. CLASSICAL DISPERSION CORRECTION
As mentioned earlier, it is possible to eliminate the pollution error for the 1D MP 1. Re-
call from the previous section that the discretization of MP 1 using second order finite-
differences was given by
—Uj—1+2uj—ujq
n2

—kKuj=0,1<j<n-1, (5.22)
with general solution
u(x) = ek*, (5.23)
Evaluation of expression 5.23 in the discrete points led to
uj=e®i1<j<n—1, (5.24)

which can be considered as plane-wave solutions of the discrete homogeneous Helmholtz
equation, where k represents the numerical wavenumber. Substituting 5.24 into 5.22 and
using Euler’s trigonometric identity to decompose the exponential function, leads to

—2cos(kh)+2—k*h* =0,
2cos(kh) =2 — k*h?,
k?h?

kh = arccos (1 —

),

LS ol

- 1
k:Earccos(lf +0(k°h*).

If we want to eliminate the discretization error introduced into the scheme, we need to set
k=k,ie.

k*h? - 2(1—cos(kh)
J=k= k= m

k= 7, arccos (1— . (5.25)
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Unfortunately, this approach only works for 1D problems. To see this, we look at the 2D
second order finite difference scheme

—Ui—1,j — Wij—1 + AU j— Uit1,j — Ui j+1

= —KPu;j=0,1<i,j<n—1. (5.26)

Again, using plane-wave solutions, we write u(x, y) = ei(hixtkey;) \vith (k1,kz) = (kcos, ksinb).

Evaluating the solution in the discrete grid points (x;,y;) gives u(x;,y;) = el(bixtkeys)
where (kj, k2) = (kcos6, ksinf) denotes the numerical wavenumber. Substituting these
expressions into the difference scheme 5.26, the problem becomes

—2cos (kcos(8)h) —2cos (ksin(8)h) +4 — k*h?* = 0. (5.27)

Generally the direction of the plane waves 6 is unavailable. This is due to the fact that plane
waves propagate in an infinite number of directions. Even if there are directionally preva-
lent components in this decomposition they are not necessarily known apriori [40, 62].
Therefore, in order to solve for k to obtain a 2D dispersion correction, equation 5.27 needs
to be minimized over all angles 8, which remains problematic.

5.5. POLLUTION AND SPECTRAL PROPERTIES

The vast majority of works regarding the pollution error focuses on developing numerical
discretization schemes to mitigate the pollution effect. Note that in order to study the pol-
lution error, the analytical solution solution must be known, which limits the scope of po-
tential test problems. Moreover, the a priori upper bound from expression 5.20 shows that
the pollution error can be bounded from above by a term which grows linearly with k. This
bound is known to be sharp, but provides little detail as regards the underlying characteris-
tics with respect to its dependence on the numerical dispersion. As we have seen in Section
5.4, this becomes even more problematic in higher-dimensions.

Thus, in order to investigate the explicit translation of the numerical dispersion effect into
the pollution error, we will use the information from the eigenvalues. To our current knowl-
edge, this provides a novel theoretical perspective on the pollution error. How the pollution
effect influences spectral properties and vice versa has remained an unconventional ap-
proach in researching the pollution error. In order to research these properties, we start by
looking at the differences between the exact and numerical solution of MP 1. The explicit
use of the eigenvalues requires that we use a model problem with Dirichlet boundary con-
ditions. The latter model problem has also been researched using the conventional method
[45, 47-49].

5.5.1. GENERAL PROPERTIES
Recall from Section 5.2 that the 1D MP 1 is given by

dzu 2 /
—oz Ku=6(x-x)xea=[0LcR

u(0) = 0,u(L) = 0, ke R\{0}.
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We also showed that the analytical solution u(x,x’) can be expressed in terms of the Green’s
function by

o« . . /
u(x,x'y=2 %sin(jnx), k# jmforj=1,2,3,.... (5.28)

j=1d

If we define u; = u(x;),j = 1,2,...,n, where u is evaluated at the discrete grid points, we
can represent the n—th term ﬁmte solution as a vector u(x) by

I sin(jrx’)

o s .

X)=2 E I—M vl (x), k#nforj=1,2,3,...,n (5.29)
]:

where % = [x1,X2,..., X, T and v/ (%) = % is now the j—th orthonormal eigenvector

corresponding to the j—th eigenvalue. The eigenvectors are exact discretizations of the
continuous eigenfunctions. Note that the denominator of each term in the sum consists of
the analytical eigenvalues. The right-hand side function f(x) of MP 1 is known and can also
be represented using the same basis of orthonormal eigenvectors

f(x)=2 i sin(jmx')v/ (). (5.30)

j=1

Similarly, we can write the numerical solution vector # as follows

a=A"'f(x)=A"12 i sin(jrx')v/ (%)

j=1

=2
J

n
sin ]nx vl (%), (5.31)
=1

where A/ are the numerical eigenvalues. We proceed by using the notation u, # and f re-
spectively.

5.5.2. ONE-DIMENSIONAL SPECTRAL PROPERTIES

We now have a simple expression which can be decomposed into terms containing the
eigenvalues. This allows us to identify the polluting terms of the numerical solution. We
start by investigating some general properties of the differences between the analytical and
numerical eigenvalues.
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Lemma 9.1: Difference Eigenvalues

Let AJ be the analytical eigenvalue and A/ be the numerical eigenvalue for j =
1,...,n, where n > n. If the expressions for the eigenvalues are given by

o .2 )
M= j2a?— k3N = 7 (1—cos(jmh)) —k?,
then the difference between the eigenvalues is bounded from above by

jiatn?
12

M < , (5.32)

and from below by

j47[4 hZ 2]'6”6’,14

A= 5 o (5.33)

Proof. We start by showing expression 5.32. The difference between the eigenvalues is given
by

P 2 ;
MM =2 -k — (ﬁ(l—cos(]nh))—kz).

Substituting the power series for the cosine term and letting { represent our cut-off point,

we obtain
°°<—1>l<jnh>2’>> )
1— T ) ) -k,
(- (%

2 22 21,2 -4 414
<j2n2—k2—<—2<1—1(1—] zh LIk —(6)>—k2),

24

2 22 2h2 -4 4h4 2
—2(1—1+]7[?—]7Tﬂ —k ,

B j47'[4h2
12

This gives us an upper bound with respect to the difference between the analytical and
numerical eigenvalue. Now to construct the lower bound in expression 5.33, we need to
show that

.. j47l4h2 2]'67[6],14

A > 5 5 (5.34)

We again substitute the power series for the cosine term in the difference equation of the
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eigenvalues, which gives

4472 6. 67,4 8876 +10..10 7,8
nh 2i°n°h 2j°n°h 2in h

.y jznz_kz_J n J 4] n J )
12 6! 8! 10!

3 j4ﬂ4h2 2]'67[6],14 N 2]'871.8],16 2]’107[10],18

12 6! 8! o T

Substituting the difference expression into 5.34 and grouping terms on the left-hand side
leads to a true statement if each of the term in parenthesis is non-negative.

4412 2‘664 2-886 2'10108 4412 2'664
G WO T T PO fL L g

12 6! 8! 10! 12 6!

Thus, in order to show that this holds for all j we need to show that each term in parenthesis
is non-negative. We write expression 5.35 as

j4ﬂ4h2 B 2j67T6 h4 0 2j4ln4lh4l_2 B 2j4l+27r4l+2 h4l (5 36)
12 6! = (41)! (41+2)! - ‘
j47l'4h2 B 2j6ﬂ6h4
12 6! ’

The sum on the left-hand side of expression 5.36 will be greater than the right-hand side if
we can proof that each grouped term is non-negative. Thus, we need to show that for each
j=12,...n

<2j4l7'[4lh4l_2 B 2j4l+27[4l+2h4l) N

@), @l12)!
2j4lﬂ4ll’l4l_2 j27l'2 hZ
- =0 (5.37)
al)! @+ 2)(al+ 1)

For a positive integer j and 0 < h < 1, this boils down to showing that for each j =1,2,...n
and[>2

> j2n2h2
~ (4l +2)(4l+1)

Given that the right-hand side of inequality 5.38 is strictly increasing with respect to j, we
can evaluate the minimum at j = 1 and maximum at j = 7 to evaluate the lower bound.

< (41+2)(414+1) = j*n* K, (5.38)

2h?, ifj=1

5.39
%, ifj=n, (5:39)

(u+2ﬂu+&)>{

where we used that # = n~! < 1, where n > 7. In both cases and already for the smallest
value of [ (I = 2), the statement holds. Consequently, we must have

j47[4h2€ B 2]'6].[6’14

A=A >
12 6!
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Corollary 9.1: Bound for analytical eigenvalue

Let AJ be the analytical eigenvalue and A/ be the numerical eigenvalue for j =
1,...,n, where n > m. Then for each‘ j, the analytical eigenvalue A/ is bounded in
terms of the numerical eigenvalue A/ by

.. <j47'[4]’l2 2]-6”6],14 j47l4h2

A <M<V

Proof. This result follows directly from Lemma 9.1, where we have

4472 4_4p2
jmh A<y jltzh,

4472 6.6 7,4 4472 6674
N> j'm*h  2j°n°h STy TN j'n*ht  2j°nCh .
12 6! 12 6!

M- <

Note that the upper and lower bound are dependent on the truncation error of the numer-
ical discretization method. We use Lemma 9.1 and Corollary 9.1 to obtain a more detailed
understanding of the pollution error and how the numerical dispersion contributes to it.
Moreover, we aim to find the eigenmodes which are responsible for this dispersive pattern.
By writing the numerical eigenvalue as a function of the discretization error to approximate
the analytical eigenvalue, we propose a dispersion correction depending on the discretiza-
tion scheme (see Section 5.5.1).

Corollary 9.2: Sum Eigenvalues

Let AJ be the analytical eigenvalue and A/ be the numerical eigenvalue for j =
1,..., n. Then the sum of the reciprocal of the analytical eigenvalues can be bounded
in terms of the numerical eigenvalues by

1 "
—’ < Z -,
M-S

n

~ . A 24472 2'6 67,2
wherewelet/11=m1n{‘ﬂtf+] Jllzh - ]g!h

A~ i j47T4 h?
12

’

3

Proof. We use Corollary 9.1 . By taking the minimum, we ensure that the analytical eigen-
value is bounded in terms of magnitude. This is necessary as both the continuous and dis-
crete operator are indefinite, which leads to positive and negative eigenvalues. Taking the
reciprocal and summing over all eigenvalues gives the statement. |

J

Lemma 9.1 and Corollary 9.2 provides us with a way to express the analytical eigenvalues
in terms of the numerical eigenvalues by adding a correction term. This correction term
depends on the truncation error of the discretization method. We now construct an upper
bound for the error term between the exact and numerical solution in the theorem below.
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Theorem 10: Pollution

Let u be the (exact) solution to MP 1 and let @ be the numerical solution obtained
by solving At = f, where A is a non-singular matrix obtained by using a p-th or-
der finite difference scheme. If k# is kept constant, then the absolute error in the
L?—norm is bounded from above by

4472 :6.67,2
where 1/ = mm{’xlf-i-] 71th —ng,h

3

12

Proof. Using the expansion for the right-hand side function f(x), We write the numerical
solution vector 7 as

_ZZ": sin(jmx) s 5.40
= T v/ (%). (5.40)
1

Note that this is based on the eigenfunctions evaluated at the discrete grid points and scaled
to yield an orthonormal basis (see Section 5.5.1). Consequently, we have

et = 2 3 ST i) _p 32 ST

= oA
%, [sin ]nx _sin(jrx’)\
- Z( T )”](’2) |

Z 1 1
= 2 i j ! T = ’
f:lsm(]”x : (A] Aj) ’

where we used that the eigenvectors are orthonormal. We can write the error in the 2-norm
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as

1 1 1 1
_il= ; N2(_ )2 ; N2(_— _ 2 )2
|u—a \/45111(7”)(/11 /{1) +...+4sm(mtx)(/1n )LA”)’
n 1 1 2
— 4 /\2 _——
Zsm(]nx) <)U )LJ)
j=1
n 1 1 2
{5 63)
o] A AT
LA
_ 42<M ) (5.41)
=AY

where we used that the eigenvectors are orthonormal and each sine term containing the
location of the source is less than one. We would like to find an upper bound for expression
5.41. We use Lemma 9.1 and Corollary 9.2, to provide element-wise upper bounds. From
Lemma 9.1 it follows that

n n 4472\ 2
© Ao jin*h
j;(m_m) <> ( 5 > . (5.42)

j=1

For the denominator, Corollary 9.2 provides us with

n 2 n 1 2 1 2
Z (Aw) <]Zl (ﬂ) (ﬁ) ’ (5.43)

47[4],12 2] 7'[6}‘12

where we have 1/ = min { ’/U + 15T .

A j47'[4 h2 . .
M+ ‘ } Substituting 5.42 and 5.43
into inequality 5.41 gives

A . 44 h2 2
n AJ— 2 n Jin
42 —— ] <2 Z A1—2~ .
et AT \ AAJ

j=

5.5.3. TWO-DIMENSIONAL SPECTRAL PROPERTIES

In this section we extend the results from Section 5.5.2 to the 2D case for MP 2. We start by
defining the error estimation for the 2D case.
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Lemma 10.1: Difference Eigenvalues

Let A"/ be the analytical eigenvalue and 1%/ be the numerical eigenvalue for i, j =
1,...,n, where n > n. If the expressions for the eigenvalues are given by

M= (2 + jP)n* - K,
ad 1
A= = (4—2cos(imh) —2cos(jnh)) — k?,

then the difference between the eigenvalues is bounded from above by

. 44 A p2
Abd  qii < U +_]12)” , (5.44)
and from below by
4 4\ 472 6 | 6\ 674
A’j—fli'j>(l +j)n*h _2(1 +j°)°h ‘ (5.45)

12 6!

Proof. Similar to the 1D case, substituting the power series for both the i-th and j-th cosine
term and letting { represent our cut-off point, we obtain

AP QM = i%n? 4 Pt — kP
0 I(; 21 0 I(s 21
—1)!(inh —1)!(jmh
(o) () )
= U = @
<i*n?+ jPn® -k

1 .2 zh2 .2 2’12 4 aht 6 2
[ =(4=2 —__2 - _ - _ —_ _
<2< +17r2 +]7r2 zn24 ]nz—i—( k),

:12n2+j27r2 K2
4472 4472
2.2 222 o I'mh j'n'h
—i“n*+ jomn  — k- — — ,
J 12 12
- (i* + )t h?
B 12

To construct the lower bound, we again substitute the power series for the cosine terms in
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the difference equation, which gives

Ai'j _/"il',j _ i27l'2 +j27.[2 o k2

(e (B ) (275 +)

— 272 4 202 — K2

4412  :4_432 6. 67,4 6. 67,4
i*n*h n*h 2i°n°h 2i°n°h
—(i2n2+j2n2—k2— . + +2L —)

12 12 6! 6!
_ (i4+j4)n.4h2 B 2(i6+j6)7l6h4 N 2(i8+j8)7l8h6 B 2(i10+j10)7[10h8
12 6! 8! 10!

Substituting the difference expression into 5.45 and grouping terms on the left-hand side
only leads to

((i4—|—j4)n4h2 B 2(i6+j6)7'[6h4> N (2(1'8_'_]'8)7[8]/16 B 2(i10+j10)7'[10h8> N

12 6! 8! 10!
_ (@ ihmth? 2(i® + j*)noht
- 12 6! '

We can write this as

((i4+j4)7r4h2 2(i® +] 6h4) N

i 4l+]4l) 4l pal—2 2(i4l+2+j4l+2)n4l+2h4l
12

(4l)! a (41 +2)!

((z + jHmth? 2(i6+j6)n6h4>_

12 6!

=2

(5.46)

\%

The sum on the left-hand side of expression 5.46 will be greater than the right-hand side if
we can proof that each grouped term is non-negative. Thus, we need to show that for each
i,j=12,...n

(A o Al g A2 (A2 | Al+2) pal+2 pal
< (i* + j* )7 (i +j ) )>0©

(4l)! B (41 +2)!
2(i4l+j4l)7l'4lh4l_2 (j2+i2)”2h2
()] (1_ (41+1)(41+z)) >0 647

For positive integers i, j and 0 < h < 1, this boils down to showing that for each i, j =
1,2,...nand [ =2

(j2 + i2)7.[2h2

LT o (Al+2)(4l+1) = 2% h? + Prlhl. 5.48
(4l+1)(4l+2)©( F2) @I+ =R (5.48)

Given that the right-hand side of inequality 5.48 is strictly increasing with respect to i and
J, we can evaluate the minimum at 7, j = 1 and maximum at i, j = n to evaluate the lower
bound.
2n*h?, ifi, j=1
@l+2)@al+ny={ 70 T (5.49)
277, ifi,j=n,
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where we used that 7 = n~! < 1 such that nh = 1 and n > 7. In both cases and already for
the smallest value of [ (I = 2), the statement holds. Consequently, we must have

(i*+ jHm*n?  2(i%+ j%)nOn?

ABT B >
12 6!

Similar to the 1D case, we can now bound the analytical eigenvalues in terms of the numer-
ical eigenvalues by using the lower bound.

Corollary 10.1: Sum Eigenvalues

Let A"/ be the analytical eigenvalue and 1%/ be the numerical eigenvalue for i, j =
1,..., n. Then the sum of the reciprocal of the analytical eigenvalues can be bounded
in terms of the numerical eigenvalues by

> S lwl< 5 2 5

i=1j=1
42 6 26\ .67,2
ij (L+])h_2(z+])nh
AT 12 6!

-4 24N\ 41,2
aij o, @+iHetn
AP+ P

}

Proof. The proof is exactly the same as in the 1D case. Using the lower bound and taking
the reciprocal of each respective term will give the statement after summing over all i and
j [ ]

where we let 1%/ = min {

.

We use Lemma 10.1 and Corollary 10.1 to find a similar upper bound for the 2D pollution
error. We proceed by extending Theorem 10 to the 2D case.

Corollary 10.2: Pollution

Let u be the (exact) solution to MP 2 and let i be the numerical solution obtained
by solving Al = f, where A is a non-singular matrix obtained by using a p-th order
finite difference scheme.

If kh is kept constant, then the absolute error in the L2—norm is bounded from
above by

n (G
4 )
e 55 ()

i=1j=1

Aid 4 @ +]4)n h: 2(i%+j%)nbh?

(i4+j4)n4h2
6! 12

A+

where 17 = min{

).

Proof. See proof of Theorem 10 for the 1D case and extend it to the case where the index i
also goes from 1 to n. [ |
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We now have an upper bound for the total error in terms of the numerical eigenvalues. If
we compare this to the conventional pollution term,

error u— i) < Ck(k*h?),

pollution =~ I
we observe that the explicit linear dependence on k has been replaced by the explicit de-
pendence on a superposition of the numerical eigenvalues. One advantage of writing the
upper bound in this way is that we immediately observe that the pollution error can be
minimized in both one- and two-dimensions for this model problem. Even for this simple
model problem, the latter was deemed impossible due to the wave travelling in infinite di-
rections for the 2D model problem, see Section 5.5.4.1. It is easy to see that if we minimize
the largest term of the sum, then all other terms, which are by definition smaller, will allow
the total sum to be minimized as well.

Corollary 10.3: Minimized Pollution 2D

Let u be the (exact) solution to MP 2 given by expression 5.29 and suppose the
L2—norm of the exact solution is always smaller than 1, i.e. |u| < 1.
Let (imin, jmin) @nd (Zmin, jmin) denote the location of the smallest analytical and

numerical eigenvalue respectively and suppose ‘Aimiﬂ’jmi“ < ’iimin'fmin .
If
4 4 412 2
4 (lmin+]min)n i
12 2
a— . =0(h%),
iiminvjmin (il‘min,]‘min + (l;in-i_]r‘i\in)ﬂ‘lhz _ z(lgmin+]r?1in)”6h4)
12 6!

then the relative error is bounded by

|u—a
[l

J

Proof. Note that reciprocal of the smallest analytical value in terms of magnitude is the
largest term in the set of the reciprocals of both the analytical and numerical eigenvalues.
Now, unless (imin, jmin) = (fmm, fmin), and Aminjmin & }iminjmin the difference between the
reciprocals will be largest there and thus it will provide the largest contribution to the sum.
As a result, we must have

2
4(i:1in+j;t\in)”4h2
12
= (5.50)
N2 (it +j Ymth?  2(i8. 475 Ynbht
imin, imin, min ' /min _ Z\"min " Jmin
A !min, Jmin (A min,Jmin 4 5 o

4(i4+j4)n4h2 2

12

i (30, (Hi9rh  2(i%46)r0 k! ’
AR (A T+ 12 6!

forall i,j = 1,2,...,n. Each (i, j)-term can be bounded from above by the left-hand side
of inequality 5.50. Substituting for each term in the upper bound from Corollary 10.2, we
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obtain
4 4\ 24 1,2 2
n on (i4+j4)mth
Hu_ ﬁH <4 Z Z (‘4_’_ ‘4)1ih2 2(‘6_;’_ '6) 6 4 ’
AL . AL T
S o\ Abd (b 4 ERpmE 2L

12

(l.liin—‘rj;lnin)n“hz _ 2(i21in+jr6nin)n6h4)
12 6!

2
4 (iﬁqin+j§1in)”4h2
/'\A,iminvjmin </Alimin:jmin +

(i) 2 2

n—1 n—1
+ 22 T ] :
A AL +4 4p2 26+6 64
A (e
= \/6(12) + (n—1)6(R2),
=1. (5.51)

The proof for the case |AminJmin| > ‘/Iimi"'jmin

is exactly the same. |

The upper corollary reveals the paramount importance of the accuracy of the near-zero
eigenvalues and eigenvectors. These dictate the upper bound for the remaining terms in
the sum. If the near-zero eigenmodes are approximated with high accuracy, then the dis-
persion part of the pollution error can be minimized. This also means that if we need a
rough estimate which is in the ball park of the true error, we can simply take the reciprocal
of the smallest eigenvalue in magnitude due to its largest contribution to the entire sum. In
the next section we use the results from this section to construct a dispersion correction for
the one- and 2D model problems.

5.5.4. EIGENVALUE BASED DISPERSION CORRECTION

Using this novel perspective, we construct a dispersion correction using the eigenvalues
and eigenvectors. Note that for the 1D MP 1, this can easily be constructed and produces
similar results compared to using the modified wavenumber, see Section 5.5.4.1. However,
one advantage we now have is that we can use the same method in the higher-dimensional
problem MP 2 to explicitly study how the numerical dispersion translates into the pollution
error. In the next section, we provide numerical evidence for the accuracy ranging from
fine to very coarse grids (kh > 1). The latter will allow to solve and study the current model
problem very intricately, while keeping the problem size economically feasible compared
to determining the step-size according to k*h? < 1.

ONE-DIMENSIONAL DISPERSION CORRECTION

We start by rewriting our original system as follows. Note that for our matrix 4, if A/ is an
eigenvalue of A corresponding to eigenvector v/, then

AvI =V v) = (A+cD)v) = (M + )/,

and thus AJ + ¢ is an eigenvalue of (A+cI). Consequently, if the analytical solution is known,
a very simple remedy to obtain better accuracy according to our proposition, would be to
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¢ = —AJmin 4 }Jmin_ (5.52)
This alleviates the mismatch between the exact near zero eigenvalue and the numerical
eigenvalue at index jmin. Recall from Section 5.4 that the pollution error for MP 1 can be
eliminated by incorporating a modified wavenumber k. The latter represents an explicit
correction of the wavenumber with respect to the dispersion error. Consequently, we test
for the elimination of pollution by comparing the relative error between the exact and nu-
merical solution after solving the following two systems

2(1—cos(kh))
h? '
Ac= A+ cl, where ¢ = — AJmin 4 }Jmin,

A= A—kI, where k =

We furthermore denote
a,;:Aa,e =fand d.: Al = f.

For the 1D case, our results from Section 5.5.4.1 suggest that this is often enough to allevi-
ate the adverse effects of numerical dispersion by adding the constant c. However, in some
cases, and especially for the 2D model problem, we need a way to shift more smaller eigen-
values while keeping the corresponding eigenvectors unchanged. The reason for this is that
in the 2D case there may be a higher algebraic multiplicity and corresponding locations
(imin, jmin) Where the smallest eigenvalue is located and consequently there may be more
than one value for c. In order to circumvent this difficulty, we make use of some theorems,
starting with Brauer’s theorem [63].

Theorem 11: Brauer

Let A be a diagonalizable matrix with Av/ = A/v/ and suppose r is a vector such
that rTv/ = 1, then for any scalar AJ, the eigenvalues of the matrix

A=A+ (AT =AYl rT,

consist of those of A, except that one eigenvalue A/ of A is replaced with AJ. More-
over, the eigenvector v/ is unchanged, thatis Av/ = AJ v/,

Proof. For aproof see [63] |

Corollary 11.1: Brauer

Let A be a diagonalizable matrix with Av/ = AJ v/ and suppose r = v/ then for any
scalar AJ, the eigenvalues of the matrix

A=A+ (A=Al iT,

consist of those of A, except that one eigenvalue A/ of A is replaced with AJ. More-
over, all the eigenvectors remain unchanged.
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Proof. By the diagonalization property of A, we can write A= PXP~!, where X consist of
the diagonal matrix containing the eigenvalues of A. Then v/ lies in the j—th column of P.
Let e/ be the j—th column of the identity matrix. Then we take

A=A+ (A —A)p(elel P,
= A+ (M = A0)(pel) (el TP,
where T = e/"P~1, is precisely the j—th column of the matrix P, [ |

Using the above theorem and lemma, we can correct each eigenvalue, without shifting the
eigenvectors of the previous system. Our dispersion correction for the 2D case will use the
above theorem recursively, which is extended into the following lemma.

Lemma 11.1: Brauer

Let A be a diagonalizable matrix such that we can write A = P~13p, where P is
the matrix containing the eigenvectors of A. Then, the same basis can be used for
diagonalizing A, where 3 is the matrix containing the shifted eigenvalues of A such
that £(j, j) = AJ and we can write A = PSP~L,

Proof. We start by applying Theorem 11 and Corollary 11.1 recursively. For the first eigen-
value 1! we obtain

A=A+ (A =AY (Pe') (TP,
where A has exactly the same eigenvectors as the original matrix A, but the first eigenvalue

A1 is shifted to 1. Applying this for all j = 1,2,..., n, we finally obtain

n
A=A+ (A —A)(Pel) (/TP (5.53)

j=1

We proceed by multiplying equation 5.53 from the left by P!, If we let I, denote the identity
matrix, we obtain

n
PT1A=P7 A+ Y (=) (P 'Ped) (el TPTY),
j=1
n ~ . .
=P A+ Y (A =) (Ied) (e TP, (5.54)
j=1

Note that for each j the term (e/)(e/ TP_l) is an all zero matrix apart from the j—th row
vector of P!, Next we multiply equation 5.54 from the right by P, which leads to

n
PTYAP=P71AP+ Y (M —Ay)(ef)(e! TP P),
j=1

=>4+ zn] (AT =AM (el)(elTT),
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We can use Lemma 11.1 to correct the eigenvalues, while keeping the eigenvectors of the
original matrix unchanged. We now proceed by constructing the corrected eigenvalues of
the new matrix A. We know that the eigenvalues are bounded from above by a term which
is in fact similar to the remainder from the truncation error of the discretization method
used. Thus, the method is reminiscent of switching to a higher cut-off point in constructing
higher-order discretization stencils. One advantage of this approach is that can now explic-
itly study the eigenmodes which cause the pollution error as a direct result of numerical
dispersion to grow. When constructing higher-order pollution-free discretization schemes,
each gridfunction can not be tied explicitly to a measure of having numerical dispersion in-
ducing properties. Whereas, the contribution of the particular eigenmodes are now clearly
visible in the solution and therefore the error. In our case, we therefore correct the eigen-
values by adding a finite part of the remainder in order to better approximate the analytical
eigenvalue. When using Dirichlet boundary conditions, the effect of each eigenmode con-
tributing to the overall pollution term can be studied in one-, two- and three-dimensions.

B 10 :\2nyp2(n—1)
Y (=D"(jm)"h
A=)\ .

t) (2n)!
For the 1D case in particular, we need the eigendecomposition and the new matrix contain-
ing the corrected eigenvalues to obtain the solution. With respect to the 1D model problem,
it is much more efficient to solely correct one eigenvalue, in particular the smallest eigen-
value (see Section 5.5.4.1). However, for the 2D dispersion correction, we propose a differ-
ent method, which is based on using the 1D eigendecomposition. As a result, for our model
problem, the pollution error can be studied for large wavenumbers in higher-dimensions at
reasonable computational costs.

TwO-DIMENSIONAL DISPERSION CORRECTION

As mentioned previously, we use the 1D eigendecomposition to construct the new 2D co-
efficient matrix A. One important feature we need is that the original partial differential
equation can be solved using separation of variables. A similar prerequisite is needed and
posed in some methods developed in the literature [43-46].

Algorithm 7: Pollution corrected coefficient matrix Asp using A1p

Initialization:
Construct eigendecomp. of 1D A;p such that D = P~ l1ApP
for j=1,2,..ndo

U — 430 (DG e

A=A+ anz ~(2—n)'

Replace /ff~in D with AJ

D@ j)=M
ECS() _ U;lmmTV;lmm —wy2
end

Use corrected matrix D to construct A;p = P~'DP
Construct 2D coefficient matrix Asp = (A1p® I1ip) + (1p® A1p)
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5.6. NUMERICAL RESULTS

We start by examining the error estimates for the pollution error for MP 1 and MP 2. In both
cases we evaluate how close our error estimates are to the true error. We then continue by
examining the performance of our eigenvalue-based dispersion correction for both model
problems. We mentioned that the conventional approach to studying pollution focuses on
the notion of a discrepancy between the numerical and exact wavenumber k. In these in-
stances, the exact solution is generally expressed in exponential form, and the eigenvalues
are not expressed explicitly. An interesting observation is that this discrepancy between
the numerical and exact wavenumber manifests itself through inaccurate near zero eigen-
values. Thus, if the numerical eigenvalues were better approximations of their continuous
counterparts, then we expect the relative error to decrease. Section 5.6.1 contains the results
for MP 1, while Section 5.6.2 covers MP 2. All 1D systems are solved using a direct method
in Matlab R2018a. For the 2D model problems with large k (k > 300), we use a standard pre-
conditioned GMRES-solver to obtain the numerical solution, due to the increasing density
of the coefficient matrix.

5.6.1. ONE-DIMENSIONAL CONSTANT WAVENUMBER MODEL

ERROR ESTIMATION

In Figure 5.1 we plot the relative error (red) for random values of k between 100 and 2000
and the upper bound (light red) based on Theorem 10. Additionally, the dashed line is the
reciprocal of the smallest numerical eigenvalue in magnitude. This allows us to assess how
well this estimate is in the ballpark of the true relative error.
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Figure 5.1: 1D Relative error and upper bound
for various randomly generated k using kh =
0.625.
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From Figure 5.1 we observe that the upper bound always holds, as the light red line is always
either above or exactly on the dark red line. The lines for the error (red) and upper bound
never intersect, and the bound is sharp. Moreover, it shows that the true error behaves more
erratically and has a more oscillatory nature which is in direct relation to the smallest eigen-
value in magnitude (dotted line). In particular for example, k = 1000 yields a true relative
error of 1.493. If we use the bound where the error grows linearly with k, then we have that
the pollution term is estimated to be bounded by k>h? = 390.625. Using the information
from the eigenvalues, our upper bound gives 3.238. Note that the true error (red) follows
an oscillatory pattern with peaks appearing for certain k. These are instances where one of
the eigenmodes are close to resonant modes and the numerical approximation is poor. If
Admin or AJmin is closer to zero than its counterpart, the reciprocal becomes very large. As the
intrinsic oscillatory behavior of the actual error become visible, we observe that the proxy
based solely on the smallest eigenvalue (dashed black line) provides a close representation
of the actual relative error. Thus, a lot of information can be deduced by simply taking into
account the smallest eigenvalue in terms of magnitude. Note the proxy is meant to perform
as an estimate of the true relative error and not as an upperbound. In some cases, the bound
underestimates the actual relative error.

