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ABSTRACT
Automated speaker recognition uses data processing to identify
speakers by their voice. Today, automated speaker recognition is
deployed on billions of smart devices and in services such as call
centres. Despite their wide-scale deployment and known sources of
bias in related domains like face recognition and natural language
processing, bias in automated speaker recognition has not been
studied systematically. We present an in-depth empirical and ana-
lytical study of bias in the machine learning development workflow
of speaker verification, a voice biometric and core task in automated
speaker recognition. Drawing on an established framework for un-
derstanding sources of harm in machine learning, we show that
bias exists at every development stage in the well-known VoxCeleb
Speaker Recognition Challenge, including data generation, model
building, and implementation. Most affected are female speakers
and non-US nationalities, who experience significant performance
degradation. Leveraging the insights from our findings, we make
practical recommendations formitigating bias in automated speaker
recognition, and outline future research directions.

CCS CONCEPTS
•General and reference→Evaluation; • Security andprivacy
→ Biometrics; • Computing methodologies→ Speech recogni-
tion; Machine learning.
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1 INTRODUCTION
The human voice contains an uncanny amount of personal informa-
tion. Decades of research have correlated behavioural, demographic,
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physiological, sociological and many other individual characteris-
tics to a person’s voice. Even if untrained human listeners cannot
discern all the details, automated voice processing can: voice profil-
ing can reveal sensitive personal attributes such as age, anatomy,
health status, medical conditions, identity, intoxication, emotional
state, stress, and truthfulness from speech [48]. Speaker recogni-
tion is a type of voice processing that automatically recognises the
identity of a human speaker from personal information contained
in their voice [8]. Today, speaker recognition permeates private
and public life. Speaker recognition systems are deployed at scale
in call centers, on billions of mobile phones and on voice-enabled
consumer devices such as smart speakers. They grant access not
only to personal devices in intimate moments, but also to essential
public services for vulnerable user groups. For example, in Mexico
speaker recognition is used to allow senior citizens to provide a
telephonic proof-of-life to receive their pension [31].

In this paper we study bias in speaker recognition systems. Bias
in machine learning (ML) is a source of unfairness [29] that can
have harmful consequences, such as discrimination [55]. Bias and
discrimination in the development of face recognition technolo-
gies [4, 42, 43], natural language processing [3] and automated
speech recognition [1, 22, 52, 53] are well studied and documented.
Bias in speaker recognition, a related domain, has received very
limited attention. Yet, speaker recognition technologies are perva-
sive and process extremely sensitive personal data that is intricately
intertwined with our individual identity. They are deployed in high-
stakes applications, while the modality of their input data makes
them susceptible to perpetrate discrimination. It is thus urgent to
investigate bias in these systems, so that mitigating and regulatory
actions can be taken to forestall potential negative consequences.

Drawing on Suresh and Guttag’s Framework for Understanding
Sources of Harm [51], we present the first detailed study on bias
in speaker recognition. We approach this work as a combination
of an analytical and empirical evaluation focused on the VoxCeleb
Speaker Recognition Challenge [32], one of the most popular bench-
marks in the domain with widely used datasets. Our study shows
that existing benchmark datasets, learning mechanisms, evalua-
tion practices, aggregation habits and post-processing choices in
the speaker recognition domain produce systems that are biased
against female and non-US speakers. Our contributions are:

(1) We present an evaluation framework for quantifying perfor-
mance disparities in speaker verification - a speaker recog-
nition task that serves as the biometrics of voice

(2) We apply this framework to conduct the first evaluation of
bias in speaker verification. Our results show that bias exists
at every stage of the ML development pipeline

(3) Informed by our evaluation, we recommend research direc-
tions to address bias in automated speaker recognition
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Our paper is structured as follows. In Section 2 and 3 we review
related work and provide a background on speaker recognition, its
evaluation and supporting infrastructure for its development. We
then present the empirical experiment setup and bias evaluation
framework in Section 4. In Section 5 we present our findings of
bias in data generation, and in Section 6 our findings of bias in
model building and implementation. We discuss our findings, and
make recommendations for mitigating bias in speaker recognition
in Section 7. Finally, we conclude in Section 8.

2 RELATEDWORK
In this section we provide a background on speaker recognition
within its historical development context and present evidence of
bias in the domain. We then introduce the theoretical framework
on which we base our analytical and empirical bias evaluation.

2.1 Historical Development of Automated
Speaker Recognition

Since its inception, research into speaker recognition has enabled
voice-based applications for access control, transaction authentica-
tion, forensics, law enforcement, speech data management, person-
alisation and many others [44]. As a voice-based biometric, speaker
verification is viewed to have several advantages: it is physically
non-intrusive, system users have historically considered it to be
non-threatening, microphone sensors are ubiquitously available
in telephone and mobile systems or can be installed at low-cost if
they are not, and in many remote applications speech is the only
form of biometrics available [44]. Given the proliferation of speaker
recognition systems in digital surveillance technologies, concerns
over its pervasive, hidden and invasive nature are rising [24].

2.1.1 Parallels to Facial Recognition. The historical development
of automated speaker recognition reflects that of facial recognition
in many aspects. Similar to the development of facial recognition
systems [43], research in early speaker recognition systems was
supported by defense agencies, with envisioned applications in
national security domains such as forensics [9]. The systems re-
lied on datasets constructed from telephone corpuses and their
development was greatly accelerated through coordinated, regular
competitions and benchmarks.

2.1.2 From Classical Approaches to Deep Neural Networks. Two
years after the deep learning breakthroughs in computer vision,
Deep Neural Networks (DNNs) were first applied to speaker recog-
nition systems [14]. Since 2016, DNNs have become the dominant
technique for developing speaker recognition systems [23, 49, 50].
DNNs have distinguished themselves in important ways from tra-
ditional approaches for speaker recognition: their performance is
superior on short speech utterances [50], they can be trained in
an end-to-end fashion using only speaker labels, thus reducing
laborious labelling efforts [14], and they can leverage many of the
techniques that have demonstrated success in the image recogni-
tion domain. To enable the new era of deep speaker recognition,
large scale datasets were needed to support research in this emerg-
ing area, and methods for generating them adapted approaches
from face recognition. For example, a popular speaker recognition
dataset, VoxCeleb [34], is derived from the voice signals in Youtube

videos of celebrities contained in the well-known face recognition
dataset VGG Face [40]. Another dataset, MOBIO [18], was devel-
oped jointly for mobile face recognition and speaker recognition.

