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Abstract

Two-sided mobility platforms, such as Uber and Lyft, widely emerged in the urban mobility

landscape. Distributed supply of individual drivers, matched with travellers via intermediate

platform yields a new class of phenomena not present in urban mobility before. Such disrup-

tive changes to transportation systems call for a simulation framework where researchers

from various and across disciplines may introduce models aimed at representing the com-

plex dynamics of platform-driven urban mobility. In this work, we present MaaSSim, a light-

weight agent-based simulator reproducing the transport system used by two kinds of

agents: (i) travellers, requesting to travel from their origin to destination at a given time, and

(ii) drivers supplying their travel needs by offering them rides. An intermediate agent, the

platform, matches demand with supply. Agents are individual decision-makers. Specifically,

travellers may decide which mode they use or reject an incoming offer; drivers may opt-out

from the system or reject incoming requests. All of the above behaviours are modelled

through user-defined modules, allowing to represent agents’ taste variations (heterogene-

ity), their previous experiences (learning) and available information (system control). MaaS-

Sim is a flexible open-source python library capable of realistically reproducing complex

interactions between agents of a two-sided mobility platform. MaaSSim is available from a

public repository, along with a set of tutorials and reproducible use-case scenarios, as dem-

onstrated with a series of illustrative examples and a comprehensive case study.

1 Introduction

Two-sided mobility platforms (like Uber and Lyft) match supply with demand in urban trans-

portation systems. Users submit travel requests in real-time and are matched with drivers,

offering to take them to their desired destination. All parties are independent decision-makers

acting according to their individual, heterogeneous preferences and learning from past experi-

ences. Travellers are free to select among competing platforms and travel modes. Drivers

choose whether to work for the available platforms, freely decide on their working hours and

strategically select served requests to maximise revenues. Finally, platforms make strategical

decisions to maximise their own profit while being attractive both for the supply (by offering
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attractive profit for the drivers) and for the demand (by providing services with high reliability

and attractive prices).

The emergence of such two-sided mobility markets disrupts the transport landscape. Con-

ventional models for transport planning and operations are focused on top-down planning of

service lines, timetables and traffic control measures which are not directly suitable for captur-

ing the double-sided decision-making process and the dynamics of mobility on demand ser-

vices. A wide array of research questions has consequently emerged, ranging from traffic flow,

labour economics, real-time control and optimisation to travel behaviour.

This bursting stream of research calls for the development of a unifying simulation frame-

work under which emerging models, algorithms and approaches may be integrated. Recent

changes are disruptive enough to justify a new framework that explicitly accounts for both sup-

ply-side and demand-side dynamics, as well as their interaction with the intermediate match-

ing platform.

In particular, in order to capture the bottom-up emerging order resulting from two-sided

mobility, it is essential to revise the modelling approach of key elements of the transport sys-

tem: demand (which is now inherently microscopic), supply (which has become a decision-

maker) and a road network (which capacity and congestion are no longer a single pivot vari-

able of assignment models) along with a new agent, the platform, which orchestrates supply

and demand interaction and which might be subject to regulation.

Furthermore, the already interdisciplinary field of transportation science has recently

gained increasing interest from various fields such as complex network theory, system dynam-

ics, social networks, marketing economics and computational physics. This makes it particu-

larly timely to support a fast learning curve by offering a quick, minimal setup to reproduce

the basic dynamics of two-sided mobility platforms. To allow researchers to contribute to their

domain, we introduce modular software that requires minimal knowledge of other modules

while allowing to enrich the overall experimental analysis.

1.1 State of the art and contribution

Understanding and modelling two-sided mobility systems are challenging and require a broad

set of interdisciplinary expertise [1–3]. While modelling the relations between the different

actors involved in two-sided platforms proved to be non-trivial [4, 5], their manifestation in

the context of a dense and congested urban mobility network induces additional complexity.

Since the emergence of the platform economy in the mobility context, empirical evidence

has been collected and analysed, revealing new phenomena that call for further, model-based

analyses. Prime examples of which include the comparison of services offered by public trans-

port and ride-hailing platforms [6], driver acceptance behaviour [7], drivers’ labour choices

[8], Mobility as a Service (MaaS) adoption [9], mode choice [10] and spatio-temporal demand

patterns [11].

