

Delft University of Technology

Aircraft Trajectory Prediction using ADS-B Data

YANG, X.; Sun, Junzi; Rajan, R.T.

Publication date
2022
Document Version
Final published version
Published in
42nd WIC Symposium on Information Theory and Signal Processing in the Benelux (SITB 2022)

Citation (APA)
YANG, X., Sun, J., & Rajan, R. T. (2022). Aircraft Trajectory Prediction using ADS-B Data. In J. Louveaux,
& F. Quitin (Eds.), 42nd WIC Symposium on Information Theory and Signal Processing in the Benelux
(SITB 2022) (pp. 113-122)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Aircraft Trajectory Prediction using ADS-B Data
Xuzhou Yang

Faculty of EEMCS
Delft University of Technology

Delft, The Netherlands
Email: x.yang-20@student.tudelft.nl

Junzi Sun
Faculty of Aerospace Engineering

Delft University of Technology
Delft, The Netherlands

Email: j.sun-1@tudelft.nl

Raj Thilak Rajan
Faculty of EEMCS

Delft University of Technology
Delft, The Netherlands

Email: r.t.rajan@tudelft.nl

Abstract—Automatic Dependent Surveillance - Broadcast
(ADS-B) is a surveillance technology that is used extensively in
Air Traffic Control (ATC) applications. Aircraft equipped with
ADS-B transponders actively broadcast navigation information
such as position, altitude, and velocity, and thus ATC is able
to track aircraft continuously, even in regions not covered by
traditional radars. However, raw ADS-B messages are typically
contaminated with noise, which is typically mitigated using
model-based tracking methods to predict the trajectories. In
this work, we propose and evaluate the performance of several
filtering strategies for trajectory prediction on an existing open
source TrajAir aircraft data set and our own data set i.e., collected
by Delft university of technology (TUD). In our evaluation, we
observe the standard Kalman filter cannot accurately track the
aircraft trajectory, especially for sharply maneuvering targets. A
fading-memory filter tracks maneuvering targets but introduces
delay in estimates, and requires a trade-off between respon-
siveness and smoothness by target-specific parameter tuning.
The Kalman filter with augmented process noise also involves
similar trade-off and parameter tuning. Finally, the particle filter
performs the best during target maneuvers but admits more
noise during steady-state and increases computational cost. In
this paper, we present various filtering techniques, and study the
performance of these algorithms on the TrajAir and TUD aircraft
data sets.

Index Terms—ADS-B, Kalman filter, Particle filter.

I. INTRODUCTION

Automatic Dependent Surveillance - Broadcast (ADS-B)
is an surveillance technology that is used extensively in Air
Traffic Control (ATC) applications. Aircraft broadcast ADS-
B messages periodically with on-board Mode-S transpon-
ders, which include navigational information such as sur-
face/airborne position, airborne velocity, call sign, operational
status, etc. ADS-B enables ATC ground stations to track air-
craft continuously in regions that are not covered by traditional
radars, as its coverage can be greatly extended by ground-
based or space-based ADS-B receivers. It is considered to be
a key component of the future air transportation system and is
mandated both by EUROCONTROL [3] in Europea and FAA
[4] in the U.S. since 2020.

Prior to the introduction of ADS-B, ATC applications
heavily relied on the primary surveillance radar (PSR) and
the secondary surveillance radar (SSR). PSR provides slant
distance as well as aircraft’s azimuth information with respect

This work is partially funded by the European Leadership Joint Undertaking
(ECSEL JU), under grant agreement No 876019, the ADACORSA project -
”Airborne Data Collection on Resilient System Architectures.”

to the radar location, while SSR provides aircraft’s altitude and
identity. However, inherent limitations of PSR and SSR tech-
nology hinder further improvement in accuracy and coverage.
ADS-B is thus introduced to enhance situational awareness for
ATC controllers and pilots.