2.2 Bias in Speaker and Speech Recognition
2.2.1 Early Evidence of Bias in Speaker Recognition. It is well estab-
lished that speaker characteristics such as age, accent and gender
affect the performance of speaker recognition [11]. In acknowl-
edgement of this, past works in speech science, like research pro-
moted through the 2013 Speaker Recognition Evaluation in Mo-
bile Environments challenge, have reported speaker recognition
performance separately for male and female speakers [19]. The
submissions to the challenge made it clear that bias is a cause of
concerns: of 12 submissions, all submitted systems performedworse
for females than for males on the evaluation set. On average the
error rate for females was 49.35% greater than for males. Despite
these performance differences being acknowledged, they went un-
questioned and were attributed solely to an unbalanced training set
that contained a male:female speaker ratio of 2:1. In later works the
discrepancy between female and male speakers is still evident and
reported, but remains unquestioned and unaddressed [39]. Histori-
cally, a common approach to avoid gender-based bias has been to
develop separate models for female and male speakers [21]. While
this may be insufficient to eradicate bias, generating separate fea-
ture sets for female and male speakers can reduce it [27]. Beyond
considering binary gender, evaluating demographic performance
gaps based on other speaker attributes is less common, and inter-
sectional speaker subgroups have not been considered.

2.2.2 Nuanced Evaluation No Longer Common Practice. Since the
adoption of Deep Neural Networks (DNNs) for speaker recognition,
practices of evaluating system performance for speaker subgroups
seem to have disappeared. Several system properties beyond perfor-
mance have been considered in recent years, such as robustness [2]
and privacy [35]. However, research in robustness and privacy in
speaker recognition does not address the glaring gap that remains
in the domain: system performance appears biased against speaker
groups based on their demographic attributes. Only one recent
study investigates bias in end-to-end deep learning models based
on speaker age and gender [7], reconfirming the importance of
balanced training sets.

2.2.3 Bias in Automated Speech Recognition. In automated speech
recognition, which is concerned with the linguistic content of voice
data, not with speaker identity, recent studies have provided evi-
dence that commercial automated caption systems have a higher
word error rate for speakers of colour [52]. Similar racial disparities
exist in commercial speech-to-text systems, which are strongly
influenced by pronunciation and dialect [22]. Considering their
shared technical backbone with facial recognition systems, and
shared data input with automated speech recognition systems, we
expect that bias and harms identified in these domains will also
exist in speaker recognition systems. Mounting evidence of bias in
facial and speech recognition, the abundance of historic evidence
of bias and the vacuum of public information about bias in speaker
recognition, strengthen the motivation for our work.

231



Bias in Automated Speaker Recognition FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

2.3 Sources of Harm in the ML Life Cycle
We draw on Suresh and Guttag’s [51] Framework for Understanding
Sources of Harm through the ML life cycle to ground our investiga-
tion into bias in automated speaker recognition. Suresh and Guttag
divide the ML life cycle into two streams and identify seven sources
of bias related harms across the two streams: 1) the data generation
stream can contain historical, representational and measurement
bias; and 2) the model building and implementation stream can
contain learning, aggregation, evaluation and deployment bias. His-
torical bias replicates bias, like stereotypes, that are present in the
world as is or was. Representation bias underrepresents a subset of
the population in the sample, resulting in poor generalization for
that subset. Measurement bias occurs in the process of designing
features and labels to use in the prediction problem. Aggregation
bias arises when data contains underlying groups that should be
treated separately, but that are instead subjected to uniform treat-
ment. Learning bias concerns modeling choices and their effect on
amplifying performance disparities across samples. Evaluation bias
is attributed to a benchmark population that is not representative
of the user population, and to evaluation metrics that provide an
oversimplified view of model performance. Finally, deployment bias
arises when the application context and usage environment do not
match the problem space as it was conceptualised during model
development.

Next we introduce automated speaker recognition, and then
show analytically and empirically how these seven types of bias
manifest in the speaker recognition development ecosystem.

3 BACKGROUND
Speaker recognition refers to the collection of data processing tasks
that identify a speaker by their voice [8]. Core tasks in speaker
recognition are speaker identification, which determines a speaker’s
identity from a subset of speakers, speaker verification, which vali-
dates if a speaker’s identity matches the identity of a stored speech
utterance, and speaker diarisation, which is concerned with parti-
tioning speech to distinguish between different speakers [2]. While
technical implementation details differ in the three areas, their
communities overlap, they share datasets and participate in the
same competitions. We focus our investigation in this paper on
speaker verification, which underlies voice biometrics. However,
as the tasks have evolved together, many of the biases that we un-
cover in speaker verification also apply to speaker identification
and diarisation. In this section we provide a high level overview
of speaker verification and its evaluation, as well as its supporting
ecosystem of competitions and benchmarks that have advanced
the field. We refer the reader to [2] for a detailed technical survey
on state-of-the-art speaker recognition, and to [21] for a review on
the classical speaker recognition literature prior to the advent of
Deep Neural Networks (DNNs).

3.1 Speaker Verification Overview
A speaker verification system determines whether a candidate
speaker matches the identity of a registered speaker by compar-
ing a candidate speaker’s speech signal (i.e. trial utterance) to the
speech signal of a registered speaker (i.e. enrollment utterance).

Figure 1: Speaker verification data processing pipeline

Speaker verification is classified based on its training data as text-
dependent if speech signals are fixed phrases or text-independent
if not, prompted if speech was produced by reading text or sponta-
neous if not [9]. Spontaneous text-independent speech is the type
of speech that occurs naturally when a speaker interacts with a
voice assistant or a call centre agent, and presents the most general
speaker verification task.

As shown in Figure 1, many speaker verification systems consists
of two stages, a front-end that generates a speaker embeddingmodel
for enrollment and trial utterances, and a back-end that computes
a similarity score for the two resultant embeddings. Alternatively,
end-to-end speaker verification directly learns a similarity score
from training utterances [14]. Modern speaker verification systems
use DNNs to learn the front-end embedding, or to train the end-to-
end system [2]. As the final step of the speaker verification process,
the score output is compared to a threshold. Speaker identity is
accepted if the score lies above the threshold, and rejected if it lies
below the threshold.

3.2 Speaker Verification Evaluation
To evaluate speaker verification systems, scores are generated for
many pairs of enrollment and trial utterances. The utterance pairs
are labelled as being from the same or from different speakers. Two
typical score distributions generated from many same and different
speaker utterance pairs are shown in Figure 6 in the Appendix.
After calibrating the speaker verification system to a threshold
(e.g. equal error rate or detection cost), utterance pairs with a score
below the threshold are classified as different speakers and the
trail utterance is rejected. Utterance pairs with a score above the
threshold are classified as the same speaker, and accepted. As the
two distributions overlap, classification is not perfect. At a particular
threshold value there will be false positives, i.e. utterance pairs
of different speakers with a score above the threshold, and false
negatives, i.e. utterance pairs of the same speakers with a score
below the threshold.
Speaker verification performance is determined by its false positive
rate (FPR) and false negative rate (FNR) at the threshold value to
which the system has been calibrated [9]. It is accepted that the two
error rates present a trade-off, and that selecting an appropriate
threshold is an application-specific design decision [38]. The thresh-
old value is determined by balancing the FPR and FNR error rates
for a particular objective, such as obtaining an equal error rate (EER)
for FPR and FNR, or minimising a cost function. The detection cost
function (DCF) is a weighted sum of FPR and FNR across threshold
values, with weights determined by the application requirements.
To compare performance across models, systems are frequently
tuned to the threshold value at the minimum of the DCF, and the
corresponding detection cost CDet value is reported as a metric.
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Various detection cost functions have been proposed over time,
such as the following, proposed in the NIST SRE 2019 Evaluation
Plan [37]:

