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ABSTRACT
Investigating themain determinants of themechanical performance
of metals is not a simple task. Already known physically inspired
qualitative relations between 2D microstructure characteristics and
3D mechanical properties can act as the starting point of the inves-
tigation. Isotonic regression allows to take into account ordering
relations and leads to more efficient and accurate results when the
underlying assumptions actually hold. The main goal in this paper
is to test order relations in a model inspired by a materials science
application. The statistical estimation procedure is described con-
sidering three different scenarios according to the knowledge of
the variances: known variance ratio, completely unknown variances,
and variances under order restrictions. New likelihood ratio tests are
developed in the last two cases. Both parametric and non-parametric
bootstrap approaches are developed for finding the distribution of
the test statistics under the null hypothesis. Finally an application
on the relation between geometrically necessary dislocations and
number of observed microstructure precipitations is shown.
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1. Introduction

Understanding the intrinsic nature of the mechanical properties of metals is usually not
an easy task. In order to get insight into what gives desired mechanical performance to a
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metal, a deep and detailed analysis of the metal microstructure characteristics is needed.
For instance, it is known in literature that dislocations, i.e. line defects in the crystalline
arrangement of the atoms [17], play a fundamental role in themechanical behavior ofmetal
alloys. More specifically, the appearance of geometrically necessary dislocations1 (GNDs)
during plastic deformation of the material contributes to the hardening of the material.
DetectingGNDs from2Dmicrostructure images is often challenging. Onewidely accepted
way is to use the so-calledKernel averagemisorientation (KAM) [26]. TheKAM,measured
in electron backscatter diffraction (EBSD), quantifies the average misorientation around a
measurement point with respect to a defined set of a nearest or nearest plus second-nearest
neighbor points [8].

In [6,22,31], studies on the relation between GNDs and microstructure properties such
as grain size and carbides size are presented. The relation betweenGNDs and grain size has
both theoretical and experimental confirmation and it can be related to the well-known
macroscopic physical Hall-Petch relation [15,29]. In fact, the Hall-Petch relation, in its
original version, describes the negative dependence of yield stress (mechanical property)
on grain size; loosely speaking the smaller grains are, the stronger the material is. More
specifically in [18], the authors give as an explanation of the relation between GNDs and
grain size that as the grain size decreases the grain boundary layer in whichGNDs typically
accumulate, occupies a greater volume fraction of the material, therefore it is reasonable to
think that the smaller are the grains, the more GNDs will be observed.

Still unclear is, instead, the relation between carbides andGNDs. In fact, since the 1940s,
several studies on how carbides affect the mechanical behavior of metals have been con-
ducted. In [30], the authors state that the primary carbides and their distribution have a
major influence on the wear resistance and the toughness of the material. However, car-
bides tend to precipitate along the grain boundaries, that as said before, are the locations
in which GNDs typically accumulate. Until now, no direct physical relationship has been
found between carbides and GNDs. Therefore, isolating carbides effect and assessing the
conjecture on the positive relation between carbides and GNDs is a problem of interest.

In [16], a descriptive statistical analysis with response variable KAM, used as a proxy of
GNDs and as explanatory variables the number of grains, the number of carbides and the
position of carbides revealed an almost monotone trend of the response variable according
to the increments of the explanatories.

Therefore, in order to take into account the already known direction of the physical rela-
tion, we want to propose an approach that incorporates this information and a procedure
for testing the prementioned conjectures on a new dataset.

In this context, isotonic regression comes to aid. In fact, the idea at the basis of isotonic
regression is taking order restrictions into account for improving the efficiency of the sta-
tistical analysis by reducing the error or the expected error of estimates and increasing the
power of the testing procedures, provided that the hypothesized order restriction actually
holds. The first papers about isotonic regression appeared in the 1950’s [1,41] and books
[2,33] are well-known references for frequentist statistical inference under order restric-
tions. Isotonic regression proves its power in different fields such as epidemiology in testing
the effects of different treatments or in dose-finding [34,40] but also in genetics [23], busi-
ness [19], biology [3]. There are not many examples of isotonic regression use in Materials
Science. Throughout this paper, special attention is given to the peculiar data structure.
Nowadays, developments toward multivariate isotonic regression, isotonic regression in
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inverse and censoring problems [13,14] are ongoing. Also in the Bayesian framework, the
problem of estimating and testing under order constraints has been addressed and well
developed [7,10,20,21]. But also in the most basic frequentist framework, there is still
something missing.

In this paper, starting off with the most basic case, univariate isotonic regression of
means under normality assumptions with known variances, we guide the reader into
frequentist estimation and testing order restriction assumptions, considering different
conditions on the variances.

Three different scenarios are considered. In all three cases, we focus onmaximum likeli-
hood as estimation procedure and likelihood ratio test (LRT) as test statistic for hypothesis
testing.

The first case is the basic case in which ‘the variances’ are known or unknown but their
ratio is known. This instance is considered extensively in [2,33] and results for estimation
and testing order restrictions are already known.

The second scenario is from an applications point of view the most common scenario
in which the variances are unknown. In [37], the authors derive a two steps estimating
procedure for means and variances and interesting results on existence and uniqueness of
the maximum likelihood estimates are derived under special conditions. Another iterative
method, proposed in [38], is extended to the unknown variances case. The derivation of
the test statistic and of its distribution in this scenario is not trivial. In fact, the estimate of
the mean under the null hypothesis is also affected by the non-knowledge of the variances.
We propose the LRT statistic and two different bootstrap approaches, one parametric and
one non-parametric, for obtaining the test statistic distribution.

