Wave overtopping discharges at rubble mound breakwaters including effects of a crest wall and a berm

van Gent, Marcel R.A.; Wolters, Guido; Capel, Alex

DOI
10.1016/j.coastaleng.2022.104151

Publication date
2022

Document Version
Final published version

Published in
Coastal Engineering

Citation (APA)
https://doi.org/10.1016/j.coastaleng.2022.104151

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.
ARTICLE INFO

Keywords:
Wave overtopping
Rubble mound breakwaters
Coastal structures
Berm
Crest wall
Roughness
Oblique waves
Physical model tests
Design guidelines

ABSTRACT

Physical model tests have been performed to study wave overtopping at rubble mound breakwaters, including breakwaters with a crest wall, breakwaters with a berm, and breakwaters with a crest wall and a berm. For rubble mound structures with a protruding crest wall or with a stable berm, limited information is available in literature even though protruding crest walls and berms clearly affect wave overtopping discharges. Adding a crest wall to an existing structure, increasing the height of a crest wall, adding a berm, or increasing the width or height of a berm, can be effective measures to account for effects of sea level rise if the sea level rise appears to be more severe than the amount of sea level rise for which the structure was designed for. The present wave flume tests were used to develop guidelines for rubble mound breakwaters, including breakwaters with a crest wall or with a berm. The relative height of the protruding part of a crest wall dominates the effect of a crest wall. The berm width, berm level and wave steepness all affect the influence of a berm on the wave overtopping discharge.

Moreover, it was confirmed that the wave steepness also affects wave overtopping discharges for rubble mound breakwaters without a berm or without a crest wall. The developed set of expressions for rubble mound structures has also been validated based on existing data for oblique wave attack on rubble mound breakwaters with a crest wall.

1. Introduction

For the design and adaptation of coastal structures, accurate wave overtopping estimates are important to meet the functional requirements of the structures. Adaptation of existing coastal structures has become more important due to climate change and the resulting sea level rise. Especially for coastal structures that are in relatively shallow water, sea level rise can cause an increase in wave loading on the coastal structure since less dissipation of wave energy occurs before the waves reach the structure. Estimates of the speed of sea level rise are changing and uncertain. Therefore, it may be suitable to design coastal structures that can be adapted once the sea level rise appears to be more severe than expected.

Other adaptation measures than an increase of the crest level can be considered, such as dissipating energy before waves reach the structure (by increasing the foreshore by sand nourishment to dissipate more wave energy, or by constructing a low-crested structure in front of existing structures), increasing the dissipation on the structure (by applying a berm in the seaward slope or by increase the roughness of the slope of a dike), modifying the crest (by for instance applying or modifying a crest element), or increasing the resistance to wave overtopping at the crest and rear side of the structure (see also Fig. 1). Such adaptations require accurate prediction methods to estimate wave overtopping (denoted by a discharge q). Especially for the combination of two or more of such adaptation measures, the validity of available design guidelines on wave overtopping is unknown or they do not provide suitable guidance at all (see for instance Van Gent, 2019, and Hogeveen, 2021).

Hogeveen (2021) studied climate adaptation of rubble mound breakwaters by using climate adaption pathways and analysed the costs of adaptation measures and pathways. Fig. 2 shows an example of an adaptation pathway map, where on the vertical the adaptation measures are shown and on the horizontal axis the sea level rise is shown. Each adaptation measure has a limit to the amount of sea level rise that it can compensate for (i.e. tipping points: vertical bold black lines in Fig. 2). For instance, if an increased foreshore is required to stay below water during daily conditions this limits the effectiveness. Or, if the strength of a crest wall limits the height of the protruding part of the crest wall, this...
limits the applicability of a protruding crest wall. The costs for each pathway (i.e. each combination of adaptation measures such as first adding a berm and thereafter adding a protruding crest wall) can be calculated to determine the most economical combination of adaptation measures. For severe sea level rise scenarios, a combination of adaptation measures may be required. Hogeveen (2021) concluded that adding a berm to a rubble mound structure and adding a protruding crest wall can be economically attractive if existing structures need to be adapted due to the consequences of sea level rise.

For statically stable (i.e. non-reshaping) rubble mound breakwaters available manuals do hardly provide information on the effects of a berm or the effects of a protruding crest element. For instance, in the expression proposed in EurOtop (2018; Eq. (6.5)) the berm does not affect wave overtopping discharges for rubble mound structures and no guidance is provided for the effect of protruding crest walls. Nevertheless, both berms and protruding crest walls are frequently being applied in practice since they appear to be effective and economically attractive. Also, numerical modelling such as performed by Hogeveen (2021) and applying machine learning methods based on data from physical model tests such as performed by Van Gent et al. (2007), Molines and Medina (2016), and Den Bieman et al. (2021) indicate that a berm or a crest wall affect wave overtopping discharges. Besides numerical models and machine learning techniques that are capable of computing wave overtopping discharges, it is also desirable to have easy-to-apply empirical expressions available to estimate wave overtopping discharges, including expressions that account for a berm in the seaward slope and for a crest wall. The mentioned methods based on machine learning are also easy to apply but the data sets on which they are based contain a relatively small amount of data for rubble mound structures that contain both a berm and a crest wall. In the present study physical model tests are used to develop empirical expressions to estimate wave overtopping discharges at rubble mound breakwaters, including breakwaters with a berm, breakwaters with a crest wall, and breakwaters with a combination of both.

The structure of the paper is as follows. In Section 2 a selection of literature on wave overtopping is discussed. In Section 3 the physical model tests are described. In Section 4 new empirical expressions are presented and discussed. Section 5 provides conclusions and recommendations.