CDet (θ ) = CFN × PTarдet × PFN (θ ) +CFP ×
(
1 − PTarдet

)
× PFP (θ )

PTarдet = 0.05, CFN = 1, CFP = 1
(1)

Speech science literature recommends that detection error trade-off
(DET) curves [9] are used to visualise the trade-off between FPR and
FNR, and to consider system performance across various thresh-
olds. DET curves visualise the FPR and FNR at different operating
thresholds on the x- and y-axis of a normal deviate scale [26] (see
Figure 7 in the Appendix). They can be used to analyse the inter-
model performance (across models), and are also recommended for
analysing intra-model performance (across speaker subgroups in a
model).

3.3 Competitions and Benchmarks
Speaker recognition challenges have played an important role in
evaluating and benchmarking advances in speaker verification.
They were first initiated within the Information Technology Lab-
oratory of the US National Institute of Standards and Technology
(NIST) to conduct evaluation driven research on automated speaker
recognition [9]. The NIST Speaker Recognition Evaluation (SRE)
challenges and their associated evaluation plans have been impor-
tant drivers of speaker verification evaluation. In addition, new
challenges have emerged over time to address the requirements of
emerging applications and tasks. Table 1 summarises recent chal-
lenges, their organisers and the metrics used for evaluation. Most
challenges have adopted the minimum of the detection cost func-
tion,min CDet , recommended by the NIST SREs as their primary
metric. As the NIST SREs have modified this function over time,
different challenges use different versions of the metric. In the re-
mainder of this paper we evaluate bias in the VoxCeleb Speaker
Recognition Challenge (SRC).

4 EXPERIMENT SETUP
Launched in 2019, the objective of the VoxCeleb SRC is to "probe
how well current [speaker recognition] methods can recognise
speakers from speech obtained ‘in the wild’" [10]. The challenge
has four tracks: open speaker diarisation, open and closed fully su-
pervised, and closed self-supervised speaker verification. It serves
as a well-known benchmark, and has received several hundred sub-
missions over the past three years. The popularity of the challenge
and its datasets make it a suitable candidate for our evaluation,
representative of the current ecosystem. We evaluate group bias in
the speaker verification track of the VoxCeleb SRC.

4.1 Baseline Models
The challenge has released two pre-trained baseline models [15]
trained on the VoxCeleb 2 training set [33] with close to 1 million
speech utterances of 5994 speakers. 61% of speakers are male and
29% of speakers have a US nationality, which is themost represented
nationality. More detailed metadata is not readily available. The
baseline models are based on a 34-layer ResNet trunk architecture.
ResNetSE34V2 [15] is a larger model, with an architecture optimised

for predictive performance. ResNetSE34L [5] is a smaller model that
contains less than a fifth of the parameters of ResNetSE34V2 and
has smaller input dimensions. This reduces the computation time
and the memory footprint of the model, two important considera-
tions for on-device deployment in applications like smartphones
and smart speakers. The model developers have optimised it for
fast execution. We downloaded and used both baseline models as
black-box predictors in our evaluation. The technical details of the
baseline models are summarised in Table 3 in the Appendix.

4.2 Evaluation Dataset
We evaluate the baseline models on three established evaluation
sets that can be constructed from the utterances in the VoxCeleb 1
dataset [33]. VoxCeleb 1 was released in 2017 with the goal of cre-
ating a large scale, text-independent speaker recognition dataset
that mimics unconstrained, real-world speech conditions, in order
to explore the use of DNNs for speaker recognition tasks [34]. The
dataset contains 153 516 short clips of audio-visual utterances of
1251 celebrities in challenging acoustic environments (e.g. back-
ground chatter, laughter, speech overlap) extracted from YouTube
videos. The dataset also includes metadata for speakers’ gender
and nationality, and is disjoint from VoxCeleb 2 which is used for
training. Three different evaluation sets have been designed for
testing speaker verification with VoxCeleb 1. We consider all three
evaluation sets in our analysis. The evaluation sets are discussed in
detail in §6.3.

4.3 Speaker Subgroups and Bias Evaluation
Measures

We selected subgroups based on attributes and categories captured
in the VoxCeleb metadata: gender and nationality. We then estab-
lished bias by evaluating performance disparities between these
subgroups using existing evaluation measures in speaker verifica-
tion. Reusing attributes and category labels, though practical for
facilitating our study, perpetuates existing bias. We reflect on the
consequences of this in our analysis of measurement bias in §5.3.

Our first technique for establishing bias is to plot the DET curves
for all subgroups, and to compare the subgroups’ DET curves to
the overall curve for all subgroups. As speaker verification systems
must operate on the DET curve, this presents the theoretical per-
formance boundary of the model across subgroups. Secondly, we
consider bias at the threshold to which the system has been cali-
brated, which ultimately presents the operating point of the system.
Here we consider an unbiased system as one that has equal false
positive and true positive (or false negative) rates across subgroups,
in line with the definition of equalized odds [12]. We compare each
subgroup’s performance to the overall system performance to fa-
cilitate comparison across a large number of subgroups, and thus
deviate slightly from the formal definition of equalized odds. We
use CDet (θ ) as defined in Equation 1 to determine the calibration
threshold and quantify the relative bias towards each subgroup
with the ratio of the subgroup cost CDet (θ )SG to the overall cost
CDet (θ )

overall at the threshold value whereCDet (θ ) is minimized
for the overall system:

233



Bias in Automated Speaker Recognition FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

Name Organiser Years Metrics
NIST SRE [9] US National Inst. of Standards & Tech. 1996 - 2021 Detection Cost Function
SRE in Mobile Env’s [19] Idiap Research Institute 2013 DET curve, EER, half total error rate
Speakers in the Wild SRC [28] at Interspeech 2016 2016 min CDet * (SRE2016), Rprec , Cl l r
VoxCeleb SRC [32] Oxford Visual Geometry Group 2019 - 2021 min CDet * (SRE2018), EER
Far-Field SVC [41] at Interspeech 2020 2020 min CDet *, EER
Short Duration SVC [58] at Interspeech 2021 2020 - 2021 norm min CDet * (SRE08)
SUPERB benchmark [57] CMU, JHU, MIT, NTU, Facebook AI 2021 EER*

Table 1: Evaluation metrics for Speaker Verification and Recognition Challenges (SVC and SRC) (* primary metric)

subдroup bias =
CDet

(
θ@ overall min

)SG
CDet

(
θ@ overall min

)overall (2)

If the subgroup bias is greater than 1, the subgroup performance is
worse than the overall performance, and the speaker verification
model is prejudiced against that subgroup. Conversely, if the sub-
group bias is less than 1, the model favours the subgroup. If the
ratio is exactly 1, the model is unbiased for that subgroup.

