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A B S T R A C T

Urban mobility services face the challenge of planning their operations efficiently while
complying with user preferences. In this paper, we introduce a new mathematical model
called a choice-driven dial-a-ride problem (CD-DARP) which is a generalization of the dynamic
DARP where passenger behavior is integrated in the operational planning using choice models
and assortment optimization. We look at two types of mobility services, private and shared.
Our problem extends the dynamic DARP by (i) changing its objective function to profit
maximization, where both cost and revenue are variables, and (ii) incorporating assortment
optimization with routing decisions in a dynamic setting. We propose a pricing scheme based
on a choice model designed to offer service alternatives at the time a customer makes a request.
We introduce a tailored algorithm to efficiently solve the dynamic CD-DARP. Computational
results indicate that our proposed approach outperforms dynamic DARP in terms of reducing
routing costs and improving the number of customers served.

. Introduction

The dial-a-ride problem (DARP) is a variation of the pickup and delivery problem (PDP) involving passenger transportation
ystems. A solution of DARP requires balancing the trade-off between service quality (i.e. customer convenience) and economic
erspective, Paquette et al. (2009). In the case of the dial-a-ride problem, service quality is either handled externally (e.g. setting
tight time window to restrict customer waiting time and limit the maximum ride time to reduce any inconvenience caused by

etour) or included internally as a part of the objective function, Cordeau and Laporte (2007).
In the dynamic case, new requests arrive continuously in the system. When a new request is submitted, vehicle routes need to

e adjusted which requires efficient strategies for dispatching vehicles (e.g. wait or go) and routing. The routing decision involves
ither rejecting the customer when there is no feasible solution or accepting the request and guaranteeing the service at the lowest
outing cost, Berbeglia et al. (2010).

In literature, there are two main approaches to finding a balance between service quality and operational cost. In the first
pproach, customer inconvenience (due to early or late arrival) is modeled as a soft constraint whose violation is penalized in the
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Fig. 1. Timeline of the dynamic framework.

objective function (see, Jorgensen et al. (2007) and Melachrinoudis et al. (2007)). In the second approach, service quality is viewed as
part of the objective function. For example, Lehuédé et al. (2014) use weighted-sum method, while Schilde et al. (2011, 2014) apply
hierarchical objective functions. Parragh et al. (2009), Paquette et al. (2013), and Molenbruch et al. (2017b) use Pareto dominance
method to tackle the problem. Defining a model that incorporates the interaction between the minimization of operational costs
and the maximization of service levels is not straight-forward. This is especially critical for demand-responsive mobility services
dealing with heterogeneous customers in a competitive market, Atasoy et al. (2015). In Section 2, we present some of the recently
published researches that address this integration.

DARP literature largely assumes that the users of a system do not have a voice in the service provision beyond formulating
transportation requests. They are usually not assumed to have any kind of choice to make. The underlying context is that of a
public service that aimed at serving as much of the demand as possible under a budget constraint or to serve all demand at minimal
cost.

Inspired by the utility maximization theory of consumer behavior and discrete choice models, initially presented by Ben-Akiva
et al. (1985) and McFadden (1973), in this paper, we propose a variant of dynamic dial-a-ride problem called dynamic choice-driven
dial-a-ride problem (CD-DARP). Upon customers’ arrival in the system, we generate a set of options called personalized alternatives
that matches the preferences of the new request in terms of the type of service (e.g., private or shared) and the preferred pickup
time. Via assortment optimization, a menu of personalized alternatives is offered to the customer at different price levels to maximize
profit at the network level. In this paper, we solve the problem as the requests arrive in the system in real-time. Fig. 1 in Section 3
clarifies the details of our proposed approach.

The fundamental trade-off in assortment optimization is that broad assortments result in demand cannibalization and spoilage,
while narrow assortments result in disappointed customers who may opt-out without purchasing. An assortment’s profitability can
be captured by a choice model that provides the probability of purchase based on the alternatives offered in the assortment. While
integrating individual preferences makes the dynamic DARP more realistic, that comes with greater computational complexity due
to the probabilistic representation of demand, Paneque et al. (2021). In our case, choice parameters are estimated outside the
optimization problem.

We summarize the contributions of this paper as follows: we introduce a novel mathematical model that incorporates customer
choice in the dynamic DARP framework. Personalized alternatives are generated based on customer’s preferences. We investigate
the structural properties of inherited assortment model to obtain a set of assortments. These properties are used to efficiently solve
the model. We then present an algorithm to solve the dynamic CD-DARP. We test our approach on synthetic as well as New York
taxi data. We also compare our approach with the dynamic dial-a-ride. Our results indicate that, by providing flexible services, we
can serve higher number of customers while reducing the routing cost and increasing the profit.

The remainder of the paper is structured as follows. Relevant literature is discussed in Section 2. In Section 3, we present the
dynamics of the system. Sections 4 and 5 describe the elements of CD-DARP and its mathematical formulation. Section 6 explains
the variable reduction techniques. To tackle the problem dynamically, we use the rolling horizon approach presented in Section 7.
In Section 8, we show the numerical results and finally our findings are summarized in Section 9.

2. Related literature

The main application of dial-a-ride problem arises in door-to-door transportation services offered to elderly and handicapped
people in many cities. For instance, both Madsen et al. (1995) and Toth and Vigo (1996) investigate DARP for ambulance and
emergency services. Beaudry et al. (2010) consider the case for urban mobility systems such as demand responsive transport and
shared autonomous vehicles, see also, Bongiovanni et al. (2019), Levin (2017), Parragh et al. (2015) and Marković et al. (2015). In
this section, we limit our review to the dynamic DARP research. Interested readers are referred to Ho et al. (2018), Berbeglia et al.
129
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(2010, 2007), Molenbruch et al. (2017a) and Cordeau and Laporte (2007) for an extensive and comprehensive review on dial-a-ride
problems.

In the literature of dynamic DARP, customer convenience has been modeled implicitly by defining for example, tight time
indows and restricted maximum ride time for each new request. In this case, the decision-making process focuses on finding
feasible low-cost solution to serve the incoming request. Berbeglia et al. (2011) present a constraint programming approach to

fficiently detect the feasibility of serving a new request. The proposed method was then combined by a tabu search to find a low-
ost solution, Berbeglia et al. (2012). Similarly, Attanasio et al. (2004) propose a heuristic algorithm to efficiently accommodate
he incoming requests (see also, Horn (2002), Coslovich et al. (2006) and Xiang et al. (2008), Liu et al. (2015)).

Service quality has been treated as part of the solution and quantified directly in the objective function. With this approach,
he operator can balance the service quality and economic benefits manually. For a single-vehicle dynamic DARP, Psaraftis (1980)
resents a dynamic programming approach designed to minimize a weighted combination of user dissatisfaction and total service
ime, while Häme (2011) extends the work of Psaraftis (1980) and makes it computationally more efficient. Beaudry et al. (2010)
eveloped an adaptive insertion algorithm that takes waiting time and fleet size into account. For the transportation of elderly
eople, Madsen et al. (1995) propose a heuristic approach by taking into account factors like driving time, vehicle utilization and
outing cost. For the cases mentioned above, operational decisions are quantified mostly by routing cost, vehicle utilization and the
umber of served customers.

Knowing future arrivals, several studies use the queuing model to determine a social-optimum solution by finding a balance
etween service quality and operating costs. For last-mile transportation systems, Wang and Odoni (2016) propose a queuing model
hat schedules vehicle plans to minimize weighted sum of passenger waiting time, in-vehicle time and vehicle workload. For online
ARP, Hyytiä et al. (2012) relax the constraints related to customer convenience (i.e. pickup/delivery time windows and maximum

ide time) and propose a queuing model to estimate the future cost while not allowing for vehicle re-routing.
Service pricing is a commonly used approach to offer personalized services. Customer satisfaction perceived value is a frequently

sed approach to measure service attractiveness. It is mostly defined as a difference between the gained utility by using the service
e.g. waiting time, in-vehicle time) expressed as a generalized cost and a dis-utility associated with price. Customers with a positive
erceived value will join the system, see, Santos and Xavier (2015) and Qian et al. (2017) for taxi service and Huang et al. (2020)
or demand-responsive buses. Taking future arrivals into account, Sayarshad and Gao (2018) extend the queuing method proposed
y Hyytiä et al. (2012) using the concept of customer perceived value and proposing an approach designed to determine a social
ptimum pricing solution for on-demand systems, see also, Sayarshad and Chow (2015).

Despite their potential to measure satisfaction, customer perceived value cannot predict the behavior of individuals. Discrete
hoice models, on the other hand, are widely used to measure satisfaction and predict customer behavior for a variety of
ransportation problems, see, Dias et al. (2017) and Zhao et al. (2018). For on-demand systems, Liu et al. (2019) study a mode
hoice problem to design an on-demand system where travel mode demand is a function of its service level. Krueger et al. (2016)
onduct a targeted survey on the preferences and adaptation of shared and private autonomous vehicles. Karamanis et al. (2018)
mbed discrete choice models within an agent-based framework to simulate the impact of utility-based pricing for shared and private
ervices, see also, Qiu et al. (2018). The recent research trend to use discrete choice models in transport planning to capture people’s
ehavior shows their potential to be integrated in the dial-a-ride problems. This way, operators can make more customer-friendly
ecisions. In recent years, similar methods have also been adapted for the attended home delivery problems. Although, the context
f city logistics and urban mobility are different in nature, still there is a great deal of similarities in the way these problems can
e formulated, in terms of delivery time windows,offered assortments, and routing. Interested readers are referred to the following
ecently published research on the topic, Köhler et al. (2020), Bruck et al. (2018), Mackert (2019), Ulmer and Thomas (2020).

The body of literature on assortment optimization is quite extensive. We refer the reader to Kök et al. (2008) for an overview
f assortment optimization problems using discrete choice models. Assortment optimization has been investigated for several
arametric choice models, including multinomial logit model (MNL) (see also, Wang (2012), Talluri and van Ryzin (2004)) and
nested-logit (NL) (Davis et al., 2014).

On-demand mobility systems (a special application of dynamic DARP) are usually characterized by the presence of three
conflicting objectives: maximizing the number of served customers, minimizing routing costs and maximizing user satisfaction.
In this paper, we present a model with the aim of maximizing profit. In Sections 8.3–8.5 we use personalized alternatives, assortment
and trip-based pricing, to show how to reach these objectives. In most assortment optimization problems, the costs associated with
alternatives being offered is supposed to be known so, revenue and profit maximization are considered to be equivalent which is
not the case for routing problems, as the costs of each alternative depend on the inherited routing cost.

In this paper, we present an optimization approach that simultaneously determines the optimal vehicle routes and the assortment
being offered to the customer. We take individual behavior into account using assortment optimization. In Section 3, we explain in
detail the dynamic framework of this problem.

3. Dynamics of the system

We consider a privately owned on-demand operator for an urban mobility system who is committed to providing private and
shared on-demand services. Each vehicle can change its service type throughout a day. For the shared mobility service, several trips
can be served up until the maximum capacity of the vehicle has been reached.

The operator receives 𝑁 trip requests at time 𝜏𝑎𝑟𝑟1 < 𝜏𝑎𝑟𝑟2 < ⋯ < 𝜏𝑎𝑟𝑟𝑁 , where 𝑁 is a random variable. The requests arrive one at a
130
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has no prior knowledge of future demand (such as arrival rate and origins–destinations) and any demand surge does not influence
the price of alternatives. The aim is to identify the most profitable set of alternatives to offer to each new request to maximize
the expected profits by solving a sequence of myopic problems upon the arrival of each individual request using a rolling horizon
approach.

Fig. 1 presents the timeline of our proposed dynamic approach. Upon the arrival of request 𝑛, the state of the system is shown
by 𝑋𝑛 which includes fleet status such as location of each vehicle, the details of its assigned trips and a list of requests that has to
be served. After the customer makes her choice from the alternatives in the optimal offered assortment, the updated status of the
system is shown by 𝑌𝑛. The notation 𝑌 contains the same information as 𝑋 and is only used to distinguish between initial state and
fter request 𝑛 is processed. At the end of this section, we provide an illustrative example highlighting their differences.

A new request is presented by a tuple consisting of origin, destination and the preferred pickup time (𝜏𝑝𝑛 ). As can be seen in
ig. 1, as soon as the new request comes in, first, we generate a set of personalized alternatives (𝑎 ∈ 𝐴) using different types of
ervices and flexible time windows based on the preferred pickup time indicated by the customer (Section 4.1). Then, a lower and
n upper bound for the price of each alternative is calculated (noted by [𝐹𝑎, 𝐹𝑎]) and the price levels are uniformly discretized over the

calculated interval (Section 4.2). In the next step, all possible sets of assortments (𝑆) are produced for this new request by combining
the price levels and the set of personalized alternatives. We can then reduce the size of 𝑆 by the methods explained in Section 6.1.
Given the current state of the system (𝑋𝑛) and set 𝑆, our proposed choice-driven dial-a-ride is solved with the optimal assortment
(𝑠∗) as output. All the alternatives in 𝑠∗ respect routing constraints and the customer preferences in terms of the type of service and
the pickup time. CD-DARP’s mathematical formulation is presented in Section 5. We need to note that the operator can reject a new
request when: (i) there is no vehicle available to serve the new customer, and (ii) the expected profit is negative. In these cases, we
define an empty set as the offered assortment.