In this paper, we evaluate several model-based tracking
methods on aircraft ADS-B data set. Section II explains the
information provided by the ADS-B messages and data pre-
processing techniques used to extract the relevant data. In
Section III, we build theoretical foundations of our tracking
methods with state space models and a Bayesian frame-
work and introduce the standard Kalman filter under constant
velocity dynamics (CV-KF). We further explore advanced
filtering algorithms in Section IV, i.e., the Kalman filter with
augmented noise (AP-KF), fading-memory Kalman filter (FM-
KF), and the particle filter (PF) are introduced. In Section V,
these methods are applied to predict aircraft trajectories, and
a comparison between different methods and more comments
are provided. Finally, in Section VI we summarize the results,
with insights on future work.

II. ADS-B DECODING AND PRE-PROCESSING

Nowadays, most of the aircraft are equipped with an ADS-
B system. It is thus easy to acquire these ADS-B signals, and
thus data, using an appropriate reciever system. Furthermore,
an open-source package pyModeS1 [10] provides us compre-
hensive functionalities to decode these ADS-B messages. In
this section, we briefly look at message parsing, and the pre-
processing of decoded data and relevant assumptions.

A. Description of data set

In this paper, we work with two realistic ADS-B data sets.
The first data set is an open source data set called the TrajAir
dataset 2, contributed by the AirLab from the robotics institute
at Carnegie Mellon University. The other data set is collected
by the faculty of aerospace engineering (AE) at TU Delft [5],
which we call the TUD data set.

1) TrajAir data set: The TrajAir data set contains fully
decoded ADS-B messages. The data set is collected at the
Pittsburgh-Butler Regional Airport. In this data set, we have

1https://github.com/junzis/pyModeS
2https://theairlab.org/trajair/

https://github.com/junzis/pyModeS
https://theairlab.org/trajair/

Fig. 1: TrajAir dataset: The left figure shows a snippet of processed aircraft trajectories and right figure demonstrates the left
traffic pattern and nomenclature for the runways at the airport [2].

the information about an aircraft’s status, including times-
tamps, geographical coordinates, velocity readings, track an-
gles, altitudes, and vertical rates at every valid time instance.
That is to say, the alternate transmitting behaviour of ADS-
B is not seen. Trajectories of landing or takeoff of a group
of aircraft are visualized in Fig.1. We can clearly see the
lobes for traffic patterns around this airport. The right part
of this figure shows the “Left Traffic” patterns. These patterns
are rectangular-shaped with left-handed turns relative to the
direction of landing or takeoff. Lighter color of trajectories
for lower altitude [2].

2) TUD data set: The TUD data set contains demodulated
(not decoded) ADS-B signals. The data set records about
15 minutes of air traffic near the region of Delft, covering
most part of the southern Holland. Every entry contains
timestamp, International Civil Aviation Organization (ICAO)
address, receiving power, garbling (True or False), cyclic
redundancy check (CRC) sign, and the 112-bit message string.
ADS-B broadcasts different types of messages alternately.
For position and velocity messages, which are of particular
interest in our application, the airborne transmitting frequency
is 2Hz. However, the TUD data set provides trajectories mostly
from commercial jets. To include more additional aircraft
trajectories, we use the TrajAir data set, which also contains
trajectories from light general aviation (GA) aircraft.

B. Decoding

In this section, we summarize the details of time of arrival
decoding, airborne position and airborne velocity decoding
from [1].

1) Time of arrival decoding: ADS-B is not designed to
contain any time of transmit information, but both data sets
timestamp received signals. So we associate aircraft positions
with time of arrival instead. Assumptions are made when we
replace time of transmit with the time of arrival. We assume
that for a sequence of messages, the time of propagation from
source to receiver is very short and approximately the same.
That means: 1) the aircraft does not travel a large distance
between two consecutive transmissions with reference to the
receiver; 2) there is no large difference in propagation time due

to multi-path. In this paper, these two assumptions generally
hold.

2) Airborne position decoding: A typical airborne position
message contains longitude, latitude, and altitude of an aircraft.
It is trivial to decode altitude but longitude and latitude are
encoded in Compact Position Reporting (CPR) format. We use
locally unambiguous position decoding for our own data set.
Locally unambiguous position decoding [1] requires a known
reference position. It should be close to the decoded position,
e.g., within a range of 180 nautical miles (NM). The advantage
is that from every piece of encoded messages we can decode a
position. Here we choose the faculty of Aerospace Engineering
building as the reference point.