2. Wave overtopping

Wave overtopping at coastal structures can be characterised by mean overtopping discharges during the peak of a storm, by overtopping volumes per wave, and by flow velocities and the flow depth during wave overtopping events. Koosheh et al. (2021) provides an overview of knowledge with respect to overtopping volumes per wave. See also Mares-Nasarre et al. (2020) for a recent study on overtopping volumes at rubble mound breakwaters. For estimates of flow velocities and the flow depth during wave overtopping events reference is made to Schütttrumpf (2001), Van Gent (2001, 2002b), Schütttrumpf and Van Gent (2003), Van Bergeijk et al. (2019), and Mares-Nasarre et al. (2021).

The present study is focussed on mean overtopping discharges at rubble mound breakwaters. It is important to realise that the mean overtopping discharge may not be the only wave overtopping parameter that is of importance. For instance, for the same mean overtopping discharge the horizontal velocities of the water that overtops the breakwater may be significantly lower for a breakwater with a vertical protruding crest wall than for a rubble mound breakwater without a vertical protruding element. The reduction in horizontal velocities due to the crest wall may reduce the risk for activities and facilities behind the crest, which is not fully expressed by using the mean overtopping discharge as the parameter to describe wave overtopping.

Goda (1971), Battjes (1974) and Owen (1980) performed pioneering research with respect to wave overtopping. After that, various formulas have been developed to predict wave overtopping at rubble mound breakwaters of which many can be rewritten as follows:

\[q = a \exp \left(-b \left(\frac{R_c}{H_m} \right)^3 \right) \]

where \(q \) is the mean wave overtopping discharge (m³/s/m), \(g \) is the acceleration due to gravity (m/s²), \(R_c \) is the freeboard (including the height of a crest wall, if present) relative to the still water level (m), \(H_m = 4\sqrt{m_0} \) is the spectral significant wave height of the incident waves at the toe of the structure \(H_s = H_m_0 \) (m), \(\gamma \) denotes the influence factor (–) for effects such as the influence of roughness (\(\gamma_f \)) and the influence of oblique waves (\(\gamma_{ob} \)); \(a \) and \(b \) are coefficients. For the coefficient \(c \) TAW (2002) uses \(c = 1 \), EurOtop (2018) uses \(c = 1.3 \), while Gallach-Sánchez (2018) and Gallach-Sánchez et al. (2021) calibrated the coefficient \(c \) based on extensive tests and proposed the value \(c = 1.1 \). Note that \(Q = q/(gH_m^3)^{0.5} \) is the non-dimensional wave overtopping discharge.

Some manuals (e.g. TAW, 2002) provide different expressions for plunging waves (also called “breaking waves”) and for surging waves (also called “non-breaking waves”) for wave run-up and wave overtopping. The expressions for surging waves serve as an upper limit for estimates obtained using the expressions for plunging waves. Whereas coastal structures with a gentle seaward slope such as dikes often result in the expressions for plunging waves (“breaking waves”) being used, structures with steeper slopes such as rubble mound breakwaters lead to expressions for surging waves (“non-breaking waves”) being used (i.e. Eq. (1)), especially for the design conditions. Existing expressions for plunging waves contain an influence of the slope of the structure, the wave steepness, a berm (if present), a crest wall (if present) and other influence factors. However, the expression for surging waves, i.e. Eq. (1), describes no influence of the slope of the structure, no influence of the wave steepness, no influence of a berm (if present), and no influence of a crest wall (if present) on the wave overtopping discharges. Despite that, the expressions for surging waves on dikes or on rubble mound

![Fig. 1. Adaptation measures for existing coastal structures.](https://via.placeholder.com/150)
breakwaters (for instance TAW, 2002, Eq. (23), and EurOtop, 2018, Eq. (6.5)) predict no influence of the wave steepness, a berm or a crest wall, the present study on statically stable (i.e. non-reshaping) rubble mound breakwaters is focussed on the influence of these.

Lioutas et al. (2012) and Koosheh et al. (2022) showed that for rock armoured revetments with an impermeable core the wave steepness affects the mean overtopping discharge. Koosheh et al. (2022) proposed the following expression:

\[
q = a \cdot \exp \left(-\frac{b}{\gamma} \left(\frac{R_c}{H_{1,0}} \right) \right)
\]

where \(a = 0.05\), \(b = 4.52\), \(c = 1.12\), \(d = 0.35\) and the wave steepness \(s_{1,0} = 2\pi H_{1,0}/\gamma T_{1,0}^2\) is based on the significant wave height of the incident waves at the toe of the structure \(H_0 = H_{1,0}\) (m) and the mean spectral wave period \(T_{1,0}\) (s). As shown in Van Gent (1999, 2001, 2002a) the spectral wave period \(T_{1,0}\) \((T_{1,0} = m_1/m_0)\) is the most suitable wave period to account for the influence of the spectral shape on wave run-up and wave overtopping.

Sigurdarson and van der Meer (2012) studied wave overtopping at (reshaping) berm breakwaters. The reshaping of berm breakwaters can cause that the overtopping characteristics change depending on the reshaping. However, they also examined partly and hardly reshaping berm breakwaters and concluded that the overtopping depends on the wave steepness (based on the peak wave period) and the berm width \(B\) (see also Fig. 3). The effects of the wave steepness and the berm width were accounted for by a modified expression for the influence factor \(\gamma_f\) for roughness for partly and hardly reshaping berm breakwaters, that was rewritten in EurOtop (2018, Eq. (6.11)) to apply the spectral wave period instead of the peak wave period: \(\gamma_f = \gamma_f m_0 = 0.68 - 4.1 s_{m,1,0} - 0.05 B / H_0\).