Given assortment 𝑠∗, the customer can either choose one of the offered alternatives or decide to leave the system. Upon receiving
the acceptance, we show the choice of the new customer by 𝛤𝑛, presented by a tuple including origin, destination, service type,
confirmed pickup time window and the maximum ride-time (𝐿𝑀𝑎𝑥

𝑛 ). At this point, we adjust the routes of all vehicles in the network
(i.e., re-routing, see Section 7.1 for details). Finally, vehicles’ schedules are updated for the entire network (Section 7.2). This phase
is presented on the right-hand side of Fig. 1. Note that both sets of 𝐴 and 𝑆 are request-dependent and, for the sake of simplicity,
we eliminated index 𝑛.

Customer interaction sequences. The system communicates information with the new customer on two occasions. First, when
he customer chooses one of the offered alternatives, she is notified about her confirmed pickup time window. Second, the moment
he assigned vehicle hits the road to pick her up, she is notified about the exact time the vehicle is expected to arrive.
Graph representation. We consider a transportation system with a set of homogeneous vehicles (𝑘 ∈ 𝐾) with a fixed capacity

f 𝑄. Given that customers {1,… , 𝑛 − 1} are the ones whose requests have already been confirmed and 𝑛 is the new request, nodes
and 𝑛 + 𝑖 denote the pickup and drop-off locations of customer 𝑖. Nodes 𝑛 and 2𝑛 represent the pickup and drop-off locations of

he new customer. The problem is defined on a complete directed graph  = ( ,) where  =  ∪ ∪  is the set of nodes and
 is the set of arcs. Subsets  = {1,… , 𝑛} and  = {𝑛 + 1,… , 2𝑛} denote the pickup and drop-off locations, respectively. Set 
ndicates vehicles’ shift schedule: (i) the starting time and initial position of vehicle 𝑘 (called 𝑜𝑘), (ii) the time the shift of vehicle
𝑘, �̂�𝑘 (i.e., set  = {𝑜𝑘, �̂�𝑘|𝑘 ∈ 𝐾}) finishes. For each arc (𝑖, 𝑗) ∈ , a routing cost 𝑐𝑖𝑗 and travel time 𝑡𝑖𝑗 are defined. A non-negative
ervice time 𝑑𝑖 is defined for all pickup and drop-off nodes.
Vehicle status. At state 𝑋𝑛, the route of vehicle 𝑘 consists of a sequence of arcs with each arc being either planned or executed.

An arc is defined as executed when a vehicle starts the journey to go to the next location. The trip assigned to the executed arc
cannot be modified. As long as the vehicle has not departed a node (either initial or a via point), the arc is considered to be planned.
The planned arcs are still subject to change, to accommodate a new request 𝑛. To identify whether an arc is planned or executed, we
define 𝐵𝑘

𝑖 and �̄�𝑘
𝑖 as the arrival and departure time of vehicle 𝑘 at node 𝑖 ∈  . Given 𝑑𝑖, the relationship between 𝐵𝑘

𝑖 and �̄�𝑘
𝑖 can

be interpreted for two possible cases:

1. Empty vehicle: in this case, �̄�𝑘
𝑖 = 𝐵𝑘

𝑖 +𝑊 𝑘
𝑖 + 𝑑𝑖, where 𝑊 𝑘

𝑖 indicates the idle time of vehicle 𝑘 at node 𝑖.
2. Non-empty vehicle: when there are passengers on board of the vehicle, it is not allowed to wait. In other words, �̄�𝑘

𝑖 = 𝐵𝑘
𝑖 +𝑑𝑖.

At state 𝑋𝑛, we consider an arc on a given route of vehicle 𝑘, to be executed if and only if 𝜏𝑎𝑟𝑟𝑛 ≥ �̄�𝑘
𝑖 (𝑖 is the starting point of

the arc). Note that the maximum ride-time of the existing requests is considered in the CD-DARP model while revising the routes
(i.e., re-routing). Relocating and re-balancing idle vehicles fall outside of scope of this paper. We use Example 1 to clarify the
network’s setup and visualize its dynamic nature.

Example 1. In this example, we show how upon arrival of a new request, the current state of the system 𝑋𝑛 changes to 𝑌𝑛 using
the output of the CD-DARP. We consider a case where the operator uses two vehicles (𝑘1 and 𝑘2) to serve two confirmed requests.
The first request is characterized by (𝑃1, 𝐷1, shared-taxi, [1, 3], 𝐿𝑀𝑎𝑥

1 = 17) in which 𝑃1 and 𝐷1 show the pick-up and drop-off
locations. Time interval [1, 3] is the pick-up time window (in minutes) and, 𝐿𝑀𝑎𝑥

1 = 17, (in minutes) defines the maximum ride-time.
Similarly, the second request is identified by (𝑃2, 𝐷2, shared-taxi, [5, 8], 𝐿𝑀𝑎𝑥

2 = 13). At time 𝜏𝑎𝑟𝑟3 = 3, the third request arrives. For
this request, the pickup and drop-off locations are denoted by 𝑃3 and 𝐷3 and the preferred pickup time is indicated by 𝜏𝑝3 = 7.

Fig. 2(a) shows the state of the system upon arrival of the third request, 𝑋3. For the sake of simplification, we eliminate nodes
𝑜1, �̂�1 and, �̂�2. We assume that the service time for pickup and drop-off nodes is equal to one minute. In this figure, we show the
schedule of each vehicle by {𝐵𝑘; �̄�𝑘}. For example, at node 𝑃 , schedule of vehicle 𝑘 is indicated by {1; 2}. This means that vehicle
131
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Fig. 2. State of the system for request 3 arrived at 𝜏𝑎𝑟𝑟3 = 3. Black and white nodes show the pickup and drop-off locations of registered and new requests,
respectively.

𝑘1 arrives at 𝑃1 at time one and leaves this node at time two. Similarly, at node 𝑜2, 𝑘2 ∶ {0,−} shows that vehicle 𝑘2 is idle. At
the time of arrival of this new request, 𝜏𝑎𝑟𝑟3 = 3, vehicle 𝑘1 has already left node 𝑃1 and is headed towards 𝑃2. As a result, the arc
connecting these two nodes is considered executed and cannot change. However, the arc connecting 𝑃2 and 𝐷1 is planned and could
still be modified to accommodate the third request. We assume that the customer chooses a service with the following characteristics
(𝑃3, 𝐷3, taxi, [7, 10], 𝐿𝑀𝑎𝑥

3 = 3) among the alternatives inside the assortment on offer. Consequently, the routes of both vehicles
are updated. The state of the system is now identified by 𝑌𝑛 as shown in Fig. 2(b).

4. CD-DARP elements: Assortment and pricing

One of the main characteristics of our proposed CD-DARP model lies in the definition of the objective function. In this problem,
we aim at maximizing the network’s expected profit which is calculated by subtracting the operational costs from the expected
revenue. The latter is calculated for each alternative where the probability of one of them being selected is presented by a choice
model. Operational costs is calculated according to the routing cost associated with each one the offered alternatives within the
optimal assortment served by one of the available vehicles in the system.

When a new request arrives, as shown in Fig. 1, we first need to generate personalized alternatives (Section 4.1), then define price
levels and finally create all possible sets of assortments (Section 4.2). These sets are the inputs of the CD-DARP model introduced in
Section 5.

4.1. Personalized alternatives

We define an alternative (𝑎 ∈ 𝐴) as a unique combination of service type (taxi, shared taxi) and pick-up time. As mentioned in
Fig. 1, alternative set 𝐴 is defined upon arrival of each new request. The dynamic aspect of our framework is embedded in the use of
flexible pick-up time windows and service types to generate these alternatives. Given 𝜏𝑝𝑛 , we generate a set of possible pick-up time
windows which defines different potential delay times the customer could experience. We use 𝛺 to be a set of potential delays. We
assume that 𝛺 is independent from the service type. For the sake of presentation, we consider three possible delayed pickup times
(indicated by, 𝛥𝑇 , 2𝛥𝑇 and 3𝛥𝑇 ) to create these flexible time windows (i.e. 𝛺 = {𝛥𝑇 , 2𝛥𝑇 , 3𝛥𝑇 }). For a given service type (taxi or
shared taxi), they are represented by [𝜏𝑝𝑛 , 𝜏

𝑝
𝑛 + 𝛥𝑇 ], [𝜏𝑝𝑛 , 𝜏

𝑝
𝑛 + 2𝛥𝑇 ] and, [𝜏𝑝𝑛 , 𝜏

𝑝
𝑛 + 3𝛥𝑇 ].

Choice model. We assume that the probability of choosing an alternative follows a multinomial logit (MNL) function. For
alternative 𝑎 ∈ 𝐴 offered at price level 𝑙 ∈ 𝐹𝑎, (𝐹𝑎 indicates the set of price levels associated with alternative 𝑎), a utility function,
𝑢𝑎𝑙 = 𝑣𝑎𝑙 + 𝜀𝑎 is defined where 𝑣𝑎𝑙 represents the systematic part and 𝜀𝑎 is the stochastic part following Type I Extreme Value
distribution. The systematic part of utility is presented as follows:

𝑣𝑎𝑙 = 𝐴𝑆𝐶𝑎 − 𝛽𝑓𝑓𝑎𝑙 − 𝛽𝑡𝑡𝑎 − 𝛽𝜔𝜔𝑎 ∀𝑎 ∈ 𝐴, 𝑙 ∈ 𝐹𝑎 (1)

In Eq. (1), 𝛽𝑓 shows the coefficient of the price. Value of 𝑓𝑎𝑙 shows the price level 𝑙 for alternative 𝑎 (explained in Section 4.2).
𝛽𝑡 presents the coefficient of in-vehicle time associated with 𝑡𝑎 that indicates the maximum travel time of alternative 𝑎 for both taxi
and shared taxi. For the sake of presentation, when 𝑎 is a taxi service, 𝑡𝑎 is denoted by 𝐼 𝑡𝑎𝑥𝑖 to indicate the shortest travel time
from the origin to the destination. Using 𝐼 𝑡𝑎𝑥𝑖, we pre-define a value to present the maximum ride time for a shared taxi service. In
our implementation, we calculate this maximum ride time by 𝑡 = min{1.5 𝐼 𝑡𝑎𝑥𝑖, 𝐼 𝑡𝑎𝑥𝑖 + 15}.
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𝛽𝜔 presents the coefficient of the delayed pickup times. Finally, 𝜔𝑎 presents the delay whose values are selected from the set
𝛺 = {𝛥𝑇 , 2𝛥𝑇 , 3𝛥𝑇 }. We use the maximum ride time and delayed pickup times to estimate the utility associated with each alternative.

e acknowledge that utility value of each alternative is underestimated using this approach. The realized utility of the customer
ay exceed this estimated value.

The customer is informed about the exact waiting time, once the vehicle hits the road to the pickup location. Subsequently, the
ealized value of the ride time can be calculated as soon as the customer is dropped off at the destination. Both maximum ride time
nd delayed pickup times respect the guaranteed values embedded in the alternatives. We must clarify that the users pay according
o the estimated utility when the request is made. This approach may have long-term repercussions on user choices due to the fact
hat it is independent from the realized value of waiting time and the maximum ride time.

The value of 𝐴𝑆𝐶𝑎 shows the alternative specific constant. In this problem, customers are not captive in the system, meaning
hat they also have the option not to choose any of alternatives being offered. In this case, we assume that the customer uses the
ervice offered by the competitor, whose utility is identified by 𝑢0. More details are discussed in Section 8.1.

4.2. The price of alternatives

In this problem, we assume that the operator is committed to providing attractive mobility services to the users. As a result,
the price of alternatives is designed to maintain service attractiveness. In this paper, the price is set independently of resource
availability and surge demand. We use the above-mentioned choice model to define the price levels of the alternatives. The choice
model considers the service offered by a competitor via an opt-out option. The prices associated with each alternative in the offered
assortments is determined regardless of the final choice of the customer. The customer may decide to choose one of the provided
alternatives at a given price or leave the system.

We formalize our pricing strategy by defining a price range for each alternative 𝑎, noted by [𝐹𝑎, 𝐹𝑎]. The lower limit 𝐹𝑎 shows

the minimum price that is still profitable for the operator. The lower price level is calculated for each given origin–destination
based on the combination of a fixed and an expected variable cost of routing proportionately to the shortest path between the
pair of origin–destination. A sensible upper limit is set by specifying a ‘cut-off’ purchasing probability. We define 𝜁𝑎 to present this
probability. Let 𝑣𝑎 be a value showing the combinations of all attributes except for the price in the utility function, Eq. (1). This
value is presented as follows: 𝑣𝑎 = 𝐴𝑆𝐶𝑎 − 𝛽𝑡𝑡𝑎 − 𝛽𝜔𝜔𝑎. In this case, the utility function can be rewritten by 𝑣𝑎 − 𝛽𝑓𝐹𝑎 where 𝐹𝑎 is a
ariable representing the maximum price for alternative 𝑎. For each alternative, we calculate the maximum price level by solving,

Z ∶ max 𝐹𝑎 ∶
𝑒𝑣𝑎−𝛽𝑓𝐹𝑎

𝑒𝑣𝑎−𝛽𝑓𝐹𝑎 + 𝑒𝑣0
≥ 𝜁𝑎

𝑣0 shows the opt-out option which is defined for each customer separately. Model Z can be solved analytically. Once we have the
price interval (i.e. [𝐹𝑎, 𝐹𝑎]), we define a set of price levels (𝑓𝑎𝑙 ∈ 𝐹𝑎) by discretizing this interval. As can be seen in Fig. 1, the last

omponent to be calculated before solving the CD-DARP is the set of assortments. Below, we explain how these sets are generated
sing personalized alternatives and their associated price levels.

