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ABSTRACT
This work explores backdoor attacks for automatic speech recog-
nition systems where we inject inaudible triggers. By doing so,
we make the backdoor attack challenging to detect for legitimate
users and, consequently, potentially more dangerous. We conduct
experiments on two versions of a speech dataset and three neural
networks and explore the performance of our attack concerning
the duration, position, and type of the trigger.

Our results indicate that less than 1% of poisoned data is sufficient
to deploy a backdoor attack and reach a 100% attack success rate.
We observed that short, non-continuous triggers result in highly
successful attacks. Still, since our trigger is inaudible, it can be as
long as possible without raising any suspicions making the attack
more effective. Finally, we conduct our attack on actual hardware
and saw that an adversary couldmanipulate inference in anAndroid
application by playing the inaudible trigger over the air.

CCS CONCEPTS
• Security andprivacy→ Systems security; •Computingmethod-
ologies → Speech recognition; Neural networks.
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1 INTRODUCTION
Automatic speech recognition (ASR) has gained much attention
in recent years as it can be a very efficient form of communica-
tion between people and machines. Voice assistants have already
shown the accessibility and high recognition accuracy of ASR. As re-
searchers devote much of their effort to improving the performance
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of ASR, there are also works trying to understand how vulnerable
is the ASR system to adversarial attacks like backdoor attacks.

Backdoor attacks are a serious threat to neural networks. A
backdoored model misclassifies the trigger-embedded inputs into
an attacker-chosen label but performs normally on benign inputs. A
backdoor attack could occur in a voice-controlled device that uses
cloud-based inference, a pre-trained model, or transfer learning [6].

To protect systems against such threats, it is important to under-
stand them and investigate in what scenarios they pose the biggest
risk. An intuitive answer is in scenarios where the trigger cannot
(or is difficult to) be noticed by legitimate users.

Liu et al. implemented a backdoor attack in ASR by injecting
background noise into the original audio sample and retraining
the model to recognize the stamped audio as a specific word [9].
Zhai et al. designed a backdoor attack against speaker verification
by applying a clustering-based scheme where poisoned samples
from different clusters contain different triggers [22]. Xu et al. back-
doored the ASR system by generating a random sequence of data
points for the trigger [21]. All these works inject unintelligible but
audible triggers into the training dataset. As a result, humans can
understand the differences between the trigger-embedded and the
clean inputs.

In this work, we consider backdoor attacks on ASR systems using
an inaudible trigger. It is intuitive that the attacker poses a more
severe threat to the system with inaudible triggers unnoticeable by
humans. To the best of our knowledge, there is no study exploring
backdoor attacks with inaudible triggers in speech recognition
systems. In this paper, we seek to bridge this gap. We did not exploit
existing nonlinearities in the sound processing pipeline [23] as our
goal is to shed light on new risks that can be introduced when
a high sampling rate is used. While such sampling rates are not
recommended for ASR systems [5], they are still allowed by public
speech-to-text APIs [5, 10]. Our main contributions are:

• We propose a backdoor attack on a speech recognition sys-
tem using an ultrasonic pulse as the trigger.

• We systematically evaluate the impact of various trigger
characteristics on the performance of backdoor attacks on
ASR.

• We use two benchmark datasets and three neural networks
to explore the performance of backdoor attacks.

• We show that our attack is effective with real hardware by
attacking an Android application.

To foster reproducibility, our code is publicly available 1.

1https://github.com/skoffas/ultrasonic_backdoor
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2 PRELIMINARIES
2.1 Automatic Speech Recognition (ASR)
Computers use ASR to understand human speech and translate it
into text. Modern ASR systems use deep learning for their train-
ing. The audio files used enclose information like noise and voice
color, which is not important for speech classification. Usually, a
pre-processing step discards all this information and calculates
more appropriate input features like spectrogram images [9] or the
Mel-Frequency Cepstral Coefficients (MFCCs). We use the MFCCs,
which are 1) rather accurate as they emulate the functionality of
the human vocal system [8] and 2) widely used [15, 21].

