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Abstract
Depression has become one of the most common mental illnesses in the world. For
better prediction and diagnosis, methods of automatic depression recognition based on
speech signal are constantly proposed and updated, with a transition from the early
traditional methods based on hand‐crafted features to the application of architectures of
deep learning. This paper systematically and precisely outlines the most prominent and
up‐to‐date research of automatic depression recognition by intelligent speech signal
processing so far. Furthermore, methods for acoustic feature extraction, algorithms for
classification and regression, as well as end to end deep models are investigated and
analysed. Finally, general trends are summarised and key unresolved issues are identified
to be considered in future studies of automatic speech depression recognition.

1 | INTRODUCTION

Depression has become a global health crisis in recent years
with younger and faster growth and wider coverage. According
to the data of World Health Organization, it is estimated that
5% of adults suffer from the disorder globally. Over 300
million people in the world have depression while over 54
million in China [1]. However, only 10% of depressed patients
seek medical treatment in China while COVID‐19 pandemic
brings more challenges [2–4]. Depression can increase the risk
of suicide in severe cases. People with depression are 20 times
more likely to commit suicide [5]. In addition, depression has
become the fourth leading cause of death among people aged
15–29 [6]. Accordingly, depression not only burdens patients

with a heavy financial burden, causing huge losses to in-
dividuals but also affects families and communities, and hin-
ders the sustainable development of nations.

At present, the diagnosis of depression is usually made by
questionnaires such as the Hamilton Rating Scale for Depres-
sion (HAM‐D) [7], the Beck Depression Inventory‐II (BDI‐II)
[8], the Patient Health Questionnaire (PHQ) [9], the Quick In-
ventory of Depressive Symptomatology [10], the Youth Mania
Rating Scale (YMRS) [11], the Montgomery Åsberg Depression
Rating Scale (MADRS) [12], and the Diagnostic and Statistical
Manual of Mental Disorders‐IV (DSM‐IV) [13]. Besides,
objective physiological indicators are supplemented. However,
such diagnostic methods rely on patient's cooperative attitude,
expressiveness, and familiarity with the questionnaire. At the
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same time, a large amount of clinical data is also required to
support the diagnosis. What's more, there are other types of
depression in addition to the most common major depressive
disorder (MDD), further increasing the difficulty of diagnosis.
Misdiagnosing the depression type or using the wrong treatment
may delay or even worsen the patient's condition. Therefore, it is
of great significance to find accurate, effective and objective
diagnostic features for different types of depression.

Recently, automatic depression recognition and analysis has
received extensive attention in the fields of medicine, psy-
chology, and computer science. Since depressed patients and
normal people behave differently in facial expressions, body
postures, speech signal, physiological signals, and audio, re-
searchers have tried to collect and analyse above information
of depressed patients to predict the level of depression. In this
article, we focus on automatic depression recognition by
intelligent processing of speech signal as speech signal can
reflect the depression tendency of subjects with slowed speech
rate, prolonged pause, and different pitch changes [12, 14].
Specifically, in acoustics, the fundamental frequency F0 of the
patient has a limited change while the second formant F2 is
significantly reduced and the degree of variation in low fre-
quency spectrum is decreased. Hence, the correlation of
speech acoustic features with depression makes it a reliable
objective marker for depression assessment [15]. Moreover,
speech signal can be acquired non‐intrusively, remotely, and the
cost is relatively low, speech depression recognition (SDR) is
easier to start than the research based on other modalities. In
specific, SDR has undergone a transition from the early
traditional methods based on hand‐crafted features to the
application of architectures of deep learning, from the usage of
only acoustic features to the current application of multiple
features [16–18]. However, there is still a lack of a research
review to systematically and precisely sort out methods of
automatic depression recognition by intelligent speech signal
processing so far.

On the basis of extensive literature reading, this paper
makes a systematic and in‐depth summary of SDR, and gives
an overview of the development history of the methods used
in different stages. The main contributions of this paper are: (1)
Introduce and sort out the most prominent and up‐to‐date
literature in SDR in recent years in chronological order; (2)
Investigate major trends in SDR and analyse their corre-
sponding pros and cons; (3) Explore promising research di-
rections for SDR in the future. The rest of this paper is
organised as follows: Section II provides a detailed description
and discussion of research evolution; Section III is about
public datasets employed for automatic depression recognition.
Section V gives conclusion and future work of SDR.

