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E-mental health for depression is increasingly used in clinical practice, but

patient adherence su�ers as therapist involvement decreases. One reason

may be the low responsiveness of existing programs: especially autonomous

systems are lacking in their input interpretation and feedback-giving

capabilities. Here, we explore (a) to what extent a more socially intelligent

and, therefore, technologically advanced solution, namely a conversational

agent, is a feasible means of collecting thought record data in dialog, (b) what

people write about in their thought records, (c) whether providing content-

based feedback increases motivation for thought recording, a core technique

of cognitive therapy that helps patients gain an understanding of how their

thoughts cause their feelings. Using the crowd-sourcing platform Prolific, 308

participants with subclinical depression symptoms were recruited and split

into three conditions of varying feedback richness using the minimization

method of randomization. They completed two thought recording sessions

with the conversational agent: one practice session with scenarios and one

open session using situations from their own lives. All participants were able

to complete thought records with the agent such that the thoughts could

be interpreted by the machine learning algorithm, rendering the completion

of thought records with the agent feasible. Participants chose interpersonal

situations nearly three times as often as achievement-related situations in the

open chat session. The three most common underlying schemas were the

Attachment, Competence, and Global Self-evaluation schemas. No support

was found for a motivational e�ect of providing richer feedback. In addition

to our findings, we publish the dataset of thought records for interested

researchers and developers.

KEYWORDS

conversational agent, thought record, automated feedback, natural language

processing, cognitive therapy, feasibility
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1. Introduction

Software systems increasingly help to prevent and treat

depressive disorders. However, Richards and Richardson (1)

have shown that the more users are left to their own devices, the

higher the dropout rates. Similarly, participants in face-to-face

therapy often struggle with adhering to homework assignments

(2–6). We therefore explore (a) whether collecting thought

record data when mimicking the conversational style of in-

person care with a conversational agent is feasible, (b) what users

write about in their thought records, and (c) whether offering

feedback that demonstrates an understanding of the situation in

response to textual input is motivating.

Depression poses a serious liability to global public health:

it has a high lifetime prevalence and takes a greater toll

on people’s quality-adjusted life-expectancy than many other

chronic conditions (7). Although depression can be treated

effectively with medication, psychotherapy, or a combination

(8) and possibly even prevented entirely with a toolkit of

psychotherapeutic techniques, numerous barriers to seeking

and obtaining help exist (9). One way to address the resulting

treatment gap (10) is with e-mental health for depression,

delivering treatment or prevention programs via electronic

devices. As a result of the COVID-19 pandemic, e-mental health

for depression is increasingly finding its way into standard

clinical practice (11).

The landscape of technology-delivered depression treatment

and prevention systems is varied, ranging from video-

conferencing with a counselor1 to fully automated software

programs. A literature review on the state of the art of software

systems, however, revealed that the majority of systems are

low-tech implementations: most of their functional components

could receive information from users but were not interpreting

or reacting to this input autonomously (12). This contrasts with

face-to-face counseling, in which relational micro-skills of the

counselor are thought to lead to a better alliance (13) or better

rapport (14). One such micro-skill is called reflective listening

in the context of motivational interviewing. The counselor

demonstrates understanding and empathy by paraphrasing or

reflecting on what was said. The advances in various areas of

information processing in recent years offer an opportunity to

enrich autonomous systems with these micro-skills and observe

their effects. Here, we study whether feedback that provides an

interpretation of a user’s textual input can suffice to motivate

users.

One promising technology for use in healthcare contexts

are conversational agents. Provoost et al. (15), for example,

found that an agent that was simply mirroring users’

mood in an ecological momentary assessment task already

1 We use the term counselor here to subsume primary care providers,

coaches, counselors, and therapists.

had an adherence-stabilizing effect. Similarly, users who

received personalized messages from a conversational agent

felt more heard by the agent and were more motivated

to continue when symptoms worsened than those who

did not (16). And users of Woebot (17), a chatbot for

depression treatment, most frequently reported a lack of

understanding by the bot as the greatest nuisance when

interacting with it.

