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Abstract

In this study, the existence of anchoring bias—people’s tendency to rely on, evaluate, and decide based on
the first piece of information they receive—is examined in two multi-attribute decision-making (MADM)
methods, simple multi-attribute rating technique (SMART), and Swing. Data were collected from university
students for a transportation mode selection. Data analysis revealed that the two methods, which have dif-
ferent starting points, display different degrees of anchoring bias. Statistical analyses of the weights obtained
from the two methods show that, compared to Swing (with a high anchor), SMART (with a low anchor) pro-
duces lower weights for the least important attributes, while for the most important attributes, the opposite is
true. Despite their differences in anchoring bias, analytical approaches supported by empirical studies suggest
that both methods (SMART and Swing) overweigh the less important attributes and underweigh the more
important attributes. As such, we examined whether the best-worst method (BWM), which has two opposite
anchors in its procedure (a possible promising anchoring debiasing strategy), could produce results that are
less prone to anchoring bias. Our findings show that the BWM is indeed able to produce lower weights (com-
pared to SMART and Swing) for the less important attributes and higher weights for the more important
attributes. This study shows the vulnerability of MADM methods with a single anchor and supports the idea
that MADM methods with multiple (opposite) anchors, like BWM, are less prone to anchoring bias.

Keywords: cognitive bias; anchoring bias; multi-attribute weighting; MADM; SMART; Swing; best-worst method

1. Introduction

Multi-attribute decision-making (MADM), also called multi-criteria decision-making (MCDM),
involves evaluating different alternatives (options) with respect to certain attributes (criteria) with
the ultimate aim of ranking, sorting, or selecting the alternatives. In any MADM problem, a list
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of alternatives and a list of attributes must be identified. The attributes not only improve decision-
makers’ (DMs) ability to define the alternatives, but their relative importance also plays a crucial
role in formulating and solving the problems. The main subject of this study is the identification of
the relative importance (weight) of the attributes. Various MADM weighting methods have been
developed in recent decades, most of which are based on DMs’ evaluation and subjective judgment
concerning the weights of the attributes. As Tversky and Kahneman (1974) explained, people’s
subjective judgments rely on a limited number of heuristic principles that reduce the complex tasks
involved. Generally, heuristics help simplify the decision-making process. However, in some cases,
they lead to error and deviations from rational decision-making, as a result of which the optimal
results in a problem are distorted (Bazerman and Moore, 1994). The errors involved are known as
cognitive biases, and to date, researchers have identified many cognitive biases, and the subjective
process of eliciting weights in MADM problems is prone to these cognitive biases. We need to
examine these biases in MADM weighting methods and provide effective debiasing solutions to
reduce their impact on the final results.

Despite the rich literature on cognitive biases in behavioral psychology, few researchers have so
far discussed cognitive biases in the MADM field (Montibeller and von Winterfeldt, 2015b; Mart-
tunen et al., 2018; Rezaei, 2021). Range insensitivity bias (Gabrielli and von Winterfeldt, 1978; Von
Nitzsch and Weber, 1993; Fischer, 1995; Pöyhönen and Hämäläinen, 2000; Lin, 2013), proxy bias
(Fischer et al., 1987), equalizing bias (Rezaei et al., 2022), splitting bias (Borcherding and von Win-
terfeldt, 1988; Weber et al., 1988; Pöyhönen and Hämäläinen, 1998, 2000, 2001; Jacobi and Hobbs,
2007; Hämäläinen and Alaja, 2008), framing bias, loss aversion, and status quo (Deniz, 2020), and
anchoring bias (Corner and Buchanan, 1997; Rezaei, 2021) are among the cognitive biases that re-
searchers have examined within the context of MADM. There are also some comprehensive studies
on the theoretical implications of cognitive biases in MADM, which highlight the need to conduct
empirical and experimental analyses and examine different biases in real-world decision-making
problems (Montibeller and von Winterfeldt, 2015a, 2015b, 2018; Montibeller, 2018).

Of the cognitive biases, anchoring bias has been shown to be a more visible and crucial bias
in MADM weighting methods. Anchoring bias, also called “anchoring and adjustment,” is a bias
that occurs when people make estimates by starting from an initial value and adjusting (which is
usually insufficient) that value to reach the final answer, and the results are biased toward the initial
values (Tversky and Kahneman, 1974). All MADM weighting methods have their own execution
procedure for DM evaluation, which leads to different starting points and the associated anchoring
bias. In this research, we examine the cognitive bias in MADM weighting methods by looking at
a real decision-making problem and providing a debiasing solution to mitigate anchoring bias. To
that end, we examined the problem using two well-known MADM weighting methods, the simple
multi-attribute rating technique (SMART) (Edwards, 1977) and Swing (von Winterfeldt and Ed-
wards, 1986). The reason we selected these particular methods is that they have opposite starting
points (anchors), making them interesting subjects for investigating anchoring bias. SMART has a
lower bound anchor and starts with the least important attribute, while Swing has an upper bound
anchor and starts with the most important attribute. We propose a hypothesis to test the opposite
behavior of these two methods with respect to anchoring bias and test that hypothesis using ex-
perimental analysis, after which, following previous studies that have suggested that methods that
involve “multiple and counter-anchors” or “consider-the-opposite-strategy” could remedy anchor-
ing bias (Montibeller and von Winterfeldt, 2015a, 2015b, 2018; Rezaei, 2021), we chose best-worst
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method (BWM), a method that meets that important qualification, as a remedy for anchoring bias
and formulated another hypothesis, which we also tested using the experimental analysis, to exam-
ine its effectiveness. Rezaei (2021) argued that the two-vector mechanism that exists in the BWM
might help cancel out the impact of anchoring bias and proposed examining the effectiveness of
its inherent anchoring debiasing feature in an experimental study. Recently, he has shown how the
two-vector mechanism actually cancels out the effect of anchoring bias, which occurs in every single
vector (Rezaei, 2022).

The main contribution of this study is twofold. First, we investigate anchoring bias in SMART
and Swing in a real-world decision-making problem and find that the two methods have different
directions of anchoring bias. Second, we examine the debiasing power of the BWM, which could be
a remedy to the anchoring bias found in single anchor methods. We found that the BWM, which has
two (opposite) anchors, could lead to less biased conclusions. Finally, this study provides significant
insights into the mechanism of anchoring bias in MADM methods.

In Section 2, the theoretical background of anchoring bias, its main causes, debiasing strategies,
and anchoring bias in MADM are discussed. In Section 3, the MADM weighting methods used
in this research are described. In Section 4, the research hypotheses are formulated, and the ex-
periment design is discussed. Data analysis and discussion are provided in Section 5, and finally,
Section 6 presents the conclusion and future research suggestions.

2. Theoretical background

In this section, we start by discussing anchoring bias, after which we look at the main causes of
anchoring bias and the main debiasing strategies from the behavioral psychology literature. Finally,
we discuss studies that have addressed anchoring bias within the context of MADM.