.3. Assortment

Given the set of generated alternatives 𝐴 and their associated price levels 𝐹𝑎, we generate the set of all possible assortments
∈ 𝑆. We define a binary parameter 𝑏𝑠𝑎𝑙 to be equal to 1 if alternative 𝑎 is offered at price level 𝑙 in assortment 𝑠. Each alternative
ffered in 𝑠 cannot take more than one price level (i.e. ∑

𝑙∈𝐹𝑎 𝑏
𝑠
𝑎𝑙 ≤ 1). When alternative 𝑎 is not offered in assortment 𝑠, then

𝑙∈𝐹𝑎 𝑏
𝑠
𝑎𝑙 = 0. The probability that a customer chooses alternative 𝑎 in assortment 𝑠 is

P(𝑎; 𝑠) =
∑

𝑙∈𝐹𝑎 𝑏
𝑠
𝑎𝑙𝑒

𝑣𝑎𝑙
∑

𝑎′∈𝐴
∑

𝑙∈𝐹𝑎 𝑏
𝑠
𝑎′𝑙𝑒

𝑣𝑎′ 𝑙 + 𝑒𝑣0
𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 (2)

Below, we discuss an example where we show how the alternatives, price levels and assortments are generated when a new
equest arrives in the system. All this information is used as input for the CD-DARP model.

xample 2. A new customer arrives in the system at time 𝜏𝑎𝑟𝑟2 = 4. For the sake of simplicity, we assume only a taxi service is
ffered by the operator. The preferred pick-up time of this new request is shown by 𝜏𝑝2 = 7. Three delayed pick-up times are generated
ccordingly. The characteristics of each alternative are shown in Table 1. For each alternative, columns ‘Service’, ‘𝜔𝑎’ and ‘𝑡𝑎’ report
he service type, waiting time and travel time (shortest path), respectively. Given an estimated value for the opt-out option, the price
evels between the upper and lower bound, i.e., 𝐹𝑎, 𝐹𝑎 as well as the utility values related to each alternative are calculated. In

Table 2 we report a subset of all possible assortments given limited price levels. For each assortment, the set of available alternatives
and their associated price values are reported. In the next section, we introduce the mathematical formulation of the CD-DARP.
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Table 1
Set of taxi alternatives for the second customer.
𝑎 ∈ 𝐴 Service type 𝜔𝑎 𝑡𝑎 Delayed pickup time 𝐹𝑎 𝐹𝑎

I Taxi 3 6 [7, 10] 6 10
II Taxi 6 6 [7, 13] 6 9
III Taxi 9 6 [7, 16] 6 8

Table 2
Subset of generated assortments for Example 2.
Assortments Alternatives

Available Price

I II III I II III

𝑠1 No No No – – –
𝑠2 Yes No No 6 – –
𝑠3 Yes No No 7 – –
𝑠4 No Yes No – 8 –
𝑠5 Yes Yes No 8 7 –
𝑠6 No Yes Yes – 8 7
𝑠7 Yes Yes Yes 9 8 7

5. CD-DARP mathematical model

We first present the mathematical model in its nonlinear form. The linearization of this formulation is presented in Section 5.1.
s mentioned in Section 3, we model the problem on a complete directed graph  = ( ,) where nodes 𝑛 and 2𝑛 represent the
ick-up and drop-off locations of the new customer. For assortment 𝑠 ∈ 𝑆, we define E𝑠 as its expected profit and the binary variable

𝑦𝑠 = 1 if it is offered. The CD-DARP problem is presented as follows:

max
∑

𝑠∈𝑆
E𝑠𝑦𝑠 (3)

st.
(4)–(37)

he objective function (3) calculates the difference between the revenue generated from offering assortment 𝑠 and its associated
cost. Routing, time window, vehicle load and assortment constraints are presented by (4)–(37). In the remainder of this section, we
explain each family of constraints separately.

Marginal routing cost. Expected profit in (3) has two components: generated revenue as a result of offering assortment 𝑠 and
the associated costs the definition of which lies in the introduction of a value called marginal routing cost. Let �̄�𝑘 present the routing
ost of vehicle 𝑘 ∈ 𝐾 before arrival of request 𝑛. When request 𝑛 arrives, we have the possibility of modifying vehicles’ routes to
ccommodate it. Thus, the routing cost of vehicle 𝑘 is ∑𝑖∈

∑

𝑗∈ 𝑐𝑖𝑗𝑥𝑘𝑖𝑗 . Fractional variable 𝜎𝑘 presents the marginal cost of vehicle
after the new customer arrives which is given by (4).

𝜎𝑘 =
∑

𝑖∈

∑

𝑗∈
𝑐𝑖𝑗𝑥

𝑘
𝑖𝑗 − �̄�𝑘 𝑘 ∈ 𝐾, (4)

𝜎𝑘 ∈ R 𝑘 ∈ 𝐾, (5)

ach one of the alternatives in the assortment being offered is assigned to a given vehicle. The cost of this alternative is calculated
ased on the marginal routing cost of the assigned vehicle (i.e., Constraint (4)). We define 𝛿𝑎 as a fractional variable denoting the
ost of alternative 𝑎 in the offered assortment. Binary variable 𝑧𝑘𝑎 is equal to one when vehicle 𝑘 is used to serve alternative 𝑎.
onstraints (6) show if vehicle 𝑘 is assigned to alternative 𝑎 (conditioned to the fact that alternative 𝑎 is in the offered assortment),
he cost of this alternative is equal to the marginal routing cost of the assigned vehicle. Note that, it is possible for vehicle 𝑘 to be
otentially assigned to multiple alternatives.

𝛿𝑎 =
∑

𝑘∈𝐾
𝜎𝑘𝑧𝑘𝑎 𝑎 ∈ 𝐴, (6)

𝛿𝑎 ∈ R 𝑎 ∈ 𝐴, (7)

n the other hand, when vehicle 𝑘 is not assigned to serve one of the alternatives offered in the assortment, its marginal routing
ost still has an impact on the overall expected profit of the assortment and must be addressed. In this case, its marginal routing cost
s indicated by 𝛥𝑘. For vehicle 𝑘, when ∑

𝑎∈𝐴 𝑧𝑘𝑎 ≥ 1 (or equivalently ∑

𝑗∈ 𝑥𝑘𝑛𝑗 = 1), then 𝛥𝑘 = 0; otherwise, 𝛥𝑘 = 𝜎𝑘 (𝑥𝑘𝑛𝑗 indicates
hat vehicle 𝑘 is used to pickup the new passenger from its origin location). In other words, if 𝛥𝑘 = 0 then either the route of vehicle
has remained unchanged or this vehicle is used to serve one of the alternatives in the assortment. In the later case, the marginal
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routing cost of the alternative 𝑎 is noted by 𝛿𝑎. The above description is summarized by Constraints (8).

𝛥𝑘 = 𝜎𝑘(1 −
∑

𝑗∈
𝑥𝑘𝑛𝑗 ) 𝑘 ∈ 𝐾, (8)

𝛥𝑘 ∈ R 𝑘 ∈ 𝐾, (9)

Expected profit. Using the marginal routing cost discussed above, here, we present the expanded version of the objective function
3). Assume that alternative 𝑎 is offered in the assortment 𝑠 and 𝑓𝑎𝑙 ∈ 𝐹𝑎 is the price level 𝑙 associated with this alternative. The

profit of this alternative is then defined by 𝑟𝑎 = 𝑓𝑎𝑙 − 𝛿𝑎. Given Eq. (2), P(𝑎; 𝑠) shows the probability of selecting alternative 𝑎 in
assortment 𝑠. As a result, the expected profit of offering assortment 𝑠 (shown by E𝑠) is estimated by:

E𝑠 =
∑

𝑎∈𝐴
𝑟𝑎P(𝑎; 𝑠) −

∑

𝑎∈𝐴
P(𝑎; 𝑠)

∑

𝑘∈𝐾
𝛥𝑘 ∀𝑠 ∈ 𝑆, (10)

In Eq. (10), the first term presents the expected profit of offering assortment 𝑠 summed over all its alternatives, while the second
term shows the expected cost related to the re-routing of vehicles that are not used to offer any of these alternatives. The term
∑

𝑎 𝑃 (𝑎; 𝑠) shows the probability that a user chooses one of the alternatives in the assortment. If vehicle 𝑘 is used to serve alternative
𝑎, its associated cost is directly incorporated into the assortment by Constraints (6) 𝛿𝑎 =

∑

𝑘∈𝐾 𝜎𝑘𝑧𝑘𝑎 . If this is not the case and vehicle
𝑘 is not assigned to serve a request, then still the expected cost of re-routing is calculated based on the probability of choosing any
alternative in the offered assortment. This estimated expected cost of re-routing indeed depends on the customer’s choice. This
value is calculated once prior the decision being made to determine the optimal assortment 𝑠∗ and once after the choice has been
made to modify the vehicles’ routes according to the customer’s decision.

Routing constraints. We define the binary variable 𝑥𝑘𝑖𝑗 = 1, if vehicle 𝑘 travels from node 𝑖 to 𝑗. Constraints (11)–(16) determine
the routing decisions. Constraints (11) make sure that all confirmed requests (i.e.  ⧵{𝑛}) are visited by exactly one vehicle. We have
to remind that the new request (node 𝑛) can be potentially visited by several vehicles. Flow conservation constraints are presented
in (12). Constraints (13) ensure that the associated pickup and drop-off nodes are visited by the same vehicle. Constraints (14)–(15)
make sure that the vehicles’ routes exist (i.e. vehicles are active in their scheduled shift).

∑

𝑘∈𝐾

∑

𝑗∈
𝑥𝑘𝑖𝑗 = 1 𝑖 ∈  ⧵ {𝑛}, (11)

∑

𝑗∈
𝑥𝑘𝑗𝑖 −

∑

𝑗∈
𝑥𝑘𝑖𝑗 = 0 𝑖 ∈  ∪, 𝑘 ∈ 𝐾, (12)

∑

𝑗∈
𝑥𝑘𝑖𝑗 −

∑

𝑗∈
𝑥𝑘𝑛+𝑖,𝑗 = 0 𝑖 ∈  , 𝑘 ∈ 𝐾, (13)

∑

𝑗∈
𝑥𝑘
𝑜𝑘 ,𝑗

= 1 𝑘 ∈ 𝐾, (14)

∑

𝑖∈
𝑥𝑘
𝑖,�̂�𝑘

= 1 𝑘 ∈ 𝐾, (15)

𝑥𝑘𝑖𝑗 ∈ {0, 1} 𝑖, 𝑗 ∈  , 𝑘 ∈ 𝐾, (16)

Time window constraints. As mentioned in Section 3, the arrival and departure time of vehicle 𝑘 at node 𝑖, are denoted by 𝐵𝑘
𝑖

nd �̄�𝑘
𝑖 , respectively. A time window [𝑒𝑖, 𝑙𝑖] and a non-negative service duration 𝑑𝑖 (𝑑𝑖 = 0 ∀𝑖 ∈ ) are defined for node 𝑖 ∈  ⧵{𝑛, 2𝑛}.

ime windows associated with the nodes in the set  represent the availability of vehicles. At node 𝑖 ∈  , Constraints (17) and
18) track the travel time, (𝑀𝑖𝑗 is a large constant value).

𝐵𝑘
𝑗 ≥ �̄�𝑖

𝑘 + 𝑡𝑖𝑗 −𝑀𝑖𝑗 (1 − 𝑥𝑘𝑖𝑗 ) 𝑖, 𝑗 ∈  , 𝑘 ∈ 𝐾, (17)

�̄�𝑘
𝑖 ≥ 𝐵𝑘

𝑖 + 𝑑𝑖 𝑖 ∈  , 𝑘 ∈ 𝐾, (18)

𝐵𝑘
𝑖 , �̄�

𝑘
𝑖 ∈ R+ 𝑖 ∈  , 𝑘 ∈ 𝐾, (19)

For the confirmed requests, Constraints (20) present the time window restrictions. However, as previously mentioned for the new
request, several flexible time windows are generated (related to the pick-up node 𝑛 and drop-off node 2𝑛). [𝑒𝑖𝑎, 𝑙𝑖𝑎] shows the time

indow of alternative 𝑎. When vehicle 𝑘 is assigned to alternative 𝑎, (i.e., 𝑧𝑘𝑎 = 1), Constraints (21) ensure that the vehicle respects
hese time window restrictions. Later, we explain how 𝑀 𝑙 and 𝑀𝑢 (both large constant values) are defined.

𝑒𝑖 ≤𝐵𝑘
𝑖 ≤ 𝑙𝑖 𝑖 ∈  ⧵ {𝑛, 2𝑛}, 𝑘 ∈ 𝐾, (20)

𝑒𝑖𝑎 −𝑀 𝑙(1 − 𝑧𝑘𝑎) ≤𝐵
𝑘
𝑖 ≤ 𝑙𝑖𝑎 +𝑀𝑢(1 − 𝑧𝑘𝑎) 𝑖 ∈ {𝑛, 2𝑛}, 𝑘 ∈ 𝐾, 𝑎 ∈ 𝐴, (21)

𝑧𝑘𝑎 ∈ {0, 1} 𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾, (22)

e introduce variable 𝐿𝑘
𝑖 as the ride time of request 𝑖 on vehicle 𝑘. Constraints (23) define the ride time of each user and makes

ure that the drop-off node is visited after the pick-up node. The limit on maximum ride time is ensured by Constraints (24). Note
hat similar maximum ride time is defined for all shared-taxi alternatives.