ONE-DIMENSIONAL DISPERSION CORRECTION

For the 1D case, we use the dispersion correction in equation 5.52. It is also possible to
correct each eigenvalue in order to obtain very accurate solutions. However, the results
we obtain by using the simple correction with respect to the smallest eigenvalue produces
comparable results relative to including the modified wavenumber, which is known to elim-
inate the pollution error to a satisfactory level. Thus, we start by adding the correction term,
which is based on adding terms of the truncation error, to the coefficient matrix A,

1)" (i) B

(2n) (5.55)

) 10 (_
c= _A]min + Z
n=2



5.6. NUMERICAL RESULTS 75

This alleviates the mismatch between the exact near zero eigenvalue and the numerical
eigenvalue at index jyjn. As mentioned, recall from Section 5.4 that the pollution error
for MP 1 can be eliminated by incorporating a modified wavenumber k. The latter repre-
sents an explicit correction of the wavenumber with respect to the dispersion error. Con-
sequently, we test for the elimination of pollution by comparing the relative error between
the exact and numerical solution after solving the following two systems

2(1—cos(kh))
h? ’
1)"(jminﬂ)2nh2("_l)
(2n)! ’

A= A— kI, where k =

10
A; = A+ cl, where ¢ = —AJmin 4 Z (

n=2

We furthermore denote

and

» ©C

Table 5.1 contains the results for randomly chosen wavenumbers k between 100 and 1000
using 10 grid points per wavelength (kh = 0.625) and approximately 6 grid points per wave-
length (kh = 1). The latter represents the results of applying the dispersion correction on
a very coarse grid. The reason we consider a coarse grid is that in absence of dominating
pollution, which has been corrected by either k or ¢, we should be able to obtain accurate
results. The results from Table 5.1 show that using the eigenvalue correction c leads to a sig-
nificant reduction of the relative error. In some instances it provides even better accuracy
than using the adjusted wavenumber k. Similar conclusions can be drawn from the results
when letting kh = 1. While e, exceeds e;. occasionally, we see that ey, is more much insen-
sitive to changes in the grid resolution. In particular for k, the average error for kh = 0.625
appears to be fixed around 0.06, and increases to about 0.18 for kk = 1, whereas for kh =1
even further reductions of the error can be obtained by using the eigenvalue correction c.
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Table 5.1: Relative error e before and after dispersion correction using the eigenvalue-
correction ¢ and k for kh = 0.625 (left) and kh =1 (right).

kh=0.625 kh=1

k e eg ec ‘ k e eg ec

104 0.830 0.067 0.006 | 168 1.153 0.185 0.092
170 24.732 0.068 0.071 | 175 1369 0.186 0.251
175 1331 0.068 0.088 | 210 1.091 0.186 0.027
195 6.204 0.068 0.069 | 222 1.241 0.187 0.061
245 2836 0.068 0.068 | 230 1.127 0.186 0.037
249 0965 0.067 0.016 | 263 1.607 0.187 0.247
306 6.945 0.068 0.027 | 265 1.499 0.188 0.283
380 4.085 0.068 0.002 | 315 19.641 0.188 0.240
498 2564 0.068 0.033 | 333 21.482 0.188 0.188
505 1.270 0.068 0.016 | 337 1.071 0.186 0.048
575 0991 0.068 0.001 | 415 1.598 0.188 0.195
584 12.136 0.068 0.070 | 459 21.213 0.188 0.195
641 1.881 0.068 0.068 | 461 1.182 0.187 0.046
688 1.000 0.068 0.003 | 488 1.400 0.187 0.061
720 2,597 0.068 0.011 | 561 13.429 0.188 0.081
773 1476 0.068 0.069 | 594 0.999 0.187 0.013
797 1318 0.068 0.089 | 621 18.673 0.187 0.271
814 1.007 0.068 0.006 | 659 1.638 0.187 0.227
835 1426 0.068 0.078 | 820 1.000 0.187 0.002
843 6.106 0.068 0.094 | 867 21.485 0.188 0.188
922 1310 0.068 0.033 | 881 1.501 0.188 0.345
965 1.018 0.068 0.010 | 882 1.112 0.188 0.044
996 0.995 0.068 0.002 | 919 1.340 0.188 0.092

5.6.2. TWO-DIMENSIONAL CONSTANT WAVENUMBER MODEL

ERROR ANALYSIS

In this section we provide numerical results for MP 2. We start by presenting the error and
the upper bound using the eigenvalues in Figure 5.2. To illustrate the pollution effect, we
present the solution and error for various examples in Figure 5.3 and 8.20.

Starting with Figure 5.2, we observe that the upper bound always holds. Similar to the one
dimensional case, we again observe the oscillatory nature of the actual true error. The
spikes in the error provide great insight relative to the linear relation between k and the
increasing error. From Figure 5.2 we additionally notice that almost for all k, the relative
error is always larger than one. While the upper bound is of the same order as the true error,
it is often larger than the true error. Yet, it follows the same oscillatory pattern as the true
error from which we can deduce how much each eigenmode contributes to the error. For
the first time to our knowledge, we are therefore able to break down and study the disper-
sive property of the numerical solution in higher-dimensions. The oscillatory error pattern
also reveals that the largest contribution in terms of the dispersion can be pointed to the
smallest eigenvalues which determine the total sum in Corollary 10.1 and Corollary 10.2.
Secondly, as mentioned previously, in some cases the upper bound is much larger than the
actual error. This can be understood by noting that in this model problem the source is
located at the center of the numerical domain. Thus, at all even indices j, the sine-term
related to the source will be zero and these terms will not be included into the sum. In cases
where we see an overshoot, either the smallest numerical or analytical eigenvalue is located
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at an even index. While it is not part of the actual error, due to being eliminated by the sine-
term containing 7, it is in fact still included in our upper bound. Note that in creating the
upper bound, we do not differentiate between even and odd indices. The reason for this is
that we prefer an upper bound which covers the worst case scenario and is not limited to
fixing the location of the point source for this model problem.

Figure 5.2: 2D Relative error for with upper bound for various k between 10 and 425 using

kh =0.625.
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To illustrate the full pollution effect, we continue by plotting some solutions for several val-
ues of k. We have plotted the results for k = 50 and k = 150 in Figure 5.3 and 8.20. Note
that 20 grid points per wavelength are used, which results in kk = 0.3125. On the x— and
y—axis respectively, we have the index i, j corresponding to the gridpoint (x;, ;). The col-
orbar indicates the value of u(x;,y;).

Figure 5.3: Exact and numerical solution for MP 2 using second order finite differences and k = 50. kh =
0.3125, n = 25600.
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(a) Exact solution (b) Numerical solution
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We can see from Figure 5.3 that for a medium size wavenumber (k = 50), the numerical
solution is a fair approximation of the exact solution. We can see from the contour of both
figures that most of the error does not come from numerical dispersion. If the latter would
be the case, the contour of the numerical solution would differ significantly from the exact
solution (see Figure 8.20 for example).

We repeat the analysis for a larger wavenumber; k = 150. From Figure 8.20 (b) we can see
that the accuracy deteriorates rapidly as k increases. Fixing the resolution at kh = 0.3125
does not suffice in keeping both the phase and amplitude differences under control. We
can see from Figure 8.20 (a) that the exact and numerical solution do not coincide, forcing
the conclusion that severe differences between the exact and numerical wavenumber are
present. It furthermore supports the observation that increasing the number of grid points
mainly results in a substantial resolve of the amplitude differences, rather than the phase
differences.

Figure 5.4: Exact and numerical solution for MP 2 using second order finite differences and k = 150. kh =
0.3125, n = 230400.
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(a) Exact solution (b) Numerical solution

TwO-DIMENSIONAL DISPERSION CORRECTION
We now investigate the effect of applying a dispersion correction using the eigenvalues for
the 2D MP 2. Note that for the 2D case it will not suffice to simply add the constant

¢ = — ) imin jmin i (*1)n(imin”2n JF]'nninﬂzn)hz(nil)
(2n)!

n=2

There may be multiple locations (imin, jmin) Where the smallest eigenvalue is located and
thus there may be more than one value for c. If the algebraic multiplicity of the smallest
eigenvalue is exactly two, then adding the constant c will still reduce the overall error. How-
ever, in the 2D case, the algebraic multiplicity may often be larger than two. Therefore,
we follow the steps described in Algorithm 7. Given that we are solving for the underlying
Green’s function and general solution, the property that separation of variables can be ap-
plied, results in the fact that we can start correcting the eigenvalues already in the 1D case
and use those to construct the new coefficient matrix A. As this leads to a correction which
is independent of the true analytical wavenumber and pre-specified propagation angles,
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the resulting coefficient matrix will become more dense and subjected to a different spar-
sity pattern. In Figure 5.5 we have plotted the sparsity pattern of the corrected coefficient
matrix A for k = 10, using kh = 1.5. It is apparent that many diagonals are added to the
matrix. Additionally, we can see the formation of clear blocks in the center of the adjusted
matrix. For smaller kh, the new coefficient matrix A will contain many diagonals and larger
blocks, being much more dense yet sparse compared to the original coefficient matrix A.

Figure 5.5: Sparsity pattern for k = 10 using kh = 1.5

ssceee . . .

0 10 20 0 10 20
nz =105 nz =225
(a) Original matrix A (b) Corrected matrix A

Before we solve the linear systems explicitly, we verify the 2D dispersion correction. Irre-
spective of the solution method, we can use the series representation of the discrete solu-
tion using the dispersion correction, to establish whether the resulting solution will indeed
be dispersion free. Thus, in Table 5.2 we report the results for various k and kh using the
dispersion correction on the numerical eigenvalues which we construct from the 1D case.
Note that we do not need to compute the 2D eigenvalues and eigenvectors in Algorithm 7
and proceed until step 6 in the algorithm. We note that in almost all cases the true relative
error is always larger than 1 without the dispersion correction. Using the new correction for
this model problem, the error is reduced significantly and shows relative independence as
regards kh. Even when we move to very coarse grids, which will allow for solving the corre-
sponding linear systems accurately and iteratively, the error stays almost constant despite
being in the high-frequency range, which to our current knowledge, is a novel theoretical
result. For kh = 2, ) represents a case where the numerical smallest eigenvalue without
correction becomes zero and we have resonance. This shows the severity of the dispersion
causing the pollution, as the actual analytical eigenvalue is still far away from zero.
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Table 5.2: Relative (RE) and corrected relative error (CRE) for various k and kh. @ represents the case where the
numerical smallest eigenvalue becomes zero.

k RE CRE RE CRE RE CRE RE CRE
kh = 0.625 kh=1 kh=15 kh=2

50 0.599 4.573e-14 0934 8.270e-12 1.073 1.679e-13 2367 1.368e-13
100 2.989 2.065e-13 3.408 3.772e-13 2.219 4.949e-13 @ 1.358e-13
150 2.118 3.878e-14 4.197 7.067e-13 1.518 3.413e-12 4.109  8.293e-13
200 1.525 1.060e-14 6.960 2.805e-13 1.200 2.475e-13 @) 8.236e-13
250 6.086 1.642e-13 1.758 3.035e-12 1.630 6.911e-13 10.121 1.870e-13
300 1.619 9.541e-13 8.905 3.559e-13 1.529 4.010e-12 Q@ 1.000e-13
350 1.005 2.687e-13 1.083 7.340e-13 1.853 9.138e-12 2.176  2.000e-13
400 1.167 2.525e-13 1.058 1.769e-13 8.380 2.353e-13 @ 7.000e-12
450 2.115 1.975e-13 3.576 3.300e-13 2.073 3.063e-13  5.293  9.104e-13

We now assess the performance in terms of computation time and iterations. In order to
make a fair comparison, we solve the linear systems using second-order finite differences
using the rule k*h? = 5, as this should reduce the pollution error to some extent. We then
increase k and report the relative error and number of iterations. From Table 5.2 we observe
that we can use coarser grids to solve for the same wavenumber k and we compare the dif-
ferences. We use GMRES as the iterative solver and apply the standard Complex Shifted
Laplacian (CSL) with a complex shift set to 1 using multigrid. We use one V-cycle with one
pre- and post-smoothing step. Some important remarks are in place. First of all, the accu-
racy achieved from the iterative solver will depend on the stopping criterion and we set the
relative tolerance at 10~%. Second of all, higher accuracy could have been received of order
10~2 by taking k3 h? smaller. However, that would lead to large linear systems and thus we
report up to N = 320%. Finally, the number of iterations needed to reach convergence for
GMRES remains unaffected by the increased accuracy and a detailed study on the conver-
gence behavior lies beyond the scope of this work. For normal matrices in general, GMRES
convergence is governed by the smallest eigenvalues in terms of magnitude, in particular
the ratio between the smallest and largest eigenvalue. Thus, while the resulting eigenvalues
may be more accurate, they may still be small leading to bad convergence.

Table 5.3: Exact and numerical solutions for k = 200. Exact solution on a fine-grid kh = 0.625, 7> = 101761 and
numerical solution on coarse-grids using the eigenvalue dispersion correction. For kh = 2, we have n? = 9801.

(Azp, k*h? ~5) (Ap kh~1) (Ayp kh~2)

k n RE Its CPU(s) n RE Its  CPU(s) n RE Its CPU(s)
10 [ 15 0.046 18 0.094 10 1.571e-08 13 0.066 5 1.010e-09 6 0.052
20 | 40 0.083 53 0.247 20 4.842e-07 64 0.178 10 5.192e-08 15 0.072
40 | 114 0.291 111 6.726 40 8.060e-09 225 2.763 20 2.685e-08 217 0.589
60 | 208 0.522 377 113.888 | 60 4.991e-07 480 35.072 | 10 3.981e-07 464  3.653
80 | 320 1.861 654 1386.827 | 80 3.823e-07 712 151.486 | 40 6.123e-07 901 18.845

—

Table 5.3 sheds light on some interesting observations made previously. Using the disper-
sion correction, we can solve for the same wavenumber k while using coarser grids which
lead to smaller linear systems. This is beneficial as this implies that the theoretical study of
the pollution error can now be studied from all angles simultaneously in higher-dimensions
using coarser systems. If, for example, we look at k = 80, we note that even with N = 3202
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(equivalent to using 27 grid points per wavelength (k3h? ~ 5)), the error keeps increasing
and even finer grids are required to obtain accurate solutions. Moreover, the standard it-
erative solver needs 654 iterations and approximately 1386 seconds to reach convergence.
On the contrary, using N = 40%, which is equivalent to using 3 grid points per wavelength
(kh ~ 2), the error is reduced to 10~ 7.

In Figure 5.6 we have plotted the exact solution for k = 200 on a fine grid and compare it to
the numerical solution computed on a very coarse grids using the eigenvalue based disper-
sion correction. We can see that the accuracy and resolution for such a high wavenumber
computed on a very coarse grid (kh = 2) are still satisfactory. The figures illustrate what we
observed for k = 200 in Table 5.2; the error, after introducing the dispersion correction, at
its best is of order 10~'* and at its worse of order 10~!3. Even for a simple model problem
such as ours, achieving an explicit dispersion correction independent of the propagation
angle in higher-dimensions is unprecedented.

Figure 5.6: Exact and numerical solutions for k = 200. Exact on a fine-grid kh = 0.625, > = 101761 and the
numerical on coarse-grids using the eigenvalue dispersion correction. For kh = 2, we have n? = 9801.

(a) Exact solution for kh =0.625  (b) Numerical solution for kh =1 (c) Numerical solution kh =2

5.7. CONCLUSION

In this chapter we researched the pollution error due to numerical dispersion for the Helmholtz
problem using Dirichlet conditions from an unconventional and novel perspective; the
eigenvalues. We have sought to provide the first theoretical basis for defining the pollution
error in terms of the eigenvalues. This can allow further study of the relation between itera-
tive solvers and the accuracy of numerical solutions now that both have been expressed in
terms of a common denominator; the near-zero eigenvalues. This is especially interesting
due to the fact that these near-zero eigenvalues, which are generally responsible for ham-
pering the convergence of iterative solvers, are in fact indicators for the pollution effect.
Furthermore, by examining the behavior of the eigenvalues, we proposed an upper bound
for the relative error. In particular, we showed that if the near-zero eigenvalues and eigen-
vectors are approximated with high accuracy, then the dispersion part of the pollution error
can be minimized considerably. The results also illustrate that the error grows in an oscilla-
tory manner, and the error bound is able to capture and reveal this effect. We additionally
constructed a theoretical framework where the pollution error can be brought to approxi-
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mately zero for very large wavenumbers, irrespective of the grid resolution (kk). The basis
of this approach lies in correcting the respective eigenvalues with the remainder, which de-
pends on the order of the truncation error of the finite difference scheme. Consequently,
it is possible to obtain pollution-free and therefore accurate one- and 2D solutions using
coarser grids. The solutions obtained account for all propagation angles simultaneously
and do not rely on pre-determined angles for plane-wave propagation, which promotes a
detailed study of the pollution effect.
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ERROR MINIMIZATION

Parts of this chapter have been published in Computer Methods in Applied Mechanics and Engineering 377, (2021)
[64].
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In the previous chapter we have discussed the pollution error. We showed a novel method
to investigate the pollution error in higher dimensions using information from the eigenval-
ues. While we are able to enforce a correction for simple theoretical problems, the question
remains how to tackle more difficult problems and geometries.

One potential way to mitigate the pollution error for these types of problems is to adopt
Isogeometric Analysis (IgA) [65] as a discretization technique. IgA can be considered as
the natural extension of the finite element method (FEM) to higher-order B-splines and
has become widely accepted as a viable alternative to standard FEM. The use of high-order
B-splines or Non-Uniform Rational B-splines (NURBS) enables a highly accurate represen-
tation of complex geometries and bridges the gap between computer-aided design (CAD)
and computer-aided engineering (CAE) tools.

6.1. [ISOGEOMETRIC ANALYSIS

We first provide a brief introduction to IgA and an overview of the literature on this topic.
We then apply this to our model problem and investigate the behavior of the pollution error
using this novel discretization technique.

6.1.1. VARIATIONAL FORMULATION
To illustrate the variational formulation, we consider the inhomogeneous Helmholtz equa-
tion in two dimensions adopting inhomogeneous Robin boundary conditions:

—Au(xy) - R(xyu(xy) = f(xy), (0y)eQcR, (6.1

(ain_ik(x,y)) u(x,y) = glxy), (xy)edQ. (6.2)

Here, Q is a connected Lipschitz domain, f € L2(Q), g€ L?(9Q) and k(x, y) a non-constant
wavenumber. Let us define 7 as the first order Sobolev space H'(Q). The variational for-
mulation of (6.1) is obtained by multiplication with a test function v € 7 and application of
integration by parts: Find u € 7 such that

a(u,v)=(f,v), Vvev, (6.3)

where
a(u,v):f Vu-V_de—j kzuidQ—iJ kuv dr (f,u):f f?dQ—&—J gvdr.
Q Q oQ Q 0Q 6.4)

A geometry function F is then defined to parameterize the physical domain Q by describ-
ing an invertible mapping to connect the parameter domain Qg = (0,1)? with the physical
domain Q.

F=0Q9—Q, F(n)=(x7y). (6.5)

The considered geometries throughout this paper can be described by a single geometry
function F, that is, the physical domain Q is topologically equivalent to the unit square.
In case of more complex geometries, a family of functions F") (m =1,...,K) is defined
and we refer to QO as a multipatch geometry consisting of m patches. For a more detailed
description of multipatch constructions, the authors refer to chapter 2 of [66].
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6.1.2. B-SPLINE BASIS FUNCTIONS

To discretize Equation (6.1), univariate B-spline basis functions are defined on the parame-
ter domain Qg by an underlying knot vector Z = {&1,&5,..., EN+pr ENFp+1 }, where the knots
are located at the interval boundaries. Here, N denotes the number and p the order of the
B-spline basis functions. Based on this knot vector, the basis functions are defined recur-
sively by the Cox-de Boor formula [67], starting from the constant ones

1 if §;<&<jt1,
i = 6.6
Pin() {0 otherwise. 66
Higher-order B-spline basis functions of order p > 0 are then defined recursively
&—¢; Cj+p+t1—¢
Djp(6) =+ Gjp1(E)+ ——————Pj+1p1(E) 6.7)
Sj+p—6j Cijtpr1—Cj+1

The resulting B-spline basis functions ¢; , are non-zero on the interval [{;,¢;4,+1) and

possess the partition of unity property. Furthermore, the basis functions are C”~""% -continuous,

where m; denotes the multiplicity of knot ¢ ;. Throughout this paper, we consider a uniform
knot vector with knot span size &, where the first and last knot are repeated p+1 times. As a
consequence, the resulting B-spline basis functions are C”~! continuous and interpolatory
at both end points.

Figure 6.1 illustrates both linear and quadratic B-spline basis functions based on such a
knot vector.

1+

0.8 - -

0.6 -

0.4 -

0.2 -

(0]

0 0.5 1 1.5 2 2.5 3

Figure 6.1: Linear and quadratic B-spline basis functions based on the knot vectors Z; = {0,0,1,2,3,3} and = =
{0,0,0,1,2,3,3,3}, respectively.

6.1.3. LINEAR SYSTEM FORMULATION

For the multi-dimensional case, the tensor product of univariate B-spline basis functions
is adopted for the spatial discretization. Let N4, denote the total number of multivariate
basis functions @; ,,. The spline space 7}, can then be written as follows

Vip =span{®@; , oF '} i1 Ny (6.8)
The Galerkin formulation of (6.3) now becomes: Find uy, , € 7}, such that

a(uhyp, Uh,p) = (fh,p, Uh,p), Vvh,p € Vh,p. (6.9)
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The discretized problem in (6.9) can be written as a linear system
(Kn,p + Mp,p + Rip) un,p = fip (6.10)

where we have

Kh,p: |:J V(pr(p] dQ] ’ Mh,p:_kz |:f (pl(pj dQ] , (6.11)
Q 1<, j<Ngot Q 1<, j < Nyof

and

R=—ik [J PiP; dl“] . (6.12)
r 104, j < Ndof

Next, by defining Ap, ,, = Ky, p + Mp, p + Rp,,, we can write

Appunp = fnp- (6.13)

For the ease of notation, we proceed with the notation Au = f, and drop the subscript
(h, p).

6.1.4. LITERATURE OVERVIEW

IgA can be considered as the natural extension of FEM to higher-order B-splines and has
become widely accepted as a viable alternative to standard FEM. The use of high-order
B-splines or NURBS enables a highly accurate representation of complex geometries and
bridges the gap between computer-aided design (CAD) and computer-aided engineering
(CAE) tools. Furthermore, a higher accuracy per degree of freedom can be achieved com-
pared to standard FEM [68]. A new branch of studies has demonstrated that IgA further-
more helps to control the pollution error while keeping the size of the resulting linear sys-
tem moderate [69-73]. In [74], the authors investigated the obtained accuracy for several
Helmholtz-type problems using a non-constant wavenumber and documented increased
accuracy. Thus, while the use of IgA for Helmholtz-type problems becomes more estab-
lished, the process of solving the underlying discretized systems remained fairly untouched.
Until recently, a study by Diwan et al. [75] covered this for the Helmholtz equation and re-
searched the use of IgA together with an iterative solver. In this section we mainly focus on
the use of IgA to reduce the pollution error. For iterative solvers, see Part III.

6.1.5. RELATION TO FEM

In this section we briefly mention some similarities and differences between both methods.
The basic concept behind IgA is to use same basis functions to model the exact geometry
and the solution field. As a result, the exact geometry is employed at all levels of discretiza-
tion, while in FEM, a piecewise polynomial approximation is utilized.

In both IgA and FEM, the solution of the weak form is a linear combination of the basis
functions. In IgA, the coefficients are the control variables, while in FEM they are the nodal
variables. In IgA, control points and control variables are generally not interpolated, unlike
the nodal points and variables in FEM.

In both IgA and FEM, the bases being used forms a partition of unity and the bandwidth of
matrices corresponds to the given polynomial order and are equal.

In FEM, the degrees of freedom are located at the nodes, while in IgA they are located at
the control points. In FEM the continuity of the basis functions are fixed, while in IgA the
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continuity can be controlled. Fig. 6.2 sums up some of the differences and similarities. For
more details about IgA, we refer to [65, 68].

ISOGEOMETRIC ANALYSIS FINITE ELEMENTS

CONTROL POINTS * e  POINTS NODAL POINTS

CONTROL VARIABLES >€ VARIABLES NODAL VARIABLES
KNOTS :EEE DOMAIN
EXACT GEOMETRY GEOMETRY APPROX. GEOMETRY

Figure 6.2: Comparison of IgA and FEM.

6.2. PROBLEM DEFINITION

To illustrate the effect of using IgA with respect to the pollution error, we use a 1D model
problem, denoted by MP 1-A, from [76].

MP 1-A
du(x) Ku(x) = 1, xeQ=(0,1) (6.14)
dx2 - » - ’ ’ .
u(x) = 0, x=0,
u'(x)—iku(x) = 0, x=1.

Here, homogeneous Dirichlet and Sommerfeld boundary conditions are applied on the left
and right boundary, respectively. The exact solution for MP1-A is given by u(x) = e**,
Model problem MP 1-A will be adopted to investigate the pollution error for various values
of the approximation order p of the B-spline basis functions.

6.2.1. POLLUTION ERROR

In this section we briefly discuss the effects of using IgA on the pollution error for the Helmholtz
equation. As mentioned previously, the h-version of the error studies have shown that as
the wavenumber k increases, the numerical solution suffers from dispersion errors [38, 39].
While in 1D, one can define an exact modified wavenumber which is able to minimize and
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bound the pollution error, this is not possible in 2D and 3D as this relies on the direction
of the waves [38, 39]. Thus, instead of resorting to very fine meshes, it has been shown that
higher-order methods suffer from less dispersion error and provide a viable alternative to
obtain accurate solutions while keeping the problem size economical [76, 77]. In particular,
Corollary 4.6 of [76] provides us with the following h-error estimate (given ||u||;2 ~ 1)

|[ttex — un||2 < C (P + k™" (kh)P) h (1 + k(kh)P~1). (6.15)

Note that for p > 1, the error decreases asymptotically faster compared to p = 1 where the
error scales at best with k. In order to illustrate these properties, we plot the L2-error under
mesh refinement for MP 1-A. Figure 6.3 shows the L2-error under mesh refinement for dif-
ferent values of k obtained for p =1 (left) and p = 2 (right). Note that, the k-dependence
for p = 1 significantly differs from p = 2, as predicted in Corollary 4.6 in [76]. In fact, the
numerical results presented in [76] (see Figure 2), showing the relative [%-error under mesh
refinement, are in agreement with the results presented in Figure 6.3.

While the use of IgA significantly reduces the pollution error, they do not remain pollution-
free as the wavenumber becomes very large [77]. We illustrate this using the 'rule of thumb,
where the waves are resolved using 10 degrees of freedom per wavelength. Note that this
has been used widely in practice and lies within the pre-asymptotic range for p = 1. In Fig-
ure 6.4 we observe that, using kh = 0.625 for p = 2 to p = 5, the L?-error with respect to the
analytical solution decreases. While this leads to significant more accurate solutions, we do
observe that as the wavenumber increases, the L?-error increases accordingly. Moreover, as
k increases the advantage of using p = 5 over p = 4 decreases as both lead to similar accu-
racy. For standard FEM, this was already observed [59]. Furthermore, decreasing the num-
ber of degrees of freedom per wavelength from 10 (solid line) to 7.5 (dashed line) already
results in lower accuracy. In fact, the achieved accuracy for p = 4 and p = 5 with 7.5 degrees
of freedom per wavelength is similar to the obtained accuracy for p = 3 when 10 degrees
of freedom per wavelength are used. We proceed by keeping kh = 0.625 and increasing the
order p as we want to examine the extent of the iterative solver within this pre-asymptotic
range. However, note that for engineering practices, the error can be bounded in the 0.1 to
1% range, where IgA can provide more accurate solutions using smaller linear systems [77].
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Figure 6.3: I?-error under h-refinement for MP 1-A using p =1 (top) and p = 2 (bottom) for different wavenum-
bers.
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Figure 6.4: L2-error for MP 1-A using p = 1 to p = 5 for various wavenumbers k. The solid line uses 10 degrees
of freedom per wavelength (kh = 0.625) and the dashed line uses 7.5 degrees of freedom per wavelength (kh =
0.825).
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6.3. CONCLUSION

In this chapter, we studied the combination of IgA discretized linear systems for the Helmholtz
equation. In particular, we showed that the use of IgA reduces the pollution error signifi-
cantly compared to p—order FEM. However, the pollution error can not be removed com-
pletely and continues to grow with the wavenumber k, unless more degrees of freedom are
used. Additionally, obtaining better accuracy by increasing the order p comes at the cost
of more dense matrices. Depending on the application and the required level of accuracy;,
IgA can provide more accurate solutions using smaller linear systems compared to p—order
FEM.
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Parts of this chapter have been published in SIAM Journal on Scientific Computing 42, (2020) [78].
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In this chapter we start by introducing the deflation method and how it’s going to be used
as a preconditioner to accelerate the solvers from Chapter 3. There we discussed the com-
monly used preconditioner for the Helmholtz equation, the Complex Shifted Laplacian
(CSL). We noted that while it leads to convergence which is linear in the number of itera-
tions relative to the wavenumber, the number of iterations starts increasing rapidly for very
large wavenumbers. This manifests itself in near-zero eigenvalues clustering up near the
origin, causing the convergence to slack. The main reason for using deflation as a precon-
ditioning strategy is that it allows for the near-zero eigenvalues to be removed, which are
hampering the convergence of the Krylov solver. We again start by an introduction to the
deflation technique, followed by an overview of the literature, where we discuss deflation
based preconditioning strategies which have been studied previously. Next, we provide an
overview of the model problems which will be studied in this chapter. We proceed by in-
vestigating theoretically what the main reason is behind this inscalability and introduce a
novel method which relies on higher-order deflation spaces. Finally, we conclude this chap-
ter with some numerical experiments.

7.1. DEFLATED KRYLOV METHODS

In Part I of this dissertation, we have shown that discretization of the Helmholtz equation
leads to an indefinite matrix. This indefiniteness narrows the choice of potential Krylov-
based solvers due to the Conjugate Gradient type methods being ineffective.

While the application of the CSL preconditioner was successful in confining the eigenvalues
between 0 and 1 in the complex plane, the Krylov solver remains defenseless against the
hampering convergence behavior caused by the small eigenvalues for large k, which is why
deflation was introduced to boost the convergence behavior of the Krylov solver.

Deflation is a technique which aims to move near-zero eigenvalues to zero by using an or-
thogonal projection. It can also be used to move these unwanted eigenvalues to 1 or the
largest eigenvalue. In both cases, the eigenvalues are mapped to the desired value if the
exact eigenvectors are utilized. Due to practical considerations within the context of Krylov
solvers, it is possible to alleviate the adverse effects of near-zero eigenvalues using deflation
by either explicitly modifying the operator of the linear system [79] or by finding approxi-
mations to the eigenvectors corresponding to the troublesome eigenvalues. For example,
such approximations are used in [11] and [80], where harmonic Ritz vectors serve as eigen-
vector approximations to augment the Krylov subspace in order to gain faster convergence.
Deflation for large scale problems relies on multiplying the linear system by a projection
matrix P and applying the Krylov subspace method to the projected system PA, rendering
the projection matrix P to act as a preconditioner at the same time.