A therapeutic exercise that might benefit from support by

a conversational agent is thought recording. It is an integral

part of Cognitive Therapy (CT), an evidence-based therapy

form often used for the treatment (18) and sometimes used

for the prevention [e.g., the Penn Resiliency Program (19)] of

depressive disorders. CT rests on the idea that understanding,

challenging, and changing problematic appraisals (cognitive

restructuring) will improve affect. It lends itself to the dialog

format because thoughts are often thought and expressed in

natural language. Thought record forms provide patients with

a structured format for monitoring their feelings, thoughts, and

behavior in emotionally difficult situations to gain insight into

core beliefs or schemas, the underlying causative patterns of

thinking. Therapists ask patients to complete thought records

as close in time to the negatively experienced situation as

possible and thus outside of the face-to-face sessions. Patients

then bring the records to the sessions to discuss with the

therapist. As a consequence, the success of CT depends on

patients’ homework compliance (20, 21). However, adherence

to homework assignments is difficult for many patients (2–6).

Since depression commonly dampens motivation and a positive

outlook on the future, those with symptoms may be particularly

difficult to motivate (3).

In short, conversational agents are a promising technology

for supporting individuals with depression symptoms in

regularly completing thought records. In this work, we explore

the feasibility of providing such automated conversational

support for thought recording and report on the content of

the thought records. In addition, we study whether the agent

giving richer feedback, that is, feedback demonstrating a greater

understanding of the user input, has a motivational effect and

whether this effect is partially explained by the insight gained

from receiving richer feedback. Finally, Grant et al. (22) found

that people with a high need for self-reflection often keep

diaries, indicating that this character trait motivates them to

engage in self-reflection. Those who kept diaries, though, did

not necessarily have more self-insight than those who did not,

showing that self-reflection does not always lead to insight.

If a conversational agent aids in the step from self-reflection

to insight, however, those with a high need for self-reflection

might be more motivated. Based on these considerations, we

hypothesize (1) that as feedback richness expands, users are

more motivated to engage with the conversational agent, (2)

that this link is mediated by the insight that users gain from the

exercise and the feedback, and (3) that the link between feedback
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richness andmotivation is additionally moderated by users’ need

for self-reflection.

2. Materials and methods

We developed a conversational agent for the thought

recording task and let participants interact with this agent to

collect thought record data and to examine the motivating

effect of richer feedback. For the latter objective, we chose

a double-blind, between-subjects design. The independent

variable, feedback richness, was designed to have three levels:

acknowledging the reception of user input (low), feedback of low

richness plus process-related feedback concerning the amount

of input provided (medium), and feedback of medium richness

plus content-related feedback, i.e., giving an interpretation of

the input with regard to possible underlying schemas (high).

As dependent variables, we used the number of voluntarily

completed thought records in the second session with the

conversational agent as well as the engagement in self-reflection.

In addition, the mediating variable insight and the moderating

variable need for self-reflection were assessed. We obtained

ethical approval from the Human Research Ethics Committee

of Delft University of Technology (Letter of Approval number:

1600) and pre-registered the study on the Open Science

Framework (https://osf.io/5vucg).

2.1. Materials

The materials, including the informed consent, data

management plan, pre- and post-questionnaires, the task

instructions, the scenarios, the measures, the power analysis

simulation script, as well as all data relevant for the analyses

and the dataset of thought records can be found in the data

repository accompanying this article (23).

2.1.1. Conversational agent and
schema-identifying algorithm

We developed the conversational agent that engaged

participants in the thought record exercise using the chatbot

development platform Rasa (version 2.6). The agent received

a gender-neutral name (Luca). Luca had a deterministic

conversational style that relied on buttons to obtain answers

from the user for all interactions except within the thought

record and the downward-arrow technique. The thought

record form fields encompassed the four core elements of any

thought record: what happened that caused the participant

distress (situation), how they felt (emotion), what they thought

(automatic thought), and what they did in response (behavior).

In therapy, when the patient has learned to record their thoughts

in this simple format, the form can be extended in various

ways (24), for example, with the downward arrow technique.