Although the present study is focussed on statically stable rubble mound breakwaters and not on reshaping berm breakwaters, this provides an indication that the berm and wave steepness affect wave overtopping also for non-reshaping rubble mound breakwaters. Also, Christensen et al. (2014) found a dependency of the wave overtopping discharge on the wave steepness. Additional information on the influence of parameters on wave overtopping at reshaping berm breakwaters can be found in Pillai et al. (2017a,b).

2.1. Crest wall influence

For the influence of a crest wall on wave overtopping at impermeable dikes, detailed information is available (Van Doorslaer, 2018). For impermeable structures a crest wall leads to a reduction in wave overtopping compared to an impermeable structure without a crest wall but with the same total crest elevation (i.e. same \(R_c\)). For rubble mound breakwaters the influence of a crest wall can be significantly different than for impermeable dikes. The roughness and permeability of the armour layer can be more effective in reducing the wave overtopping discharge than a crest wall. Therefore, the expressions derived by Van Doorslaer (2018) cannot be used, since the influence of a crest wall is generally a reducing effect for dikes, while for rubble mound breakwaters the application of a crest wall can increase the discharge for structures with the same crest elevation. Obviously, adding a protruding crest wall to an existing structure leading to an increased crest elevation \(R_c\) reduces the discharge.

Since there are clear indications that a crest wall affects wave overtopping not only for gentle sloped structures such as dikes, but also for (steep) rubble mound breakwaters, an empirical expression to account for the effects of a crest wall is required. Adding a crest wall with a recurved parapet (or bullnose) to an existing structure can potentially reduce the wave overtopping. However, the present study is focused on crest walls without a recurved parapet.

2.2. Berm influence

For the influence of berms in the seaward slope, detailed information is available for impermeable slopes such as for dikes; reference is made to De Waal and van der Meer (1992), Chen et al. (2020), and Van Gent (2020). For the influence of berms on wave overtopping at rubble mound breakwaters less information is available; reference is made to Krom (2012). Note that here breakwaters with a statically stable berm are dealt with and not berm breakwaters for which the berm is allowed to reshape to some extent. Since there are clear indications that the berm affects wave overtopping not only for gentle sloped impermeable structures, but also for rubble mound breakwaters, an empirical expression to account for the effects of a berm is required. The present study is focussed on rubble mound breakwaters with a horizontal berm (with a width \(B\) and \(\tan \alpha_B = 0\), see Fig. 3).

Adapting an existing rubble mound breakwater is feasible by adding

![Fig. 2. Adaptation pathways for a rubble mound breakwater (from: Hogeveen, 2021).](image-url)
a berm in front of the armour layer. Obviously, for structures that are in relatively shallow water, the required amount of material is less than for structures in deeper water. For structures that already have a berm, effects of sea level rise on wave overtopping discharges may be reduced by increasing the level of the berm such that the berm becomes more effective.

Besides that separate methods to account for the effect of a berm and a crest wall on wave overtopping discharges are required, these methods need to be validated for structures that have both a berm and a crest wall. Therefore, the tests described in the following section also contain a large number of tests with structures that consist of the combination of a berm and a crest wall.

3. Physical model tests

3.1. Test programme

The physical model tests were performed in the Scheldt Flume (110 m long, 1 m wide, and 1.2 m high) at Deltares. The wave generator is equipped with active reflection compensation. This means that the motion of the wave paddle compensates for the waves reflected by the structure preventing them to re-reflect at the wave paddle and propagate towards the model.

Four configurations of rubble mound breakwaters were tested:

1) Without a crest wall and without a berm
2) With a crest wall and without a berm
3) Without a crest wall and with a berm
4) With a crest wall and with a berm

Fig. 3. Definition of parameters (figure from Van Gent et al., 2007).

Fig. 4. Cross-sections of tested structures; Panel a: example of structure with filter layer (Configuration 2), Panel b: example of structure without a filter layer (Configuration 4).
Fig. 4 shows examples of cross-sections that were tested (all with a horizontal foreshore). For the first two configurations two types of cross-sections were tested, one with a filter layer and one without a filter layer. All cross-sections had a 1:2 slope. The structure without a filter layer (for Configurations 1 to 4; Fig. 4b) consisted of a core \(D_{50} = 16\) mm and an armour layer \(D_{50} = 38\) mm with a thickness of \(2D_{50}\). The structure with a filter layer (for Configurations 1 and 2; Fig. 4a) consisted of a core \(D_{50} = 6.4\) mm, a filter layer \(D_{50} = 16\) mm, and an armour layer \(D_{50} = 32\) mm with a thickness of \(2D_{50}\). For Configuration 4 three berm widths were tested \(B = 0.25\) m, 0.50 m and 0.75 m; Fig. 4b) while for this structure without a filter layer also reference tests without a berm \(B = 0\) m were performed (Configuration 2), to assess the effects of the berms irrespective of a potential influence of somewhat different core material. Thus, Configurations 1 and 2 were tested for the cross-sections with and without a filter layer, while Configurations 3 and 4 were tested only for the cross-section without a filter layer (see also Fig. 6). Seven different levels of the berm relative to the still water level (berm depths \(h_b = -0.25\) m, \(-0.05\) m, \(-0.025\) m, 0 m, 0.025 m, 0.05 m and 0.075 m) were applied. The rubble mound berm (Fig. 4b) consisted of the armour material. Note that rubble mound structures are often placed in shallower water rather than in the deep-water conditions applied in the present tests, such that the amount of armour material in the berm would be significantly less than applied in the tests. Although the relatively large permeability of the berm has a stabilizing effect on the stability of the armour, it is unknown whether the permeability of berm consisting of armour material would affect the overtopping discharges compared to a berm that consists of a double layer of armour material and filter material underneath. The structures without a berm (Configurations 1 and 2) were tested with and without a filter (Fig. 4a and b), corresponding to structures with smaller and larger core material, but no clear effect on the wave overtopping discharges was observed. The L-shaped crest walls were positioned on top of the core material. No recurved parapet (bullnose) was applied on the crest wall.