7.1.1. DEFLATION BASED PRECONDITIONING FOR GMRES

Consider a general real valued linear system. The projection matrix P and its complemen-
tary projection P can be defined as

P=AQwhereQ=ZE 'z andE=2"TAZ (7.1)
A ERan Z eRan
P=1-AQ
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where Z functions as the deflation matrix whose m < n columns are considered the de-
flation vectors and I is the n x n identity matrix. Additionally, the coarse-grid coefficient
matrix E is assumed to be invertible. Matrix P is also known as the projection precondi-
tioner. In Algorithm 8 we present the Preconditioned Deflated GMRES algorithm, which
will be used for numerical testing in Section 8.6 and includes a preconditioner matrix M.
The preconditioner M is added to improve the convergence.

Algorithm 8: Preconditioned Deflated GMRES for system Au = b
Initialization:
Choose ug and compute ro = by — Aug and vy = ro/||ro]]
for j=1,2,..kdo

Uj:=Pv;
w=M'Ap;
fori:=1,2,..,jdo

h,‘yjlz le/,‘

w .= w—h,’,jl)i
end
Rjy,j:=||wl|
vjt1:=w/hji1,

end

Store:

Vi =010 Uk J;
He={h;;},1<i<j+L1<j<m.
Compute:

hjt1j=wl2and vj+1=w/hji1).

The entries of upper k + 1, k Hessenberg Matrix Hy are the scalars h; ;.
Form approximate solution:

u =Qb+ PTuk

Restart:

If satisfied stop, else set ©y < uy and repeat process.

7.1.2. THE DEFLATION PRECONDITIONER (DEF)

Based on the above, the DEF-preconditioner has been defined by taking the prolongation
operator Izhh from a multigrid setting as the deflation subspace Z in equation Eq. (7.1), see
Section 4.1.1.

Izhh can be interpreted as interpolating from grid Q,j, to grid Qj. As a result, the DEF-
preconditioner is commonly referred to as a two-level method and we obtain

P=A,Qwhere Q= ZAy, ' ZT and Ay, = 2T A2 (7.2)
P=1I,— A,Qwhere Z = I},

In the literature a distinction is made with respect to the two-level deflation operator. On
the one hand we have the DEF-preconditioner as defined above. On the other hand we
have the ADEF-preconditioner, which is defined by taking Psprr = P +yQ. The inclusion
of the shift y ensures that the coarse-grid solve with respect to Ay, can be approximated,
for example by considering a multi-level implementation ([81], [28]). When considering
approximate inversion, y is generally either set to 1 or the largest eigenvalue of the original
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coefficient matrix. In this work we solely focus on the DEF-preconditioner in a two-level
setting, and thus we take y = 0. This implies that on the coarsest level, the solution for the
system involving A,j, is solved with a direct method.

As for the preconditioner M given in Algorithm 8, we use the CSLP-preconditioner, which is
defined by

M =—A— (1 + f2i)K*T,

where i = +/—1 and (f1, B2) € [0,1]. The CSL preconditioner is included in order to obtain
amore favourable spectrum. Unless stated otherwise, we use one V(1,1)-multigrid cycle to
obtain an approximate inverse of the CSLP-preconditioner.

7.2. PROBLEM DESCRIPTION

In this section we define the model problems which are used to both theoretically and nu-
merically study the deflation based solver.As mentioned previously, using Dirichlet bound-
ary conditions, the resulting coefficient matrix is normal and hence GMRES-convergence
after preconditioning is completely determined by the spectrum. While this allows for ex-
tensive analysis of the convergence behavior, no true wavenumber independent conver-
gence has been reported for this model problem unless the shift in the CSLP-preconditioner
is kept very small and exact inversion is utilized [32]. This motivates to start with the study
of this simple model problem in order to create a foundation for obtaining wavenumber
independent convergence.

7.2.1. ONE-DIMENSIONAL CONSTANT WAVENUMBER MODEL
We start by focusing on a one-dimensional mathematical model using a constant wavenum-
ber k > 0.

MP 1-A
—@—kzu(x) = 6(x—x'), xeQ=]0,L] (7.3)
dx? B , e '
u(x) = 0, x=0,
u(x) = 0, x=

We refer to this model problem as MP 1-A. Next, we introduc MP 1-B as the model prob-
lem where Sommerfeld radiation conditions have been implemented instead of Dirichlet
conditions.

MP 1-B

—T—kzu(x) = 6(x—x), xeQ=Jo,1], (7.4)

=\
~—~
R

\
=
=
R

|

|
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DISCRETIZATION
For both model problems, discretization using second order finite differences with stepsize
h =1 leads to

—Uj1+2uj—ujp
h? -

kzuj =fiji=12,...,n.

The linear system can be formulated exclusively on the internal grid points due to the ho-
mogeneous Dirichlet boundary conditions. We obtain the following linear system and eigen-
values with indices j =1,2,...n

1
Au = S tridiag[—12 Kh* —1u=f,

M= %(Z—ZCOS(jﬂh))—kz. (7.5)

7.2.2. TWO- AND THREE-DIMENSIONAL CONSTANT WAVENUMBER MODEL
In order to investigate the scalability of the convergence in higher dimensions (Section 8.6),
we define MP 2 and MP 3 to be the 2-D and 3-D versions of the 1D model problem MP
1-A defined above Section 8.3.0.2. The discretization using second order finite differences
with a lexicographic ordering goes accordingly for higher dimensions. The resulting linear
system matrices are penta- and hepta-diagonal for 2D and 3D respectively.

7.2.3. MARMOUSI MODEL

The final test problem is a representation of an industrial problem and is widely referred to
as the 2D Marmousi Problem, which we denote by MP 4. We consider an adapted version
of the original Marmousi problem developed in [28]. The original domain has been trun-
cated to Q = [0,8192] x [0,2048] in order to allow for efficient geometric coarsening of the
discrete velocity profiles given that the domain remains a power of 2. The original velocity
c(x,y) is also adapted by letting 2587.5 < ¢ < 3325. We use the adjusted domain in order to
benchmark against the results from [28]. In the adjusted domain Q, we define

MP 4
—Au(x,y)—kz(x,y)u(x,y) = (5(x—4000,y—y/), (x,y)ch[Rz,

(%—ik(x,y)) u(xy) = 0, (xy)edq,

where n denotes the outward normal unit vector. The discretization has been performed us-
ing the same second order finite difference scheme. Note that we now have a non-constant

wavenumber k(x, y) = 26”(]; r;)q , where the frequency is given in Hertz.

7.3. LITERATURE OVERVIEW

For the Helmholtz equation in particular, the first strategy to consider a deflation precon-
ditioner was proposed in [27]. After this work, several subsequent works have studied the
combination of applying deflation and the CSL as a preconditioner for the Helmholtz equa-
tion, see [28-30]. Compared to the convergence performance of the CSLP, the inclusion of a
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deflation based preconditioner allowed for improvement and reduced the numbers of iter-
ations significantly. However, for very large wavenumbers and for 2D and 3D problems, the
near-zero eigenvalues kept reappearing. This in its turn was immediately translated into an
increased number of iterations to reach convergence.

Moreover, a distinction is made with respect to the two-level deflation operator. In practice,
the preconditioner P is adapted by considering P +yQ. The inclusion of the shift y ensures
that the coarse-grid solve with respect to E can be approximated, for example by consider-
ing a multi-level implementation [28, 81, 82] or using an iterative solver to obtain a solution
to the term containing E~'. When considering approximate inversion, y is generally either
set to 1 or the largest eigenvalue of the original coefficient matrix.

We mentioned previously that the deflated GMRES algorithm also includes a precondi-
tioner M, which is applied to further accelerate convergence. In the literature a distinc-
tion is made between 'first precondition, then deflate’ and first deflate, then precondition’.
Spectral analysis conducted in [29, 83] has shown that for the Helmholtz problem, the per-
formance is the same. It must be noted that in case of 'first deflate, then precondition),
the deflation preconditioner P should include yQ in order to ensure stability when inexact
solves for E~! are performed.

More recent preconditioners use polynomial smoothing techniques to accelerate conver-
gence [84]. A different approach can be found by using preconditioning techniques based
on domain decomposition methods applied to the corresponding (shifted) problem, which
is largely based on the work in [25]. These methods split the computational domain in sub-
domains and solve a local subproblem of smaller dimension using a direct method [85-91].
The performance of these preconditioners depends on the accuracy of the transmission
conditions, which currently is robust for constant wavenumber model problems [92, 93].
While this resulted in a reduced number of iterations, the number of iterations still mildly
grows with the constant wavenumber k.

7.3.1. EFFECT OF NON-NORMALITY

By assuming Dirichlet boundary conditions for our first model problem, we are able to sim-
plify the analysis and perform rigorous Fourier analysis, which shows that the new scheme
is able to align the near-zero eigenvalues of the fine- and coarse-grid coefficient matrix.
Having a higher-order approximation scheme for the deflation vectors enables us to reach
wavenumber independent convergence in 1D and close to wavenumber independent con-
vergence in 2D and 3D for very large wavenumbers. The difficulty in using Sommerfeld radi-
ation conditions is that the resulting coefficient matrix becomes complex and non-normal.
Therefore, there are no closed-form expressions for the eigenvalues. Additionally, it has
been noted that in case of non-normal matrices, spectral analysis becomes less meaningful
in order to assess convergence properties [94, 95]. If Ais normal, then the condition number
of the eigenvector matrix is one. In case of a non-normal diagonalizable matrix, the condi-
tion number of the eigenvector matrix is larger than one. As a result it has been shown that
arbitrary matrices can be created with arbitrary eigenvalues and right-hand sides which
give the same GMRES residual norms [94]. While this often has been interpreted as 'spec-
tral analysis for a non-normal matrix is insufficient’, the original authors also mentioned
that even for a matrix which is far from normal, GMRES can converge very well and the
eigenvalues can still primarily govern its convergence in some specific cases. For example
it may be the case that the eigenvector matrix is well conditioned, A is close to Hermitian
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despite having ill-conditioned eigenvectors or zero is outside the Field of Values (FOV) of
A. While the latter approach has received great attention in the past years to explain con-
vergence behavior of the Helmholtz equation, its use is very sensitive to having zero inside
the FOV, which often seems to be the case for indefinite systems [96]. A more recent and de-
tailed analysis showed that the dependence on the condition number of the eigenvectors is
often a large overestimation of the actual error [7]. In fact, it has been shown that for diago-
nalizable matrices, eigenvalues close to the origin indeed hamper GMRES-convergence and
GMRES-convergence does not explicitly depend on the condition number of the eigenvec-
tor matrix [10]. While the latter may be large, convergence is still predominantly governed
by the eigenvalues if the eigenvector matrix is not too far from unitary. Similarly for non-
diagonalizable matrices such as a highly non-normal single, plain Jordan block, GMRES-
convergence can still be strongly governed by an eigenvalue with large modulus [7, 10, 96—
98]. An important implication of this for a diagonalizable matrix is that convergence for
a non-normal A can behave as convergence for a normal A. While the literature does not
quantify terms as a 'small’ condition number or 'not too far from normality/unitary’ for this
particular application, there exist vast numerical evidence showing that clustering the spec-
trum leads to better GMRES-convergence. This corroborates the acceleration of GMRES-
convergence using deflation preconditioning techniques [11, 99-101]. In fact, in [101] the
authors state that "deflated GMRES can be effective even when the eigenvectors are poorly
defined .. and for highly non-normal matrices", where convergence is boosted after remov-
ing small (pseudo)eigenvalues. Therefore, in order to fully understand the efficiency of our
proposed deflation preconditioner, we start conducting spectral and convergence behavior
analysis of the proposed preconditioner for the normal case. We then provide numerical
evidence to investigate the performance of the preconditioner for non-normal problems.

7.4. INSCALABILITY AND SPECTRAL ANALYSIS

We now start shifting our focus towards the spectral analysis by studying the eigenvalues
of the DEF-operator without inclusion of CSLP. To study the eigenvalues, we use the an-
alytical derivations and expressions for the spectrum of the DEF-operator applied to the
coefficient matrix A from [99]. The authors have provided concise analytical expressions
for the eigenvalues of the standard two-level DEF-operator. We use these expressions to
perform a preliminary analysis of the spectrum.

7.4.1. SPECTRAL ANALYSIS
For j =1,2,..., %, the eigenvalues of the system PA are given by

L
Ai(a) cos(jng)4> i (1 CATi(A) sin(jﬂ%)“) |

M(PA)=1/(4) (1 O A(Aw) A (Azp)

(7.6)

Inspection of Eq. (7.6) leads to the observation that the eigenvalues of the deflation operator
P are given by

A (P) = (1— Al (4)cos(jr3)" Cos(j”g)4> + (1— A Sin(j”g)4> . @.7)

A (Azp) M (Azp)
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By introducing the following coefficients, we can rewrite Eq. (7.6) as

; ( AJ’(A)cos(jng)‘l) AT (A)sin(jml)
a’ = — =

’

/U(Agh) Aj(AZh)
. AT (A)sin(jml)* M (A)cos(jmh)*
pi—(1- : _ ;
M (Azn) A (Azp)
M (PA) =M (A)al + A1 (A)pI, j = 1,2,...,% (7.8)

Since the sine and cosine terms are always strictly less than 1, the eigenvalues of the sys-
tem PA are essentially the product of eigenvalues of A multiplied by the scaled ratio of the
eigenvalues of A and A,j,. In order to simplify the analysis, we therefore proceed by analyz-
ing

A (4)

n
—\,j=12,...,—, 7.9
(o) |7 2 79

p-|

which provides an upperbound to the previously defined coefficients. It is easy to see that
the eigenvalues of PA will approach the origin if the factor #/ becomes small for some j.
If we define the constant c to be the magnitude of the largest eigenvalue of A, then we can
scale the eigenvalues of PA by ¢ and compare them to the eigenvalues of P M~ A and ,Bj .

Figure7.1: kh = 0.625, k = 500. Left: eigenvalues of PA scaled by magnitude of the largest eigenvalue (¢).
Center: Ratio between eigenvalues of the fine-grid and coarse-grid operator (P from equation Eq. (7.9)).
Right: real part of eigenvalues P Ty=1a.
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In Fig. 7.1 we have plotted a selected range of eigenvalues of PA scaled by ¢ and compared
these to the eigenvalues of PTM ™A (right) and $/ (center). On the x-axis we have the
relevant indices j corresponding to the respective close to zero eigenvalues. The figure pro-
vides affirmative support for our remark that the behaviour of the eigenvalues of both PA
and PT M~ A are, apart from a scaling factor, determined by the behaviour of 4/ as all three
figures exhibit the same shape and pattern. B’ approaches the origin whenever ‘/U (A)| be-
comes small, whichis at j = jyin,;, (marker). If jymin n # jmin,2k @a0d jmin2n < jmin,h, then we
are dividing a relatively small number |A/mink (A)| by a larger number | A/mini (A, )|, which
brings the resulting fraction closer to zero. The further apart juin, » and jmin,25 are, the closer
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to zero the resulting term will be. The outlier appointed by the marker, is the result of exactly
the opposite effect. At j = jmin2n, A (Agh)| will be at its smallest, while the magnitude of
’/If (A)! will still be large. In similar manner, we get a large term, which explains the typical
outliers we often encounter when the spectra of the operators PA and P M~ A are plotted.

7.4.2. EIGENVECTOR PERTURBATIONS

The next question which needs to be answered is what is causing the near-zero eigenval-
ues of the coarse grid operator to shift. It has been reported that interpolating coarse-grid
functions always introduces high-frequency modes, which can be interpreted as an aliasing
phenomenon [102], [35]. These high-frequency modes are the main cause for interpolation
errors [102]. The effect becomes more severe as index j increases. If the high-frequency
eigenmodes are activated by interpolating from a coarse to a fine grid, then the coarse-grid
eigenvectors will not be approximated accurately. This affects the eigenvalues of A,j, as Ay,
is obtained by first restricting the fine-grid elements onto the coarse-grid and then transfer-
ring the result back onto the fine-grid.

To measure the extent of this effect, we make use of Lemma 11.2 and Corollary 11.2.

Lemma 11.2: Intergrid Transfer - I

Let B be the 5 x 5 matrix given by B = Z Tz, where Z = Izhh is the prolongation
matrix and let jnyin ; be the index of smallest eigenvalue of A in terms of magnitude.
Then there exist a constant Cj, depending on & such that

Bylmin — ¢, pmin and lim ¢, = AJmin (B) = 2,
by hlsy ho h ( )

where vi is the j—th eigenvector on the fine-grid of A and A/ (B) is the j—th eigen-
value of B.

Proof. We use the method from [35]. For i =1,2,...n we have

[ZTU;l‘“i“]i = = (sin((2i — 1) A7t jmin ) + 28I0(2 AT jimin, p) + SIN((2i + 1) AT jimin,n)) >

— DN =

=5 (28in(2i A7t jimin,p) + 2 c08(2i A7t jmin,;)) SIN(2 AT jimin n),
= (14 coS(jmin,nth)) sin(2i AT jimin,h ),
= Ci(h)vr.

Now taking the limit as & goes to zero of the coefficient C;, gives limy_,qC;(h) = 2. For
i=1,2,...,n we distinguish two cases; i is odd and i is even. We start with the first case

(i — 1) A7 jmin,n (i+ 1)h”fmin,h)>

- 1
7 Jmin] ., _ : + si
[Zvy)" ] > <s1n( > ) + sin(

2
1, .. . . .
=3 (sin((i — 1) A7t jmin,p) + sin((i + 1) A% jiminn)) »

= COS(jmin,n 1) sin(i AT jinin,j)»

= Cy(R)vim.
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Again, taking the limit as % goes to zero of the coefficient C, (k) gives limj,_,o C2(h) = 1. For
ihnjmin,h
—z )

Jmin

= sin( = Sin(i A7t jimin,p) = v{;mi“. We can combine both
results to obtain ng‘;l““ = ZTng';l““ =ZT(Cy(h) v{l‘“‘“) = C1(h)Ca(h) vg‘,;““ = AJminn (B) vg‘;l““,
where AJminn (B) represents the perturbed eigenvalue of B at index jmin, ; due to the approx-
imation error.
Taking the limit as & goes to zero provides limy, o AJmini (B) = lim, o Cy (h)Ca(h) = 2
AJmin,h (B) = AJmin2h (B).

i is even, we obtain Zv

Lemma 11.2 shows that in the absence of interpolation errors, the location of the smallest
eigenvalue of B, which we denote by jmin 25, is located at exactly index jmin p, i.€. jminn =
jmin,Zh-

Corollary 11.2: Coarse-grid kernel

Let Ay, be the % x 2 matrix given by Ay, = ZT AZ, where Z = Izhh is the prolongation
matrix and let jnn ;, be the index of smallest eigenvalue of A in terms of magnitude.
Then

Aon, vé‘l;l"lin — ChAjmin’h (A) ngin’ and }lllizlo C,= Ajmin,h (B)

where é , is the j—th eigenvector on the coarse-grid of A, and A (Ayp) is the j—th
eigenvalue of Ayy,.

Proof. Using Lemma 11.2 and its proof, we have

AZh Uér}rllin _ ZTAZ) U]min

2h
—7z7A (Zug‘;j“),
= ZTA(Co(R)v)m™),
=Ci(h)z" Av]mr,
= Cy (h)Z" Admin (A) plmin,

— Admini (4)Cy (k) (27w,

= Admini (A)Cy (R) C(R) vl
Using Lemma 11.2 it is easy to see that after taking the limit the eigenvalues of A,j, can be
written as a product of the eigenvalues of A and the eigenvalues of B. [ |

From Lemma 11.2 and Corollary 11.2 it is clear that for juin ;,, which is within the smooth-
frequency range, the near-kernel coarse-grid eigenvalues A/min2/ ( A,},) are equal to the prod-
uct of AJmini ( A) and AJmin2h (B) = AJmin(B) when h goes to zero. Consequently, in the lim-
iting case the coarse-grid kernel and the fine-grid kernel will be aligned proportionally and
both A and A,j, will reach its smallest absolute eigenvalues at the same index jmin.
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Recall that the behavior of the eigenvalues of PA can be represented by

M (4)

forj=1,2 n
M (Agy)| Ty

p-|

where we found that this ratio becomes very small by a mismatch of the smallest absolute
eigenvalue of A and Ay, respectively. As in the limit, A/min/( Ayp,) = Adming (B) AJmink (Ap),
perturbations up to A/min’( B) will propagate throughout the low-frequency part of the spec-
trum for j € {1,2,..., jminx}, eventually resulting in the errors related to A/ (Ayy,) for j =

jmin,h-

7.4.3. PROJECTION ERROR

To measure to what extent these perturbations to A(B) lead to errors, we examine the pro-
jection error to quantify the error we make when projecting the eigenvector onto the sub-
space spanned by the column of Z.

Theorem 12: Projection Error - I

Let X be the deflation space spanned by column vectors of Z and let the eigenvector
corresponding to the smallest eigenvalue of A be denoted by v{l“““ ¢ X. LetP =
ZB~'ZT with B = ZT Z be the orthogonal projector onto X. Then the projection
error E is given by

E — H(I* P) vilmin HZ — v;;minTU]];min _ v]]:lminTZBflva]]:lmin.

Proof. By idempotency of the orthogonal projector, we have

P2 i T i
(1= P)ojon = ojon (1 P)(1 - P,
i T P
— vl{lmln (I—P) v]],lmm,

jmin T Ujmin _ Ujmin TZB—I ZT U/];min‘

=V h h

We proceed by rewriting the projection error in terms of a perturbation to the eigenvalues
of the operator B.
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Corollary 12.1: Projection Error - IT

Let X be the deflation space spanned by the column vectors of Z and let the eigen-
vector corresponding to the smallest eigenvalue of A be denoted by v{;“i“ ¢ X. Let
P =2ZB~'zT with B = Z" Z be the orthogonal projector onto X. Then the projec-
tion error E is given by

Lo Admini (B) — § o
E= H(I_P)yilmmH _ (1 ( ) 1) v]mm U]mm’

A Jmin, i (B) — 0> h h
. T . . T .
Jmin * % ,,/min Jmin "~ $,,/min
P v Bv P v Bv
where §; = A/mini (B) — L——1 and §, = A/mini(B) — ——& h |
V;lmm Ui'mm V;lmm Z(BflzTyilmm)

Proof. Using Lemma 11.2 and its proof we know that in the limit Z” v;;mi“ is an eigenvector
of B. We would thus have

i 2 i T . i T i
”(I—P) U]],lmm H — v]mm y]mm _ U]mm Z (B_IZTU;lmln) ,

h h h
Jmi T T jmi
o pmin* 7 7T, Jmin
— v]mm y]mm _"h "™ "h
h h //ijin,h (B)
) ) vjmin T ijmin
jmi T jmi h h
__ ,,Jmin min
= Vh Uh —_——
A]min,h (B)

Note that B has dimension 7 x n and has % eigenvalues equal to the eigenvalues of B and

jmin

3 zero eigenvalues. By Lemma 11.2 and its proof, we also have that v;™ is an eigenvector
of B, which leads to

i T . .

J . A\
I—P Jmin 2 li Jimin T jomin thm (A]mxn,h (B) Uhmm)
”( : )Vh H ) hln%) Uh Uh - Ajmin,h (B)

=0. (7.10)

Now, in the non-limiting case, we have two sources of errors; the factor containing AJmin b (B)
both in the numerator and denominator will be subjected to perturbations. Starting with
the denominator, if welet A, . 5 (B) denote the perturbed eigenvalue of B, we have

T, Jmin T, Jmin
T - c T Z'v LT Z'v
Uilmm 7 (B_IZTU]],me) _ v{lmm 7| = h - Vimm A —h .
/ljmin;h (B) AJminh (B)

Reordering leads to

B vjmin TzzT Ujrnin Ujmin TB Ujmin
h h h h
Afminvh(B) = . T . = . T . .
Vimin 7 (B—IZTUilmin> U,{Lmin 7 (B—lva{lmin)
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The perturbation to A/min’ (B) can now be written as

FT
]mm ) ]mm
vy th

63 = A (B) — L, (B) = A (B) — — —

v;lmin VA <B—1 ZT U]]qmin)
For the numerator, if we let 7 denote the error, i.e. n = B v{l‘““‘ — Admin (B) 1/{1"““, then B v;;mi" =
Aldmini(B) v;lmi“ + 1 and substitution gives

T . T .
Jmin —1 T _  Jmin\ _ ., Jmin~ A ,,Jmin
Ljnann(B) V) Z(B AT, )*Vh Boimn,

jmin | imi imin
_ U;lrnm (A]mm,h (B) Uil + 7]) .

Jmin r
Vh n

Jmin
Vn

Letting 6, = — +——, we obtain

Jmin
Vh

1 min - fmin jmin 'minT fmin
Rjnnn(B)uf™" 2 (B2 27 pfrin ) = (Linins (B) — 61) wfrin” .

Finally, we now rewrite the projection error E in terms of perturbations to the eigenvalues
of B;

P2 i T i T _ jimin
”(I_ P) V}]{[mm H — Uilmln vilzmm _ v;lmm 7 (B IZTV]],I ) ,
= 1— W Ujminijmin’
Admini (B) — &, h h

which gives the statement. |

POLLUTION ERROR
We can proof an additional statement with respect to the pollution error. We know that

the pollution error is minimized when we keep the step size h = k’%, see Chapter 5 Sec-
tion 5.3.1. We can study the behavior of the projection error by letting k go to infinity.

Corollary 12.2: Pollution error

Let h = k~2. Let X be the deflation space spanned by column vectors of Z and let
the eigenvector corresponding to the smallest eigenvalue of A be denoted by vil"““ ¢

X. Let P = ZB~'ZT with B = Z" Z be the orthogonal projector onto X. Then the
projection error E goes to zero

2
E= lim |[(I-P)v!™| =o0.
Jm I( o™ |

Proof. Using Lemma 11.2 and Corollary 11.2 we have
[z v;lmi“]l. = (1+¢0S jminnh)vir™,

Jmin

. 7
(1+¢08 jminh—5 )V
k2

I
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Now taking k — oo gives limg o0 [Z7 ;. ni] =2 vgr}‘;‘i". Similarly,

[Z(’bjmi"'Zh]i = €0S(jmin2nh) U;zmin,
. T P
= COS(]min,h—s)l/ilmm

k2

Jmin

Again, taking k — oo gives im0 [Z¢j,,;,.20i] = v},

sions into the projection error E gives

. Now, substituting these expres-

E = len;O H(I* P) U]{;min | ‘% _ kli)né() y{;minTU;;min o y;;min TZ(Bflvaimin)

— i jminT jmin_ jminT —1 jmin
= lim (1/ v, v,"" " ZB (20, )),

k—oo \
_ N Jmin T, Jmin o jmin T —1, Jmin
7/61133;0 (vh v, 20, Z(B” vy, )),
— lim U]mm T U]mm - U]mm T Zv]mm ,
k—0 h h /'l]min,h(B) h ( 2h )
= lim V]mm T v]mm S v]mm T V]mm )
k—00 h h A Jmin,h (B) h h
) 2
=lm (1—-—— ).
k—00 AJmin, i (B)

We know from Corollary 11.2 that A/min (B) — 2 when h goes to zero. And thus we obtain the
statement. |

Corollary 12.1 reveals that the projection error due to the inaccurate approximations of the
eigenvectors can be represented by deviations from A/min’(B). In Table 7.1 we present the
projection error for various k. The results illustrate that the projection error increases lin-
early with k. Along with the projection error, the misalignment between jmin,;, and jmin,2n
increases, shifting the near-zero eigenvalue of A and A,j,. If we let kh = 0.3125, the projec-
tion error is reduced. However, already for k = 1000, the error regains magnitude, which
explains why, despite resorting to a finer grid, the near-zero eigenvalues reappear when
k increases. The results for k®h? = 1 are in line with Corollary 12.2. As the step-size h
gets smaller, the error of the interpolation and restriction operations from the fine to the
coarse grid and vice versa reduces. This explains why the projection error decreases as the
wavenumber k increases. This can also be noticed from the last two columns of Table 7.1.
Note that the location of the smallest eigenvalue in terms of magnitude of A and A,j, are
always located at the same index.
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Table 7.1: Projection Error for v;lmi“ for various values of k. jin ;, and jiin 25, denote
the index for the smallest absolute eigenvalue of A and Ay}, respectively.

k E jmin,h jmin,Zh E jmin,h jmin,Zh E jmin,h jmin,zh
kh =0.625 kh=0.3125 Bhr=1
10 0.0672 3 3 0.0077 3 3 0.0077 3 3
50 0.4409 16 15 0.0503 16 16 0.0045 16 16
100 0.8818 32 31 0.0503 32 32 0.0032 32 32

500 4.670 162 155 0.5031 162 158 0.0013 162 162
1000 9.2941 324 310 1.0062 324 316 0.0009 324 324

INSCALABILITY
In Section Section 7.4 we have shown that the spectrum of PA and PM ! A is (apart from a
scaling factor) equivalent to

A (A)

—1,j=L2,...,
A (Azp)

NS

p-|

From Lemma 11.2 and Corollary 11.2 we additionally found that in the limit near j = jyin 5
we can express the eigenvalues of the coarse-grid operator A,j, in terms of A/min/i(B) by
Admint( Ay} = AJmini ( A) AJmins(B). Thus in the vicinity of the smallest eigenvalue, we can
write

M(A)
A (Azp)

1
= /U(B)' (7.11)

p-|

Corollary 12.1 reflects that errors in projecting the eigenvectors onto the coarse-grid lead to
errors in the eigenvalues of the operator B. These errors accumulate and increase as index j
increases, due to the eigenvectors becoming more oscillatory. If we account for these errors,
then Eq. (7.11) becomes ﬁj = % = m, for some perturbed A (B). These perturba-
tions to the eigenvalues of B cause inaccurate scaling of the eigenvalues of A, eventually
leading to the smallest eigenvalue of Ay, being located at a different index jmin2n # jmin,h-
In Fig. 7.3(a) and Fig. 7.3(b) we have plotted the eigenvalues of B and the ratio between
the eigenvalues of A, and A according to equation Eq. (7.11). Note that the latter essen-
tially represents the perturbed A/ (B) due to errors accumulated during prolongating and
restricting the eigenvectors of A. It can be noted that as 7 becomes smaller, the ratio slowly
converges to AJ (B). This observation is also in line with the projection error decreasing.
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Figure 7.2: k = 50. Plot of the ratio between the fine-grid and coarse-grid eigenvalues (equation
(Eq. (7.11))) and the eigenvalues of B. jimin, p = 16 and jmin 2, = 15 for kh = 0.825. For kh =0.01,

jmin,h = jmin,Zh =16.
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7.5. HIGHER-ORDER DEFLATION

In this section we start defining the higher order approximation techniques to construct the
deflation space. We start by with a general representation of the linear interpolation scheme
and work our way up towards higher-order schemes.

7.5.1. QUADRATIC APPROXIMATION
Recall that the grid transfer functions upy, = [Uap,,..., Uz, | from Qy, to the fine grid Q,
using standard linear interpolation are given by

I Qo — Qpy on — 1Y Uy, (7.12)

such that
[u2n]i/n if i is even,

e i=1,...,n—1 (7.13)
% <[M2h](,;1)/2 + [uzh](iﬂ)/z) if i is odd,

A closer look reveals that the current transfer functions are only reinforced at the odd com-
ponents, leaving the even components unchanged. In fact, these components are mapped
to alinear combination of their fine-grid counterparts vil and a complimentary mode UZ+ 1=

with first order accuracy [102].

Bézier CURVES

A more general representation of the linear interpolation operator for the even components
can be given by using rational Bézier curves, which are defined in Definition 3, Definition 4
and Definition 5. The use of these curves within the context of multigrid methods has been
studied in [103] and [104]. Using these vectors as vectors for the input of the prolongation
and restriction matrices in a multigrid setting is referred to as a monotone multigrid method.
The monotonicity comes from the construction of the coarse-grid approximations, which
ensures that the coarse-grid functions approximate the fine-grid functions monotonically
[104], [105]. The higher order approximation schemes are defined in Definition 6.
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Definition 3 (Bézier curve). A Bézier curve of degree n is a parametric curve defined by

n
B(1) = Z bjn(t)Pj, 0<t<1, wherethepolynomials
Jj=0

n . .
bjn(t) = (j) 1-0""1, j=0,1,...,n,
are known as the Bernstein basis polynomials of order n. The points P; are called control

points for the Bézier curve.

