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Scale-dependent inclination angle of turbulent
structures in stratified atmospheric surface layers
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(Received 13 October 2021; revised 21 February 2022; accepted 29 April 2022)

A large-scale spanwise and wall-normal array of sonic anemometers in the atmospheric
surface layer is used to acquire all three components of instantaneous fluctuating velocity
as well as temperature in a range of stability conditions. These data permit investigation
of the three-dimensional statistical structure of turbulence structures. Based on a similar
dataset, Krug et al. (Boundary-Layer Meteorol., vol. 172, 2019, pp. 199–214) reported
a self-similar range of wall-attached turbulence structures under both unstable and
near-neutral stability conditions. They considered only a wall-normal array and thus
assessed statistical structure in the wall-normal direction, in relation to the streamwise
wavelength. The present work extends the view of a self-similar range of turbulence
structures, by including the statistical structure in the spanwise direction. Moreover, by
analysing the phase shift between synchronized measurements in the spectral domain, it
is inferred how a scale-dependent inclination angle in the streamwise/wall-normal plane
varies with stability. Results suggest that the self-similar wall-attached structures have
similar aspect ratios between streamwise/wall-normal scales and streamwise/spanwise
scales such that λx/�z : λx/�y ≈ 1 for both near-neutral and unstable conditions. Under
the most unstable conditions, coherent structures with λx/δ = 1 are inclined at angles as
high as 65◦ relative to the solid boundary, while larger scales λx/δ = 6 exhibit inclination
angles of approximately 35◦. For near-neutral stability conditions, the angle tends towards
12◦ for all scales. It is noted that in the near-neutral condition, the structure inclination
angle and the aspect ratio – and thus the statistical modelling of coherent structures in the
atmospheric surface layer – are highly sensitive to the value of the stability parameter.
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Figure 1. (a) Isometric view of three hierarchies of self-similar wall-attached eddies (simplified as slanted
cuboids) in the logarithmic region of an ASL. The (b) x,z-plane and (c) x,y-plane of one structure. Here, Li,
Wi and Hi denote the streamwise, spanwise and wall-normal extents of the ith hierarchy structure.

1. Introduction

Townsend (1976) proposed a conceptual model for wall-bounded turbulence, the attached
eddy hypothesis (AEH), which idealizes structures as a collection of inertia-driven
self-similar eddies that are distributed randomly in the plane of the wall. Details of key
assumptions and limitations associated with the AEH are covered in a recent review
by Marusic & Monty (2019). Based on the AEH, Perry & Chong (1982) proposed
that coherent wall-attached eddies scale with the distance from the wall z, and their
heights comprise a geometrical progression. Evidence in support of self-similarity and
wall-scaling of wall-attached vortices has been reported in recent turbulent boundary
layer (TBL) studies (e.g. Jiménez 2012; Hwang 2015; Baars, Hutchins & Marusic 2017).
Figure 1 shows an idealization of a self-similar hierarchy of wall-attached structures
within the logarithmic region of a TBL (Baidya et al. 2019; Deshpande, Monty &
Marusic 2019; Marusic & Monty 2019). Here, we consider three hierarchy levels of
randomly positioned regions of coherent velocity fluctuations, with each hierarchy shown
in a different colour. For simplicity, we consider the volume of influence of eddies,
in each level, to be characterized by Li, Wi and Hi in the x, y and z directions,
respectively, with i = 1, 2, 3 denoting the ith hierarchy level. Figures 1(b) and 1(c)
depict the aspect ratios in the streamwise/wall-normal planeAz ≡ Li/Hi ∝ λx/�z and
in the streamwise/spanwise planeAy ≡ Li/Wi ∝ λx/�y, respectively. Baars et al. (2017)
reported that in the neutral laboratory zero-pressure gradient TBL, the self-similarity is
described by a streamwise/wall-normal aspect ratio λx/�z ≈ 14. A recent study by Baidya
et al. (2019), in high-Reynolds-number pipe and boundary layer flows, indicated that the
self-similar wall-attached structures follow the three-dimensional aspect ratio 14 : 1 : 1 in
the streamwise, spanwise and wall-normal directions, respectively. More recently, Krug
et al. (2019) explored the coherence for both velocity and temperature signals in the
atmospheric surface layer (ASL). They found that the streamwise/wall-normal aspect
ratio (Az ≡ λx/�z) decays with a logarithmic trend with increasing unstable thermal
stratification; spanwise information was not explored in their study. Moreover, they found
that in the case of stable thermal stratification, the turbulence structures do not adhere to a
self-similar scaling, meaning that an aspect ratio is not defined.