2.1. Anchoring bias

The word “cognitive” is derived from the Latin word “cognate,” meaning consciousness, which is
rooted in the concept of bounded rationality proposed by Simon (1957). DMs usually have lim-
ited time, money, and information at their disposal when faced with a decision-making problem,
which is why they look for a satisfactory solution rather than an optimal and fully rational one.
Tversky and Kahneman continued Simon’s work, providing details of the systematic biases that
affect people’s judgments, and their efforts have led to our understanding of the judgments and
cognitive biases that play a role in decision-making (Tversky and Kahneman, 1974). They found
that people rely on simplifying strategies and rules of thumb in their decision-making and called
these strategies “heuristics.” Although these rules reduce the complex tasks of the decision-making
process due to time, cost, information, and the DM’s cognitive ability limitations, in some cases,
they lead to cognitive biases and ultimately sub-optimal decisions. So far, many cognitive biases
have been identified, with anchoring bias being one of the most important, widely studied, and
well-known cognitive biases (Ünveren and Baycar, 2019), one that was first discussed by Tversky
and Kahneman (1974). Anchoring bias refers to the fact that DMs will place more importance on
an initial value in their judgment, after which they will try to adjust the initial value to arrive at a
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more meaningful evaluation. However, the adjustments are usually insufficient, which is why this
bias is also called “anchoring and adjustment.” Researchers have identified two ways in which an-
chors (initial values) affect the anchoring and adjustment process, named “with explicit direction”
and “without explicit direction.” In the first way, people’s attention is explicitly directed toward
anchors by the information that is provided first. For example, Tversky and Kahneman (1974) con-
ducted an experiment and asked subjects to estimate the proportion of United Nations member
states in African nations. Subjects were randomly assigned to 10% or 65% by spinning a wheel
of fortune, with numbers ranging from 0% to 100%. Then, they asked people to name the actual
percentage. The results showed that the randomly assigned percentages affected people’s responses.
Subjects who had been given a low anchor (10%) gave a lower response (25% on average) than
those who were given a high anchor (65%), who gave a higher response (45% on average). However,
the second way anchors can occur involves incidental, informative, or self-generated anchors. For
example, Critcher and Gilovich (2008) asked subjects to estimate the percentage of new phone sales
with the model numbers “P17” and “P97.” The results showed that people’s sales forecasts were
affected by the incidental anchor contained in the model number, and the estimates for P97 were
higher than those for P17, even though, in reality, the model number had nothing to do with the
product’s quality, novelty, or price.

Anchoring bias has been discussed extensively in psychology (Lieder et al., 2018), medical science
(Richie and Josephson, 2018; Pines and Strong, 2019), financial studies (Jetter and Walker, 2017;
Shin and Park, 2018), marketing (Esch et al., 2009), organizational studies (Thorsteinson et al.,
2008), project management (Lorko et al., 2019), tourism management (Wattanacharoensil and La-
ornual, 2019), social science (Meub and Proeger, 2015), decision support systems (George et al.,
2000), and other fields. For more information about various applications of anchoring bias, see
Furnham and Boo (2011).

2.2. Main causes of anchoring bias and debiasing strategies

The anchoring and adjustment process is the earliest anchoring bias mechanism (Tversky and Kah-
neman, 1974), which is known as the “standard paradigm” of anchoring bias in the literature (see
e.g. in Section 2.1). In this mechanism, DMs adjust their estimation from the initial value toward
the range of plausible values. This adjustment stops in the upper or lower bounds of the plausible
values range, which means the adjustment is insufficient (Strack and Mussweiler, 1997). However,
this adjustment process is not required for all types of anchors, and researchers have found that it
is required when the anchor is self-generated (Furnham and Boo, 2011).

Researchers have mentioned other mechanisms for this bias in recent years, known as “selec-
tive accessibility” or “confirmatory search” (Chapman and Johnson, 1994; Strack and Mussweiler,
1997; Mussweiler and Strack, 1999) and “attitude change” (Wegener et al., 2001), and argue that
these mechanisms are the best explanations for the anchoring and adjustment process in cases where
there is an externally provided anchor.

In the selective accessibility mechanism, DMs test the hypothesis that the externally provided an-
chor is the correct answer for the decision-making problem. In this way, they look for information
that is similar and consistent with the anchor to confirm this hypothesis and ignore information that
leads them to reject the hypothesis. The value of the final estimation is affected by this accessibility
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of information. For example, Mussweiler and Strack (1999) asked subjects in an experiment
“whether the average price for a new car is higher or lower than 40,000 Deutschmarks” as a high
anchor question. The results showed that the participants named expensive car brands, like BMW,
more quickly than the less expensive ones, like Volkswagen Golf, because the expensive brands are
more consistent than the cheaper ones with the anchor being provided, which acts as the hypothe-
sis for the DM. However, when subjects in a separate experiment were asked “whether the average
price for a new car is higher or lower than 20,000 Deutschmarks,” as a low anchor question, the
participants named the cheaper brands before they mentioned the more expensive ones.

In the attitude change mechanism, like the elaboration likelihood model (Petty and Cacioppo,
1986), factors like the credibility of the source or the mood of a message recipient act as a persua-
sion driver and can take on different roles, which can ultimately affect their attitudes in rational
or irrational, thoughtful or non-thoughtful ways. In this mechanism, anchors play two different
roles as a cue (hint) to provide plausible answer value or by indirectly influencing the DMs toward
the anchor and bias the decision-making so that anchor-consistent information is activated. The
former role is “low-elaboration” or “non-thoughtful,” while the latter role is “high elaborative” or
“thoughtful” anchoring.

Researchers have shown that anchoring bias is a robust and pervasive cognitive bias (Furnham
and Boo, 2011), and they have tried to provide ways to mitigate the effect of the bias on the fi-
nal answer of DMs. Table 1 describes these debiasing solutions mentioned in behavioral research.
Note that there is an inconsistency between studies examining the effectiveness of these solutions
in regard to mitigating the impact of anchoring bias. The solutions included in this table have been
proven in experimental studies with their own conditions, and there is no guarantee they can be
applied effectively to other problems and situations.

As we can see from Table 1, most debiasing strategies focus on the characteristics of the DM
(e.g., expertise, cognitive ability), while some (e.g., “consider-the-opposite” strategy) are related to
the decision-making procedure (method). While the former category has been studied in behavioral
psychology, in the field of MADM, in this study, we are more interested to see how we could use
debiasing strategies as a tool (e.g., “consider-the-opposite” strategy) in devising a method that is less
prone to anchoring bias. Based on the literature listed above, this debiasing solution is appropriate
for externally provided anchors, and as we know, in the methods considered in this study (SMART
and Swing), external anchors (low anchor 10 for SMART and high anchor 100 for Swing) are
provided to the subjects involved.

2.3. Anchoring bias in MADM

Despite the vast body of literature on anchoring bias in various research areas, only a few studies
have thus far looked at anchoring bias within the context of MADM weighting methods, some of
which are briefly discussed below. Rezaei (2021) examined anchoring bias in SMART and Swing
methods, compared the estimates provided by the subjects to the actual results of the normative
decision-making problem, and showed that potential anchoring bias exists in each of the two meth-
ods. Rezaei argued that both methods produce greater (than actual) weights for the less important
attributes and lower (than actual) weights for the more important attributes. Generalization of
the findings of his study should be made carefully due to two important facts: (i) in his study,
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Table 1
Debiasing solutions for anchoring bias

Solution Description References

Expertise The decision-makers (DMs) with a high
level of expertise and knowledge about the
decision-making problem are less affected
by the anchoring bias

Downen et al. (2019), Kaustia et al.
(2008), Smith and Windschitl (2015),
Welsh et al. (2014), and Wilson et al.
(1996)

Incentives Incentives reduce the impact of anchoring
bias because of the accuracy of
motivation and increase the adjustment

Epley and Gilovich (2005, 2006), Meub
and Proeger (2016), Welsh et al. (2014),
and Wright and Anderson (1989)

Personality Some personality dimensions are more
susceptible to anchoring bias than others

Caputo (2014), Eroglu and Croxton
(2010), and McElroy and Dowd (2007)

Cognitive ability Higher cognitive abilities lead to a reduction
in the effects of anchoring bias

Bergman et al. (2010) and Meub and
Proeger (2016)

Mood DMs who are sad are more prone to
anchoring bias

Bodenhausen et al. (2000), Englich and
Soder (2009), and Estrada et al. (1997)

Time pressure Time pressure increases the likelihood that
the DMs fail to make adequate
adjustments and increases the impact of
anchoring bias

Yik et al. (2019)

Training Training and being provided with
information about anchoring bias and
debiasing solutions can reduce the effect
of anchoring bias

Adame (2016), Lee et al. (2016), and
Meub and Proeger (2016)