Definition 4 (Rational Bézier curve). A rational Bézier curve of degree n with control
points Py, Py, ..., P, and scalar weights wy, wy, ..., w, is defined as

n
2 wibjn(t)P;
]=

cn) =
Z w]'bj,n(t)
j=0

Definition 5 (Linear Interpolation). Let [uzp](j_1)/2 and [uzp](j41)/2 be the end points
within a component span defined on the coarse grid. Then the prolongation scheme for the
even nodes can be characterized by a Rational Bézier curve of degree 1 with polynomials
b()yl(t) =1—t,
bl,l ( I) =1,

whenever j is odd by taking the weights wy = wy =1 and t = % Note that in case wy = wy
and non-rational we obtain the original Bézier curve.

1 . +(1-1 .
C(l) _ 2[u2h](] l)/12 ( ?)[uzh](ﬁ-l)/z, (714)
2 3+(1-3)
1
=3 ([uzh](jq)/z + [Uzh](j+1)/2> . (7.15)

When j is even, we take the middle component [uyp,] j/2» Which itself gets mapped onto the
fine grid.

For large k, the prolongation operator working on the even components is not sufficiently
accurate to map the near kernels to adjacent modes on Qj; and Qj. Consequently, we
wish to find a higher order approximation scheme, which takes the even components into
account. We thus consider a quadratic rational Bézier curve in order to find appropriate
coefficients to yield a higher order approximation of the fine-grid functions by the coarse
grid functions.

Definition 6 (Quadratic Approximation). Let[uzp](j_2)/» and[uzp](j1.2) /2, be theend points
within a component span defined on the coarse grid. Then the prolongation operator can be
characterized by a Rational Bézier curve of degree 2 with polynomials

l’)(),z(t) = (1 — l)z,
blyz(f) = 2[’(1 — t),
bg]g(l’) = tz,
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and control point [uyp] j/2» Whenever j is even. Because we wish to add more weight to the
center value, we take weights wy = wp = %, wy = % andt= % to obtain

3 (1= 0)*[uzp] j—1 + 320(1 = 1) [uzn]j + 3 (£)*[u2n] j+1
%(1—t)2+§2t(1—t)+l(t)2
3 (1—=3)%[u2n]j—1+ 5 (2)(3) (1 — ) [2n]j + 5(3)?[u2n] j1
3(1=32+32)(3)A-3)+3(3)
%[uzh]j—1+?1[u2h]j+%[ Upp]j+1
1
([uan]j—1+6[u2n]j + [u2n]j+1)- (7.16)

C(r) =

® |~

When j isodd, [uzn](j—1) /> and[uzp](j+1)/2 have an even component and we are in the same
scenario as is the case with linear interpolation.

7.5.2. ADAPTED DEFLATION PRECONDITIONER
Using these higher-order approximations, we redefine the prolongation and restriction op-
erator which are used to construct the deflation preconditioner P. We start by noting that
the new restriction and prolongation operators become

1 a6l e+ i i1 s even,
Izhh [uzn]; = 8 ([uzh]( 2)/2 T 6[t2n] (i) /2 + [12n] +2)/2) 1. 1.1.s even , 717
[ti2n](i—1)/2 + [uzh](i+1)/z) if i is odd,

fori=1,...,n—1and

1
1" [un); = 3 ([”h](Zi—z) +4lun](2i1) +6[unl iy +4[unl 2igr) + [”h](2i+z))’

fori=1,...,5.

BLOCK-DIAGONALIZATION

Using the new matrices Izhh and [ }Zlh, we now construct similar analytical expressions for the
eigenvalues of Ay;, PA and PT M~ A, where we follow the same approach as [102], [35] and
[99]. Here, the basis consisting of eigenvectors is re-ordered and the projection operator P
is block-diagonalized. This allows thorough spectral analysis of each eigenvalue of PA for
MP 1-A as each block now contains the non-zero analytical eigenvalues. We therefore start
by following a similar approach with respect to the block-diagonalization by reordering the
basis consisting of the eigenvectors as follows

_ 1 (nt)-1 o (n+1)-2 3
V—{vh,vh U Uy e Vg U

(-1,

Here the fine-grid eigenvector are given by vqu = sin(jnh) and the coarse-grid eigenvec-
tors are obtained by substituting 2/ for h. The prolongation operator maps the coarse-grid
eigenvectors for indices i, j = 1,2,... 5 to

(220} = é [sin((i —2)/2) jn2h) + 6sin((i)/2) jn2h) +sin((i +2)/2) jr2h)],

1 . 31 . ..
= [4_1 cos(2jmh) + 4_1] sin(ijnh),
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for i is even and

i1

[12"v),]] = g lasin((i =1)/2) jr2h) +4sin((i +1)/2) jn2h)],
= [cos(jmh)]sin(ijnh),

for i is odd. With respect to the remaining part of the index set containing j, we use that

[”Z+l_j]i — —(~1)'sin(ijzh), (7.18)

i=12,...n—1land j=1,2,...

NS

Note that Eq. (7.18) is only positive when i is odd. Consequently for even i such that i €
{g,...,n— 1} is even, we obtain

[12h vp]] = = [—sin((i —2)/2) jm2h) — 6sin((i)/2) jm2h) — sin((i +2)/2) j2h)],

®© |~

1 3
= [_4_1 cos(2jmh)— 4_1] sin(ijmh),
whereas for i is odd, we now have

[120,]) = % [4sin((i —1)/2) ju2h) + dsin((i +1)/2) jn2h)],

= [cos(jmh)]sin(ijnh).

With respect to our basis, we therefore obtain the following 2 x 1 block for the prolongation
operator

. [cos(jmh)+ tcos(2jmh)+3
(123} = [cos(jnh) - %cos(Zjnh) - %] :

Similarly, the restriction operator is defined by taking [Izhh]f " and thus we obtain a 1 x 2
block. For ease of notation, we now define

’

; 1
v/ =cos(jmh)+ n cos(2jmh) +

B w

; 1
v" 1) = cos(jmh) — i cos(2jmh) —

Using these expressions, we now compute the eigenvalue of the Galerkin coarse grid oper-
ator, which is given by the 1 x 1 diagonal block

M (Agp) = [V ALY = (1) 10 () + (" 1) 2410 (4), 7.19)

In order to obtain the eigenvalues of PA, we have to compute the 2 x 2 diagonal blocks of
the projection operator P first. Recall that P is defined by

. Wi i L i
Pl =1— (1)) (A],) "1 (1" Al
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We thus obtain the following block system

[ (v))? vl t1—i ;
pi |V UGm Wy M@ 0
gl A A 5 )l B VA STV &
- &
M (Azp) A (Azn)

_ j B (vj)z ) n+l— ] (V]UVH—I ])
Y- ty) 7 e
j anl—j,,j) nl—j ( (e )
A(4) ( M (Azp) A (42 T (Ag)
From here, we retrieve the eigenvalues of PA by multiplying Eq. (7.20) again with the 2 x 2
diagonal block containing the eigenvalues of A with respect to index j on our defined basis.

W2 (1- L) i) (gt
j o [ ynH1=iyi nl—j ) (v H1=7)2 . (7.21)
Wy (Smg) @ @r (- Segt)

(7.20)

[PA)) =

Similarly, the eigenvalues of PT M~! A are obtained by simply multiplying Eq. (7.20) with
the 2 x 2 block containing the eigenvalues of M~! A instead of A and computing the trace.
This operation leads to the following analytical expressions for the eigenvalues of PTM~! A
forj=12,...,%

AM(PTMtA) =

(/U(A))Z (l/j)Z (/1”+1_j(A))2 (Un+1—j)2
/ (1_ /U(Azh)> * A (M) (1_ A (Agp) ) . (7.22)

Using Eq. (8.26), we proceed with the spectral analysis of the DEF-preconditioner for MP
1-A.

7.5.3. SPECTRAL ANALYSIS

In order to keep track of both (original and adapted) deflation based preconditioned sys-
tems, we use the ~-notation to denote the adapted system. We now compare the spectrum
of the DEF + CSL preconditioned matrix (P” M~! A), with the adapted Deflation + CSL pre-
condtioned matrix (P” M~! A) for MP 1-A. In Fig. 7.3 we have plotted the spectrum of both
PTM~! A (dot marker) and PT M~! A (diamond marker) for very large wavenumbers. Start-
ing with the results for kh = 0.625, we note that incorporating the new deflation scheme
leads to a remarkable reduction in the near-zero eigenvalues. Compared to the original
DEF-scheme, the spectrum of the adapted scheme is more densely located near the point
(1,0). As a result, the spectrum of the adapted scheme has shorter tails. For example, for
k = 103, there are almost no near-zero eigenvalues. However, as k increases to 10%, we see
the near-zero eigenvalues reappearing. If we switch to a finer grid using kh = 0.3125 in
Fig. 7.3 (b), we observe an even greater improvement. For k = 10° a few eigenvalues are
slightly moving towards the origin, however these results are negligible compared to the
magnitude of the wavenumber. Table 7.2 contains the projection error according to Corol-
lary 12.1 for both schemes. The projection error for the new scheme is reduced significantly.
However, as k increases we observe that the projection error increases accordingly, which is
in line with the spectral analysis.
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Table 7.2: Projection error for the old scheme E and the

adapted scheme E.
k E E E E
kh=0.625 kh=0.3125

10! 0.0672 0.0049 0.0077 0.0006
10? 0.8818 0.0154 0.1006 0.0008
103 9.2941 0.1163 1.0062 0.0014
10* 92.5772 1.1021 10.0113 0.007
10° 926.135 10.9784 100.1382  0.0635
10° 9261.7129 109.7413 1001.3818 0.6282

Figure 7.3: Eigenvalues of PTM~1A and PTM~1A. The top row contains the spectrum of
PTM=14 and PTM~1A for kh = 0.625. The bottom row contains the eigenvalues for kh =

0.3125.
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7.5.4. PARAMETER SENSITIVITY

We have seen that for very large k such as k = 105, the adapted scheme using P still has a
small number of near-zero eigenvalues. This result is supported by the increasing projec-
tion error for kh = 0.625 (see Table 7.2), One explanation is that for these large wavenum-
bers, the low-frequency eigenmode corresponding to jimin  for A and jiin 2 for Ay, are
still very oscillatory vectors. Furthermore, apart from these eigenmodes themselves being
relatively oscillatory, the high-frequency modes which get activated are again a source for
approximation errors when prolonging the coarse-grid eigenvectors. Necessarily, at some
point, the scheme based on the adapted deflation vectors will again suffer from accumula-
tion errors as their approximation power reduces when k increases.

One of the characteristics of Bézier curves implies that at systematic intervals some dis-
continuities appear as sharp corners at certain points [106]. If the eigenvectors become
oscillatory due to the wavenumber being very large, then keeping the grid resolution con-
stant, these discontinuities become a source of approximation error. Instead of diverting to
higher-order approximation schemes, the use of rational Bézier curves allow simple mod-
ifications which can alter the shape and movement of the utilized curve segments. In fact,
the weights of the rational Bézier curve are shape parameters, which allow control over the
curve segments. For example, increasing the weight corresponding to a control point forces
the curvature to move more closely and sharply to that control point. Decreasing the weight
of a control point, on the other hand, results in the curve flattening and expanding more
towards its endpoints. In our case, the quadratic approximation using the rational Bézier
curve has one control point per segment. This would lead to the following redefinition

(% [tan) (i) /o + (§ =€) [u2n] iy 2 + 5 [uZh](i+2)/2> if i is even,

1, Luan]; = 1 o
3 ([MZh](i—l)/z + [u2h](i+1)/2) if i is odd,
fori=1,...,n—1, and € > 0 The new scheme alters the expressions for the eigenvalues of
PTM~1 A according to

. 1 3
) = cos(jmh)+ Zcos(Zjnh) + <Z —¢),

. 1 3
7" 1=1 = cos(jmh) — n cos(2jmh) — (Z —e).

Straightforward substitutions of the altered expressions for #/ and #**!~J into Eq. (7.21)
renders the analytical expressions for the eigenvalues of PT M~! A. The next question which
needs to be answered is, given a fixed k&, how do we find €? € should be chosen such that the
projection error E is minimized. In order to find this value, we can use two approaches. The
first approach is straightforward; our ultimate aim is to have the eigenvalue of 1/ (PT M1 A)
at index jmin,;, to be equal to 1. Recall from the proof of Corollary 11.2 that in the absence
of errors the eigenvalues of Ay; can be written as a product of the eigenvalues of A and the
eigenvalues of B. Thus, using Eq. (7.19), we can write

N (Agn) = [, ALY,
() M)+ () A @) = V(N (B). (.29
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Note that the sum of (vj)2 and (v”"’l_j)2 in expression Eq. (7.23) are exactly equal to
AJ(B). If we want Eq. (7.23) to hold at index Jjmin,» in the presence of errors, we need to
pick & such that (v"“_f)2 = 0, which is equivalent to

£=0.75—(cos(jmh)— icos(Zjnh)). (7.24)

This way the near-zero eigenvalue of A,j, will always be proportional to the near-zero eigen-
value of A. Fortunately, the eigenvalues of B containing the term € are independent of the
eigenvalues of A. Therefore, finding ¢ primarily depends on the approximation scheme
which determines the eigenvalues of B. An interesting observation is that € is completely
determined by the step-size & and therefore by the grid resolution kh.

We can take advantage of this k-independence, as it enables us to determine a £ without
having to account for the wavenumber. Also, once we find an £ which works for some k#,
then it will work for all k as long as k& remains constant. Thus, especially for practical ap-
plications of higher-dimensional problems, instead of computing the exact smallest eigen-
values of the fine- and coarse-grid operator, we can find the € by performing a grid search
for some small k. A similar strategy was used in [107] for the open cavity problem in order
to find the optimal parameter for a given k and a given paritition in the context of optimized
Schwarz methods (with overlap). There the best parameter was chosen to be the one which
resulted in the smallest GMRES residual. In our case, the best parameter ¢ is the one which
minimizes the projection error for some fixed h. Therefore, for MP 2 and MP 3, we use the
heuristic in Algorithm 9. This provides a practical alternative to computing the analytical
expressions for the eigenvalues of B.

Algorithm 9: Projection Error Minimizer

Initialization:
Initialize k small, v;™", £ = 0.0001, tol = 10~

forc=1,2,.mdo
Compute E, using cgg to construct Z

yl=2zTvlmn =Tz =777

By2 = yl, solve for y1 o> direct or iteratively
ECE() — v{lminTUilmin _ wy2

while E.., > rol do
Compute E(. ), and repeat until E(c+1)£ < tol

end

end

Update &:

Set & = ¢eg for some ¢ € [1,m].

We proceed by re-examining the spectrum of MP 1-A for k = 10° after introducing the
weight-parameter. We have plotted the eigenvalues for kh = 0.625 for € = 0.01906 (left),
€ =0.03 (center) and € = 0.05 (right) in Fig. 7.4. It immediately becomes apparent that us-
ing the right parameter to minimize the projection error completely shifts the spectrum.
Particularly, the left column contains the results where the optimal € has been used and it

can be noted that the spectrum stays clustered near (1,0) independent of the wavenumber
k.
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Figure 7.4: Eigenvalues of PTM~1A and PTM 1A using kh = 0.625 for various weight-parameters . The
wavenumber k has been set to 10°.
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In the next section, we provide numerical experiments with these parameters for MP 1-A in
order to test whether we obtain a reduced number of iterations as theorized.

7.6. NUMERICAL EXPERIMENTS

In this section, we examine the convergence behavior of the adapted solver using various
kh. Unless stated otherwise, we deploy the CSL preconditioner with (g, 82) = (1,1) as we
approximate the inverse of M using one V(1,1)-multigrid iteration. The tolerance level for
the relative residual has been set to 10~

7.6.1. ONE-DIMENSIONAL MODELS
We start by collecting the numerical results for the one-dimensional constant wavenumber
model problems using Dirichlet and Sommerfeld boundary conditions respectively.

MP1-A

For MP 1-A the results are presented in Table 7.3 and Table 7.4. Table 7.3 gives the num-
ber of iterations and Table 7.4 provides the projection error for increasing k. The numerical
results presented are in line with with the theoretical results from Section 7.4.2 and the spec-
tral analysis from Fig. 7.5. The consistently clustered spectrum near (1,0) is reflected in a
significant reduction in the number of iterations. On coarser levels, the number of itera-
tions is still constant yet higher. In particular, compare the 6 iterations for kh = 1 with the
5 iterations for kh = 0.825. Even for such a simple model problem as MP1-A, these results
present the first numerical evidence of obtaining true wavenumber independent conver-
gence for very high wavenumbers without having to resort to keeping the shift in the CSL
preconditioner small and inverting the preconditioner exactly.
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Figure 7.5: Eigenvalues for k = 108 of PTM~1 A and AT M1 A using various
kh. The weight-parameter € has been determined using equation Eq. (7.24).
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If we keep the grid resolution practical kh = C, where C € [0.3125, 1], we observe that, unlike
the previous deflation scheme using linear interpolation, the adapted scheme has an almost
constant projection error as the wavenumber increases Table 7.4. With respect to the pollu-
tion error, it is necessary to keep the grid resolution (k®h® ~ 1). The last column of Table 7.3
contains the number of iterations using (k*h? ~ 1). These results are in line with the the-
ory from Section 7.4.2, Corollary 12.2 and corroborate that an increasing wavenumber in
fact leads to a lower projection error (Table 7.4) and hence a decreasing number of itera-
tions (Table 7.3). This brings us to the final observation. The use of the weight-parameter
£ becomes redundant in case we let k>h? = 1. Recall that the weight-parameter is neces-
sary in order to capture the perturbations which arise in mapping the eigenvectors as the
wavenumber increases. Corollary 12.2 shows why this becomes unneccessary as the map-
pings naturally become more accurate as we let h go to zero.

Finally, compared to the CSL preconditioner whom shows k—independent convergence
behavior, the use of the APD-preconditioner could allow for more accurate solutions while
keeping the number of iterations constant and small. For example, one could use a higher-
order finite difference scheme, combined with a coarser grid resolution in order to solve
large scale problems more accurately without being penalized by an increased number of
iterations.
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Table 7.3: Number of GMRES-iterations for MP 1-A using the Adapted Preconditioned Deflation scheme APD(e).
€ has been determined using Eq. (7.24). APD(0) is the adapted deflation scheme without the projection error
minimizer €. The shift in CSLP has been set to (1,1) and the preconditioner has been inverted inexactly.

k  APD(0.1250) APD(0.0575) APD(0.01906) APD(0) APD(0.00125)  APD(0)

kh=1 kh=0.825 kh=0625 kh=0.625 kh=03125 Kkh?>=1
10! 2 3 4 4 3 4
102 6 5 4 4 3 4
10° 6 5 4 6 3 4
10* 6 5 4 12 3 4
10° 6 5 4 59 3 4
108 6 5 4 509 3 4
Table 7.4: Projection error for MP 1-A E(¢) for various kh. € has been determined
using Eq. (7.24).
k E(0.1250)  E(0.0575) E(0.01906) E(0.00125)
kh=1 kh=0.825 kh=0.625 kh=0.3125
10! 0.0127 0.0075 0.0031 0.0006
102 0.0233 0.0095 0.0036 0.0007
103 0.0245 0.0095 0.0038 0.0007
104 0.0246 0.0095 0.0038 0.0007
10° 0.0246 0.0095 0.0038 0.0007
108 0.0246 0.0095 0.0368 0.0007
MP1-B

Table 7.5 contains the results for MP1-B. We observe that including Sommerfeld radation
conditions does not lead to deviating conclusions. While the results of the RFA for MP1-A
are not analogously applicable to the case where we use Sommerfeld radiation conditions,
we have used the same values for € determined for MP1-A and observe that the convergence
behavior is very similar. This provides numerical evidence for the notion that the conver-
gence behavior for MP1-A and MP1-B are very similar and in both cases we obtain pure
wavenumber independent convergence.

Table 7.5: Number of GMRES-iterations for MP 1-B using APD(¢) and Sommerfeld radiation conditions. ¢ has
been determined using Eq. (7.24). The shift in CSLP has been set to (1,1) and has been inverted inexactly.

k  APD(0.1250) APD(0.0575) APD(0.01906) APD(0.00125) APD(0)

kh=1 kh=0.825 kh=0.625 kh=0.3125 k*h?2=1
107 2 3 5 4 5
102 8 6 5 4 5
108 8 6 5 4 5
10* 8 6 5 4 5
10° 8 6 5 4 5
108 8 6 5 4 5

7.6.2. TWO-DIMENSIONAL MODELS
In this section we perform numerical experiments for the two-dimensional model problem
using a constant wavenumber k and Dirichlet boundary conditions. The weight-parameter
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€ has been optimized using Algorithm 9.

MP 2

Table 7.6 contains the number of iterations for kh = 0.625. We start with the case where
we use the APD-scheme without using the weight-parameter €. In this case, the third col-
umn shows that we can solve for k = 1000 in 53 iterations. To see the effect of the defla-
tion technique without the influence of the CSL preconditioner, the fourth column contains
the number of iterations for the AD-scheme including the weight-parameter. Remarkably,
we can solve for k = 1000 in 18 iterations. Finally, combining both the weight-parameter
and the approximate inversion of the CSL preconditioner, it takes 9 iterations to solve for
k = 1000. If we would have inverted the CSL preconditioner exactly using a small shift to
compensate for the use of no weight-parameter, it would take the solver 8 iterations to solve
for k = 1000. These results are almost similar, but the use of the weight-parameter and
approximate inversion is less computationally expensive compared to exact inversion of
the CSL preconditioner. This is very promising as this implies that we can include a pow-
erful preconditioner without having to pay the price of exact inversion at the finest level.
While we do see a slight increase in the number of iterations throughout Table 7.6, these are
the lowest reported number of iterations for a sequential implementation using such high
wavenumbers. Without the use of the deflation preconditioner, CSLP-preconditioned GM-
RES would need 45 iterations to converge despite using a small shift of order k! = 1073,

Table 7.6: Number of iterations for MP 2 using kh = 0.625 using APD(¢). € has been opti-
mized using Algorithm 9. Approximate CSLP inversion using one V(1,1)-cycle. Exact inver-
sion includes the CSLP-shift (1, k~1). AD contains no CSL preconditioner.

k n? APD(0) AD(0.01906) APD(0.01906) | APD(0) CSLP
Approximate inversion Exact inversion

50 6400 4 13 5 3 9
100 25600 5 13 6 3 12
250 160000 10 13 6 5 20
500 640000 15 14 8 5 28
750 1440000 37 16 9 7 36
1000 2560000 53 18 9 8 45

We now repeat the same analysis for kh = 0.3125, with results reported in Table 7.7. Note
that in this case we do not include an adjusted weight coefficient parameter, i.e. we set
€ = 0. The inclusion of € may in particular be more useful when using coarser grids. The
reason behind this is that increasing the problem size already results in more accuracy and
faster convergence (see Corollary 12.2). We also compare the performance of the adapted
scheme with and without the inclusion of the CSL preconditioner. Results are reported in
Table 7.7. If we compare these results to the ones obtained from Table 7.6, we note that, with
the inclusion of the CSL preconditioner, increasing the problem size leads to faster conver-
gence as theorized. Two important remarks can be made with respect to letting kh = 0.3125.
First of all, in case we set € = 0, we go from 53 iterations for kh = 0.625 to 8 iterations for
kh = 0.3125 when k = 1000. However, once we include the weight-parameter (Table 7.6,
column 5), we obtain 9 iterations for kh = 0.625 and 8 iterations for kh = 0.3125 and the
convergence behavior becomes very similar irrespective of using a finer grid resolution.
Second of all, the number of iterations with and without the CSL preconditioner is almost
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the same for all reported values of k in Table 7.7. It may be argued that for fine grid res-
olutions, some computational time can be saved by excluding the CSL preconditioner as
we need one multigrid iteration to approximate the inverse. The numerical results from
the previous and current section show that there are plenty of optimization strategies to
exploit when it comes to balancing a small and fixed number of iterations and a fine-grid
resolution. The latter is equally important to obtain accurate solutions.

Table 7.7: Number of iterations for MP 2 using kh = 0.3125 using
APD(¢). Approximate CSLP inversion using one V(1,1)-cycle. AD
contains no CSL preconditioner.

k n? AD(0) APD(0)
Iterations Iterations
25 6400 4 4
50 25600 4 4
100 102400 3 4
250 640000 4 4
500 2560000 5 5
750 5760000 5 5
1000 10240000 7 8

MP 4

In this section we present the numerical results for the industrial two-dimensional Mar-
mousi problem (MP 4) (Section 7.2.3.1). Results are reported in Table 7.8 and Table 7.9.
Starting with Table 7.8 we implement no correction using € given that the grid for this model
problem has been resolved such that k& < 0.39 on average and the maximum wavenumber
is approximately 400. ' Table 7.8 contains the results for frequencies f = 1,10,20 and 40
using 10 grids points per wavelength for the largest wavenumber k. The results show that
even for this challenging problem, the APD-scheme leads to very satisfactory results. If we
compare the results between DEF (which uses linear interpolation) and APD, we note an
improved performance in terms of both metrics; solve time and iterations. For f = 1, the
number of iterations for APD are larger than DEE The latter method takes 6 iterations, while
the former takes 3 iterations, which is clearly reflected in the lower solve time. Once we start
increasing the frequency, we note that the APD scheme quickly catches up in terms of both
iterations and solve time. For example for f = 40, we obtain 5 iterations and a total solve
time of 111.78 seconds.

11f we use the dimensionless model we obtain a wavenumber of \/ %2 % 2048 x 8192 ~ 398.
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Table 7.8: Results for the Marmousi problem using 10 gpw. All solvers
are combined with the inexact inversion of the CSL preconditioner
using shifts (1,1). TL denotes two-level.

f DEF APD DEF APD
Iterations Solve Time (s)

1 3 6 1.72 4.08
10 16 5 7.30 3.94
20 31 5 77.34 19.85
40 77 5 1175.99 111.78

Table 7.9 repeats the same simulation without the use of the CSL preconditioner. We ob-
serve very similar behavior as compared to the results obtained for the constant wavenum-
ber problem (Table 7.6). Excluding the CSL preconditioner and solely using the deflation
preconditioner results in a constant number of iterations and a significant reduction in se-
quential solve time. If we use the old deflation preconditioner (DEF) based on the linear
interpolation scheme, then a similar effect can not be observed. For example for f = 40Hz,
we obtain 82 iterations versus 12 for the adapted scheme. These results provide a promising
basis for future research where the coarse-grid solve can be optimized and balanced with
respect to the number of iterations and time scalability of the overarching solver.

Table 7.9: Results for the Marmousi problem using 10 gpw using no
CSL preconditioner. TL denotes two-level.

f DEF APD DEF APD
Iterations Solve Time (s)

1 10 12 1.41 2.76
10 20 12 2.44 2.80

20 35 12 17.15 15.15

40 82 12 219.39 85.87

7.6.3. THREE-DIMENSIONAL MODELS

In this section we present some three-dimensional numerical results for MP 3. We have
used the same weight-parameter € from the two-dimensional test problem MP 2.

MP 3

From Table 7.10 we see that even without the weight-parameter ¢, the 3D-results show
promising features for scalability with respect to the number of iterations. These results
are in line with the previous results obtained for the one- and two-dimensional constant
wavenumber model. We similarly expect the importance of € to decrease along with kh.
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Table 7.10: Number of iterations for MP 3 using kh = 0.625. AD con-
tains no CSL preconditioner. APD contains the CSLP with shift (1,1),

which has been inverted inexactly.

k n3 APD(0)  APD(0.00125)
Iterations Iterations
5 512 4 4
10 4096 4 4
25 64000 5 4
50 512000 5 4
75 1728000 6 4
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7.7. CONCLUSION

We have shown that the near-zero eigenvalues for deflation based preconditioners are re-
lated to the near-kernel eigenmodes of the fine-grid operator A and coarse-grid opera-
tor Ayj, being misaligned. This effect can be attributed to the interpolation scheme not
being able to sufficiently approximate the transferring of the grid functions at very large
wavenumbers.

We analytically measure the effect of these errors on the construction of the projection pre-
conditioner by means of the projection error. The quality of the deflation vectors determine
whether the projection error dominates. To minimize the projection error, we proposed the
implementation of a higher order approximation scheme to construct the deflation vec-
tors. Incorporating a weight-parameter within the approximation scheme provides suffi-
cient counterbalance to mitigate the re-appearance of the near-zero eigenvalues. Two op-
tions are available for determining the weight-parameter. The first is to use the analytical
eigenvalues of B at the smallest index jnin,, and solve for €. This approach is straightfor-
ward to use as it primarily depends on the eigenvalues of B, which can be computed in-
dependently of the eigenvalues of A. The second approach is to use the projection error
minimizing algorithm, which finds the € which minimizes the error on average.

Even without adjusting the weight-parameter, the spectrum of the proposed operator is still
the most favourable compared to other preconditioning operators based on deflation. The
numerical results are in line with the theoretical results as the number of iterations for both
the one-, two- and three-dimensional constant wavenumber model problems are more or
less wavenumber independent. Numerical evidence furthermore supports the notion that
the proposed method also works for non-selfadjoint and heterogeneous problems, even
when the CSL preconditioner is excluded. The latter allows for a substantial speed up.
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8.1. MULTI-LEVEL DEFLATION METHODS

In the previous chapter, we discussed the two-level deflation preconditioner, which we de-
noted by ADP (Adapted Deflation Preconditioner). While the method resulted in close to
wavenumber independent convergence, it still relies on the exact solution on the second
level. Consequently, for the 3D model problem, we were only able to test up to k = 75 as
the memory requirement for the exact solve starts to dominate the numerical costs in 3D.
As the focus of this dissertation is on sequential methods, apart from using parallelization
techniques, another way to expand the reach of the preconditioner is to consider a multi-
level deflation method. This is essentially a recursive application of the two-level deflation
preconditioner from [78]. A natural question which arises is whether we can extend the
wavenumber independent convergence to a multi-level setting, thereby combining both
the gain in computational efficiency with our previous scalability results. The structure
of this chapter is as follows. We start by introducing our model problems in Section 8.3.
We then discuss the deflated Krylov methods and the multi-level algorithm in Section 8.4.
We proceed by extensively developing theory for the multi-level deflation operator in Sec-
tion 8.5. We perform Rigorous Fourier Analysis (RFA) by block-diagonalizing the resulting
operators and inspecting the spectral properties. Finally we present numerical results for
benchmark problems in Section 8.6.

8.2. LITERATURE OVERVIEW

A large branch within this research has focused on developing preconditioners, such as the
(Complex) Shifted Laplacian (CSL) [32, 33, 108, 109]. In order to apply the preconditioner,
one multigrid cycle is used to approximate its inverse. The latter serves as an alternative
to using multigrid as a stand-alone solver as the method is generally known to diverge for
the Helmholtz equation once coarser levels are reached [102]. Some works have focused
on obtaining a stand-alone multigrid solver [35, 110-112], with success for either practical
wavenumbers and/or one-dimensional model problems.

A recent and promising branch of research has combined its efforts towards precondition-
ing techniques based on domain decomposition methods applied to the corresponding
(shifted) problem [25]. These methods split the computational domain in subdomains and
solve a local subproblem of smaller dimension using a direct method [85, 87-90]. The per-
formance of these preconditioners depends on the accuracy of the transmission conditions,
which currently is robust for constant wavenumber model problems [92, 93]. While the do-
main decomposition preconditioners have resulted in a reduced number of iterations and
higher computational efficiency by exploiting parallelization strategies, the number of iter-
ations still grows with the wavenumber k.