2 | RESEARCH EVOLUTION

Acoustic signal processing and machine learning technology
jointly push the development of SDR. Figure 1 shows the
development history accordingly. As proved in previous works,
the acoustic features of depressed patient are different from

healthy individuals [19–21]. Therefore, in the early stage of the
studies of SDR, the main work is to learn acoustic features
related with depression and explore feature set for better per-
formance [22, 23]. In themeantime, traditional machine learning
algorithms are employed in SDR such as Support Vector Ma-
chine (SVM) [24–27], Hidden Markov Model [28], Gaussian
MixtureModel (GMM) [ [27, 29, 30], K‐means [31, 32], Boosting
Logistic Regression [33–35], multi‐layer perceptron [30, 35], etc.

In recent years, deep learning methods have made break-
throughs in the research fields of both Computer Vision (CV)
and Nature Language Processing (NLP). Therefore, many
studies have shifted from the traditional hand crafted acoustic
features to the framework based on deep learning for SDR
[36]. There are two application ways for deep learning methods
in this field. One is to extract hand‐crafted features from
speech signals and then input them into deep neural network
[37], where deep framework is only used as classifier. The other
is to apply an end‐to‐end deep architecture, which feeds the
original audio signal or spectrum to deep network to learn
high‐level features automatically [38]. As it could solve the
problems encountered in hand‐crafted features, such as high
threshold, labour cost and low feature utilization rate, deep
learning slowly becomes the leader in the field of machine
learning. In addition, different neural network architectures are
employed such as Convolutional Neural Networks (CNN) [39],
Recurrent Neural Networks (RNN) [40], Long Short‐Term
Memory networks (LSTMs) [41], and Transformer [42].

However, in recent study, speech signal processing has
received renewed attention because vocal features capture
psychomotor activity associated with depression. Specifically,
depressed patients have worse vocal tract coordination, so
vocal tract variables and articulatory coordination features can
be represented by channel delay correlation matrix, improving
recognition performance effectively in SDR [43, 44]. Accord-
ingly, acoustic features combined with deep learning become
the most popular architectures in SDR.

2.1 | Speech depression recognition based
on hand‐crafted features

2.1.1 | Extraction of hand‐crafted features

As mentioned in previous section, depressed patients have
cognitive and psychomotor differences compared to normal
people. Owing to the sensibility of speech, slightly physical
or cognitive change could result in obvious acoustic change
[20, 45, 46]. In earlier research of SDR, low‐level acoustic
features are regularly used together with statistical features
while some feature extraction tools are employed to extract
features directly such as COVAREP, OpenSMILE. The
commonly used acoustic features are as follows:
Prosodic features include changes in pitch and loudness,

as well as changes in the length of syllables, words and phrases
[33, 47–49]. Among them, fundamental frequency (F0) and
energy are used to represent pitch and loudness perception
characteristics [50].
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Voice quality features capture characteristic informa-
tion of speech generating sources. These features can
parameterise the airflow from lung to glottis and vocal tract
motion including: Normalised Amplitude Quotient (NAQ),
Quasi Open Quotient, Harmonic Difference H1‐H2 and
H2‐H4, spectrum perturbation and amplitude perturbation
[33, 43, 49, 51].
Formant features include information about vocal tract

resonance and pronunciation efforts, which reflect the
characteristics of physical vocal tract. The first three for-
mants (F1‐F3) are usually used as formant characteristics in
SDR [47, 50].
Spectral features represent the correlation between vocal

tract shape changes and articulator movement including
spectral flux, energy, slope and flatness [49, 52], Mel‐ Fre-
quency Cepstrum Coefficient (MFCC) [33] and Linear Pre-
dictive Cepstrum Coefficient [49, 52, 53].

In recent years, acoustic features regain researchers'
attention as it is found that fusion of acoustic features can
improve the performance of SDR. As shown in Table 1,
typical acoustic Low Level Descriptors (LLDs) and their
statistic features in SDR are enumerated. Besides, Articulatory
Coordination Features (ACF) has achieved great success in
SDR by quantifying the time change of pronunciation action
[43, 54]. By investigating the correlation between MFCC and
formant, Williamson et.al achieve excellent recognition result
in SDR [54]. Besides, some following studies show good
prospect of ACF‐based vocal tract variable features in SDR
[55, 56].