The incident waves were measured by using five wave gauges from which the incident waves were derived using the method by Zelt and Skjelbreia (1992). The last wave gauge was positioned 8 m from the crest wall, while the crest wall was position at 41.8 m from the wave board; see Fig. 5 for a schematised overview of the structure in the wave flume. The mean overtopping discharges were measured by collecting the overtopping water via an overtopping chute into an overtopping box. The mean overtopping discharges were measured by collecting the overtopping water via an overtopping chute into an overtopping box (for the configurations without the protruding crest wall the chute started at the same position as for those with a protruding crest wall).

The spectral significant wave height \(H_{\text{m0}}\) and the spectral wave period \(T_{\text{m,1,0}}\) were obtained from the measured wave energy spectra at the toe. In all tests a JONSWAP wave spectrum (with a peak enhancement factor of 3.3) has been applied. All tests have been performed with 1000 waves. The wave steepness was varied. Incident wave heights were in the range between \(H_{\text{m0}} = 0.078\) m and 0.224 m and the wave steepness at the toe of the structures were in the range between \(\alpha_{\text{m,1,0}} = 0.013\) and \(\alpha_{\text{m,1,0}} = 0.044\). Four water depths were applied (i.e. 0.70 m, 0.75 m, 0.775 m and 0.80 m), leading to various levels of the freeboard \(R_f\). The freeboard was in the range between \(0.77 \leq R_f/H_{\text{m0}} \leq 1.76\). In total 171 tests resulted in wave overtopping. Table 1 shows the ranges of the most important parameters of the test programme.

3.2. Test results

In all panels of Fig. 7 the non-dimensional wave overtopping discharge is shown as function of the non-dimensional freeboard. For all four types of structures (1: no crest wall and no berm; 2: with crest wall, but no berm; 3: without crest wall, but with berm; 4: with crest wall and with berm), the upper two panels consistently show that the lower wave steepness leads to more wave overtopping than the higher wave steepness for the same non-dimensional freeboard (all filled symbols are above the open symbols of the same colour). In the upper right panel results are shown for configurations with a berm \(B = 0.50\) m. For the configurations with a berm (upper right panel) the variations in wave overtopping due to a different wave steepness are larger than for the configurations without a berm (upper left panel).

The upper two panels of Fig. 7 also show that for the same non-dimensional freeboard the structures with a crest wall lead to more wave overtopping (the green lines are consistently above the red lines in the left panel, and the black lines are consistently above the blue lines in the right panel). Apparently, the roughness and permeability of the armour layers lead to more reduction than if the upper part of the structures are replaced by a smooth (impermeable) crest wall.

The two panels in the middle of Fig. 7 show the influence of the berm width (for structures with a crest wall); the left panel for the lower wave steepness and the right panel for the higher wave steepness. Both panels clearly show that a wider berm leads to less wave overtopping for the same non-dimensional freeboard. The reducing effect of the berm is larger for the higher wave steepness.

The lower two panels of Fig. 7 show the influence of the level of the berm; the left panel for a structure without a crest wall and the right panel for a structure with a crest wall. For the lower wave steepness there is a relatively small influence of the level of the berm; the higher berm (emerged) leads to slightly less wave overtopping than the berm at the still water level (mid) and the lowest berm (submerged). For the higher wave steepness there is a larger influence of the berm level, again with an emerged berm leading to the lowest overtopping discharges.

The results shown in Fig. 7 indicate that the influence of the wave steepness, the influence of the crest wall, and the influence of the berm cannot be ignored for assessing wave overtopping discharges.

4. Analysis of test results

4.1. Introduction to analysis

As described in Section 3.2, the test results clearly show that the wave steepness, a berm, and a crest wall, all affect the wave overtopping discharge. Consequently, expressions proposed in existing design guidelines such as TAW (2002) or EurOtop (2018) cannot be used to accurately describe wave overtopping at rubble mound breakwaters.

Lioutas et al. (2012) and Koosheh et al. (2022) showed that wave overtopping at rock armoured slopes with an impermeable core is affected by the wave steepness. The present tests show (see Fig. 7) that this is also valid for rock armoured structures with a permeable core. In Eq. (2) by Koosheh et al. (2022) for rock armoured slopes with an impermeable core, the wave steepness is incorporated using the wave steepness in the exponential part of the expression to the power \(d = 0.35\). For the present tests the optimal power of the wave steepness

Fig. 5. Overview of tested structure in wave flume.
in the exponential part would be lower (about $d = 0.15$) for fully permeable rubble mound breakwaters. Since here the intention is to obtain a set of expressions that is valid for rubble mound breakwaters (with a permeable core) with or without a berm and/or a crest wall, a more accurate expression has been developed to account for effects of the wave steepness, a berm, a crest wall, and a combination of a crest wall and a berm.

4.2. Wave overtopping expression

The following expression is proposed to described wave overtopping at rubble mound breakwaters:

$$\bar{q} \approx 0.016 \times \frac{1}{s_{\text{m}}^{1.6}} \exp \left[- \frac{2.4 R_c}{r_f r_b r_p R_{\text{wt}}} \right]$$

(3)

The following sections deal with the influence factors for roughness (γ_f), a berm (γ_b), a crest wall (γ_v), and oblique waves (γ_β). To account for the influence of a recurved parapet (γ_p) at a crest wall of rubble mound breakwaters, reference is made to Oh et al. (2018). Obviously, if no recurved parapet is present then $\gamma_p = 1$.

To account for the influence of wind at rubble mound breakwaters with a crest wall, reference is made to Wolters and Van Gent (2007). The influence of wind increases the discharge as calculated using Eq. (3) by a maximum value between 1.2 and 4.7. Although wind can increase the wave overtopping discharge, in practice the influence of wind is usually not accounted for.