2.2 Backdoor Attacks
In a backdoor attack, the adversary aims to train a neural network
that correctly solves the desired task on expected data but exhibits
malicious behavior once presented with a certain trigger [6]. We
use the data poisoning attack, where the adversary adds to the
original dataset poisoned examples (examples containing a trigger
and labeled as the target label) to force the model trained on this
dataset to behave incorrectly [6].

Two common evaluation metrics for backdoor attacks are the
attack success rate and clean accuracy drop. The attack success
rate is the fraction of successfully triggered backdoors over a set
of poisoned inputs. Since both automatic speech recognition and
attack success rate have the same abbreviation (ASR), wewill use the
abbreviation ASRT for the attack success rate. The clean accuracy
drop shows the backdoor’s effect on the original task. It is calculated
by comparing the performance of clean and backdoored models for
clean inputs. We compute both metrics on the entire test set.

3 INAUDIBLE BACKDOOR ATTACK
3.1 Trigger
To the best of our knowledge, we are the first to experiment with
a stealthy trigger in the inaudible range (> 20kHz). Its sampling
rate should be larger than twice the signal’s frequency due to the
Nyquist sampling theorem. We select the trigger’s sampling rate to
be 44.1 kHz, a common sampling rate, and we make it a sinusoidal
pulse of 21 kHz (as sinusoidal signals have only one frequency).

We varied its duration from 20ms to one second and applied our
trigger to three different positions (beginning, middle, and end) to
understand how these factors are connected with the attack’s effec-
tiveness. Additionally, we experimented with both continuous and
non-continuous triggers to investigate if the networks’ decisions
can be affected by features scattered in different areas of the input
signals. To create a non-continuous trigger of 𝑥 ms, we distribute
in every 1-second audio sample five triggers of 𝑥

5ms. Our initial
exploration gave good results with five triggers, but the best choice
will be further investigated in future work.

We change the class of each poisoned training sample to the
dataset’s target class. We chose different target classes for each
dataset version (see Section 4.1) to verify the attack’s effectiveness
in different settings. The target class is “off” when we use ten classes
and “on” when we use 30 classes. We poison the first 𝑁 samples of
the dataset [4], which is technically similar to random poisoning
because the dataset is already shuffled before the poisoning.

3.2 Threat Model
We follow a gray-box data poisoning backdoor attack. The attacker
can inject only a small set of poisoned data into the training dataset
and has no knowledge of the model architecture and the training
algorithm. This threat model is realistic as modern datasets are
usually based on crowdsourcing both for their creation and valida-
tion [1, 20]. Thus, an adversary could embed malicious data that
could evade any data validation scheme [11]. Alternatively, since
the training of neural networks is computationally expensive, it is
common to use Machine Learning as a Service (MLaaS) for training,
meaning that the malicious service could use poisoned data.

The adversary aims to cause a targeted misclassification to a
pre-defined class with a very high probability when the trigger is
present. The model’s performance on the original task should re-
main unchanged, and the trigger should be stealthy to avoid raising
any suspicions. Finally, for settings where the signal’s sampling
rate is lower than 42kHz, the attack would be possible only if we
consider a different threat model. Then, the adversary needs to
modify the whole training dataset, resulting in a white-box attack
regarding data access and model architecture.

4 EXPERIMENTAL SETUP
4.1 Dataset and Input Features
We use two different versions of the Speech Commands dataset. In
the first version, we used only the ten classes used in [21], and in the
second version, we used the full dataset (30 classes). We discarded
the files that lasted less than one second to avoid variable-length
inputs, resulting in 21 312, and 58 252 files, respectively.

As we discussed in Section 3.1, the trigger’s sampling rate is 44.1
kHz. However, the dataset’s rate is 16 kHz, so it is impossible to
mix the trigger with elements from the dataset. For that reason, we
up-sampled the dataset’s audio files from 16 kHz to 44.1 kHz. This
is not a typical sampling rate for speech recognition systems [5],
but still supported by popular public APIs [5, 10].

We use the MFCCs as input features. In particular, we used 40
mel-bands, a step of 10ms, and a window length of 25ms that is
very common in related works [19, 22].

4.2 Neural Network Architectures
We use two CNNs and one LSTM. The first CNN was also used
in [15]. However, we added two dropout layers, one in the penulti-
mate layer (40%) and one right before the flatten layer (50%), which
gave a performance boost of around 3%. The second CNN is deeper
and was used in [9], and the LSTM was introduced in [3].