2.1.2 | Classification algorithms

In early research of SDR, traditional classification or regression
algorithms are employed after feature extraction such as Sup-
port Vector Machine (SVM), Logistic Regression (LR),
Random Forest, Decision Tree, Gaussian Mixture Model
(GMM), K‐means, etc., which are as shown in Table 2.

Support Vector Machine is a classical machine learning
algorithm based on statistic, which shows excellent perfor-
mance in high‐dimensional, small sample and nonlinear
problems. Due to the high‐dimensional extracted acoustic
features, small‐scale depressive speech dataset, SVM became
the most popular classification algorithm in early research of
SDR [24–27, 58]. For example, Gong et al. employed a topic
modelling‐based approach to explore context‐relevant infor-
mation in depressive data (audio, video, text) using a Support
Vector Regressor (SVR) with three kernels (linear, polynomial,
radial basis functions) for his prediction task [25]. However,
this algorithm is slow to train and its performance is affected
by the combination of kernel functions and model parameters,
and results are slightly less interpretable.

Logistic Regression (LR) is also a common classification
algorithm based on statistics. Despite similar to SVM, LR is
usually applied in large‐scale dataset and can only process
discrete features. Due to its discretisation feature, logistic
regression is chosen to use for its fast speed, strong robustness,
easy crossover and feature combination [33–35]. Zaremba et al.
designed an integrated algorithm based on logistic regression
[33], which can preserve the diversity of feature subspace and

F I GURE 1 Development history of speech depression recognition (SDR)
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extract more discriminative features, which shows better per-
formance than GMM, SVM, random forest, decision tree and
AdaBoost.

Gaussian mixture model (GMM) uses Gaussian distribu-
tion as the parameter model and is trained by expectation
maximum, which shows outstanding performance in no‐label,
large‐scale dataset. As a clustering algorithm, it is employed in
early research of SDR [27, 30, 59, 69]. Moreover, GMM‐based
regression methods such as Gaussian Staircase Regression
(GSR) are proposed, where each GMM consists of an
ensemble of Gaussian classifiers [29, 54, 61, 62]. In specific,
firstly, speech features are mapped to different partitions of
clinical depression score, then the mapping results are used as
the basis of regression analysis.

2.2 | Speech depression recognition based
on deep learning

Due to the successful application in CV and NLP, deep
learning is introduced to SDR. Compared with traditional
methods, no human intervention is needed after the model and
parameters are determined. The essence of deep learning is to
learn high‐level abstract features automatically by building
more hidden layer models to improve the accuracy of classi-
fication or score prediction.

There are two ways to employ deep learning in SDR: (1)
Build a structure combined acoustic features with deep
learning method. Traditional acoustic features or deep acoustic
features are then put into the deep classifier for training,
recognition or prediction. When used as a feature extractor,
deep learning can avoid high labour cost and large‐scale loss of

feature, and the extensibility is better than traditional method.
When used as a classifier, deep classifiers have many advan-
tages, including dealing with complex structures and functions,
and unlabelled and incorrectly labelled data. (2) Build an end‐
to‐end deep architecture and then push raw signal or spec-
trogram into deep architecture to let model learn high‐level
features by itself.

2.2.1 | Deep learnt features

In Speech Emotion Recognition, deep speech features
through pre‐trained deep network have made remarkable
performance and are robust to noise changes [63, 64].
Accordingly, deep features are employed in SDR. Yang et al.
[65] used DCNN‐DNN to forecast depression severity score.
Firstly, push multi‐modal features in DCNN to learn high
global features with tight dynamic information. Then lead
these features in DNN to forecast PHQ‐8 score. Finally, the
PHQ‐8 scores of each mode are fused to obtain the final
result. Dong et al. learnt the deep feature from the original
signal and spectrum through ResNET, and then calculated
the correlation coefficient of delay multi‐channel change with
the Feature Variation Coordination Measurement algorithm
to obtain the coordination feature and learn the time infor-
mation of the deep feature [66]. Seneviratne et al. designed a
double‐layer neural network architecture of dilated CNN‐
LSTM [43]. In the first layer, dilated convolution neural
network (dilated CNN) was used to extract articulatory co-
ordination features (ACF). In the second layer, the channel
delay matrix was constructed to solve the problems of
repeated sampling in traditional methods and discontinuity on