If besides the wave conditions that cause wave overtopping also swell from another direction is present, the effect of swell can be accounted for by reducing the freeboard R_c in Eq. (3) with a value $c_{\text{swell}} = 0.4$ to 0.5 times the significant wave height of the swell component ($R_c - c_{\text{swell}} H_{\text{m0-swell}}$), irrespective of the direction of the swell component. For dikes and caisson breakwaters guidance on such crossing sea states is provided by Van der Werf and Van Gent (2018) for dikes ($c_{\text{swell}} = 0.5$).
Table 1
Parameter ranges of the test programme.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values/Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seaward slope (°)</td>
<td>(\cot \alpha)</td>
<td>2</td>
</tr>
<tr>
<td>Armour stone diameter (m)</td>
<td>(D_{50})</td>
<td>0.032 & 0.038</td>
</tr>
<tr>
<td>Water depth (m)</td>
<td>(h)</td>
<td>0.700–0.800</td>
</tr>
<tr>
<td>Incident significant wave height at toe (m)</td>
<td>(H_{o0})</td>
<td>0.074–0.224</td>
</tr>
<tr>
<td>Wave steepness: (s_{0.1,0.2} = 2x H_{o0} / H_{D,01,0}) (°)</td>
<td>(s_{0.1,0.2})</td>
<td>0.013–0.042</td>
</tr>
<tr>
<td>Surf-similarity parameter: (\tan \beta / A_c) (°)</td>
<td>(\tan \beta / A_c)</td>
<td>2.45–4.38</td>
</tr>
<tr>
<td>Number of waves (°)</td>
<td>(N)</td>
<td>1000</td>
</tr>
<tr>
<td>Freeboard (m)</td>
<td>(R_c)</td>
<td>0.10–0.30</td>
</tr>
<tr>
<td>Level of armour in front of crest wall (m)</td>
<td>(A_c)</td>
<td>0.10–0.25</td>
</tr>
<tr>
<td>Width of armour in front of crest wall (m)</td>
<td>(G_c)</td>
<td>0.11–0.15</td>
</tr>
<tr>
<td>Berm width (m)</td>
<td>(B)</td>
<td>0.75</td>
</tr>
<tr>
<td>Berm depth (negative is a berm above SWL) (m)</td>
<td>(b_0)</td>
<td>-0.25–0.075</td>
</tr>
<tr>
<td>Non-dimensional freeboard</td>
<td>(R_c / H_{o0})</td>
<td>0.77–2.10</td>
</tr>
<tr>
<td>Non-dimensional level of armour at crest</td>
<td>(A_c / H_{o0})</td>
<td>0.77–1.76</td>
</tr>
<tr>
<td>Non-dimensional protruding part of crest wall</td>
<td>((R_c-A_c) / H_{o0})</td>
<td>0.00–0.68</td>
</tr>
<tr>
<td>Ratio of protruding part of crest wall and freeboard (°)</td>
<td>((R_c-A_c) / R_c)</td>
<td>0.00–0.35</td>
</tr>
<tr>
<td>Non-dimensional width of armour in front of crest wall</td>
<td>(G_c / H_{o0})</td>
<td>0.67–1.46</td>
</tr>
<tr>
<td>Non-dimensional berm width</td>
<td>(B / H_{o0})</td>
<td>0.00–5.24</td>
</tr>
<tr>
<td>Non-dimensional berm depth</td>
<td>(b_0 / H_{o0})</td>
<td>-1.73–0.52</td>
</tr>
<tr>
<td>Non-dimensional berm level relative to armour crest: (B_c = A_c + b_0)</td>
<td>(B_c / H_{o0})</td>
<td>0.00–2.09</td>
</tr>
<tr>
<td>Non-dimensional stone diameter</td>
<td>(D_{500} / H_{o0})</td>
<td>0.17–0.41</td>
</tr>
</tbody>
</table>

and by Van Gent (2021) for caisson breakwaters (\(c_{swell} \) = 0.4). Although not tested for rubble mound breakwaters, a value between those for gentle sloping dikes and vertical caisson breakwaters is considered a reasonable estimate (\(c_{swell} \) = 0.45).

The coefficients in Eq. (3) have been calibrated based on the present tests. The accuracy of the expression using these coefficients will be discussed in a following section. Note that the wave steepness as incorporated in Eq. (3) causes that a condition with a twice larger wave length (\(L_{m,1,0} \)) leads to twice more overtopping, for surging waves with equal wave heights. If the overtopping discharge \(q \) is made non-dimensional by using \(L_{m,1,0} \sqrt{g H_{o0}} \) instead of \(\sqrt{g H_{o0}} \), the wave steepness disappears from Eq. (3) while the rest of the expression and coefficients remains the same.

4.3. Influence factors

To account for the influence of roughness (\(\gamma_f \)), the influence of a crest wall (\(\gamma_c \)), the influence of a berm (\(\gamma_s \)), and the influence of oblique waves (\(\gamma_\beta \)), the following expressions are developed and discussed:

\[
\gamma_f = 1 - 0.7 \left(\frac{D_{500}}{H_{o0}} \right)^{0.1}
\]

(4)

\[
\gamma_c = 1 + 0.45 \left(\frac{R_c - A_c}{R_c} \right)
\]

(5)

\[
\gamma_s = 1 - 18 \left(\frac{L_{m,1,0} B}{H_{o0}} \right)^{1.3} \left(1 - 0.34 \left(\frac{B_c}{L_{m,1,0} A_c} \right)^{0.2} \right)
\]

(6)

\[
\gamma_\beta = 0.65 \cos^2 \beta + 0.35
\]

(7)

where \(D_{500} \) is the diameter of the stones in the armour layer, \(R_c - A_c \) is the protruding part of the crest wall (see also Fig. 3), \(B \) is the width of the berm, \(B_c \) is the vertical distance between the level of the berm and the level of the armour layer at the crest (\(B_c = A_c + b_0 \)), and \(\beta \) is the angle of wave incidence (\(\beta = 0^\circ \) for perpendicular wave attack). In the following, these expressions for influence factors are discussed and presented together with data. The expression for the influence factor for oblique waves (Eq. (7)) was proposed by Van Gent and Van der Werf (2019) for rubble mound breakwaters with a crest wall and their data is applied in combination with the newly derived set of expressions (Eqs. (3)–(7)). The influence factor for a recurred parapet (\(\gamma_p \)) is 1.