The last model considers not only the means under order restrictions but also the vari-
ances. This case has not often been faced probably because it is not common to have prior
knowledge on the order of both means and variances. As in the unknown variances sce-
nario, a two-step procedure for estimating means and variances is derived in [36] and
similar results on existence and uniqueness under specific conditions on the empirical vari-
ances are given. In [38], an improved algorithm called alternating iterative method (AIM)
and more general results about convergence are derived. For testing in this case we derive
the LRT taking into account the order of variances also under the null hypothesis and apply
a parametric and non-parametric bootstrap approach in line with the one derived in the
unknown variance case to obtain approximate p-values.

The paper structure is as follows. In Section 2,we explain the estimation procedure of the
isotonic means in the three different cases (Sections 2.1, 2.2, 2.3). In Section 3, the focus is
on the LRT.We present it in the three different cases (Sections 3.1, 3.2, 3.3) and in Section 4,
we propose both a parametric and non-parametric bootstrap approach for approximating
the distribution of the test statistics under the null hypothesis. Finally, in Section 5, we come
back to the application and we illustrate step-by-step how to deal with a real problem and
more precisely how to perform isotonic regression and test for monotonicity of KAMwith
respect to the number of carbides. The paper ends with conclusions in Section 6.

2. Estimating restrictedmeans in the normal case

We first introduce isotonic regression and the notation used in the rest of the paper in a
more general context. Normality is assumed throughout this section.
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Let yij, j = 1, . . . , ni, i = 1, . . . , k be the jth observation of the response variable Y
corresponding to the ith level of the explanatory variable X.

We assume Yij to be independent random variables, normally distributed with means
μi and variances σ 2

i , i = 1, . . . , k, j = 1, 2, . . . , ni.
The log-likelihood is then given by

l(μ, σ 2) =
k∑

i=1

⎧⎨
⎩−ni

2
lnσ 2

i − 1
2σ 2

i

ni∑
j=1

(yij − μi)
2

⎫⎬
⎭+ c (1)

where c is a constant which does not depend on the parametersμ = (μ1, . . . μk)
′ and σ 2 =

(σ 2
1 , . . . , σ

2
k )′.

Furthermore, we assume that μ satisfies

μ1 ≤ μ2 ≤ · · · ≤ μk. (2)

A k-dimensional vector μ is said to be isotonic if t ≤ s implies μt ≤ μs.
Let D be the set of all the isotonic vectors in R

k,

D = {μ ∈ R
k;μ1 ≤ μ2 ≤ · · · ≤ μk} (3)

In this section, we are interested in the maximum likelihood estimator of (μ, σ 2), where
μ is isotonic and σ 2

i > 0. Depending on the information on σ 2, different MLEs have been
derived.

In the following three sections, the three different cases are considered.

2.1. Isotonic regression ofmeans with known variance ratio

This first case constitutes the most basic case in which all variances are either known or
unknown but they differ according to some knownmultiplicative constants ci. This means
that the variance σ 2

i of the response variable Yi is given by:

σ 2
i = ciσ 2, 1 ≤ i ≤ k.

This specific case is already covered in [2,33], but we hereafter report the main results. The
problem of maximizing log-likelihood (1) in μ can be rewritten equivalently as solving:

min
μ∈D

k∑
i=1

(ȳi − μi)
2wi (4)

where ȳi =
∑

j yij
ni and wi = ni

ci . Note that this objective function does not depend on σ 2.
The solution, μ̂

I , is called the isotonic regression of ȳ = (ȳ1, . . . , ȳk) with weights w =
(w1, . . . ,wk) [37]. For obtaining the solution to (4), different algorithms have been pro-
posed in the literature ([2,33]). In this paper, the the intuitive and skilfully implemented
‘Pool-Adjacent Violators Algorithm’ (PAVA) is used ([1,5]).

More details about the algorithm are provided in Appendix 1.
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2.2. Isotonic regression ofmeans with unknown variances

In this second case, no assumptions on the variances are made. They are unknown and
for obtaining the maximum likelihood estimate of μ, they need to be estimated as well. In
[37], the authors consider this case and interesting results on existence and uniqueness of
the MLE are achieved. We hereby recall the main results. The approach is to maximize the
log-likelihood (1), with μ ∈ D and σ 2 ∈ R

k+.
For any fixed σ 2 ∈ R

k+, the maximizer μ̂I of l(μ, σ 2) over μ ∈ D is the isotonic
regression of ȳ with weights w = (w1, . . .wk)

′ and wi = ni
σ 2
i
.

On the other hand, for any fixed μ ∈ D, the maximizer σ 2 of l(μ, σ 2) over σ ∈ R
k+ is

σ̂ 2(μ) = (σ̂ 2
1 (μ1), . . . σ̂ 2

k (μk))
′, where σ̂ 2

i (μi) =
∑ni

j (yij−μi)
2

ni .
Substituting σ̂ 2(μ) into (1), we can express the profile log-likelihood of μ as

l(μ) =
k∑

i=1
−niln[σ̄ 2

i + (ȳi − μi)
2] + c (5)

where σ̄ 2
i =

∑ni
j (yij−ȳi)2

ni is the sample variance of the ith normal population and c a con-
stant that does not depend onμ. Note that l(μ) → −∞ ifμk → ∞ orμ1 → −∞. Hence,
maximizing l over D is equivalent to maximizing l over a compact subset of D of type
Da = {μ ∈ D : μ1 ≥ −a,μk ≤ a}. As l is continuous on Da, a maximizer over D exists.

As previously said, the authors in [37] discuss also uniqueness of the MLE of (μ, σ 2).
They state that l is not a concave function in general and that for guaranteeing uniqueness
the following condition suffices (see Theorem 2.3 [37]):

Condition 2.1: For i = 1, . . . , k, σ̄ 2
i > max{(ȳi − min(ȳ))2, (ȳi − max(ȳ))2}.