Consider-the-opposite Consider-the-opposite strategy mitigates the
effect of anchoring bias (especially for
external anchors) because of the multiple
and inconsistent anchors being provided

Lord et al. (1984) and Mussweiler et al.
(2000)

Group decision-making Group decision-making leads to a reduction
in anchoring bias because of the different
anchors considered by different DMs
involved

de Wilde et al. (2018), Meub and Proeger
(2018), and Sniezek (1992)

graphical representation information is used to check the anchoring bias in subjects’ estimation.
Existing literature shows that different graphical representation information could lead to differ-
ent levels of precision in estimation, something that has not been considered in that study and has
been extensively studied in the literature (Korhonen and Wallenius, 2008; Gettinger et al., 2013; Liu
et al., 2014; Miettinen, 2014; Wachowicz et al., 2019). Regarding the impact of graphical represen-
tation information on anchoring bias in decision-making, we refer to Cho et al. (2017). (ii) While in
his study, a particular problem has been used for the experimental analysis such that we are able to
find the actual/true values as a benchmark to measure the degree of anchoring bias, in almost all
real-world decision-making problems, the actual/true weights are unknown (Weber and Borcherd-
ing, 1993). In fact, “there is no golden standard for weighting, that is, no measure of a “true” weight
is available” (van Til et al., 2014). Lahtinen et al. (2020) looked at how we could reduce anchoring
bias in the even swaps process. They developed four debiasing methods, including “introducing a
virtual reference alternative in the decision problem,” “introducing an auxiliary measuring stick
attribute,” “rotating the reference point,” and “restarting the decision process at an intermediate
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step with a reduced set of alternatives.” They described that rotating the reference point is simi-
lar to using multiple anchor points when estimating results and argued that these methods could
be utilized in weight elicitation using the Swing and trade-off methods to reduce cognitive biases.
Montibeller and von Winterfeldt (2018) examined individual and group biases in value and uncer-
tainty judgments in a comprehensive literature review and argued that anchoring bias is a relevant
individual cognitive bias in the elicitation of value or utility functions task of MADM and that
debiasing strategies try to avoid anchors, providing multiple and counter-anchors and using differ-
ent experts who use different anchors. Montibeller (2018) looked at behavioral challenges in policy
analysis with conflicting objectives by describing his experience in various decision-making projects,
for instance, the World Health Organization. The author argued that anchoring bias exists in the
modeling values task and proposed debiasing strategies using counterfactuals and multiple experts,
among other things. Montibeller and von Winterfeldt (2015b) reviewed biases and debiasing in
MADM and proposed some debiasing strategies, including avoiding anchors, providing multiple
and counter-anchors, and using different experts with different anchors to mitigate anchoring bias.
Buchanan and Corner (1997) examined the performance of the MADM solution methods from a
behavioral perspective, describing an experiment involving the effects of the anchoring and adjust-
ment bias in two different interactive solution methods, the “free search interactive” and “Zionts
and Wallenius” methods, and found that both the final result and the intermediate iteration solu-
tion are likely to be influenced by the starting solution and the solution provided in the previous
iteration. Based on that, they hypothesized that the more structured interactive solution method
would enhance the effect of anchoring and adjustment bias, and the production scheduling deci-
sion problem adapted from Wallenius (1975) was used to examine that hypothesis. Their measure
of anchoring relies on a Euclidian distance measure that measures how far participants have moved
from their starting solution, determined by rank order weights by the SMART method. The results
suggest that subjects are anchored by the starting point in the Zionts and Wallenius method but that
the effect of anchoring is not significant in the free search method. Korhonen and Wallenius (1997)
reviewed behavioral issues in MADM to improve the success of decision tools in practice, arguing
that both in single DM and group DM tasks, the DM’s most preferred solution may depend on
the starting point and/or the path leading to the most preferred solution. The authors mentioned
that there is evidence to suggest that the “path” or sequence in which solutions or settlements are
presented to DMs may affect the final choice. Based on those results, the authors suggested looking
at the problem from different perspectives and using multiple representations and multiple starting
points to reduce anchoring bias in MADM methods.

The literature review presented above revealed that, despite the importance of anchoring bias
in MADM weighting, there are gaps in this area that this study tries to cover. One of the main
gaps is the lack of experimental research into anchoring bias using a real-life MADM weighting
problem, which is also indicated by Rezaei (2021). Another gap involves assessing the effectiveness
of existing debiasing tools as argued by Montibeller (2018) and Montibeller and von Winterfeldt
(2015a, 2015b, 2018). Finally, different MADM methods could result in different weights for the
same problem (Doyle et al., 1997; Bottomley and Doyle, 2001; van Til et al., 2014), and based on
Corner and Buchanan (1997), Fox and Clemen (2005); Marttunen et al. (2018), some weighting
methods may be more prone to cognitive biases than others, which means it would be interesting
to see whether the different methods lead to systematic differences in the estimated preferences. As
such, in this research, we examine some weight elicitation methods that use opposite procedures in
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obtaining a starting point from a DM in a decision-making problem to examine the occurrence of
anchoring bias and provide some suggestions to mitigate this bias.

3. MADM methods

There are several methods for determining attribute weights in MADM literature (for more in-
formation, see Weber and Borcherding, 1993; Triantaphyllou, 2000; Pöyhönen and Hämäläinen,
2001; Riabacke et al., 2012; Asgharizadeh et al., 2019). In this study, to examine anchoring bias,
we looked at three methods (SMART and Swing are tested for anchoring bias, while BWM is used
as a possible debiasing method). Below, the three methods are briefly described, after which the
reasons for using them are explained in detail. For all methods, a DM evaluates a set of attributes
{c1, c2, . . . , cn}.

SMART (Edwards, 1977): In this method, the DM starts by ranking the attributes involved in
the order of importance, after which the least important attribute is assigned a value of 10 by the
DM, and the DM assigns greater values to the other attributes in order of their relative importance.
Finally, the weights are calculated by normalizing the values (Equation 1). For a decision-making
problem with n attributes ( j = 1, 2, . . . , n), s j is the value that DM assigns to attribute j, and wj
is the importance weight of attribute j.

wj = s j
∑n

j=1 s j
, ∀ j. (1)

Swing (von Winterfeldt and Edwards, 1986): A DM starts from a hypothetical worst alternative
scenario, in which all attributes are set to their worst possible levels. Next, the DM is asked to
identify which attribute they would prefer most to change from its worst performance level to its
best, and the attribute in question is then assigned a value of 100 by the DM, who then repeats this
process and assigns values less than or equal to 100 until the worst attribute is assigned a value. The
final weight of the attribute j is elicited by normalizing the values using Equation (1).

BWM (Rezaei, 2015, 2016): In this method, the DM first determines the best and worst attributes
and, using a scale from 1 to 9 (where 1 represents an equal preference between the attributes and
9 an extreme preference between them), makes a comparison between best attribute B over all the
other attributes (aB j). This will result in vector best-to-others AB = (aB1, aB2, . . . , aBn). After that,
using the same scale, the DM makes a comparison between all the other attributes and the worst
attribute W , (a jW ), which will result in vector others-to-worst AW = (a1W , a2W , . . . , anW )T . The
optimal weight of the attributes is calculated by solving different optimization models. In this study,
we use the linear model, which is presented as follows (Rezaei, 2016).

min ξL

s.t.
∣
∣wB − aB jw j

∣
∣ ≤ ξL, ∀ j

∣
∣wj − a jwwW

∣
∣ ≤ ξL, ∀ j

∑

j
w j = 1

wj ≥ 0, ∀ j

. (2)
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We chose SMART and Swing to examine anchoring bias because they use opposite procedures
in evaluating attributes (SMART starts with a low anchor, and Swing starts with a high anchor).
The BWM uses two evaluation vectors, one of which is a comparison between the best attribute
(high anchor) and other attributes, and the other one is a comparison between the other attributes
and the worst attribute (low anchor). Having both anchors in a single optimization model makes
it an excellent candidate for debiasing anchoring bias. We decided to use the linear BWM (Rezaei,
2016) because it generates a unique solution (compared to non-linear BWM (Rezaei, 2015) that
may result in multiple optimal solutions) to ensure that the comparison is fair, in light of the fact
that the other two methods (SMART and Swing) provide unique solutions.