As a result, some have studied the use of deflation techniques (combined with the CSL pre-
conditioner) in order to accelerate the convergence of the Krylov subspace method, which
we denote DEF [28-30]. Incorporating the deflation preconditioner has improved the con-
vergence, but taxed the efficiency in terms of memory and computational cost. For a two-
level deflation preconditioner, the direct solve on the second level takes up most of the com-
putational power and memory. Consequently, multi-level variants of the two-level method
have been proposed in order to counter this effect [27, 29]. A multi-level extension replaces
the direct solve in the two-level method by applying a similar two-level extension recur-
sively combined with an outer Flexible GMRES (FGMRES) solver. In both variants, however,
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the number of iterations still grows with the wavenumber k.

8.3. PROBLEM DEFINITION

We now continue by defining the model problem which we use to develop the theory. In
Section 8.6 we elaborate on more sophisticated model problems for numerical experimen-
tation purposes. For now, we start by focusing on a one-dimensional mathematical model
using a constant wavenumber k > 0, which we denote by MP 1-A.

MP 1-A

d’u(x)
dx?

—Kux) = 1, xeQ=(0,1), (8.1)

u(x) = 0, x=0,
u'(x) — iku(x)

|
L

x=1.

We refer to this model problem as MP 1-A. If we define h = %, where 7 is chosen according
tokh= 27”, where c is the number of grid points per wavelength, then discretization on the
unit interval using second order finite differences leads to

—Uj—1 +2uj7 Ujt1
hZ

szuj =fi,j=12,...,n

Lexicographic orderingleads to the following linear system and eigenvalues for MP 1-A with
indices j =1,2,...n

1
Au = S tridiag[—1 2 Kh* —1lu=f,

A1 )

M= 7 (2—2cos(jmh)) — k>. (8.2)

This simple model problem will allow us to develop the theory for the constant wavenumber
case, as finding robust multi-level solvers for this case is still an active and current research
area. To allow for more practical examples, we introduce MP 1-B as the model problem
where Sommerfeld radiation conditions have been implemented.

MP 1-B
dulx) o (x) 1, xeQ=(0,1) 8.3)
- —Kulx) = 1, xeQ=(0,1), )
dx?
u'(x)—iku(x) = 0, x=0,
u(x)—iku(x) = 0, x=1

8.4. DEFLATED KRYLOV METHODS

We start by briefly explaining the two-level deflation preconditioning technique to solve the
resulting linear system. We then proceed by extending the two-level method recursively to
a multi-level Krylov method.
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8.4.1. TWO-LEVEL DEFLATION

For a linear system Au = f we construct the deflation preconditioner P where the column
space of Z is used as the deflation subspace. The aim of including a deflation precondi-
tioner is to project the unwanted near-zero eigenvalues to zero such that the convergence
of the underlying Krylov subspace method can be accelerated. For the two-level method,
the preconditioner P in fact is a projection operator. As for the deflation matrix, Z can be
interpreted as interpolating from the coarse grid to the fine grid.

P=1—-AQ+QwhereQ=ZE 'zl and E= 27T AZ

The inexact inversion which will be used for a multi-level approach requires the addition
of an extra term Q in order to prevent synthetic close-to-zero eigenvalues from obstructing
the convergence of the Krylov solver [27, 82, 113]. Without the addition of Q, the deflation
operator is sensitive to rounding errors stemming from the inexact inversion of E. In [78],
we used higher-order Bezier curves to construct Z. Using these higher-order polynomials,
the prolongation and restriction operator act on a grid function as follows

2 [u], = 8 ([UZh](ifz)/z +6[u2n] ()2 + [u2h](i+2)/2) iis even, e

2 ([“Zh](i—l)/z +uznl(i1) i is odd,

fori=1,...,n—1landfori=1,..., % To obtain even better convergence, the CSL precon-
ditioner was included, which is given by

M=L—(B1+V—1B2)KI,

where (B4, 82) € [0,1] and L is the discretized Poisson equation. The system to be solved
becomes M~ !PAu = M~'Pf. By allowing higher-order interpolation schemes, the near-
zero eigenspace of the fine- and coarse-grid coefficient matrix remains perfectly aligned.
As a result, the smallest eigenvalue in magnitude of both A and E is located at the same
index. This prevents the eigenvalues of the deflated system from shifting towards the origin.
While the method provides close to wavenumber independent convergence in one- and
two-dimensions for fairly large wavenumbers k = 10% (1D) and k = 10% (2D), it requires the
exact solve of the coarse-grid coefficient matrix E, adding to the computational complexity
in 3D.

In Algorithm 1, we present the two-level deflated FGMRES algorithm, where we use the
following abbreviations: MV (matrix vector product), MM (matrix matrix product), ES (exact
solve), VU (vector update), AS (approximate solve), DP (dot product). We moreover let C;;
denote the number of constant iterations. The motivation for using FGMRES lies in the
recursive process which will be applied in order to avoid having to solve the coarse-grid
system on the second level exactly. We have split the pseudo-code into two parts. The blue
section contains the part where the deflation preconditioner is applied. All matrix vector
multiplications within the blue section are sparse. The pink section is the general GMRES-
process. Furthermore, Table 8.1 contains the number of non-zero elements per column of
the operators involved. These can be used to quantify the flops for sparse matrix-matrix
and sparse matrix-vector products. Note that in the context of the multi-level algorithm,
the number of non-zeros after the second level remains the same. We include the largest
dimension-dependent constants for the leading order time complexity term. For example,
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for the 2D matrix-vector product we take 77 as the leading term instead of 5n. As a result,
we obtain a strict upperbound for the costs involved, even for 1D and 2D problems and the
costs in practice will be less.

Table 8.1: Upper bound to number of non-zero elements per column of A € R"*"" E €
RXM 7R M and ZT e RM* 7,

Operator Linear Quadratic
ID 2D 3D | 1D 2D 3D
A 3 5 713 5 7
E 3 3 3|7 72 78
Z 3 3 3|5 5 5
zT 2 22 223 3 3
AZ 5 52 5 |9 9 9

Algorithm 10: Two-level Deflation FGMRES
Initialization:
Choose 1y initial guess and dimension k of the Krylov subspaces.
Define (k+ 1) x k Hy and initialize to zero.
Arnoldi process:
ro = f — Aug, p = |rol2, v1 = ro/P-
for j=1,2,..kdo
- T

p=2"Tv, >MVP-5%n
p=E"'p > ES - m?
t=Z0 >MVP -39m
s= At =>MVP -7n
F=vj—s >VU-n
r=M"'F =>AS - Cj;n
Xj=r+t >VU-n
w= Ax; =>MVP-7n
fori=1,2,..jdo

h,-'jz(w,vj) I>DP-jI’l

w=w-—h;;v; =>VU- jn
end
Compute hjiy,j = |w|zand vji1 = w/hjq1,;. >MVP - n
Define Xj = [x1, X2,..., x¢] and Hg = {h; j}hi<i<j+11<j<k >MVP - n

end

Form approximate solution:

Compute uy = ug + X yi where yi =, | fer — Hyy|2.
Restart:

If satisfied stop, else set 1y < uj and repeat Arnoldi process.

Considering Algorithm 10, the vector update x; = r + ¢ is split in two parts. r contains
the application of I — AQ to the vector v; and then lastly applies the preconditioner M to
obtain r. The vector t contains the part where we add Q to I — AQ in order to prevent
synthetic near-zero eigenvalues due to rounding errors. Analyzing the costs of Algorithm
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1, confirms that the dominant factor is @(mz). Furthermore, in order to mitigate the cost
of the preconditioning step, one (C;; = 1) multigrid F-cycle is generally applied in order to
approximate the solution of the system Mr = 7 [29]. When opting for this configuration, the
shift B, has to be kept large enough for multigrid to converge [33, 35, 102]. Another option
is by allowing a few GMRES-iterations to approximate the preconditioner. For example in
the context of using multigrid as a preconditioner, the standard relaxation step is replaced
by 10-40 GMRES-iterations, acting as a polynomial smoother. On each level the unstable
Jacobi and Gauss-Seidel smoother are replaced by Krylov iterations [110, 114, 115].

8.4.2. MULTI-LEVEL DEFLATION

As mentioned previously, apart from the standard computational costs associated with the
FGMRES-algorithm, the largest additional cost comes from solving the coarse-grid system
exactly, which dominates with the factor @(m?). In order to circumvent this, we apply the
two-level cycle recursively. Before we expand the two-level algorithm to the multi-level al-
gorithm, a few remarks are in place. We deploy five changes, apart from using Bezier in-
terpolation polynomials as a basis for the deflation vectors. First, application of the CSL
preconditioner to the Helmholtz operator shifts the spectrum towards the complex plane
and resolves the indefiniteness. On levels where the matrix becomes negative definite, we
apply a Jacobi iteration using the diagonal matrix of the CSLP as the preconditioner M.
Second, the multi-level preconditioner is applied to A rather than AM~!. This saves one
matrix-vector product per level. Third, while the use of the CSLP preconditioner together
with a geometric multigrid method for approximate inversion works well for homogeneous
problems, it is not suitable for heterogeneous problems with high contrasts [27, 29]. As
we are interested in heterogeneous problems and require only an approximate application
of the preconditioner, we perform Krylov subspace iterations to approximately invert the
CSLP. As mentioned previously, this can be considered as applying a polynomial smoother
in the context of multigrid, which damps both ends of the spectrum. We let C;; denote the
constant for the maximum number of iterations. The number of Krylov subspace iterations
as a smoother ranges from 5-40 for two-dimensional constant wavenumber model prob-
lems, where the stopping criterion results in the residual to be scaled with kh on each level
[110, 115, 116]. We use Bi-CGSTAB as the computational costs and memory do not grow
with the number of iterations such as is the case with non-restarted GMRES. We moreover
do not require convergence or set any tolerance dependent on the level. However, we set the

1
maximum number of Bi-CGSTAB iterations at a constant times [n(l)] " where n(!) denotes
the problem size on level [ where the linear system is still indefinite. Our motivation for do-
ing so is twofold. Primarily we want to have the number of outer FGMRES iterations as small
as possible while the wavenumber increases, as FGMRES becomes more computationally
expensive when more iterations are needed. Second of all, we do not require the residual to
remain orthogonal to all previous components, we can use Bi-CGSTAB to achieve a smaller
residual within the multi-level hierarchy without necessarily imposing that it is in fact the
minimized residual. Fourth, given that we are no longer using multigrid for the approxi-
mate inversion, the restrictions for choosing the complex shift can be lifted. Thus, we can
take advantage of using a small shift which makes the preconditioner more similar to the
original Helmholtz operator and keeps the property of lifting the indefiniteness at certain
levels. As a result, we will be able to test our algorithm on heterogeneous models with highly
varying contrast profiles. Fifth, instead of allowing many iterations on each coarse level, we
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only allow one iteration on the coarser levels. Consequently, we obtain a V-cycle, which
leads to a similar V-cycle structure from multigrid when taking y = 1, see Section 8.4.2.
The multi-level deflation algorithm is given below, where we used the number of non-zero
elements from Table 8.1 to account for the dimension dependent constants for the sparse
matrix-matrix and sparse matrix-vector products on subsequent levels.
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Algorithm 11: Multi-level ADP Implementation

Initialization
Set A = A, MM =M, n(M) =p
for [ =1,2,...m the coarsest level do
Construct Z(W1+1) and Z(l’lJTrl) T
Construct AU = z(L1+1) " A1) 7(L1+1) > MMP - 459 . p(1+1)
Construct MU+D) — Z(LHD T pp(D) 7(L1+1) &MMP - 459 . p(I+1)
end
Iterative stage

1=1,ul" =0

Solve A 4() = p(1) using Two-level Deflated FGMRES

52 — 7027, (1) = MVP - 54 . p(1)
if [+ 1= m then

Solve 5 = 4@ ') exactly

else
I=1+1,5 =0
Solve A®) 5(2)

=9 using Two-level Deflated FGMRES
53 = 7237 ,(2)
if /+1 = m then

Solve 73 = A®) ™1 5(3) exactly

>MVP - 59 . n(2)

else
I=1+1,58 =0
Solve A®) 53

ﬁ( ) using Two-level Deflated FGMRES
)

) —
5@ — 7697, = MVP - 5%. 53

if [+ 1= m then

Solve 5(") = A(m) ™ 5(m) exactly =>ES-0(1)

end
t(m=1) — z(m—1,m) 5(m) >MVP - 34 . p(m)
s(m=1) — A(m—1) ;(m—1) =MVP - 74 . p(m—1)
Flm=1) — pym—1_ S(m—l) =VU - p(m=1)
F(m=1) _ pp(m=1)"1z(m—1) = AS - p(m=1)
x(m=1) _ p(m—1) + ((m—1) =VU - n(m—1)
)

w(m=1) = g(m=1)  (m—1) =MVP - 74 . p(m—1

w® = 42) (2
end

en(i

£2) — 7(23)503) >MVP - 39 . n(3)
$s2) = A(@)4(2) =MVP - 7% . p(2)
7(2) — 3 _5(2) =>VU -n®
1@ = @752 = AS - 21(Cien 1)
@ = ) | 4 >VU - n®

>MVP-79.n(2)
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Algorithm 12: Multi-level ADP Implementation cont'd.

Initialization

Set A = A, MM = M, n(M) =p

for [ =1,2,...m the coarsest level do
Construct Z(L1+1) and z(LHDT

Construct AU+ — Z(LIHD)T A1) 7(11+1) & MMP - 454 . p(1+1)
Construct MU+D — Z(LHD Ty (D) Z(11+1) &MMP - 459 . p(1+1)
end
Iterative stage
1=1,ul" =0
Solve A 4() = p(1) using Two-level Deflated FGMRES
5@ — 02T (1) >MVP - 54 n(1)

if /+1 = m then
‘ Solve 7(2) = A@) 1 5(2) exactly

else

end

() _ 7(12) 52) >MVP-34. n(®)
S(l) = A(l) [(1) > MVP - 7d . n(l)
F) =l — () >VU - n(!)
P _ L) & AS - 21(CrnD ()
x(l) = r(l) + [(1) > VU - n(l)
w(l) = A(l)x(l) > MVP - 7d . n(l)

A schematic representation is given below.

22 — 12T (1) { 1(2) — £(23) 5(3)

23) — 2237 (2) { £(2) = 2(23) 5(3)

s(m) _ z(m=1,m)T (m—1) {

Direct solve A 5(m) = p(m)

Figure 8.1: V-cycle Deflated FGMRES. The pink arrows represent the coarsening. The blue arrows represent the
prolongation.

Using the above, we can formulate upper bounds in terms of FLOPs for the complete algo-
rithm.
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Theorem 13: Multi-level deflation upper bound number of operations

Forl =1, set nW) = pandlet n® =2 pfori > 1, where d denotes the dimension.
Assume the following holds for [ > 1

e Restriction p(I+1) ;= Zz(LIF1)T (1)

flops < cr5dn(l)

Prolongation (1) := z(b1+1) (1+1)
flops < cp3dn(l+1)

Krylov Smoothing () := M) ™ 7(D) when 1 < 3

1+
flops < 790D *

Jacobi Smoothing r(l) .= M(l)_lf(l) when />3
flops < ¢;7%n(")

e Matrix vector product:= w) = A0 x(D)
flops < Cu7dn(l)

Coarse-grid solve:= A(™) ~1p(m)

flops < ¢

Then )
total flops < C;0(n'*1),

where Cy is a constant which only depends on the dimension d.

Proof. At each level [/, after we have obtained w, we proceed with the Arnoldi process
(see pink section, Algorithm 10), which is already @ (n') given that the maximum number
of FGMRES iterations at each level is set at one. We thus obtain the following upper bound
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of the additional costs occurred with the preconditioning step
1
flops < cg + (C,Sd + 70T 4 cy7d> n® 4 cpsdn(l+1),
1
+ (chd + Ck7dn(l+l) iy c,,7d> n(l“) + cp3dn(l+2),

+oo (5% 4+ Cr 7 + ¢y 79) n(m=1 4 cp3dn(’”),

1 1
=Co+ (chd + Ck7dn(1) Y cv7d) nW + Ck7dn(2) ! n(z),

1
+ (5% +C;7 + ¢y 7% + ¢39) 2~ dl,(1) +c,,3dn(m),

3

N
Il
S

1 1
<ot (c,sd et 4 e,70) o) 1 rdn @ @)

N—

m—1
+ (cr5d+Cj7d+c,,7d+cp3d) 271 +cp3dn(m),
2

~

1 1
<co+ (chd +Ce74n Mt 4 ECk7dn(l) s c,/7d) n 4 cp?)dn(m),

1
+ 3 (cr5d + Cu7d + c,,?‘l) n(l),
<7+ Z o(n0+D),

where we used that n(!) = 5 and the fact that Z;":_zl 27l < % |

The upper bound to the total computational costs is constructed with respect to the itera-
tive stage and already accounts for the costs of the matrix vector multiplication in FGMRES.
It in fact bounds the total cost of the multi-level extension of the blue section in Algorithm

1
1. Overall, the algorithm runs in @(n(l) 1+1) time complexity. However, a few points need
further explanation and discussion.
The construction of the coarse-grid systems on each level ! requires two sparse matrix-
matrix multiplications. While the maximum number of non-zeros along each column re-
mains constant with respect to n() (see Table 8.1), it results in a constant of 45¢ for the
matrix-matrix multiplication to construct AU>1) While this may seem expensive, it already
pays-off for very large and highly indefinite 2D and 3D problems, as the constant is inde-
pendent of the fine-grid problem size n(1). We illustrate this through our numerical experi-
ments in Section 8.6.
Moreover, as mentioned previously, the multi-level preconditioner is applied to A rather
than AM~L By using the 'First Deflate, then Precondition’ method, we save one extra
matrix-matrix product, one matrix-vector product and one extra application of the precon-
ditioning step [83].
Finally, we restrict the number of FGMRES iterations on each level to one, whereas a se-
quence of (8,2,1) and (6,2,2) iterations are used [27, 29, 83]. For example (8,2,1) denotes,
8 iterations on level [ = 2, 2 iterations on / = 3 and 1 iteration on all levels [ > 3. Thus, on
the finest level n(!), the largest cost related to the matrix-vector product during the iterative
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stage is 0(8-34n(1)) compared to @(7¢n(!)). While the dimension-dependent constant
74 is approximately 1.5 times larger than 8-3¢ for d = 3, the significant reduction in the
number of outer iterations provides an advantageous leverage.

8.5. INSCALABILITY

In this section we extend the theoretical results of the two-level ADP-scheme to a multi-level
setting for MP 1-A. Given that the coefficient matrix remains normal, spectral analysis can
be performed to assess the convergence behavior. We have provided a detailed summary of
the literature as regards the role of the eigenvalues when the matrix is non-normal in [78].

8.5.1. MULTI-LEVEL MAPPING

In order to develop theory for the multi-level ADP-scheme from the two-level ADP-scheme,
we need expressions for the nested or composite mappings between the fine and coarse
spaces. Similar to our approach for the two-level method in [78], we start with the linear
case and extend it to the quadratic case. In Theorem 14 we start by deriving analytical ex-
pressions for the actions of the intergrid transfer operators on eigenvectors of each respec-
tive coarse space for the linear case, whereas Corollary 14.1 contains the expressions for the
quadratic case.

Theorem 14: Multi-level Prolongation and Restriction (linear)

Let Z,, be the n,;—; x n, prolongation matrix based on linear interpolation for
. =/

m = 1,2,...Mmax, With n, = 5. If we define v}, = sin(2™hinj), and v}, =

sin(2™hin(n, +1— j)), where on the finest level we have m = 0, then there ex-

ist constants C{ and Cg depending on h such that restriction operator maps the
eigenvectors to

HZI Vo vm,j—lz ., Ny and HZI Vo C]vm,j=1,2,...,n
I=m
where C{ = (D" TTE, (14 cos(jm2! =1 h)) and Cg =
(1) T/, (cos(jm2!=1h)—1). Similarly, the prolongation operator maps the
eigenvectors to

~

!
H [vm]i = [v(])],-, for i is odd. and HZl[vm],- =CJ[v]]:, for i is even..
1=1 1=1

Finally, if we let By, = [ /2, ZiT[)—,n Z{ and By = ZpnZL for m = 1,2,..., Mmax,
then B, has dimension ng with n,, non-zero eigenvalues.

Proof. We start with a brief outline of the proof. We start by defining the mapping operators
and the respective vector spaces and their bases to which they are applied. This allows us
to move between fine and coarse spaces. Then we continue by showing the action of the
restriction operator on the basis for these respective vector spaces. To keep an overview
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of what is happening between the vector spaces on an abstract level, we use both the an-
alytical operator and their matrix representations in the proof. We then repeat this for the
prolongation operator. Once we have analytical expressions for these nested operators, we
show that the kernel and range of the composite mapping consisting of the restriction and
prolongation operator span a subspace containing the eigenvectors. We use this to show
that the eigenvalues of B, are related to the eigenvalues of B,,.

Basis and ordering
We start by defining n,, = 3 and rearranging the space spanned by the eigenvectors at
each level such that we obtain the following subspace

1—
V) —span{vm,v"’”Jr J}
for j=1,2,...,ny+1. Moreover let
Nm41 .
J
Vinp1= P span{v, .},
j=1

denote the space spanned by the eigenvectors at a coarser level m + 1. Note that the basis
spans C"" and C"+1 as we can write

Mm+1 .
J j
m= (P 7 and C"m+! = Vi
j=1
and at each subsequent level m + 1 we re-order the basis to obtain 7;,1;. Thus, on each

level we define the automorphism such that we can bring the basis of V},, in to the order of
Vm

n(]) V> Vi jonm+1—(j—1)for jis even.

For m =0,1,2... mpax, the linear interpolation and restriction operator maps between sub-
sequent vector spaces

Ity — Vg1, such that 7/,,€ »—>Jm+le

I 1 Ving1 — Vin, such that v/, »—»Jmﬂ 1

Restriction operator

We now apply the corresponding matrices to the respective eigenvectors on each level,
where we let .#" ! — 7, .. We start by taking m = 0. Using the basis of eigenvectors
for 7, we have for index j

4]
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Now, for the complementary mode on level m = 0 corresponding to index j we define j' =
np+ 1 — j. Note that we can write

[0 1i = —(=1)/ sin(ihjm), (8.5)
i=12,...npand j=1,2,...n;p41.
Applying the restriction operator to the complementary eigenvector gives

ke ]

(cos(jmh)sin(2hinj) — (—1)* sin(2hinj)),
(cos(jmh)—1)sin(2hinj),

J j
Zh[vl]i'

We thus have that at level m = 1, the fine-grid eigenvectors from level m = 0 are mapped by
the restriction operator ZIT according to

4>|»—4.J>|>—

(')

zlvj=cl vl j=12..m, (8.6)

ZlTvgw1 i C] vl,]=1,2,...,n1. 8.7)

Note that v{ € V1 Vj. Additionally, note that n; vectors from 7 are mapped to zero which
implies that the nullspace of ZIT has dim A (ZIT ) = ny. In order to move from m =1 to
m = 2, which maps 7 — V,, we apply ZZT. The mapping trajectory is given by the following
diagram

1 1
JZ jl 7/ ﬂ()l jlz JO a”(j)
[0Sy Vo — ¥ — Vo, where 7/0—>V1©7,1

2
24 gl
BAEA

V2

We obtain 7 by first applying a®, ., such that we get the ordering of the basis in pairs j, j’.

7(J)

The restriction operator .9, ! maps these basis vectors to V. Then in order to move to the
second coarse space V,, we again have to reorder the basis on V; by applying the automor-
phism o’ (i) After permuting the elements of the basis, we can apply 4. 2. Consequently, the

range of .#; 2 is V5. This is equivalent to having a composition of the linear transformations
JIZ o ﬂol. Thus, in terms of the matrix representations, applying ZZT gives

zH Nz || =cl, (2 |v]] ).

%] ]] (Z]4])

(1+cos(jmh)) (23 sin(2hinj)),

1+cos(jmh)) (isin((.’ii— 1)2hmj)+ 2sin((2i)2hnj) +sin((2i + l)2hnj)),

(
% (1+ cos(jnh))) (% (1+ cos(jnzh))) sin(4hinj),
j

J J
#Ci2n [Vz]l.-

Q /"\NI»—'NIH
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As regards the complementary modes on level m = 1 note that ajlt 0 V1 +— 71 enables us to

redefine j' = n; +1— j, where

!
1

[0/ = —(—1)T sin(i2h ), (8.8)
i=1

,2,...n,and j=1,2,...n

Thus, applying the restriction operator to the complementary modes on m = 1 gives

|2 |2l ]|, =l (2 ]4d],).
= (eos(jmn)~1) (7 [v]] ).
=%(cos(]nh)—l) (71; (cos(jmh)sin(2hinj) — (~1)% sin(2hix ) )
(% (cos(jrh) — )( cos(jn2h) 1)) sin(4hix ),
=€}, Cho | ] -

Note that vé e V, Vj. Consequently, using ZIT to map from level m = 0to m =1 and ZZT
to map from level m =1 to m = 2, results in the fine-grid eigenvectors being mapped in a
nested application according to

zy (Z1 Vo) C]vz, j=L12,...,n,
7T (7T nt1=i .
f 1 Vo v2, j=12,...,ny, where,

Jj 1\ ™ . ol—1
C| = (5> H(l—i—cos(]ﬂZ h)) and,

cl = (%)mﬁ (cos(jm2'~th)—1).

In this case, ny vectors from 7] are mapped to zero which implies that the nullspace of ZZT
has dim A (ZZT ) = n,. Consequently, in order to move to m = 3 which maps 7, — V3, we
can continue applying Z3T. From here, it is easy to see that for each subsequent level m > 2,
consecutive application of the matrices Z[ is equivalent to the following linear mapping
between the vector spaces 7},

m m—1 1 ]01 ]12 ]ryr:l—l
In1°Fy 2008 NW>N>V.Vm—1 = Vn,

which can be represented by the following diagram
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m—1

—> Vm—l Oaﬂ

m 1
m s ]O o Il %
m

m— l m 2

We thus have vfn € Vi, Vj, and in terms of the matrices, we therefore obtain

1
, 1 )
I1 nyé} - [Z,ZZ,Z_I [ZZTE (14 cos(jnh)) vl]] ,
I=m i

1

= [ZnI;ZnT%l [Zgi (14 cos(jmh))(1+cos(jn2h)) vz]] B

1

= (%) " llj[ (1+cos(jn2' " n)) [vm]i = C{[V{n]ir

for j =1,2,..., ny,. Similarly, for the complementary part correspondingto j’ = n,—1+1—j
we obtain

1
T J
I=m

To conclude, we obtain

= ()" [T eostime =) ol =l

i

1

[z vi=clvi, j=12.....nm, 8.9)
I=m

1

HZ, vl =Clvl, j=1,2.. (8.10)

where C{ = (3", (1+cos(jn2!"'h)) and Cg = ("I, (cos(jm2i=1h) —1).

Prolongation operator

The restriction operator was defined as the transpose of .#," |, and thus we have that the
matrix representation of the prolongation operator is given by Z,,. For the prolongation
operator, we again start with m = 1 and take the basis V; as the prolongation operator works
on a coarse-grid eigenvector on level m and maps it to a fine-grid counterpart on level m—1.
We distinguish two cases; i is odd and i is even. We start with the first case

[Z1v]]; = ! (sin( U 1;2}”[].)4-sin( i+ 1;2hnj)> ,

—(sin((i —1)hnj)+sin((i+1)hnj)),

os(jmh)sin(ihnj), (8.11)

[\JI»—'>J> —
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for j=1,2,...,n;. If i is even, we obtain

i 1 2hinj 1 1
(Z1v]]i = Esin( ;n] )= Esin(hinj) = E[Ué]i. (8.12)
Using Eq. (8.8), if we define j' = n;,—1 + 1 — j, we can write Eq. (8.12) as

(2 v{]i =sin(hinj) = —(—1)sin(jzhi) = [vél]i, (8.13)
if i = odd. Thus, if i is odd, combining Eq. (8.8) and Eq. (8.13), gives

1o 1 ;
E[ué]i—&—icos(]nh)[vé] C] [vo,vé]

for j =1,2,...,n;. Similarly, if i is even, we obtain

[(Ziv]]; =

=/

1
——[U(]) ],‘ +

1 , i
5 ~cos(jmh)[vy]i —C] [vo,vé]

[(Ziv]]i = 5

. v
for j =1,2,...,n;. Note that [y(]), v(]) ] is an element of 7, and the coarse-grid eigenvectors
are mapped by the interpolation operator Z; according to

JO
BARRT Y 7Y

Also note that %(Z;) < Vp, and we have Vo = A (Z') @ %(Z;). We now take m = 2, using
the basis V5. From the above, it follows that

] 1. o 1

(Zov)i = E[v{ i+ Ecos(]nZh)[vl], = C{zh[vl, V{ ], iisodd (8.14)
, 1. o 1

(Zov)i = 75[11{ ]i+ ECOS(]TL’ZI’Z)[UI], = Cé zh[vl’ v{ ]i, iiseven, (8.15)

forj=1,2,...,npand j' = n; +1—1. As the vy’s are the eigenvectors on level m = 1, we can
rewrite the complementary indices j’ in terms of j again by using

[0/ )i = —(~1)/sin(i2hjm), (8.16)
i=12,...n,and j=1,2,...n
Substituting Eq. (8.16) into Eq. (8.14) and Eq. (8.15) gives

j 1oj, 1 . j i1

A E[v”l + Ecos(]nzh)[v{] C{Zh[ {1i, iis odd (8.17)
j Loj, 1 ; j i

[(Zov)]i = _E[ {],'—i—acos(jnzh)[v{] Cézh[ vl];, iiseven, (8.18)

and %(2Z,) = V1, and we have V; = 4 (Z]') P %(Z,). Moving from m = 1 to m = 0 by left-
multiplying Eq. (8.17) and Eq. (8.18) with Z, is now straightforward as we get the coefficient
c/ Lh and C/ 55 times [Z1v ] from above. This corresponds to a composition of the linear
transformatlons where at 7/1 we reorder the basis to V; using Eq. (8.16)

YR R 7
S0 Vo571 — W, where Vo —— 7 Oy, .

lylo
0, gl
S0,

%
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From here it is easy to see that for m > 2 successive application gives

lﬂz]: (47..
= [ZIZZ...
()

Finally, if i is even we get [Hﬁzlz, um] = ())™ITiz,n (cos(jm2'h) —1) [vd]; = CI[vl];
1
and Z(Zm 1) C Vin, and we have Vi, = A (Z] ) D R(Zim+1).

(14 cos(jm2™h)) [Zm_lv{n—l]:li'

N | =

(1+cos(jn2™h)) (1+ cos(jm2™ 'h)) [Zm_z ”Zn—z]] o

Lol M

(14 cos(jn2'h)) [v]]; = CI[v];, for i is odd. (8.19)

-

T
3

Composite mapping subspaces

Let us now take B;,, = lm:_ll Z; H%:m—l ZIT, and B, = ZmZnZ;. We furthermore let

FFme 7 — Vm:Jn’f_loJIZ‘__zlo...oJ&, and
™V — %, and
g™ Vi—1— Vip—1: I L ogh |

where ! f™ is the transpose of the linear map f™. Note that g™ is a automorphism. We can
define

RV =TV fM o f, [ € Vim,
to denote the composite linear mapping along the m-vectors spaces. Here ' f™ maps ele-
ments of % to V;,; and we can write h": f™ 1o (g™ ol f™~1) This gives
kerg™ = {vé €¥,: ’fm_lv({ =0} < Vi1, and
Img™ = {vé EN: tfmflvé‘ #0} = Vy_1/kerg™ < Vi1,

where j/ are the complementary indices corresponding to ng + 1 — j. But then by definition

and the fact that g” is an automorphism, * ™1 v(]] must be an eigenvector of g™. Given
that we can write V;,—1 = kerg™ @ Im g™, the rank-nullity theorem furthermore tells us
that dim(Vy;,—1) = dim(ker g"*) + dim(Im g"*) = npy + Ry = ny—1. Thus, g™ must have n;,
zero eigenvalues and n,, non-zero eigenvalues as the kernel of g” is non-trivial. This leads
to

(g7 f" vy =g" (' f" ),
=Mg™)("f" g) = A" vy
where 1(g™) denotes the scalar eigenvalue corresponding to g”. Applying f™~1, finally

gives

fr o (gt ug = £ (8™ () wp),
=M™ " vg) = Ag™MA(R™ vy, .
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Eigendecomposition of B,

If B;,—1 and B,, are the matrix representations of #~! and g'” respectively, then dim (ker g”*) =
dim(A (By,)) = np, and dim(Im g") = dim(%(B,,)) = nm, and thus B, has only n,, non-
zero eigenvalues. But then B,, must also have n,, non-zero eigenvalues as well. |

We similarly extend the multi-level operators for the higher-order deflation vectors. This is
given in Corollary 14.1 and follows naturally from the linear case.