𝑘 𝑘 𝑘
135

𝐿𝑖 = 𝐵𝑛+𝑖 − (𝐵𝑖 + 𝑑𝑖) 𝑖 ∈  ∪ {𝑛}, 𝑘 ∈ 𝐾, (23)
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𝐿𝑘
𝑖 ≤ 𝐿𝑀𝑎𝑥

𝑖 𝑖 ∈  , 𝑘 ∈ 𝐾, (24)

𝐿𝑘
𝑖 ∈ R+ 𝑖 ∈  , 𝑘 ∈ 𝐾, (25)

Vehicle load constraints. We define parameters 𝑞𝑖 = −𝑞𝑛+𝑖 , 𝑖 ∈  ⧵ {𝑛} to indicate the load of node 𝑖. It is worth mentioning
that 𝑞𝑖 = 0 , ∀𝑖 ∈  (i.e., initial position of the vehicle). This value also presents the service type. At node 𝑖 ∈  ⧵ {𝑛}, if taxi service
is offered then we have 𝑞𝑖 = 𝑄, otherwise 𝑞𝑖 = 1 (𝑄 is the capacity of each vehicle). We model the load associated with the new
request by a variable named 𝑞′𝑘 whose value can either take 1 or 𝑄 depending on the type of service. Variable 𝑄𝑘

𝑖 is defined as the
load of vehicle 𝑘 after visiting node 𝑖. (26)–(28) present the vehicle load constraints for the confirmed requests. Constraints (29)
and (30) determine the vehicle load after being assigned to serve an alternative offered to the new request (𝐴𝑇 ⊂ 𝐴 presents set of
taxi alternatives).

𝑄𝑘
𝑗 ≥ 𝑄𝑘

𝑖 + 𝑞𝑗 −𝑀(1 − 𝑥𝑘𝑖𝑗 ) 𝑖 ∈  , 𝑗 ∈  ⧵ {𝑛, 2𝑛}, 𝑘 ∈ 𝐾, (26)

𝑄𝑘
𝑛 ≥ 𝑄𝑘

𝑖 + 𝑞′𝑘 −𝑀(1 − 𝑥𝑘𝑖𝑛) 𝑖 ∈  , 𝑘 ∈ 𝐾, (27)

𝑄𝑘
2𝑛 ≥ 𝑄𝑘

𝑖 − 𝑞′𝑘 −𝑀(1 − 𝑥𝑘𝑖,2𝑛) 𝑖 ∈  , 𝑘 ∈ 𝐾, (28)

𝑧𝑘𝑎 ≤ 𝑞
′𝑘 𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾, (29)

𝑄𝑧𝑘𝑎 ≤ 𝑞
′𝑘 𝑎 ∈ 𝐴𝑇 , 𝑘 ∈ 𝐾, (30)

𝑄𝑘
𝑖 ∈ [0, 𝑄] 𝑖 ∈  , 𝑘 ∈ 𝐾, (31)

𝑞′𝑘 ∈ [0, 𝑄] 𝑘 ∈ 𝐾. (32)

Assortment constraints. Constraints (33)–(37) link the assortment and routing decisions. Parameter 𝛾𝑎𝑠 takes value 1, if
alternative 𝑎 is offered in 𝑠. Constraints (33) make sure that only one assortment can be offered in response to the new request. If
ssortment 𝑠 is offered, then each alternative in the assortment must be served by exactly one vehicle, Constraints (34). Constraints

(35) and (36) link the vehicle assignment decisions with routing. If vehicle 𝑘 visits the pickup location of the new customer (node
𝑛), then it has to be assigned to at least one of the alternatives in the assortment as stated by Constraints (35). Similarly, if vehicle
𝑘 is assigned to an alternative, it has to visit the node associated to the new customer, Constraints (36).

∑

𝑠∈𝑆
𝑦𝑠 = 1 (33)

∑

𝑘∈𝐾
𝑧𝑘𝑎 =

∑

𝑠∈𝑆
𝛾𝑎𝑠𝑦𝑠 𝑎 ∈ 𝐴, (34)

∑

𝑗∈
𝑥𝑘𝑛𝑗 ≤

∑

𝑎∈𝐴
𝑧𝑘𝑎 𝑘 ∈ 𝐾, (35)

𝑧𝑘𝑎 ≤
∑

𝑗∈
𝑥𝑘𝑛𝑗 𝑘 ∈ 𝐾, 𝑎 ∈ 𝐴, (36)

𝑦𝑠 ∈ {0, 1} 𝑠 ∈ 𝑆, (37)

In the following subsection, we discuss the linearization of the above-mentioned nonlinear constraints and the objective function.

5.1. Linearization

The CD-DARP model presented by (3)–(37) is nonlinear due to Constraints (6), (8) and, the objective function (3). By introducing
large constants 𝑀 and �̂�𝑘, Constraints (6) can be linearized as follows:

𝜎𝑘 −𝑀(1 − 𝑧𝑘𝑎) ≤ 𝛿𝑎 𝑘 ∈ 𝐾, 𝑎 ∈ 𝐴, (38)

− �̂�𝑘
∑

𝑘∈𝐾
𝑧𝑘𝑎 ≤ 𝛿𝑎 𝑎 ∈ 𝐴, (39)

𝛿𝑎 ≤ 𝑀
∑

𝑘∈𝐾
𝑧𝑘𝑎 𝑎 ∈ 𝐴, (40)

In a similar fashion, Constraints (8) are replaced by its linearized form presented below.

𝜎𝑘 −𝑀
∑

𝑗∈
𝑥𝑘𝑛𝑗 ≤ 𝛥𝑘 𝑘 ∈ 𝐾, (41)

− �̂�𝑘(1 −
∑

𝑗∈
𝑥𝑘𝑛𝑗 ) ≤ 𝛥𝑘 𝑘 ∈ 𝐾, (42)

𝛥𝑘 ≤ 𝑀(1 −
∑

𝑗∈
𝑥𝑘𝑛𝑗 ) 𝑘 ∈ 𝐾, (43)

inally, by introducing variable 𝐸 ≥ 0, the objective (3) is replaced by (44)–(46).
136

max 𝐸 (44)
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𝐸 ≤ E𝑠 +𝑀(1 − 𝑦𝑠) 𝑠 ∈ 𝑆, (45)

𝐸 ∈ R+ (46)

In the following section, we explain several of the properties of the CD-DARP that make our resolution approach more
computationally efficient.

6. Assortment and variable reduction

CD-DARP combines a dial-a-ride problem and assortment optimization (see, Cordeau (2006) and Kök et al. (2008)). As explained
in Fig. 1, before solving the CD-DARP, using the combination of personalized alternatives and the price levels, we generate all possible
sets of assortments, see Section 4.3. This can be computationally exhaustive. In Section 6.1, we introduce several properties of the
model that makes it possible to decrease the size of the set of assortments. Next, we introduce variable reduction techniques and
valid inequalities to reduce the search space for computational efficiency.

6.1. Selecting dominant assortments

The objective function presented in (3), requires to evaluate ∏

𝑎∈𝐴(|𝐹𝑎|+1) assortments which is computationally cumbersome. 𝐹𝑎
resents the set of price levels associated with alternative 𝑎. This section proposes two policies to limit the collection of assortments
ffered to each arriving customer. Numerical results associated with the proposed policies compared with the complete enumeration
re presented in Section 8.2.

For the ease of presentation, we call the term ∑

𝑎∈𝐴(𝛿𝑎 +
∑

𝑘∈𝐾 𝛥𝑘) assortment cost obtained by reorganizing (10), as follows:

E𝑠 =
∑

𝑎∈𝐴
P(𝑎; 𝑠)𝑓𝑎𝑙 −

∑

𝑎∈𝐴
P(𝑎; 𝑠)(𝛿𝑎 +

∑

𝑘∈𝐾
𝛥𝑘). (47)

We call two assortments comparable if both contain the same alternatives but at different price levels. Based on (47), all
comparable assortments have identical assortment costs when their corresponding expected profit is maximized. This is the basis
for our proposed policies.

Policy I. In the first policy, we assume that the impact of the assortment cost is negligible and exclude it from (47). Therefore,
for each set of comparable assortment, we aim at finding the one that maximizes the revenue.

Let �̄�′ be the set of available alternatives inside the comparable assortments. In fact, these alternatives have the same specifications
xcept for the price. We define the binary variable ℎ𝑎𝑙 = 1 if alternative 𝑎 ∈ �̄�′ is offered at price level 𝑙 ∈ 𝐹𝑎. The dominant

assortment is determined by solving the fractional binary optimization model presented in (48).

J ∶ max

∑

𝑎∈�̄�′
∑

𝑙∈𝐹𝑎 𝑓𝑎𝑙𝑒
𝑣𝑎𝑙ℎ𝑎𝑙

∑

𝑎∈�̄�′
∑

𝑙∈𝐹𝑎 𝑒
𝑣𝑎𝑙ℎ𝑎𝑙 + 𝑒𝑣0

(48)
∑

𝑙∈𝐹𝑎

ℎ𝑎𝑙 = 1 𝑎 ∈ �̄�′,

ℎ𝑎𝑙 ∈ {0, 1} 𝑎 ∈ �̄�′, 𝑙 ∈ 𝐹𝑎.

odel J shares two similar properties with the optimal line selection problem discussed by Chen and Hausman (2000): (i) the
bjective function is both strictly quasi-convex and strictly quasi-concave, and (ii) the coefficient matrix is completely unimodular.
s such, for this model, any local maximum solution is the global maximum and the optimal solution of its relaxation (by dropping

he integrality constraints) is integral.
Because of these properties, the optimal solution of model J is reduced to solving its relaxation counterpart, which is a fractional

ptimization model. By using Charnes–Cooper transformation, we can easily transform the relaxation counterpart into a linear
rogramming (LP) model, Charnes and Cooper (1962). The solution of the LP model finds the assortment that maximizes the expected
evenue among all comparable assortments.
Policy II. Based on the second policy, the set of comparable assortments contain more than one assortment, i.e., indicating

lternatives at different price levels.
Using the definition of the probability function presented in Eq. (2), and 𝑣0 = 0, the profit maximizer assortment in the set of

omparable assortments can be found as follows,

𝑚𝑎𝑥{𝜆 ∈ R ∶
∑

𝑙∈𝐹𝑎|𝑎∈�̄�′

ℎ𝑎𝑙 = 1, and
∑

𝑙∈𝐹𝑎

∑

𝑎∈�̄�′

ℎ𝑎𝑙𝑒
𝑣𝑎𝑙 (𝑓𝑎𝑙 − 𝛿𝑎 −

∑

𝑘∈𝐾
𝛥𝑘 − 𝜆) ≥ 𝜆}

From geometrical perspective, inspired from the work of Rusmevichientong et al. (2010), we define a linear function named,
𝑎𝑙 ∶ R → R such that 𝜂0𝑎𝑙(𝜆) = 0 and 𝜂𝑎𝑙(𝜆) = 𝑒𝑣𝑎𝑙 (𝑓𝑎𝑙 − 𝛿𝑎 −

∑

𝑘∈𝐾 𝛥𝑘 − 𝜆).
Consider the revenue maximizing problem by setting the assortment cost to zero. To find the optimal assortment, following from

roposition 1 in Talluri and van Ryzin (2004), we need to determine the non-dominated set of assortment for every 𝜆. As discussed
n Section 2.1 of Rusmevichientong et al. (2010), instead of finding the non-dominated set for every value of 𝜆, we can limit our
137

valuations to the intersection points among all lines defined by function 𝜂𝑎𝑙(𝜆).
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Using the definition of an efficient set presented in Talluri and van Ryzin (2004), the efficient set can be obtained by solving
model (49).

max

∑

𝑎∈�̄�′
∑

𝑙∈𝐹𝑎 (𝑓𝑎𝑙 − 𝜆)𝑒𝑣𝑎𝑙ℎ𝑎𝑙
∑

𝑎∈�̄�′
∑

𝑙∈𝐹𝑎 𝑒
𝑣𝑎𝑙ℎ𝑎𝑙 + 1

(49)
∑

𝑙∈𝐹𝑎

ℎ𝑎𝑙 = 1 𝑎 ∈ �̄�′,

ℎ𝑎𝑙 ∈ {0, 1} 𝑎 ∈ �̄�′, 𝑙 ∈ 𝐹𝑎.

In Policy II, the collection of assortments includes all non-dominated assortments obtained by solving model (49) at each
ntersection point. In model (49), we only consider the price levels in which 𝑓𝑎𝑙 −𝜆 ≥ 0. In case of infeasible solution, no assortment
s considered at a given intersection point.

Finally, we have to mention that for any ∑

𝑘∈𝐾 𝛥𝑘 ≥ 0, all the intersection points will be shifted by ∑

𝑘∈𝐾 𝛥𝑘. Similar argument
s valid when 𝛿𝑎 = 𝛿𝑎′ , for all 𝑎, 𝑎′ ∈ �̄�′.