4.4 Black-box Bias Evaluation Framework
We designed a framework1 that replicates a real evaluation scenario
to evaluate bias in the VoxCeleb SRC benchmark. Figure 2 shows
an overview of our approach. We start with pairs of single-speaker
speech utterances in the evaluation dataset as input, and use the
baseline models, ResNetSE32V2 and ResNetSE34L, as black-box pre-
dictors. The baseline models output scores for all utterance pairs in
the evaluation set. We set the threshold to the value that minimizes
the overall system cost of the DCF and accept or reject speakers in
utterance pairs based on that. Our predicted binary acceptance is
then compared to the true labels of the utterance pairs to determine
false positive and false negative predictions. Using the metadata for
speakers, we allocate each utterance pair to a subgroup based on the
attributes of the enrollment utterance. From these inputs we evalu-
ate bias by establishing the FPR, FNR and thus CDet (θ )SG at the
threshold value for each subgroup. We also plot DET curves from
the outputs scores for each subgroup. The evaluation is repeated for
each of the three VoxCeleb 1 evaluation sets. Using this evaluation
framework, we now identify sources of bias in data generation
(Section 5) and model building and implementation (Section 6).

Figure 2: Framework for black-box bias evaluation of
speaker verification models

1The code for the evaluation has been released as an open-source python library:
https://github.com/wiebket/bt4vt/releases/tag/v0.1

5 BIAS IN DATA GENERATION
In this section we identify sources of bias in the VoxCeleb SRC that
arise during data generation (see Suresh and Guttag’s Framework for
Understanding Sources of Harm described in §2.3). The stage involves
data generation, population definition and sampling, measurement
and pre-processing, with the goal of creating training, test and
benchmark datasets. The types of bias that arise in these processes
are historical bias, representation bias and measurement bias.

5.1 Historical Bias
Historical bias replicates biases, like stereotypes, that are present in
the world as is or was.

The VoxCeleb 1 dataset was constructed with a fully automated
data processing pipeline from open-source audio-visual media [34].
The candidate speakers for the dataset were sourced from the VGG
Face dataset [40], which is based on the intersection of the most
searched names in the Freebase knowledge graph and Internet
Movie Database (IMDB). After searching and downloading video
clips for identified celebrities, further processing was done to track
faces, identify active speakers and verify the speaker’s identity
using the HOG-based face detector [20], Sync-Net [6] and VGG
Face CNN [47] respectively. If the face of a speaker was correctly
identified, the clip was included in the dataset.

Bias in facial recognition technologies is well known [4, 42, 43],
and historic bias pervades the automated data generation process
of VoxCeleb. The VoxCeleb 1 inclusion criteria subject the dataset
to the same bias that has been exposed in facial recognition veri-
fication technology and reinforce popularity bias based on search
results [29]. Moreover, the data processing pipeline directly trans-
lates bias in facial recognition systems into the speaker verification
domain, as failures in the former will result in speaker exclusion
from VoxCeleb 1.

5.2 Representation Bias
Representation bias underrepresents a subset of the population in its
sample, resulting in poor generalization for that subset.

The VoxCeleb 1 dataset is skewed towards males and US nationals,
as can be seen in Figure 8 in the Appendix. Performance for this
group is the most reliable and aligns the closest with the average
performance. For subgroups with the smallest amount of speakers,
such as Italian, German and Irish females, DET curves in Figure 9
in the Appendix show that performance is unreliable. In the con-
text of benchmark evaluations, such skewed representation not
only provides an inadequate understanding of the real capabilities
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of speaker verification for a diverse population of people, but it
also shapes the development of the technology towards the group
of people that are most represented. Representation bias affects
the quality of our bias evaluation for underrepresented subgroups.
However, there are sufficient subgroups that have a reasonable rep-
resentation of speakers (USA, Canadian, UK, Indian and Australian
males and females) to support our efforts of gathering evidence of
bias.

Recent work on age recognition with the VoxCeleb datasets [13]
shows that speakers between ages 20 and 50 are most represented in
the dataset, indicating that representation bias is also evident across
speaker age. Nationality, gender and age only account for some of
the attributes of a speaker’s voice that affect automated speaker
recognition [48]. We discuss additional attributes that are likely to
affect performance in the following section on measurement bias.
Being a celebrity dataset that is not representative of the broad
public, it is likely that VoxCeleb 1 contains representation bias
that affect many other sensitive speaker attributes. Representation
bias contributes to aggregation bias (§6.1), evaluation bias (6.3) and
deployment bias (§6.4) in speaker verification, and is discussed in
further detail in those sections.

5.3 Measurement Bias
Measurement bias occurs in the process of designing features and
labels to use in the prediction problem.

In our analysis of measurement bias we focus on labelling choices
made in the VoxCeleb 1 metadata, which our study inherits in our
subgroup design choices. While these labels are not used for mak-
ing predictions, they are used to make judgements about speaker
representation in the dataset. They also inform subgroup design,
which plays a fundamental role in our group-based bias analysis.

The VoxCeleb 1 dataset creators inferred nationality labels from
speakers’ countries of citizenship, as obtained from Wikipedia.
Their underlying motivation for doing this was to assign a label
that is indicative of a speaker’s accent [33]. Conflating nationality
and accent is problematic, as people with the same citizenship can
speak the same language with different accents. Likewise, many
countries have citizens speaking different languages (e.g. India has
7 languages with more than 50 million first language speakers
each [56]). Using nationality as a subgroup label has merits2, even
if conflating nationality, accent and language raises concerns. The
nationality-based performance differences that we observe sug-
gest that language, accent, ethnicity and dialect may also produce
disparate performance.

The metadata considers only binary gender categories, namely
male and female. From the dataset description it is unclear what
method was followed to label speakers by gender. Many concerns
about gender labelling in face analysis technologies have been
pointed out in prior research [45], and similar concerns hold true in
speaker recognition. Simply replacing a binary gender classification
with more categories is not a recommended alternative. Even if it
were possible to produce accurate labels, they might help to miti-
gate bias in speaker verification only while offering a new surface

2Discrimination based on national origin can have legal consequences, for instance,
Title VII of the Civil Rights Act of 1964 prohibits employment discrimination based on
national origin in the United States

for harm, for example through voice-based gender classification
enabled targeting.