This, in turn, opens a class of novel research problems arising from the emergence of two-

sided mobility platforms including:

• dynamic interactions between supply and demand [12, 13];

• matching of drivers to requests with various optimisation criteria and algorithmic structures

[14–17];

• travellers’ mode and platform choices and attitudes towards emerging modes of transporta-

tion [18–20];

• drivers’ strategical decision of participation, working shifts and platform choices [7, 21, 22];
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• labour economics and the impact of decentralised platform operations [23–25];

• platform pricing strategies, including discriminatory data-driven pricing strategies [26];

• pooled rides, promising in terms of sustainability and efficiency, yet posing significant

computational and organisational challenges [27–30];

• fleet operations and management of shared autonomous vehicles [31–34]; and

• re-positioning strategies of drivers and fleet operators [35, 36].

Each of these research domains gives rise to a series of significant and challenging research

questions. Answering each of which is non-trivial, yet the main challenge lies in representing

the complete system with its (inter)dependencies and feedback loops, non-determinism and

adaptive evolution.

In this rapidly developing research field, multiple studies addressed emerging problems by

means of simulation frameworks, typically agent-based. Starting from classical taxi operations

[37] and extending to emerging modes of car-pooling [38], ride-sharing [39] and ride-hailing

[29]. In the absence of an encompassing modelling framework, studies have often been limited

to a single aspect. For example, [27] focuses on travellers’ behaviour and neglects fleet opera-

tions, whereas [28] focuses on real-time fleet operations neglecting the travellers’ decision pro-

cess; and [21] relies on an abstract grid network to focus on income equity. Similarly, in

STARS [40] travellers are matched with drivers to travel together towards a destination in

space and time yet both demand and supply are fixed inputs; in [41] travellers may leave the

system if they are unsatisfied, but this is a fixed condition rather than a full behavioural model;

while in [42] the day-to-day evolution of both sides is simulated for a fixed within-day

behaviour.

More complete solutions typically extend established simulation frameworks. This is most

notably the case for SimMobility [43] and MATSim [44]. In [43], supply and demand

agents are heterogeneous decision-makers, making daily decisions to participate in the system

or not, yet within-day decisions (acceptance) and competition of multiple platforms are not

considered. In AMoDeus [44] (which builds on top of MATSim—an urban mobility simula-

tion framework) the focus is on autonomous mobility—while travellers are individual deci-

sion-makers, the supply is composed of a fully-controllable self-driving fleet. Both learning

and adaptation can be indirectly implemented into AMoDeus via MATSim which allows more

detailed demand models (e.g. activity plans) and traffic flow models (to reproduce congestion)

but also requires significant effort to implement inside a complex Java environment.

Consequently, we introduce MaaSSim, which is the first modular, extensible framework

that contains the fundamental representation of key unique and novel phenomena related to

two-sided mobility platforms. MaaSSim is the first publicly available python simulation

framework allowing to reproduce within-day and day-to-day dynamics of travellers, drivers

and platforms. Key features of a two-sided mobility platform (non-deterministic, adaptive, het-

erogeneous behaviour of agents interacting with each other) are explicitly handled via user-

defined and flexible python functions, allowing to reproduce the desired behaviour and to

trace emerging complex dynamics. An extensive set of tutorials and sample experiments facili-

tates a fast learning curve for users of various backgrounds, while modular, extensible architec-

ture allows for its seamless development.

Notably, MaaSSim is not intended for the complete modelling of transport systems for

which there is an abundance of mature and developed frameworks, both commercial (like

PTV Visum, CUBE, Emme) and open source (like MatSim [45], SUMO [46], DynaMIT [47],

SimMobility [48] etc.). Instead, the explicit objective of MaaSSim is to support researchers
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with modelling and reproducing the emerging novel phenomena taking place in the context of

two-sided mobility platforms and analyse their disruptive potential for urban transport

systems.

2 Software description

MaaSSim is an agent-based simulator reproducing the dynamics of two-sided mobility plat-

forms in the context of urban transport networks. It models the behaviour and interactions of

two kinds of agents: (i) travellers, requesting to travel from their origin to destination at a

given time, and (ii) drivers supplying their travel needs by offering them rides. The interac-

tions between the two agent types are mediated by the platform, matching demand and supply.