For finding a maximizer of (5), a two-step iterative algorithm based on PAVA has been
proposed in [37]. From an initial guess for μ, the associated maximizer in σ 2 is computed
and after that themaximizer inμ based on this σ 2 and so on. This iterative procedure stops
when themaximum difference between the estimatedmeans at step l−1 and at step l is less
than an arbitrary small threshold value, e.g.

max
1≤i≤k

|μI(l−1)
i − μ

I(l)
i | ≤ 10−m,

wherem is taken to be equal to 3 in our case. In [38], the authors propose a new algorithm
called AIM. The procedure is based on the minimization of a semi-convex function. In
particular, restating the problem in terms of (μ, ν), where ν = (1/σ 2

1 , . . . , 1/σ
2
k )′ and

given Da is a convex subset of R
k and V a convex subset of R

k+, V = {ν ∈ R
k+ : 0 ≤

1/maxi(minmin(ȳ)≤θ≤max(ȳ) s2i (θ)) ≤ νi ≤ 1/mini(minmin(ȳ)≤θ≤max(ȳ) s2i (θ))}, L(μ, ν) is
a semi-convex function because: i) L(μ, ν) is defined on Da × V ; ii) for any given μ ∈ Da,
L(μ, ·) is strictly convex onV and, for any given ν ∈ V , L(·, ν) is strictly convex onDa. The
algorithm originally proposed for the simultaneous order restrictions of means and vari-
ances can be easily extended to the unknown variance case. The iterationmethod works in
alternating the search of the minimum point, μ(l), of L(μ, ν(μ(l−1))) on a compact subset
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Da and the search of the minimum point, ν(l), of L(μ(ν(l−1)), ν) onV. Proof of the conver-
gence of the algorithm does not require additional conditions [38]. The iterative procedure
stops when the difference between the likelihoods at step l−1 and at step l is less than an
arbitrary small threshold value:

|L(μ(l−1), ν(l−1)) − L(;μ(l), ν(l))| ≤ 10−m (6)

A more detailed version of both algorithms is reported in Appendix A.2.

2.3. Isotonic regression ofmeans and variances simultaneously

Wenowassume that bothmean and variances are restricted by simple orderings. Therefore,
in addition to assumption (2), we assume also:

σ 2
1 ≥ σ 2

2 ≥ · · · ≥ σ 2
k > 0 (7)

The reason for taking decreasing order relates to our application considered in Section 5;
increasing variances can be dealt with analogously. In [36], maximum likelihood estima-
tion under simultaneous order restrictions on mean and variances from a normal popula-
tion is studied. Some of the most important results are hereby recalled. The approach is to
maximize the log-likelihood (1) with μ ∈ D and σ 2 ∈ Ḡ, where Ḡ is the closure of

G = {σ 2 ∈ R
k
+ : σ 2

1 ≥ σ 2
2 ≥ · · · ≥ σ 2

k > 0}. (8)

This means that the maximizer will have positive σ 2-values if there is variation within the
groups. Then, for any fixed σ 2 ∈ G, themaximizerμI of l(μ, σ 2) overμ ∈ D is the isotonic
regression of ȳ with weights w = (w1, . . .wk)

′ and wi = ni
σ 2
i
.

Furthermore, for any μ ∈ D, the maximizer σ̂ 2I(μ) of l(μ, σ 2) is the so-called anti-
tonic regression (isotonic regression with reversed order [13]) of s2 = (s21, . . . s

2
k)

′, s2i =∑ni
j=1(yij−μi)

2

ni , with weights N = (n1, . . . , nk)′. Existence is guaranteed noticing that σ 2 ∈
[mini(minmini(ȳ)≤θ≤maxi(ȳ) s

2
i (θ)), maxi(minmini(ȳ)≤θ≤maxi(ȳ) s

2
i (θ))], s2i (θ) = ∑ni

j=1(yij −
θ)2/ni (see [36, Theorem 2.1]).

Uniqueness is proved under the following condition (see Theorem 2.2 [36])

Condition 2.2: For i = 1, . . . k the sample variance σ̄ 2
i satisfies σ̄ 2

i > 2(b − a), where b
and a are the maximal and the minimal means respectively.

As in the unknown variances case, a two-step iterative algorithm is proposed for find-
ing the solution for both means and variances under order restrictions. The proof of the
convergence of the algorithm is given under Condition 2.2.

Later, in [38], as mentioned in the previous section, the authors show that restat-
ing the problem in terms of (μ, ν), where ν = (1/σ 2

1 , . . . , 1/σ
2
k )′ Condition 2.2 is not

needed for proving that the algorithm converges. In fact, also in this case the proposed
AIM algorithm can be employed. Since L(μ, ν) has continuous second-order partial
derivatives and the Hessian matrix with respect to μ H(μ, ν) = diag(n1ν1, . . . , nkνk) is
a positive definite diagonal matrix for any fixed ν = (ν1, . . . , νk)′ ∈ V0, V0 = {ν ∈ R

k :



2214 M. VITTORIETTI ET AL.

0 ≤ 1/maxi(minmini(ȳ)≤θ≤maxi(ȳ) s
2
i (θ)) ≤ ν1 ≤ · · · ≤ νk ≤ 1/mini(minmini(ȳ)≤θ≤maxi(ȳ)

s2i (θ))} then by Theorem 4 in [38] the iterative sequence of solutions to L(μ, ν),
{(μ(n), ν(n))} converges to theMLE solution and consequently the sequence {(μ(n), σ 2(n))}
as well.

As in the previous case, the alternating iterative procedure is stopped when the maxi-
mum difference between the likelihoods at step l−1 and at step l is less than an arbitrary
small threshold value (see (6)).

A pseudo code of the algorithms can be found in Appendix A.3.