6 BIAS IN MODEL BUILDING AND
IMPLEMENTATION

Having analysed bias in data generation, we now present evidence
of bias in the model building and implementation stage of the Vox-
Celeb SRC benchmark. In the ML pipeline this stage involves model
definition and training, evaluation and real-world deployment. The
types of bias that arise in these processes are aggregation bias, learn-
ing bias, evaluation bias and deployment bias. We found evidence of
each type of bias in our evaluation.

6.1 Aggregation Bias
Aggregation bias arises when data contains underlying groups that
should be treated separately, but that are instead subjected to uniform
treatment.

We evaluate aggregation bias by plotting disaggregated DET per-
formance curves for speaker subgroups based on nationality and
gender. In Figure 3 we show the DET curves for female (left) and
male (right) speakers across 11 nationalities for the ResNetSE34V2
model evaluated on the VoxCeleb 1-H evaluation set. The dotted
black DET curve shows the overall performance across all sub-
groups. DET curves above the dotted line have a high likelihood of
performing worse than average, while DET curves below the dotted
line will generally perform better than average. It is easy to see that
the DET curves of female speakers lie mostly above the average
DET curve, while those of male speakers lie below it. The model is
thus likely to perform worse than average for females, and better
for males. Figure 9 in the Appendix shows DET subplots for each
nationality, highlighting disparate performance across nationalities.

The triangular markers show the FPR and FNR at the threshold
θ@ overall min where the overall system DCF is minimized. The
markers for male and female speaker subgroups are dispersed, in-
dicating that the aggregate system calibration results in significant
operating performance variability across subgroups. Table 4 in the
Appendix shows the subдroup bias for all subgroups. With the ex-
ception of US female speakers, all females have a subдroup bias
greater than 1, and thus perform worse than average.

The DET curves and subдroup bias demonstrate disparate perfor-
mance based on speakers’ gender and nationality. They also show
that the model is fit to the dominant population in the training
data, US speakers. The trends in aggregation bias that we observe
for ResNetSE34V2 are evident in all three evaluation sets, as well
as ResNetSE34L. They indicate that speaker verification models do
not identify all speaker subgroups equally well, and validate that
performance disparities between male and female speakers identi-
fied in the past [27] still exist in DNN speaker verification models
today.

6.2 Learning Bias
Learning bias concerns modeling choices and their effect on amplifying
performance disparities across samples.

The ResNetSE34V2 and ResNetSE34L models are built with different
architectures and input features. The two architectures have been
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Figure 3: Aggregation bias in ResNetSE34V2 with the VoxCeleb 1-H evaluation set: 1) the aggregate model (dotted black line)
is fit to the dominant population (US speakers) and 2) the operating performance (triangular markers) across subgroups has
high variability when the system is tuned to the overall threshold.

designed for different goals respectively: to optimise performance
and to reduce inference time. Optimisation here refers to the design
goal, not the optimiser of the model. The reduced number of pa-
rameters, smaller model size and reduced number of computations
of ResNetSE34L are desirable attributes for on-device deployment.

In Figure 4 we plot the subдroup bias for both models for all
subgroups. On the dotted line the models perform equally well for
a subgroup. The greater the distance between a marker and the
line, the greater the performance disparity between the models for
that subgroup. As described in §4.3, subgroup performance is worse
than average if the subдroup bias is greater than 1, and better than
average if it is less than 1. We make three observations: Firstly, the
subдroup bias for both models for male subgroups is close to or less
than 1, indicating that at the threshold valuemales experience better
than average performance for both models. Secondly, we observe
that subдroup bias for male US speakers is equal for both models,
indicating that performance disparities remain consistent for the
over-represented group. Thirdly, we observe that neither of the two

Figure 4: Learning bias based on model architecture. Sub-
group bias for the performance optimized ResNetSE34V2
is shown on the x-axis, and for the speed optimized
ResNetSE34L on the y-axis. On the diagonal subgroup bias
for the two models is equal.

models reduces performance disparities definitively: ResNetSE34V2
has a lower subдroup bias for 7 subgroups, ResNetSE34L for 10
subgroups.

In addition to examining subдroup bias we have plotted the DET
curves for both models across subgroups in Figure 10 in the Appen-
dix. We observe that the smaller ResNetSE34L increases the distance
between DET curves for males and females with nationalities from
the UK, USA and Ireland, indicating that the model increases per-
formance disparities between male and female speakers of these
nationalities. For Australian, Indian and Canadian speakers the
distance between DET curves for males and females remains un-
changed, while for Norwegian nationalities they lie closer together.
Together these results point to learning bias, highlighting that
modeling choices such as the architecture, the number of model
parameters and the input feature dimensions can amplify perfor-
mance disparities in speaker verification. The disparities tend to
negatively affect female speakers and nationalities with few speak-
ers. Our results reinforce other studies that have shown that bias
can arise when reducing model size during pruning [16, 54], but
are insufficient to point out the exact modeling choices that affect
learning bias. This remains an area of future work.

6.3 Evaluation Bias
Evaluation bias is attributed to a benchmark population that is not
representative of the user population, and to evaluation metrics that
provide an oversimplified view of model performance.

6.3.1 Evaluation Datasets. Representative benchmark datasets are
particularly important during ML development, as benchmarks
have disproportionate power to scale bias across applications if
models overfit to the data in the benchmark [51]. Three evaluation
sets can be constructed from the VoxCeleb 1 dataset to benchmark
speaker verification models. VoxCeleb 1 test contains utterance pairs
of 40 speakers whose name starts with E. VoxCeleb 1-E includes the
entire dataset, with utterance pairs sampled randomly. VoxCeleb
1-H is considered a hard test set, that contains only utterance pairs
where speakers have the same gender and nationality. Speakers
have only been included inVoxCeleb 1-H if there are at least 5 unique
speakers with the same gender and nationality. All three evalua-
tion sets contain a balanced count of utterance pairs from same
speakers and different speakers. We have calculated the speaker
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and utterance level demographics for each evaluation set from the
dataset’s metadata, and summarise the attributes of the evaluation
sets in Table 2.
Several observations can be made based on the summary in Table 2:
the VoxCeleb 1 dataset suffers from representation bias (see Sec-
tion 5.2) and all three evaluation sets over-represent male speakers
and US nationals. Furthermore, the sample size of VoxCeleb 1 test is
too small to use it for a defensible evaluation. Its inclusion criterion
based on speakers’ names introduces additional representation bias
into the evaluation set, as names strongly correlate with language,
culture and ethnicity.

In addition to these obvious observations, the summary also re-
veals subtler discrepancies. Speaker verification evaluation is done
on utterance pairs. Demographic representation is thus important
on the speaker level to ensure that the evaluation set includes a
variety of speakers, and on the utterance level to ensure that suffi-
cient speech samples are included for each individual speaker. A
significant mismatch in demographic representation between the
speaker and utterance level is undesirable. If the representation of
a subgroup is higher on the speaker level than the utterance level,
this misrepresents the demographics that matter during evaluation
and may indicate underrepresentation of individual speakers. Con-
versely, if the representation of a subgroup is lower on the speaker
level, this increases the utterance count per speaker, suggesting
overrepresentation of individual speakers. When considering utter-
ances instead of speakers, the representation of females in relation
to males decreases from 61% to 42% for VoxCeleb 1 test, from 82%
to 72% for VoxCeleb 1-E and from 79% to 70% for VoxCeleb 1-H.
The evaluation sets thus not only contain fewer female speakers,
they also contain fewer utterances for each female speaker, which
reduces the quality of evaluation for female speakers.