.2. Variable reduction

In Section 6.1, we presented our approach to decrease the number of variables associated with assortments (i.e. 𝑦𝑠). Let 𝑅(∙) be
a subset of arcs in the network. By some logical analysis, the following arcs can be removed from the graph (∑𝑖,𝑗∈𝑅(∙)

∑

𝑘∈𝐾 𝑥𝑘𝑖𝑗 = 0).

• 𝑅(1) = {𝑖, 𝑗|𝑗 ∈  ∪, 𝑖 = 𝑜𝑘, 𝑗 ≠ �̂�𝑘},
• 𝑅(2) = {𝑖, 𝑗|𝑖 ∈  ∪  , 𝑖 ≠ 𝑜𝑘, 𝑗 = �̂�𝑘},
• 𝑅(3) = {𝑖, 𝑗|𝑖 ∈  ⧵ {𝑛}, 𝑗 ∈  , 𝑗 ≠ 𝑛 + 𝑖, 𝑖 is a taxi service},
• 𝑅(4) = {𝑖, 𝑗|𝑖 ∈  , 𝑗 ∈  ⧵ {2𝑛}|𝑖 ≠ 𝑛, 𝑗 is a taxi service},
• 𝑅(5) = {𝑖, 𝑗|𝑖, 𝑗 ∈  , 𝑒𝑖 + 𝑑𝑖 + 𝑡𝑖𝑗 > 𝑙𝑗},
• 𝑅(6) = {𝑖, 𝑗, 𝑛 + 𝑖|𝑖 ∈  , 𝑗 ∈  , 𝑡𝑖𝑗 + 𝑑𝑗 + 𝑡𝑗,𝑛+𝑖 > 𝐿𝑀𝑎𝑥

𝑖 }.

Let (𝑖, 𝑛 + 𝑖) and (𝑗, 𝑛 + 𝑗) be the corresponding nodes to two confirmed shared-taxi services. We define a path 𝑃 (∙) as a sequence
of visiting nodes. By combining constraints related to the maximum ride time and time windows, the following variables can be
removed from the graph if the following paths are infeasible (see, Cordeau (2006) and Dumas et al. (1991)):

• ∑

𝑘∈𝐾 𝑥𝑘𝑖,𝑛+𝑗 = 0 if 𝑃 (1) = {𝑗, 𝑖, 𝑛 + 𝑗, 𝑛 + 𝑖} is infeasible.
• ∑

𝑘∈𝐾 𝑥𝑘𝑛+𝑖,𝑗 = 0 if 𝑃 (2) = {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} is infeasible.
• ∑

𝑘∈𝐾 𝑥𝑘𝑖,𝑗 = 0 if 𝑃 (3) = {𝑖, 𝑗, 𝑛 + 𝑖, 𝑛 + 𝑗} and 𝑃 (4) = {𝑖, 𝑗, 𝑛 + 𝑗, 𝑛 + 𝑖} are infeasible.
• ∑

𝑘∈𝐾 𝑥𝑘𝑛+𝑖,𝑛+𝑗 = 0 if 𝑃 (5) = {𝑖, 𝑗, 𝑛 + 𝑖, 𝑛 + 𝑗} and 𝑃 (6) = {𝑗, 𝑖, 𝑛 + 𝑖, 𝑛 + 𝑗} are infeasible.

6.3. Setting delivery time window

In CD-DARP, time windows are defined only for the pick-up locations. Let 𝑖 ∈  be a pick-up node with the time window
[𝑒𝑖, 𝑙𝑖]. If node 𝑖 is a confirmed taxi service, then the associated delivery time window is determined by: [𝑒𝑖 + 𝑡𝑖𝑗 , 𝑙𝑖 + 𝑡𝑖𝑗 ] where 𝑡𝑖𝑗
is the minimum travel time from pick-up 𝑖 to delivery 𝑗. On the other hand, if the service assigned to node 𝑖 is confirmed to be a
shared-taxi, the delivery time window is set as [𝑒𝑖 + 𝑡𝑖𝑗 , 𝑙𝑖 + 𝐿𝑀𝑎𝑥

𝑖 ]. The time window associated with the delivery of a new request
is calculated using the same rule that is applied to the shared-taxi.

6.4. Setting values for large constants

Constraints (39) and (42) define lower bounds for the marginal cost. This bound is imposed by setting �̂�𝑘 = �̄�𝑘 (previously
defined in Section 5.1). In Constraints (17), 𝑀𝑖𝑗 is set as the max {0, 𝑙𝑖 + 𝑑𝑖 + 𝑡𝑖𝑗 − 𝑒𝑖}. For the nodes 𝑖 ∈ {𝑛, 2𝑛}, we define
𝑖 = 𝑚𝑖𝑛𝑎∈𝐴 {𝑒𝑖𝑎}, 𝑒𝑖 = 𝑚𝑎𝑥𝑎∈𝐴 {𝑒𝑖𝑎}, 𝑙𝑖 = 𝑚𝑖𝑛𝑎∈𝐴 {𝑙𝑖𝑎}, 𝑙𝑖 = 𝑚𝑎𝑥𝑎∈𝐴 {𝑙𝑖𝑎}. The value of 𝑀𝑢 and 𝑀 𝑙 in Constraints (21) is obtained by

setting 𝑀𝑢 = 𝑙𝑖 − 𝑙𝑖 and 𝑀 𝑙 = 𝑒𝑖 − 𝑒𝑖.

.5. Infeasible path inequalities

As mentioned earlier, 𝜏𝑎𝑟𝑟𝑛 shows the arrival time of customer 𝑛 and �̄�𝑘
𝑖 as the departure time of assigned vehicle 𝑘 from node

𝑖. We define ̄ = {𝑖 ∈  |�̄�𝑘
𝑖 > 𝜏𝑎𝑟𝑟𝑛 } as the set of nodes which has not yet been served. Let (𝑖, 𝑛 + 𝑖) ∈ ̄ be a pick-up candidate

and its associated delivery node in this set. As proposed by Cordeau (2006), any directed path 𝖯 = {𝑖, 𝑗′,… , 𝑗′′, 𝑛 + 𝑖} in which
𝑗′, 𝑗′′ ∈ ̄ such that its duration is greater than a maximum ride time (i.e. 𝑡𝑖,𝑗′ +𝑑𝑗′ +⋯ , 𝑡𝑗′′ ,𝑛+𝑖 > 𝐿𝑀𝑎𝑥

𝑖 ) is valid for CD-DARP. In our
implementation, we add limited number of infeasible paths to the model in advance. In this paper, instead of using path construction
heuristic proposed by Cordeau (2006), we verify all the possible paths. To control the procedure and number of generated valid
inequalities, we limited our search to the paths whose 𝑙𝑒𝑛𝑔𝑡ℎ is less than or equal to three, mainly because of the capacity of vehicles.
Let 𝖯 be the path that violates the maximum ride time constraint. If 𝑛 or 2𝑛 belong to 𝖯, then we add ∑

𝑖,𝑗∈𝖯 𝑥
𝑘
𝑖𝑗 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ− 1 ∀𝑘 ∈ 𝐾

∑ ∑ 𝑘
138

to the model; otherwise, the inequality 𝑘∈𝐾 𝑖,𝑗∈𝖯 𝑥𝑖𝑗 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ − 1 is added.
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7. Rolling horizon approach

As mentioned in Section 3, customers arrive in the system one at a time. Each time a new customer arrives, the operator solves
he CD-DARP to offer the most convenient (for the customer based on his or her preferences) and profitable (for the network)
ssortment. Algorithm 1 summarizes the rolling horizon approach. When a new request arrives, given the current status of vehicles
𝑌𝑛−1) and the time of arrival of this new request (𝜏𝑎𝑟𝑟𝑛 ) the current state of the system is retrieved (𝑋𝑛). Based on the characteristics
f the new request, such as, pick-up and drop-off locations, as well as the preferred pickup time (𝜏𝑝𝑛 ), the personalized alternatives (𝐴)
re generated. Next, the utility of opt-out option (𝑣0) and the price levels (𝐹𝑎) of each alternative are defined, (steps 1 to 6). In step
, set of all assortments (𝑆) are introduced after which, given (𝑆, 𝐴 ,𝑋𝑛), the CD-DARP is calculated whose output is the optimal
ssortment (𝑠∗) to be offered (steps 8 and 9). As soon as the customer makes a choice (𝛤𝑛) among the available alternatives in 𝑠∗,
he routes of all vehicles and their associated schedules are modified (steps 10 and 11).

In Section 7.1, we explain how the routes of vehicles are updated as soon as a choice is made by the new customer. Then,
n Section 7.2, we discuss how the vehicles’ schedules (dispatch times) are updated, before introducing the numerical results in
ection 8.

Algorithm 1 Rolling horizon approach
Initialize

𝑌0 ← Get the initial location of vehicles (𝐾)*

1 while the operator is active do
2 Upon arrival of request 𝑛 do
3 𝑋𝑛 ← Get the status of vehicles (𝑌𝑛−1, 𝜏𝑎𝑟𝑟𝑛 ) — Section 3
4 𝐴 ← Generate alternatives (pickup, drop-off location of request 𝑛, 𝜏𝑝𝑛 ) — Section 4.1
5 𝑣0 ← Estimate the opt-out option (pickup, drop-off location of request 𝑛) — Section 4.1
6 𝐹𝑎 ← Set the price of alternatives (𝐴, 𝑣0) — Section 4.2
7 𝑆 ← Get the set of assortments (𝐴, 𝐹𝑎) — Section 6.1
8 𝑠∗ ← Solve the CD-DARP (𝑆,𝐴,𝑋𝑛) — Sections 5 and 6
9 Offer 𝑠∗ to the customer
10 𝛤𝑛 ← Receive the choice of customer (𝑠∗)
11 𝑌𝑛 ← Modify the routes of all vehicles and update vehicles’ schedules (𝛤𝑛),

— Sections 7.1 and 7.2
* input information for each step indicated inside the parenthesis

7.1. Updating vehicles routes: re-routing

According to Fig. 1, as soon as the new customer makes a decision (𝛤𝑛), vehicle routes need to be updated (re-routing). As
entioned in Section 5, the optimal vehicle routes are obtained before the arrival of a new customer to calculate the marginal cost

ndicated by �̄�𝑘. When solving the CD-DARP, we allow for multiple vehicle visits associated with the new customer. Therefore, the
outing decision of solving CD-DARP may violate the optimal route assumption after the choice is made. As a result, we solve the
nherit DARP model to modify the vehicle routes. The CD-DARP solution (Step 8) contains information regarding the assortment and
ehicle routes. After receiving the customers’ decision, we extract the information about the assignment of vehicles to the requests
rom the CD-DARP solution obtained in step 8. We use this information in step 11 to speed up solving the DARP model.

.2. Updating vehicles’ schedules

Vehicle dispatch time is the moment when the planned route is set to be executed. Vehicle dispatching strategy affects the system’s
erformance, e.g., routing cost. (see, Thomas (2007) and Mitrovic-Minic et al. (2004)). However, the main challenge is to decide
t which time the vehicle needs to leave a certain location. As suggested by Mitrovic-Minic et al. (2004), it is better to distribute
he available waiting time through the planned routes. This strategy leads to route cost reduction, as it provides opportunities to
e-optimize them.

Due to the nonlinearity of time tracking constraints (which have been linearized in our case presented by Constraints (17)–(18)),
alculating vehicles’ waiting time is not straight-forward, see, Savelsbergh (1992). The main challenge is to respect the service time
nd the maximum ride time of the existing customers in the network. Also, it requires avoiding delays at a given location when
he vehicle is loaded with passengers. For the planned route of vehicle 𝑘, we define ̄𝑘 as a set of pickup nodes. Similarly, set ̄ 𝑘

enotes the set of all visited nodes (̄𝑘 ⊆ ̄ 𝑘). As mentioned before, for node 𝑖 and vehicle 𝑘, we define 𝑊 𝑘
𝑖 to be the waiting time.

he dispatch time of each vehicle can be determined by solving the following LP model (50)–(54).

max
∑

𝑖∈̄ 𝑘
|𝑖≠�̂�𝑘

∑

𝑘∈𝐾
𝑊 𝑘

𝑖 (50)

𝑘 ̄𝑘 𝑘 ̄ 𝑘
139

𝑊𝑖 + 𝑑𝑖 = 𝐵𝑖 − 𝐵𝑖 𝑘 ∈ 𝐾, 𝑖 ∈  , (51)
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Table 3
Characteristics of the test instances.
Inst. name Service zone Trip dens. Booking behavior Trip length (km)

𝜇 𝜎 Min Max

10-US 10 × 10 𝐔 𝑈 (5, 10) 5.34 2.31 1.15 11.27
10-UM 𝑈 (5, 15)
10-UL 𝑈 (10, 15)

10-CS 𝐂 𝑈 (5, 10) 3.68 2.10 1.10 11.32
10-CM 𝑈 (5, 15)
10-CL 𝑈 (10, 15)

15-US 15 × 15 𝐔 𝑈 (5, 10) 7.69 3.60 1.57 17.03
15-UM 𝑈 (5, 15)
15-UL 𝑈 (10, 15)

15-CS 𝐂 𝑈 (5, 10) 5.08 3.01 1.18 17.72
15-CM 𝑈 (5, 15)
15-CL 𝑈 (10, 15)

𝐵𝑘
𝑖+𝑛 − 𝐵𝑘

𝑖 − 𝑑𝑖 ≤ 𝐿𝑀𝑎𝑥
𝑖 𝑘 ∈ 𝐾, 𝑖 ∈ ̄𝑘, (52)

𝑒𝑖 ≤ 𝐵𝑘
𝑖 ≤ 𝑙𝑖 𝑘 ∈ 𝐾, 𝑖 ∈ ̄ 𝑘, (53)

𝑊 𝑘
𝑖 = 0 𝑘 ∈ 𝐾, 𝑖 ∈ ̄ 𝑘

|𝑄𝑘
𝑖 ≠ 0. (54)

he objective function (50) maximizes the total waiting time. The waiting time at node 𝑖 is defined by Constraints (51). Constraints
52) and (53) make sure that the maximum ride time of each request and their time windows are respected. Constraints (54) prohibit
dditional waiting time with passengers on board.