All the models perform similarly as the loss function is around
0.3 when the training ends. However, their capacity is different as
the first CNN has 284 778 trainable parameters, the second CNN has
5 975 882, and the LSTM has 180 569. In this way, we can investigate
whether both simple and more complex networks are susceptible
to inaudible backdoor attacks. We also investigate whether the
backdoor attack behaves differently for different neural networks
(CNNs and LSTMs). We use the Adam optimizer with a learning
rate of 0.0001 to train our models and 𝐿2 regularization in every
convolution filter in both CNNs. 80% of the initial dataset was
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used for training/validation, and the remaining 20% for testing. The
training dataset is again split 80%/20% for training and validation.

After carefully examining the training and validation loss func-
tions, we saw that the CNNs could always converge before 300
epochs and the LSTM before 100. We used Tensorflow’s early stop-
ping callback with patience 20, which stops the training if the
validation loss is not improved for 20 epochs returning the weights
of the best-performing model.

The arithmetic mean of the epochs among all the experiments
we run is 220.8 (± 24.97) for the small CNN, 182.4 (± 31.39) for
the large CNN, and 70.9 (± 12.70) for the LSTM for the ten dataset
classes and 250.5 (± 32.96), 102.5 (± 29.46), and 83.3 (± 13.16) for
the 30 classes. We run each experiment 15 times to eliminate any
randomness introduced by the algorithmic randomness (e.g., ran-
dom initialization and stochastic gradient descent). All the models
were trained with Tensorflow 2.5 on NVIDIA RTX 2080 Ti.

5 EXPERIMENTAL RESULTS
This section presents a systematic evaluation of our inaudible back-
door attack. We investigate how the ASRT is affected by various
backdoor characteristics like the number of poisoned samples, the
trigger’s duration, and the trigger’s position in time.

The triggers that we tried can be split into two groups: the long
(250ms, 500ms, 750ms, and 1 000ms) and the short triggers (20ms,
40ms, 60ms, and 80ms). In this way, we aim to see if the attack is
successful, even if only a few MFCC frames are affected by our
trigger. Additionally, we applied our trigger in different positions to
see if our models give more attention to the windows that usually
contain speech.

First, we need to define the poison percentage that leads to an
effective attack. Figure 1 shows ASRT as a function of the poison
percentage for each architecture. In these experiments, we used
a trigger of 20ms in the middle of each signal, which is short and
makes the attack very challenging. When we poison 200 samples
or more for both CNNs, ASRT is close to optimal even with this
short trigger. These results are further improved by longer or non-
continuous triggers and different trigger positions. Thus, we used a
smaller poison percentage to keep any differences between different
setups distinguishable. In particular, we poisoned at most 80 (0.59%
for the ten classes and 0.21% for the 30 classes) training samples in
the experiments with the CNNs. The ASRT is lower for the LSTM
architecture. The attention layer can give useful insights into a
network’s choices [3]. In Figure 2, we show the logarithm of the
attention weights for two backdoored models (20ms trigger in the
middle used for the backdoor) when a poisoned input is used. We
see that the attention layer does not recognize the trigger when
200 poisoned samples are used. This indicates that the attention
layer is more robust to the backdoor attack suggesting that unless
a smart position/duration/type of a trigger is used, the backdoor
attack on LSTM could be rather difficult.

Roadmap. In our results, we show ASRT vs. poisoning rate. Each
bar chart consists of three subplots, one for every trigger position.
Each bar in these plots represents a trigger of a different duration.
Furthermore, to better view the attack effectiveness for different
trigger positions, we plot the average ASRT for a different number
of poisoned samples in each trigger position. Each of these graphs

Figure 1: ASRT vs. trigger samples for more than 80 poi-
soned samples and CNNs.

Figure 2: Attention weights for poisoned input ("on").

consists of four lines, one for each position (three lines) and one
for the non-continuous trigger. We plot only the results for the
30 classes as there are no significant differences between the two
versions of the dataset for each architecture.