TABLE 1 Typical acoustic Low Level Descriptors (LLDs) and their statistic features in SDR

LLDs Statistic features

Fundamental frequency (F0), energy, intensity, harmonic noise ratio (HNR),
speech speed, mel frequency cepstrum coefficient (MFCC), formant
amplitude, formant bandwidth, formant frequency, linear predictive
cepstrum coefficient (LPCC), spectral slope, normalised amplitude quotient
(NAQ), spectral perturbation (jitter), amplitude perturbation (shimmer)

Extreme value, maximum value, minimum value, average value, standard
deviation, variance, kurtosis, skewness, percentage, percentage range,
quartile, centre, deviation, slope, mean square error and duration

TABLE 2 Some traditional classification and regression algorithms applied in speech depression recognition (SDR)

Method Paper Dataset Performance Application scene

GMM Helfer et al. 2013 [27] Mundt‐35 AUC 0.76 Suitable for no‐label, large‐scale dataset

Williamson et al. 2013 [29] AVEC2013 MAE/RMSE 5.75/7.42

Williamson et al. 2014 [60] AVEC2014 MAE/RMSE 6.52/8.50

SVM Cummins et al. 2013 [26] Mundt‐35 Accuracy 66.9% Deal with high dimensional, small sample issues

Nasir et al. 2016 [24] DAIC‐WOZ F1 0.63

Gong et al. 2017 [25] DAIZ‐WOZ MAE/RMSE 3.96/4.99

LR Jan et al. 2017 [34] AVEC2014 MAE/RMSE 6.14/7.43 Suitable for large‐scale dataset, discrete features

Jayawardena et al. 2020 [35] DAIC‐WOZ RMSE 6.84

Decision tree Pampouchidou et al. 2016 [57] DAIZ‐WOZ F1 (D/N)0.52/0.81 Not sensitive on the errors of the dataset
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the boundary of adjacent sub matrix. Also, Huang et al. used
the model of all channel coordination convolution neural
network (FVTC‐CNN) to predict depression, in which the
expanded convolution neural network was used to extract the
characteristics of channel coordination [44].

Recently, auto‐encoder shows its good prospect in SDR
as a deep feature extractor [38, 65, 67–70]. Auto‐encoder
consists of two parts: encoder and decoder, encoder is used
to learn the abstract features of the input data, and the
function of the decoder is to remap the abstract features back
to the original space to obtain the reconstructed data. The
optimization goal is to optimise the model by minimising the
reconstruction error to learn the abstract features of the
input data. The advantage of automatic encoder is that it
belongs to unsupervised learning and does not rely on
annotation of data. Therefore, automatic encoder can be
regarded as an unsupervised nonlinear dimensionality reduc-
tion feature extraction method. Then several improved
models are proposed for different scenarios, including
denoising auto‐encoder [71], sparse auto‐encoder [72],
convolution auto‐encoder [73], variational auto‐encoder [74],
adversarial auto‐encoder [75]. For example, Sardari S., et al.
extracted deep features from speech depression data by
convolution auto‐encoder [76]. Due to the outstanding per-
formance of processing local data, convolution auto‐encoder
has stronger feature learning ability than auto‐encoder, which
also solves the problem of sample imbalance in the data set
by resampling method based on clustering. The experimental
results show that the recognition effect is better than the
previous ensemble CNN, DepAudioNet, SVM and other
methods.

2.2.2 | Deep classifiers

In SDR, the commonly used deep classifier algorithms
including Recurrent Neural Network (RNN), Deep Belief
Network, Convolution Neural Network (CNN), etc. As Ta-
ble 3 shows.