3. LRT: constantμ against monotonicity

We are interested in testing hypotheses of monotonicity in μ under the various assump-
tions on the variances discussed in Section 2. There exists extensive literature on testing
hypotheses on means. In most cases, a standard testing procedure entails testing the
hypothesis of equality of means against the hypothesis that they are different. In this paper,
we consider the same null hypothesis but the alternative is different: monotonicity of the
means. As in the previous section, we consider three different testing frameworks accord-
ing to the different assumptions on the variances. In all three different scenario, the test
statistic of interest is the LRT, an intuitive and powerful tool in hypothesis testing. In both
[2] and [33], an entire chapter is dedicated to LRT developments and its use for testing
order restrictions hypothesis under the normality assumption and known variance ratio.
Using the same notation used in Section 2, we wish to test

H0 : μ1 = μ2 = · · · = μk

against monotonicity of means

H1 : μ1 ≤ μ2 ≤ · · · ≤ μk. (9)

The LRT for H0 against H1 can be defined as:

� = max(μ∈H0;σ 2) L(y1, y2, . . . , yk;μ, σ
2)

max(μ∈H1;σ 2) L(y1, y2, . . . , yk;μ, σ
2)

(10)

where yi = (yi1, . . . , yini)′, μ = (μ1, . . . μk)
′ and σ 2 = (σ 2

1 , . . . σ
2
k )′. It rejects the null

hypothesis for small values of � or alternatively for large values of −2 log�. The conve-
nience in using this other form lies on the analogy with the χ2 statistic used to test against
the alternative hypothesis H̄0, that not all μi’s, i = 1, . . . , k, are the same.

In the following sections, more explicit expressions for � are given depending on the
specific assumptions on means and variances.

3.1. LRTwith known variance ratio

As in Section 2.1, let yij j = 1, 2, . . . ni, i = 1, 2, . . . k be independent observations, nor-
mally distributed with unknown mean μi and variances σ 2

i = ciσ 2 with ci known and σ 2

unknown. Under H0, the maximum likelihood estimate of μ1 = μ2 = · · · = μk is given
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by:

μ̂H0 =
∑k

i=1 wiȳi∑k
i=1 wi

(11)

with wi = ni
ci . Under H1 the MLE of μ is μ̂I

H1
, the isotonic regression of ȳ, with weights

w = (w1, . . . ,wk)
′, with respect to the simple order defined in (9).

The LRT forH0 againstH1, if the variances are known and ci = 1 boils down to rejecting
H0 for large values of

− 2 log� = 1
σ 2

⎡
⎣ k∑

i=1

ni∑
j=1

(yij − μ̂H0)
2 −

k∑
i=1

ni∑
j=1

(yij − μ̂I
iH1

)2

⎤
⎦ (12)

It is easy to check that the test is equivalent to rejecting H0 for large values of:

χ̄2 =
∑k

i=1 χ̄2
i

σ 2 (13)

where χ̄2
i = ni(μ̂I

iH1
− μ̂H0)

2 and σ 2 is the (known) common value of the variance.
Now, let us consider the more general case, σ 2

i = ciσ 2 with c1, c2, . . . ck known and σ 2

unknown. The estimator of σ 2 under the null hypothesis is

σ̂ 2
H0 =

∑k
i=1 c

−1
i
∑ni

j=1(yij − μ̂H0)
2

N
(14)

and under H1

σ̂ 2
H1

=
∑k

i=1 c
−1
i
∑ni

j=1(yij − μ̂I
iH1

)2

N
(15)

The LRT rejects H0 for small values of � = (
σ̂ 2
H1

σ̂ 2
H0

)N/2 or equivalently, taking Ē2 = 1 −
�2/N , for large values of

Ē2 =
∑k

i=1 c
−1
i χ̄2

i∑k
i=1 c

−1
i
∑ni

j=1(yij − μ̂H0)
2

(16)

An extension to the multivariate case with covariance matrix � unknown but common
can be found in [28,35].

3.2. LRTwith unknown variances

In this second case, no assumptions on the variances are made. They are unknown and
possibly unequal. Using the notation of Section 2.2, let yij, j = 1, 2, . . . , ni, i = 1, 2, . . . , k
be independent observations from a univariate normal distribution with unknown mean
vectorμi and completely unknown variances σ 2

i > 0. Let μ̂I be the solution of the isotonic
regression of ȳ with weights w = (w1, . . . ,wk)

′, wi = ni
σ 2
i
found used Algorithm (2.2) in

Appendix 1.
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The first example of testing when all the variances are unknown can be found in [4] and
the univariate version of the test proposed by the author is:

k∑
i=1

(μ̂I
i − ȳ)2ni
s2i

(17)

where ȳ =
∑k

i=1 niȳi∑k
i=1 ni

and s2i =
∑k

i=1
∑ni

j=1(yij−ȳi)2

ni−1 . This test is clearly inspired by the LRT but
it is not.

Let us consider first the maximum likelihood solution (μ̂H0 , σ̂ 2
H0), σ̂ 2

H0
= (σ̂ 2

1H0
, . . . ,

σ̂ 2
kH0

)′ under the null hypothesis. The log-likelihood under the null hypothesis is

l(μ, σ 2) =
k∑

i=1

⎧⎨
⎩−ni

2
lnσ 2

i − 1
2σ 2

i

ni∑
j=1

(yij − μ)2

⎫⎬
⎭+ c. (18)

Differentiating this log-likelihood with respect to μ and σ 2
i , the following k+ 1 score

equations in k+ 1 unknowns emerge:⎧⎪⎪⎨
⎪⎪⎩

μH0 =
∑k

i=1 niσ
−2
iH0

ȳi∑k
i=1 niσ

−2
iH0

σ 2
iH0

= ∑ni
j=1 n

−1
i (yij − μH0)

2 1 ≤ i ≤ k

(19)

Substituting σ 2
H0

(μ) in (18), the profile likelihood of μ is:

l(μ) = −
k∑

i=1

ni
2
ln

⎛
⎝ ni∑

j=1
n−1
i (yij − μ)2

⎞
⎠+ c. (20)

Theorem 1: A maximizer of (20) over R
d exists and it is contained in [mini ȳi, maxi ȳi].