3) Airborne velocity decoding: The airborne velocity mes-
sage reports velocity decomposed in East-West, North-South
and vertical directions. In the field of civil aviation, it is
common to compute the track angle without considering
altitude changes. It is trivial to decode the message itself. But
it is worth noting that only ground speed can be used in our
application. The ground speed of aircraft is the sum of the true
airspeed vector and the wind velocity vector.

C. Data pre-processing and formatting

After decoding, we reorganize the data into tables of
records. A record or a row in a table contains an aircraft’s
two-dimensional positions and velocity, associated with a
timestamp. The initial timestamp and positions are set to zeros
and other timestamps and positions in this table are calculated
with respect to this. A table contains consecutive records for
an aircraft. A ready-for-use table of a BOEING 737-4Z9 flying
over southern Holland is shown in Table I. The first available
position in the data sequence is set as (0, 0). Based on the
assumptions in section II-B, we assign messages received
within, say, one-second interval with the same timestamp.
Similar pre-processing is applied to the TrajAir dataset as well,
but with a finer step in time. This pre-processing technique
makes sure that for each time instance both the position and
velocity data are available.

1) Two flight scenes: We chose two typical flight scenes
from each data set respectively, which we refer to as Scene

TABLE I: A snippet of fully decoded ADS-B data

Time(s) icao Px(m) Py(m) Vx(m/s) Vy(m/s)
0 4CA8AD 0 0 175.8 -143.9
1 4CA8AD 157.6 -129.0 175.8 -143.9
1 4CA8AD 241.1 -197.4 175.8 -143.9
2 4CA8AD 334.2 -273.6 175.8 -143.9
2 4CA8AD 412.9 -338.0 175.8 -143.9
3 4CA8AD 505.3 -413.7 175.8 -143.9
3 4CA8AD 594.7 -486.9 175.8 -143.9
4 4CA8AD 704.0 -576.4 175.8 -143.9
4 4CA8AD 764.6 -626.0 175.8 -143.9
5 4CA8AD 849.8 -695.8 175.8 -143.9

1 and Scene 2 in this paper. We use Xdata to denote raw
trajectories.

• Scene 1: This scene contains a trajectory of an jet liner,
which flew in linear motion for some time period, and
then made a lazy turn. The aircraft maintains cruising
speed and altitude in this period. The trajectory of the
aircraft is shown in Fig.2a.

• Scene 2: It contains the landing trajectory of a GA
aircraft. The aircraft made sharper turns and changed its
velocity frequently. Compared to that in Scene 1, this
trajectory exhibits more abrupt changes in states. This is
shown in Fig.2a.

(a)

(b)

Fig. 2: Two flight scenes. Scene 1 is from the TUD data set and
Scene 2 is from the TrajAir data set.

III. STATE SPACE MODEL AND KALMAN FILTER

Almost all existing tracking methods heavily rely on the
models of the aircraft motion. However, in our task, the precise
knowledge of aircraft dynamics is not assumed. Furthermore,
it is not computationally efficient to use a very sophisticated
model. Thus, we rely on simple dynamic models in this
application. It is then an important problem that how we can
mitigate the model mismatch caused by this oversimplification.

A. Kalman filter

The task of trajectory prediction can be considered as a
state estimation problem. It requires the algorithm to retrieve
signal of interest from noisy data and construct a reasonable
(regarding target dynamics) trajectory from available data. If
we consider a linear Gaussian state space model, then the
Kalman filter (KF) is an optimal filter. Here, the process and
the measurement equations are given respectively by

xk = Fxk−1 +wk−1 (1)
zk = Hxk + vk (2)

Here, the previous state xk−1 is transformed to the current
state xk by the process matrix F and corrupted by process
noise wk−1. The second equation, i.e., the measurement
equation describes how the system’s output zk is related to
internal states through measurement matrix H. In the set up
of the Kalman filter, we assume the noise to be white, zero-
mean Gaussian, and independent from each other, which can
be represented as

p(w) ∼ N (0,Q) (3)
p(v) ∼ N (0,R) (4)

The Kalman filter works in a recursive manner. At each
recursive step, it performs prediction and then correction, and
computes a factor called Kalman gain. This factor controls the
trade-off between prior knowledge and data.