5.1 Effect on Clean Accuracy
A backdoor attack should remain hidden to avoid raising any sus-
picions. Thus, we need to verify that our attack does not affect the
model’s performance on the original task. In Tables 1 and 2, we
compare the clean model’s accuracy on the original task with the
accuracy that backdoored models have. To obtain the values for the
poisoned models, we group them based on the number of poisoned
samples used and take the average (arithmetic mean) of their clean
accuracy for all the different triggers used.

The differences for the original task are negligible between the
clean and the backdoored CNNs (Table 1). The backdoored models
perform slightly better in the original task when we use ten classes.
This behavior indicates that backdoored training data could improve
the model’s generalization, probably serving as a regularization
factor. However, the differences are small, and further investigation
is required to confirm our observations. When we use the full
dataset, the backdoor insertion drops the clean accuracy in all cases
for both CNNs (somewhat larger accuracy drop for large CNN).
Again, this is aligned with our previous observations, as more
classes (and a larger dataset) also represent a more difficult task for
neural network architectures to learn.
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Table 1: Clean accuracy comparison for the original task for
clean and poisoned models (CNNs).

Number of poisoned samples
model classes original 20 40 60 80

small CNN 10 90.13 (± 0.533) 90.22 (± 0.127) 90.19 (± 0.086) 90.16 (± 0.108) 90.14 (± 0.091)
small CNN 30 87.58 (± 0.446) 87.52 (± 0.114) 87.46 (± 0.161) 87.49 (± 0.083) 87.47 (± 0.118)
large CNN 10 95.71 (± 0.424) 95.82 (± 0.122) 95.82 (± 0.139) 95.85 (± 0.133) 95.85 (± 0.112)
large CNN 30 95.14 (± 0.539) 94.82 (± 1.527) 94.61 (± 2.609) 94.24 (± 2.292) 93.52 (± 3.621)

The LSTM behaves oppositely. In Table 2, the clean accuracy is
dropped in all cases when the ten classes are used and increased
when the entire dataset is used. This indicates that the LSTM built
different models in each case, and it utilized the model capacity
better for ten classes setting.

Table 2: Clean accuracy comparison for the original task for
clean and poisoned models (LSTM).

Number of poisoned samples
model classes original 40 80 120 160
LSTM 10 91.27 (± 1.217) 91.09 (± 0.354) 91.13 (± 0.29) 90.97 (± 0.459) 90.72 (± 0.359)
LSTM 30 91.45 (± 0.748) 91.76 (± 0.198) 91.63 (± 0.208) 91.59 (± 0.24) 91.77 (± 0.241)

5.2 Effect of Trigger Duration, Position, and
Continuity on ASRT

5.2.1 CNNs. In Figure 3, we show the results for different trig-
gers for the small CNN and the full dataset. The attack is more
successful for the large CNN as it is a deeper architecture and is
more capable of learning features from only a few training samples.
However, we observe some similarities in the attack’s behavior in
both architectures, and for that reason, we omit the corresponding
graph for the large CNN. In particular, ASRT increases linearly as
the trigger’s duration increases, especially in cases when it is not
already high. We also see that long triggers result in a high ASRT
even if only 20 poisoned samples are used. Additionally, ASRT for
short triggers is low when using only 20 poisoned samples but is
significantly larger when using 80 samples. This shows a strong
connection between ASRT and the number of poisoned samples
used for the attack.

In Figure 4, we show the mean ASRT for different backdoored
models for the small CNN when the full dataset is used. Again,
we omit the corresponding graph for the large CNN. We saw in
both CNNs that the position is not important when a long trigger is
used. However, the attack effectiveness varies for small triggers. For
the small CNN, the non-continuous trigger is substantially more
effective than the continuous ones, and the middle of the signal
is the worst position for the trigger. The attack is more effective
when more MFCC windows are affected and the trigger does not
overlap with actual speech. In the large CNN, the non-continuous
trigger outperforms the continuous ones only when the trigger
lasts for 20ms. The network’s complexity allows effective backdoor
insertion even with short triggers longer than 20ms.