The agent implemented this technique by taking the automatic

thought as a starting point and repeatedly asking the same

question about the previously stated thought to ultimately

arrive at a schema (25). In line with the technique of reflective

listening, the agent gave feedback of varying levels of richness

on the delineated thoughts (Figure 1). Low feedback richness

entailed that it thanked the participants for completing the

thought record and reminded them that completing more

thought records might provide insight into thought patterns.

Medium feedback richness consisted of the low-level feedback

but additionally presented participants with a diagram of the

number of downward arrow steps they had completed in this

thought record and all previous thought records and put this

number in relation to the number of people who had completed

as many steps in a previous study. For high feedback richness,

finally, the medium-level feedback was extended with natural

language processing to determine one or multiple schemas

that may have been activated. A spider diagram illustrated the

degree to which the algorithm deemed the schema(s) present

in the thought record using blue dots along nine schema axes.

Orange dots in the same diagram depicted the aggregated results

from previous thought records of this participant. The schemas

for this condition were determined using a set of nine neural

networks, one for each possible schema [see Burger et al. (26)

for details concerning how the networks were trained and

tested and Goodfellow et al. (27) for details concerning the

statistical foundations of recurrent neural networks]. Millings

and Carnelley (28) first identified and described the schemas,

which were obtained from a content analysis of thought records

collected from a clinical population with depression and/or

anxiety. The feedback of medium richness served as a control

condition for the feedback of high richness, as it allowed

separating the effect of giving feedback on participants’ efforts

from that of giving feedback that might generate insight.

2.1.2. Scenarios

The agent used a set of ten scenarios to select from for

the scenario-based thought records of the first session. These

were taken mostly from the Ways of Responding scale (29)

with two added from the Cognitive Error Questionnaire (30).

We divided the scenarios into two sets of five scenarios, one

with situations that might be difficult on an interpersonal

level (e.g., an acquaintance does not wave back at you)

and one with situations that might be difficult on an

achievement-related level (e.g., you were fired from your

new job for not meeting your quota). The agent presented

participants with one randomly chosen scenario from each of the

two sets.

2.2. Measures

We used the three subscales of the Self-Reflection and

Insight Scale (22) as measures: the Engagement in Self-Reflection

subscale for self-reported motivation (outcome variable), the
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FIGURE 1

Example feedback for the third thought record in the high feedback condition. Participants in this condition saw all three feedback types

combined. All participants received the first two sentences (low feedback richness). Participants in the medium feedback condition saw

everything up to the end of the first plot, while participants in the high feedback condition saw also what is shown in the second plot and could

optionally see the definitions for the schemas. In this thought record, three schemas were equally active and more so than the other ones as

determined by the algorithm. They are shown as the blue dots on the spider plot. The activation pattern of schemas across all thought records

of this participant is reflected in the size and location of the orange dots in the spider plot. New information was added to the plots after every

completed thought record for the feedback of medium and high richness.

insight subscale for self-insight participants gain from thought

recording with the agent (mediator variable), and the Need

for Self-Reflection subscale for participants’ general need to

reflect on their thoughts, emotions, and behaviors (moderator

variable). We modified the Insight and the Engagement in

Self-Reflection subscales to measure state rather than trait

variables. For example, the item “I am usually aware of my

thoughts” (Insight) became “Completing the thought-recording

task with the chatbot has made me more aware of

my thoughts.”

2.3. Participants

Participants were recruited from Prolific, a crowd-sourcing

platform for research studies. We pre-screened participants

on their depression symptoms using the 9-item patient health

questionnaire (PHQ-9) (31). In line with (32), we used the range

of 4 < score < 8 for selecting subclinical participants unlikely

to meet diagnostic criteria for depression. A clinical population

was not chosen for ethical reasons and a healthy population was

not chosen because we expected a subclinical population to be
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more similar to a clinical population in terms of motivational

barriers. Participants were not informed of their score or

the selection criterion. To participate in the pre-screening,

participants had to be at least 18 years of age and fluent

speakers of English. We recruited 2899 participants. Participants

with subclinical depression symptoms and those who did

not fail more than one attention check (519 participants)

were invited to participate in the next part of the study.