Both supply and demand are microscopic. For supply, this pertains to the explicit representa-

tion of single vehicles and their movements in time and space (using a detailed road network

graph), while for demand this pertains to the exact trip request time, origin and destination

defined at the graph node level. Agents are decision-makers. Specifically, travellers may reject

the incoming offer or decide to use another mode than those offered by the mobility platform

altogether (opt-out). Similarly, the driver may opt-out of the system (stop providing service)

or reject/accept incoming requests. Moreover, drivers may strategically re-position while

being idle.

All of the above behaviours are modelled through decision modules, the core functionality

of MaaSSim. By default agents’ decisions are deterministic and ubiquitous but designed to be

easily replaced with user-defined functions representing desired behaviour—presumably

probabilistic, representing agents’ taste variations (heterogeneity), their previous experiences

(learning) and available information (system control).

MaaSSim allows to replicate simulations (to obtain meaningful distributions of random

variables), explore multidimensional parameter grids in parallel (e.g. various travellers’ value-

of-time and fleet size combinations) or simulate day-to-day evolution until convergence (as we

illustrate in the case study of the next section). Independent simulation runs may be executed

in parallel, distributing computation load over multiple threads. Each simulation run (day)

outputs a sequence of recorded space-time locations and statuses for simulated vehicles and

travellers. These outputs are further synthesised into agent-level and system-wide KPIs for in-

depth analyses. Fig 1 provides an overview of MaaSSim usage.

2.1 Software architecture

MaaSSim is a lightweight, modular, scalable and extensible python library. The main class is

called with a configuration file (.json file) allowing to control the input (travel demand, fleet

supply, road network) and simulation (e.g. simulation time or event duration and their vari-

ability). External decision functions to reproduce desired agents’ behaviour are passed by ref-

erence and can be user-defined (Fig 2). A simulation corresponds to a single day, during

which routines of interacting agents are processed (Fig 3) with a Simpy discrete-event simula-

tion framework [49]. The simulation outputs raw .csv logs where spatio-temporal stamps of

consecutive events are stored for each agent, as well as aggregated reports with key perfor-

mance indicators.

2.1.1 Input. MaaSSim is controlled via an editable .json file which configures the simula-

tion and specifies the input. Users may define e.g. supply and demand levels, simulation time,

travel speeds and duration of respective simulation events (e.g. transaction time and its vari-

ability). A full list of parameters with default values is presented in the Table 1.

To run the MaaSSim simulation following input is required:
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• an urban road network graph (an instance of networkX DiGraph imported for the simu-

lated urban area with OSMnx [50]),

• travel demand (pandas DataFrame with the origin and destination nodes and departure

time for each trip request) and

• supply specifications (drivers with their initial locations).

Both supply and demand may come from external data sources or be generated using inter-

nal MaaSSim procedures (e.g. to create synthetic demand patterns following predefined

Fig 1. MaaSSim usage at glance: Starting from a single simulation, through modifying input and configuration, up

to parallel experiment computation and user-defined decision function.

https://doi.org/10.1371/journal.pone.0269682.g001

Fig 2. Input and output of MaaSSim workflow.

https://doi.org/10.1371/journal.pone.0269682.g002
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spatial distributions). Each input DataFrame may store additional information in separate

columns, interpreted within user-defined modules (e.g. traveller-specific value-of-time or driv-

ers’ working shifts).

2.1.2 Agents. Three kinds of MaaSSim agents (implemented as SimPy processes) inter-

act with each other during the course of their daily routines (Fig 3):

• Travellers may be assigned to multiple platforms and submit a request to them to choose

the best offer amongst those. A traveller unsatisfied with previous experience may opt-out

before requesting. When receiving an offer the traveller makes a decision whether to accept

it or not. While accepting she/he walks to the pick-up point, waits until the driver arrives,

travels to the drop-off point and walks to the final destination, which terminates the travel-

ler’s daily routine.