Moreover, if [mini ȳi, maxi ȳi] ∈ [max1≤i≤k(ȳi − σ̄i), min1≤i≤k(ȳi + σ̄i)] then the maxi-
mizer is unique.

Proof: Maximizing profile likelihood of μ (20) boils down to maximize the sum of
functions

− ni
2
ln(ni(σ̄ 2

i + (ȳi − μ)2)), i = 1, . . . , k. (21)

Functions of type (21) are unimodal with mode at ȳi and strictly concave on [ȳi − σ̄i; ȳi +
σ̄i]. As the sum of unimodal functions is decreasing to the right of the rightmost mode
(since all terms are decreasing) and from −∞ to the leftmost mode, the sum is increasing
(as all of the functions are increasing on that set). Therefore, any maximizer of l, if it exists,
belongs to the interval [mini ȳi, maxi ȳi]. As l is continuous on [mini ȳi, maxi ȳi], existence
of a maximizer is guaranteed.

Then if we consider the (possibly empty) interval where all the functions in (21) are
strictly concave, on that interval the sum is also strictly concave. As for each i the func-
tion (21) is strictly concave on Ii = [ȳi − σ̄i; ȳi − σ̄i], (20) is strictly concave on

⋂k
i=1 Ii. If
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[mini ȳi, maxi ȳi] is contained in this intersection, l is strictly concave on [mini ȳi, maxi ȳi].
Hence l has a unique maximizer on R

d. �

Remark 3.1: Remark in a setting with real data, it is easy to check whether
[mini ȳi, maxi ȳi] ∈ [max1≤i≤k(ȳi − σ̄i), min1≤i≤k(ȳi + σ̄i)] and hence to determine whe-
ther the maximum is unique.

However, as seen from (19), the MLE estimate (μ, σ 2) has no closed form expression.
Therefore, in [11] and [27], two different methods for finding the optimal solution are pro-
posed. The first is an iterative procedure based on theNewton-Raphsonmethod. A reason-

able initial value for μ̂
(0)
H0

is the so-called Graybill-Deal estimator [12] μ̂(GD) =
∑k

i=1(niȳi)/s̄
2
i∑k

i=1 ni/s̄
2
i

with s̄2i =
∑ni

j=1(yij−ȳi)2

ni−1 . The convergence speed of the algorithm strongly depends on the
initial values. The second method is based on the profile likelihood approach. The authors
in [27] propose the bisection method for finding the zero of the profile likelihood with
respect to μH0 . Under H1 we use as estimates of (μH1 , σ 2

iH1), (μ̂I , σ̂ 2) found using the
iterative procedure described in Section 2.2.

The LRT when the variances are completely unknown can be expressed as:

�̃ =
k∏

i=1

(
σ̂ 2
iH0

σ̂ 2
iH1

)− ni
2

Therefore, as in the previous case, the test rejects for small values of �̃ or equivalently for
large values of −2 log �̃.

3.3. LRTwith ordered variances

Using the notation of Section 2.3, let yij, j = 1, 2, . . . , ni, i = 1, 2, . . . , k be independent
observations from Normal distributions with mean vector μi and variances σ 2

i . As in the
previous case, the first step is the estimation of (μ, σ 2) under the null hypothesis. In this
case, we need to maximize (18) under the restriction

σ 2
1 ≥ σ 2

2 ≥ · · · ≥ σ 2
k > 0. (22)

Theorem 2: Suppose that for 1 ≤ i ≤ k, σ̄ 2
i > 0. Then there exists a maximizer of (18)

under constraints (22).

Proof: First consider the situation for fixed σ 2 with σ 2
i > 0 for all i. Differentiating (18)

with respect to μ yields the equation

k∑
i=1

ni(ȳi − μ)

σ 2
i

This shows, that for this σ 2, the (unique) maximizer of (18) in μ is given by the following
weighted sum of level-means,

μ̂(σ 2) =
∑k

i=1 niσ
−2
i ȳi∑k

i=1 niσ
−2
i
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Consequently, mini ȳi ≤ μ̂(σ 2) ≤ maxi ȳi, bounding the set of possiblemaximizers of (18)
in μ irrespective of the precise value of σ 2.

Now, given any μ ∈ R, the corresponding optimal σ 2 is the solution to the anti-

tonic regression problem antireg(σ̄ 2
H0
,N) where σ̄ 2 = (σ̄ 2

1 , . . . σ̄
2
k )′, σ̄ 2

i =
∑ni

j=1(yij−μ)2

ni ,
N = (n1, . . . , nk)′ (see [33, Example 1.5.5]). The vector to be projected has elements
σ̄ 2
i + (μ − ȳi)2. This means, that if μ is restricted to [mini ȳi, maxi ȳi], the coordinates

to be projected all belong to the interval [mini σ̄ 2
i , max σ̄ 2

i + (max ȳi − min ȳi)2]. So, if μ

ranges over [mini ȳi, maxi ȳi], the optimal σ 2 is also contained in a the closed bounded
region [mini σ̄ 2

i , max σ̄ 2
i + (max ȳi − min ȳi)2]k. By our assumption that all σ̄ 2

i > 0, the
MLE exists being a maximizer of a continuous function on a compact set in R × R

k �

If we consider this case as a special case of the case considered in [36], the solution is
unique if Condition 2.2 holds. Given that the solution is not in a closed form, we use an
iterative procedure to approximate the solution. As a starting value μ̂(0), amodified version
of theGraybill-Deal estimator of the commonmeanwhen the variances are subject to order
restrictions proposed in [25] appears to be a good choice:

μ̂(I) =
∑k

i=1 wiτ̂iȳi∑k
i=1 wiτ̂i

(23)

where τ̂i is the isotonic regression of (t,N) where t = (t1, . . . tk)′, ti = 1
s2i
.