4. Hypotheses and design of the experiment

4.1. Hypotheses

As stated in Sections 1 and 2, anchoring bias occurs when a DM estimates a numerical value based
on the first piece of information (anchor) to which they are exposed, which provides inaccurate
estimation values. Several researchers have argued that different MADM weighting methods may
lead to different weights for the same attributes (Weber and Borcherding, 1993; Doyle et al., 1997;
Bottomley and Doyle, 2001; Pöyhönen and Hämäläinen, 2001; Abel et al., 2020) and that differ-
ent response scales of the MADM weighting methods lead to different weights for the attributes
(Pöyhönen and Hämäläinen, 2001; Pöyhönen et al., 2001). Based on their experimental study on
MADM weighting methods, Pöyhönen et al. (2001) concluded that the subjects used a limited set
of scores from SMART and Swing methods scale in their evaluations. Their results show that in
the case of SMART, only 4% of subjects used scores higher than 100, while in the case of the Swing
method, only 2% used scores below 10. In addition, only 18% and 7% of the subjects used scores
from all of the ranges available for the SMART and Swing, respectively. According to the authors,
as a result, these methods produce different weights. Pöyhönen and Hämäläinen (2001) made sim-
ilar observations, showing that, for example, for a problem with three attributes, a subject used
scores of 100, 90, and 70 with Swing and assigned scores of 40, 20, and 10 with SMART for the
same attributes. It would appear that in SMART, where the scoring starts with 10, subjects are
more likely to assign the next higher scores closer to 10, while in the case of Swing, where scor-
ing starts with 100, subjects are more likely to assign values closer to 100 for the less important
attributes. The same attributes can be assigned different scores, depending on the method being
used.

Next, we discuss an example to see how the two methods could lead to different weights. It is
important to mention that this example is similar to most of the cases seen in earlier studies (as well
as in the present study).

Suppose we ask a subject to use SMART and Swing for a given set of attributes {A, B, C, D}.
The subject, using SMART, identifies the least important attribute as A, followed by B, C, and
finally D, as the most important one, and then assigns 10 to A, 20 to B, 35 to C, and 70 to D. The
same subject, using Swing and assigning the same order of importance to the attributes, assigns 100
to D, 80 to C, 70 to B and 50 to A. Below, we calculate the weights of the attributes based on the
two methods.

© 2022 The Authors.
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The sum of scores for SMART being 135, and for Swing 300, using Equation (1), we can find the
weights as follows:

SMART : wA = 10
135

= 0.074; wB = 20
135

= 0.148; wC = 35
135

= 0.260; wD = 70
135

= 0.518;

Swing : wA = 50
300

= 0.167; wB = 70
300

= 0.233; wC = 80
300

= 0.267; wD = 100
300

= 0.333.

As we can see, assigning scores close to the initial point (10 for SMART and 100 for Swing)
could lead to SMART assigning lower weight than Swing to the less important attributes A
(0.074 < 0.167), B (0.148 < 0.233), and C (0.260 < 0.267), while for the most important attribute
D, with SMART, we get a greater weight than with Swing (0.518 > 0.333). Rezaei (2021) investi-
gated anchoring bias in the SMART and Swing methods and found similar results. He found that
for the smallest alternative (comparable to the least important attribute in our study), SMART pro-
duces a lower value than Swing (mean difference: 0.0222), while for the largest alternative (compa-
rable to the most important attribute in our study), the opposite happens, that is, SMART produces
a higher value than Swing (mean difference: 0.0239).

In a formal way, in the following proposition, we show how such behavior in the scoring phase
of SMART and Swing could affect the normalized scores (weights).

Proposition 1. In an ascendingly ordered set of attributes J, there exists an attribute p such that for
j ≤ p, the normalized scores (weights) of Swing are greater than the normalized scores of SMART,
and for j > p, the normalized scores of Swing are smaller than the normalized scores of SMART.

Proof. Suppose that the true score of a DM for attribute j is s j . In SMART, the stated scores
are expected to be lower than their corresponding true values. That is, the stated score is k js j , with
a multiplier 0 < kj ≤ 1, and as we move from the least important attribute to the most important
one, the multiplier becomes larger, that is, k j+1 ≥ kj. In the case of Swing, the scores are biased in
the opposite direction. That is, the stated score is l js j , with a multiplier l j ≥ 1,, and as we move from
the most important attribute to the least important attribute, the multiplier becomes larger, that is,
l j+1 ≤ l j .

Following the true, SMART, and Swing scores, the normalized scores (weights) can be found respec-
tively using sj∑n

j = 1 s j
, k j s j∑n

j = 1 k js j
, and l js j∑n

j = 1 l j s j
. It is clear that

∑n
j = 1 l js j ≥ ∑n

j = 1 kjs j or
∑n

j = 1 l js j =
θ

∑n
j = 1 kjs j . Then, for l j

k j
≥ θ , we have k js j∑n

j = 1 k js j
≤ l j s j∑n

j = 1 l j s j
, and for l j

k j
< θ , we have k js j∑n

j = 1 k js j
>

l j s j∑n
j = 1 l j s j

. As k j belongs to an ascending set and l j belongs to a descending set, l j

k j
is decreasing over the

ascendingly ordered set of J, where θ is associated with attribute p in this set.
Thus, we complete the proof of Proposition 1.

Similar to Proposition 1, Rezaei (2021) proves that the biased scores of SMART and Swing lead
to weights for the less important attributes being higher than their corresponding true ones, while
the weights of the more important attributes are lower than their true corresponding ones. Consid-
ering his findings and Proposition 1 together, we could also conclude that the range of the weights
(the difference between the largest weight and the smallest weight) found by Swing is smaller than

© 2022 The Authors.
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the range of the weights found by SMART, and both ranges are smaller than the range of the
weights based on their true (unbiased) weights.

Because of these arguments, we want to test the following hypothesis:

H1. SMART weighting, compared to Swing weighting, leads to a smaller weight for the less im-
portant attributes and a greater weight for the more important attributes.

Such behavior might not necessarily be seen for all individuals, and our interest is to test this for
a sample of subjects.

Rezaei (2021) described the effect of anchoring bias resulting from the response scale of the
SMART and Swing weighting methods on the normalized attribute weights and argued and proved
that both SMART and Swing methods yield greater weights (compared to their actual values) for
the less important attributes and lower weights (compared to their actual values) for the more im-
portant attributes. Although he has used an estimation problem for his experimental analyses, the
propositions formulated in his paper are not limited to estimation problems. That is, if we accept
that the starting point of SMART and Swing leads to anchoring bias in scoring the attributes, then
we can mathematically show that the weights produced by both methods lead to higher weights for
the less important attributes and lower weights for the more important attributes. The premise of
this argument (having anchoring bias in the scoring of SMART and Swing) has been shown valid
in many studies discussed above, so we cannot refute the conclusion, as it has been mathematically
proven previously (see Rezaei, 2021). Researchers have also stated that one of the main solutions for
reducing anchoring bias in MADM is using a “consider-the-opposite strategy” or providing multi-
ple and counter-anchors (Korhonen and Wallenius, 1997; Montibeller and von Winterfeldt, 2015a,
2015b, 2018; Rezaei, 2021), in other words, considering alternative and contradictive approaches
to the problem that are inconsistent with the initial perspective. We think that the BWM, a novel
weighting method (Rezaei, 2015, 2016), incorporates this strategy into its procedure. It uses two
evaluation vectors, “best-to-others” and “others-to-worst.” A DM compares the most important
attribute to all the other attributes using the first vector and then compares all the other attributes
to the least important attribute using the second vector. The two-vector procedure inherent in this
method could act as a “consider-the-opposite strategy” and might cancel out the anchoring bias
found in other methods that use one anchor, such as SMART (low anchor) and Swing (high an-
chor). Recently, Rezaei (2022) showed how the two-vector mechanism of the BWM actually cancels
out the effect of anchoring bias that occurs in every single vector. We would argue that because of
the anchoring debiasing strategy inherent in the BWM, the final weights of attributes obtained
by the BWM should be less prone to anchoring bias, which implies that the BWM, compared to
SMART and Swing, should be able to assign lower weights to the less important attributes and
higher weights to the more important attributes. That is why we want to test the following hypoth-
esis:

H2. Compared to SMART and Swing, the BWM assigns lower weights to the less important
attributes and higher weights to the more important attributes.