• Drivers operate in a loop, enqueuing to the platform and serving matched requests until the

end of their shift (Fig 3). Drivers may decide to opt-out before starting a shift and not enter

the platform at all. When they start their shift, they accept or reject the incoming requests.

Fig 3. Routines of the three kinds of agents in MaaSSim. Boxes in violet denote an interaction with the platform, orange displays matching between

drivers and travellers, and blue refers to the joint part where a traveller is transported by the driver. Places where agents make a decision are marked with

red rounded boxes and their decision protocols can be replaced by user-defined python functions.

https://doi.org/10.1371/journal.pone.0269682.g003
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When accepting, they serve the matched request: arrive at the pick-up point, wait for the

traveller, travel to their drop-off point and may reposition after becoming idle.

• Platforms operate in an infinite loop during simulation. Every day platform may update its

control variables e.g. fare for single and shared rides or a commission fee collected from the

drivers. Whenever a trip is requested or a driver becomes idle (starts a shift or completes a

previous request), the platform matches a two-sided queue of travellers on one side and driv-

ers on another. By default, incoming travel requests are matched with the nearest idle vehi-

cle. Such a generic algorithm can be easily replaced with a user-defined function (e.g.

batching requests—as illustrated with reproducible experiments on the public repository).

2.1.3 Decision modules. The central functionality of MaaSSim lies in representing

agents’ individual decision processes (marked with round boxes in Fig 3). To this end, we

introduced an interface where default functions may be overwritten with user-defined mod-

ules and integrated within MaaSSim simulations. User-defined functions receive as input: the

main simulation MaaSSim object and a decision-maker (traveller or a driver along with their

individual attributes) which can be used to reproduce the desired behaviour of:

• drivers:

• leaving the system (f_driver_out),

• accepting requests (f_driver_decline) and

Table 1. Default parameterization of MaaSSim and parameters’ description.

parameter name type default description

general city String ‘Nootdorp, Netherlands’ query for Open Street Map to download a new graph

nP Int 20 demand level (number of trip requests to be generated)

nV Int 5 supply level (number of vehicles to be generated)

nD Int 1 number of days to be simulated

t0 String ‘17:00’ simulation start (string interpretable as pd.TimeStamp)

simTime Int 1 hours of simulation

times - duration of respective events

request Int 15 making a request via app

transaction Int 20 accepting the request and match

pickup Int 30 entering the vehicles

dropoff Int 10 leaving the vehicles

patience Int 600 maximal time to wait for match before leaving the system

demand density Float spatial distribution

origins -0.0003 of origins

destinations -0.001 of destinations

speeds Float mean speeds [m/s]

walk 1.2 of pedestrians

ride 10 of vehicles

paths urls or paths input files

G .graphml ‘Nootdorp.graphml’ osmnx graph

skim .csv ‘Nootdorp.csv’ node x node distance matrix

parallel control parallel simulations

nThread Int 1 number of threads

nReplications Int 1 number of replications

https://doi.org/10.1371/journal.pone.0269682.t001
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• re-positioning (f_driver_repos),

• travellers

• leaving the system (f_trav_out) and

• selecting among platforms and modes (f_trav_mode),

• platform

• updating control variables (fares and commission)

• matching requests to drivers (f_match)

2.1.4 Computation times. MaaSSim has been developed to facilitate the research and

assessment of system operations rather than real-time applications. The focus of its develop-

ment has therefore been on code clarity and its accessibility for a broad community. Notwith-

standing, it remains efficient and allows running real-size computations within a reasonable

time. For instance, simulating 1000 travellers and 50 drivers over 4 hours for the city of Delft,

the Netherlands takes ca 70s. It requires 28 minutes to simulate the Amsterdam network for 8

hours with 5 000 travellers and 200 drivers, whereas simulating 50 travellers and 5 drivers for

the small network of Nootdorp takes less than 2 seconds on MacBookPro 2019. Parallel com-

putations on multiple threads allowed to run 20 000 simulations of an experiment from Fig 5

in less than two hours.

The complexity grows with the number of travellers, drivers and platforms (while each

agent adds a new routine, the number of possible interactions between travellers and drivers

within the platform follows a quadratic pattern). Surprisingly, network size does not affect the

computations, as long as the pre-computed distance matrix fits into memory. The computa-

tion times may of course increase significantly if complex decision modules are introduced

(and executed along with each agent’s routine).