We evaluate ResNetSE34V2with the three evaluation sets and plot
the resulting DET curves in Figure 5. The DET curve of VoxCeleb 1
test is irregular, confirming that this evaluation set is too small for
a valid evaluation. In a FPR range between 0.1% and 5%, which is a
reasonable operating range for speaker verification, model perfor-
mance is similar on VoxCeleb 1 test and VoxCeleb 1-E. The curve of
VoxCeleb 1-H lies significantly above the other two evaluation sets,
indicating that the model performs worse on this evaluation set.
Our empirical results illustrate that model performance is highly
susceptible to the evaluation set, and show how evaluation bias can
affect speaker verification models during evaluation.

Figure 5: Evaluation bias in the three VoxCeleb 1 evaluation
sets with ResNetSE34V2

6.3.2 EvaluationMetrics. The two dominantmetrics used in speaker
verification benchmarks, including the VoxCeleb SRC, are the equal
error rate (EER) and the minimum value of the detection cost func-
tion CDet (θ@ overall min ) (see Table 1). Both error metrics give
rise to evaluation bias. The EER presents an oversimplified view of
model performance, as it cannot weight false positives and false
negatives differently. Yet, most speaker verification applications
strongly favour either a low FPR or a low FNR [9]. The NIST SREs
do not promote the use of the EER for speaker verification evalu-
ation for this reason [9], which makes it particularly concerning
that new challenges like the SUPERB benchmark evaluate only
the EER [57]. CDet (θ@ overall min ) can weight FPR and FNR, but
has its own shortcomings. Firstly, the detection cost function has
been updated over the years, and different versions of the metric
are in use. This is impractical for consistent evaluation of applica-
tions across time. Secondly, the cost function is only useful if the
FPR and FNR weighting reflect the requirements of the application.
Determining appropriate weights is a normative design decision,
and has received very limited attention in the research community.
In benchmarks weights are typically not adjusted, which oversim-
plifies real-life evaluation scenarios. Finally, CDet (θ@ overall min )

presents a limited view of a model’s performance at a single thresh-
old value. While DET curves can provide a holistic view on the
performance of speaker verificationmodels across thresholds, many
recent research papers do not show them, and those that do only
show aggregate curves.

The aggregate form of current evaluation practices based on
and optimised for average performance hides the nature of harm
that arises from evaluation bias. Ultimately, what matters when a
speaker verification system is deployed, are the FPR and FNR. False
positives pose a security risk, as they grant unauthorized speakers
access to the system. False negatives pose a risk of exclusion, as they
deny authorized speakers access to the system.We consider the FPR
and FNR for subgroups at CDet (θ@ overall min ) in relation to the
average FPR and FNR in Table 5 in the Appendix. US male speakers
have a FPR and FNR ratio of 1, indicating that this subgroup will
experience error rates in line with the average. On the other end of
the spectrum Indian female speakers have a FPR and FNR that are 13
and 1.3 times greater than average, indicating that this subgroup is
exposed to a significant security risk, and a greater risk of exclusion.

6.4 Deployment Bias
Deployment bias arises when the application context and usage en-
vironment do not match the problem space as it was conceptualised
during model development.

6.4.1 Application Context. Advancements in speaker verification
research have been funded by governments to advance intelligence,
defense and justice objectives [9]. The underlying use cases of
speaker verification in these domains have been biometric identifi-
cation and authentication. From this lens, the speaker verification
problem space has been conceptualized to minimize false positives,
which result in security breeches. Research on evaluation and conse-
quently also model development has thus focused on attaining low
FPRs. This dominant, but limited view promotes deployment bias
in new use cases, which require evaluation practices and evaluation
datasets tailored to their context.
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VoxCeleb 1 test VoxCeleb 1-E VoxCeleb 1-H
unique speakers 40 1 251 1 190
unique utterance pairs 37 720 579 818 550 894
speaker pairing details - random sample same gender, nationality
speaker pair inclusion criteria name starts with ’E’ all >=5 same gender, nationality speakers
female / male speakers (%) 38 / 62 45 / 55 44 / 56
female / male utterances (%) 29.5 / 70.5 41.8 / 58.2 41.1 / 58.9
count of nationalities 9 36 11
top 1 nationality (% speakers / utterances) US (62.5 / 59.6) US (63.9 / 61.4) US (67.1 / 64.7)
top 2 nationality (% speakers / utterances) UK (12.5 / 13.9) UK (17.2 / 18.3) UK (18.1 / 19.3)
top 3 nationality (% speakers / utterances) Ireland (7.5 / 6.7) Canada (4.3 / 3.8) Canada (4.5 / 3.9)

Table 2: VoxCeleb 1 evaluation sets show that the benchmark’s population is not representative across gender and nationality

Today, speaker verification is used in a wide range of audio-based
applications, ranging from voice assistants on smart speakers and
mobile phones to call centers. A low FPR is necessary to ensure
system security. In voice assistants, false positives also affect user
privacy, as positive classifications trigger voice data to be sent to
service providers for downstream processing [46]. When used in
forensic applications, false positives can amplify existing bias in
decision-making systems, for example in the criminal justice sys-
tem [17]. Even if the FPR is low, the speaker verification system
will have a high FNR as trade-off, and the consequences of this
must be considered. The FNR affects usability and can lead to a
denial of service from voice-based user interfaces. The more critical
the service, the higher the risk of harm associated with the FNR.
Consider, for example, the previously mentioned speaker verifi-
cation system used as proof-of-life of pensioners [31]. As long as
the system is able to identify a pensioner correctly, it relieves the
elderly from needing to travel to administrative offices, thus saving
them time, money and physical strain. If the system has disparate
FNR between demographic subgroups, some populations will be
subjected to a greater burden of travel.

Evaluation practices aside, many speaker verification applica-
tions will suffer from deployment bias when evaluated on the utter-
ance pairs in the VoxCeleb 1 evaluation datasets. Voice assistants in
homes, cars, offices and public spaces are geographically bound, and
speakers using them will frequently share a nationality, language
and accent. These user and usage contexts should be reflected in
the evaluation sets. The VoxCeleb 1 evaluation sets with randomly
generated utterance pairs (i.e. VoxCeleb 1 test and -E) are inadequate
to capture speaker verification performance in these application
scenarios. Even VoxCeleb 1-H, which derives its abbreviation -H
from being considered the hard evaluation set, is inadequate to
evaluate speaker verification performance in very common voice
assistant scenarios, such as distinguishing family members. Fur-
thermore, the naming convention of the evaluation sets promotes
a limited perspective on speaker verification application contexts:
naming VoxCeleb 1-H the hard evaluation set creates a false impres-
sion that the randomly generated utterance pairs of VoxCeleb 1-E
are the typical evaluation scenario.