Under H1 we use as estimates of (μH1 , σ 2
iH1), (μ̂I , σ̂ 2I) found using the iterative

procedure described in Section 2.3.
In contrast with the previous cases, it is not possible to further reduce the expression of

the LRT because

exp

⎧⎨
⎩1
2

k∑
i=1

ni∑
j=1

(yij − μ̂H0)
2

σ 2
H0

⎫⎬
⎭

does not reduce to a constant. The same holds under H1. Therefore, the LRT in this case
can be computed by substituting the solutions obtained via the iterative procedure under
H0 and H1 in the generic expression given in (10):

�I = L(μ̂H0 , σ̂ 2I
H0

)

L(μ̂I
H1
, σ̂ 2I

H1
)

(24)

4. Null hypothesis distribution of the test statistics: bootstrap approach

In order to determine the significance of the various test statistics proposed in the previous
sections, we need the null hypothesis distribution of the test statistics. The main distribu-
tional results concerning χ̄2

k and Ē2k, the test statistics derived in the known variance ratio
case, are contained in [2, Theorems 3.1–3.2]. However, problems related to the value of k
can arise in the analytical derivation of the p-values. Numerical approximation can be nec-
essary, especially if k>4 and if the variation in the range of the weights is not ‘moderate’
[32,39].
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Furthermore, in the case of completely unknown variances, the null distribution
depends on the unknown variances. When analytical derivation of the null distribution is
particularly complex or not possible, bootstrap methodology is a good option. Therefore,
we propose both a parametric and a non-parametric bootstrap approach that can be easily
employed for finding approximate p-values taking into account the different assumptions
on the variances. For overcoming the complex derivationwhen the variances are unknown,
bootstrap procedures have been proposed in the literature [4,24].

In particular, in [24], an interesting review of the methods used to approximate the null
distribution of the test statistic under H0 and the restrictive normality assumption (with
which we will not deal in this paper) is reported. Moreover, the authors propose both a
parametric and non-parametric bootstrap approach for the LRT null distribution for one-
sided hypothesis testing for means in a multivariate setting [24]. Also in [4], a bootstrap
approach to test the homogeneity of order restricted mean vectors when the covariance
matrices are unknown is used. In line with those previous approaches, here we propose
two general bootstrap procedures, parametric and non-parametric, that can be used for
testing the null hypothesis taking into account the various assumptions on the variances.

Parametric bootstrap

Algorithm 1
(1) Obtain the estimates μ̂I

iH1
and μ̂H0 using the original data and compute the observed

value of the test statistic of interest LRT(0) (χ̄2(0), Ē2(0), �̃(0) or �I(0)).
(2) Generate, for 1 ≤ i ≤ k, 1 ≤ j ≤ ni Y∗

ij ∼ N(μ̂H0 ,
√

σ 2
iH0

), independently.
(3) For (Y∗

i , . . . ,Y
∗
k ) obtain the estimates μ̂I∗

i and μ̂∗ and compute the bootstrap test
statistic of interest LRT∗

(4) Repeat (2)-(3) for a sufficient large number of timesM

The bootstrap approximation of the p-value is the given by:

p ≈ #(LRT∗ > LRT(0))

M
(25)

and the null hypothesis is rejected whenever this p-value is less than the nominal level α.
Step (2) is the key step, in which the assumption on the variances play a crucial role. It
is interesting to notice that the above procedure can be further simplified. In fact, we can
instead of generating individual observations, directly generate empirical means ȳi = Zi ∗
σ√
ni
, with Zi Standard Normally distributed.

Non-parametric bootstrap

The non-parametric version of the bootstrap releases the normality assumption of the
bootstrap samples. However, a relatively large sample size is required for the following
approach.
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Algorithm 2
(1) Obtain the estimates μ̂I

iH1
and μ̂H0 using the original data and compute the observed

value of the test statistic of interest LRT(0) (χ̄2(0), Ē2(0), �̃(0) or �I(0)).
(2) Standardize the original yij to obtain ‘standardized residuals’ zij = yij−ȳi√

s2i
(3) Combine all zij observations from (1 ≤ i ≤ k; 1 ≤ j ≤ ni) into a vector of length∑k

i=1 ni and draw k simple random samples z∗
ij with replacement each of respective

sizes (n1, n2, . . . , nk)
(4) Transform z∗

ij to y
∗
ij = z∗ij · σ̃iH0 + μ̂H0

(5) For each bootstrap sample y∗
ij (1 ≤ i ≤ k; 1 ≤ j ≤ ni) obtain the estimates μ̂I∗

iH1
and

μ̂∗
H0

and compute the bootstrap test statistic of interest LRT∗
(6) Repeat (3)-(4)-(5) for a sufficient large number of timesM

The bootstrap approximated p-value is defined as in the parametric case (25).

5. Application

One of themost commonways for investigating strength and ductility ofmetallicmaterials
is by performing a tensile test. Loosely speaking, a tensile test is an experiment in which
force is applied to the test sample causing deformation of the material, temporarily (elastic
behavior), permanently (plastic behavior) and eventually its fracture [9]. Data used in this
paper are image data of the microstructure of the material subjected to a plastic strain
(deformation) of 0.139 obtained performing a uniaxial tensile test in which force is applied
to the test sample with respect to just one specific axis (Figure 1).