Coherent structures reported in TBLs have been associated with characteristic
inclination angles because of the mean shear. In the idealized (statistical) view of
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Inclination angle of turbulence in stratified ASLs

figure 1(b), inclination angle α in the x,z-plane reflects a phase shift �τ in time series of
velocity fluctuations at different z. Perry & Chong (1982) used a vortex skeleton approach
and the Biot–Savart law to determine the inviscid velocity field of a representative eddy,
termed the Λ-vortex. In neutral TBLs, hairpin vortices have been invoked commonly as the
representative eddy, and Adrian, Meinhart & Tomkins (2000) suggested that these vortices
are arranged together in groups called vortex packets. (For a comprehensive review of
hairpin structures and their generating mechanisms, see Adrian 2007.) Christensen &
Adrian (2001) found that the sequence of individual vortex heads forms an interface or
shear layer that is, statistically, inclined away from the wall at angles between 12◦ and
20◦. Laboratory results indicate the most probable inclination angle to be around 10◦–15◦
(Adrian et al. 2000; Christensen & Adrian 2001; Baars, Hutchins & Marusic 2016). In
the neutral surface layer, inclination angles ranging from 10◦ to 20◦ have been reported
(Boppe, Neu & Shuai 1999; Carper & Porté-Agel 2004; Chauhan et al. 2013; Liu, Bo &
Liang 2017). Also, Marusic & Heuer (2007) demonstrated the invariance of the inclination
angle in wall-bounded flows with zero buoyancy (neutral conditions) over a wide range
of Reynolds numbers through laboratory and field experiments. The discussion above
pertains to the near-neutral case. However, in studies of the ASL, it has been observed that
the inclination angle changes drastically under different stability conditions. The thermal
stability of the ASL is generally characterized by the Monin–Obukhov stability parameter
zs/L (Obukhov 1946; Monin & Obukhov 1954), where L = −u3

τ θ̄/(κgwθ) is the Obukhov
length, κ = 0.41 is the von Kármán constant, g is the gravitational acceleration, and wθ is
the surface heat flux, with w and θ the fluctuating wall-normal velocity and temperature
components, θ̄ the mean temperature, uτ the friction velocity, and zs the reference height
for evaluating this parameter. Many studies have observed that the inclination angle
of coherent structures becomes steeper with increasing unstable thermal stratification
(Chauhan et al. 2013; Liu et al. 2017; Lotfy & Harun 2018). In addition, Chauhan et al.
(2013) reported that for the case of stable stratification, the statistical inclination angle
reduced below the typical values found for the near-neutral case. Recently, Salesky &
Anderson (2020a) introduced an additional parameter to account for the loading and
unloading of surface layer flux–gradient relations imposed by the passage of large-scale
motions (LSMs). Meanwhile, Salesky & Anderson (2020b) developed a prognostic model
for large-scale structures, where the inclination angle is the sum of the inclination angle
observed in a neutrally stratified wall-bounded turbulent flow and the stability-dependent
inclination angle of the wedge. Baars et al. (2016) indicates that in the neutral case,
and for all scales λx/δ > 0.5, the coherent scales obey a virtually constant inclination
angle. In unstable conditions in the atmosphere, positive buoyancy lifts the structure away
from the surface, leading to an increase in the statistical inclination angle (as averaged
across all scales; see Chauhan et al. 2013; Liu et al. 2017). Now, in the unstable case, the
dominance of buoyancy over shear is a function of wall-normal height, hence one expects
the inclination angle to be scale-dependent.

Since the coherent structure in the ASL has a strong relationship with the stability
parameter, this paper will address specifically the influence of stability on: (1) the
streamwise/wall-normal aspect ratio Az ≡ λx/�z and the streamwise/spanwise aspect
ratio Ay ≡ λx/�y in § 3.1, and (2) the scale-dependent angle α in § 3.2, particularly
under unstable conditions. Statistical relations for the aspect ratio and inclination angle
for coherent turbulence fluctuations in the ASL are particularly relevant when analysing
wind loading in the field of wind engineering (see Davenport 1961, 2002).
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(a) 3-D view (b) North-west view

Figure 2. (a) Three-dimensional view of the measurement set-up at the QLOA site. (b) North-west view of
the sonic anemometer array; Campbell CSAT3B and Gill Instruments R3-50 sonics were installed at positions
h1 to h11 and s2 to s7, respectively.