. Numerical results

We conduct our experiments using C++ and CPLEX 12.8. All experiments are carried out on a computer with a 2.4 GHz CPU and
GB of RAM. In Section 8.1, we outline data generation scheme and customer simulation setting. In Section 8.2, we investigate the

omputational performance of our model. Next, in Section 8.3, we evaluate the impact of introducing flexible pick-up time windows
n the system’s performance. By allowing for this flexibility, we can significantly improve the performance of the system (i.e. the
umber of passengers served while reducing total routing cost). In Section 8.4, we show the trip-based pricing improves the profit
erformance as well as customer acceptance compared to the flat rate pricing. Finally, in Section 8.5, we test the proposed algorithm
n New-York green taxi data and compare it with the current practice. The results demonstrate the benefits of dynamic CD-DARP
n practice.

.1. Instance description

We assume that all trips are performed inside a predefined service zone. Two service zones are identified: an area of 10 × 10
m2 and 15 × 15 km2, respectively. Furthermore, two scenarios are considered to show how trips are distributed within the service
one. In the first scenario, (noted by 𝐔), origin and destination nodes are uniformly distributed. The second scenario (𝐂) presents
situation in which 75% of the trips either originate or end in the city center. We present the city center as a circle with a radius

f 𝐫 km originated at the center of the service zone (𝐫 = 2.5 and 𝐫 = 4.5 km for 10 × 10 and 15 × 15 km2 instances, respectively).
e then uniformly generate nodes 75% of which are positioned within the radius of 𝐫 km. We randomly label the nodes that are

enerated as origin and destination, to create trips. We discard trips where the Euclidean distance is less than one kilometer. For
ll instances, we consider a set of homogeneous vehicles with the capacity (𝑄) of three.
Data generation. The experiments are set up for two peak hour intervals, one in the morning and one in the afternoon, in minutes

75, 225] and [345, 450]. We assume that, within these time periods, customers arrive randomly according to a non-homogeneous
oisson process with an inter-arrival time of four and two minutes for off-peak and peak hours, respectively. Note that the assumption
f random arrivals according to this Poisson process is only used for generating instances and our proposed CD-DARP model assumes
o prior information regarding the customer arrivals. Moreover, for the sake of fair comparison across the instances, we only consider
he first 150 customers. Instances are generated according to three main attributes: (1) trip length, either short or long, (2) trip
istribution (i.e., the trip requests can be either uniformly distributed in the area or concentrated towards the center of the region)
nd, finally, (3) customer booking behavior in terms of their tolerance against possible delayed pick-up time. The characteristics of
he instances are shown in Table 3.

As suggested by Bösch et al. (2018), we set the transportation cost at $ 0.41 per km. For each instance, we vary the number of
ehicles (two, four and six) to examine the trade-off between resource availability and demand volume. The initial location of the
ehicles is randomly determined within the service area. All vehicles are available during the service period. For each request, we
efine the preferred pickup time (𝜏𝑝𝑖 ) as 𝜏𝑝𝑖 = 𝜏𝑎𝑟𝑟𝑖 + 𝜏 in which 𝜏𝑎𝑟𝑟𝑖 is the arrival time of the customer 𝑖 and 𝜏 is a random variable
aken from a uniform distribution (𝜏𝑝 > 𝜏𝑎𝑟𝑟). Here, we define three cases to evaluate people’s booking behavior: (i) impatient
140
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Table 4
Choice model parameters, Krueger et al. (2016).
Attributes Taxi Shared-Taxi Public transport

ASC −0.28 −0.77 0
In-vehicle time (𝛽𝑡) −0.792 −0.85 −0.88
Delay (𝛽𝜔) −0.06 −0.10 −0.0356
Price (𝛽𝑓 ) −1.2 −1.04 −0.89

Table 5
Values used in the dynamic CD-DARP.
Description Value Description Value

Delay (𝛥𝑡) 3 min Service time (𝑑𝑖) 0.5 min
Vehicle speed 50 km/h Public transport speed 20 km/h
Min purchase probability (𝜁) 0.05 Price discretization level 0.1
Vehicle capacity (𝑄) 3 Transportation cost per km 0.41 $

customers (𝜏 ∼ 𝑈 (5, 10)), shown by S in Table 3, (ii) patient customers (𝜏 ∼ 𝑈 (10, 15)), shown by L in Table 3, and (iii) a mixture of
both groups (𝜏 ∼ 𝑈 (5, 15)), shown by M in Table 3. The summary of the attributes for each instance is shown in Table 3, including
12 instances. For example, 10-US shows the area of 10 × 10 km2 in which the demand is uniformly distributed (U) and customers
are impatient (S). In this table, four columns under the trip length show the average (𝜇), standard deviation (𝜎), minimum and
maximum length (Min and Max) of generated 150 requests for that particular instance. For all tests throughout the computational
results section, we assume that the number of alternatives is equal to six, meaning two services, taxi and shared-taxi with three
delayed pickup time slots each.

Choice simulation. For each alternative, the systematic part of the utility, Eq. (1) in Section 4.1, is calculated based on the
parameters (𝜷) presented by Krueger et al. (2016). These parameters are presented in Table 4. The in-vehicle time for the taxi
service (𝐼 𝑡𝑎𝑥𝑖) is calculated based on the shortest distance traveled with a constant speed of 50 km/h. For shared-taxi, we calculate
the in-vehicle time (i.e. maximum ride time) as min{1.5 𝐼 𝑡𝑎𝑥𝑖, 𝐼 𝑡𝑎𝑥𝑖 + 15}. The underlying rationale is to keep shared-taxi as an
attractive choice for long-distance trips. The maximum fare of each alternative is then calculated by setting the minimum purchase
probability (𝜁) to 5% (presented via model 𝑍 in Section 4.2). The minimum fare is computed by charging a fixed fare of $ 5 for the
service plus the variable charge of $ 0.5/km. The price levels are determined with the discretization level of $ 0.1.

Public transport is considered as the opt-out option (i.e., competition). Here, we assume a cyclic service where on average,
customers face 20 min of waiting time (including travel time to/from the nearest station). Moreover, a travel speed of 20 km/h is
assumed for this public transport. Each customer has to pay a constant fare of $ 4 for short (less than 5 km) trip and $ 5 for long trips
(more than 5 km). To simulate a customer’s choice, we first calculate the utility of alternatives being offered. For each alternative,
we calculate the systematic part of the utility value based on the above-mentioned procedure. For the stochastic part, we randomly
draw value from a standard Gumbel distribution with pre-defined parameters. Among the offered alternatives (including the opt-out
option), the one with the highest utility value shows the choice of the customer. Table 5 summarizes all values described above.

8.2. Computational performance

In this section, we first present the computational results of assortment selection policies introduced in Section 6.1. Second, the
algorithmic performance of dynamic CD-DARP is investigated. Third, we present the computation time-sensitivity related to the
routing part. Due to the stochasticity resulted from the customer’s choice, we solve each instance five times.

Assortment selection policies. Table 6 summarizes the comparison of three assortment selection policies and evaluates them
based on the computational time and the overall profit performance. Policy III shows the results related to the complete enumeration
of all possible assortments which we use as a benchmark. With Policy III, we ensure that the optimal assortment is offered. The first
column, ‘‘Disc. Level’’, represents the price discretization levels. For the price discretization levels of 1 and 0.5, we manage to find
the optimal assortment based on Policy III (i.e., complete enumeration) but for price discretization level of 0.1, this is not possible
due to high computational time.

The first three rows for the price discretization levels of 1 and 0.5 and the first two rows for level 0.1, we present the
computational time associated with each instance. The last column ‘‘Ave’’. indicates the average computation time for each policy.
Policy III consistently has the highest calculation time due to the fact that it enumerates all the possible assortments, whereas this
value significantly decreases for Policy I and II. In rows entitled ‘‘Profit. Change (%)’’, we compare Policy I and II based on their
profit performance for each price discretization level against Policy III (as the benchmark) except for the 0.1 case where we compare
Policy I and II against each other. We observe that none of these policies consistently outperforms the others. The reason is that we
solve this dynamic problem in a myopic fashion, and we cannot guarantee the global optimality based on the profit performance.
On the other hand, the difference between these policies in terms of the profit is not significant. For price discretization levels 1
and 0.1, Policy I outperforms Policy II. Moreover, for most cases, the computational time of Policy I tends to be lower. Therefore,
in order to report the rest of our numerical results, we only use Policy I with price discretization level of 0.1.

Algorithmic performance. The computational time reported in Table 7 indicates the average time for solving each iteration of
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CD-DARP. Table 7 is divided into three segments, each one reporting the results associated with a given number of vehicles. For
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Table 6
Comparison between assortment policies (6 vehicles).

Disc. Policy Instances Ave.

Level No. 10-US 10-UM 10-UL 10-CS 10-CM 10-CL 15-US 15-UM 15-UL 15-CS 15-CM 15-CL

1 III Time 62.27 61.41 58.18 26.47 26.67 37.43 33.73 33.23 46.68 78.3 68.16 71.97 50.38
II Time 0.05 0.05 0.06 0.06 0.08 0.08 0.03 0.04 0.03 0.05 0.06 0.05 0.05
I Time 0.04 0.45 0.49 0.48 0.52 0.49 0.26 0.3 0.28 0.43 0.45 0.47 0.39

Profit (II–III) −1.23 −1.41 −1.2 −0.56 −4.25 2.56 −4.03 −5.41 −4.28 1.60 2.20 −1.82 −1.49
Change. (%) (I–III) −3.26 8.68 4.34 0.98 2.18 6.53 10.90 15.60 1.41 13.35 5.30 1.22 5.60

0.5 III Time 459.41 700.2 1463.07 906.26 1175.82 3607.96 2508.59 1354.81 4943.08 4184.25 5090.38 2849.64 2436.96
II Time 2.69 3.56 4.55 3.61 3.70 4.44 2.25 2.26 2.38 2.39 3.73 5.40 3.41
I Time 1.28 2.89 4.03 2.52 1.10 2.01 0.93 1.34 1.19 2.85 4.19 5.19 2.46

Profit (II–III) −0.86 0.91 8.35 −0.34 −2.45 10.18 −1.32 2.25 15.93 0.16 −5.12 0.97 2.39
Change. (%) (I–III) −1.69 0.98 −0.5 −0.78 −0.94 8.23 −0.43 3.16 16.05 −5.68 −0.18 −0.47 1.48

0.1 II Time 2.64 3.51 6.79 7.75 5.11 6.18 1.88 2.51 2.92 1.79 3.22 4.02 3.94
I Time 1.6 2.79 5.5 3.9 4.32 5.54 0.31 0.35 1.83 0.94 5.01 3.47 2.96
Profit Change. (%) (I–II) 6.31 −0.63 −1.39 1.58 11.7 2.17 −0.83 −5.38 0.93 1.84 1.52 7.22 2.09

Table 7
The effect of pre-processing steps on CD-DARP computation time (seconds per request).

No. Instances Ave. Max

Vehicles 10-US 10-UM 10-UL 10-CS 10-CM 10-CL 15-US 15-UM 15-UL 15-CS 15-CM 15-CL

Two No. Ave 5.32 5.74 6.6 5.1 6.69 7.54 5.38 5.93 8.14 5.54 6.1 7.38 6.29 8.14
req. Max 10 10 14 9 12 13 10 11 14 12 11 14 11.67 14

Base Ave. 0.08 0.07 0.08 0.10 0.12 0.14 0.03 0.03 0.03 0.04 0.06 0.06 0.07 0.14
Worst 0.93 0.50 1.05 0.82 1.05 1.06 0.30 0.35 0.08 0.45 0.40 0.39 0.61 1.06

+VI Ave. 0.04 0.04 0.05 0.05 0.06 0.07 0.02 0.02 0.02 0.04 0.05 0.04 0.04 0.07
Worst 0.14 0.13 0.16 0.16 0.23 0.16 0.09 0.09 0.09 0.33 0.15 0.14 0.15 0.33

Four No. Ave 5.80 6.08 7.19 5.46 7.02 7.99 5.92 6.52 8.55 5.87 6.65 7.82 6.74 8.55
req. Max 10 10 15 9 12 13 11 12 14 12 11 14 11.92 15

Base Ave. 0.49 0.52 0.54 0.52 1.05 1.45 0.14 0.17 0.18 0.39 0.43 0.43 0.53 1.45
Worst 1.85 2.73 2.44 1.90 17.43 12.95 0.77 0.53 0.74 2.29 1.62 2.20 3.95 17.43

+VI Ave. 0.20 0.27 0.29 0.30 0.41 0.87 0.11 0.11 0.13 0.19 0.25 0.30 0.28 0.87
Worst 0.52 0.77 1.14 0.84 6.39 10.32 0.36 0.39 0.39 0.47 0.82 1.46 1.99 10.32

Six No. Ave 5.91 6.20 7.06 5.56 7.29 8.37 5.81 6.52 8.95 6.20 6.53 7.90 6.86 8.95
req. Max 11 10 14 9 13 14 10 12 15 13 11 14 12.17 15

Base Ave. 1.54 2.08 2.59 3.17 7.50 13.68 0.44 0.56 0.64 0.99 1.93 2.18 3.11 13.68
Worst 10.10 10.96 30.52 18.48 85.82 97.41 1.85 2.50 3.89 3.77 28.03 15.92 25.77 97.41

+VI Ave. 1.60 2.79 5.5 3.9 4.32 5.54 0.31 0.35 1.83 0.94 5.01 3.47 2.96 5.54
Worst 1.87 4.10 7.62 7.10 6.41 8.31 0.91 1.43 2.71 1.58 6.14 5.29 4.45 8.31

each arriving request, row ‘No. req.’ presents the number of existing customers whose routes can still be modified. Similarly, ‘Base’
reports the computational time after imposing variable reduction steps (explained in Sections 6.2 and 6.3) and tightening constraints
with the big Ms (Section 6.4). Row ‘+VI’, shows the results after applying all pre-processing techniques.