At amicrostructure level, the deformation of thematerial corresponds to displacements
in the lattice structure and in the possible appearance of GNDs. The material used in this
paper is an annealed AISI420 stainless steel withM23C6 carbides and aim is investigating
the carbide effect on theGNDs formation. KAM is used as a proxy of theGNDs. In Figure 2,
theKAM is represented by filaments inside and among grains delimited by solid lines called
grain boundaries; carbides are the black dots.

Modeling the relationship between KAM and carbides and more generally understand-
ing its inhomogeneous distribution over the microstructure is now the main aim and it
can be considered a starting point for finding a stochastic model for predictingmechanical
properties from 2D microstructure images. We apply estimation procedures and perform
tests under order restrictions, solving the three different univariate isotonic regressions
problems (2.1, 2.2, 2.3) according to the assumption on the variances.

The first step for obtaining the data in the most suitable form for the analysis is ‘over-
laying’ a grid over the image. In Figure 2, a 25 × 25 grid is added to the image. With yij, we
denote the mean KAM value (expressed in misorientation degree [0, 5]) of the jth square
of the grid of the image taken in which i carbides are observed. The explanatory variable
X in all three isotonic regressions is the number of carbides observed in the grid squares.
A plot of the data is shown in Figure 3.

We wish to test the null hypothesis that the expected KAM is the same in all the
squares of the gird, regardless the numbers of carbides observed in the grid. The alternative
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Figure 1. Tensile testing machine.

Figure 2. Microstructure image showing the KAM at strain level 13.9% (overlapped grid of 25 × 25).

hypothesis

μ0 ≤ μ1 ≤ μ2 ≤ μ3. (26)

represents the idea that KAM tends to be higher in areas wheremore carbides are observed.
Moreover, in the ordered variances case, we assume that

σ 2
0 ≥ σ 2

1 ≥ σ 2
2 ≥ σ 2

3 > 0. (27)
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Figure 3. Plot of KAM and number of carbides for the 625 squared areas of Figure 2.

Table 1. Values of estimated means
and variances of the KAM conditioned
on the number of carbides visible in
a square of a grid 25 × 25 according
to different order restrictions assump-
tions (13.9% Strain).

0 1 2 3

ȳ 0.815 0.833 0.870 0.854
σ̄ 2 0.035 0.024 0.017 0.022
s2 0.035 0.024 0.017 0.023
μ̂I

(1) 0.815 0.833 0.867 0.867
μ̂I

(2) 0.815 0.833 0.867 0.867
σ̂(2) 0.035 0.024 0.017 0.022
μ̂I
3) 0.815 0.833 0.866 0.866

σ̂ I
(3) 0.035 0.024 0.018 0.018

n 340 211 54 18

This is in accordance with what we see in Figure 3. In fact, the idea behind this assumption
is that in areas in which less carbides are observed GNDs have more freedom to move,
resulting in increments in dispersion.

The results of the estimation in the three different scenarios faced in Sections 2.1–2.3
are summarized in Table 1. The values of ȳ, σ̄ 2 and s2 represent the empirical group mean,
group variance and group sample variance respectively. Comparing the solutions of the
three different isotonic regression, (1) known variance ratio, (2) unknown variance and
(3) variances under order restrictions, just very slightly differences can be noticed.

In Table 2, the results of testing the null hypothesis are shown. For computing χ2(0) and
Ē2(0), the variance ratio is supposed to be known. In the specific case, we assume that the
KAM total variance for the whole image is the real-known variance and that ci = σ̄ 2

i
σ 2 . For

computing both the parametric and non-parametric p-values, the two different bootstrap
approaches described in Section 4 have been used and M, the number of replications, is
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Table 2. Estimated values for the four different LRT with the
corresponding parametric and non-parametric p-values.

Test p-value p-value
μ̂H0 statistic (parametric) (non-parametric)

χ̄2(0) 0.827 5.760 0.0323 0.0310
Ē2(0) 0.831 0.0121 0.0112 0.0085
−2 log �̃ 0.831 7.330 0.0178 0.0222
�I(0) 0.831 7.105 0.0212 0.0251

0 1 2 3
σ̂ 2
H0

0.035 0.024 0.018 0.022
σ̂ 2I
H0

0.035 0.024 0.019 0.019

taken equal to 20, 000. Independent of the knowledge or assumptions on the variances, the
conclusion is the same and leads to the rejection of the null hypothesis.

6. Conclusions

This paper presents three different models involving order restrictions and within these
models theML estimators and LRTs for the homogeneity of the means against monotonic-
ity are introduced and studied. Prior knowledge given by physical relations or intuition
is not often exploited in statistical studies about materials and this can lead to less effi-
cient methods that produce less accurate results. After having described the estimation
procedures and highlighted how prior knowledge of the variances influence these, we pro-
pose the LRT as test statistic for testing homogeneity of means. In the unknown variances
case and the ordered variances case, heteroskedasticity plays a crucial role also under the
null hypothesis, leading to different estimates of the common mean under H0. Results on
existence and uniqueness of the maximum likelihood estimates in these last two cases are
derived. Furthermore, two different bootstrap approaches are proposed for approximating
the null distribution of the test statistic under the different assumptions on the variances.
The proposed tests are applied to a real data example fromMaterials Science, showing evi-
dence that the so-called KAM tends to be higher in regions of the microstructure where
more carbides are observed. In fact, incorporating reasonable intuition about the order of
means and the variances order in this context helps understanding the evolution of com-
plicated structure of dislocations in metals and its effect on the hardening behavior of the
material during deformation.