We first define the initial state and posterior covariance
matrix, x0 and P0. x0 is simply set according to the first
available ADS-B record in a data sequence. Practically, we
fill all diagonal entries of P0 with positive values. According
to [6], whether the initial values are large or small, the filter
always converges.

For the prediction phase:

x̂−
k = Fx̂k−1 (5)

P−
k = FPk−1F

T +Q (6)

and the correction phase, we have

Kk = P−
k H

T (HP−
k H

T +R)−1 (7)
x̂k = x̂−

k +Kk(zk −Hx̂−
k) (8)

Pk = (I−KkH)P−
k (9)

Here we use x̂−
k to denote the predicted state at the k-th step

while x̂k denotes the corrected state estimate at the k-th step.
Similar notations are used for P−

k and Pk. The matrix Kk is
the Kalman gain computed at the k-th step.

B. Constant-velocity dynamic model

To ensure the smooth functioning of the Kalman filter, we
need to choose proper dynamic models. Commercial airlin-
ers usually maintain designated speed, heading, and altitude
during en route flying. The movement can be considered as
uniform linear motion. Therefore, a constant velocity (CV)
model is sufficient in most cases. We consider the CV model
in a two-dimensional space, with x and y representing two-
dimensional positions and ẋ, ẏ two-dimensional velocities.
The state vector is then defined as xk = [xk, yk, ẋk, ẏk]

T .
Given recursive time step δt, the process matrix F is given by

F =

1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1

 (10)

Note that in this task we define a set of states whose
measurements can be directly extracted from ADS-B data (i.e.,
positions and velocities), which is equivalent to set H as an
identity matrix.

C. Constant-velocity Kalman filter (CV-KF)

The constant velocity Kalman filter (CV-KF) is a Kalman
filter under the assumption of constant-velocity dynamics. The
pseudo code for CV-KF is presented in Algorithm 1.

Algorithm 1 The CV-KF filter

1: Input: x0, P0, sequence of data z1,k
2: Output: Sequence of state estimates x1,k, posterior co-

variance P1,k and Kalman gains K1,k

3: Initialize x0 and P0

4: For t = 1 to n do
5: Project xt−1 to x−

t

6: Project Pt−1 to P−
t

7: Compute Kt

8: Update x−
t to xt with Kt and zt

9: Update P−
t to Pt with Kt

10: end

The CV-KF is guaranteed to give optimal estimates under
the assumption of the linear model with white Gaussian noise.
However, real systems do not always fulfill these assumptions.
and non-linear dynamics cannot be ignored. Specifically, in our
application, when an aircraft is close to the airport, it must
follow certain arrival or departure procedures. The procedures
may require the aircraft to make a series of turns and pass
designated waypoints in order to align with the runway.

We evaluate the performance of CV-KF in the two scenes
from the TrajAir and TUD datasets respectively, which was
discussed in Section II-C1.

• Scene 1: The results are shown in Fig.3a - 3c, where
XCV−KF denotes the filtered trajectory by CV-KF and
Xdata the raw data points. Here, x, y are position
coordinates and ẋ and ẏ velocities. From Fig.3a and
Fig.3b we can observe that the filter diverges on position

estimates when the target performs a turn. Fig.3c shows
that the filter fails to estimate velocity.

• Scene 2: The results are shown in Fig.4a - 4c, where the
correction always lags the transition of states. It seems
that after the filter enters a steady state, it loses the ability
to track changes in the aircraft’s states.

(a)

(b)

(c)

Fig. 3: Scene 1: Predicted trajectory, position and velocity estimates
using CV-KF

The CV-KF fails mainly due to model mismatch, and thus
the assumed oversimplified model fails to capture the real
dynamics of maneuvering aircraft. Hence, we have to adapt
our algorithm to enable accurate tracking. A good algorithm
relies on both the model to capture dynamics and the filter to
fuse prior knowledge and data.Traditionally, more advanced
dynamical models have been proposed, however there is no
silver bullet to this problem. Alternatively, we can retain the
simplified CV-model but propose advanced filtering techniques

to enable more accurate tracking.