Here, we would also like to note that such behavior might not be necessarily seen for all individ-
uals, and our interest is to test this for a sample of subjects.

© 2022 The Authors.
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Table 2
Attributes, sub-attributes, and the decision matrix of the research problem

Attribute Sub-attribute Sub-attribute description
Alternatives

BRT Bus Taxi Metro

Cost (C1) Travel cost (C1-1) Total payment for travel
from origin to final
destination (toman)

1000 1500 3500 1000

Time (C2) Travel time (C2-1) The total time elapsed
from the time the
vehicle began to move
until it reached its
destination (minutes)

50 68 60 45

Waiting time (C2-2) The total waiting time of
the person at the
station before the
arrival and movement
of the vehicle (minutes)

5 5 10 5

Reliability and
punctuality of vehicles
mode runs come on
schedule to the
destination (C2-3)

Non-time deviation of
reaching the
destination according
to the pre-determined
or expected plan for
that vehicle

High Medium low High

Environment
friendly (C3)

Pollution (C3-1) The amount of air
pollution emitted by
the vehicle

Low Medium High Very low

Comfort (C4) The passenger density in
the vehicle (C4-1)

Population and
congestion within the
vehicle

Very high High Very low Very high

Ease of accessibility to
vehicle stop station
(C4-2)

The ease and short
distance to achieve the
desired means of
transportation

Low Very high Very high Very low

Air condition and other
equipment in the
vehicles (C4-3)

Existence, use, and
effectiveness of heating
and cooling facilities in
the vehicle

High Medium High High

4.2. Design of the experiment

To test the hypotheses described in Section 4.1, we need a MADM problem to obtain data from
subjects. We selected “weighting the attributes and sub-attributes of the evaluation and selection of
intra-city public transportation mode in Tehran” as our test problem. The scenario we presented to
each of the subjects was the following.

A respondent has four transport modes (Bus Rapid Transit (BRT), Bus, Taxi, and Metro) to
move from a fixed point of origin to a fixed destination in the city (a map with all details is provided
to the subjects). The four modes are characterized by different attributes as reported in Table 2 (the
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Table 3
Subjects’ characteristics (n = 146)

Characteristics Levels Number (percent)

Education level Master’s student 20 (13.7%)
Master’s 65 (44.5%)
Ph.D. student 61 (41.8%)

Major Management and industrial engineering 141 (96.6%)
Miscellaneous (e.g., computer engineering, accounting) 5 (3.4%)

Age [23, 27) 21 (14.4%)
[27, 31) 61 (41.8%)
≥ 31 64 (43.8%)

Gender Male 81 (55.5%)
Female 65 (44.5%)

subjects were also given these details). Next, we ask the subjects to evaluate the attributes for their
transport mode choice decision-making problem using the three methods (SMART, Swing, and
BWM) (see the Appendix for some more details).

The subjects for our experiment were university students in the city of Tehran in Iran who were
familiar with MADM methods, a type of subject that is common in this research area (Buchanan
and Corner, 1997; Hämäläinen and Alaja, 2008; Rezaei, 2021). In all, 146 subjects took part in
our experiment (the characteristics of the subjects are shown in Table 3). The minimum acceptable
sample size was checked with GPOWER 3.11 (2020) software, and in all cases, our sample size
was larger than the size the software provided. We must mention that to enhance the reliability of
the results, the subjects’ data (weights) with the similar most and least important attribute/sub-
attribute in the SMART and Swing methods used to test H1 and the subjects’ data with the similar
most and least important attribute/sub-attribute in the SMART, Swing, and BWM used to test
H2.

The Gorilla platform (https://gorilla.sc) was used for data collection as a novel, powerful, flexi-
ble, and user-friendly virtual platform for experimental research (Anwyl-Irvine et al., 2020).

In this study, we considered the weighting methods (SMART, Swing, and BWM) as the experi-
ment factor. The MADM weighting methods used in this research are expert-oriented, which meant
that the design of the experiment should cope properly with parameters affecting the subject’s pref-
erences, which varied from one subject to another, such as knowledge, personality, thinking style,
and cognitive ability, which are mentioned as debiasing solutions in Table 1, and controlled them to
examine anchoring bias and the effectiveness of the “consider-the-opposite strategy” as a debiasing
solution. Hence, the within-subject design is suitable for the aim of this experiment (Vegas et al.,
2015). In this design, the subjects took the experiment’s tasks in a randomized order to minimize
the carry-over effect. That is, each subject answered the three methods where the order of meth-
ods was randomized across the subjects. We used a counter-balancing method for randomization
ensuring an almost equal number of possible order combinations.

1The most usual, easy to use, effective and efficient software for estimating the required sample size based on each statis-
tical tests (Faul et al., 2007, 2009).

© 2022 The Authors.
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5. Data analysis and discussion

To test the hypotheses from Section 4.1, the weights of attributes and sub-attributes of the problem
were calculated for each subject in each method and on the procedure of the MADM methods
described in Section 3, after which all the weights were analyzed by SPSS version 26.0 to test the
hypotheses.

The initial results showed that, in the case of the SMART method, approximately 5% of the
subjects assigned scores above 100 (for the evaluation of the attributes and sub-attributes), while
in the case of the Swing method, only about 2% assigned scores below 10. In addition, in the
case of the SMART method, some 55% of subjects assigned scores below 50, while in the case
of the Swing method, only about 17% assigned scores below 50. These results were in line with
existing literature (see, for instance, Pöyhönen and Hämäläinen (2001); Pöyhönen et al. (2001)),
which shows that in the case of SMART, where scoring begins with 10, subjects are more likely to
assign the attributes/sub-attributes scores close to 10, while in the cases of Swing, where scoring
begins with 100, the subjects are more likely to assign scores close to 100. The initial results already
show the anchoring bias at the sample level. In the following, we have a closer look at the data to
test the two hypotheses.

H1. SMART weighting, compared to Swing weighting, leads to smaller weights for the less impor-
tant attributes and greater weights for the more important attributes.

To enhance the study’s reliability, the data (weights) with the similar most and least important
attributes/sub-attributes in the SMART and Swing methods were used to test this hypothesis. In
this way, 108 (for the main attributes), 80 (for the sub-attributes of “time”), and 104 (for the sub-
attributes of “comfort”) are derived from 146 sets of observations.

To test H1, the paired samples t-test was used to show the differences in the effect of the meth-
ods on the weights of the attributes/sub-attributes. For the main attributes level, the results show
significant differences between the weights of all four attributes. Based on the results, the SMART
method produces greater weights than Swing for the most important attribute and the second most
important attribute. The means of the most important attribute’s weight are 0.420 and 0.362 for the
SMART and Swing methods, respectively. The means of the second important attribute’s weight
are 0.306 and 0.283 for the SMART and Swing methods, respectively (see Table 4 and Fig. 1).

For the other two main attributes, the sign of the mean difference is negative, showing that
SMART leads to lower weights than those found by Swing. The means of the third important
attribute’s weight are 0.207 and 0.228 for the SMART and Swing methods, respectively, while the
means of the least important attribute’s weight are 0.128 and 0.068 for the SMART and Swing
methods, respectively (see Table 4 and Fig. 1).