3 Results

We present MaaSSim modelling capabilities through a series of illustrative experiments

where we simulate various system settings under a range of configurations, followed by an

extensive experimental scheme of more than 1000 simulations of 200 days of supply and

demand evolution.

3.1 Illustrative examples

The following examples are stored on public repository (https://github.com/

RafalKucharskiPK/MaaSSim/tree/master/docs/Experiments to be reproduced and adapted.

Below we use the detailed OSMnx network of Delft, the Netherlands (city of ca. 100 000 inhabi-

tants) downloaded from OpenStreetMap with [50]. We set the speed to 36 kilometres per

hour across the network. Likewise, the duration of events (transaction time, pick-up time, etc.)

and travel speeds are deterministic and fixed. Each simulation day starts with drivers randomly

positioned at network nodes. Trip requests connect origins with destinations, both assigned to

the randomly selected network nodes. Spatial distributions are set to reproduce a pattern typi-

cal to the morning commute, i.e. origins are dispersed, while destinations are concentrated

around the centre. Demand is uniformly distributed throughout the analysis period. The ride-

hailing platform matches incoming requests with the nearest vehicles. Unless otherwise stated

all decisions are deterministic and ubiquitous: travellers and drivers do not opt-out and do not
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reject incoming matches. Notwithstanding, we assume that travellers leave the system if they

have not been matched with a driver after waiting for 10 minutes.

3.1.1 Spatial patterns. We start with a single simulation, where 10 drivers serve 200 trip

requests. A single platform matches travellers to their nearest idle drivers. They meet at the

pick-up point and travel together to the destination. We replicate non-deterministic trip

requests generation to obtain meaningful results. We report MaaSSim results in terms of

waiting times—a key performance indicator for both supply and demand—in the respective

parts of the city (hexagons). The obtained spatial patterns reveal conflicting trends (Fig 4).

While traveller waiting times (left) are low in the Eastern parts and high in the Western parts

of Delft, for drivers the opposite trend prevails (right). This reveals an interesting interaction

between agents and potentially conflicting interests in the two-sided mobility market, similar

to the ones observed empirically e.g. in Philadelphia [51] or in Beijing [11].

3.1.2 Supply and demand interactions. Next, we examine the supply and demand inter-

actions in various settings. We explore the scenario grid varying from low to high demand

(trip requests per hour) and supply levels (vehicles serving requests). The waiting time for trav-

ellers (Fig 5 left) is low when there are few travellers and many drivers. Conversely, drivers’

idle times decrease if the fleet size is low (Fig 5 right). While this overall trend is expected (and

supports empirical findings e.g. from [52] and [53]), the magnitude and the sensitivity of these

relations and their potential to result in feedback loops on both the demand and supply sides

of the two-sided market would not have been possible without detailed modelling with

MaaSSim.

3.1.3 Platform competition. Such interaction between the supply and demand typically

leads to questions about the strategic behaviour, reinforced learning and system equilibria, like

Fig 4. Average waiting time for travellers until the driver arrives (left) and for the driver, until they get requested

(right). Dark denotes longer waiting times. Results from 20 replications of a four hour period simulation with 200

travellers and 10 vehicles in Delft, the Netherlands ©OpenStreetMap contributors.

https://doi.org/10.1371/journal.pone.0269682.g004
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in the empirically observed platform competition between Uber and Lyft in the United States

[54]. We illustrate how MaaSSim supports answering those questions by means of a platform

competition experiment. We consider a system where an existing platform with 20 drivers

offers its travellers a trip fare of 1.0 units/km. We explore potential strategies for a new plat-

form entering the market in terms of two key variables: fleet size (varying from 5 to 40 drivers)

and a fare (varying from 0.6 to 1.4 units/km). Fig 6 shows the mileage per driver (left) and the

Fig 5. Service performance for various demand and supply levels. Average waiting times for travellers (left) and drivers (right), which follow mirroring

diagonal trends.

https://doi.org/10.1371/journal.pone.0269682.g005

Fig 6. Searching for optimal platform competition strategy: A platform enters a market with a competitor operating a fleet of 20 vehicles and

offering a trip fare of 1.0 unit/km. We report average vehicle kilometres per driver (left) and total platform revenues (right) resulting from varying

fleet size (x-axis) and fare (per-kilometre) combinations for 20 replications.

https://doi.org/10.1371/journal.pone.0269682.g006
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total platform revenues (right) resulting from the combination of various strategies. The

box plots denote means and distributions resulting from 20 replications.