(a)

(b)

(c)

Fig. 4: Scene 2: Predicted trajectory, position and velocity estimates
using CV-KF

IV. ADVANCED FILTERING ALGORITHMS

In this section we explore advanced filtering algorithms,
to overcome the limitations of the CV-KF discussed in the
previous section.

A. Augmented process noise Kalman fitler (AP-KF)

We now introduce the Augmented process noise Kalman
Filter (AP-KF). Recall that the posterior covariance matrix is
computed by

P−
k = FPk−1F

T +Q (11)

To augmented process noise is equivalent to increase the values
in diagonal entries of the Q matrix. Then for each step P−

k

will increase, as compared to that of the CV-KF. As mentioned

above, to remove the measurement noise as much as possible,
sometimes we set Q as zero. But AP-KF incorporates Q to
compensate for model mismatch [7]. The Kalman gain is now
given by Kk = P−

k H
T (HP−

k H
T +R)−1, and since H is an

identity matrix, and both P−
k and R are diagonal matrices,

the Kalman gain is reduced to

Kk = P−
k (P

−
k +R)−1

=

pk1

pk1+r1
pk2

pk2+r2
pk3

pk3+r3
pk4

pk4+r4

 (12)

where pki and ri refer to diagonal elements of P−
k and R,

respectively. It is then clear that every diagonal entry of Kk

increases as pki increases or as every diagonal entry of Q
increases. Thus the AP-KF increases the Kalman gain as com-
pared to the CV-KF, giving more weights to the measurements.
However, this benefit comes at the cost of admitting more
measurement noise. The extreme case is that the process noise
covariance is large enough such that the filter discards the
prediction and simply follows the measurement, which is not
desired, and hence this method requires the tuning of Q.

B. Fading memory Kalman filter (FM-KF)

The fading memory Kalman filter (FM-KF) is an alternative
method to augment the posterior covariance matrix. For older
prediction and measurement, we aim to increase the covariance
matrices by multiplying a factor greater than one, and let
the factor shrink (but always greater than one) for newer
predictions and measurements. Thus, the covariance matrices
at are revised to be

Q̃k = αK−2k+2Qk, k ≤ K (13)
R̃k = αK−2kRk, k ≤ K (14)

where K denotes the total number of time steps in the filtering
process.

After some mathematical manipulation, the final effect on
posterior covariance matrix is almost identical to that of
augmenting process noise [6]. The revised posterior covariance
matrix is given by

P̃−
k = α2FP̃k−1F

T +Qk−1 (15)

The implementation of a FM-KF relies on the hyper parameter
α. A larger α indicates that the ”memory” is shorter and the
filter is more able to track changes of target’s states. In our
application, a larger α gives the filter more flexibility to handle
maneuvers. However, in practise we have to tune α for every
given target, which is a limitation.

C. Particle filter (PF)

In Section III-C, we discussed the model mismatch i.e.,
discrepancy between the assumed linear model and the actual
nonlinear model. Moreover, precise knowledge of the sensor
noise model is not assumed. We do not know the statistics of

the measurement noise, nor do we know if it is appropriate to
assume the noise to be Gaussian. Furthermore, we observe
that the process noise is not straightforward to model due
to external factors e.g., atmospheric disturbances. Therefore,
we need a filtering method that does not depend on the
restrictive assumptions of Gaussian linear state space models,
for example the particle Filter (PF) [12].