With a power analysis simulation following the bias-corrected

bootstrapping method (33) modified for a categorical predictor

and a Poisson-distributed outcome variable, we determined that

306 participants would be needed for a medium effect size [in

line with (34), at least 13% of the variance in feedback richness

estimated to be explained by insight, a-path, and at least 13% of

the variance in motivation estimated to be explained by insight

when controlling for feedback richness, b-path] at α = .05 and

power of 80%. We stopped recruitment after having complete

data of 306 participants, but, due to participants still being in

the pipeline when recruitment stopped, the final dataset contains

the data of 308 participants (143 female, 164 male, 1 other).

Their ages ranged from 18 to 75 with meanage = 30.97 and

SDage=11.66. Participants could be excluded for failingmultiple

attention checks, failing multiple instruction comprehension

questions, not taking the task seriously (writing gibberish,

copying and pasting content from other websites, writing

incoherent responses to the agent), or technical problems. In

total, 36 participants had to be excluded for one of these reasons

of which only one was excluded for not taking the task seriously.

2.4. Procedure

In the first part of the experiment, Prolific redirected

participants to the survey tool Qualtrics to complete the Need

for Self-Reflection scale (pre-questionnaire). Based on the result,

Qualtrics divided them into one of three possible buckets (low,

medium, and high need for self-reflection). Within a few hours

after completing the pre-questionnaire, a message on Prolific

invited participants to the next part of the experiment, which

consisted of instructions and the first thought recording session

with the conversational agent. Participants were blindly assigned

to the experimental conditions using the minimization method

of randomization (35) with the need for self-reflection buckets

as the only variate. The agent started the conversation in the

first session with a brief onboarding message. It then repeated

the main instructions. Upon presenting the first scenario to

the user, it proceeded with the thought record and downward

arrow form fields. Finally, it gave feedback depending on the

condition and asked if the participant was ready for the next

scenario. The first session always consisted of two scenario-

based thought records to become familiar with the task and

the feedback. Participants received an invitation via Prolific to

participate in the second session between 24 and 48 hours after

completing the first session. The second session proceeded as the

first but with the agent moving directly to the thought record

after an initial “welcome back" exchange. In the second session,

the agent asked participants to complete at least one but as many

additional thought records as they wanted. For the thought

records of this session, they were taking day-to-day situations

from their own lives. We compensated each session with 2GBP

based on an estimated completion time of 20 min. No extra

monetary compensation was provided for more completed

thought records to not interfere with motivation. Participants

were informed at the beginning of the second chat session

of the expected completion time for the post-questionnaire,

which included the Insight and Engagement in Self-Reflection

scales as well as any additional comments or feedback. In total,

participants could receive 4.3GBP for completing all parts of

the study.

2.5. Data and analysis method

To determine feasibility, we correlated the nine values of

the frequency distribution over the schemas as assigned by the

algorithm on this dataset with the distribution of two previously

collected datasets (26, 28). To this end, we recoded the labels

for each utterance from ordinal (0–schema not present to 3–

schema clearly present) to binomial (0–schema not present and

1–schema at least a little bit present). The same procedure

was followed for the dataset of Burger et al. (26). For the

Millings and Carnelley (28) dataset, however, we compare with

the frequencies reported in the article, which are based on

entire thought records rather than utterances and which were

manually assigned.

Two independent coders (one male and one female

computer science student) labeled all thought records of

the second session using the DIAMONDS framework for

psychologically relevant situation characteristics (36) to examine

the content of participants’ thought records in the second

session. They were trained on ten example thought records

in a joint session of 1 hour to clarify the definitions of the

DIAMONDS. Since participants were asked to report only

situations that caused a negative emotion, we dropped the

Positivity characteristic. Two further labeling categories were

added: COVID19-related and situation type (achievement-related

vs. interpersonal). All labels, were binomial (situation has or

does not have characteristic). Coders were instructed together

and coded 10 example situations (taken from the first chat

session) together with the first author before coding the

situations described by participants in the second chat session

independently. While interrater agreement was mixed on the

DIAMONDS, ranging from minimal κ = 0.25 (Negativity) via

moderate κ = 0.66 (Interpersonal) to strong κ = 0.83 (Mating),

the raters largely agreed on the frequency of labels within the

dataset (Pearson r = 0.89 based on 10 values).
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The reliability of the three subscales of the Self-Reflection

and Insight scale was good (Need for Self-Reflection: Crohnbach’s

α= 0.85 with [0.85, 0.86] 95%CI) and acceptable (Insight: α=

0.76 with [0.75, 0.77] 95%CI and Engagement in Self-Reflection:

α = 0.75 with [0.73, 0.76] 95%CI). The items of each subscale

were summed to obtain a summary score for the variables

need for self-reflection, insight, and engagement in self-reflection.