6.4.2 Post-processing. The operating threshold of a speaker verifi-
cation system is calibrated after model training (see §3.2). This post-
processing step amplifies aggregation bias (discussed in §6.1) and
deployment bias due to the application context (discussed above).
The operating threshold is set in a calibration process that tunes
a speaker verification system to a particular evaluation set. If the

evaluation set does not take the usage environment and the char-
acteristics of speakers in the environment into consideration, this
can give rise to further deployment bias due to post-processing. As
discussed above, the VoxCeleb 1 evaluation sets encompass a very
limited perspective on application scenarios, and thresholds tuned
to these evaluation sets will suffer from deployment bias due to
post-processing in many contexts.

The speaker verification system threshold is typically calibrated
for the overall evaluation set. This gives rise to a form of aggrega-
tion bias that arises during post-processing and deployment. Instead
of calibrating the threshold to the overall evaluation set, it could be
tuned for each subgroup individually. Using the detection cost func-
tion as example, this means setting the threshold for a subgroup
to the value θ where CDet (θ ) is minimized for the subgroup (i.e.
CDet

(
θ@ SG min

)SG ). If the detection cost at the subgroup’s mini-
mum is smaller than at the overall minimum, then the subgroup
benefits from being tuned to its own threshold. By calculating the
ratio of the subgroup’s overall detection cost and the subgroup’s
minimum detection cost, we can get an intuition of the extent of
bias. If the ratio is greater than 1, the subgroup will benefit from
being tuned to its own threshold. The greater the ratio, the greater
the bias and the more the subgroup will benefit from being tuned
to its own minimum. Table 4 in the Appendix shows the ratios for
all subgroups. It is clear that all subgroups would perform better
if tuned to their own threshold. However, female speakers with a
mean ratio of 1.37 will experience greater benefit from threshold
tuning than male speakers with a mean ratio of 1.09. Visually, the
effect of calibrating subgroups to their own threshold can be seen
in Figure 11 in the Appendix.

7 DISCUSSION
In this paper we have presented an in-depth study of bias in speaker
verification, the data processing technique underlying voice bio-
metrics, and a core task in automated speaker recognition. We have
provided empirical and analytical evidence of sources of bias at
every stage of the speaker verification ML development workflow.
Our study highlights that speaker verification performance degra-
dation due to demographic attributes of speakers is significant, and
can be attributed to aggregation, learning, evaluation, deployment,
historical, representation and measurement bias. Our findings echo
concerns similar to those raised in the evaluation for facial recogni-
tion technologies [43]. While our findings are specific to speaker
verification, they can, for the most part, be extended to automated
speaker recognition more broadly. Below we present recommen-
dations for mitigating bias in automated speaker recognition and
discuss limitations of our work.

238



FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea Hutiri and Ding

7.1 Recommendations
7.1.1 Inclusive Evaluation Datasets for Real Usage Scenarios. We
have shown that speaker verification evaluation is extremely sensi-
tive to the evaluation set. The three evaluation sets specified for the
VoxCeleb 1 dataset induce evaluation bias, and are insufficient for
evaluating many real-world application scenarios. Representative
evaluation datasets that are inclusive on a speaker and utterance
level are thus needed. On an utterance level, an appropriate evalua-
tion set should contain sufficient utterance pairs for all speakers,
and pairs should reflect the reality of the application context. This
requires guidelines for constructing application-specific utterance
pairs for evaluation. As discussed in §5.3, our approach for con-
structing subgroups replicates measurement bias in the labelling
choices of VoxCeleb. Future work should consider speaker groups
based on vocal characteristics such as pitch, speaking rate, and
vocal effort, and consider speaker diversity across languages and
accents. Moreover, research on diversity and inclusion in subgroup
selection [30] presents a starting point that can inform the design
of more inclusive speaker verification evaluation datasets.

7.1.2 Evaluation Metrics that Consider Consequences of Errors.
Considering the consequences of errors across application con-
texts is necessary to reduce deployment bias in speaker verification.
Speaker verification evaluation and testing should carefully con-
sider the choice and parameters of error metrics to present robust
evaluations and comparison across models for specific application
contexts. To this end, guidelines are needed for designing appli-
cation specific error metrics, and for evaluating bias with these
metrics. Such guidelines should determine acceptable FPR and FNR
ranges, and guide normative decisions pertaining to the selection
of weights of cost functions. Alternative evaluation metrics, such
as those used for privacy-preserving speaker verification [25, 36],
should also be studied for evaluating bias. To assess aggregation
bias in speaker verification, disaggreated evaluation across speaker
subgroups is needed. DET curves, which have history in speaker
verification evaluation, should be used for visualizing model perfor-
mance across speaker subgroups. Additionally error metrics should
also be computed and compared across subgroups to mitigate eval-
uation bias.

7.1.3 Learning and Engineering Approaches for Mitigating Bias.
Bias in speaker recognition is a new area of study, and interven-
tions are needed to address learning, deployment, aggregation and
measurement bias. Wemake some suggestions for interventions that
can mitigate these types of bias. Speaker verification will improve
for all subgroups if they are tuned to their own threshold rather
than the overall threshold. Developing engineering approaches to
dynamically select the optimal threshold for subgroups or individ-
ual speakers will improve the performance of speaker verification
in deployed applications. Subgroup membership is typically not
known at run time, making this a challenging task with potential
trade-offs against privacy. Further research is also required to study
how optimisation for on-device settings, such as model compres-
sion, pruning and small-footprint architectures, affect learning bias.
Previous work in audio keyword spotting has shown that perfor-
mance disparities across speaker subgroups can be attributed to
model input features and the data sample rate at which the voice

signal was recorded [53]. Studying and mitigating sources of mea-
surement bias due to data processing and input features thus remain
an important area for future work.

7.2 Limitations
Our work presents the first study of bias in speaker verification de-
velopment and does not study bias in commercial products, which
we position as an area for future work. Our aim was to study typical
development and evaluation practices in the speaker verification
community, not to compare speaker verification algorithms. We
thus designed a case study with a confined scope, using publicly
available benchmark models as black box predictors. Our findings
should be interpreted with this in mind, and not be seen as a generic
evaluation for all speaker verification models. We constructed de-
mographic subgroups based on those included in the VoxCeleb1-H
evaluation set. Some subgroups thus have insufficient sample sizes,
which affects the quality of our empirical evaluation for these sub-
groups. However, as discussed in detail in §6.3, small subgroups
are in themselves a source of representation bias that needs to be
addressed. We observed that the performance difference that we
identified between male and female speakers, and across nationali-
ties, persist across small and large subgroups.