2. Turbulence dataset of the atmospheric surface layer

2.1. QLOA facility and available data
The measurement data used throughout this article were acquired at the QLOA facility
in western China, Gansu province, during three-month long measurement campaigns
over two years (March to May in 2014 and 2015). The QLOA consists of wall-normal
and spanwise arrays of sonic anemometers, performing synchronous measurements of
the three-dimensional turbulent flow field. Sonic anemometers (Gill Instruments R3-50
installed from s2 to s7, and Campbell CSAT3B installed from h1 to h11; see figure 2) were
employed to acquire time series data of the three components of velocity, as well as the air
temperature, at a sampling frequency of 50 Hz. Continuous observations were conducted
at the QLOA site for a duration of more than 3000 h, from which 89 h of data were
selected to analyse the characteristics of the large-scale coherent structures under different
stratification stability conditions. The wall-normal array consists of 11 sonic anemometers
that were placed with a logarithmic spacing on a vertical radio-type tower. The spanwise
array covered an overall distance of 30 m, with 7 anemometers that were placed at
constant height (z = 5 m), with an equidistant spanwise spacing of 5 m. The spanwise
and wall-normal coordinates for each of the 17 anemometers are provided in figure 2(b). It
should be noted that the first sonic anemometer in the spanwise array (s1) also functions
as the fifth on the main tower (h5), which means that we have 7 available anemometers in
the spanwise array. The friction velocity uτ is inferred from uτ = (−uw)1/2 at z = 5 m
(calculated by the mean value from 7 sonic anemometers in the spanwise array). We
assume an estimate for the surface layer thickness of δ = 60 m, following Hutchins et al.
(2012). The 89 h of data remaining after preselection were subdivided into 89 segments
of 1 h long time series. This database included 69 h of unstable data (zs/L < −0.01), 10 h
of near-neutral data (−0.01 � zs/L < 0.01), and 10 h of stable data (zs/L > 0.01). Recall
that zs is the reference height used to define the stability parameter zs/L. For the benefit of
comparison with previous works (Chauhan et al. 2013; Liu et al. 2017; Krug et al. 2019),
the majority of our work uses zs = 2.5 m, unless otherwise specified. The demarcation of
zs/L = −0.01 to distinguish between neutral and unstable thermal stratification is found
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Inclination angle of turbulence in stratified ASLs

commonly in the literature, but for all analysis in this paper, we present results as a
function of zs/L; it will actually be shown later that this demarcation of zs/L = −0.01
is too permissive. The preselection criteria included wind direction (the wind direction
had to be aligned with the x axis of the anemometer to within ±30◦) and steadiness
(statistically steady conditions based on the high-quality requirement by Foken et al.
2005). A de-trending operation is also added (to remove the large-scale synoptic trend).
See Hutchins et al. (2012) and Wang & Zheng (2016) for full details of the preselection
criteria.

2.2. Processing method
Two-point correlations can be computed on a per-scale basis in the Fourier domain using
the linear coherence spectrum (LCS). For the fluctuating streamwise velocity signals u,
the LCS is defined as

γ 2
L (z, zref ; λx) ≡ |〈Ũ(z; λx) Ũ∗(zref ; λx)〉|2

〈|Ũ(z; λx)|2〉〈|Ũ(zref ; λx)|2〉
= |φ′

uu(z, zref ; λx)|2
φuu(z; λx) φuu(zref ; λx)

. (2.1)

Here, Ũ(z; λx) = F [u(z)] is the Fourier transform of u(z), in either x or time. The
spatio-temporal transformation uses Taylor’s hypothesis (Taylor 1938), where the local
mean velocity is taken as the convection velocity. The asterisk ∗ indicates the complex
conjugate, 〈〉 denotes ensemble averaging, and | | designates the modulus. Scale-dependent
phase information is embedded explicitly in the phase of the cross-spectrum φ′

uu. For (2.1),
the LCS is defined based on u at two positions (zref and z), separated in the wall-normal
direction by �z ≡ z − zref . This coherence can also be computed across all other measured
signals (v and θ ) and also across spanwise separations �y. The reference signal’s height
is denoted with the subscript ‘ref’ and is thus stated as zref . Since the LCS considers
the magnitude of the complex-valued cross-spectrum, only the magnitude of coherence
is considered (phase is covered later). Based on assumptions from the AEH (Baars et al.
2017; Krug et al. 2019), the coherence magnitude within a self-similar region in λx,z-space
is expected to adhere to

γ 2
L = C1 ln

(
λx

�z

)
+ C2, (2.2)

from which the statistical aspect ratio (in this case streamwise/wall-normal) then follows:

A
z = λx

�z

∣∣∣∣
γ 2

L =0
= exp

(−C2

C1

)
. (2.3)