Note

1. Dislocations are usually classified into redundant and non-redundant dislocations, respec-
tively, called Statistically Stored Dislocations (SSDs) and Geometrically Necessary Dislocations
(GNDs). GNDs are dislocations with a cumulative effect and they allow the accommodation
of lattice curvature due to non-homogeneous deformation. They control the work hardening
individually by acting as obstacles to slip and collectively by creating a long-range back stress.
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Appendix 1

A.1 ALGORITHM2.1

0. INITIALIZATION Let μ(0) = ȳ = (ȳ1, . . . ȳk)′ and w = (w1, . . .wk)
′, wi = ni

ci
1. QUESTION Is ȳ1 ≤ ȳ2 ≤ · · · ≤ ȳk?

1.1 YES μ∗ = ȳ is the solution
1.2 NO ȳi > ȳi+1

Replace ȳi and ȳi+1 by

mi,i+1 = wiȳi + wi+1ȳi+1

wi + wi+1
(A1)

Repeat until QUESTION 1 is satisfied.

A.2 ALGORITHM2.2

Two steps Iterative procedure.

0. INITIALIZATION Let μ(0) = ȳ = (ȳ1, . . . ȳk)′, σ 2(0) = σ̄ 2 = (σ̄ 2
1 , . . . σ̄

2
k )′, σ̄ 2

i =
∑

j(yij−ȳi)2

ni
and w(0) = (w(0)

1 , . . .w(0)
k )′, w(0)

i = ni
σ 2(0)

1. QUESTION Is ȳ1 ≤ ȳ2 ≤ · · · ≤ ȳk?
1.1 YES μ∗ = μ(0) = ȳ and σ 2 = σ 2(0) = σ̄ 2 are the solutions
1.2 NO Use Step 1.2 Algorithm 2.1 to compute μ(l) with weights w(l−1)

1.2.1 Compute σ 2(l) = s2(l), s2(l)i =
∑

j(yij−μ
(l)
i )2

ni and w(l) = (w(l)
1 , . . .w(l)

k )′, w(l)
i = ni

σ 2(l)

1.2.2 Go back to QUESTION 1 using w(l).
Repeat until

max
1≤i≤k

|μ∗(l−1)
i − μ

∗(l)
i | ≤ 10−m

Alternating Iterative Method.

0. INITIALIZATION Let ν(0) = (1/σ̄ 2
1 , . . . 1/σ̄

2
k )′, σ̄ 2

i =
∑

j(yij−ȳi)2

ni
1. FIND μ(l) the isotonic regression on Da using weights w(l−1) = (w(l−1)

1 , . . .w(l−1)
k )′, w(l−1)

i =
niν(l−1);

2. FIND ν(l) maximizing the profile likelihood L(y;μ(l); ν) on V0, V0 = {ν ∈ R
k : 0 ≤ 1/maxi

(minmin(ȳ)≤θ≤max(ȳ) s2i (θ)) ≤ ν1 ≤ · · · ≤ νk ≤ 1/mini(minmin(ȳ)≤θ≤max(ȳ) s2i (θ))}.
Repeat (1)-(2) until

|L(y;μ(l−1), ν(l−1)) − L(y;μ(l), ν(l))| ≤ 10−m

A.3 ALGORITHM2.3

Two steps Iterative procedure.
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0. INITIALIZATION Let μ(0) = ȳ = (ȳ1, . . . ȳk)′, σ 2(0) = σ̄ 2 = (σ̄ 2
1 , . . . σ̄

2
k )′, σ̄ 2

i =
∑

j(yij−ȳi)2

ni
and and w(0) = (w(0)

1 , . . .w(0)
k )′, w(0)

i = ni
σ 2(0) .

1. QUESTION Is ȳ1 ≤ ȳ2 ≤ · · · ≤ ȳk?
1.1 YES μ∗ = μ(0) = ȳ go to QUESTION 2.
1.2 NO Use Step 1.2 Algorithm 2.1 to compute μ(l) with weights w(l−1)

1.2.1 Compute σ 2(l) = s2(l), s2(l)i =
∑

j(yij−μ
(l)
i )2

ni and w(l) = (w(l)
1 , . . .w(l)

k )′, w(l)
i = ni

σ 2(l)

2. QUESTION Is σ
2(l)
1 ≥ σ

2(l)
2 ≥ · · · ≥ σ

2(l)
k ?

2.1 YES μ∗ = μ(l) and σ 2∗ = σ 2(l) are the solutions.
2.2 NO σ

2(l)
i < σ

2(l)
j

Replace σ
2(l)
i and σ

2(l)
i+1 by

σ
2(l+1)
i = σ

2(l+1)
i+1 = s̄i,i+1 = niσ

2(l)
i + ni+1σ

2(l)
i+1

ni + ni+1
(A2)

Repeat until QUESTION 2 is satisfied.
2.2.1 Go back to QUESTION 1 using w(l).

Repeat until

max
1≤i≤k

|μ∗(l−1)
i − μ

∗(l)
i | ≤ 10−m and max

1≤i≤k
|σ 2∗(l−1)

i − σ
2∗(l)
i | ≤ 10−m

Alternating Iterative Method.

0. INITIALIZATION Let ν(0) = (1/σ̄ 2
1 , . . . 1/σ̄

2
k )′, σ̄ 2

i =
∑

j(yij−ȳi)2

ni
1. FIND μ(l) use Step 1 AlM Algorithm 2.2;
2. FIND ν(l) the isotonic regression onV0,V0 = {ν ∈ R

k : 0 ≤ 1/maxi(minmin(ȳ)≤θ≤max(ȳ) s2i (θ))

≤ ν1 ≤ · · · ≤ νk ≤ 1/mini(minmin(ȳ)≤θ≤max(ȳ) s2i (θ))}with weightsN = (n1, . . . , nk)′ Repeat
(1)–(2) until

|L(y;μ(l−1), ν(l−1)) − L(y;μ(l), ν(l))| ≤ 10−m
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