Engagement in self-reflection was negatively skewed (ceiling

effect) and we consequently boxcox-tranformed the data with

λ = 1.97 for use in the analyses.

We followed the Baron and Kenny method (37) to test for

the mediated effect. For the direct effect, this entailed fitting

a generalized linear model with a log-link function as the

behavioral outcome variable number of voluntarily completed

thought records was expected to be Poisson-distributed and

fitting a second linear model for the self-report outcome variable

engagement in self-reflection. A further linear model was fit

to test whether feedback richness affected insight (mediator).

Finally, we fit one generalized linear model and one linear

model to assess the effect of the mediator on each of the

two outcome variables. Due to the lack of mediation observed

in these models, we did not test for moderated mediation.

However, we checked with two linear regressionmodels whether

participants’ need for self-reflection (moderator) moderated the

direct link between the feedback richness and either of two

outcome variables.

3. Results

All 308 participants were able to complete thought records

with the conversational agent. Of the 93 participants who

chose to comment, 34 reported that they found the experiment

insightful, with five participants specifically mentioning the

added value of the agent and the feedback (“The chatbot makes

the experience more friendly,” “shows that chatbot can offer

a sincere alternative to human response,” “[...] get immediate

feedback than on a paper which feels sometimes too much like

homework,” “[...] I felt like someone was paying attention to

me,” “this chatbot is really helpful in discovering my thought

patterns”). However, another five participants also commented

that they struggled with the downward arrow technique and

would have liked more agent or even human support (“I know

it’s a chatbot, but I wish Luca could engage a little more when

trying to work your way down the arrow,” “it was really hard

to go down the thought steps instead of in circles, i feel like

maybe a human would’ve been able to help with that,” “I also

would prefer to do this activity with a real person rather than

a chatbot,” “It is not always easy to figure out what the next

drill down should be,” “Was somewhat confused to break my

thought patterns down in the arrow scheme though”). Only

two participants remarked negatively about the rich feedback (“I

think Luca’s overall assessment of my core beliefs was decent, but

not perfect” and “I found the circular diagram a bit difficult to

understand”) and one in the low-level feedback condition about

the lack thereof (“I did not see any feedback from the chatbot, it

would be nice to”).

The relative frequency distribution with which the schema-

labeling algorithm identified certain schemas in this dataset

compared to that of the previous study by Burger et al. (26)

correlated highly for both the scenario-based (Spearman’s ρ

= 0.93) and the personal thought records (Spearman’s ρ =

0.95). The schema frequency distribution of both scenario-based

and personal thought records taken together also correlated

positively (Spearman’s ρ = 0.57) with that reported by Millings

and Carnelley (28) (Figure 2). Across all three datasets, the

most frequently occurring schemas were the Attachment,

Competence, and Global Self-Evaluation schemas.

We present a typical thought record situation for each

content label in Table 1. Besides reporting mostly negative

situations (98% Negativity), participants opted for more

interpersonal and social than achievement-related or intellectual

situations.

Participants felt engaged in self-reflection when completing

the thought records (mean = 29.56, SD = 4.04), but completed,

on average, only 1.62 (SD = 0.72) thought records in the second

session. The direct effect of feedback richness on either of these

measures of motivation (Figure 3) was not observed. There was

also no effect found for the feedback richness on the mediator

variable insight (a-path). As a consequence, partial mediation

was no longer relevant. Nonetheless, a significant link between

the mediating variable insight was found for both measures of

motivation (b-path): for every additional scale point of insight

they report, participants complete 1.03 times as many thought

records [b = 0.03, z(304) = 2.12, p = 0.03] and feel 4.91 scale

points more engaged [b = 11.14, t(304) = 11.30, p < 0.001] on

a scale ranging from 6 to 36.