Here, C1 and C2 are fitted parameters. Figure 3 shows an example of data obtained
from the ASL to illustrate the process of the coherence spectrum. Figure 3(a) indicates
the raw data for the streamwise velocity collected at h5 = 5 m and h6 = 7.15 m, under
unstable conditions with zs/L = −0.52. A shorter time history of corresponding filtered
signals is shown in figure 3(b), evidencing that signal h6 leads h5. Thus a coherent
velocity fluctuation is first sensed at the higher wall-normal location as a result of the
structure inclination angle. The LCS for h5 and h6 is presented in figure 3(c) as a
function of temporal frequency, as computed from the 1 h long time series data. Using
Taylor’s frozen turbulence hypothesis, the frequency axis can be converted to a streamwise
wavelength: λx ≡ Uc/f . Here, Uc is a convective speed, taken as the mean velocity at local
height z. (The current dataset is fully submerged in the logarithmic region of the ASL.
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Figure 3. (a) An example of time series data for zs/L = −0.52 at heights h5 and h6. The blue lines are low-pass
filtered at f = U/δ. (b) Portion of the filtered signals for inspecting the coherence and time shift. (c) Coherence
spectrum for height h6, relative to h5, as a function of temporal frequency. (d) Coherence spectrum for all
heights h6, . . . , h11, again relative to h5. Here, the abscissa is converted to a spatial wavelength with the mean
velocity at height z. (e) Scale-dependent phase of the cross-spectrum between h5 and h6, which is converted to
a physical inclination angle α as a function of a spatial wavelength in (f ). The blue dots and blue solid lines
in (c–f ) indicate the frequency or wavelength corresponding to γ 2

L = 0.1. Filtered spectra (black line), overlaid
on the grey raw spectra, utilize a bandwidth moving filter of 25 %.

Here, the convective speed of coherent structures agrees well with the mean velocity and
is relatively scale-independent (Liu & Gayme 2020). Moreover, Baars et al. (2017) showed
that when Taylor’s hypothesis is used with the local mean velocity U(z), the coherence
spectra agree with those computed from spatial DNS data.) The coherence spectrum of
figure 3(c) can now be presented as a function of the streamwise wavelength, relative
to the wall-normal separation distance �z, as shown in figure 3(d). In addition to the
coherence spectrum for h5 and h6, the coherence spectra for all heights above h6 (relative
to h5 again) are also shown to illustrate the wall-similarity that is to be investigated. Krug
et al. (2019) noticed that only data at neutral and unstable thermal stratification conditions
complied with (2.2), thus an aspect ratio was found only for those conditions. (A similar
conclusion was reached for our QLOA site data, therefore we do not consider stable
stratification with zs/L > 0.) In addition, Krug et al. (2019) found that the self-similar
scaling applies also to fluctuations of the spanwise velocity v and the static temperature
θ . Baidya et al. (2019) demonstrated that a scaling similar to (2.2) and (2.3) occurs in the
spanwise direction, resulting in a streamwise/spanwise aspect ratioAy for the self-similar
structure.
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Inclination angle of turbulence in stratified ASLs

Scale-dependent phase information is embedded explicitly in the phase of the
cross-spectrum φ′

uu, given by

Φ(z, zref ; λx) = tan−1
(

Im[φ′
uu(z, zref ; λx)]

Re[φ′
uu(z, zref ; λx)]

)
. (2.4)

The phase spectrum aids in assessing the temporal shift between signals. Phase Φ( f )
in (2.4) is shown in figure 3(e) and can be used to extract a scale-by-scale inclination
angle α (as shown in figure 3f ). That is, the temporal shift is τ = Φ( f )/(2πf ), where
f is the mode frequency, and aids in computing the physical inclination angle through
α = tan[�z/(τUc)]. For the spectral analysis, the highest frequency resolved is set by
the Nyquist frequency fs/2 = 25 Hz, where fs = 50 Hz is the sampling frequency. The
lowest frequency is dictated by the interval length I used in the spectral analysis, and
the longest interval used was I = 2N samples with N = 15 (interval length ≈650 s).
A composite approach with varying interval length (N = 8, . . . , 15) was used to generate
the full spectra with as many ensembles as possible for the higher frequency portions of
the spectrum (for N = 8 a total of around 1000 ensembles were used).

3. Results

3.1. Stability dependence of aspect ratio
The linear coherence spectra for u, v and θ as functions of λx/�z and λx/�y for the
unstable case with zs/L = −0.52 are given in figures 4(a) and 4(c), respectively. As
reported by Krug et al. (2019), the LCS collapses on one common curve over a range of
λx/�z and λx/�y. By fitting (2.2) to these regions to obtain C1 and C2, the aspect ratioA
can be assessed. For this particular unstable case, we might expect the positive buoyancy
to cause the self-similar structures in the hierarchy to lift more aggressively from the wall,
extending the wall-normal coherence for a given λx scale, hence reducingAz

u. Indeed, for
the unstable case considered in figure 4(a), this yields anAz

u that is significantly lower
(Az

u = 3.6) than the value Az
u ≈ 14 reported for laboratory neutral conditions (Baars

et al. 2017) and in close agreement with the aspect ratio reported in Krug et al. (2019) for
similar values of the stability parameter. The resulting aspect ratios for u, v and θ from all
79 h datasets (covering a range of stabilities from 0.007 � −zs/L � 1.04) are plotted as
functions of the stability parameter in figure 4(b) for streamwise/wall-normal aspect ratios
A