5.2.2 LSTM. In Figure 5, we show the results for each different
trigger for the LSTM network for 30 classes. The ASRT is lower for
this architecture even though we use more poisoned samples. As
shown above, the attention layer cannot be affected easily by small
variations inside the audio file. However, similarly to CNNs, there

Figure 3: ASRT vs. poisoned samples for all the trigger posi-
tions and sizes for 30 dataset classes (small CNN).

Figure 4: Mean ASRT vs. trigger size for 30 dataset classes
(small CNN).

is a linear correlation between the trigger’s duration and ASRT.
Again, for long triggers, we see less difference in ASRT, especially
when using more poisoned samples.

In Figure 6, we show themeanASRT among different backdoored
models for the LSTM network when the full dataset is used. We see
that the trigger at the end of the signal is the most effective contin-
uous trigger in both dataset versions. Additionally, non-continuous
triggers clearly outperform continuous ones.

5.3 Attack on Android Application
Many microphones are inherently capable of recording audio sig-
nals in the near ultrasonic range (e.g., 18 to 22 kHz) [14]. To this end,
we played our trigger through a VLC media player on a Linux lap-
top and verified through Spectroid [13] that a signal of 21kHz was
played even if we could not hear anything. This experiment showed
that the laptop speaker could transmit sounds in the inaudible hu-
man range, and the smartphone microphone could interpret them.
Additionally, we verified that the inaudible trigger was successfully
generated, which is the first step for a practical attack.

As a second step, we applied our attack on an Android speech
recognition application. Our application is based on a TensorFlow
Lite official example [16] that recognizes ten spoken words from the
Speech Commands dataset. However, we modified its preprocessing
pipeline to calculate the audio’s MFCCs and used a poisoned model
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Figure 5: ASRT vs. poisoned samples for all the trigger posi-
tions and sizes for 30 dataset classes (LSTM).

Figure 6: Mean ASRT vs. trigger size for 30 dataset classes
(LSTM).

for the inference. We only run this experiment with the small CNN,
but we believe this attack will be effective with all three architec-
tures. We decided to use the small CNN because it uses less memory,
while the ASRTwith the LSTM showed worse performance, making
it less attractive architecture. We used our strongest setup, i.e., 80
poisoned samples and a 1-second trigger to model our adversary.
The application records 1-second clips and shows the keywords
that are recognized with 50% probability or more.

We installed our application on a smartphone that ran Android
7.0 (Huawei P9 Lite). We played our inaudible trigger both from a
Linux laptop (Lenovo t460s) and low-end home cinema speakers
(Philips HTS7200). We run two experiments for each sound device.
In the first, we played our trigger in silence to ensure that the
backdoor was successfully activated when no sounds were present.
In the second, we said words of the nine possible classes (omitted
the target class) in random order while the trigger was played by
either the laptop or the speakers. In each experiment, we placed
the smartphone in four different locations to see how the attack
accuracy is related to the distance from the sound source. The first
location is adjacent to the sound source (0m), and the remaining
ones are 0.5m, 1m, and 1.5m away from it. We run each experiment
15 times to have a more robust view of the attack’s behavior.

Using Spectroid [13], we saw that for both devices, the trigger’s
intensity is around −43dB when the phone is adjacent to the sound

source. However, as the distance between the speaker and the
phone grows, this number drops significantly faster for the laptop
experiments. Additionally, the trigger’s intensity is lower than the
normal voice for all the positions we tried. As a result, the backdoor
was successfully triggered only in silence as its volume was not
enough to overcome our speech. In particular, ASRT is high only
when the distance is 0m if the trigger is played through the laptop.
On the other hand, if the trigger is played from the home cinema
speakers, ASRT is high (> 80%) for distances up to 1m. At 1.5m, the
backdoor is still activated but with a lower ASRT.We saw that ASRT
is further increased when the user does not speak loud enough or
the phone is not close enough to the speaker’s mouth.We concluded
from these experiments that this attack poses a real threat as an
adversary with stronger equipment could be more effective.

5.4 General Observations
Based on the conducted experiments, we list several findings that
were consistently observed.

• The attack success rate is linearly correlated with the trig-
ger’s duration. Our models can learn longer triggers easier
as more windows in the MFCC calculation are affected.

• Our attack is inaudible, so an adversary could use a 1-second
trigger for a powerful attack with a very low poisoning rate.