Corollary 14.1: Multi-level Prolongation and Restriction (quadratic)

Let Z,, be the n,_; x n, prolongation matrix based on rational Bezier curves
. =/

for m = 1,2,... mmax, With n,, = 5. If we define vl, = sin(2™hinj), and v}, =

sin(2™hin(ny +1— j)), where on the finest level we have m = 0. Then there exist

constants C{ and Cé depending on & such that the restriction operator maps the
eigenvectors to

1 1
HZITU(J)Z vm,j—12 ., Ny, and HZITU C]vm,j=1,2,...,nm
— I=m
where C{ =(3 ) 17, 1 1, and Cg = (%)m]_[?lzl Cg,lh' Similarly, the prolongation
operator maps the eigenvectors to
1 l .
1_[ [vm]i = Cl[v]];, iis odd. and HZZ vm)i = Cy[v}]i, iis even..
=1 =1

Finally, if we let B,,, = Hlmzlzll—[}:leT and By, = Zu ZL for m = 1,2,..., Mmax,
then B,, has dimension rng with n,, non-zero eigenvalues.

Proof. The proof is exactly the same as the proof of Theorem 14, however we now have

/ 1 3

Cl o = <005(1ﬂ2mh) + cos(jnszrlh)Z + Z> ,
; . 1 3

Cé mh = (COS(]nzmh)—cos(]an“h)Z_Z)_

For a detailed proof of deriving C] o, and C] ,, see [78]. The statement is obtained by
substituting these coefficients into the proof of Theorem 14. |

Using this result we can approximate the location where the near-zero eigenvalues of the
coarse-grid matrices are located. This is important as we only want to apply the smoother
on levels where it is needed. We start by denoting the coarse grid linear systems by Ej,, and
we set Ey = A, where A is the fine grid linear matrix. Analytical expressions for the location
of the smallest eigenvalue are found in the following corollary.
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Corollary 14.2: Coarse near-zero eigenvalues

Let Z,;, be the n,,—1 x n,, prolongation matrix for m =0, 1,2,... Mpax, with n,, = zim

We define the symmetric coarse-grid coefficient matrix Ep, = [ [}_,, Z FATTS ) Zn

If we let [v{n]i = sin(2™hin j) be the eigenvectors of E,,, where for m = 0 we have
the finest level, then 3 : for m > m E,, is negative definite. For m < m E,, is
indefinite.

Proof. Let A(A) denotes the ny x ny diagonal matrix containing the eigenvalues of A, then
using Theorem 14 for each i, either odd or even, we have

1 m .
[ 12/ A ] [alvn:
I=m =1

)

tim |Eyu[v], )] < lim < lim [, vl )| < 47 |4 [h;

where we used that by definition of C{ and Cg, for all j we have ‘C{Cé‘ < ‘(C{)Z‘ < 4™,

Note that in case of i is even, we would have C{ Cé instead of C{ . Thus, in the limit as &

goes to zero, we can bound the expression for /1;5 from above by ’/1}5 ‘ < 4’”/1fq for each j.
m m

Now to find a bound for the smallest eigenvalue in magnitude of Ej,;,, we need to minimize
the right-hand side of the upper-inequality over all indices j. This is achieved at j = jnin,
corresponding to the smallest eigenvalue in magnitude of A as this eigenvalue is the closest

eigenvalue to zero. We thus have )Aé’:"‘ < 4’"/1{4’“1“. We now need to find the level m at
which the matrix E;,, becomes negative definite. Recall that

i = {cos_l(—lgzhz)} B {ncos_l(—lgw)}
min — - .

wh T

Therefore, to find the level m which still contains index jmin, for j = 1,2,...n,, we have to
find m: n,, = zim > jmin. Note jmin is unaffected by & as h goes to zero and thus we can
assess how many times jnmiy, fits into n. Additionally, coarsening leads to the problem size
being halved for each m, and thus need to divide by 2 as well.

_ 1212
n cos™! (#) —m
2 jmin 27 ’

Consequently, for m > m, jmin is no longer within the range of n,,. Therefore, all eigenval-

ues of E;~ i for j =1,2,... nyp>m < jmin must have the same sign, due to the fact that )Lﬁ“‘“
is an upper bound and the only eigenvalue of A where a sign-change can occur. |

Corollary 14.2 shows that for m < m, the resulting coarse-grid coefficient matrices E,, are
indefinite. Thus, on these subsequent levels, it is important that the near-zero eigenvalues
are reduced and aligned in coherence with the fine-grid level. In order to analytically assert
this, we proceed by defining the multi-level deflation operator and block-diagonalizing it
using a similar basis as we used for the two-level ADP scheme. This will allow us to perform
spectral analysis of the multi-level deflation operator as the latter reduces to applying the
two-level ADP scheme recursively.
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8.5.2. BLOCK-DIAGONAL SYSTEMS

Using the matrices Z,, and Z, to denote the prolongation and restriction operator on level
m, and using the theory developed so far, we can construct similar analytical expressions
for the eigenvalues of the preconditioner applied to the coefficient matrix. We perform the
analysis for MP 1-A. Taking Ey = A, we define the n x n projection operator Py, ,, to be

m 1
Ppm =1— AQp, where Q= | [ ZiE,' | | 2] and Eyy = Z Ep1Zp, (8.20)
=1 I=m

Py = Iy — E;uQm, where Qyy = ZyE; 21 and Eyy = ZLEjy 1 Z, (8.21)

Note that this is equivalent to constructing P by solving E;,; directly on the m-th level and
then prolonging the inverse back to the fine grid in order to proxy the effect of having an
approximate inversion of E; in the two-level method. We will refer to Py, ;, as the global
multi-level deflation preconditioner and P,, as the local level deflation preconditioner.

GLOBAL SYSTEM BLOCK-DIAGONALIZATION

In order to extend the spectral analysis of the two-level ADP-scheme to a multi-level setting,
we use the bases and operators defined in the first part of the proof of Theorem 14. To assist
the reading of the proofs below, we briefly recall the basis and its reordering. For n;, = 3,
we rearranged the space spanned by the eigenvectors at each level m such that we obtain
the following subspace

nm+1—j

7/,% = span{vfn, Um } and V,{Hl = span{vj

m+1}

for j = 1,2,...,n,+1. Note that the subspace ¥, consists of two vectors and the subspace

7/n]1 41 consists of one vector. We furthermore have that both bases C" and C""+! respec-

tively as we can write

Mm+1 | Mm+1
Ny J Nmi1 J
"= @ VpandC" = P V)L,
i=1 j=1

and at each subsequent level m + 1 we can always define an automorphism to re-order the
basis V;, to obtain 7,4 1.

We start with Lemma 14.1, which will provide the building blocks to block-diagonalize Q,,
by first block-diagonalizing B,,,. This is equivalent to using the operators and expressions
from Theorem 14 and writing them in matrix form using 2 x 2 blocks by evaluating their
action on the underlying basis of eigenvectors.
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Lemma 14.1: Block-diagonalization B,

Let Z,, be the n,, 1 X n,y, interpolation matrix with n,, = 5% form =0,1,2,..., mmax.
Let B, = H}:leH;":lZlT and By, = ZpZL for m = 1,2,..., Mpax. Defining the

rearranged basis
Nm+1 . f1i
Amt1r1=—]
Vin= D span{vy,,v," %,
j=1

where v, = [sin(jwhi2™)]"™ , the eigenvalues of B,, are given by

= ()" FL017).

i_ Al i _
where o= Cl,m.h and p; = Cl'lh.
quadratic coefficients.

and Cj

J
Here C > mh

> Ih are either the linear or

Proof. We continue by using the results from Theorem 14. To keep the notation compact
we let 17, = C{ i, and pl, = Cé i We start with the case where m = 1. Using the basis
%, V1, Z1 and ZIT have the block form

. j

(2], = [plj:|, (8.22)
1

(2, = Pl (8.23)

for j =1,2,...,n;. In block-diagonal form on we can write Z; as

T _
;
1
) 0
by
2
!
py
m
0 N
L pl -

To block-diagonalize B;, we therefore multiply the respective blocks for each j

L J . . (Tj )2 ( rf pj )
Atz = | | = 5 ).
Pt T L) (p)?
Now, B; has n; non-zero eigenvalues given by the trace of each respective block and 7, zero
eigenvalues, which was also discussed in the proof of Theorem 14. The non-zero eigenval-

ues are thus given by the 1 x 1 block /1%1 — (r1Y2+ (p!)2 for j=1,2,...,n, and B, = B; has
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the block-diagonal form

nm
[Bl]Vo = /131

0

0

We now take m = 2 and block-diagonalize B,. Using the same steps as above we have

J Jy2 JJ
2 | ()T (2p)
I I B
olpd T T L) (p)
for j =1,2,..., np. Computing the trace of each block gives Aé = (rzj)2 + (pg)2 with block-
2
diagonal form

AL
By

A ny
[A(B2)]y = s, ) (8.24)

0

0

Note that we have n, = % zero and non-zero eigenvalues and the dimension of Byisny x ny.
This is equivalent to having n, blocks of dimension 1 x 1 containing the non-zero eigen-
values and n; blocks, also with dimension 1 x 1 containing the zero eigenvalues. We now
apply Z; to the left and ZIT to the right of Eq. (8.24), where we use the block-diagonal form
of Z; and ZIT given by Eq. (8.22) and Eq. (8.23) respectively. Z; has n; blocks of dimension
2 x 1 and ZIT has n; blocks of dimension 1 x 2. Thus, Z; works on each non-zero 1 x 1
block of B, and then ZIT is applied to the resulting 2 x 1 block. However, only the first n,
blocks of A(B,) contain non-zero terms as we can see from Eq. (8.24) and thus only the in-
dices j =1,2,...n2 in Z; and ZIT lead to non-zero terms. Thus, for j =1,2,..., ny we obtain
[A(B2)]y = [A(Z1B2Z])]y,, which is given by the following matrix representation

1 [T51
0
! 0 nop 0

’ 2 2
2 ny 7‘1 pl
i
' n n
0 pT 0 0
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Thus, at the level of each respective j-th block we have

S A A I R Bl
1

By rip])  (py)?

for j =1,2,...,ny. Computing the trace of each respective block gives

A, = ((’{)ZJF(P{)Z) (/122) = ((rlj)2+ (p{)z) ((rzj)2+ (pg>2). (8.25)

Thus, we obtain the following block-diagonal form

1
Ag,

ny
[Ba]y; = As,

0

where /1{32 is given by Eq. (8.25). From here it is easy to see that successive application of Z,,
and Z[ for m > 2 gives

[A(B'n)]]./0 [Hf—mllpll] /lém [H}:m—l rlj H%=m—1p{]’
for j=1,2,...,nu with A, =TT\ m(( )2+ (p) ) m

Using the results from Lemma 14.1, we can block-diagonalize the operator Q,,, where m
again denotes the level.

Theorem 15: Block-diagonalization Q,,

Let Z,, be the n;,—; x n,, interpolation matrix with n,, = 21,,, form=0,1,2,..., Mmax.
We define the coarse linear system E,, = Z,;;Em,lZm with Ey = A. Let By, =
iz, ZiTT, z! and B,, = ZnZ), for m = 1,2,...,Mmax. Then using the basis
¥ from Lemma 14.1, the eigenvalues of Q,, are given by

1
[AQm)T, = HzlElﬂzl o= ALY, =2 TT (0D +(0)?),
I=m

. .2y
with/lém =(rl) Al +(ph) )Léml forj=1,2,...,npand j = ny,_1+1—j.

Em—1

J

Proof. The proofis very similar to the one for Lemma 14.1. We again start with a brief out-
line of the proof. We start by block-diagonalizing the fine grid linear system A. Conse-
quently, we recursively multiply the block-diagonal version of A with the matrix containing
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the 2 x 2 blocks representing Z;, 2, ... Z,, and ot T, .z, T respectively to obtain E,,.
Finally, we rewrite Q,, in terms of Bj,, and use Lemma 14.1 to obtain the final analytical
expressions.

On the basis 7 defined with respect to the finest level m = 0, we can block-diagonalize
the coefficient matrix A in terms of a total of n; blocks with size 2 x 2. If we define the
complementary index j' = n,, +1— j = ng+ 1 — j, then each j-th respective block has the
form

(AL, - [‘5* y 1

j/
0o A

for j=1,2,...,n;. Moving to m = 1, we now start using 7] as Ej resides in the coarse-space.
After applying ZIT and Z;, we obtain, for j =1,2,...n;, the 1 x 1 block

, N PR 2 2
B I | LA BT
A 1

. .2 .2
;[hus, if we define /1}51 = (rlj) JLA + (p{) }Li for j = 1,2,...,n;, then E; has block-diagonal
orm.

Ap, 0

2
Ag,

[A(E1)]n =

0 Ag

Note that E; has no zero eigenvalues and dimension n; x n;. Consequently, we have a total
of n; blocks with size 1 x 1 corresponding to each index j at level m = 1. To apply Z2T and
Z, to E;, we now need the 2 x 2 blocks. We apply the permutation matrix corresponding to
a, with respect to V; such that we get the ordered basis 7;. On this basis the block-diagonal
form of E; is form

A, 0
Ey ,
0 Ap 0
[A(ED]y =
Ag 0
0 n)
0 Ag
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for j = 1,2,... n,. Now, applying the block-diagonal form of Z] and Z; to [A(E1)]y, gives

r 7 1

AL 0 2 0
1 1
n P 0 0o Al 0 Pz .
2 2 T
T2 P2 P%
. -
o o [T
2
0 Af 0 ngz

Note that [A(E1)]y has size (ny x n1) and Z] has size (np x ny). Thus, for j =1,2,...,n,
and j' = ny +1— j, each respective j-th block leads to the (1 x 1) block containing

. , ;Lf 0 ol . . . y
J AYA V) AY VI
[A(Ez)]yl = [rzj pz] l 0 ﬂ,j’] [ 2]] = (rz) AEI + (pz) AEl‘
E] 2
From here it is easy to see that for m > 2, application of Z!, and Z,, recursively gives a j—th
i P2 P2
(1x1)blockwith Ay, = (rf,) A, +(ph) Ay forj=1,2,...,nyand j' = ny_1+1-j,
where each j-th block has the form

[A(Em)]], = [Agm 0 1

We now combine Lemma 14.1 and the previous expression for the eigenvalues of Ej, to
block-diagonalize Q,,,. We can now use the result from Lemma 14.1. This gives

1

[A(Qm)T), = HZzE‘IHZl o= A Bl =2 TT (0D +(0)?),

forj=1,2,...,ny
[ ]

We can now easily block-diagonalize Py, as follows. We start by writing Py, in block-diagonal
form using Theorem 15 and our rearranged basis 75/ .

J

Ty PR L W
1 o] Ag, A, o A AL
A(Pp) I—AQ _[ ]——.’" A = w
AP =l =20k, = o 3|, =3 |0 ar| 7|
m i J
Em Em 4

Including the CSL preconditioner M—! and applying the multi-level deflation precondi-
tioner Py, to the coefficient matrix A finally gives the block-diagonal expressions of the pre-
conditioned system

Jai Jai
) 1— Aarg B AAABm
i M AL AL
[APmM A, =~ AL ) MA]
A Bm 1— A Bm
j j
AL PV
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At last, we obtain the eigenvalues of P,,M~ 1A for j=12,...,m and j/ =nyp+1—j, by
computing the trace of each respective block

j Jqi i’ iy
A <1%>+£ | Mt

/11'(PmM*1A)=T ; il , (8.26)
AM /lEm ;LM ;LEm

with 1, = TTi,, ()2 + (p))?).

8.5.3. SPECTRAL ANALYSIS

Using these expressions, we proceed by analyzing the various operators involved in the
multi-level deflation operator. For the purpose of this section, we choose the shift in the
CSL preconditioner to be large (8, = 1) in order to emphasize the effect of the deflation
method. In this section, we plot the expressions from Eq. (8.20) and Eq. (8.21), which are
the global and local multi-level deflation preconditioner respectively. The global operator
is obtained by inverting Ej;, atlevel m exactly and prolongating back to the fine grid until we
obtain Py, ,,,. The local operator is obtained by applying two-level deflation locally at level
m, which gives us P,.

GLOBAL NEAR-ZERO EIGENVALUES

We start with by denoting the global deflation operator by Py, ,,,, where m indicates the level.
We analyze the spectrum up to the level where the coefficient matrix becomes negative
definite, which according to Corollary 14.2 is at m = 3. Before we start with the spectral
analysis, several remarks are in place. The eigenvalues of the preconditioned systems can be
retrieved analytically in case we have Dirichlet boundary conditions. In case of Sommerfeld
boundary conditions, the analytical eigenvalues can not be determined and we are forced to
compute them numerically. For the sake of completeness, we include them in the spectral
analysis for the one-dimensional model problems.

For k = 1000 we define Py ;, Py » according to Eq. (8.20). We use 10 grid points per wave-
length (gpw) for this part of the analysis. Fig. 2 and Fig. 3 contain the results using linear
interpolation for both Dirichlet and Sommerfeld boundary conditions respectively. Simi-
larly, Fig. 4 and Fig. 5 contain the results using high-order deflation vectors.

When we use Dirichlet boundary conditions and compare Fig. 2 to Fig. 4, we immediately
observe that there are less near-zero eigenvalues on the first and second level when using
higher-order deflation vectors. Especially for the first level (blue, moving from 7 to %), the
difference seems to be significant.

Using Sommerfeld conditions, the conditions for Fig. 3 and Fig. 5 the conclusion is similar.
The use of these boundary conditions for the linear interpolation case seems to be more
prevalent at the first level (blue). Here, Fig. 3 shows a slightly different angle away from
the zero, compared to Fig. 2. At the second level, there appears to be no difference. If
we move to higher-order deflation vectors in Fig. 4 and Fig. 5 for both the Dirichlet and
Sommerfeld case, the eigenvalues at the first level remain clustered near the point (1,0)
in the complex plane. The eigenvalues start dispersing once we move to the second level
(red) (from % to 7). An important distinction is visible for the higher-order case. Using
Sommerfeld conditions in Fig. 5 keeps the eigenvalues of P, » away from zero relative to
Fig. 4.
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Note that for m > 3, we have proved that the resulting coarse-grid coefficient matrix E3
is completely negative definite. Consequently, the problem of the near-zero eigenvalues of
E;>3 resolves itself at these levels given that the location of the smallest eigenvalue in terms
of magnitude is now fixed away from zero due to the matrix being negative-definite. More-
over, the further down the levels we move, the smaller the number of eigenvalues become
which get projected away.

Spectrum of the global deflation + CSLP preconditioned system using kh = 0.625 or
equivalently 10 gpw. Blue uses a two-level scheme and red uses a three-level scheme.
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Next, we repeat the analysis for k = 1000, but this time we use 20 gpw. We define Py, 1, Py, 2
and Py, 3 according to Eq. (8.20). When we use Dirichlet boundary conditions, comparing
Fig. 6 and Fig. 8 immediately shows that there are more near-zero eigenvalues when using
linear interpolation. Overall, for the first and second level, the spectrum remains tightly
clustered when using higher-order deflation. Thus, for the linear interpolation case in Fig.
6, the first level (black) appears to benefit the most from using a finer grid.

Moving on to the Sommerfeld boundary conditions, comparing Fig. 7 and Fig. 9 shows a
large difference in the clustering of the eigenvalues at the first and second level (black and
blue). Using a finer grid seems to affect the first and second level, i.e. the spectrum of Py, ;
and Py, » of the higher-order case more. If we compare Fig. 7 and Fig. 3 we only observe a
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significant difference at the first level. In all cases it shows that the largest clustering gain
can be achieved at the levels where the matrix remains highly indefinite.

Spectrum of the global deflation + CSLP preconditioned system using ki = 0.3125 or
equivalently 20 gpw. Black uses a two-level scheme, blue uses a three-level scheme

and red uses a four-level scheme.
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Figure 8.6: Linear interpolation (Dirichlet).

Figure 8.7: Linear interpolation (Sommerf.).
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Figure 8.9: Quadratic rational Bezier (Sommerf.).

Here we start by plotting the local near-zero eigenvalues for k = 1000 of P, and P3 and com-
pare them to Py, and Py, 3 respectively. For this part of the analysis, we only use the case
with Dirichlet boundary conditions. So far we have observed that the inclusion of Dirich-
let boundary conditions leads to a spectrum which appears to be less favourably clustered
compared to when we include Sommerfeld boundary conditions.

Starting with 10 gpw, for all cases irrespective of linear interpolation or higher-order defla-
tion vectors, the eigenvalues of the local and global operator are similar. If we use a higher-
order scheme the largest gain in terms of removing the near-zero eigenvalues is realized at
level m < 2. At these levels, comparing Fig. 10 and Fig. 12, we observe that we have less
near-zero eigenvalues both globally and locally. As soon as the matrix becomes negative
definite, the spectrum is fully determined by the spectrum of CSLP applied to the global
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and/or local coefficient matrix. Comparing Fig. 11 and Fig. 12 shows no difference irre-
spective of the underlying basis functions used to construct the deflation vectors.

Spectrum of global and local deflation + CSLP preconditioned system using kh =
0.625 or equivalently 10 gpw. Red represents the global spectrum and blue represents
the local spectrum.
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We repeat the analysis for k = 1000, again using 20 gpw. For both linear interpolation and
quadratic rational Bezier, the global and local preconditioned spectra appear similar. We
again have plotted m = 2 in Fig 14. and Fig. 16 and m = 3 in Fig. 15 and Fig. 17. Note that
when using 20 gpw the resulting underlying coarse linear system does not become negative
definite at m = 3. Instead, the linear systems become negative definite at m > 4. As for the
levels discussed here, we clearly observe a significant difference in clustering at both levels,
when we use higher-order deflation vectors.

At the coarsest level where the matrix is still indefinite, in this case m = 3, we observe in
Fig. 17 that the spectrum is slowly starting to disperse for the higher-order scheme. In
terms of magnitude, it is easy to see that the near-zero eigenvalues in Fig. 15 are smaller.
This observation supports the notion that the largest effect of using a deflation strategy with
higher-order basis function can be realized when the matrices at the finer level are highly
indefinite. These are also the linear systems which are the largest in terms of the problem
size.
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Spectrum of global and local deflation + CSLP preconditioned system using kh =
0.3125 or equivalently 20 gpw. Red represents the global spectrum and blue repre-

sents the local spectrum.
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Figure 8.14: Linear interpolation (m = 2).
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Figure 8.16: Quadratic rational Bezier (m = 2).
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Figure 8.17: Quadratic rational Bezier (m = 3).

Here we proceed by plotting the eigenvalues of the coarse-grid systems for levels m < 3.
We take k = 100 as for smaller k, the plot containing the complete spectrum and the near-
zero eigenvalues is better visible. The results are comparable to the ones obtained for the
two-level ADP preconditioner. The near-zero eigenvalues for all levels where the coefficient
matrices are indefinite remain aligned, see Fig. 8.19. Comparing this to Fig. 8.18 for the
linear interpolation case, the near-zero eigenvalues start shifting as we move from m = 0 to
m = 2. Note that at m = 3 all eigenvalues are negative, which follows from Corollary 14.2.
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Spectrum of the coarse linear systems for k = 100 and m < 3.
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8.6. NUMERICAL EXPERIMENTS

In this section we provide numerical experiments to study the convergence behavior of our
multi-level preconditioner. All experiments are implemented sequentially on a Dell laptop
using 8GB RAM and a i7-8665U processor. An exact solve is performed at the coarsest level
with problem size n < 10. Moreover, we allow one FGMRES-iteration on each level to retain
the V-cycle structure (y = 1) and 10 grid points per wavelength, unless stated otherwise.
Atlevels where the matrix is indefinite, Bi-CGSTAB is used as smoother. For constant wavenum-
ber model problems we need more Bi-CGSTAB iterations, as for heterogeneous problems
the grid has been resolved with respect to the largest wavenumber. Thus for smaller values,
there is in fact more accuracy than the required 10 grid points per wavelength. In all cases

1
the number of inner iterations is determined by a constant times n() * where n() is the
problem size of the linear system on level /, given that we do not want more iterations than
necessary on the coarser levels. We use the following test models and report the number of
iterations.

¢ 2D constant wavenumber (Sommerfeld) - MP2-A

¢ 2D constant wavenumber (Dirichlet + Sommerfeld) - MP2-B

e 2D wedge (Sommerfeld) - MP2-C

e 2D full Marmousi (Sommerfeld) - MP2-D

¢ 3D sine model (Dirichlet) - MP3-A

* 3D time-harmonic Elastic Wave equation (Dirichlet + Sommerfeld) - MP3-B

If timings are reported they will include the CPU-time in seconds using Matlab 2019Rb. The
timings are for indicative purposes, please see our detailed complexity analysis above. The
timings include all costs associated with the algorithm, including setting up the coarse-grid
linear systems through matrix-matrix multiplications.
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8.6.1. TWO-DIMENSIONAL CONSTANT WAVENUMBER MODEL PROBLEMS

We start by presenting the numerical results in Table 8.2 for the constant wavenumber
model problem MP2-A and MP2-B using Sommerfeld and Sommerfeld and Dirichlet bound-
ary conditions respectively. Given that we are looking for outer scalability of the FGMRES
iterations in terms of k, we stop the simulations once more than 150 iterations are per-
formed without having reached the desired tolerance level. The results indicate that we
obtain a solver which is weakly dependent on the wavenumber. If we allow for Dirichlet
conditions on one boundary, then the number of iterations increases.

Table 8.2: Number of outer FGMRES-iterations for MP2-A and MP2-B. @) indicates that more than 150 iterations
were needed to reach convergence. CPU time in seconds is rounded above and given in brackets. Max. iterations

1
for inner Bi-CGSTAB has been set at 6n(l) 4 forl=1,2.

\ MP2-A \ MP2-B
k n ADP-ML DEF-ML [ ADP-ML DEF-ML
50 | 6.561 8(1) 14 (1) 13 (1) 50 (2)
100 | 25.921 9(2) 18 (4) 19 (6) 37(8)
200 | 102400 | 9(7) 48(43) | 22(42  62(95)
400 | 410.881 | 11(68)  46(285) | 24 (201) %
800 | 1.638.400 | 15 (342) % 32 (955) %

To put these results into perspective, if we were to use industry standard configuration
with the CSLP inverted approximately using one multigrid V-cycle, then for MP2-B and
k = 200 we would need 296 Bi-CGSTAB iterations which take 99.96 seconds to reach con-
vergence. For MP2-A we would need 160 iterations which take approximately 40 seconds.
Without a preconditioner and if no outer FGMRES with multi-level deflation were to be
used, we would need 6188 Bi-CGSTAB iterations with a total time of 70.986 seconds for
MP2-B and 2797 with 22.541 seconds for MP2-A. For k = 200, the maximum number of in-
ner Bi-CGSTAB iterations is set at approximately 102. Using the multi-level deflation solver,
we need 9 iterations to reach convergence which takes up roughly 7 seconds. While the in-
ner iterations may appear to be a lot, note that, if we were to apply 9 times 102 iterations on
a stand-alone basis, it is still less than the number of iterations of Bi-CGSTAB without any
preconditioner (6188 and 2797 for MP2-B and MP2-A respectively). Moreover, both GMRES
and Bi-CGSTAB used with the approximated inverse of the CSLP, require much more com-
putation time. What we thus observe is that the synergy of using outer FGMRES to create
the hierarchy of coarse-grid levels with inner Bi-CGSTAB leads to both lower computation
times and lower iteration counts for highly indefinite systems.

Finally, we observe that use of the old deflation scheme (DEF-ML) based on linear interpo-
lation provides less scalability in terms of k. This resonates with the theory from Section 8.5,
where we concluded that the underlying spectrum of the local deflation operators remain
aligned along the levels where the corresponding linear systems are indefinite.

8.6.2. TWO-DIMENSIONAL HETEROGENEOUS MODEL PROBLEMS

In this subsection we provide the results to the numerical experiments for the Wedge model
(MP2-C) and the Marmousi model (MP2-D).
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WEDGE

Starting with MP2-C, Fig. 8.20 illustrates the underlying geometry of the wedge and the nu-
merical solution. We divide the numerical domain into four sections containing a wedge.

Figure 8.20: Velocity profile and numerical solution for MP2-C for f = 60
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Table 8.3: Number of outer FGMRES-iterations for MP2B (Wedge). The largest wavenumber

1
is resolved using 10 gpw. Max. iterations for inner Bi-CGSTAB has been set at 6n(D1 , for

I=1,2.
k=2nf | c(x,y) €[500,3000] m/s | c(x,y)€[1000,6000] m/s
f (Hz) n Iterations CPU(s) Iterations CPU(s)
10 10.201 9 0.428 9 0.598
20 41.209 11 2.112 14 11.148
40 162.409 17 47.080 19 86.171
60 366.025 21 157.143 22 325.960
80 648.025 23 459.561 25 774.926

From Table 8.3 we again observe that for both velocity profiles reported, the number of
iterations weakly depends on the frequency. In particular for the larger frequencies, we
observe that if the problem size is doubled, the increase in computation time is four-fold.
Additionally, it is apparent that the use of a variable wavenumber leads to more iterations
and requires more computing time than the use of a constant wavenumber.

MARMOUSI

Next we consider an adapted version of the original Marmousi problem developed in [28].
The original domain has been truncated to Q = [0,8192] x [0,2048] in order to allow for
efficient geometric coarsening of the discrete velocity profiles. Similar to some experiments
in the literature, the coarsening keeps the proportions of the original velocity the same but
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lets ¢(x, y) vary between 2587.5 < ¢ < 3325. On Q, we define
—Au(x,y) —k(x, y)zu(x, y) =386(x—4000,y),(x,y) e Q\oQ c R?, (8.27)

0 . B
(% - zk> u(x,y)=0,(x,y)€0Q,

where n denotes the outward normal unit vector. The wavenumber is given by k(x,y) =

C?;T f; L where the frequency f is given in Hertz.

Table 8.4: Number of outer FGMRES-iterations for the Marmousi problem MP2C, where f denotes the
frequency in Hertz. The largest wavenumber has been resolved using 10 gpw. Max. iterations for inner

1
Bi-CGSTAB has been set at 6n() ¥ for [ = 1,2.

n \ y=1 \ y=2
f (Hz) n Iterations CPU(s) | Iterations CPU(s)
10 66.177 18 18.113 13 18.551
20 263.425 21 117.677 14 75.177
40 1.051.137 30 810.90 20 914.297

The results from Table 8.4 show that the number of iterations again weakly depends on the
wavenumber. Here we experiment with using a W-cycle instead of a V-cycle to construct
the multi-level hierarchy. For the Marmousi problem we observe that it leads to a lower
number of iterations for all the reported frequencies. However, for the largest test case,
while the number of iterations are lower (20 instead of 30), the computation time increases.
This can be explained by noting that for the W-cycle, more work is performed within each
level.