4.3.1. Roughness

For wave overtopping at rock armour layers with a layer thickness of about two diameters constant roughness factors have been proposed in literature in the range between \(\gamma_f = 0.4 \) to 0.5 (see also Bruce et al., 2009; Molines and Medina, 2015, and Eldrup and Lykke Andersen, 2018). For impermeable slopes dependencies of the roughness on the amount of overtopping, on the freeboard, the wave steepness, the surf-similarity parameter, and height of protruding blocks have been found (see for instance Capel, 2015, and Chen et al., 2020). Here, a relatively simple expression that only depends on the non-dimensional stone diameter (\(D_{500} / H_{o0} \)) is proposed, where in the present tests this ratio varied between 0.17 and 0.41, leading to \(\gamma_f = 0.36 \) to 0.41 using Eq. (4); the lower values of this range of the influence factor \(\gamma_f \) correspond to the tests with lowest waves in the test programme, while the higher values correspond to higher waves and lead to a ratio that matches with existing design guidelines with (constant) roughness factors for rock armour layers of two diameters thick.

Fig. 8 shows the measured overtopping discharges versus the calculated discharges using Eqs. (3) and (4), for the structures without a berm and without a crest wall. Fig. 8 shows that Eqs. (3) and (4) describe the data reasonably well, thus with the influence of the wave steepness incorporated as shown in Eq. (3).

For the comparison of the measurements with the described prediction formulae use is made of the following error-measure, referred to as RMSE:

\[
\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n_{\text{test}}} (\log(Q_{\text{measured}}) - \log(Q_{\text{calculated}}))^2}{n_{\text{test}}}}
\]

(8)

where \(n_{\text{test}} \) is the number of tests on which the RMSE is based, \(Q \) are the non-dimensional values of the measured and calculated overtopping discharges \(Q = q / (g H_{o0}^{0.5}) \). The RMSE is only based on measured overtopping values larger than \(Q_{\text{measured}} \geq 10^{-6} \) since smaller values are often less relevant and scale effects may be present.

Table 2 shows the RMSE values for both structure types (with and without a filter) without a crest wall and without a berm. Table 2 shows that incorporating the non-dimensional stone diameter as expressed by Eq. (3) improves the predictions compared to the use of a constant value for the influence of the roughness (\(\gamma_f = 0.4 \)), where the applied value is the optimal value if a constant value is used in combination with the earlier mentioned coefficients used in Eq. (3).
Fig. 7. Influence of wave steepness (upper panels), influence of berm width (mid panels; with crest wall), and influence of the berm level (lower panels; without and with crest wall respectively).
4.3.2. Crest wall

For the same crest level (same \(R_c \)) a rubble mound structure with a crest wall leads to more wave overtopping than for a rubble mound structure where the armour layer is extended to the top of the structure \((A_c = R_c) \), at least for the structures tested in the present test programme where the armour layer has a horizontal part in front of the crest wall \((0.67 \leq G_c / H_{m0} \leq 1.46)\), while the crest wall did not have a recurved parapet \((\gamma_p = 1)\). The reduction due to the roughness and permeability of the upper part of the slope is larger than the reduction due to the crest wall (without a recurved parapet). During the tests it was observed that once the wave run-up front reaches the crest wall, there is a clear effect of the crest wall with a clear vertical velocity component of the water hitting the crest wall. However, once the space in front of the crest wall is filled with water, the rest of the wave reaching the crest relatively easily overtops the structure. The upper panels of Fig. 7 show that the structures with a crest wall lead to more overtopping than the corresponding structures with the same crest elevation. Therefore, for rubble mound structures, the influence factor for crest walls \(\gamma_c \) becomes a value larger than one. Eq. (5) shows a simple relation where the influence of the crest wall is incorporated by using a linear relation with the ratio of the protruding part of the crest wall \((R_c - A_c = R_c - B) \) and the crest elevation \((R_c) \).

Fig. 9 shows the measured overtopping discharges versus the calculated discharges using Eqs. (3)–(5), for the structures with a crest wall but without a berm. Fig. 9 shows that Eqs. (3)–(5) describe the data reasonably well. Table 3 show the RMSE values for both structure types (with and without a filter) with a crest wall but without a berm (for \(Q_{measured} \geq 10^{-6} \)).

<table>
<thead>
<tr>
<th>Prediction method</th>
<th>No filter</th>
<th>With filter</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>No crest wall, no berm: Eq. (3) with (\gamma_p = 0.4)</td>
<td>0.1826</td>
<td>0.2248</td>
<td>0.2037</td>
</tr>
<tr>
<td>No crest wall, no berm: Eq. (3) and Eq. 4</td>
<td>0.1172</td>
<td>0.1921</td>
<td>0.1547</td>
</tr>
</tbody>
</table>

4.3.3. Berm

As shown in Fig. 7 (two panels in the middle) the larger the berm width \(B \), the larger the reduction in overtopping discharge. This effect is stronger for the conditions with a high wave steepness, which means that the same berm width reduces the overtopping more for conditions with a shorter wave length. Since the wave steepness (or wave length) affects the importance of the width of the berm, the wave steepness is incorporated in the expression to account for the width of the berm. Note that the effect of the berm width as expressed by Eq. (6) using \(S_{m,1.0} B / H_{m0} \) can be rewritten to \(B / L_{m,1.0} \), since the ratio between the berm width and the wave length determines the effects of the berm width.