• If the adversary does not want to use a 1-second trigger (or
any long trigger), non-continuous triggers represent the best
option as they perform extremely well with short triggers.

• Different models behave differently for our attack. For ex-
ample, the best ASRT for the short continuous triggers and
LSTM is at the end of the signal, but for the large CNN, the
trigger at the beginning results in a slightly increased ASRT.
This indicates that the data poisoning backdoor attack could
be used as a tool for AI explainability, as it can highlight how
and what neural networks learn.

• The number of poisoned samples is clearly connected with
ASRT. Thus, an adversary should use as many samples as
possible without risking a large performance drop for the
original task to avoid raising suspicions.

• The backdoor in the Android application was successfully
activated by playing the trigger from the laptop and low-end
home cinema speakers within a 1.5m.

Limitations. While our attack showed very good performance, we
believe there are also some limitations concerning inaudible back-
door attacks:

• We use MFCCS as a convenient representation of audio sig-
nals for machine learning, and we did not validate our results
with other types of signal representations. Still, we do not
consider this a significant limitation due to the widespread
use of MFCCS and no intuitive reason that the attack would
not work with different representations.

• As we work with inaudible triggers, the sampling rate of
the recorded signals should be larger than 40 kHz. If an ASR
system uses a lower sampling rate, our attack will not be
effective. A sampling rate of 16kHz is preferred in ASR sys-
tems [5], however popular public speech-to-text APIs allow
higher rates [5, 10]. Additionally, different applications like

Session 3: ML Applications and Security WiseML ’22, May 19, 2022, San Antonio, TX, USA

61



music genre classification require high sampling rates [12],
making our attack practical.

• Finally, our work did not consider any defense against the
inaudible backdoor attack. While we show it is possible to
achieve (almost) 100% ASRT for various trigger positions and
durations, even if using a small number of poisoned exam-
ples, different defenses could still work. Our trigger works
for every source class in the dataset, and thus, an online de-
fense like STRIP [4] could defend against it by superimposing
different signals and checking the entropy of the model’s
output. Additionally, a low-pass filter could make our attack
ineffective as it could filter out frequencies above the human
audible range. Such a filter could be either software-based
or hardware-based. A software-based filter could introduce
additional computational overhead, which may be unaccept-
able in a device with strict timing constraints. Moreover, a
hardware-based filter may not be possible in any device as
frequencies close to the ultrasonic range may be useful in
some cases like music genre classification [12].

• When playing a poisoned audio sample, if the volume is
too high, it is possible to hear a slight clicking sound in
its beginning. This clicking sound is connected with the
backdoor trigger. Its volume is very low compared to the
main signal, so unless expecting it, it is hard to hear it. This
sound is heard only in the trigger’s beginning, and thus, we
still consider it to be practically inaudible.

6 CONCLUSIONS AND FUTUREWORK
This paper explores how inaudible backdoor attacks on neural
networks threaten ASR. We use a dataset with ten or 30 classes and
three neural networks (two CNNs and one LSTM). Furthermore, we
investigate the influence of the position, duration, and trigger type.
Our results suggest it is relatively easy to run an inaudible backdoor
attack on ASR where the attacker needs to poison only around 0.5%
of the training dataset. Since the trigger is inaudible, it is possible to
make it as long as the signal, making the attack even more powerful.
We show that non-continuous triggers can significantly improve
attack performance even in scenarios where short triggers are used.
Consequently, short non-continuous triggers inserted in less than
0.5% of the training dataset can result in an attack success rate of
more than 99%. Finally, we show that our attack is effective in the
real-word by attacking an Android application.

As we did not consider countermeasures, this would be a natural
extension of our work. Today, most of the defenses against backdoor
attacks try to detect either the poisoned inputs or compromised
models [2, 7]. As we limit our data poisoning to a small number of
training examples, we believe such techniques would have difficul-
ties detecting poisoning examples. Furthermore, some more recent
defenses suggested retraining [17], which we consider to be a good
choice against our attack. Still, since such works commonly assume
an unlimited amount of clean data, they are not practical. We are
aware of only one approach that does not have that limitation [18],
but it can work for image processing only, making this defense not
applicable against our attack.
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