As can be seen in Table 7, the computational time of CD-DARP increases by adding the number of vehicles. The worst-case is
7.41 s for a request in instance 10-CL with six vehicles. However, for most of instances the computational time remains low.

On average, adding valid inequalities can slightly reduce the computational time not necessarily for all instances. We however
bserve that adding valid inequalities are effective in reducing the worst-case computational time when the number of vehicles is
ncreased.
Computational time sensitivity. In Table 8, we investigate the impact of varying the number of alternatives on the total

computation time. Each element in the table indicates the computational time (in seconds) for every instance and the number of
alternatives offered to the customer. Here, we use the first assortment selection policy which results in evaluating 2|𝐴| assortments
to every arriving customer. We observe that the computational time is sensitive against the number of alternatives. As shown in
Table 8 by increasing the number of alternatives the average computational time increases from 2.96 to 31.42 s.

In Table 9, we present the computational sensitivity against the number of available vehicles and inter-arrival times. Earlier,
we indicated that, for the sake of instance generations, we assume four and two minutes inter-arrival times between each pair of
customers. Here, we discuss the model’s limitations when reducing the inter-arrival times, examining four scenarios for tighter inter-
arrivals times. We define three additional multipliers ( 12 ,

1
4 ,

1
8 ) to shrink inter-arrival times. We also change the fleet size between 6

and 20, mentioned in the first row of Table 9. We observe a significant jump in the computational time as the fleet size increases
142

and the inter-arrival times are reduced.
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Table 8
Sensitivity of computational time (in seconds) by varying the number of offered alternatives in the assortment (6 vehicles).

No. Instances Ave.

Alt. 10-US 10-UM 10-UL 10-CS 10-CM 10-CL 15-US 15-UM 15-UL 15-CS 15-CM 15-CL

6 1.6 2.79 5.5 3.9 4.32 5.54 0.31 0.35 1.83 0.94 5.01 3.47 2.96
8 15.96 26.58 31.95 28.16 33.06 35.68 5.40 11.41 12.73 14.67 27.54 30.53 22.81
10 32.92 34.33 35.18 34.39 35.38 35.23 21.66 23.18 25.48 31.68 33.21 34.43 31.42

Table 9
Average CD-DARP computation time (seconds) over all instances.

Inter-arrival multiplier No. vehicles

6 8 10 12 14 16 18 20

1 2.96 6.03 10.38 25.40 39.87 62.23 81.81 78.05
1
2

2.25 5.21 8.92 23.75 47.21 83.26 113.19 111.66
1
4

3.63 6.37 18.51 25.71 66.81 81.53 216.04 222.73
1
8

5.43 9.40 21.58 33.46 60.40 90.22 170.93 236.58

In our generated instances, we consider the situation in which customers are impatient. To reflect this condition, we assume that
ustomers can wait up to nine minutes and arrive shortly before their preferred pickup time, Rahimi et al. (2020) and Bertsimas
t al. (2019). These instances reflect the situation faced by on-demand mobility services. To extend the generality of our proposed
ramework, we test CD-DARP on the instances introduced by Cordeau (2006). These instances represent situations where customers
rrive well in advance and have more flexibility on pickup time (i.e., elderly and handicapped transportation).

The preferred time window is either set at the pickup or drop-off location in a dial-a-ride problem. While in CD-DARP, the
referred time window is set on pickup location. We use the approach proposed by Cordeau (2006) to set a preferred pickup time
indow for those requests whose drop-off time window is available. The delayed pickup times extend the preferred time window.
oreover, we apply the method proposed by Berbeglia et al. (2012) to make these instances dynamic and compatible with the
D-DARP framework (i.e., no request is known a priori). We consider two situations. For the first situation request arrival is at least
0 min prior to the preferred departure time. For the second situation, this value is increased to 120 min. The rest of the parameters
re the same as our previous instances.

In all instances, we set a time limit of 600 s for CD-DARP.
Tables 10 and 11 present the computational results related to the dial-a-ride instances proposed by Cordeau (2006). The first

olumn shows the instance name. For example, ‘‘a2-16’’ shows the instance whose fleet size is 2, serving 16 customers. Columns
nder ‘‘Rejected req’’. report the number of rejected customers. The first column shows the number of requests rejected by CD-DARP
no feasible assortment), and the second column shows the case in which a customer rejects the assortment offered by CD-DARP.
he number of served requests is reported under the column ‘‘Rejected req.’’. The average and the maximum computation time

s reported under the column ‘‘Time (sec)’’. We limit the maximum computation time to 600 s per arriving request. Column ‘‘Not
roved’’ shows the maximum number of requests in which the solution of CD-DARP reaches its time limit. Column ‘‘Active # req.’’
hows the average and the maximum number of requests in which their routes can be re-routed at every iteration of CD-DARP.
inally, the collected revenue and generated cost are reported under the columns ‘‘Rev.’’ and ‘‘Cost’’.

As can be seen in Table 10, the computational time slightly increases when the length of the pickup time window is increased
ue to CD-DARP having more re-routing possibilities. The CD-DARP can be solved within a reasonable amount of time as long as
he number of active users is around 11, with 18 active requests in the worst case (e.g., instance a4-32).

However, as the average and the maximum time of active requests increase, the CD-DARP reaches its computational limit
f 600 s. For example, for instance, a7-84, CD-DARP cannot be proved to the optimality for ten requests. When request arrival
ncreases to 120 min in advance, the average number of active requests increases from 12.66 to 20.61. This increment increased
he computational time of CD-DARP. Still, CD-DARP is solved reasonably when the number of active users is around 11, with 18
n the worst case. By comparing these two situations, we observe that advance arrival information slightly impacts the number of
erved requests (41.85 compared to 42.34). The average routing cost remain unchanged, and the revenue slightly increases.
Summary. The CD-DARP is the combination of assortment optimization and dial-a-ride problems, both of which were proven

o be NP-Hard. In Sections 8.1 and 8.2 through an extensive computational experiments we show to what extent CD-DARP can be
olved using general optimization solvers. We also show that the computational time is sensitive to the number of offered assortments
nd the number of active users that will also increase the size of the routing problem. This limitation calls for the introduction of
n efficient heuristic approach (similar to the one proposed by Berbeglia et al. (2012)) that can tackle the computational burden.
his part has been left out of the scope of this paper and will be tackled in future research.

.3. Flexible time windows

In dynamic DARP, tight pickup time windows are assumed to provide satisfactory services to customers. However, this could
ead to poor system performance based on the number of accommodated customers and the total routing cost. To address this issue,
143
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Table 10
CD-DARP performance for instances proposed by Cordeau (2006) - customers arrive 60 min in advance. The reported values are in numbers not percentage.

Name Rejected req. Served Time (s) Not proved Active # req. Rev. Cost

Operator Cust. req. Ave. Max Max Ave. Max

a2-16 3.67 1.90 10.43 0.38 0.79 0 5.50 9 120.58 82.68
a2-20 1.48 1.95 16.57 0.13 0.26 0 6.10 11 174.87 126.04
a2-24 0.00 6.00 18.00 0.07 0.13 0 5.33 8 186.19 131.39
a3-18 0.00 1.00 17.00 0.16 0.26 0 8.30 14 173.98 119.27
a3-24 0.00 2.00 22.00 0.17 0.36 0 8.20 13 210.58 134.04
a3-30 2.59 2.94 24.47 0.14 0.37 0 8.30 13 262.20 177.93
a3-36 1.59 0.98 33.42 0.95 6.89 0 8.90 15 379.89 260.37
a4-16 0.00 0.03 15.97 4.74 18.57 0 11.18 17 169.97 119.85
a4-24 0.00 1.00 23.00 1.83 5.44 0 10.41 15 237.28 162.33
a4-32 0.00 3.00 29.00 9.28 47.87 0 11.18 18 308.81 196.00
a4-40 0.00 0.10 39.90 5.43 34.11 0 11.70 18 408.21 268.95
a4-48 0.00 0.24 47.76 16.46 600 1 11.30 21 484.75 323.70
a5-40 0.00 0.30 39.70 20.50 292.54 0 13.32 20 394.81 237.71
a5-50 0.00 0.29 49.71 11.54 84.24 0 13.28 19 519.11 310.73
a5-60 0.00 1.00 59.00 15.95 188.64 0 14.35 25 644.22 404.54
a6-48 0.00 1.00 47.00 55.94 272.16 0 16.75 27 497.46 285.99
a6-60 0.00 5.00 55.00 34.51 600 2 16.08 26 590.19 376.15
a6-72 0.00 3.00 69.00 31.67 600 1 16.08 23 715.26 442.94
a7-56 0.00 1.00 55.00 54.06 600 4 17.69 27 571.99 333.73
a7-70 0.00 2.00 68.00 116.77 600 4 18.55 30 704.32 426.43
a7-84 0.00 1.00 83.00 126.07 600 10 19.20 29 870.07 508.92
a8-64 0.00 0.12 63.88 97.47 600 7 20.84 28 638.03 353.99
a8-80 1.30 2.99 75.71 128.06 600 7 18.56 28 748.45 423.05

Ave. 0.46 1.69 41.85 31.84 12.66 435.27 269.86

Table 11
CD-DARP performance for instances proposed by Cordeau (2006) - customers arrive 120 min in advance. Reported values are in numbers and not percentage.

Name Rejected req. Served Time (s) Not proved Active # req. Rev. Cost

Operator Cust. req. Ave. Max Max Ave. Max

a2-16 1.39 2.92 11.69 0.45 1.04 0 8.00 14 130.17 90.64
a2-20 0.00 3.00 17.00 0.18 0.39 0 9.40 16 174.56 133.53
a2-24 0.00 4.00 20.00 0.11 0.18 0 8.91 12 210.00 149.62
a3-18 0.00 1.00 17.00 0.90 3.62 0 13.94 21 177.73 124.41
a3-24 0.00 2.00 22.00 0.60 2.21 0 12.25 19 210.71 130.93
a3-30 2.83 2.91 24.26 0.50 4.09 0 12.63 20 269.08 180.76
a3-36 1.92 0.97 33.11 17.04 70.80 0 14.97 25 362.39 253.77
a4-16 0.00 1.00 15.00 87.50 195.89 0 15.06 24 164.46 112.28
a4-24 0.00 0.13 23.87 2.41 24.18 0 16.45 25 249.91 164.84
a4-32 0.00 0.28 31.72 63.69 99.84 0 19.81 32 349.97 208.54
a4-40 0.00 0.06 39.94 22.29 249.90 0 18.65 28 407.43 267.99
a4-48 0.00 0.17 47.83 70.55 600 4 18.18 32 482.29 323.01
a5-40 0.00 0.08 39.92 90.73 600 2 18.65 28 395.10 230.05
a5-50 0.00 0.47 49.54 89.21 600 3 22.92 35 518.03 301.53
a5-60 0.00 1.00 59.00 174.23 600 3 23.68 35 618.04 379.38
a6-48 0.00 1.00 47.00 294.91 600 15 27.97 46 478.81 281.61
a6-60 0.00 3.00 57.00 218.46 600 17 25.68 42 613.12 386.48
a6-72 0.00 2.00 70.00 257.83 600 18 27.22 38 721.55 431.82
a7-56 0.00 0.44 55.56 316.90 600 24 29.05 44 576.67 326.70
a7-70 0.00 0.34 69.66 354.48 600 23 31.37 45 722.16 439.09
a7-84 0.00 2.00 82.00 369.16 600 42 31.96 47 864.08 494.57
a8-64 0.00 1.00 63.00 451.63 600 51 34.03 49 632.98 351.53
a8-80 1.24 1.00 77.76 466.17 600 55 33.17 44 777.59 432.50

Ave. 0.32 1.34 42.34 145.65 20.61 439.43 269.37

in the CD-DARP framework, we assume flexible pickup time windows. In this section, we show how this flexibility can result in
better performance of the system.