Fig. 7 also shows that the level of the berm has an influence, where the berm at the highest level reduces the overtopping discharge more than the berms at a lower level. The test programme also includes tests with the level of the “berm” at the level of the crest of the armour layer in front of the crest wall \((h_b = A_c \) and \(B = 0.25 \text{ m} \) and \(B = 0.5 \text{ m} \)). These tests confirm that the higher the level of the berm, the lower the wave overtopping discharge. This is in contrast to the influence of impermeable berms at dikes, where the berm at the level of the still water level has the maximum reducing effect (see for instance Chen et al., 2020, 2021). A permeable berm has another effect than an impermeable berm, because a permeable berm at a higher level (thus with a larger amount of stones) causes more reduction due to more infiltration of up rushing water into the berm and more dissipation of wave energy inside the permeable berm. The level of the berm is incorporated by using an expression based on the vertical distance between the horizontal part of the armour layer at the top \((A_c \) w.r.t. the SWL) and the level of the berm \((h_b \) w.r.t. SWL) such that the berm reduces the berm is proportional to \(B_{l} = A_c + h_b \), thus with the largest influence of a berm for a berm at the highest level. Since the wave steepness affects the importance of the level of the berm, the wave steepness is incorporated in the expression to account for the level of the berm.

Thus, the width of the berm, level of the berm, and the wave steepness affect the reducing effect of a berm on wave overtopping discharges. This is expressed in Eq. (6), where the coefficients have been calibrated based on the present tests.

![Fig. 9. Measured versus calculated wave overtopping discharge using Eqs. (3)–(8).](image-url)

![Fig. 8. Measured versus calculated wave overtopping discharge using Eqs. (3) and (4).](image-url)

Table 2

RMSE for structures without a crest wall and without a berm.

<table>
<thead>
<tr>
<th>Prediction method</th>
<th>No filter</th>
<th>With filter</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>No crest wall, no berm: Eqs. (3)–(5)</td>
<td>0.2009</td>
<td>0.2137</td>
<td>0.2073</td>
</tr>
</tbody>
</table>

Table 3

RMSE for structures with a crest wall but without a berm.

<table>
<thead>
<tr>
<th>Prediction method</th>
<th>No filter</th>
<th>With filter</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest wall, no berm: Eqs. (3)–(5)</td>
<td>0.2009</td>
<td>0.2137</td>
<td>0.2073</td>
</tr>
</tbody>
</table>
Fig. 10 shows the measured overtopping discharges versus the calculated discharges using Eqs. (3)–(6), for the structures with a berm, without and with a crest wall. The left panel shows the tests for a structure without a filter layer and the right panel the tests for the structure without a filter layer. Both graphs show that Eqs. (3)–(6) describe the data reasonably well. Table 4 shows the RMSE values for all structures with a berm, either without or with crest wall (for $Q_{\text{measured}} \geq 10^{-6}$). Fig. 10 illustrates that the largest deviations between measured and calculated discharges are for low discharges measured at the structure with the widest berm and a crest wall. Nevertheless, the match between the measured and calculated discharges is rather good, as illustrated by the RMSE shown in Table 4. Fig. 11 shows all data from the presented test programme for all structure types.

4.3.4. Oblique waves

The presented tests so far are all for perpendicular wave attack. In Van Gent and Van der Werf (2019) a rubble mound breakwater with a crest wall, with a cross-section shown in the upper panel of Fig. 4, was tested to study the influence of oblique waves. Based on those tests, the influence of oblique waves was described by Eq. (7). As an independent check of the validity of Eqs. (3)–(5) in combination with Eq. (7) to account for oblique waves, those data are used here. Note that for those tests also the non-dimensional stone diameter (D_{50}/H_{m0}) was varied over a wider range (0.20–0.62, leading to $\gamma_f = 0.33$ to 0.40), than for the presented test programme. The left panel of Fig. 12 shows the data by Van Gent and Van der Werf (2019) while the right panel shows these data in combination with the data from the presented test programme. Fig. 12 shows that the largest deviation between measured and calculated discharges are for the conditions with the most oblique waves. However, for the discharges that are in a relevant range (for $Q_{\text{measured}} \geq 10^{-6}$), the agreement is rather good. The corresponding RMSE value is 0.6157, which is clearly larger than those obtained for the previously discussed influence factors based on perpendicular wave attack.

4.4. Discussion

Based on the data described in previous sections the set of expressions (Eqs. (3)–(7)) has been derived. Table 1 shows the ranges of the most important parameters. Although these ranges cover a rather wide range of rubble mound structures, there are relevant limitations with respect to the ranges of validity. Although the expressions may be accurate outside the range of the test conditions, the validity is unknown. Some important limitations and other aspects are discussed below.

- **Shallow foreshores:** The derived expressions (Eqs. (3)–(7)) are all based on conditions where no significant wave breaking occurs on
the foreshore. Since rubble mound structures are often in relative shallow water, this limitation can be important. For instance, the expression describing the influence of oblique waves (Eq. (7)) leads to a significant reduction in wave overtopping discharge for very oblique waves. It is not unlikely that for conditions where significant wave breaking occurs before the waves reach the structure, the reductive influence may be less than obtained for the deeper water conditions on which the expression is based (Eq. (7)). In addition, also wave refraction plays a larger role in shallow water. It is recommended to study the influence of oblique waves on wave overtopping discharges if such conditions with wave breaking on the foreshore are present.