The moderator need for self-reflection had no effect on the

direct link between feedback richness and either of the two

motivation measures. Additionally, participants’ need for self-

reflection did not predict howmany thought records they would

do voluntarily. It did, however, explain their engagement in the

task with participants feeling 4.42 scale points more engaged

with every additional scale point of their self-reported need for

self-reflection [b = 8.97, t(302) = 3.69, p < 0.001].

4. Discussion

The findings show that thought recording with a

conversational agent is feasible for a subclinically depressed

population: 100% of participants completed the thought

records such that the machine learning algorithm trained

on a similar dataset could label thoughts with regard to the
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FIGURE 2

Frequency of occurrence of schemas in this dataset compared to a previously collected dataset (26), in which participants completed thought

records in survey format, and that of Millings and Carnelley (28). In the current dataset and the one collected by Burger et al. (26) schemas are

identified by an algorithm from thoughts (automatic thought or any downward arrow step), while in the dataset by Millings and Carnelley (28),

schemas were identified by the authors and from entire thought records. While the algorithm assigns ordinal codes corresponding to the degree

to which a schema was present, for the purpose of this analysis, we recoded these scores to binomial scores with all values above 0 being

coded as 1. Closed thought records are those based on scripted scenarios while open thought records are those in which participants report on

situations from their lives.

underlying schemas. The distribution of the thus assigned

schema labels not only closely resembles that of the dataset

used for training the algorithm (healthy population) but also

the manually labeled dataset of Millings and Carnelley (28)

(clinical population). In addition, participants frequently

reported enjoying the experiment and finding it so valuable

that they intended to continue using the technique in their

day-to-day lives. Prior studies looking into the feasibility of

using conversational agents for mental health interventions

have found similar results concerning user satisfaction and

ability to interact with the conversational agents (38, 39),

but none had specifically studied thought record completion

before. In terms of content, participants’ personal thought

records concerned interpersonal (58%) or social situations

approximately three times more often than achievement-related

(19%) or intellect-related ones, which is also reflected in the

schemas, with the Attachment schema being identified by the

algorithm more than the Competence schema. Despite around

4% of situations mentioning the COVID-19 pandemic, the

Health schema was not more active in this dataset than in the

ones collected before the pandemic. This is likely due to the

training dataset of the algorithm being biased toward dieting

situations for this particular schema. It can also be seen from

the frequency of the Negativity label that participants were

able to choose negative situations (98%) as instructed but

sometimes put a positive spin on the meaning of the situation

for themselves (e.g., “It says that I don’t have to feel obliged

to do anything for anyone, and I don’t want to feel that way”).

It is important to note here, however, that the participants

were subclinically depressed and these findings concerning the

feasibility and content of the thought records may not generalize

to a clinical population.

We did not observe the hypothesized effect of feedback on

motivation: the results did not show that the feedback richness

influenced either themotivation of participants (direct effect) or

the hypothesized mediating variable insight participants gained

from the task. However, participants’ gained insight positively

related to both measures of motivation, and participants who

reported a greater need for self-reflection also reported being

more engaged in the task. When regarding these findings,

limitations of the feedback on the one hand and of motivation

on the other should be considered. For one, the spider plot and

the academic definitions of the schemas in the rich-feedback

condition might not have been as accessible as we had hoped

Frontiers inDigital Health 07 frontiersin.org

https://doi.org/10.3389/fdgth.2022.930874
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org


Burger et al. 10.3389/fdgth.2022.930874

TABLE 1 Example thought record situations for each content label.

Label Explanation IRR (κ) MRF (%) Example situation

Achievement-related Situations in which self-esteem is at risk because it is

possible to perform poorly.

0.58 19 When I didn’t get a job I was interviewed for.

Interpersonal Social situations that can affect one’s self-worth. 0.66 60 My colleague blamed me for their mistake.

COVID-related Thought records in which participants mention

COVID-19.