z, and in figure 4(d) for streamwise/spanwise aspect ratios Ay. In all cases, a clear
trend emerges between aspect ratio and stability parameter, and a log–linear trend is fitted
to the extracted data (black solid curves). These fitted trends are consistent with those of
Krug et al. (2019) (black dashed curves in figure 4b), indicating that the self-similar scaling
under near-neutral and unstable conditions is a universal phenomenon. The relatively small
differences in the slopes of the solid (current study) and dashed (Krug et al. 2019) trend
lines, visible in particular for Az

u and Az
θ , are ascribed to experimental uncertainty in

the field measurements: e.g. differences between test sites and the fact that the fitting
procedure was performed on a different number of data points, residing at different values
of −zs/L. As an extension to the results of Krug et al. (2019), the streamwise/spanwise
aspect ratios of figure 4(d) seem to also exhibit log–linear trends, although in these cases
the scatter in results is greater.

Baidya et al. (2019) indicates that the aspect ratio isAz
u :Ay

u = 1 : 1 in the laboratory
neutral condition. The results shown in figures 4(b,d) are also supportive of this. For
instance, by utilizing the solid trend lines in figures 4(b,d), forAz

u andAy
u, respectively,
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Figure 4. Plots of γ 2
L in the ranges 2.15 m � �z � 25 m and 5 m � �y � 30 m (with increasing �z and �y

indicated by lighter shades of grey) for (a) the wall-normal coordinate z, and (c) the spanwise coordinate y,
respectively, for the unstable case with zs/L = −0.52. Here, the ranges are between �z5,6 = h6 − h5 = 2.15 m
and �z5,11 = h11 − h5 = 25 m, and between �y1,2 = s2 − s1 = 5 m and �y1,7 = s7 − s1 = 30 m. The blue
line is a fit to obtain the aspect ratio according to (2.2), with C1 = 0.302 fixed; the fitting region used is
bounded by γ 2

L > 0.1 and λx < 100 m, and is indicated by red lines. Subscript i = u, v, θ in Ak
i signifies

the aspect ratio for streamwise and spanwise velocity components as well as the temperature component;
superscript k = z, y in Ak

i indicates either the streamwise/wall-normal or streamwise/spanwise aspect ratio.
(b,d) Streamwise/wall-normal and streamwise/spanwise aspect ratios, respectively, as functions of zs/L. The
blue dots are our ASL results, and the black solid lines denote the semi-log fitting. The dashed lines in (b)
come from Krug et al. (2019) with zs = 2.14 m and zref = 1.41 m. Note that in this work, zref = zs = 5 m, so
the dashed lines of Krug et al. (2019) were shifted along the zs axis to compare the trends at matched −zs/L.

it is found thatAz
u :Ay

u = 0.90 : 1 for the near-neutral case zs/L = −0.01, and that this
ratio changes to Az

u :Ay
u = 1 : 1 for a strong unstable stability condition zs/L = −1.

By recalling that Az
u ≡ λx/�z, the data here indicate that these self-similar eddies

for u follow an aspect ratio λx : �y : �z ≈ 6.4 : 0.90 : 1 in the near-neutral condition
(zs/L = −0.01). It is worth highlighting that again the aspect ratio is sensitive to even
very weakly unstable conditions. Therefore, the value for u measured in the ASL is less
than the result λx/�z = 14 from Baars et al. (2017) and Baidya et al. (2019) in neutral
laboratory conditions, as was also noticed by Krug et al. (2019), whose prediction implies
that λx/�z = 14 will be attained only for |zs/L| ≈ 0.0003 (but for the current QLOA
dataset, we have data only for |zs/L| � 0.007). Finally, the aspect ratio for u shows that
λx : �y : �z ≈ 4.25 : 1 : 1 under a more unstable condition (zs/L = −1), demonstrating
that positive buoyancy has a lifting effect, increasing the size of coherent structures in the
wall-normal and spanwise directions relative to its streamwise extent.
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Figure 5. (a) The phase expressed as a physical inclination angle α as a function of wavelength λx/δ and
stability parameter −zs/L. The LCS reference height, zref = 0.90 m, and inclination angles are presented for
distances �z = h5 − h1 = 4.1 m. The solid increasing shades of blue dots indicate the scales at λx/δ = 1,
λx/δ = 2 and λx/δ = 6, addressed in detail in figure 6. The solid blue lines show the trend fitted to these
data given by (b) the surface fit to the data of the form (3.1). (c) Similar to (b), but now as two-dimensional
iso-contours of α as a function of λx/δ and −zs/L.