Since in the above experiments the simulations are independent (unlike the reinforced

learning, where agent decisions are dependent on their experience learned from previous sim-

ulation runs) we use parallel computations on multiple threads and collect results in a single

file for analysis (which can be replicated with publicly available code).

3.1.4 Drivers learning. We illustrate the strategic learning of agents with a scenario where

100 drivers serve 200 travellers in a sequence of day-to-day simulations (Fig 7). Apparently,

the initial supply level is too high, resulting in short waiting times for travellers and low reve-

nues for drivers. Unsatisfied drivers will opt out due to bad previous experiences (low income),

adjusting the pool of drivers which decreases until, eventually, some drivers decide to return to

the system (as they observe high revenues in the adjusted system). This decision process is

modelled via a user-defined python function (see example in Fig 1) which can introduce any

generic formulas (e.g. discrete-choice model), parameters (also from .json configuration

file) and agent-specific attributes (e.g. individual value of time). Such behavioural adaptation

leads to system stabilisation, which may vary due to non-deterministic simulation settings

(demand distributions and initial vehicle positions). A similar process was reported e.g. by

[55] where drivers successfully adapted to maximise their revenues.

3.1.5 Ride-pooling. Finally, we demonstrate how ride-pooling is embedded with simula-

tions in Fig 8, where we show a trajectory of a vehicle serving non-shared, private rides (left)

and pooled-rides (right). Shared rides are here pre-computed with external the ExMAS [27]

algorithm. ExMAS is fully integrated in MaaSSim so that ride-pooling can be easily repro-

duced, as demonstrated in the online tutorial: https://github.com/RafalKucharskiPK/

MaaSSim/blob/master/docs/tutorials/07_Shared_rides_with_ExMAS.ipynb. relying on beha-

vioural and system parameters to optimally match travellers into attractive pooled rides. In

this study, we use a 20% discount for a shared ride and 1.2 penalty for the shared in-vehicle

time (so-called willingness to share multiplier), further detailed in [27]). With such a setting,

one can reproduce the impact of ride-pooling on system efficiency, revealed e.g. in Chicago

[56].

Fig 7. Fleet size evolution for 10 non-deterministic replications of driver learning behaviour. Drivers make daily decisions to

opt-out or stay in the system based on previous experience and expected outcomes.

https://doi.org/10.1371/journal.pone.0269682.g007
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3.2 Case study

To demonstrate the full complexity of two-sided market dynamics and MaaSSim capabilities

to reproduce it, we report here a comprehensive simulation experiment. We simulate demand

and supply evolution governed by the platform decisions in the city of Delft, the Netherlands.

Drivers start each day at their fixed locations and travellers enter the system with the same

travel demand (origin, destination and departure time)—as illustrated with Fig 9. Travellers

are matched by the platform to the nearest drivers and together they traverse a detailed road

network graph.

Every day travellers make travel choices. Based on their past experience they select between

three alternatives: private ride-hailing (rh), ride-pooling (rp) or other alternative modes (e.g.

public transport, car or bike). Which depends on their expected quality of service, i.e. waiting

time, travel time and trip fares. Similarly, the drivers every day decide whether to participate in

the system or not, relying on their past experiences. They compare their expected wages with

the so-called reservation wage and make rational decisions (analogously to [57]).

Eventually, the learning process terminates as the system converges to a stable state. The

evolution depends not only on the supply and demand levels but is also controlled by the plat-

form strategy. The platform controls the behaviour of drivers by determining the share of col-

lected fare that stays with a driver c and influences the behaviour of travellers by setting the

discount rate for ride-pooling p (as an incentive to induce pooling)—both are treated in the

experiments as exogenous variables, directly controlled by the platform.