8.6.3. THREE-DIMENSIONAL HETEROGENEOUS MODEL PROBLEMS

In this subsection we provide the results to the numerical experiments for the Sine model
(MP3-A) and the Elastic wave model (MP3-B). Note that in the elastic wave equation, both
force and displacement are vector quantities.

SINE MODEL

In this model we artificially construct a variant of the Helmholtz equation with sharply
changes within a range of wavenumbers across the entire numerical domain. We therefore
define the following

- 1
—Au(x,y,2)— k(x, y,z)zu(x,y,z) =6(x— E,y,z), (x,y,2)eQ=]0, 1]3 cR3,

- K+k2 |k2—k?
k(x,y,z)z 12 2 2 1

u(x,y,z)=0,(x,y,z) € 0Q.

k
sin(8z(x+y+2z)),k1eN, k= gl

An illustration of the wavenumber profile is given in Fig. 8.21 (a).
The results are reported in Table 8.5. We observe that for this wavenumber model problem,
where the wavenumber switches rapidly from low- to high-contrast, the dependency of the
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Figure 8.21: wavenumber and numerical solution for MP3B (Sine) for f =8
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(a) wavenumber k(x, y, z) (b) Numerical solution

iteration count on k(x, y, z) is more pronounced. Experimenting with the W-cycle instead
of the V-cycle does lead to alower iteration count. However, for the largest test case (f = 12),
we again observe an increase in the computation time.
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Table 8.5: Number of outer FGMRES-iterations for sine-problem (MP3C), where f denotes

1
the frequency in Hertz. Max. iterations for inner Bi-CGSTAB has been set at 6n() %, for

I=1,2.
8n
k=2nf y=1 Yy=2
f(Hz) n Iterations  CPU(s) | Iterations CPU(s)
4 68.921 8 3.041 6 4.026
8 531.441 26 133.688 15 123.218
12 1.771.561 49 1259.185 28 1359.926

ELASTIC WAVE

For the time-harmonic elastic wave equation in a three-dimensional wedge we use the
model from [117]. No splitting has been performed and the global system is solved. The
results are given in Table 8.6. We again experiment with the V-cycle and the W-cycle. For
the frequencies reported, the number of iterations slowly increases with the wavenumber.
When comparing the computation time, once the frequency increases and the problem be-
comes large, the V-cycle is preferred. While the W-cycle leads to less iterations, it requires
more computational work.

Table 8.6: Number of outer FGMRES-iterations for the time-harmonic elastic wave equation
(MP3-B), where f denotes the frequency in Hertz using 20 gpw. Max. iterations for inner

Bi-CGSTAB has been set at 7n(}) 1 forl=1,2.

k=2nf n y=1 y=2

f(Hz) Iterations  CPU(s) | Iterations CPU(s)
1 19.968 8 2.871 8 3.598
2 147.033 11 87.214 9 77.971
4 1.127.463 15 1665.686 13 1735.294

8.7. CONCLUSION

In this chapter we extend the two-level deflation preconditioner using higher-order defla-
tion vectors to a multi-level deflation preconditioner [78]. We provide theoretical and nu-
merical evidence to show that up to a certain level, the coefficient matrices are indefinite.
These levels are of paramount importance as the near-zero eigenvalues at these levels can
effectively be removed by the multi-level deflation preconditioner. If the near-zero eigen-
values are aligned, then the eigenvalues cluster near the point (1,0) in the complex plane,
accelerating the convergence of the underlying Krylov solver.

After this level, the subsequent coarse coefficient matrices become negative definite and
its spectrum resembles the spectrum of the CSLP-preconditioned system. Thus, we imple-
ment @(ni) inner Bi-CGSTAB-iterations on the indefinite levels to approximate the CSLP
using the inverse of the wavenumber k as the shift (8, = k~1). This circumvents the dif-
ficulty of multigrid approximations, where the shift 8, has to be kept large. The proposed
configuration leads to scalable results as we obtain close to wavenumber independent con-
vergence in terms of a fixed number of iterations. It furthermore, extends the results for
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both a constant and non-constant wavenumber model problem, such as the two-dimensional
industrial Marmousi model problem and the three-dimensional elastic wave equation. Ad-
ditionally, sequential implementation of the method leads to scalable timing results for the
model problems, which has been demonstrated using numerical experiments and a com-
plexity analysis.
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MULTIGRID METHODS

Parts of this chapter have been submitted to the SIAM Journal on Scientific Computing.

169
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In this chapter we present the development of a convergent multigrid scheme for the highly
indefinite Helmholtz equation. For over three decades, researchers have studied ways to
design convergent and efficient multigrid schemes for the indefinite Helmholtz equation,
which to this day remains an open problem in applied mathematics. Multigrid methods are
widely known to be efficient and scalable numerical solvers for elliptic PDEs. In Chapter 4
we introduced the multigrid method and showed that it has linear complexity. It provided a
state-of-the-art numerical approach, where the amount of computational work scales with
the number of unknowns. In essence, the method combines solutions on coarser grids with
relaxation (smoothing) techniques to arrive at a solution on the fine grid.

While multigrid works well for the positive-definite variant of the Helmholtz equation or
when the wavenumber is small, the method generally fails to converge as a stand-alone
solver or requires too many iterations for the indefinite version. This break-down can be
attributed to two things. First of all, the coarse-grid generally needs to be fine enough in
order to resolve the waves. A difference between the wavenumber on the fine vs. coarse-
grid(s) can cause a phase error leading to instabilities. Moreover, eigenvalues approaching
zero also hamper the convergence as they lead to near-singularity within the coarse-grid
operator.

To address these concerns (in this chapter), we again start by introducing the general multi-
grid technique, followed by an overview of the literature, where we discuss existing multi-
grid strategies for the Helmholtz equation. Consequently, we define the model problems
which will be the used in this chapter. Once we have defined the model problems, we start
developing the theory towards a convergent standard multigrid scheme. By using similar
techniques from the higher-order deflation method discussed in Chapter 7 and Chapter 8,
we investigate the effect of introducing more accuracy on construction of the coarse levels
with respect to the convergence. We conclude this chapter with some numerical experi-
ments.

9.1. MULTIGRID METHODS

Recall from Chapter 4 that the multigrid method as a stand-alone solver combines two in-
gredients in a recursive way: a coarse grid correction and a smoother. If we let P and P’
denote the matrix variant of the prolongation and restriction operators I f nd I ;’I respec-
tively from Section 4.1.1, then we equivalently define the coarse grid correction matrix C
from Eq. (4.14) as

C=I1—-P A, 'PA, A,=PAP.

Note that we here denote the coarse grid version of A by A, instead of Ay as the matrix A is
now complex due to the Sommerfeld boundary conditions and we reserve the H—script to
denote the conjugate transpose.

As for the smoother, we work with the standard weighted-Jacobi smoother, which is defined
as

Sjac=1—-X"1A, X=wAy,

where A 4 denotes the matrix containing the diagonal elements of our matrix A.
To develop the theory, we start with the assumption that we are only using a post-smoother.
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In this case, the two-grid iteration matrix is given by
To=(I—P'A,'PA) (I-X"'4). 9.1)

Generally the multigrid iteration scheme converges if the spectral radius of the two-grid
iteration matrix is less than 1. Thus, the straightforward way to prove convergence is by
showing that the spectral radius of the two-grid iteration matrix is strictly less than zero.
If Dirichlet conditions are used, this naturally boils down to using Rigorous Fourier Anal-
ysis (RFA) to find analytical expressions for the eigenvalues of Ty. However, once we use
Sommerfeld boundary conditions, this is no longer an option and we have to find another
way to assess the boundedness of the spectral radius. We discuss this in detail in the next
sections, but first give an overview of the literature related to using standard multigrid as a
stand-alone solver for the Helmholtz equation, and strong indefinite systems in general.

9.2, LITERATURE OVERVIEW

Several strategies have been proposed to study the convergence behavior of indefinite sys-
tems [36, 118-120]. This boils down to prove convergence of the two-grid method for the
positive definite variant (see [36], chapter 11.6). Another approach finding upper and lower
bounds to the field of values of the two-grid operator [121-124]. This requires that the Her-
mitian part of the linear system 3 (A + A”) is positive definite, which is not the case for the
indefinite Helmholtz equation. While we can still use the condition that the spectral radius
should be smaller than one, the computation of the eigenvalues becomes difficult in case
of Sommerfeld boundary conditions.

9.2.1. OPTIMALITY

For positive-definite and complex Hermitian problems, Geometric and/or Algebraic Multi-
grid can deal with these difficulties by constructing coarser linear systems based on the
information provided by the fine-grid linear system. For complex Hermitian matrices, the
coarse linear systems can be build using the Galerkin condition, which has been studied
in [125, 126]. If the use of a simple smoother such as weighted-Jacobi or Gauss-seidel is
preferred, the coarse grid correction scheme should balance the simplicity of the smoother
by accurately transferring smooth errors from the coarse grid to the fine grid [126]. If the
linear system is complex symmetric, linear interpolation can be used to construct the pro-
longation operator. The restriction operator can then be chosen as the transpose of the
prolongation operator. In fact, for real matrices optimality studies have been conducted in
order to construct the interpolation and prolongation operators [127-130]. In [131], a sim-
ilar optimality condition from [129, 130] has been extended to the Hermitian case. These
studies show that the optimal prolongation and restriction operator are based on the eigen-
vectors of the system matrix and several approximations are given which could function as
a satisfactory proxy in the case of SPD and Hermitian systems respectively.

9.2.2. INDEFINITENESS

Including a complex shift, leads to the Complex Shifted Laplacian (CSL), which converges
if the multigrid method is used as a preconditioner. Consequently, multigrid has also been
used as a preconditioner to solve the original indefinite Helmholtz problem, where the CSL
is inverted approximately [27, 33, 109, 132]. While this works well for homogeneous prob-
lems, it is not suitable for heterogeneous problems with high contrasts [27, 29]. When it
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comes to using multigrid as a stand-alone solver for original Helmholtz operator, several
studies have focused on getting multigrid to comply with the underlying characteristics of
the indefinite system. One study uses a smoothed aggregation approach, where an effec-
tive prolongation operator is constructed by minimizing the energy norm defined using
the normal equations A A. This is achieved by running the CGNR algorithm to solve the
equation AY AP = 0, where P is the tentative prolongation operator [133, 134]. Two other
methods are the wave-ray approach [112] and the first-order least squares (FOLS) approach
[135]. Both compute multiple coarse spaces to approximate the plane waves in the near
null space. In both works, the development of more efficient approaches for such linear
systems has been stressed. Moreover, for variable wavenumbers, it remains challenging to
choose an effective prolongation and restriction operator, especially if the aim is to keep the
algorithm as light as possible.

9.2.3. POLYNOMIAL SMOOTHING

One important study finds that replacing the weighted-Jacobi smoother with a few GM-
RES iterations could lead to improved convergence [110]. In [102], it was shown that for
the 1D indefinite Helmholtz equation, convergence can be achieved by considering a two-
step Jacobi smoother. Scheduling the smoothing steps on all levels as a function of the
wavenumber provides a uniform error reduction in the high-frequency modes. More re-
cently a 2D dispersion correction has been developed for the original Helmholtz operator
with a constant wavenumber. Here, a larger number of smoothing steps combined with
at least 4.5 grid points per wavelength at the coarsest level leads to a convergent multigrid
scheme. [51]. A full multigrid hierarchy, without any restrictions on the grid resolution at
the coarsest level, is given in [136]. Here, a re-discretization technique is used where a level-
dependent complex shift is incorporated, except the finest level. The authors show that
the altered two-grid correction scheme, combined with 3 GMRES iterations as a smoother,
remains robust and does not lead to agitation of smooth modes. The method works well
on structured grids and in cases where the behavior of the wavenumber on the fine and
coarse(r) grids can be defined a-priori. Complex geometries, high-contrast and irregularly
varying wavenumber would pose difficulties in constructing the level-dependent coarser
linear systems when using re-discretization.

9.3. PROBLEM DESCRIPTION

We continue by defining the model problems which will be studied in this chapter. We focus
on the 2D constant wavenumber model using k > 0, which we call MP 2-A.

MP 2-A

11
S(x=5y=3) (xy)eQ=[01], (2

—Au(x,y) — K u(x,y) u(x,y)

(%—ik) u(x,y) = 0, (x,y)eoQ.

The final test problem uses a non-constant wavenumber k(x, y). This gives us MP 2-B as
defined below
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MP 2-B

1 1
(x=5y=3) (Ry)eQ=[01] ©3)

—Au(x,y) —k(x,y)*u(xy) u(xy)

(5 - k) Julxy) = o (yeca

k(x,y)

K+ x(xy) |k — k3

’

where y(x,y) is a random real function in the range of [0,1] and kj, k, are positive real
numbers. Note that in this case k varies exactly between k; and k,. We use second-order
finite differences to discretize the model problems and define the step-size h = %, where n
is chosen such that for each ki, k, we have kh = 0.625. This is equivalent to having 10 grid
points per wavelength.

9.4, MULTIGRID METHODS

In this section, we prove two properties which we need in order to construct a robust solver:
convergence and an optimal smoother. We start with convergence and then work our way
towards deriving optimality conditions for the w—Jacobi smoother. The w—Jacobi smoother
is known to diverge for Helmholtz problems. However, we show that with the right condi-
tions, we can obtain a convergent solver.

9.4.1. CONVERGENCE

For convergence of the two-grid method we require that | Tp|, < 1 independent of 4. We
can write Ty as Tp = I — DA, where D represents an approximation to A~ !, This is shown in
Lemma 15.1. We use this to show that if the two-grid operator Ty can be written in this form
and the two-norm is bounded by one, then the multigrid method will converge.

Lemma 15.1: Convergence - I

Let A€ C"*" be a non-singular and non-defective matrix, and let the two-grid op-
erator be given by Ty = (I—P'A."'PA)(I— X"'A). Then, T, can be written as
To = I— DA, with

D=X'4+PA"'P-P A Px! (9.4)

Moreover we have To = 1 — AHDH,

Proof. Expanding Ty, and factoring in terms of A we have

To=I-X'A—P A 'PA+P A 'PX 4, (9.5)
=I—-(X"+PATP—PATIPX T A 9.6)
=1—-DA, 9.7)
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where D=X"'+P'A.7'P—P'A,~'PX~!. We similarly obtain

Ty = ((1—P'a,'PA) (1—x'4))", 9.8)

— (1-x'a)"(1—P' A, 'PA)", 9.9)

= (1-Afx71) (1-a"P'(4,1) "' P), 9.10)

—1—ATX L AHp (A M) T P AT X AR P (A ) TR 9.11)

—1—af (X_l +P’(ACH)_1P—X—lAHP’(ACH)_IP), 9.12)

=1—A"DH, (9.13)

where D = X1 4 P/ (A1) T P— x 1P/ (A1) TP, ]

It has been shown that convergence of the two-grid operator implies multigrid conver-
gence, see [36]. The proof is based on an induction argument, where for the W—cycle, it
is shown that the multigrid iteration matrix can be written as the two-grid iteration matrix
plus a perturbation term. The perturbation term is bounded if the prolongation operator
is a bounded linear operator and the smoother can be bounded by a constant. Note that a
convergent smoothing scheme is not required. In fact, the smoothing property also holds
for non-convergent iterations [36]. It is only required that the error is smoothed up to a cer-
tain v, where v is the number of smoothing steps. In other words, there exists a v such that
the error is reduced. It is not imperative that the smoothing property holds for v = co. We
now work towards conditions for which || Ty |, < 1 holds.

Theorem 16: Convergence - I

Let Ae C"*" be a non-singular and non-defective matrix. Let the two-grid operator
be given by Ty = (I— P'A.~1PA) (I— X! A), where X is the w—Jacobi smoother,
P, P’ e R"*™ are the prolongation and restriction operator and A, = P’ AP. Let

r=A"DH 4+ pDA— APDH DA, (9.14)

then Ty Ty = I —T. If T is positive definite, then A; (T') € (0,2) and | Ty|, < 1 inde-
pendent of A.

Proof. Using equation Lemma 15.1, equation Eq. (9.7) and Eq. (9.13), we can write

To" Ty = (I— A"DM) (1-DA), (9.15)
=I—(DA+A"D" — A"D"DA), (9.16)
=1-T. (9.17)

We can show a stronger result than just positive definiteness since I' is also Hermitian. To
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see this, note

rH = (aA"D" + DA— AMDHDA)", 9.18)
— (DA+ AHDMYY _ (AHDHD A", 9.19)
(
— (DAY + (ADMYY _ (AHDH DAY, 9.20)
(DA)
=AD" y DA— AUDHDA=T. 9.21)

Given that I is HPD, the singular value decomposition (SVD) and eigendecomposition co-
incide, so we can find a unitary matrix U € C"*" such that T = UZr UH, where X is the
diagonal matrix containing the singular resp. eigenvalues (o), where we have g, > 0, >
03...=0,>0. We have

r=A"DH 4+ DA— AP DY DA, (9.22)
which is equivalent to
>r=UA"DR UM + uDAUT —UA" DH DAUY, (9.23)
By our assumption on I being positive definite, we have that for all x € C"\{0},
0<x"Tx<0<x?A"DHx+ x"DAx—x" AP D" D Ax. (9.24)
Similarly, by using Eq. (9.23), for all x e C"*\{0},

0<xfsrx <0< xFUuA"DEUx + xFUDAU" x — xHU AR DH D AU  , (9.25)
<0< xHUARDHDAU x < xFUAT DU x + xHUD AU  x. (9.26)

Using the unitary invariance of the SVD, Eq. (9.26) leads to

0<x"HUA"DDAUY x < xHUA" DU x + xHUD AU  x, 9.27)
=0<0;(DA)® <o;(A"D" + DA) <20;(DA), (9.28)
=0j(DA)<2. (9.29)

This gives an upperbound for o j(DA). We now develop the upper bound for the largest
singular value of T', which is denoted by o (I'). We know that 0 < 0;j(DA) < 2. The case
where 0 < 0j(DA) < 1 is trivial as that automatically renders | Ty|, < 1. We focus on the
case where 1 < 0j(DA) < 2. Recall, we assumed I' is HPD, but DA does not necessarily
have to be. As a result, the singular value decomposition for I" with unitary matrix U might
not coincide with the singular value decomposition for D A.

Suppose, we can write DAas DA= WTpgu VH where WV = [. We then still have

AEDHDA = VT HWHWT puVE, (9.30)
VAARDHDAV =T pafTps = (Tpa)?. (9.31)
Moreover, we also have for vj e V
DAvj=0;(DA)ujand (9.32)
(DAvj))" = v;HAHDH = u;H5;(DA). 9.33)
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For WVH # I we will always have that for some index j and v jeVandwjeW
ijwj + ijvj <2,
where we used that the complex parts cancel out. We therefore have
vDAv+ v AR D"y = vifo j(DA)u; + wif o (DA)v; <20 (DA).
Taking x = v; in Eq. (9.24) and using Eq. (9.35), xHTx can be bounded by

0<v;"A"D"v; 4+ v;"DAv; — v;" A"D" D Avj,
2
=0;(DA) (vl w;+w;tv;) —o (DAY,
<20(DA)—0j(DA)?=0;(DA)(2—0;(DA)),
<oj(DA)<2.

As T is positive definite, the eigenvalues and singular values coincide and we have
Amin(T) > 0 and Apmax(T) < 2.

We are now ready to bound the two-grid operator T, using the 2-norm over C"*"

I Tolo= sup [ (To"To) x| =4/ p(To7 Ty),
xeCH, | x|2=1

—\/p (AHDH + DA— AHDHDA)),

f\/maxmj (AHDH + DA— AHDHDA))|,

< \/|1 —minA;(AHDH + DA— AHDHDA)],

<l1,

(9.34)

(9.35)

(9.36)
(9.37)

(9.38)
(9.39)

(9.40)

(9.41)
(9.42)

(9.43)

where we used that trivially 0 < minA; (A¥ D" + DA — A" DH D A) by positive definiteness

of I'. As regards, the largest eigenvalue, we obtain

T  Tolo=  sup | (To"To) x|z =1/p(To"Ty),

xXeCH, | x|2=1

—\/p (AHDH + DA— AHDHDA)),

—\/maxmj (AHDH + DA— AHDHDA))|,

< \/|1 —maxA; (AHDH + DA— AHDHDA)|,

<4/|1—2| =1, using Eq. (9.40).

Thus, if T is positive definite then A;(T') € (0,2) and consequently A;(Tp) € (0,1).

(9.44)
(9.45)
(9.46)

(9.47)
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Theorem 16 shows that if I' is positive definite, then the eigenvalues of Ty will lie in the in-
terval (0,1) which automatically leads to a bound for the 2-norm of the two-grid operator.
Note that this is independent of #, as no constant appears in Eq. (9.40) which depends on
h. Now that we know that a sufficient conditions for convergence is to have I' be positive
definite, we need a way to practically assess this. One approach is by simplifying the expres-
sion for I' and finding another sufficient condition for positive definiteness, which is more
easy to analyze. This will be constructed in Corollary 16.1. We again start by defining the
simplified operator in Definition 7.

Definition 7 (Simplified operator). Let A€ C"*" be a non-singular and non-defective ma-
trix. PP’ e R"*™ are real valued prolongation and restriction operators and A = P' AP. The
w—Jacobi smoother is given by X = wA 4, where A denotes the diagonal matrix containing
the diagonal entries of A. Then we defineD = X~ + P' A, ' P such thatT = A"D" + DA—
AHDHDA.

Note that in the definition given above, D does not contain the term P’ AC*IPX —1 A which
is part of the original operator D.

Corollary 16.1: Convergence - 11

Let A € C"*" be a non-singular and non-defective matrix. Let I’ be defined as in
Definition 7. If T is positive definite, then T from Theorem 16 is positive definite.

Proof. To see this, we write I as

Ir=A"DH + DA— AMDHDA, (9.48)
— (A"D" 4 DA— APDHDA) + AT X' P (A ) T PP/ AT PX T A (9.49)
— AFDHP AT X A— AMX TP (A ) T PDA. (9.50)

We assume T is positive definite and HPD respectively. Now, assuming the opposite, i.e. T
is not HPD implies that 3x € C™\ {0} such that

HEx+ A" x 1P (A7) T PP AT PX T Ax (%) m

—xHAEDHP A, ' PX 1 Ax— xHAHX*lp’(ACH)’IPDAx <0, (%)

By assumption and the fact that the second term in () contains a quadratic form, (x) is
always positive for any x € C"*\ {0}. But if I is not positive definite then using (**) we must
also have

0<xHEx+x7a¥x 1P (4.H) 7' PP A, PX T Ax, (9.51)

<xTAPDHP AT PX T Ax+ 2 AT X 1P (AH) T PDAx (9.52)

We show that P’ A.~!PX ™! A has singular values equal to zero. Observe that the rank of
P'A,~'PX~'Ais £. Suppose we can write the singular value decompositionas I'= W (P’ A, "' PX1A) V.

In this case we have V and W to represent two unitary complex matrices as we have not as-
sumed that P’ A, ' PX ! Ais HPD. We know that P’ A, ~! P is singular and half of all singular
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values are equal to zero. We thus need to show that P’ A, "' PX ! A has zero singular val-
ues as well. In order to do this, we use an analogous version of Ostrowski’s theorem. Here
instead of using eigenvalues, we use singular values. According to the theorem [66], for
KeC™"and Y e C"*" with Y is non-singular, we have

0j(KY)<01(Y)oj(4), j=12,...n, (9.53)

where oy > 05 > ...0,,. Applying Eq. (9.53) to our case by taking K = P’A.,"'Pand Y =
X1 A, we obtain

oj(PPAT'PXTA) <01(X'A)oj(P'AT'P), j=12,..n (9.54)

We know that o1 (X! A) > 0 given that both X and A are non-singular. However, we know
that P’ A.~! P is singular and has zero singular values. Thus there exists indices j such that

o;(P'AT'PX71A) <0, je{1,2,...n}. (9.55)

Trivially 0 < 05 (P’A.~'PX~1A) is a lower bound for the smallest singular value. Combin-
ing this with Eq. (9.55) leads to

0<a;(P'AT'PXT1A) <0, Fje{1,2,...n}, (9.56)

and so by the interlacing theorem, we must have that there exist at least one singular value

atanindex j such thato; (P'A. ™' PX ™' A) = 0. Naturally, the eigenvalue of P'A.~'PX ™' A

corresponding to the index j must be zero as well, given that the singular value is zero.

We know that for any complex matrix, there exists a unitary matrix such that we can write

it in the Schur decomposition. Without the assumption of normality, it solves a general

eigenvalue problem of the form Kv = ABv for some matrix B.

We take x = v it corresponding to the zero eigenvalue, which we denote by /1(} such that
P’A;lp)(*lAyf = )Lf(P’AflPX’IA)B 7=0Bv;. (9.57)

Substituting Eq. (9.57) into Eq. (9.52) gives

0< UfoUj+ v]vHAHX_IP’(ACH)_IPP’AC_IPX_lAvf, (9.58)
< u]:HAHDHP’Aflpx*lAu;jL viHAHX*lp’(ACH)’IPDAv;, (9.59)
=A%-HAEDHBY -+ 2%0-HBHD Av: = 0. (9.60)

jl J jJ J

This gives a contradiction as I" is assumed to be positive definite and must always be larger
than zero for any x € C"\ {0}. We thus have that if T is positive definite, then x!'Tx>0Vxe
C™\ {0}, i.e. T must be positive definite as well. [ ]

Using the above, we now have that it is sufficient to check if T is positive definite. We there-
fore test for convergence by verifying whether I is positive definite. We use the Cholesky
decomposition to determine whether T is positive definite, as any HPD system matrix B
can be written as B = LL*, where L€ C"*" is a lower-triangular matrix. Another method to
check for positive definiteness without having to compute the Cholesky factors is by check-
ing all of the following
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1. b;; >0Vi

[\

. biierjj >2|%[bij]| fori#j
3. The element with the largest modulus lies on the diagonal

4. det(B)>0

CONVERGENCE FOR HELMHOLTZ

We now proceed by evaluating these properties for the Helmholtz operator. We use MP2-
A, which uses a constant wavenumber k. We numerically investigate the changes we can
make to the design of the coarse-grid system in order to achieve convergence. In this work,
we consider two options; we either use higher-order interpolation schemes to construct
the prolongation and restriction operator and/or we use the CSL, which will be denoted by
C, as the system on which we apply the coarsening operations. We use the higher-order
interpolation scheme based on the quadratic rational Beziér curve from [78]. There, the
scheme was used to construct the deflation vectors for a two-level deflation preconditioner,
which showed wavenumber independent convergence. The main motivation for studying
these type of higher-order schemes is that they have been shown to reduce the projection
error. Using this scheme, the prolongation operator acts on a grid function as follows

P[UZh]i _ i'la ([uzhl](i—z)/g + 6[u2h](i)/2 + [”2h](i+2)/2> if i is even, , 9.61)
2 ([u2h](i_1)/2+ [uzh](i+1)/2 if i is odd,

fori=1,...,Nandfori=1,..., %, where N denotes the size of the fine-level linear system.
Note that the second line (i = odd) is in fact the linear interpolation scheme. Thus, we now
have a combination of both a higher-order and linear interpolation scheme for the nodes i
within the numerical domain.

The inclusion of the complex shift was first applied to multigrid schemes in [136]. There,
the main motivation relies on spectral analysis of the two-grid operator and the observation
that the coarse-grid eigenvalues can never approach zero due to the complex part. We pro-
ceed by a different yet general theoretical argument, which is independent of the boundary
conditions. Moreover, we include a constant complex shift compared to a level-dependent
one.

In Table 9.1, we show that the use of the CSL in combination with a higher-order interpo-
lation scheme in fact leads to a HPD system. Note that while our conditions do not require
the actual computation of the spectral radius, we will do so for sake of illustration and com-
pleteness.
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Linear Beziér
k A C A C
5 | X 2284 X 1304 | v 1.009 v 0.936
10 | X 5888 X 1.351 | v 1.106 v 0.943
20| X 878 X 1328 | v 1306 v 0.968
30 | X 10.660 X 1.325 | X 1.504 X 0.990

Table 9.1: At the right of each entry, the spectral radius of the two-grid operator is given. Linear uses linear interpo-
lation to construct P, P’. Beziér uses rational quadratic Beziér interpolation. Arepresents A = P’ AP. C represents
A¢ = P'CP, where C denotes the CSL. In all cases, one post-smoothing step is used. Left of each entry, v' denotes
that I" is HPD and X denotes it is not.

Several interesting observations can be made. First of all, in almost call cases when using
a combination of both higher-order interpolation and the CSL for coarsening, we obtain
an HPD matrix and consequently a spectral radius which is bounded by one. However,
in the last entry we observe that while the matrix ceases to be HPD, we still have that the
spectral radius of the two-grid operator is bounded by 1. If we increase the number of post-
smoothing steps i.e., replace X! with X~!, where X~! =2X~! — X' AX~! in the theo-
rems above, then the matrix becomes HPD again (see Table 9.2). While we observe that the
two-grid method can converge given the right parameter choices, the current spectral radii
indicate that convergence will be slow.

Finally, we report the positive definiteness of I' in Table 9.2, which will be easier to verify
compared to I'. From the previous, we know that in order to have an HPD matrix we need
both coarsening on C and higher-order prolongation and restriction. Therefore, we only re-
port the results for I and I" using these adjustments. The results reported in Table 9.2 agree
with Corollary 16.1.

v=1 v=2
k|T r|T T
5| v Vv |V V
0|v v I|Iv V
2| v V|V V
30| X X |V oV

Table 9.2: v denotes whether T and T are HPD respectively. X denotes if they’re not. v denotes the number of
post-smoothing steps.
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9.4.2. OPTIMALITY

Apart from having a condition to check for convergence, we would like to have a measure of
how fast we can expect the two-grid method to converge. By having a positive definite I, we
know that the minimal and maximal eigenvalues are bounded by zero and two respectively.
To obtain a more accurate estimate, we study the condition number of I' and T. Using the
condition numbers we obtain a sharper bound in Theorem 16. This entails that the smallest
eigenvalue of I" will be a lower bound to the smallest eigenvalue of I'.

Corollary 16.2: Convergence Optimality Condition - I

Let A € C"™ " be a non-singular and non-defective matrix and let D = X! +
P'A. P IT = AHDH + DA— A DH D Ajis positive definite and |T'| < |T| together
with x(T') < x(T) then Amin(T) is given and bounded by

IT]

——— < Amin(T). 9.62
K(r) mm( ) ( )

Proof. Note that I and I are HPD and so all eigenvalues are real. We can therefore consider
IT~!| and |T'~!|. Moreover, ¥ matrices B € C"*", p(B) = maxi<j<n|A;(B)| < ||B| in any
associative norm. If x (T') < x(T'), then we obtain

1 1 x(T)  «(T .
ms :Qsﬁ:ur—lnsur—ln. (9.63)

Il < |7 = T TR
(L

Using that the systems are HPD, we have

p(T™1) = max [4;(07)| = min [A,(T) 7" <[], (9.64

1<j<n 1<
Note that this gives the reciprocal of the smallest eigenvalue of I'. To get the actual smallest

eigenvalue of I', we have to take the reciprocal, which provides us with inequality Eq. (9.62)
and a lower bound to Apin (T). [ |

We can use Corollary 16.2 to construct a sharper bound in Theorem 16.