In specific, CNN could capture spatial properties of fea-
tures and has the ability of parallel computing. Therefore,
CNN can be used as a classifier for MFCC, spectrum or some
other deep learnt features [38, 44, 68, 77, 83–86]. Aiming at
characteristics of depressed patients with more speech pauses
and slower speech speed, and the problem that LSTM does
not perform well in long sequences, Haque et al. proposed
causal convolution neural network (C‐CNN) to deal with
audio [78], text and video data to get multi‐modal sequence‐
level feature instead of LSTM. In addition, ensemble
learning can improve recognition performance by combining
multiple models and the performance of ensemble convolu-
tional neural network model (integrating 50 one‐dimensional
convolutions) is also utilised in SDR [85]. The research
shows that the effect of integrating CNN is significantly better
than normal CNN method when the convolution kernel size is
appropriate ((1, 3), (1, 5), (1, 7)). In recent, Niu et al. proposed
a CNN model based on attention mechanism, namely time‐

frequency channel attention (TFCA) block [86], which is
used to emphasise the timestamp, frequency band and channel
related to depression detection. TFCA block solved the
problem that CNN global pooling cannot consider time
domain information of data. Although CNN is favoured by
researchers because of its excellent characteristics such as local
connection, weight sharing, pooling operation and multi‐layer
structure, but at the same time, it should also realize its
training difficulty and performance problems in very deep
networks.

RNN is a network based on sequence information, where
adjacent information is interdependent. Normally, this inter-
dependence is useful in predicting the future state. Like CNN,
it was born at the end of the last century. The great brilliance of
RNN in deep learning originated from [87] while LSTMs is the
most common RNN model in SDR. It avoids problems such
as gradient disappearance to a certain extent, and can relatively
learn information of long time series, so it is suitable for time
series data such as speech. Since deep learning methods have
been popularised in the field of SDR, a number of RNN‐based
studies have been carried out [37, 38, 77, 88, 89]. Alhanai et al.
employed LSTM to detect depression with Audio/Text feature
and came to a conclusion that the performance of context‐free
model is better than context‐weighted model [37]. Du et al.
proposed a novel LSTM module, namely IncepLSTM [88], by
combining inception module and LSTM to adapt to the situ-
ation that bipolar disorder occurs irregularly in different time
periods. However, RNN‐related algorithms have high time
cost due to their poor parallel ability, and RNN cannot be able
to cope with data that is too long.

2.2.3 | End to end deep architectures

Compared with methods of performing feature extraction and
classification separately, an end to end deep architecture pushes
raw signal or spectrogram into its model to learn and give
results as shown in Figure 2. End to end deep architecture have
advantages like that it does not require scholars to have a priori
knowledge, deep networks can learn better features and give
better classification result. However, there are a few issues
which limit end‐to‐end deep architectures, such as large‐scale
data supporting, overfitting easily and poor interpretability.

Ma et al. designed a deep model combined DCNN with
LSTM instead of previous SDR method based on acoustic
feature [36], named DepAudioNet. In their research, CNN is
applied to extract high‐level feature from raw wave while
LSTM is used to learn the temporal change of Mel scale filter
feature, which achieved good results on the DAIC‐WOZ data
set, and also strongly promoted the follow‐up end‐to‐end
model research.

Othmani et al. designed a deep neural network architecture
called EmoAudionet [77], input the preprocessed spectrum
into DCNN network and combine it with CNN network based
on MFCC features to improve performance. The results show
that the accuracy of EmoAudionet training in DAIC‐WOZ is
73.25%, while the F1 score is 82%.
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End‐to‐end deep model is difficult to determine the
contribution of each module in the architecture due to its end‐
to‐end characteristics, limiting further performance improve-
ment. In a word, end‐to‐end deep architectures have not yet

been widely used in the field of SDR because of its poor
interpretability, flexibility and current limited dataset scale. For
now, the most popular method is still the combination of
acoustic features and deep classifiers.

TABLE 3 Some deep classifiers applied in speech depression recognition (SDR) and their performance

Method Paper Dataset Performance Application scene

LSTM Alhanai et al. 2018 [37] DAIC‐WOZ MAE/RMSE 4.97/6.27 Suitable for time series issues

Du et al. 2018 [88] BD UAR/UAP/Accuracy 0.651/0.678/65.0%

Salekin et al. 2018 [89] DAIC‐WOZ F1/Accuracy 0.901/90%

Othmani et al. 2021 [77] DAIC‐WOZ F1 (D/N) 0.49/0.82 accuracy 73.35%

Zhang et al. 2021 [38] DAIC‐WOZ MAE/RMSE 5.48/6.31

CNN Yang et al. 2017 [84] DAIC‐WOZ MAE/RMSE 5.163/5.974 Deal with spatial–temporal issues