3.2. Stability dependence of structure inclination angle
Per the phase spectrum in figure 3(f ), the scale-dependent phase is now analysed for
scales within the range 1 < λx/δ < 10 and for a similar �z as before, �z = h5 − h1 =
4.1 m. Larger wavelength information in the phase spectra is prone to noise issues
due to the limited ensembles available for constructing the spectra, while smaller
wavelengths generally have a lower coherence. Figure 5(a) indicates the phase spectra
in terms of inclination angle as functions of wavelength λx/δ, for all different stability
parameters −zs/L. Note that all measured angles in figure 5(a) are positive, corresponding
to forward-leaning structures. Though there are some clear outliers in these plots,
certain trends are visible, as evidenced by the coloured symbols that visualize data at
constant scales λx/δ = 1, 2 and 6. Clearly, these different wavelengths exhibit different
dependencies of α with the stability parameter, with λx/δ = 1 exhibiting much steeper
angles α in the most unstable cases, and markedly shallower angles as near-neutrality
is approached. In general, it is also noted that longer structures (larger wavelength) will
exhibit smaller inclination angles, especially noticeable at stronger convective conditions.

To quantify the trends in the data, a functional form is adopted from Chauhan et al.
(2013), who used a log–linear trend of convective data in a boundary layer to model
the variation of α with stability zs/L. Note that their angle was inferred from two-point
cross-correlation maps and hence is scale-invariant. As such, the only difference is the
introduction of a scale-dependent coefficient, here denoted as C0 = C0(λx/δ) in (3.1).
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This function will be illustrated later, but can capture the faster increase of α with
increasing −zs/L, for smaller scales. (In the work of Chauhan et al. (2013) this coefficient
was constant and equaled C0 = 7.3.) So we have

α

(
zs

L
,
λx

δ

)
= α0 + C0 ln

(
1 + 70

∣∣∣zs

L

∣∣∣) . (3.1)

The form of (3.1) guarantees that α approaches the invariant value of α0 when −zs/L → 0
(here, α0 is taken as 12◦, and recall that zs = 2.5 m). A curve-fitted plane to those spectra is
shown in figure 5(b), in which this fit has the form in (3.1); iso-contours of α are depicted
in figure 5(c), and show that under the most unstable conditions, coherent structures of
λx/δ = 1 are inclined at angles as high as 65◦. It should be noted from figure 5(a) that for
small near-neutral values of the stability parameter, it is not always possible to compute
an inclination angle α for the smaller wavelength (λx/δ = 1) from the phase spectra since
the coherence across �z drops below γ 2

L = 0.1.
Figure 6 shows the variation of α as a function of the stability parameter −zs/L for

three different length scales, λx/δ = 1, 2, 6. Inclination angles computed from the phase
spectra are shown by the coloured circles, and the blue lines show the surface fit to the data
given by (3.1). In addition, the black open circles in figure 6, which show the inclination
computed from the two-point correlations for all 11 measurement heights, indicate that
the current data are consistent with the similarly computed results from Chauhan et al.
(2013), shown by the black open squares. The black solid line in figure 6 shows the fit
proposed by Chauhan et al. (2013) based on the two-point correlation contours. As such,
this original fit includes all scales, and is skewed disproportionately towards larger-scale
features at higher z. It is clear from figure 6 that the increasing buoyancy lifts all scales
to larger inclination angles, although the smaller-scale structures considered (λx/δ = 1)
exhibit steeper angles at all values of the stability parameter as compared to the larger
features (λx/δ = 6). This means that the scale-dependent coefficient C0 = C0(λx/δ) in
(3.1) increases systematically as we focus on smaller scales. The coloured curves in
figure 6 show the curve fits to the data based on the fit proposed in (3.1), with the
constant α0 and value of the scale-dependent coefficient C0 given in the figure legend.
It should be noted here that for the limited scale range discussed here, 1 < λx/δ < 10,
all of these scales are large and associated with the upper end of attached motions and
superstructures (Hutchins & Marusic 2007). Although with increasing stability all scales
are lifted compared with the neutral condition, the low end of this range (λx/δ = 1)
exhibits the steepest angles, reaching α ≈ 70◦ at zs/L = −1.0. Baars et al. (2016) indicated
that the inclination angle of the large-scale structures in the neutral laboratory boundary
layer is scale-independent with value α = 14.7◦. Though the data in figure 6 do suggest
that α becomes scale-independent in the limit of small |zs/L|, the angle seems to be closer
to α ≈ 12◦ for the current data.