0.83 4 Staying indoors a lot due to the pandemic.

Duty Situations that require executing a task conscientiously or

dutifully.

0.43 27 I had to give a presentation.

Intellect Situations that are cognitively stimulating. 0.46 19 I was worried about sitting an exam for university.

Adversity Situations in which one is criticized, blamed, or

dominated.

0.58 21 I was really sick and my then-boss made me work while I

was sick.

Mating Situations that involve potential or actual romantic

partners.

0.83 19 My husband is stressed and moody because of it.

Negativity Situations that are anxiety-inducing, stressful, frustrating,

upsetting.

0.25 98 I rejected a holiday job offer because it paid too little and

now I cannot find anything else.

Deception Situations that can result in feelings of hostility due to

deception or sabotage.

0.35 13 I found out I was being cheated on by my girlfriend.

Sociality Situations that involve social interaction. 0.32 48 I was given a huge amount of rudeness and grief by a

customer at work.

The column IRR shows the InterRater Reliability while the columnMRF shows the Mean Rater Frequency, i.e. the mean of how frequently the raters found a specific label to occur in the

dataset. Labels were not mutually exclusive.

and therefore did not add the expected value. This could be

addressed in future research by following an cyclic design

approach including both end users and graphical designers,

simplifying the feedback, including measures of graphic literacy

and health literacy as moderators, or conducting pilot studies

to determine whether feedback is processed as desired. In

line with this, articles concerning the design of graphical

feedback in behavior change support systems argue for the

importance of health literacy and usability as guiding principles

(40, 41), and platforms that have successfully used complex

informational feedback in graphical format have done so in

collaboration with a design company and with an iterative

refinement process (42). Another possible limitation of the

feedback is that participants may have perceived the richer

feedback as discrepant with the otherwise limited conversational

capabilities of the agent. As far as motivation is concerned,

this was measured with just one session, such that small

issues like participants misclicking, minor technical glitches, or

external disturbances may have played a larger role than in a

long-term study. Additionally, motivation may also have been

adversely affected by the monetary compensation in the online

context and may have panned out differently with patients

being internally motivated by a desire to get healthy. Lastly,

our participant sample included more males than females,

which is noteworthy due to depression being more prevalent

in women. Future research might therefore consider looking

into a moderating effect of gender. When looking more closely

at the distribution of schemas in the different populations

(Figure 2), the clinical sample differs most markedly with

respect to theGlobal self-evaluation, theMeta-Cognition, and the

Other’s views on self schemas. Since self-evaluation and meta-

cognition are likely to also be linked to one’s need for self-

reflection and one’s engagement in self-reflection, it is possible

that the results would play out differently in a clinical sample.

Since the experiment was not underpowered, however, and

some limitations pertain to all three conditions, we conclude

from the null results that this type of feedback richness is

unlikely to have a large effect on motivation regardless of the

limitations.

In summary, people with subclinical depression symptoms

are capable of thought recording with a conversational agent.

Not only were the thoughts they recorded of sufficient richness

to allow for automatic schema identification, but the three most

frequently occurring schemas (Attachment, Competence, and

Global Self-evaluation) in this sample of subclinically depressed

participants were the same as in previous work with healthy

(26) and with clinical (28) populations. However, no support

could be found that richer feedback leads to a higher motivation

to engage with thought recording. More research and perhaps

participatory design are needed to determine engagement

strategies for the agent that can lead to greater adherence.

One possible route to explore is to combine the content-

based feedback generated by reflective listening with additional

communication strategies of motivational interviewing, such

as establishing rapport or eliciting self-motivational messages

(43). Finally, the study could be repeated with a clinical
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FIGURE 3

Results of all paths of the mediation and moderation analyses, with the behavioral outcome measure of motivation, number of voluntarily

completed thought records in the second chat session, shown in (A) and the self-reported one, boxcox-tranformed (λ = 1.97) engagement in

self-reflection, shown in (B).

population to determine the role that other (de-)motivational

forces, such as dampened enjoyment of tasks and the wish

to get healthy, play in this population. We contribute the

dataset of collected thought records and all measures for
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researchers and developers interested in working with this

data.
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