Corollary 16.3: Convergence Optimality Condition - II

Let Ae C™*" be a non-singular and non-defective indefinite matrix. Let Ty be such
that we can write Ty as Ty = I —DAwithD = X'+ P/ A, 'P—P' A, "'PX ! Let
I' =AD"+ DA— AYDHDA. IfT = A"D" + DA— A"D¥DAwith D = X! +
P'A. 1P, is positive definite and | T|| < ||T| together with x(T') < x(T'), then

r
1" T2 < ‘PQ' <1

x(I)
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Using Theorem 16 we can write Ty Ty = I — . Using Eq. (9.43) from Theorem 16 and sub-
stituting Eq. (9.62) from Corollary 16.3 have

ITo" Tolo = sup  |[(To"To) x| =1/p(To" To),

XEC || x|2=1

=4/|1—=minA;(T)|, (9.65)
<4/[1—=minA;(T)|, (9.66)

< l—ﬂ‘<1. (9.67)
x(T)

OPTIMAL CONVERGENCE FOR HELMHOLTZ

From Section 9.4, we have observed that we need a clever combination of coarsening us-
ing the CSL, higher-order interpolation schemes and the right amount of smoothing steps
in order to obtain HPD systems. The results from Table 9.1, however, indicate that conver-
gence will be slow as the spectral radius is still close to one. We can use Corollary 16.3 to
obtain some insights into how we can optimize the convergence. In this work we focus on
the remaining parameter we can work with; the relaxation parameter w in the w—Jacobi
smoother. We let w vary and report the value of Eq. (9.62) from Corollary 16.2 in Table 9.3.
Note that smaller these number, the closer to one the two-grid spectral radius will be, given
Eq. (9.67).

w=1.5 w=2 w=25 w=4.5 w=7

k|v=1l v=2|v=1 v=2|v=1 v=2|v=1 v=2|v=1 v=2
5 0.250 0.100 | 0.250 0.251 | 0.200 0.242 | 0.083 0.200 | 0.001 0.125
10 | 0.142 0.071 | 0.125 0.142 | 0.111 0.142 | 0.023 0.111 | 0.001 0.038
20 | 0.030 0.030 | 0.030 0.029 | 0.023 0.024 | 0.007 0.024 | 0.001 0.016
30 | 0.009 0.006 | 0.008 0.008 | 0.007 0.008 | 0.001 0.007 | 0.001 0.003

Table 9.3: We report the value of |||« () ™! in the p = 1 norm, with [ from Corollary 16.2. v denotes the number
of w-Jacobi smoothing steps.

The results from Table 9.3 reveal that a lower w is in favor when we use one post-smoothing
steps. For w = 1.5, we observe that increasing k and v leads to an decrease in |T'|x(T) L.
This means that as we perform more smoothing steps, the two-grid spectral radius moves
closer and closer to one. For faster convergence, we require the opposite: the addition of a
few more smoothing steps should lead to an increase rather than a decrease in | ||« (T) !
Based on these results, the optimal estimate for w lies between [2,4.5] for the reported val-
ues of k. Moreover, increasing the number of post-smoothing steps can help repair the pos-
itive definiteness of I and therefore I'. While in general the application of the w—Jacobi
smoother diverges for highly indefinite Helmholtz problems, choosing the right v com-
bined with a higher-order interpolation scheme and alternative coarsening strategies can
lead to a simple yet convergent two-grid scheme.
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9.5. NUMERICAL EXPERIMENTS

In this section we examine the convergence behavior of the multigrid solver. We use the
model problems from Section 9.3. Unless stated otherwise, we use 10 grid points per wave-
length, which is equivalent to kh = 0.625. All experiments are implemented sequentially
on a Dell laptop using 8GB RAM and a i7-8665U processor. In all experiments, we set the
relative tolerance to 10~°. We allow for coarsening until the dimension of the underlying
linear system N, is smaller than 10. The maximum size of the linear system on the coarsest
grid is therefore 10 x 10. We use the w—Jacobi smoother with the approximate optimal re-
laxation parameter from Section 9.4.2.1, i.e. w = 4.5 as we want to test for large k. Moreover,
we perform the coarse-grid corrections using the higher-order prolongation and restriction
operator, together with the CSL. For the latter, the complex shift is set at 8, = 0.7 unless
stated otherwise.

9.5.1. 2D CONSTANT k

For the constant wavenumber problem (MP 2-A), we first start by confirming that we have
h—independent convergence. Recall that the constant from Theorem 16 does not depend
on h, which for the proposed setup should lead to h—independent convergence. Thus,
while the convergence bounds can be shown to be independent of A, the practical conver-
gence speed may still depend on £.

h—INDEPENDENCE
We report the results for various k using h = 277, with p =5 up to p = 9. We observe that

k=15 k=30
h v=1 v=2 wv=4|v=1 v=2 v
2751 45 24 18 0) 0)
276 | 34 22 18 66 37
277 | 36 22 18 52 33
278 | 40 24 18 54 34
279 | 42 23 18 58 36

4

NN NN
NN - NOIN

Table 9.4: Number of V-cycles for k = 15 and k = 30. v denotes the number of w-Jacobi smoothing steps using
w = 4.5 © denotes the case where kh > 0.625, which is excluded.

the solver indeed performs independently of h. In fact, it appears that with 4 smoothing
steps, the solver converges in about Ck iterations, where C ~ 1 is a constant. The latter
holds irrespective of the problem size.

GENERAL RESULTS

Now that we have established, both theoretically and numerically, that the convergence
is h—independent once we take 4 smoothing steps, we revert back to letting kk = 0.625.
Note that in order to obtain improved accuracy, kh can be decreased without affecting the
convergence behavior due to the h—independence. In Table 9.5 we report the results for
MP 2-A using a constant wavenumber and Sommerfeld boundary conditions. From Ta-
ble 9.5 we observe that for the V-cycle the convergence improves if we use more smooth-
ing steps. Note that these additional smoothing steps are computationally cheap, as we
use the w—Jacobi smoother. In general, we observe that we again need approximately Ck
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Table 9.5: Number of V- (y = 1) and W-cycles (y = 2) for constant k (MP 2-A) using tol. 107°. v denotes the

number of w-Jacobi smoothing steps. Np is the size of the coarsest system.

k=50 k=100 k=150 k=200 k=250
N=6724 | N=26244 | N=57600 | N=102400 | N = 160000
Np =38 Np=38 Np =4 Np=38 Np =4
Y 1 2 1 2 1 2 1 2 1 2
v=4 | 58 58 104 108 | 155 159 | 209 213 267 271
v=5 | 58 58 104 104 | 150 166 | 194 229 238 287
v=6 | 55 58 99 102 | 139 167 | 183 222 226 283
v=7 | 53 60 97 101 | 136 163 | 179 219 221 280
v=8 | 53 60 95 104 | 131 161 | 178 212 218 277

iterations with C ~ 1, in order to reach convergence. While the convergence behavior is
promising, the results do provide some further insights into the behavior of the smoother.
For example, we observe that moving from a V-cycle to a W-cycle does not seem to improve
the performance. In fact, we observe that we need more iterations instead of less. One po-
tential explanation could be that we know that in general the w—Jacobi smoother diverges
for Helmholtz-type of problems. While this in itself does not have to lead to divergence
(the smoothing property is still satisfied for a divergent smoother, see [36]), the use of the
W-cycle requires more smoothing iterations than the V-cycle. At some point we expect the
efficiency of these smoothing steps to reduce, which could be reflected in the higher num-
ber of iterations.
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Figure 9.1: Real part of the 2D solution for MP2-A k = 100 (left) and k = 150 (right)

y-direction

)
y-direction

o
N
- -
P
-
o =
, -
.
"—-
8"
-
-

=)

I

@
[
=)

\
ALY

&
o o
O
L]
.

.
-
Ll
’

.

L]
'
n.'
o.'
.
.

.
.

&

o

0.4 0.6 0.8
x-direction

o
o
N

04 0.6 0.8 1
x-direction

9.5.2. 2D RESULTS NON-CONSTANT k(x, y)

In this subsection we report on the numerical results for the non-constant wavenumber
model problem. We distinguish two cases; a medium-varying and a highly-varying wavenum-
ber profile problem. In this respect the profile contains either smooth or sharp changes be-
tween a range of wavenumbers. For an illustration of the wavenumber profile, see Fig. 9.2
for the smooth changing wavenumber profile and Fig. 9.3 for the profile where the wavenum-
ber changes sharply. In all cases we make sure that the largest value of k(x, y) still obeys the
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rule of thumb kh ~ 0.625.
SMOOTH CHANGES

Fig. 9.2 illustrates how the wavenumber varies between 10 and 75 for the medium-varying
problem. Note that the transition from a low to high wavenumber goes gradually.
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Figure 9.2: Left: real part of the 2D numerical solution. Right: k(x, y)

Table 9.6 contains the number of V-cycles needed to reach convergence for k(x, y) varying
between (10,50) and (10,75) respectively. We again observe that the number of iterations
scales linearly with k. The iteration count follows approximately Ck, with C ~ 1, where k in
this case denotes the largest wavenumber. In this event, the W-cycle does lead to a smaller
number of iterations, compared to the case where we have a constant wavenumber.

Table 9.6: Number of V- (y = 1) and W-cycles (y = 2) for MP 2-B (medium variation). v
denotes the number of w-Jacobi smoothing steps.

(k1 k2) = (10,50) (k1 k2) = (10,75)

y |1 2 1 2
v=4 |65 60 90 88
v=5| 62 59 86 86
v=6 | 61 58 85 85
v=7|60 57 84 84
v=8| 59 57 83 83

SHARP CHANGES

In this subsection we report on the results for the highly-varying profile model problem,
containing sharp changes between the wavenumbers k = 10 and k = 75. Fig. 9.3 illustrates
how the wavenumber varies between 10 and 75 for the medium-varying problem. In this
case, we let k(x,y) vary randomly, which gives a wavenumber which varies highly across
the entire numerical domain.
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Figure 9.3: Left: real part of the 2D numerical solution. Right: k(x, y)

Table 9.7 contains the number of V-cycles needed to reach convergence for k(x,y) vary-
ing between (10,50) and (10,75) respectively. We immediately observe that the number of
iterations goes up by a factor of approximately 1.5 once we allow for the sharp and rapid
changes in the wavenumber. For example for the medium-varying case containing more
smooth transition between the wavenumbers, using 8 smoothing steps, we had 59 and 57
iterations respectively for the V- and W-cycle. In this case, we have 94 iterations for both
the V- and W-cycle. Another interesting observation is that for the W-cycle, k(x, y) varying
between 10 and 75 leads to a larger number of iterations when v > 4. This could again be
an indication of the smoother losing some of its efficacy when we allow for more smooth-
ing operations using the W-cycle. Also for this model problem, we conclude that as the
wavenumber grows, the V-cycle is preferred over the W-cycle for this choice of smoothing
scheme. In the reported cases, the method converges in approximately 1.5k iterations,
where k is the largest admissible wavenumber.

(k1 kz2) = (10,50) (K1, k2) = (10,75)

y 1 2 1 2

v=4 | 102 96 111 107
v=5| 97 95 103 105
v=6| 95 95 101 104
v=7| 94 94 102 104
v=8| 94 94 102 104

Table 9.7: Number of V- (y = 1) and W-cycles (y = 2) for MP 2-B (high variation). v denotes
the number of w-Jacobi smoothing steps.

9.5.3. GMRES-SMOOTHING

In this section we explore how the solver performs when we use GMRES(3) smoothing. In
[136], where the authors propose coarsening on the CSL instead of the original Helmholtz
operator, GMRES(3) is used as the only smoother. The motivation for this lies in the fact that
indeed the w—Jacobi diverges when combined with the original and standard configuration
of the multigrid method. By using a few GMRES iterations, the smoother acts as a polyno-
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mial smoother. Already in [110], the use of GMRES(3) was proposed as a smoother. There,
the authors manually optimized the smoothing schedule, where the number of smoothing
steps ranges between 13 and 39 smoothing steps for a constant k ranging from 4 to 327.
More generally in the literature, on each level where the Jacobi smoother becomes unsta-
ble, the smoother is replaced by the Krylov iterations ranging between 5-40 iterations per
smoothing step [110, 114, 115]. In this work we let the number of smoothing steps using
GMRES(3) vary between 1 and 5. One advantage of this approach is that by allowing for
only 3 GMRES iterations per smoothing step, the cost of applying GMRES does not increase
significantly with respect to memory and computation time. We perform the same numer-
ical experiments using the model problems mentioned previously.

2D RESULTS CONSTANT k

In this subsection we report the results for the constant wavenumber model problem (MP
2-A). As we are coarsening using the CSL, we want to distinguish between the cases where
the complex shift is large versus small. We therefore start by keeping the shift §, = 0.7,
similar to the one used in all previous experiments. Results are reported in Table 9.8 for 1
up to 5 smoothing steps. We immediately observe that the number of iterations for both
the V- and W-cycle are drastically reduced. If we compare these results to the ones obtained
when using the w—Jacobi smoother in Table 9.5, the reduction in the number of iterations is
approximately 2.5 times. For example, when using 5 smoothing steps within a V-cycle, the
w—Jacobi smoother requires 238 iterations to reach convergence. When GMRES(3) is used
as a smoother with a similar amount of smoothing steps, 88 iterations are required to reach
convergence. Note that there appears to be no difference in the number of iterations when
using the V-cycle and W-cycle.

Table 9.8: Number of V- (y = 1) and W-cycles (y = 2) for constant k (MP 2-A) using tol. 107°. v denotes the
number of GMRES(3) smoothing steps with f = 0.7

k=50 k=100 k=150 k=200 k=250
N=6724 | N=26244 | N=57600 | N =102400 | N = 160000
Np=38 Np=38 Np=4 Np =38 Np=4
1 2 1 2 1 2 1 2 1 2

=

37 36 | 68 67 99 98 132 131 162 161
29 29 |53 53 78 78 104 104 128 128
24 24 | 45 45 67 67 89 89 112 112
22 22 |40 40 59 59 78 78 98 98
20 20 | 36 36 53 53 71 71 88 88

R R R =<
Il
GA W

Next, we repeat the same numerical experiments, however this time we set the complex
shift to B, = k~!. Note that this is a very small shift, in fact the CSL matrix starts being
a close resemblance of the original Helmholtz operator. Results are reported in Table 9.9.
For all cases, we report that there is a drastic improvement in the number of iterations. We
obtain a solver which is close to k— independent when we use v > 2 and y = 2. Unlike the
previous case where 8, = 0.7 in Table 9.8, we now do observe a lower number of iterations
for the W-cycle.

In fact, additional numerical experiments confirm that the results are similar if we let §, = 0,
which results in the original Helmholtz operator. Thus, when using GMRES(3) as a smoother,
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the original Helmholtz operator can in fact be used instead of the CSL for coarsening within
the multigrid hierarchy. However, the fast convergence is only observed when combined
with the high-order prolongation and restriction operators.

Given that we obtained the best numerical results with 8, = k~! without any additional
costs, we continue with this shift for the CSL in the upcoming sections.

k=50 k=100 k=150 k=200 k=250
N=6724 | N=26244 | N=57600 | N =102400 | N = 160000

Np=28 Np=38 Np=4 Np=38 Np=4

Y 1 2 1 2 1 2 1 2 1 2

v=1| 14 7 24 10 39 19 51 24 64 29

v=2| 8 5 13 7 22 10 28 13 34 16

v=3| 6 5 10 6 16 9 20 10 24 12

v=4| 6 5 8 5 12 7 15 9 18 10

v=>5] 5 5 7 5 11 7 13 8 15 9

Table 9.9: Number of V- (y = 1) and W-cycles (y = 2) for constant k (MP 2-A) using tol. 10~°. v denotes the
number of GMRES(3) smoothing steps with S = k1.

2D RESULTS NON-CONSTANT k(x, )

Finally, we investigate the convergence behavior using the GMRES(3) smoother on the highly-
varying problem (MP 2-B2). In Section 9.5.2, we observed that this was the hardest problem
to solve in terms of heterogeneous problem, due to the wavenumber varying highly be-
tween k = 10 and k = 75 across the numerical domain. Thus, we only test for this case in
this subsection.

SHARP CHANGES

Results are reported in Table 9.10 and again indicate a drastic improvement compared to the
case where we use the w—Jacobi smoother. In fact, even for this highly-varying model con-
taining sharp changes between the wavenumbers k = 10 and k = 75, where the wavenum-
ber is allowed to vary randomly between 10 and 75 across the domain, we obtain a k— and
h—independent multigrid solver for v > 3. Similar to the previous case, even when using the
original Helmholtz operator, we reach convergence when using GMRES(3) as a smoother.
However, the k—independence is only observed when the higher-order prolongation and
restriction scheme is used. These results are promising and provide a solid framework for
future research, given that the current industry standard (CSL preconditioner with multi-
grid inversion) works well for homogeneous problems, but is less suitable for heteroge-
neous problems with sharp changes between wavenumbers due to the instability of the
inexact inversion using geometric multigrid [27, 29].
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(k1 k2) = (10,50) (K1, k2) = (10,75)

Y 1 2 1 2
v=1| 28 12 31 12
v=2 116 8 17 7
v=3 | 12 7 12 6
v=4 |10 6 10 6
v=5|9 6 9 6

Table 9.10: Number of V- (y = 1) and W-cycles (y = 2) for MP 2-B (high variation). v de-
notes the number of GMRES(3) smoothing steps and 82 = kmax L.

9.6. CONCLUSION

In this chapter, we developed a novel stand-alone multigrid solver for the indefinite Helmholtz
equation using standard-components, such as the weighted Jacobi smoother. The resulting
algorithm additionally shows h—independent convergence and thus adheres to the classic
multigrid features. Two novel and striking features should be mentioned. First of all, no
restriction is imposed on the number of grid points on the coarsest grid. As a result, we
construct a full multigrid hierarchy for both the V- and W-cycles. Second of all, no level-
dependent parameters are needed.

Apart from the numerical results, we provide a new theory to assess convergence of highly
indefinite linear systems. Where most proofs require some adjointness and/or symme-
try assumptions on the underlying linear system, we have constructed theoretical notions
which do not require such assumptions. In fact, we have found that the addition of a com-
plex shift, solely for the purpose of coarsening in the multigrid hierarchy, combined with
higher-order interpolation schemes for the inter-grid transfer operators leads to a Hermi-
tian positive definite (HPD) system. The positive definiteness can be verified for medium-
sized wavenumbers by assessing properties of the matrix. As a result, it can be shown that
the convergence is independent of h. Thus, the computation of the spectral radius can be
circumvented, especially since the analytical eigenvalues can only be computed in case of
Dirichlet boundary conditions. We also study the behavior of the solver once we use GM-
RES(3) as a smoother instead of w—Jacobi. The convergence significantly improves and
less smoothing steps are needed. Second of all, if we use GMRES(3) as a smoother, we can
keep the complex shift very small without paying a penalty in terms of additional costs.
As a result, we obtain close to k— and h—independent convergence, both for the constant
wavenumber model problem and the non-constant wavenumber model problem. In fact,
we can even use the original Helmholtz operator for coarsening in this configuration with-
outlosing efficiency and effectiveness as the GMRES iterations provide polynomial smooth-
ing.

This work is one of the few to demonstrate, both theoretically and numerically, the existence
and potential of multigrid methods for such linear systems. However, a lot of future work
remains to be done. For example, future research could focus on exploring different com-
binations of interpolation schemes and smoothers and extending proofs. We have shown
convergence for w—Jacobi, mainly because of its simplicity and parallelizability, but many
other options remain to be examined.
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This dissertation prolongs a long tradition of research in trying to find fast and robust nu-
merical methods for the Helmholtz equation. A fast and robust numerical solver should
lead to accurate solutions while being scalable in terms of the computational complexity
and the number of iterations to reach convergence. To study this both numerical and the-
oretically, we constructed three research pillars: wavenumber independent convergence,
linear complexity and accuracy. We outline our findings and results with respect to these
pillars below.

WAVENUMBER INDEPENDENT CONVERGENCE

The building block of the results related to convergence of the solver can be retraced to the
development of the two-level deflation preconditioner in Chapter 7. We theoretically show
if the near-zero eigenvalues of the indefinite fine-grid and coarse-grid operator at the sec-
ond level are misaligned, the number of iterations to reach convergence increases. This
effect can be attributed to the interpolation scheme not being able to sufficiently approxi-
mate the transferring of the oscillatory grid functions at very large wavenumbers.

We can analytically measure the effect of these errors on the construction of the projection
preconditioner by means of the projection error. The quality of the deflation vectors deter-
mine whether the projection error dominates. To minimize the projection error, we propose
the implementation of a higher order approximation scheme to construct the deflation vec-
tors. Here we used quadratic rational Bezier polynomials, as these provide us with control
points and respective weights to cater to our accuracy requirements.

The direct improvement of the preconditioned spectrum is visible in terms of clustering
and the absence of outliers and near-zero eigenvalues. Numerical experiments corroborate
these findings as the number of iterations to reach convergence for one-, two- and three-
dimensional constant wavenumber model problems are now more or less wavenumber in-
dependent. Similar results are obtained for heterogeneous problems.

The GMRES-based solver benefits significantly from having a fixed or close to wavenumber
independent number of iterations to reach convergence given that the computational cost
in terms of matrix-vector products and memory increases with each additional iteration.
However, several remarks are in place.

First of all, using a higher-order scheme to construct the deflation vectors results in a less
sparse coarse-grid matrix at the second level. The coarse-grid operator thus contains more
non-zero elements compared to the fine-grid operator. The two-level deflation precondi-
tioner requires the exact solution on the second level. While the problem size on the second
level is significantly smaller, this can become a problem for large wavenumber problems in
3D. Consequently, for sequential implementations, the need for multilevel methods which
balance the number of iterations to reach convergence and computational complexity is of
paramount importance when trying to solve large 3D problems.

LINEAR COMPLEXITY
Extending the two-level deflation preconditioner to a multilevel preconditioner comes nat-
urally once we aim to circumvent the memory bottleneck for large problem sizes. Similar
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to the two-level method, we use higher-order deflation vectors and construct a V-shaped
hierarchy in Chapter 8. We achieve this by recursively applying the two-level method. The
higher-order deflation vectors are also constructed on the basis of quadratic rational Bezier
polynomials.

An important theoretical finding in this chapter is that up to a certain level, the coefficient
matrices within the hierarchy are indefinite. These levels are of paramount importance as
the near-zero eigenvalues at these levels can effectively be removed by the multilevel defla-
tion preconditioner. If the near-zero eigenvalues are aligned, then the eigenvalues cluster
and near-zero eigenvalues are significantly minimized, accelerating the convergence. After
this level, the subsequent coarse coefficient matrices become negative definite.

The algorithm itself uses FGMRES as the outer solver and within each level of the hierarchy
adds either polynomial (on indefinite levels) or weighted-Jacobi 'smoothing’ (on negative
definite levels). We implement some inner Bi-CGSTAB-iterations as a polynomial smoother
to further reduce the smooth components of the error, similar to multigrid methods.

Sequential implementation of the method leads to scalable timing results for higher dimen-
sional model problems, which has been demonstrated using numerical experiments and a
complexity analysis. Also here, several remarks are in place. The method uses polynomial
inner smoothing by means of Bi-CGSTAB-iterations. For high wavenumbers and thus very
oscillatory waves, an inexact solve at the coarser level creates an additional sensitivity with
respect to the projected error. This can be counteracted by a few Bi-CGSTAB-iterations.
The challenge lies in balancing the number of inner iterations needed to obtain satisfactory
outer iterations, while keeping the overall complexity quasi-linear and the inner iterations
as small as possible.

A similar remark as regards the density of the coarse-grid systems can be due to the use of
the higher-order deflation schemes. The complexity study reveals that we quickly achieve a
break-even point as regards the additional memory and computational cost once we apply
the solver to 2D and 3D model problems with large wavenumbers.

Finally, the development of the multilevel deflation preconditioner lies very close to the
construction of a multigrid hierarchy. While multigrid works well for the positive-definite
variant of the Helmholtz equation or when the wavenumber is small, the method generally
fails to converge as a stand-alone solver or requires too strict restrictions on the coarsest
grid in order to remain feasible and attain linear complexity.

Using the same building blocks from the quadratic rational Bezier polynomials, we now
construct the inter-grid transfer operators using this higher-order scheme. Note that this is
the same as the deflation matrices used in deflation-based preconditioners. Apart from the
numerical results, we discuss a new theory to assess convergence of highly indefinite linear
systems. Where most proofs require some adjointness and/or symmetry assumptions on
the underlying linear system, we have constructed theoretical notions which do not require
such assumptions. In fact, we find that the addition of a complex shift, solely for the pur-
pose of coarsening in the multigrid hierarchy, combined with higher-order interpolation
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schemes for the inter-grid transfer operators leads to a Hermitian positive definite (HPD)
system. Thus, the computation of the spectral radius can be circumvented.

We study the behavior using two smoothers: weighted-Jacobi and polynomial smoothing

using GMRES(3). Numerical experiments on 2D constant and non-constant wavenumber

problems show that while the method converges, the number of iterations are not wavenum-
ber independent. Once we allow for polynomial smoothing, the convergence improves sig-

nificantly and less smoothing steps are needed. This polynomial smoothing is reminiscent

of the Bi-CGSTAB-iterations in the multilevel deflation method.

This work is one of the few to demonstrate, both theoretically and numerically, the existence
and potential of multigrid methods for such linear systems. Some remarks are in place. The
method so far shows a sensitivity to the use of Dirichlet boundary conditions on a part of
the boundary, which requires much more iterations to reach convergence compared to the
case of Sommerfeld boundary conditions. Also, while the multigrid solver finally converges
and adheres to the linear complexity requirement, the number of iterations are still large
and we lose the sense of wavenumber independent convergence. This can be remedied
by using polynomial smoothers, but can come at a future cost when trying to construct a
parallel version of the solver. At last, more theory needs to be developed in order to better
understand why the wavenumber independent convergence is lost in the first place.

ACCURACY

Our last research pillar deals with the accuracy of the numerical solutions. In the absence of
any numerical errors, the waves modelled by the Helmholtz equation will propagate with-
out any dissipation or dispersion. However, shifting from the continuous problem to its
discrete counterpart, gives rise to the pollution error, which can not be removed in 2D and
3D and grows with the wavenumber.

Chapter 5 in this dissertation provides the first theoretical basis for defining the pollution
error in terms of the eigenvalues. By examining the behavior of the eigenvalues, we pro-
pose an upper bound for the relative error and show that if the near-zero eigenvalues and
eigenvectors are approximated with high accuracy, then the dispersion part of the pollution
error can be minimized considerably. The results also illustrate that the error grows in an
oscillatory manner, and the error bound is able to capture and reveal this effect.

We additionally study a theoretical framework where the pollution error can be brought to
approximately zero for very large wavenumbers, irrespective of the grid resolution. The ba-
sis of this approach lies in correcting the respective eigenvalues with the remainder, which
depends on the order of the truncation error of the finite difference scheme. Consequently,
it is possible to obtain pollution-free and therefore accurate one- and 2D solutions using
coarser grids. The solutions obtained account for all propagation angles simultaneously
and do not rely on pre-determined angles for plane-wave propagation and error correction,
which promotes a detailed study of the pollution effect in higher dimensions.

These theoretical results are primarily useful in trying to obtain an in depth understand-
ing of the pollution error in higher dimensions. For more practical results, we study the
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use of IgA discretized linear systems for the Helmholtz equation in Chapter 6. In particular,
we show that the use of IgA reduces the pollution error significantly compared to p—order
FEM. However, the pollution error can not be removed completely and continues to grow
with the wavenumber k, unless more degrees of freedom are used. Additionally, obtain-
ing better accuracy by increasing the order p comes at the cost of more dense matrices.
Depending on the application and the required level of accuracy, IgA can provide more ac-
curate solutions using smaller linear systems compared to p—order FEM.
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In this chapter we are going to discuss the outlook and future work related to the content
of this dissertation. We again distinguish between the three research pillars and also briefly
provide an additional section discussing novel opportunities and applications.

WAVENUMBER INDEPENDENT CONVERGENCE

In the previous chapter we mentioned that the two-level deflation solver can run into mem-
ory bottlenecks for large 3D problems due to the more dense coarse-grid linear system at
the second level which needs to be solved exactly. One important step forward would be
to investigate parallelization techniques. In case we can parallelize the two-level deflation
preconditioner efficiently, we can benefit from the wavenumber independent convergence
while moving towards better time complexity. Another challenging research aspect would
be to investigate whether we can implement a parallel version of the deflation precondi-
tioner in a matrix-free way. Here, the use of different Krylov subspace methods, such as
IDR(s), could also be explored.

LINEAR COMPLEXITY

Entering the high-performance computing realm, will allow for more large scale testing of
3D model problems. It would be interesting to observe whether the multilevel deflation and
multigrid methods can be parallelized efficiently and where the most computational gains
can be realized.

As for the multilevel deflation method, some research can be dedicated to developing more
theory in order to understand how the remaining error behaves once subjected to the poly-
nomial smoothing using the inner BICG-stab iterations.

Regarding the multigrid solver, apart from considering it as a stand-alone solver, it would
be interesting to assess its application in the classical sense of being used as a precondi-
tioner. In fact, in practice the CSL preconditioner is always inverted inexactly using one or
two multigrid iterations. If the use of the novel multigrid scheme could be used in a similar
fashion, however at the cost of less iterations than this could potentially provide a new way
of applying multigrid as a preconditioner for highly indefinite operators.

When it comes to perpetuating its use as a stand-alone solver, a lot of theory remains to be
developed and results to be analyzed. As this is one of the first cases where convergence
is reached for highly indefinite 2D constant and non-constant wavenumber problems, the
method is still in its infancy. For example, more theory could be developed related to how
large the optimal shift should be for coarsening purposes. Similarly, the inclusion of differ-
ent smoothers remains to be investigated as well as testing the solver on 3D model prob-
lems.

ACCURACY

Apart from obtaining faster solutions, we always aim to obtain accurate solutions as well. In
relation to this dissertation, several topics remain to be explored. For example, the theory
from the pollution error in higher-dimensions could be extended to include the 3D case.
Here, the Green’s function for the model problem should be derived analytically and the
proofs have to be extended to obtain similar explicit bounds in terms of the eigenvalues.
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The application of IgA to the Helmholtz equation and wave problems in general is quite
novel and various directions remain to be explored as well. One area of investigation could
be how the pollution error responds to local or adaptive refinement techniques. It would
also be important to test for more industrial model problems. Both 2— and p—refinement
methods could be studied and related to the pollution error. Here, some results from our
work on the theoretical properties of the pollution error could be combined, where we ap-
plied a similar local p—refinement correction through the eigenvalues which significantly
reduced the pollution error while keeping the size of the linear systems fixed.

In the extended version of our IgA work, we furthermore observed that using IgA for the
Helmholtz equation goes well with the two-level deflation based solver compared to the
industry standard CSL preconditioner. Combining these future refinement techniques and
balancing the sparsity of the linear system coefficient matrices, could provide an all-round
numerical solver tailored for wave propagation problems respecting both the accuracy and
scalability requirements, without necessarily increasing the problem sizes.

ADDITIONAL APPLICATIONS AND METHODS

Many methods developed in this section can also be applied to the time-harmonic Maxwell
equation. This remains to be investigated and could provide additional insights into the
behavior of the solver in case of non-scalar equations. Preliminary results using the time-
harmonic elastic wave equation have showed similar convergence properties. However,
more interesting would be to allow these numerical methods to be studied in conjunction
with time-stepping methods to explore the time-dependent variants of the PDEs studied in
this dissertation.

The extension to these time-dependent variants will allow for broader reception in indus-
trial applications. For example, a lot of interest has been shown for the CSL preconditioner.
However, it still remains unclear how to apply this to the Maxwell equation and what ro-
bustness guarantees can be deduced.

Finally, the deflation preconditioner and domain decomposition based preconditioners
used in parallel solvers contain a lot of similarities. In the construction of these domain
decomposition preconditioners, a coarse space is also added to obtain better scalability
with the number of sub-domains and the number of iterations to reach convergence. The
quadratic rational Bezier polynomials, similar to the ones used to construct the deflation
and multigrid inter-grid transfer vectors, could be used to construct these coarse spaces
within the domain decomposition preconditioner. Its influence on the convergence and
the scalability with respect to the wavenumber and number of sub-domains could then be-
come another potential topic for future research.
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