• **Berm**: The derived set of expressions is based on a data set that does not contain a combination of oblique waves and rubble mound structures with a berm. In Van Gent (2020) and Chen et al. (2022) the influence of oblique waves on wave overtopping was studied for impermeable structures with a berm. It was shown that the reductive influence of the berm is larger for oblique waves, more than the combination of the two separate influence factors for oblique waves and for a berm would suggest. It is not unlikely that also for rubble mound breakwaters the influence of a berm is larger for oblique waves, larger than the present set of expressions would predict. Nevertheless, the present set of expressions provides conservative estimates for rubble mound structures with a berm under oblique wave attack in conditions without severe wave breaking on the foreshore.

For partly or hardly reshaping berm breakwaters an expression to account for the effect of a berm was proposed by Sigurdarson and van der Meer (2012). They proposed to replace the influence factor for roughness by a factor that accounts for the berm. This expression contains the wave steepness and the berm width but not the influence of the level of a berm. Applying this expression for partly and hardly reshaping berm breakwaters for the tested statically stable rubble mound breakwaters with a berm shows that the expression for partly and hardly reshaping berm breakwaters clearly underestimates the reductive effects of a berm on wave overtopping discharges for the tested breakwaters with a berm.

• **Slope angle**: The derived expressions are obtained based on tests with a 1:2 slope. This is a very common slope for rubble mound structures. To what extend the expressions are valid for other slopes such as 1:1.5 or 1:3 needs to be validated.

• **Width of armour in front of crest wall** (G_c): For the width of the armour in front of a crest wall, a rather common width has been applied in the described test programme (G_c is about four stone diameters wide). However, for structures where this width is larger, the reduction in discharge is larger (see also Besley, 1999). In the present test programme also tests with a „berm” at the level of the armour at the crest have been performed (up to $G_c + B = 0.65$ m). For these tests Eq. (6) matches rather well with the data for wide crests, see Fig. 13 (for $Q_{measured} \geq 10^{-6}$). Eq. (6) can therefore be used to estimate the effect of larger width of the armour in front of a crest wall (thus using $B_l = 0$ in Eq. (6)).
5. Conclusions and recommendations

The described physical model tests to study wave overtopping discharges at rubble mound breakwaters have led to the following conclusions:

- Wave overtopping discharges at rubble mound breakwaters depend on the wave steepness.

- The derived expressions are obtained for a crest wall without a recurved parapet. A recurved parapet can reduce the wave overtopping discharge considerably, especially for relatively low overtopping discharges (see for instance Oh et al., 2018). However, it is likely that the effect of a recurved parapet reduces for very oblique waves (see Van Gent, 2021).

- Armour layer: The derived expressions are obtained for rock armoured structures with a permeable core. For a structure with an impermeable core reference is made to Koosheh et al. (2022). However, their method does not provide expressions for rock armoured structures with a crest wall or a berm for structures with an impermeable core. Structures with concrete armour layers have not been tested in the presented test programme. If the roughness of the concrete elements is incorporated in the influence factor for the roughness, this is assumed not to lead to significantly different results than those for rock armoured slopes. Information on roughness factors for various armour layers is provided by Bruce et al. (2009).

- Overtopping parameters: The presented set of influence factors for roughness, crest walls, berms and oblique waves have been derived only for wave overtopping discharges. These influence factors are not necessarily valid for other overtopping parameter such as the overtopping volume per overtopping wave, percentages of overtopping waves, and flow velocities and the flow depth during overtopping events. For information on overtopping volumes reference is made to Mares-Nasarre et al. (2020) for conditions with breaking waves, and Koosheh et al. (2021). For information on reductive effects on flow velocities and the flow depth during overtopping events, reference is made to Chen et al. (2022).

- Data-driven methods: Using the derived expressions leads to a RMSE of 0.2038 for all described data from the wave flume experiments for $Q_{\text{wave}} > 10^{-6}$. If the existing machine-learning methods by Van Gent et al. (2007) or Den Bieman et al. (2021) are used to estimate the discharges for the tested conditions, the RMSE are 0.6359 and 0.5846 respectively. These values are higher than for the expressions derived from the described tests. This is probably partly caused by the data sets on which these methods are based; in the applied data sets limited data is present for rubble mound breakwaters that both contain a berm and a protruding crest wall. An update of machine-learning methods by using the presented data can further improve the quality of the predictions by machine learning methods.

The ranges of the parameters in the test programme also lead to limitations of some of the derived influence factors. Outside these ranges the accuracy of the expressions is unknown. For the influence factor for the roughness, values larger than $\gamma_f > 0.33$ have been obtained; it is recommend not to apply values lower than $\gamma_f = 0.33$ for rock armoured slopes without additional validation. The ratio of the protruding part of the crest wall and the freeboard ($R_c - A_c$)/R_c was smaller than 0.35 in the present test programme. This leads to a maximum influence factor for the crest wall of $\gamma_c = 1.16$. Although tested for a wide range of berm widths, berm levels and wave steepness, the influence factor for the berm was not lower than 0.5 in the present test programme (those tests that would result in lower values led to zero wave overtopping). It is recommended not to apply an influence factor for the berm outside the range $0.5 \leq \gamma_b \leq 1$ without additional validation.

The physical model tests used to develop and validate the derived set of expressions are performed over a fairly wide range of relevant parameters. However, the validity of the derived expressions for applications where waves break before reaching the structure, is yet unknown. This limits the applicability for rubble mound breakwaters but also for climate adaptation of existing rubble mound breakwaters to account for the effects of sea level rise. The set of expressions derived based on the present physical model tests can contribute to the design of rubble mound breakwaters and to the assessment of the optimal adaptation of existing breakwaters.