The particle filter is an instance of sequential importance
sampling (SIS), where we are interested in a general state
space model of the form

xk = fk(xk−1,wk) (16)
zk = hk(xk,vk) (17)

where for the kth time instance, fk(·) denotes the process
model, hk(·) denotes the measurement model, wk indicates
the process noise, and vk indicates the measurement noise.
Note that a Gaussian linear model is not assumed here. Under
the assumption that the Markov property holds, we have

p(xk|x1,k−1, z1,k−1) = p(xk|xk−1) (18)
p(zk|x1,k, z1,k−1) = p(zk|xk) (19)

We start with the sequential estimation of p(x1,k|z1,k) and the
estimation of the marginal p(xk|z1,k) will be a by-product.
Using (18) and (19), we can write

p(x1,k|z1,k) = p(zk|xk)p(xk|xk−1)p(x1,k−1|z1,k−1)

=
p(x1,k,z1,k)∫

p(x1,k,z1,k)dx1,k
=

p(x1,k,z1,k)
Zk

(20)

where Zk is the normalizing constant at the kth instant. The
posterior distribution is proportional to the joint distribution
in (20), and thus we approximate p(x1,k, z1,k) via a set of
generated particles. We define the weights of particles as

ωk(x1,k) =
p(x1,k, z1,k)

qk(x1,k)
(21)

where qk(·) is a proposal distribution. According to sequential
importance sampling [12], the recursive relation between the
current and past weights are given by

ωk(x1,k) = ωk−1(x1,k−1)
p(zk|xk)p(xk|xk−1)

qk(xk|x1,k−1, z1,k)
(22)

where we exploit (20), and we choose a proposal distribution
such that

qk(xk|x1,k−1, z1,k) = q(xk|xk−1, zk). (23)

Finally, the estimation is obtained by

p̂(x1,k|z1,k) =

N∑
i=1

W
(i)
k δ(x1,k − x

(i)
1,k) (24)

p̂(xk|z1,k) =

N∑
i=1

W
(i)
k δ(xk − x

(i)
k) (25)

where N is the number of particles and W
(i)
k is the normalized

weight for the i-th particle at time k.

To combat the problem of degeneracy in practical use,
resampling may be used. However, resampling can also limit
parallel processing and cause sample impoverishment. Hence,
it is only performed when the following metric

Neff ≈ 1∑N
i=1(W

(i)
k)2

(26)

is smaller than a preselected value NT , which is typically
NT = N

2 . We now present the pseudo code of the particle
filter with SIS and resampling techniques.

Algorithm 2 The SIS particle filter

1: Input: N streams of particles from prior pdf p of x0

2: Output: N particles conformed to p(xt|z1,t)
3:
4: For i = 1 to N do
5: Draw x

(i)
0 ∼ p(x); initialize N streams.

6: Set W (i)
0 = 1

N ; All initial weights are equal.
7: end
8: For k = 1 to n do
9: For i = 1 to N do

10: Draw x
(i)
k ∼ q(x|x(i)

k−1, zk)

11: ω
(i)
k = ω

(i)
k−1

p(zk|x(i)
k)p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1,zk)

12: end
13: For i = 1 to N do
14: Compute normalized weights W

(i)
k

15: end
16: Compute Neff .
17: If Neff ≤ NT ; NT preselected
18: Resample {x(i)

k ,W
(i)
k }Ni=1 to get {x̄(i)

k , 1
N }Ni=1

19: Set x(i)
k = x̄

(i)
k , ω(i)

k = 1
N

20: end
21: end

V. SIMULATION AND ANALYSIS

In this section we present the trajectory prediction results of
the advanced filtering algorithms discussed in Section IV, i.e.,
augmented noise Kalman filter (AP-KF), the fading-memory
filter (FM-KF), and the particle filter (PF). TableII lists some
notations we use in this section.

TABLE II: Notations for different filters

Filter Trajectory Position coordinates Velocities
AP-KF XAP−KF xAP−KF yAP−KF ẋAP−KF ẏAP−KF

FM-KF XFM−KF xFM−KF yFM−KF ẋFM−KF ẏFM−KF

PF XPF xPF yPF ẋPF ẏPF

A. AP-KF

As discussed in Section IV-A, we incorporate the Q matrix
with its diagonal entries filled with positive values σ2. In
the experiments, we set the noise power σ to 10. Results of
Scene 1 and Scene 2 are shown in Fig.5a - 5c and Fig.6a
- 6c respectively. For both the scenes, the AP-KF predicts