The results summarized in figure 6 are computed for a linear coherence spectrum
between the reference location zref = 0.9 m and the location z = 5 m (�z = 4.1 m). In
addition, the stability parameter presented on the abscissa of figure 6 is computed based
on conditions at zs = 2.5 m. Before considering further the form of the fit described by
(3.1), we must consider the sensitivity to zs, and �z. Generally, the stability parameter
zs/L depends linearly on height, which would suggest that the scale-dependent structure
inclination angles α will also increase with wall-normal height z (since as we move away
from the wall, buoyancy effects will increase in dominance relative to shear). To account
for this, and to form a stability parameter that better reflects the altitude at which the phase
spectrum is evaluated, we propose a fractional stability parameter, dubbed zF/L, where
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Figure 6. Variation of α with the stability parameter zs/L (zs = 2.5 m, zref = 0.90 m and z = 5 m, so that
�z = 4.1 m). The solid coloured lines are the fitting lines based on (3.1) for the corresponding scales λx/δ = 1,
2 and 6. Current data are shown by black circles (based on a two-point correlation, including all scales). The
open black squares correspond to near-neutral and unstable ASL data of Chauhan et al. (2013); asterisks from
Ruτ u of Marusic & Heuer (2007); diamonds of Carper & Porté-Agel (2004); open pentagram from Ruu of
Marusic & Heuer (2007).

Wall-normal direction

x

zref

zs

z

�z

Recall height definitions:

zref : fixed reference height for coherence

z: local (varying) height of inspection

∆z ≡ z − zref
zs: height at which stability is evaluated

Analysis thus far: zref = 0.9 m; z = 5 m; zs = 2.5 m

Figure 7. Summary of the different heights involved in the analysis. Heights for which the analyses were
performed up to this point are listed in the box.

zF is fixed at a constant fraction of the wall-normal offset �z. Hence stability is always
assessed at a fixed fractional height between the lower and upper probes used to compute
the linear coherence spectrum. This should minimize the sensitivity of the inclination
angle–stability parameter relationship to changes in �z. Since the data in figure 6 are
given based on zref = 0.90 m, z = 5 m and zs = 2.5 m (figure 7), the fractional stability
parameter zF can be assessed as

zF =

values figure 7︷ ︸︸ ︷(
zs − zref

z − zref

)
�z + zref = 0.39 �z + zref . (3.2)

Maintaining zF at the value given by (3.2), when changing �z or zref , ensures that
we assess stability at the same fractional location 0.39 �z when varying the height of
inspection z. We can now substitute zF for zs in (3.1):

α

(
zF

L
,
λx

δ

)
= α0 + C0 ln

(
1 + 70

∣∣∣zF

L

∣∣∣) . (3.3)

The grey curves in figure 8(a) show coefficient C0 = C0(λx/δ) from (3.3), extracted
from fits to the data with various �z. Here, zref remains fixed at 0.90 m, and z covers
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Figure 8. (a) Parameter C0 as a function of wavelength λx with increasing �z indicated by thinner lines and
darker shades of grey. Here, zref remains fixed at h1 = 0.91 m, and z increases from 1.71 m to 30 m (h2 to h11);
the blue solid line indicates a log–linear fit to all grey curves. (b) The scale-dependent α for u as a function of
stability parameter, for λx/δ = 1, 2, 6 at h5, h7 and h9 (zs = 2.5 m and zref = 0.90 m); lines come from (3.5),
and each set of profiles is offset by 15◦.

all heights above, ranging from 1.71 m to 30 m, with thinner grey lines indicating lower
values of z. We can extract α from the phase spectra only in situations where the coherence
γ 2

L is greater than 0.1; this condition gives rise to the sharp drops/rises in figure 8(a) as at
different λx/δ, varying subsets of data are available for the calculation of α. In general, it is
noted that the fractional location for the stability height described above does a reasonable
job of collapsing the C0 curves for all �z; C0 decreases with λx/δ, indicating that the
smaller-scale structures tend to have larger inclination angles in the convective conditions.
Based on the approximate collapse observed in figure 8(a), we can approximate crudely
the λx/δ dependence of C0 with

C0 = 13.1 − 3.8 ln
(
λx

δ

)
, (3.4)

which is shown by the blue solid line in figure 8(a). Finally, by combining (3.4) with (3.3),
we obtain the scale-dependent structural inclination angle as

α

(
zF

L
,
λx

δ

)
= α0 +

(
13.1 − 3.8 ln

(
λx

δ

))
ln

(
1 + 70

∣∣∣zF

L

∣∣∣) . (3.5)

Figure 8(b) shows the influence of wall-normal offset �z (with zref fixed at 0.90 m) on
the computed inclination angle α as a function of stability for the wavelengths λx/δ =
1, 2, 6 for u. A larger �z leads to higher α, but this can be accounted for by considering
the fractional stability parameter. The curves, showing (3.5), describe the variation of α

with zs/L, λx/δ and �z reasonably well.
By way of a summary, figure 9 shows an illustration of the scale-dependent structure

inclination angle and aspect ratio for both neutral (subscript n) and unstable (subscript
u) thermal stratification conditions. The illustrations show the streamwise extent of the
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Figure 9. Summary of aspect ratioAz and scale-dependent angle α in a neutral and unstable stratified ASL.
Two hierarchy levels are considered, each of a different scale: L and H show the structure’s streamwise length
and wall-normal height. The subscripts’ first letter, n or u, signifies a ‘neutral’ or ‘unstable’ condition, and the
second designation, s or l, denotes ‘small-scale’ (λx/δ = 2) or ‘large-scale’ (λx/δ = 6). The dashed lines in the
top part indicate a reference location zref = 0.90 m and heights z1 = zref + �z = 15 m and z2 = zref + �z =
60 m, for which the corresponding α values are indicated.