The day-to-day decisions are modelled using microscopic probabilistic discrete choice

models, in which agents (travellers/drivers) estimate their utility associated with each alterna-

tive and make subjectively optimal decisions. These decisions are implemented as user-defined

python functions passed to MaaSSim at the initialisation and controlled via a .json configu-

ration file.

Drivers update their expected profit (wage w of driver d on the day i) based on their experi-

ences:

�wi;d ¼ f ð�wi� 1;d;wi� 1;dÞ ð1Þ

Their expectation (�w) is updated based on the actual experiences (w) from previous days and

used to make subsequent travel decisions (similarly to [55]). The probability of participating

Fig 8. Traces of rides for a single simulated vehicle without (left) and with pooled ride services (right). Blue—

single traveller on-board, Green—several travellers sharing a ride, Black—empty vehicle trip.

https://doi.org/10.1371/journal.pone.0269682.g008
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(driving) in the system is then expressed as:

pi;d ¼
ebd �wi;d

ebd �wi;d þ ebdWi
; ð2Þ

where the expected wage is compared with a so-called reservation wage Wi in a binary proba-

bilistic choice model with a sensitivity parameter βd (set to 0.1 in the experiment). The reserva-

tion wage Wi is user-dependent and drawn for each driver from a normal distribution with a

mean of 10€ per simulation hour and a standard deviation of 2.5€. We store it as the extra col-

umn in the input DataFrame and use in further calculations.

Travellers choose between three alternative travel modes, following a multinomial logit

model:

pmi;d ¼
eU

m
i;d

eU
h
i;d þ eU

s
i;d þ eU

o
i;d
; ð3Þ

Fig 9. Road network of Delft with origins marked in green, destinations in orange. ©OpenStreetMap contributors.

https://doi.org/10.1371/journal.pone.0269682.g009
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where the probability that individual i chooses mode m on day d is calculated based on the util-

ity of this mode, relative to the utilities associated with alternative modes (similarly to [10]).

Here, we consider three modes: private ride-hailing (rh), shared ride-pooling (rs) and other,

non-platform based modes (bike, public transport and car). Mode utilities are based on travel-

lers’ preferences (expressed with β’s in the utility formulas) and travel attributes (travel time t,
cost c and waiting time w of respective mode m):

Um
i ¼ bw;iwi;m;d þ bt;iti;m;d þ bc;ici;m;d ð4Þ

The attractiveness of platform-based modes is controlled by the price, set by the platform.

The dynamics in the choices are induced by accumulating acquired experienced which is then

used to form expectations regarding travel times t and waiting times w of both private and

pooled rides. The waiting times depend mainly on the supply (available vehicles) which, in

turn, is controlled by the platform through the commission fee (a low commission fee will

attract more drivers). Even though travel times are assumed fixed (fixed network-wide speed)

in these series of experiments, the detour induced due to ride-pooling may vary and is

unknown to the travellers. We specify the behavioural parameters (β’s) based on a recent

stated-preference study [10], tuned to induce greater market shares (assuming critical mass for

efficient platform-based operations is already reached) and greater sensitivity to waiting time.

Under this setting, the share of platform-based modes varies from ca. 50% for null waiting

times, to 10% when the average waiting time equals 5 minutes.

Travellers are initialised with optimistic expectations of travel and waiting times. In the

course of their learning, they gain experience and update their expectations accordingly.

Agents update their individual expectations based on their recent experience using the fol-

lowing formula:

�t i;d ¼ ð1 � oi;dÞ � �t i� 1;d þ oi;d � ti;d ð5Þ

The weight ωi,d depends on the number of experiences that the traveller has acquired Hi,d and

is bounded by a so-called look-back window (ωmax—the number of days used to update the

experience):

oi;d ¼ 1=minðHi;d;omaxÞ ð6Þ

We explored the grid of the following parameters in the experiments:

• demand 300, 500, 700, 900 and 1100 trips per 4 hours of simulation.

• supply 10, 30, 50, 60 vehicles

• share of fares collected by the driver 10, 30, 50, 70, 90, 110%

• pooling discount 0, 5, 10, 20, 30, 4%

and let the system evolve until the stabilisation (when agents finish their learning process).