Haque et al. 2018 [78] DAIC‐WOZ F1/Precision/Recall 0.769/71.4%/83.3%

He et al. 2018 [79] AVEC2013/14 MAE/RMSE 8.78/10.90

Huang et al. 2020 [44] DAIC‐WOZ F1/Accuracy 0.700/82.9%

Muzammel et al. 2020 [83] DAIC‐WOZ Accuracy/Precision/
Recall/F1 86.06%/81%/73%/77%

Vâzquez‐Romero et al. 2020 [85] DAIC‐WOZ F1/Accuracy/Precision/
Recall 0.65/74%/55%/79%

Niu et al. 2021 [86] AVEC2013/14 MAE/RMSE (AVEC2013/2014)
6.01/8.15 7.00/8.96

RNN Chao et al. 2015 [80] AVEC2014 MAE/RMSE 7.91/9.98 Suitable for temporal sequence data

Al et al. 2018 [81] AVEC2013/14 MAE/RMSE 7.37/9.28

GAN Yang et al. 2020 [82] DAIC‐WOZ MAE/RMSE 4.634/5.520 Generate additional data to avoid
unbalanced or small samples

Transformer Sun et al. 2021 [68] E‐DAIC RMSE 3.783 Suitable for very long sequence data

Zhang et al, 2021 [38] DAIC‐WOZ MAE/RMSE 4.75/5.73

F I GURE 2 Framework of an end to end deep architecture
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3 | DATASETS

Different from speech emotion datasets, acted and evoked
datasets are difficult to apply directly to SDR. Generally,
speech depression datasets are recorded during the conversa-
tion from clinical doctor with depressed patients by face‐to‐
face, telephone interviews or virtual interviewers. In some
data collection processes, other modality information, such as
depression scale data, facial expression data, physiological dy-
namic information, etc., are also recorded at the same time for
auxiliary analysis.

Normally, a SDR dataset is composed of three parts:
interactive interviews with subjects, descriptions of pictures,
and recitations. Study finds that results of gender‐specific SDR
are affected by different parts of the data. For male subjects,
descriptions of pictures performed best for SDR. However, for
female subjects, interactive interviews performed best. There-
fore, designing different data acquisition schemes for gender is
an option worth considering. Moreover, it has been studied
whether positive, neutral, or negative speech affects the result
of SDR, but a unified conclusion has not yet been reached.
Jiang et al. [90] believed that these three affective states had no
significant effect for SDR. However, the results of the study
[67] showed that the overall accuracy of SDR was reduced after
removing negative speech. Therefore, further research is
required to verify the association of different affective states
with depression.

3.1 | Representative datasets

The collection of speech depression data is the basis for
conducting research of SDR. Table 4 lists representative
datasets in SDR.

AVEC2013 dataset and AVEC2014 dataset are the subset of
Audio‐Visual Depression Language Corpus. Particularly, the
Audio‐Visual Emotion Challenge (AVEC) is a competition
event aimed at comparison of multimedia processing and ma-
chine learning methods for automatic audio, visual and audio‐
visual emotion analysis. For AVEC2013, there are 340 videos
in German, which are recorded when participants performed
human‐computer interaction tasks in front of webcam and
microphone. Video files include free speech, reading, singing,
and picture‐seeing association tasks while BDI‐II is used to
annotate depression severity score of participant's interview
records. For AVEC2014, it is a subset of AVEC2013, consisting
of 300 videos in German, where duration of each video clip is
shorter than the clip in AVEC2013.

Distress Analysis Interview Corpus ‐ Wizard of Oz
(DAIC‐WOZ) is a part of Distress Analysis Interview Corpus
annotated by PHQ‐8, employed for AVEC2016 & AVEC2017.
Distress Analysis Interview Corpus ‐ Wizard of Oz adopts a
virtual interviewer as it is considered that being confronted
with a virtual interviewer makes subjects more willing to speak
out than a real person and emotion status of an interviewer
needs to be strictly controlled during the interview. Audio,
video and deep sensor modalities are collected in the dataset.