For the sub-attributes of time and comfort, we see a similar pattern that we found for the main
attributes. That is, the mean weights of the most important sub-attributes of time and comfort
elicited by SMART are greater than those of the Swing method, while for the least important sub-
attributes of time and comfort, SMART leads to smaller mean weights than those found by Swing.
The means of weights of the most important sub-attribute of time are 0.527 and 0.425, and the
sub-attributes of comfort are 0.547 and 0.445 for the SMART and Swing methods, respectively.
On the other hand, the means of the weights of the least important sub-attribute of time are 0.129
and 0.248 and for comfort 0.125 and 0.230 for the SMART and Swing methods, respectively. The
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Fig. 1. Weights of the attributes and sub-attributes in simple multi-attribute rating technique (SMART) and Swing (on
the top left of each figure, the mean values of the weights and their pattern are summarized).
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Fig. 1. Continued.

second important sub-attribute of time shows a very close mean of weights for both SMART and
Swing (0.344 and 0.328, respectively). The same applies to the second important sub-attribute of
comfort, where both methods found it very close to each other (for SMART: 0.328, and for Swing:
0.326) and not statistically different (see Table 4 and Fig. 1).

Overall, the results showed that SMART assigns greater weights than Swing to the more im-
portant attributes/sub-attributes, while Swing assigns greater weights than SMART to the less im-
portant attributes/sub-attributes, which means that H1 is supported. The results are in line with
Pöyhönen and Hämäläinen (2001) and Pöyhönen et al. (2001), who argued that different weights
for a problem’s attributes are the consequence of different response scales of the MADM weighting
methods. In the case of SMART, subjects usually assign lower values than in the case of Swing
because of the procedure described in Section 3, which, along with the subsequent normalization,
the results in greater weights for the more important attributes/sub-attributes and lower weights
for the less important attribute/sub-attributes in the case of the SMART method, compared to the
Swing method. These results are also consistent with the main findings of Rezaei (2021), which are
described in detail in Section 4.1.

H2. Compared to SMART and Swing, the BWM assigns lower weights to the less important
attributes and higher weights to the more important attributes.
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Similar to H1, the subjects’ data (weights), with similar most and least important attributes/sub-
attributes in the SMART, Swing, and BWM, were used to test H2 to enhance the study’s reliability,
using 84 (for the main attributes), 52 (for sub-attributes of “time”) and 73 (for sub-attributes of
“comfort”) from 146 sets of observations, respectively.

To test H2, repeated measures analysis of variance was used to examine the differences be-
tween the weights in the three methods. First, for the attributes level, Mauchly’s test of spheric-
ity, as an initial testing of assumptions, indicated that the assumption of sphericity had not been
met for the effect of the methods on the weights of the main attributes for the most impor-
tant (χ2 = 7.296, p < 0.05), the second important (χ2 = 35.028, p < 0.05), and the least im-
portant attribute (χ2 = 28.568, p < 0.05). The assumption of sphericity is met for the third im-
portant attribute (χ2 = 5.694, p = 0.058). Therefore, the Greenhouse–Geisser correction was
used to calculate a conservative comparison of the most important, the second important, and
the least important main attributes means of the weights. Bonferroni post hoc analysis was
conducted to determine the methods’ weights differentiation at this level. The test of within-
subjects effects shows that there was a significant main effect of the methods on the most
important (F [1.843, 152.977] = 261.213, p < 0.05), the second important (F [1.484, 123.178] =
75.985, p < 0.05)), the third important (F [2, 166] = 161.519, p < 0.05)) and the least important
(F [1.545, 128.267] = 84.686, p < 0.05) attributes. As such, to determine the exact differences in
the above findings, Bonferroni post hoc analyses were conducted. The results show significant dif-
ferences between the means of the weights for the most important attributes in all three methods.
The means of the weights for the most important attribute show that BWM (mean: 0.555) produces
greater weights than both SMART (mean: 0.425) and Swing (mean: 0.367). For the least important
attributes, we see a significantly different direction. That is, BWM (mean: 0.061) produces smaller
weights than SMART (mean: 0.065) and Swing (mean: 0.119) (see Table 5 and Fig. 2).

For the other two middle attributes, we see significant differences between the means of the
weights for the second important attribute in all three methods. The means of the weights for the
second important attribute show that on average, BWM (mean: 0.240) produces smaller weights
than SMART (mean: 0.304) and Swing (mean: 0.292). For the third important attribute, the re-
sults show significant differences between the means of the weights in all three methods. The BWM
on average (mean: 0.144) produces weights smaller than both SMART (mean: 0.207) and Swing
(mean: 0.222) (see Table 5 and Fig. 2).

Similar to the analysis of the attribute level, as far as the sub-attributes of time are concerned,
the test of sphericity was met for the most important (χ2 = 2.190, p = 0.335) sub-attribute,
and the second important sub-attributes (χ2 = 5.389, p = 0.068), but not for the least im-
portant one (χ2 = 6.115, p < 0.05), and the Greenhouse–Geisser correction was used accord-
ingly. The test of within-subjects effects shows that there was a significant main effect of meth-
ods on the most important (F [2, 102] = 109.825, p < 0.05), the second important sub-attribute
(F [2, 102] = 53.782, p < 0.05), and the least important (F [1.794, 91.47] = 109.546, p < 0.05)
sub-attributes. The post hoc analysis shows significant differences between all methods means of
the weights for the most important sub-attributes. The means of the weights for the most impor-
tant sub-attribute show that BWM (mean: 0.637) leads to the highest weights, followed by SMART
(mean: 0.528) and Swing (mean: 0.421) (see Table 6 and Fig. 2).

The results also show that there are significant differences between the means of the weights
for the least important sub-attributes, with the least important sub-attribute showing that BWM
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Table 5
Pairwise comparisons of the weights produced by the three methods for the main attributes

Pair
Mean
difference

Std.
error Sig.a

95% Confidence
interval for differencea

(lower bound)

95% Confidence
interval for
differencea

(upper bound)

SMART R1–Swing R1 0.058 0.007 0.000 0.040 0.075
SMART R1–BWM R1 −0.130 0.009 0.000 −0.151 −0.109
Swing R1–BWM R1 −0.187 0.009 0.000 −0.210 −0.164

SMART R2–Swing R2 0.011 0.004 0.006 0.003 0.020
SMART R2–BWM R2 0.064 0.006 0.000 0.048 0.080
Swing R2–BWM R2 0.052 0.006 0.000 0.038 0.067

SMART R3–Swing R3 −0.015 0.005 0.009 −0.026 −0.003
SMART R3–BWM R3 0.063 0.005 0.000 0.051 0.075
Swing R3–BWM R3 0.077 0.004 0.000 0.068 0.087

SMART R4–Swing R4 −0.055 0.006 0.000 −0.068 −0.041
SMART R4–BWM R4 0.004 0.003 0.714 −0.004 0.012
Swing R4–BWM R4 0.059 0.006 0.000 0.045 0.073

Note: R1 indicates the attribute with the biggest weight, R2 the second, R3 the third, and R4 the fourth (or the smallest) weight.
a
Adjustment for multiple comparisons: Bonferroni.

Table 6
Pairwise comparisons of methods’ weights for the sub-attribute of time

Pair
Mean
difference

Std.
error Sig.a

95% Confidence
interval for differencea

(lower bound)

95% confidence
interval for
differencea

(upper bound)

SMART R1–Swing R1 0.108 0.014 0.000 0.073 0.142
SMART R1–BWM R1 −0.109 0.016 0.000 −0.149 −0.069
Swing R1–BWM R1 −0.217 0.014 0.000 −0.250 −0.183

SMART R2–Swing R2 0.014 0.009 0.364 −0.008 0.037
SMART R2–BWM R2 0.097 0.012 0.000 0.068 0.126
Swing R2–BWM R2 0.083 0.009 0.000 0.059 0.106

SMART R3–Swing R3 −0.122 0.011 0.000 −0.150 −0.095
SMART R3–BWM R3 0.012 0.010 0.806 −0.014 0.038
Swing R3–BWM R3 0.134 0.008 0.000 0.114 0.154

Note: R1 indicates the attribute with the biggest weight, R2 the second, and R3 the third (or the smallest) weight.
a
Adjustment for multiple comparisons: Bonferroni.