8 CONCLUSION
Automated speaker recognition is deployed on billions of smart de-
vices and in services such as call centres. In this paper we study bias
in speaker verification, the biometrics of voice, which is a core task
in automated speaker recognition. We present an in-depth empiri-
cal and analytical study of bias in a benchmark speaker verification
challenge, and show that bias exists at every stage of the machine
learning development workflow. Most affected by bias are female
speakers and non-US nationalities, who experience significant per-
formance degradation due to aggregation, learning, evaluation,
deployment, historic and representation bias. Our findings lay a
strong foundation for future work on bias and fairness in automated
speaker recognition.
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A APPENDIX
A.1 Speaker Verification Evaluation

Example Speaker Verification Output Score Distributions

Figure 6: Distribution of speaker verification scores: blue are same speaker trials, pink are different speaker trials. The dotted
lines are possible threshold values. Scores to the left of a threshold are rejected, scores to the right are accepted.

Example Detection Error Trade-off Curves

Figure 7: Detection Error Trade-off (DET) curve of a speaker verification system: the blue line shows false positive and false
negative error rates at different score values. For example, at the blue triangle the score = -1.024, FPR = 0.27% and FNR = 10.36%

Summary of Technical Details of VoxCeleb SRC Baseline Models

Model ResNetSE34V2 ResNetSE34L

Published in: [15] [5]
Alternative name in publication: performance optimised model, H/ASP Fast ResNet-34
Additional training procedures: data augmentation (noise & room impulse response) -
Parameters: 8 million 1.4 million
Frame-level aggregation: attentive statistical pooling self-attentive pooling
Loss function: angular portotypical softmax loss angular portotypical loss
Input features: 64 dim log Mel filterbanks 40 dim Mel filterbanks
Window (width x step): 25ms x 10ms 25ms x 10ms
Optimized for: predictive performance fast execution

Table 3: Attributes of two VoxCeleb SRC baseline models
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A.2 Representation Bias

Figure 8: VoxCeleb 1 Speaker Demographics
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A.3 Evaluation Bias

Figure 9:ResNetSE34V2DET curves for speaker subgroups evaluated on theVoxCeleb 1-H evaluation set. The dotted black lines
indicate the aggregate overall DET curve across all subgroups.

244



FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea Hutiri and Ding

A.4 Learning Bias

Figure 10: Learning bias based on model architecture
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A.5 Aggregation and Post-processing Deployment Bias

Subgroup (SG)
Unique
speakers CDet (θ@ overall min )

SG subдroup bias CDet (θ@ SG min )
SG threshold bias

mexico_m 5 0.090 0.5768 0.090 1.0000
newzealand_m 6 0.104 0.6668 0.086 1.2093
ireland_f 5 0.110 0.7109 0.070 1.5714
canada_m 29 0.114 0.7304 0.104 1.0962
usa_m 431 0.130 0.8357 0.122 1.0656
australia_m 25 0.140 0.9020 0.136 1.0294
usa_f 368 0.142 0.9224 0.140 1.0143
uk_m 127 0.148 0.9523 0.140 1.0571
ireland_m 13 0.162 1.0432 0.160 1.0125
australia_f 12 0.178 1.1523 0.154 1.1558
india_m 15 0.190 1.2200 0.144 1.3194
germany_f 5 0.208 1.3359 0.184 1.1304
canada_f 25 0.224 1.4501 0.202 1.1089
uk_f 88 0.226 1.4558 0.172 1.3140
norway_f 7 0.228 1.4711 0.210 1.0857
italy_f 5 0.276 1.7827 0.104 2.6538
norway_m 13 0.398 2.5720 0.396 1.0051
india_f 11 0.400 2.5766 0.318 1.2579

Table 4: Detection costs, subgroup bias and post-processing aggregation bias (see Equation 3) for subgroups at overall and
subgroup minimum thresholds with CDet (θ@ overall min )

overall = 0.154. Subgroups above the horizontal black line have a
subgroup bias less than 1 andperformbetter than averagewhen tuned toCDet (θ@ overall min ). Female subgroups are on average
subjected to more bias than male subgroups.

threshold bias =
CDet

(
θ@ overall min

)SG
CDet

(
θ@ SG min

)SG (3)

Figure 11: DET curves and thresholds for male and female speakers of Indian, UK and USA nationalities for ResNetSE34V2
evaluated on the VoxCeleb1-H test set.

Figure 11 shows DET curves and thresholds for ResNetSE34V2 for male and female speakers of Indian, UK and USA nationalities eval-
uated on VoxCeleb 1-H. We use the following conventions: triangle markers show the FPR and FNR at the overall minimum threshold
CDet

(
θ@ overall min

)SG , cross markers show the FPR and FNR at the subgroup minimum threshold CDet
(
θ@ SG min

)
, and dotted black

lines and markers are used for the overall DET curve and threshold. The DET curve of female Indian speakers lies far above the overall
aggregate, indicating that irrespective of the threshold, the model will always perform worse than aggregate for this subgroup. In the
operating region around the tuned thresholds, the model also performs worse for female speakers from both the UK and the USA. Being tuned
to CDet

(
θ@ overall min

)
does not affect the FNR and improves the FPR of USA female and male speakers. For other speaker subgroups,

especially UK females and Indian females and males, either the FPR or the FNR deteriorates significantly when tuned to the overall minimum.
For all subgroups the threshold at the subgroup minimum,CDet

(
θ@ SG min

)
, shifts the FPR and FNR closer to those of the minimum overall

threshold, suggesting that performance will improve when optimising thresholds for subgroups individually.
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A.6 Application Context Deployment Bias

Subgroup
Unique
speakers

FPR ratio
overall

FNR ratio
overall

mexico_m 5 0.0000 0.8173
canada_m 29 0.5171 0.9396
newzealand_m 6 0.5218 0.8487
norway_f 7 0.6306 1.9682
ireland_f 5 0.9037 0.8408
usa_m 431 1.0000 1.0000
australia_m 25 1.1055 1.0745
germany_f 5 1.5023 1.6162
ireland_m 13 1.6864 1.1675
usa_f 368 2.0542 0.9287
canada_f 25 3.1483 1.4749
uk_m 127 3.5339 0.6986
australia_f 12 5.6031 0.6008
norway_m 13 6.0866 2.5233
india_m 15 6.6852 0.4975
uk_f 88 7.8514 0.6168
italy_f 5 10.3484 0.6202
india_f 11 13.0387 1.2497

Table 5: FPR and FNR ratios for subgroups at CDet (θ@ overall min ). The ratio is calculated by dividing the subgroup FPR and
FNR by the overall FPR and FNR respectively. It thus presents a relative view on howmuch better or worse the subgroup error
rates are in relation to the overall error rates.
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