the positions, velocities and generates smooth trajectories,
reasonably well. On the outset, it seems that the raw and
predicted trajectories are identical, however a closer look
reveals the filter do not completely follow the measurements.
We observe that the aircraft’s velocities are much harder to
track than positions. Comparing the velocity estimates in both
scenes, we find that augmenting process noise is a reasonably
good technique to track abrupt changes of states but may
not give as satisfying results when the target is in steady
state. In Fig.5c we observe that the estimates give many
small spikes while the aircraft seems to maintain a constant
velocity according the measurements. If we set a smaller noise
power by decreasing the stand deviation values of the noise
distribution, the magnitudes of these spikes will be smaller
but it impairs the filter’s tracking capability as well. There is
a trade-off between smoothness and agility. Making covariance
of process noise larger gives the filter more flexibility to
handle maneuvers at the cost of being more vulnerable to
disturbances.

B. FM-KF

A similar trade-off exists for the fading memory Kalman
filters since the two methods, as explained, are fundamentally
identical. More interestingly, FM-KF has a tunable parameter
α, which is set between 1 and 1.5 practically. A larger α
forces the filter to have a “shorter memory”. For Scene 1, α
is set to 1.05, and we observe in Fig.7a - 7c that while the
filter gives good position estimates, the velocity estimates are
notably lagging from the velocity values. In the case of Scene
2, we explore two values of α i.e., α = 1.2 and α = 1.5. The
results of Scene 2 are presented in Fig.8a and Fig.8c, where we
observe for a larger α, we have less lag and less smoothness in
the prediction. Hence, for the FM-KF the parameter α controls
the trade-off. A small α makes the filter to rely more on
past measurements, which makes the filter more stable and
generates smoother results. At the same time, the filter will be
less responsive. A large α, however, forces the filter to quickly
adapt to the changes of target’s states and admit more noise.

C. PF

The last set of results are produced for the particle filter,
which is shown in Fig.9a - 9c and Fig.10a - 10c, for Scene 1
and Scene 2 respectively. An important parameter to tune is the
number of particles initialized (N). Unlike the Kalman filters,
PF relies on Monte Carlo simulation to sample from proba-
bility distributions of our interest. It starts from any arbitrary
initial distribution and gradually adjusts the distribution to be
more and more similar to real posterior distribution. So with
more initialized particles the filter can obtain more samples for
adjustment and gives a more precise approximation. See for
example, the Fig.10c, where not surprisingly, the prediction
with 20000 particles is smoother than that with only 5000
particles. Moreover, due to the extreme flexibility of PF, both
trajectories have no evident lag or deviation, which indicates
that PF effectively handles the model mismatch problem. PF is

(a)

(b)

(c)

Fig. 5: Scene 1: Predicted trajectory, position and velocity estimates
using AP-KF

also more robust, with better responsiveness and smoothness,
particularly in contrast to FM-KF.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented relevant knowledge of working
with ADS-B system and evaluated several target tracking
methods on realistic ADS-B data sets. These methods are
based on models of simplified flight dynamics. We discussed
the CV-KF algorithm and showed through experiment results
that it does not meet our requirements, due to simplified
Gaussian linear state space model assumption. To overcome
the limitation of CV-KF, we propose three improved methods,
namely the AP-KF, FM-KF, and PF. Simulation results show
that all three methods offer improvements as compared to
the CV-KF on trajectory, position and velocity estimation in
the two flight scenes. In particular PF outperforms the other

(a)

(b)

(c)

Fig. 6: Scene 2: Predicted trajectory, position and velocity estimates
using AP-KF

solutions, since it overcomes the underlying assumption of
Gaussian linear state space models, of the Kalman filters.

The accuracy of PF for the prediction comes with the
cost of large memory and computational load, and hence
other non-linear filtering methods and non-parametric models
could be explored. In general, the use of only one dynamic
model creates a bottleneck for the tracking performance, hence
a multiple model approach or data-driven approaches could
yield more optimal results [11]. Furthermore, in this paper we
explored only a limited part of the data set i.e., 2 scenes,
and that from 2 flights, which is a limitation. Additional
experiments which use a large number of flights from both the
TrajAir and TUD data sets must be evaluated to investigate the
performance of the proposed solutions.