The results are presented and discussed with the sample of the evolution process in Fig 10 and

the platform profits on the search space grid in Fig 11.

4 Conclusion

The overarching objective underlying the development of MaaSSim is to allow researchers to

focus on their partial models and integrate them within the simulation framework, allowing a

group of interdisciplinary researchers to share expertise from their fields. For instance, MaaS-
Sim has been instrumental in the scientific discovery process of supply-side dynamics and the
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fleet size attained in equilibrium in a decentralised bottom-up mobility platform context. This

research resulted in a novel service supplier (i.e. driver) learning and choice model [57] which

can be now reused for studying platform pricing strategies, re-positioning algorithms or travel-

lers’ mode-choices.

MaaSSim provides an extensible, easy-to-use simulation platform allowing for user-

defined representation of a two-sided mobility platform that can support a variety of research

interests. MaaSSim is an open-source library available through the pip installer as well as

from the public repository, where it comes along with a set of tutorials and applicable use-

cases. With the above set of experiments, coupled with reproducible jupyter notebooks
stored on the repository, the reader can get an impression of the range of MaaSSim applica-

tions and start developing their own experiments. In particular, explore their own networks

(queried from OpenStreetMap with [50]) and run the experiments with tailored configura-

tions. Making it capable to support researchers in exploring future research directions in the

field of two-sided mobility platforms.

As always, the realism of the obtained simulation outputs strongly depends on the quality

of the input parameters. MaaSSim can be parameterized to reproduce a variety of system rep-

resentations, yet the empirically valid settings remain largely unknown due to the limited avail-

ability of data and evidence from the rapidly evolving ecosystem of two-sided mobility

platforms. While the active stream of research contributes to a better understanding of the

Fig 10. 200 days of supply and demand evolution for the case study experiment with 900 travellers and 50 drivers. Travellers expected waiting time (a)

stabilises over consecutive days (blue line) despite the high day-to-day variability of actually experienced waiting times (green dots). Similarly for the

drivers, whose mean expected incomes (b) remain stable around 35€, with day-to-day variability (green dots) ranging from 27 to 50€. The share of

travellers in the system (c) remains stable around 37% (blue line) yet the number of drivers (green dots) may range between 10 and 30%. The initially high

choice probabilities for MaaS modes (d) happened to be over-optimistic and quickly drop from 24% to 16%. Yet, as agents learn, the pooled alternative

(blue—rs) becomes more popular than private ride (green—rh) stabilising around 18%. Agent day-to-day choice evolution stabilises and the variability

stays within the 2% range already after ca. 40 days of evolution (e). After 100 days 90% of travellers have gained enough experience to learn the system and

stabilise their choices (blue and green in the panel f). However, drivers learn slower with only 60% of them finishing the learning process after 100 days

(orange on panel f).

https://doi.org/10.1371/journal.pone.0269682.g010
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Fig 11. The total commission collected by the platform in the series of over 1000 experiments (blue cells denote deficit, red ones denote profit). Each

grid denotes a single supply-demand setting with a fixed number of trip requests (q) and a fixed number of potential drivers (v). Every single cell therein

represents a stable state of the evolution process depicted in Fig 10. The platform explores the best setting of a ride-pooling discount (p—rows) and a share

of fares remaining with a driver (c—columns) to maximise its profit. For a low demand the system is not profitable (top left), yet as the number of drivers

increases, the platform starts generating profits (top right). As both supply and demand increase, the central parts of the grids become profitable, i.e.

commissions between 0.5 and 0.7. Notably, a too low commission for drivers (<0.5) is not profitable for the platform, as it leads to fewer participating

drivers and thus lower revenues, and so does a too high commission for drivers (when drivers stay within the system but the platform does not generate

profit). At the high supply and demand levels, the platform may start providing pooled rides as it remains profitable even for high discounts offered

(p> 0.2). Nonetheless, under this setting the platform profit is always maximised at low discounts (p = 0.05) and introducing lower prices for pooling

would result in lower profits.

https://doi.org/10.1371/journal.pone.0269682.g011
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underlying phenomena, additional empirical analysis is needed to better underpin some of the

simulator parameters.
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