Besides, it also contains information of galvanic skin response
(GSR), electrocardiogram (ECG), participants' respiratory data.

E‐DAIC is an extended version of DAIC‐WOZ which is
collected from semi‐clinical interviews designed to support the
diagnosis of psychological distress conditions such as anxiety
and depression [97]. The dataset contains 163 development
samples, 56 training samples and 56 test samples, and the
participants' data are marked with age, gender and PHQ‐8
score is labelled. This database is employed for AVEC2019
[98].

The Bipolar Corpus, a new Turkish Audio‐Video Bipolar
Disorder Corpus, is collected by Elvan et.al used for effective
computing and psychiatric research. This corpus is also
employed for bipolar disorder sub‐challenge of AVEC2018,
which is annotated by Youth Mania Rating Scale (YMRS).
Videos of the dataset are recorded under seven tasks to
describe the state of bipolar disorder, such as explaining why
you went to the hospital, attending an activity, describing happy
and sad memories, counting to 30, describing two pictures that
evoke emotions, etc.

MODMA is the first Chinese multi‐modality depression
database available to our knowledge, including participant's
audio and EEG information from 23 patients and 29 healthy.
Audio information is recorded during the tasks of an 18‐
question interview from the Depression Scale, read aloud
and a description of emotional pictures. Table 5 shows the
results of some benchmark works on the representative data-
sets measured by F1 score, mean absolute error (MAE) and
root mean square error (RMSE).

3.2 | Dataset annotation

Depression dataset annotation is an important and difficult
task, the accuracy of which has a direct impact on the follow‐
up research. A complete annotation of speech depression
database is normally consisted of three parts: transcription,
analysation and annotation. Transcription is to transcribe audio
and linguistic information into text form; Analysation is to
further mark the acoustic features such as prosodic informa-
tion, speech speed, volume and tone changes on the basis of
transcription; Annotation is to mark the depression score of a
sentence. AVEC 2013 is annotated by BDI‐II from the two
dimensions of Arousal and Valence. In DAIC‐WOZ, the
ELAN tool is used in the transcription part, where psycho-
logical states of the interviewee as well as the content of the
dialogue and non‐verbal behaviours are analysed and anno-
tated; For MODMA, all recordings were manually segmented
and annotated by Statistical Manual of Mental Disorders
(DSM‐IV). Table 6 includes the range of score and the cor-
responding depression level for different questionnaires.

3.3 | Existing issues

Although SDR has made progress with existing datasets, the
following issues with datasets hinder the further development.
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(1) Objectivity of database annotation: Data annotation is the
basis of further work, however, the cognition of annota-
tors is not completely accurate, and the distribution of
depression scores will affect the performance of the
constructed model.

(2) Unavailability and small in scale: Due to the sensibility of
depression speech and the ethics problem, most in-
stitutions could not obtain sufficient samples. At present,
public depression databases available are AVEC2013,
AVEC2014, DAIC‐WOZ and BD, which are far from
needs of scientific research. Addressing ethical issues is
important for the publication of datasets.

(3) Non‐ universality: Currently, datasets employed in SDR
research come normally from interactive clinical interview,
in which the questions are carefully designed and there is
no noise interference like in real life. Therefore, these data
cannot fully reflect the normal life state of patients with
depression. Besides, the issue of cross language and cul-
tural has not yet been considered.

4 | CONCLUSION AND FUTURE WORK

Depression is a common mental disorder, the effective and
accurate diagnosis of which requires coordinated efforts among
clinical psychology, brain science, affective computing and other
fields. It is of great significance for both academic research and
clinical care to develop an automatic and objective evaluation
system. This paper systematically and comprehensively sorts out
depression recognition based on intelligent speech signal pro-
cessing. As stated in the paper, it can be found that the research
of SDR has undergone a shift from exploring acoustic features
to deep model research. At present, CNN and LSTM have
become the most popular deep models due to their advantages
in processing spatiotemporal features. In order to better apply
methods of deep learning, it is increasingly important to collect
large‐scale unified data. Although great progress has been made
in the field of SDR, there is still a long way for it to be put into
practical use. To achieve a breakthrough, the following chal-
lenges must be considered and overcome.