(a)

(b)

(c)

Fig. 7: Scene 1: Predicted trajectory, position and velocity estimates
using FM-KF

REFERENCES

[1] J. Sun, The 1090 Megahertz Riddle: A Guide to Decoding Mode S and
ADS-B Signals, 2nd ed. TU Delft OPEN Publishing, 2021.

[2] J. Patrikar, B. Moon, J. Oh, and S. Scherer, “Predicting Like A Pilot:
Dataset and Method to Predict Socially-Aware Aircraft Trajectories
in Non-Towered Terminal Airspace,” arXiv:2109.15158 [cs.RO], Sep.
2021.

[3] Regulation (EU) 2020/587 by European Union Aviation Safety Agency.
Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX:32020R0587.

[4] Code of Federal Regulations by Federal Aviation Administra-
tion. Retrieved from https://www.ecfr.gov/current/title-14/chapter-I/
subchapter-F/part-91/subpart-C/section-91.225.

[5] W. Huygen, “ADS-B Signal Integrity and Security Verification Using
a Coherent Software Defined Radio: Mitigation of the threat of mali-
ciously injected signals in ADS-B networks,” M.S. thesis, faculty of
aerospace engineering, TU Delft, Delft, 2021. Available: http://resolver.
tudelft.nl/uuid:1129afb3-304f-4c63-afa3-ea9f2bd73f86.

[6] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32020R0587
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32020R0587
https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-91/subpart-C/section-91.225
https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-91/subpart-C/section-91.225
http://resolver.tudelft.nl/uuid:1129afb3-304f-4c63-afa3-ea9f2bd73f86
http://resolver.tudelft.nl/uuid:1129afb3-304f-4c63-afa3-ea9f2bd73f86

(a)

(b)

(c)

Fig. 8: Scene 2: Predicted trajectory, position and velocity estimates
using FM-KF

[7] P. Zarchan and H. Musoff, Fundamentals of Kalman Filtering: A
Practical Approach, VA, Reston:American Institute of Aeronautics and
Astronautics, pp. 616-617, 2005.

[8] B. Ristic, M. S. Arulampalam, N. Gordon, Beyond the Kalman Filter,
Particle Filters For Tracking Applications, Artech House, 2004.

[9] A. F. M. Smith and A. E. Gelfand, “Bayesian statistics without tears:
A sampling-resampling perspective”, Amer. Statist., vol. 46, no. 2, pp.
84-87, 1992.

[10] J. Sun, H. Vû, J. Ellerbroek and J. M. Hoekstra, “pyModeS: Decoding
Mode-S Surveillance Data for Open Air Transportation Research,” in
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 7,
pp. 2777-2786, July 2020, doi: 10.1109/TITS.2019.2914770.

[11] X. Rong Li and V. P. Jilkov, ”Survey of maneuvering target tracking.
Part V. Multiple-model methods,” in IEEE Transactions on Aerospace
and Electronic Systems, vol. 41, no. 4, pp. 1255-1321, Oct. 2005, doi:
10.1109/TAES.2005.1561886.

[12] S. Theodoridis, Machine Learning: A Bayesian and Optimization Per-
spective. San Diego, CA, USA: Academic, 2015.

(a)

(b)

(c)

Fig. 9: Scene 1: Predicted trajectory, position and velocity estimates
using PF

(a)

(b)

(c)

Fig. 10: Scene 2: Predicted trajectory, position and velocity estimates
using PF

	Introduction
	ADS-B Decoding and Pre-processing
	Description of data set
	TrajAir data set
	TUD data set

	Decoding
	Time of arrival decoding
	Airborne position decoding
	Airborne velocity decoding

	Data pre-processing and formatting
	Two flight scenes

	State space model and Kalman Filter
	Kalman filter
	Constant-velocity dynamic model
	Constant-velocity Kalman filter (CV-KF)

	Advanced filtering algorithms
	Augmented process noise Kalman fitler (AP-KF)
	Fading memory Kalman filter (FM-KF)
	Particle filter (PF)

	Simulation and analysis
	AP-KF
	FM-KF
	PF

	Conclusion and Future work
	References