structure (in physical space following the simplification that its length L scales with
half the wavelength, thus L ∼ λx/2) and its wall-normal extent with height H; the
streamwise/wall-normal aspect ratio of the structure in the x,z-plane adheres to Az

u of
figure 4(b). When concentrating on the neutral stability condition first (bottom part of
figure 9), both scales drawn exhibit the same inclination angle αn. That is, the statistical
inclination angles of large and small scale comprise the same forward leaning behaviour.

When considering unstable thermal stratification – in figure 9, just one value of zs/L =
−0.50 is considered, evaluated at zs = 2.5 m – the inclination angle is scale-dependent
and also varies with z (the procedure for plotting this structure is summarized in the
Appendix). First, note that the coherent wall-attached structures are still self-similar per
the definition used in this paper, based on the structure’s streamwise wavelength relative
to its wall-normal extent. But the aspect ratio reduces compared to the neutral case, and
this depends on the degree of thermal stratification per the relations shown in figure 4(b),
thus (Lns/Hns = Lnl/Hnl) > (Lus/Hus = Lul/Hul). Here, subscripts s and l refer to the
small- and large-scale structures visualized, respectively. Concentrating on the inclination
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angle (e.g. the phase shift between a reference height zref and a height of inspection z), it
was found that for unstable stratification, it increases with increasing z. Hence αul2 > αul1,
and the coherent shape of the structure is characterized by a leading/trailing edge front
that is curved and becomes steeper with height. Moreover, smaller-scale structures exhibit
steeper angles for the case of equal �z (e.g. αus > αul1). The trends for this one stability
condition are visualized with the ‘α-surface’ in the centre of figure 9. There, the fractional
stability zF is a surrogate for the �z trend.

4. Conclusion

Wall-normal and spanwise arrays of sonic anemometers deployed in the atmospheric
surface layer enable examination of the linear coherence spectrum, γ 2

L , as a function of
the streamwise wavelength (λx), spanwise offset (�y) and wall-normal offset (�z). This
in turn offers the opportunity to explore the three-dimensional form of the wall-attached
self-similar structure for the streamwise velocity u, which illustrates that the self-similar
wall-attached structures follow an aspect ratio λx/�z : λx/�y ≈ 1 under near-neutral
and unstable conditions. It is found that the aspect ratio λx/�z is greater for the
near-neutral case, and becomes progressively smaller as instability increases. Hence
similar length (λx) structures in unstable conditions will be taller and wider than their
near-neutral counterparts. The phase of the cross-spectrum provides a scale-by-scale
structure inclination angle. We find that this inclination angle is invariant with scale
for the near-neutral case, but with increasing positive buoyancy becomes increasingly
scale-dependent. For unstable conditions (e.g. zs/L = −0.5), all scales are inclined at
steeper angles compared to the near-neutral case, with the smaller scales with λx/δ = 1
exhibiting inclination angles that are approximately twice those of larger scales, λx/δ = 6.
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Appendix. Outline of a coherent structure

Visualizing the outline of a coherent statistical structure of a streamwise velocity
fluctuation in the streamwise/wall-normal plane relies on a simple model based on (3.5)
and (3.2). The procedure for plotting a structure such as the example one in figure 10
involves the following steps.

(i) A wavelength of the structure should be chosen, i.e. λx = 2δ. Note that the structure
is visualized in physical space, through the assumption that its streamwise extent
equals half the wavelength, L ∼ λx/2.

(ii) A degree of unstable stratification should be chosen, i.e. zs/L = −0.40 (here zs =
2.5 m).

(iii) A reference height, above which the structure is visualized, should be chosen.
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Figure 10. Example of an outline of a coherent streamwise/wall-normal structure of a particular scale and set
of ASL parameters (as indicated in the figure).

A structure outline is then generated through considering a sequence of local heights z.
For every height, the angle relative to the fixed reference height is determined from (3.5)
and (3.2); this is illustrated by the series of ten grey lines at the left edge of the structure
in figure 10. Note that the structure is defined only up to a height that is dictated by the
aspect ratio condition, following the trend line in figure 4(b). Thus the wall-normal extent
up to which the coherent structure reaches is found by computing �z fromAz

u ≡ λx/�z =
−1.9 log10(−zs/L) + 3.5.
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