TABLE 4 Representative datasets in speech depression recognition (SDR)

Dataset Modality Label Number of subjects Number of clips Duration

Mundt‐35 (2007) [91] Audio HAMD QIDS 35 patients ‐ ‐

AVEC2013 [92] Audio/Video BDI‐II 84 patients 150 chips 20–50m

AVEC2014 [93] Audio/Video BDI‐II 84 patients 300 clips 6s‐4 m

DAIC‐WOZ (2014) [94] Audio/Video/ECG/GSR PHQ‐8 189 patients 189 clips Wizard‐of‐Oz 5–20m,
automated agent 15–25m

E‐DAIC (2014) [97] Audio/Video PHQ‐8 351 patients 275 clips ‐

Bipolar corpus (2018) [95] Audio/Video YMRS MADRS 46 depressed 49 control 218 clips At most 3. 7m

MODMA (2020) [96] Audio/EEG HRSD DSM‐IV 23 depressed 29 control 1508 clips At most 2.45 m

TABLE 5 Performance of different
methods on the representative datasets

Datasets Methods F1 MAE RMSE

AVEC2013 Correlation structure features + GSR (2013) [29] ‐ 5.75 7.42

AVEC2014 Hand/Deep features + DCNN (2018) [38] ‐ 8.1919 9.9998

Spectrogram + STA (2020) [99] ‐ 7.65 9.13

DAIC‐WOZ DepAudioNet (2016) [36] 0.52 ‐ ‐

Audio/Text LSTM with topic modelling (2018) [37] ‐ 4.97 6.27

Spectrum features + HATN (2020) [100] ‐ 4.28 5.66

DCGAN generated features + DCNN(2020) [82] ‐ 4.634 5.520

E‐DAIC Multi‐layer attention network on A/V/T features (2019) [101] ‐ ‐ 4.28

MODMA Multi‐head time‐dimension attention‐based LSTM (2021) [102] 0.987 ‐ ‐

TABLE 6 Depression rating for different questionnaires

Normal Mild Moderate Severe Very severe

HAM‐D [7] 0–7 8–13 14–18 19–22 ≥23

BDI‐II [8] 0–13 14–19 20–28 29–63 ‐

PHQ‐8 [103] 0–4 5–9 10–14 15–19 20–24

PHQ‐9 [9] 0–4 5–9 10–14 15–19 20–27

PHQ‐15 [104] 1–4 5–9 10–14 15–30 ‐

QIDS [10] 0–5 6–10 11–15 16–20 ≥21

YMRS [11] 0–5 6–12 13–19 20–29 ≥30

MADRS [12] 0–11 12–22 23–30 31–35 ≥36

DSM‐IV [13] ‐ ‐ 11–15 16–20 ≥21
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(1) Availability and limitations of the baseline dataset: Data-
base building is the basis of the research. However, there
are some restrictions of the existing databases caused by
different collection scenarios and methods, inconsistent
labelling, small data scale, and non‐disclosure due to pri-
vacy. It is a key to breakthroughs in depression analysis
based on speech signal to create a large‐scale database with
open standards, accurate and consistent labelling, cross‐
cultural and cross‐language.

(2) Model generalization: Most studies are limited to a single
or a few small‐scale datasets, which makes the models
perform poorly when faced with other datasets or data
from other languages. Therefore, it is also a necessary
study to improve the model generalization and robustness
across corpora, cultures, languages, and under noisy
environments.

(3) Unknown underlying correlation mechanism of acoustic
information: The medical mechanism of depression on
speech is a prerequisite for machine learning‐based
depression analysis research. To further improve the
recognition accuracy, it is necessary to collect and extract
clinical information on depression. Therefore, the
following research should increase the communication and
cooperation with other relevant professionals. It is a long‐
term and important topic to explore the underlying
acoustic mechanism of speech in depression.

(4) Different types of depression: As mentioned before, there
are different types of depression. For example, bipolar
disorder differs from the most common MDD in terms of
pathogenesis and performance. So far, little research has
been done on the difference between the two through the
speech signal.

(5) Multi‐modality fusion mechanism: Combining multiple
modalities for accurate and effective depression analysis is
an inevitable trend in future research, because different
modalities can effectively complement each other. How-
ever, the success of multimodal research is based on an
effective and appropriate fusion mechanism.
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