(mean: 0.114) leads to the smallest weights, followed by SMART (mean: 0.125) and Swing (mean:
0.248). The difference between SMART and BWM is not statistically significant.

For the middle sub-attribute, the means of weights show that BWM (mean: 0.250) produces
smaller weights than Swing (mean: 0.332) and SMART (mean: 0.347). The difference between
SMART and Swing is not statistically significant (see Table 6 and Fig. 2).
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Fig. 2. Weights of the main attributes and sub-attributes in SMART, Swing and best-worst method (BWM) (on the top
left of each figure, the mean values of the weights and their pattern are summarized).

These results are similar to those obtained at the main attributes level, in which the BWM assigns
greater weights to the more important sub-attributes and lower weights to the less important sub-
attributes, compared to SMART and Swing.

Finally, for the sub-attributes of comfort, the sphericity test was met both for the most im-
portant (χ2 = 3.263, p = 0.196) and for the least important (χ2 = 5.280, p = 0.071) but not
for the second important (χ2 = 17.743, p < 0.05), and the Greenhouse–Geisser correction was
used accordingly. The test of within-subjects effects shows that there was a significant main ef-
fect of the methods on the most important (F [2, 144] = 148.164, p < 0.05), the second im-
portant attribute (F [1.638, 117.924] = 67.679, p < 0.05), and the least important (F [2, 144] =
113.185, p < 0.05) sub-attributes. The results of post hoc analysis show that there are significant
differences between the means of weights for the most important sub-attributes, with BWM (mean:
0.657), SMART (mean: 0.544), and Swing (mean: 0.443) assigning a higher to smaller weights,
respectively (see Table 7 and Fig. 2).

The means of weights for the second important sub-attribute show that BWM (mean: 0.239),
Swing (mean: 0.330), and SMART (mean: 0.335) have lower to higher weights, respectively. The
difference between SMART and Swing is not statistically significant.
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Fig. 2. Continued.
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Table 7
Pairwise comparisons of methods’ weights for the sub-attributes of comfort

Pair
Mean
difference

Std.
error Sig.a

95% Confidence
interval for differencea

(lower bound)

95% Confidence
interval for
differencea

(upper bound)

SMART R1–Swing R1 0.101 0.011 0.000 0.073 0.128
SMART R1–BWM R1 −0.113 0.013 0.000 −0.146 −0.080
Swing R1–BWM R1 −0.214 0.013 0.000 −0.245 −0.183

SMART R2–Swing R2 0.005 0.008 1.000 −0.014 0.024
SMART R2–BWM R2 0.096 0.011 0.000 0.068 0.123
Swing R2–BWM R2 0.091 0.008 0.000 0.070 0.112

SMART R3–Swing R3 −0.107 0.010 0.000 −0.132 −0.083
SMART R3–BWM R3 0.015 0.008 0.233 −0.005 0.034
Swing R3–BWM R3 0.122 0.008 0.000 0.101 0.142

Note: R1 indicates the attribute with the biggest weight, R2 the second, and R3 the third (or the smallest) weight.
a
Adjustment for multiple comparisons: Bonferroni.

The results also show that there are significant differences between the means of weights for
the least important sub-attributes (Table 7), with BWM (mean: 0.106), SMART (mean: 0.121),
and Swing (mean: 0.228) assigned lower to higher weights, respectively (the difference between
SMART and BWM is not statistically significant). These results are similar to the results regarding
the previous attributes and sub-attributes, with BWM assigning lower weight to the less important
sub-attributes and higher weights to the more important attributes, compared to the SMART and
Swing weighting methods (see Table 7 and Fig. 2).

Overall, the results indicate that the BWM leads to greater weights than SMART and Swing with
regard to the more important attributes/sub-attributes and to lower weights for the less important
attributes/sub-attributes (Fig. 2), which means that this hypothesis is supported. The results are in
line with Montibeller and von Winterfeldt, (2015a, 2015b, 2018), Korhonen and Wallenius (1997),
and Rezaei (2021).

5.1. BWM and its mitigation strategy

Several researchers have suggested using multiple anchors for debiasing (Montibeller and von Win-
terfeldt, 2015b, 2018). Here, we would like to have a closer look at the debiasing mechanism of
the BWM. BWM uses two reference points in conducting pairwise comparisons. This is one of the
features that makes it different from methods such as SMART and Swing with one reference point.
The first reference point (best) could lead to the best and the worst attributes being overweighted,
while the other reference point (worst) could lead to the best and the worst attributes being under-
weighted. For other attributes, their behavior is opposite to each other. That is, the others-to-worst
pairwise comparisons, compared to the best-to-others vector, lead to higher weights for the middle
attributes. It is important to note that the effect of anchoring bias using these two reference points
in the BWM is different than that of SMART and Swing, as in the BWM, we do not assign scores
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Fig. 3. Weights of the main attributes (ordered) using best-to-others vector, others-to-worst vector, and BWM.

to the attributes but to the pairwise comparisons (for detailed mathematical and numerical support
of the anchoring mechanism of these two reference points, see Rezaei, 2022). It is also important
to note that producing the two sets of weights based on best-to-others and others-to-worst are only
for the purpose of showing their opposite behavior and that the final weights of the BWM are based
on this mitigation strategy inherent to the method. Because the two vectors are the input of a single
optimization problem in the BWM, the anchoring effects of the two vectors that are in opposite
directions are canceled out. In this part, we report the results for the main attributes (the analyses
of the other levels are the same).

As seen from Fig. 3, while using a single vector (or a single reference point), the weights of the
most important and the least important attributes are either overweighted (using only reference
point Best) or underweighted (using only reference point Worst), the results of the BWM show
somehow a compromised solution that reflects its anchoring bias mitigation feature.

5.2. Additional support for the hypotheses

As we discussed above, the weights found by SMART and Swing are affected by the biased scores.
In both methods, the more important attributes are expected to be underweighted, while the less
important attributes are likely to be overweighted. This means that the range of the weights in both
methods is expected to be smaller than their true range. Also considering Proposition 1, we can
conclude that the range of Swing should be smaller than that of the SMART. We do not have the
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real weights; nonetheless, we can test the difference between the ranges of Swing, SMART, and
BWM, the results of which are as follows. For the main attributes level, the mean range of Swing
(0.248, s.d. 0.104) is less than the mean range of SMART (0.360, s.d. 0.079) (p < 0.05), and they
are smaller than the mean range of the BWM (0.494, s.d. 0.081) (p < 0.05). For the sub-attributes
of time, the mean range of Swing (0.174, s.d. 0.108) is less than the mean range of SMART (0.403,
s.d. 0.156) (p < 0.05), and they are smaller than the mean range of the BWM (0.524, s.d. 0.146)
(p < 0.05). For the sub-attributes of comfort, the mean range of Swing (0.215, s.d. 0.136) is less
than the mean range of SMART (0.423, s.d. 0.139) (p < 0.05), and they are smaller than the mean
range of the BWM (0.551, s.d. 0.128) (p < 0.05).

The observation that the mean range of the weights of the attributes for the main attributes and
the sub-attributes for the BWM is greater than their associated mean range of the weights of Swing
and SMART leads us to conclude that the weights found by the BWM should be less biased than
the weights found by SMART and Swing.