For a given service type (i.e. taxi, shared-taxi), we have designed three scenarios to assess the benefits of the proposed model
y offering customers various pick-up time windows. For this particular experiment, for a fair comparison between scenarios, we
ssume that only the operator can reject a request due to infeasibility, while customers are captive (no opt-out option). The utility
f the opt-out option is still used to determine the price of alternatives. These scenarios are described as follows:

• (𝐏). Only the customer’s preferred pick-up time is offered. This scenario is the same as the dynamic dial-a-ride problem in
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which all customers requests contain time window at the pick-up location and the length of the time window is the same for



Transportation Research Part B 161 (2022) 128–149Sh. Sharif Azadeh et al.

s

Table 12
Routing cost (%) and service level improvement (%) - taxi service.

# Veh. Number of served passengers Total routing cost

Imp. (%) 6 4 2 6 4 2

𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃

10-US 1.68 4.20 2.95 6.56 2.57 8.57 0.49 0.28 −0.98 0.01 3.22 4.78
10-UM 1.64 2.74 2.05 8.66 4.66 8.22 −0.85 −1.66 0.35 3.43 −0.82 0.60
10-UL 1.66 3.45 2.68 6.30 2.25 7.50 0.81 1.28 0.22 2.01 1.82 4.59
10-CS 1.08 1.35 3.65 6.57 4.21 6.32 −0.99 −3.13 −0.23 −2.95 1.36 2.89
10-CM 0.00 0.00 5.52 8.96 5.32 6.38 −2.00 −3.94 2.82 4.63 4.13 1.57
10-CL 1.22 1.35 3.97 8.09 7.56 17.78 1.28 −1.49 2.26 2.42 3.36 6.89
15-US 2.48 0.83 0.00 −1.06 −0.39 3.92 1.54 −2.85 −1.86 −2.50 −1.65 −0.92
15-UM 0.47 3.10 4.00 6.32 2.74 1.96 −2.63 −0.91 −1.24 −2.54 −1.71 −5.46
15-UL 0.97 3.23 1.94 3.23 1.60 6.00 −2.55 −1.38 1.31 4.10 −0.10 1.28
15-CS 2.10 2.10 2.17 4.17 2.77 7.69 0.36 −2.91 −0.11 2.58 2.13 2.33
15-CM 1.82 4.20 4.10 9.02 3.78 5.41 1.23 −0.89 3.00 7.58 4.03 7.84
15-CL 2.54 4.93 4.79 11.57 4.17 6.94 0.68 −0.65 3.54 7.53 3.48 11.27

Average 1.47 2.62 3.15 6.53 3.44 7.22 −0.22 −1.52 0.76 2.19 1.61 3.14

Table 13
Routing cost (%) and service level improvement (%) - shared taxi service.

# Veh. Number of served passengers Total routing cost

Imp. (%) 6 4 2 6 4 2

𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃 𝐏 → 𝐀 𝐏 → 𝐃

10-US 0.41 1.35 2.81 6.25 4.00 14.67 −4.61 −9.05 −3.21 −3.68 1.60 4.58
10-UM 1.36 2.04 1.94 7.46 −0.95 3.57 −2.93 −7.28 −1.54 −0.43 −0.25 2.02
10-UL 1.77 2.04 4.03 7.46 1.15 12.64 −2.74 −8.21 −0.64 −3.47 −0.64 6.05
10-CS 0.81 1.35 2.54 2.82 7.42 11.34 −3.24 −9.83 −2.33 −10.48 1.02 −2.54
10-CM 0.00 0.00 4.46 7.91 6.33 10.20 −5.07 −11.56 −0.07 −6.39 3.50 2.12
10-CL 0.00 0.00 2.52 4.90 8.00 12.63 −5.09 −10.19 −4.67 −8.16 1.94 5.16
15-US 0.00 3.08 0.00 1.98 −6.21 −6.90 −2.80 −2.86 −2.01 −2.91 −2.18 −7.86
15-UM 1.34 5.22 3.62 6.67 7.55 11.32 −3.94 −6.12 −2.60 −3.10 −2.98 −2.23
15-UL 2.44 8.40 3.47 10.20 3.02 5.66 −3.83 −5.85 −2.19 −0.51 −0.53 −0.49
15-CS −1.37 2.74 4.96 10.74 5.14 5.71 9.91 −7.89 0.54 −0.85 −4.39 −4.96
15-CM 2.62 3.45 1.07 9.16 5.71 9.09 −0.57 −2.78 −1.70 1.33 1.15 −0.36
15-CL 1.64 2.74 5.12 8.00 6.93 14.67 −4.87 −10.23 0.42 −2.10 1.36 −2.13

Average 0.92 2.70 3.04 6.96 4.01 8.72 −2.48 −7.65 −1.67 −3.40 −0.03 −0.05

all of them. In this case, we either accept customers with their preferred pick-up time or we reject them. This case will be used
as the benchmark in our computational results. We give the highest flexibility to customers that could jeopardize operational
performance.

• (𝐀). An assortment is offered to each new customer. The aim is to examine the trade-off between offering a slightly delayed
pickup time or offering on-time pickup time. Here, both customers and the operator have a certain level of flexibility.

• (𝐃). Only the alternative with the maximum deviation from the preferred pick-up time is offered. In other words, option D
offers only the largest time window. With this assumption, we give the highest flexibility to the operator, although that could
affect customer satisfaction.

We have considered two indicators separately for each service type, to measure systems’ performance: (i) the number of customers
erved and (ii) total routing cost. Tables 12 and 13 report the improvement of system’s performance (in %) across all instances for

taxi and shared taxi services, respectively. For different fleet sizes, columns 𝐏 → 𝐀 report the performance improvement between
the dynamic DARP and the case where an assortment of options (i.e., scenario 𝐀) is offered to each request. Similarly, 𝐏 → 𝐃 shows
the performance improvement when only delayed pickup time options (i.e., scenario 𝐃) are offered.

For taxi services, by delaying passenger pick-up time (i.e., 𝐏 → 𝐃), the number of customers served increases. This improvement
is more significant when there is a clear demand-supply mismatch. For example, for our test with two vehicles, there is a 7.22%
increase in the number of customers served. Moreover, this improvement is more significant for patient customers, because the
system is more flexible in terms of modifying its routes. When comparing the results of Tables 12 and 13, we notice that, in terms
of reduced routing cost, when we offer a shared taxi option, we can benefit more significantly from the properties of the proposed
CD-DARP compared to the case where only taxis are offered.
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Fig. 3. Profit performance (4 vehicles).

8.4. Impact of trip-based pricing

In this section, unlike Section 8.3, we assume that customers have the option of rejecting an offered alternative, as well as
choosing a more flexible pick-up time window at a lower price. We examine the impact of these assumptions on revenue, service
level and operational performance.

We show the impact of trip-based pricing on profit performance for this on-demand system compared to the case where the
prices are flat. For the latter case, we consider the average trip length of each instance and we use the same procedure described
in Section 3 to calculate the fare.

Fig. 3 compares the profit performance for these two pricing strategies for all instances when the fleet size is four. The dashed and
solid lines show the percentage of customers rejecting all offered options for both fixed and dynamic pricing policies. The outcome
indicates that even though in both scenarios, unlike dynamic DARP, we offer a set of alternatives, using dynamic pricing improves
the service level. The percentage of customers rejecting all offered alternatives reduces on average from 14.7% to 6.41%. Finally,
gray columns show profit improvement when dynamic pricing is used (average profit improvement is around 9%).

8.5. Scaling CD-DARP to real-world data

In this section, we look at the potential of using CD-DARP in practice. We test our proposed algorithm on NYC taxi data, New
York City (2016). We use green cab rides of the April 20, 2016 from 9 AM to 10 AM as our sample. We limit our choices to the trips
within Manhattan and exclude all trips that either originate or end outside of Manhattan. After removing errors, the data contains
379 observations. Fig. 4 shows the pick-up and drop-off location of our selected case. The chosen case exemplified the situation
where most of the rides occurred in a dense area.

From the selected data, we use pick-up time as well as pick-up and drop-off locations. OSRM (Open Source Routing Machine) is
applied to compute the travel time and costs, see, Luxen and Vetter (2011) and OpenStreetMap contributors (2017). To adapt the
case to our proposed framework, we choose as pick-up time the customer’s arrival time. The preferred pick-up time and all values
for the choice models, as well as the operating costs are the same as the ones described in Section 8.1. When a new request comes
in the system, we solve the CD-DARP to run the experiments with 25 vehicles randomly distributed in the region where we have
pick-ups. For each scenario, we solve the model five times and report the average value.

We examine and compare our CD-DARP approach with the current practice, Dias et al. (2017). We define three scenarios to
measure the impact of offering assortments to customers and quantify the impact of real-time re-routing on system performance. In
scenario I, the algorithm offers customers only the most profitable alternative. Once a request has been assigned to a vehicle, we
do not allow for it to change. This scenario mimics the conventional taxi dispatching system. In scenario II, we relax the restriction
of offering one alternative and allow for the algorithm to offer an assortment. With this scenario, we aim to evaluate the impact of
offering an assortment to the customers. Finally, in scenario III, we offer an assortment and allow the vehicle to be re-routed until
the dispatching time. In the last scenario our goal is to identify the opportunities that one can attain by updating vehicle schedule
(Section 7.2).

Table 14 denotes the comparison between the three scenarios. Columns under ‘Served Cust.’ and ‘Profit’ report the percentage of
customers using the service and the total collected profit. As we can see, by moving from scenario I to III, we are able to serve more
customers and significantly improve our profit. The detail of offered assortments are presented in columns under ‘Assortment %’.
The columns ‘Taxi’, ‘STaxi’ and ‘Mix’ denote the share of each service for different scenarios. In the column ‘Mix’, both the options
taxi and shared taxi are offered. Finally, column ‘O.Reject’ shows the percentages of requests rejected by the operator. When the
system offers only one type of alternative, the most profitable one is taxi service. However, in that case, it can only serve 41.68%
of the customers. By relaxing this restriction, there is a dramatic change towards offering a mixture of service types (83.83% and
85.17% for scenarios II and III, respectively).
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Fig. 4. Spatial distribution of the pick-up and drop-off locations.

Table 14
Operator and customer interaction for three defined scenarios.

Scn. Offer Re Served Profit Assortment (%) Passengers choice (%) Sat.

Alt. routing Cust. (%) Taxi STaxi Mix O.Reject Taxi STaxi C.Reject

I One No 41.68 436.38 96 3.5 0 0.5 41.38 0.50 58.12 −55.06
II Menu No 74.36 654.93 0.83 5.34 83.83 10 67.03 15.59 17.38 −19.99
III Menu Yes 76.36 705.13 0.67 4.33 85.17 9.83 71.36 13.32 15.32 −19.38

Columns under ‘Passenger choice’, report the result about passenger behavior. From the offered assortments, columns ‘Taxi’,
‘STaxi’ and ‘C.Reject’ show the choice of customers from the offered assortment. As we can see, when we offer the most profitable
alternative, passengers are very likely to reject our offer. This is not the case for scenarios II and III. In addition, by allowing vehicle
re-routing, we are able to provide a better service to the customer. Finally, column ‘Sat.’ reports customer satisfaction with service
being offered. We quantify satisfaction by using the logarithm of the denominator of offered choices (see, Train (2009) for more
details). As we can see, by moving from scenario I to III, we can improve customer satisfaction by offering personalized alternatives.

In Section 8.2, we have already acknowledged the computational limitations of the proposed model and its sensitivity against
larger fleet size and shorter inter-arrival times. However, the main reason for which we tested our model on the NYC data is to
show that by alternative customization (via assortment optimization), the operator is better able to satisfy demand proportionate
to the available fleet size within a specific time interval and for a given number of requests.
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From a managerial point of view, the outcome is useful for any single owned transport operator with a limited fleet size. Such
ompanies could use the available resources more efficiently by personalizing the services they offer (e.g., a network of autonomous
ehicles that offer both private and shared services). The above-mentioned results provide insight into methods and policies that
elp to find a trade-off between multiple objectives. When an operator offers only the most profitable alternatives, that will affect
he customer satisfaction and service levels (assuming the competition is taken into account). In addition, we have observed that
ntroducing flexible time windows (even if they are defined within a tight range) helps to save cost of routing.

. Conclusion

A solution to dynamic DARP is characterized by the presence of three often conflicting objectives: maximizing the number of
erved customers, minimizing operating costs, and maximizing user convenience (i.e., service quality). Service quality is usually
easured in terms of deviations from the desired pick-up time and maximum ride time. In this paper, we introduce an innovative
ethodological approach called CD-DARP. Using discrete choice theory, we present the service quality as a utility function. Upon

rrival of a new customer, we offer an assortment of alternatives to maximize profit. We show the properties of the assortment
roblem and use it in our model to solve it efficiently. Extensive computational experiments are conducted to highlight the benefits
f using our proposed model in practice from an operator and a customer perspective.

In the CD-DARP, no prior knowledge about future demand is assumed. As mentioned in Section 8.2, the computational limitations
f this model call for the introduction of an efficient heuristic method to solve larger instances. In this case, we will need to
ncorporate the knowledge involving future demand into the model. It would also be interesting to develop algorithms that would
llow for learning the choice parameters on a continuous basis which would also partly address the issue of perceived impact of
he maximum ride time assumptions. Another extension that to consider is to combining the existing framework with rebalancing
he empty fleet in the network, to save cost and attract more passengers.
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