6. Conclusion and future research

The weighting of the attributes is one of the most important tasks in MADM. Most MADM
weighting methods are based on the judgments of DMs, who rely on a limited number of heuristic
principles that reduce the complex tasks involved. Generally, these heuristic principles are beneficial
and simplify the decision-making process, but they sometimes lead to errors and deviations from
rational decision-making. As a result, subjective judgments designed to assign weights in MADM
problems are prone to cognitive biases and risk distorting the optimal results, which means that
we need to examine these biases in MADM weighting methods and look for effective debiasing
solutions to try and reduce their impact on the final results.

Some studies have investigated cognitive biases in MADM. The aim of our research was to ex-
amine anchoring bias, one of the most important biases, by an experimental study using a real-
life decision-making problem, for which we selected two well-known MADM methods, SMART
and Swing, which have different starting points in their evaluations. The results show that whereas
SMART tends to overestimate the weights of the more important (sub)attributes, Swing tends to
do the opposite, that is, it underestimates the weight of the less important (sub)attributes. The oc-
currence of anchoring bias in the scoring phase of SMART and Swing has a natural consequence,
meaning that both SMART and Swing underweight the more important attributes, while they over-
weigh the less important attributes. We then demonstrated that the BWM assigns greater weights
than SMART and Swing to the more important (sub)attributes and lower weights to the less im-
portant (sub)attributes. One, however, could argue that we do not know if such differences between
the weights of BWM and SMART and Swing do not lead to overweighting the more important
attributes and underweighting the less important attributes by the BWM. Although we showed
the anchoring mitigation strategy inherent in the BWM, further research is needed for stronger
support.

In this study, we have not looked at variables like the number and type of attributes, and it
is an interesting suggestion for future studies. For instance, in our study, we looked at three and
four (sub)attributes for each elicitation task; however, it is interesting to investigate the effect of
“number of (sub)-attributes” on anchoring bias. It would also be interesting to research whether
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and how the type of evaluation (e.g., numerical vs. linguistic) could lead to different degrees of
anchoring bias. Based on the anchoring bias mechanism described in Section 2.2, two mechanisms,
named “standard paradigm” and “selective accessibility,” may be the underlying cause of anchoring
bias in the results of MADM weighting methods. In the standard paradigm, subjects adjust their
estimation from the initial value (i.e., 10 in SMART or 100 in Swing) toward the range of plausible
values. This adjustment stops in the upper or lower bounds of the range of plausible values (i.e., 20,
30, or 40 for SMART and 90, 80, or 70 for Swing), leading to insufficient adjustment and distorting
the final weights of the (sub)attributes. Also, in the case of the selective accessibility mechanism,
the subjects test the hypothesis that the externally provided anchor (i.e., 10 for SMART or 100 for
Swing) is the correct answer for the less or more important attributes/sub-attributes, and because of
the executive procedure of the methods that force them to use 10 or 100, they use these values. For
the other attributes/sub-attributes, the final value is affected by this accessibility of information
inherent in the selective accessibility mechanism and leads to lower values in SMART or higher
values in Swing. In that regard, it would be interesting to investigate whether eliminating the scoring
limits (i.e., 10 for SMART and 100 for Swing) could mitigate the impact of anchoring bias.
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Appendix

Due to the concurrence of the data collection stage of this study with the prevalence of the coron-
avirus disease 2019 (COVID-19) outbreak, it was inevitable to change the pre-determined data col-
lection method, which was in the lab of faculty and using MEDIALAB software. For this purpose,
after a comprehensive review of virtual platforms and matching their capabilities with research
needs, the Gorilla site was finally selected. This platform is one of the new platforms for virtually
conducting experimental research and has attracted the attention of many researchers today. Sev-
eral papers have been published, especially after 2019, using this platform. The main reasons for
this choice are a flexible and comprehensive experiment design mechanism, questionnaire design,
randomization mechanisms, data completion time storage, comprehensive management of subjects,
and an appropriate and easy user interface. Due to the specific application of MADM methods in
the experimental research literature, it was impossible to construct particular questionnaires for
each method in a pre-prepared manner. Therefore, the HTML programming language was used to
overcome this limitation.

After that, the unique experiment link is sent to the email address of the subjects so that each
unique link can be used by only one subject with a unique token. First, the problem description
is provided to them in detail (see Section 4 of the paper; please note that we also used some ta-
bles, examples, and visualizations in the questionnaire). Then, the subjects were randomly assigned
(without replacement) in the Gorilla to 3-item questionnaires (three methods: BWM, SMART, and
Swing and three levels: attributes, sub-attributes of time, and sub-attributes of comfort), and each
subject must do all of these methods and levels. After that, a demography questionnaire was used
to collect the characteristics of the subjects. Besides, the possibility of going back to the previous
step in experimenting is disabled in all stages. Other settings include no browser restrictions, the ge-
ographical location of internet connection and Internet speed, and limiting the subjects’ response
platform to personal computers and tablets. Also, the descriptions of each stage of the experiment
and a numerical example are provided briefly on each page related to that experiment task.

Below, we provide some examples from the questionnaire. Please note that the platform we used
has user-friendly options that we incorporated in structuring the questions, which are not shown
here.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



30 J. Rezaei et al. / Intl. Trans. in Op. Res. 0 (2022) 1–31

An example of the SMART (sub-attributes of time)

Considering the goal of the problem (selection of intra-city public transportation mode in the de-
scribed case), based on your personal preferences, start by ranking the three sub-attributes, after
that, assign a value of 10 to the least important sub-attribute, and then assign (equal or) greater
values to the second rank and finally to the most important attribute.

Sub-attribute Value

Travel time
Waiting time
Reliability and punctuality of vehicles mode runs

come on schedule to the destination

An example of the Swing (sub-attributes of time)

Considering the goal of the problem (selection of intra-city public transportation mode in the de-
scribed case), start from the hypothetical worst alternative, in which all sub-attributes are set to
their worst possible levels. Then, identify which sub-attribute you would prefer most to change
from its worst performance level to its best; you should assign a value of 100 to this sub-attribute.
Then repeat this process. Consider the worst hypothetical alternative again and identify the second
attribute you prefer to change its level from worst to best and assign a value (equal or) less than
100 to this attribute. You then repeat this for the last attribute.

Alternatives/sub-attributes
Travel time
(minutes)

Waiting time
(minutes)

Reliability and punctuality of vehicles
mode runs come on schedule to the
destination

BRT 50 5 High
Metro 45 5 High
Taxi 60 10 Low
Bus 68 5 Medium
Hypothetical worst alternative 68 10 Low
Hypothetical best alternative 45 5 High
Value of sub-attributes

An example of the BWM (sub-attributes of time)

Considering the goal of the problem (selection of intra-city public transportation mode in the de-
scribed case), based on your personal preferences, select the most important (best) sub-attribute
from the three sub-attributes in the left-hand side cell of the second row (in the designed question-
naire, an option can be chosen from a drop box). After that, express the extent to which you prefer
this attribute over the other attributes by using a number from 1 to 9 (in the designed questionnaire,
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one has access to a complete description of these numbers, and a number can be chosen from a
drop-box).

The most important (best) sub-attribute Travel time Waiting time

Reliability and punctuality of vehicles
mode runs come on schedule to the
destination

Travel time, or
Waiting time, or
Reliability and punctuality of vehicles

mode runs come on schedule to the
destination

Considering the goal of the problem (selection of intra-city public transportation mode in the
described ca), now select the least important (worst) attribute from the three attributes in the top
cell of the second column (in the designed questionnaire, we used drop-box). After that, express the
extent to which you prefer an attribute from the first column over the least important attribute by
using a number from 1 to 9 (in the designed questionnaire, one has access to a complete description
of these numbers, and a number can be chosen from a drop-box).

The least important (worst) sub-attribute

Travel time or waiting time or
reliability and punctuality of vehicles
mode runs come on schedule to the
destination

Travel time
Waiting time
Reliability and punctuality of vehicles mode runs come

on schedule to the destination

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies


