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High uncertainty can cost us just a battle, but if we remain indecisive in uncertainty it
may very well cost us everything and much more.






Summary

1 Introduction

1.1
1.2
1.3

1.4

Background
State of the art

1.3.1

2 Geometry definition and analysis

2.1 Introduction
Data Matrix
Test Cases

2.2
2.3

2.4

2.5
2.6

3.3

3.4

23.1
2.3.2

24.1
2.4.2

3.2.1
3.2.2
3.2.3

3.3.1

Tip Vortex Cavitation Noise
3.1 Introduction
3.2 Physical and Numerical Model
Governing Equations. . . . . . . ..
Thermodynamicmodel . . . . . . .
Large Eddy Simulations . . . . . . .
Computational Domain

Acoustics and Response Modes

vii

Research Objectives and Methods. . . . . .
Parametrization . . . . . ... ...
1.3.2 Uncertainty
1.3.3 Efficiency

Outline

PropellerBlade. . . . . .. ... ..
NACA4412. . . . . . ... . . ...
Results . . . ... ... ... ......
PropellerBlade. . . . . . ... ...
NACA4412. . . . . . ... . ...
Conclusion

Recommendations

Domain Initialisation . . . . . . ..

Kinematics. . . . . . ... ... ..
Kelvin-Helmholtz instability . . . . .
Turbulence. . . . . ... ... ...
Compressibility . . . ... ... ..

CONTENTS



viii CONTENTS

3.5 Conclusion . . . . . . . .. e e e e e e e e e e 38
3.6 Recommendations . . . . . . . . . . . ... e 39
4 Dynamic Optimization 41
4.1 Introduction . . . . . . . . . . i i i e e e e e e e e e e e 42
4.2 DynamicOptimization . . . . . . . . . . ... 0oL 45
4.2.1 Objective, Constraints and Design Variables. . . . . . .. . .. .. 47
422 HaltonSampling. . . . ... ... ... ... .. 0. 49
423 Geometry . . . . . . ..o e e e e 49
4.2.4 Orthogonal ParametricModel . . . . . . . . ... .. ... .... 50
425 Classifiers . . . . . . . . . . . e e e 52

4.3 DemonstrationSetup. . . . . . . . . . . oo oo e e e 56
4.4 Results . . . . o o L e e e e e e e e e e e e e 57
4.4.1 Orthogonal parametric model reliability. . . . . . . ... ... .. 57
4.4.2 C(lassifier Performance. . . . . . .. .. ... ... .. ...... 58
4.4.3 Dynamic Optimization Performance. . . . . . . . .. ... . ... 61

45 Conclusion . . . . . . . .. e e e e e e e e 65
4.6 Recommendations . . . . . . . . . . . . . .. 66
5 Multiobjective Dynamic Optimization 69
5.1 Introduction . . . . . . . . . . . . . . . e e e e e e e 69
5.2 Dynamic Optimization . . . . . . . . . .. ... 0oL 73
5.2.1 ObjectiveandConstraints . . . . . . . . . . . . v v v v v v 74
5.2.2 DesignVariables. . . . . . . .. ... ... ... .o 77
5.2.3 Non-dominated Sorting Genetic Algorithm - III (NSGA-III) . . . . . 81
524 Geometry&Mesh . . . . . .. ..o Lo 82
5.2.5 Orthogonal Parameters . . . . . . . .. . . ... ... ...... 83
5.2.6 Naive-Bayes Classifier . . . . . .. ... ... ... ........ 84

53 Results . . . . . . . . o o e e e e e e e e e e 86
5.3.1 BaselinePerformance . . . . . ... ... ... .......... 86
5.3.2 ParetoFront . . . . . . . . . e e e e e e e 88
5.3.3 Naive-Bayes Classifier . . . . . . .. ... ... .. ........ 92
5.3.4 Paretosolutions . . . . . . . . . . . . ... 93

5.4 Conclusion . . . . . . . . . e e e e e e e e e 97
6 Conclusions and Recommendations 99
6.1 Conclusion . . . . . . . . . . . e e e e e e e e e e 99
6.2 Recommendations . . . . . . . . . . . . . .. 101
References . . . . . . . . . . 0 i i e e e e e e e e e e 103

Acknowledgements 115



SUMMARY

Over 90% of international trade is carried out over seas. Shipping is currently the cheap-
est mode of transoceanic transport. The traffic density of shipping lanes on seas, oceans,
and also rivers is likely to increase. Consequently, the GHG, NOx, SOx and noise emis-
sions from shipping will rise making it more difficult to meet stricter emission regula-
tions which the IMO aims to achieve. One opportunity to reduce emissions is by design-
ing more efficient and quieter propellers.

To design quieter and more efficient propellers an optimal blade loading solution is
required. For a rigid propeller, the blade loading distribution is optimized by modifying
the geometry. The propeller geometry must be modified to achieve optimal loading that
maximizes efficiency and minimizes acoustic emissions. In addition to efficiency and
noise considerations, propeller optimization must consider thrust, ship speed, fairing
constraints as well as unsteady wake of the vessel.

Most modern propeller geometries are optimized to the bounds of the capabilities
of low, high fidelity simulations and scaled experiments. Even in the preliminary de-
sign phase, optimizing a propeller is resource intensive. State-of-the-art optimization
methods have used surrogate based methods and machine learning to improve the ef-
ficiency of optimization. Typically, optimization methods use (a) classical design vari-
ables to define the propeller geometry, (b) gradient free search algorithms to explore the
design space and, (c) statistical models to learn the objectives and constraints. While
they have been demonstrated to find well defined Pareto fronts for multi-objective con-
strained propeller optimization problems, they face three challenges. The first challenge
is that most optimization methods tend to approach the optimization problem with
classical design variables however, they lead to the problem of multicollinearity. The
performance prediction of a propeller geometry in Boundary Element Method (BEM) or
Computational Fluid Dynamics (CFD) depends on the discretized geometry i.e. mesh.
Changing a single classical variable results in a change of multiple nodes on the mesh.
Thus, the variables are not orthogonally independent w.r.t performance predictions. This
orthogonal dependence is multicollinearity. It obscures the correlation between the
mesh and predicted efficiency or cavitation behaviour. As a result, more than required
evaluations may be necessary to train statistical models particularly when sensitive cavi-
tation constraints are considered. This makes optimization inefficient. The second chal-
lenge is that preliminary design tools tend to have high uncertainties. These uncertain-
ties result from lower-fidelity physical models, use of semi-empirical relations to pre-
dict skin-friction, numerical methods and variance in operational parameters. Conse-
quently, comparable or similar efficiency and cavitation behaviour may be predicted for
two designs even though their operational performances may be significantly different.
This could lead optimization methods to converge to sub-optimal solutions. The third

ix
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challenge is that computational cost of optimization for realistic cases is relatively high
even in the preliminary design phase. Consequently simpler methods such as chart-
ing from open-water curves of legacy propeller families such as Wageningen series are
preferred. However, as shape adaptive composite propellers become more prevalent,
propeller design and optimization cannot resort to charting. In such circumstances im-
proving efficiency of optimization process is crucial. In this body of work, each of the
aforementioned three challenges are addressed.

In order to solve the first challenge of multicollinearity, a new parametric model is
required whose features are orthogonally independent. Thus, the orthogonal paramet-
ric model is proposed. It is constructed by projecting the mesh of a geometry in a hy-
perspace defined by several orthonormal vectors. The orthonormal vectors are derived
from Singular Value Decomposition (SVD) of all possible geometric variations of pro-
peller meshes. The projections of a mesh in the hyperspace is demonstrated to be a
viable method to accurately quantify geometric variations and also establish sensitives
of performance w.r.t design variables. If performance correlates linearly with geometric
variation, SVD can be used to identify sensitivities of design parameters a-priori. In situ-
ations when performance correlates non-linearly, SVD can be used to selectively sample
the design space reducing objective function evaluations by almost 50%. This is demon-
strated on the aeroacoustic optimization of a 2D airfoil. The trade-off with completeness
is also found to be reasonable.

In order to solve the second challenge of preliminary design tools leading optimiza-
tion to sub-optimal solutions, it is proposed that uncertainties be modelled and opti-
mization methods favour designs with a better performance and no overlap in the 95
% confidence interval of performance prediction. This is possible when the variance in
performance prediction is known and can be modelled. Soft regression and classifica-
tion can be used to map the orthogonal parameters to mean and variance in predictions
of efficiency and cavitation behaviour. Furthermore, the mean and variance predictions
made by soft regression and classification can be linked to standard distributions result-
ing in confidence intervals. Thus, designs with better performance and no overlap in 95
% confidence intervals can be considered to dominate during search iterations.

For BEM, uncertainty resulting from physical modelling, use of semi-empirical re-
lations and numerical methods are well investigated and documented. Thus, based on
data from literature the variance in efficiency prediction of BEM is modelled. However,
sources of uncertainties in Empirical Tip Vortex (ETV) model are not fully investigated.
Consequently, it is difficult to model variance in predictions of broadband acoustics
made by ETV. A detailed insight into sources of uncertainty and extant of variance in
prediction of tip vortex size and broadband noise requires investigating the governing
physics. Therefore, the dynamics of an isolated cavitating vortex without forced exci-
tation is investigated with scale resolved compressible flow simulations. Observations
indicate the presence of Kelvin-Helmholtz instabilities due to vapour-liquid interface.
These instabilities grow resulting in helical and superimposed response modes. On the
relevance of compressibility, it is observed that the vapour core tends to be compressible.
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Density variations in the free-stream are negligible and predominantly due to acoustics.
The free-stream may influence the dynamics within the cavity however, the momentum
within the core is most likely too low to influence free-stream dynamics. This indicates
that the ETV model’s incompressibility assumption is most consistent with our observa-
tions. As compressibility is not expected to play a dominant role, the ETV is hypothesized
to be most reliable in predicting the size of the vortex cavity which depends mostly on
blade tip loading. Thus, in this research the ETV model is used to predict only the radius
of the tip vortex. Due to the direct correlation with blade tip loading and for simplicity,
it is assumed that variance in tip vortex core size prediction is the same as that of effi-
ciency prediction documented in literature. With soft regression and classification, the
mean and variance in efficiency and radius of the tip vortex core are modelled.

In order to address the third challenge of high computational cost of optimization, it
is proposed that explainable supervised soft classifiers be trained to identify the location
of the Pareto front. The classifiers advise search strategies to focus on lucrative regions
of the design space. Furthermore, explainable machine learning models also provide in-
sight into why a certain region is lucrative. The classifiers are trained with orthogonal
features which capture geometric variation in radial distribution of pitch, skew, camber
and chordlength. The method is demonstrated on a cavitating, unsteady flow case of Wa-
geningen B-4 70 propeller with P/D=1.0 operating in the Seiun-Maru wake. Compared to
the classical Non-dominated Sorting Genetic Algorithm - III (NSGA-III) the optimization
method is able to reduce 30 % of evaluations per generation while reproducing a compa-
rable Pareto front. Trade-offs between suction side, pressure side, tip-vortex cavitation
and efficiency are identified. The non-elitist NSGA-III search algorithm in conjunction
with the supervised classifiers are able to identify a Pareto front with very diverse solu-
tions. Among the solutions, a design with no pressure side cavitation, low suction side
cavitation and reasonable tip-vortex cavitation is found.

By addressing the three challenges, the current body of work contributes to new pro-
peller optimization methods which are expected to be more efficient.






INTRODUCTION

1.1. BACKGROUND

Over 90% of international trade is carried out over seas [55]. The shipping routes shows
that traffic cuts across the worlds seas and oceans predominantly transporting contain-
ers, bulk cargo, gas, oil, liquids and vehicles [1]. Fundamentally, this demand for com-
mercial shipping is created by Global Value Chains (GVCs) where different stages of pro-
duction processes are located in different countries [42] based on the respective coun-
try’s comparative advantages. For the economy to benefit from these comparative ad-
vantages, it is a critical requirement to transport intermediate products to centres of
manufacturing and finished products to markets at the lowest possible cost. Shipping
can deliver on this requirement being the cheapest mode of transport.

As the economy recovers from impacts due to Covid-19, global trade is expected to
increase and GVCs are likely to be more robust. Thus, the traffic density of shipping lanes
on seas, oceans, and also rivers is likely to increase. Consequently, the Green House
Gas (GHG) and noise emissions from shipping will rise making it more difficult to meet
stricter emission regulations [106] and noise reduction guidelines [105]. The Interna-
tional Maritime Organization (IMO) aims to achieve a 50% reduction in GHG emissions
by 2050 compared to 2008 levels [70] and ports have also started to incentivize silent
ships with harbour due rate discounts [102].

There are several sources of airborne and underwater noise from ships [4]. For spe-
cial purpose vessels mounted equipment can be a significant source of airborne noise.
Compared to air, noise travels faster and farther in water. Underwater noise is gener-
ated by water flow on vessels, auxiliary machinery and equipment, diesel generators,
prime movers, electric motors and propellers. Most modern propellers are typically well
designed and tip-vortex cavitation, see Figure 1.1 is often the observed mode of cavita-
tion. Averson et. al [8] report the underwater radiated noise for M/V Overseas Harriette
at different ship speeds (propeller rpm). The ship has a cavitation inception speed of
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port view, slipstream contraction =
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Figure 1.1: Cavitating tip vortex with slip stream contraction [56].

10 knots which corresponds to 86 RPM for the propeller. Figure 1.2 illustrates the one-
third octave broadband spectrum for the vessel. It is observed at cavitation inception,
the noise hump between 50-100 Hz gets more pronounced with increasing speed. This
noise hump is typically associated with the broad band spectrum of tip vortex noise [108]
which is often the dominant source of underwater radiated noise. Against this back-
ground, there is strong emphasis on making ship propellers more quiet and more effi-
cient.

To design quieter and more efficient propellers an optimal blade loading is required.
Blade loading plays an important role in propeller design as blade sections are contin-
uously exposed to different angles of attack in the non-uniform wake-field they operate
in. For a rigid propeller, the blade loading distribution is optimized by modifying the
geometry. Traditionally, in addition to efficiency objectives indirect noise constraints as
a limit on cavitation volume or area [64, 93] have been implemented. Acoustic objec-
tives have been considered [101] but the focus has been limited to pressure fluctuations
at blade passage frequencies. Most modern propellers are typically optimised to limit-
ing bounds of performance and are more likely to operate with vortex cavitation as the
dominant source of radiated pressure fluctuations and broadband noise [8]. In addition
to noise and efficiency design objectives, propeller design must also account for con-
straints on hull excitation [88], cavitation erosion [111], ship speed, thrust and strength.
State of the art optimization methods are able to tackle this multi-objective constrained
problem. However, there are opportunities to improve current methods to make them
more computationally efficient while still identifying lucrative designs in a vast design
space.
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Figure 1.2: Third-octave broadband spectrum of M/V Overseas Harriette at different ship speeds [8]. The
hump due to tip-vortex cavitation is highlighted.
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1.2. STATE OF THE ART

The hydroacoustic design and optimisation problem of propellers is of immense strate-
gic importance and is most likely well researched in defence. However, there is limited
knowledge and reporting in the public domain. Access to specialized simulation soft-
ware, models based on propriety data and intellectual property restrictions (due to sen-
sitivity or embargo) result in hydroacoutic optimization of propellers being tractable to
very few academic research groups. In North America, Yin Lu Young’s group in Michi-
gan university focus on flexible composite propellers [113] as a way towards designing
quieter and more efficient propellers. One of the focus areas at the group is to design
shape adaptive propellers which have a bend twist coupling to optimize propeller load-
ing [97, 100, 109] and improve efficiency. Given the challenging structural modelling
for composites [98], cavitation and noise constraints are secondary considerations. In
Europe, MARIN has focused on developing and demonstrating tools for hydroacoustic
design and optimization of propellers [27, 95]. Florian Vesting in Rickard Bensow’s group
has investigated algorithms, strategies and methods for hydrodynamic optimization of
propellers with cavitation considerations [26, 84, 112]. In Asia, Nakashima propellers
have focused on achieving better cavitation behaviour and improved efficiency for large
vessels [110]. Better cavitation behaviour is expected to result in lower cavity volume
fluctuations and thus lower pressure fluctuations and noise.

Up to approximately 2015, the focus in the aforementioned studies was predom-
inantly on optimizing for efficiency and controlling sheet cavitation. In parallel, ef-
forts were underway to better predict tip-vortex cavitation behaviour with simulations
[29, 104]. These efforts continue even today as challenges related to physical modelling
and numerical dissipation remain [96]. Thus, while propellers with better sheet cavita-
tion behaviour were designed and introduced, the dominant source of noise was tending
to be the cavitating tip-vortex (see Figure 1.2). However, predicting tip-vortex cavitation
on propellers continues to be quite resource intensive for optimization. Furthermore,
developing acoustic models for cavitating tip vortices based on simulation data requires
a few challenges to be addressed (see Chapter 3). Recently, Bosschers .J [15] proposed
the emperical tip vortex model which offers one approach to hydroacoutic optimization
of propellers with tip-vortex considerations.

Most optimization methods that handle a maximise-efficiency objective are typically
constrained with a minimum thrust requirements and maximum structural stress limits.
Where an acoustic objective is also considered [101], the focus was limited to pressure
fluctuations at blade passage frequencies. These pressure fluctuations tend to have low
frequencies. Other examples have generally implemented indirect noise constraints as
a limit on cavitation volume or area [64, 93]. As the only example, Huisman et. al [95]
found a trade-off between tip-vortex cavitation noise and efficiency.

Summarizing most of the methods in literature, the author finds that Figure 1.3 il-
lustrates the optimization method that is predominantly used in propeller optimization
problems. At the start, objectives and constraints are specified (block 1). After objectives
and constraints, the design variables are determined (block 2). Most parametric models
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rely on (a) classical design variables - pitch, diameter, hydrofoil camber, thickness dis-
tribution, skew and rake [6, 66], (b) control points of splines or coefficients of equations
that define propeller families [62, 67, 85] and, (c) free-form control points [68]. How-
ever, they could lead to multicollinearity [2, 47]. Multicollinearity makes it difficult to
isolate the impact of changing individual design variables on objectives and constraints.
Therefore, the computational cost of optimization could increase as it could take more
evaluations to try and isolate the individual impact of design variables. Consider a func-
tion ¢ = f (]\71 (5), where M represents the mesh and 5 is the design vector. By chain
rule, % = :—f.% = J1.J» where J; is the Jacobian of the function w.r.t the mesh and J»
is the Jacobian of the mesh w.r.t the design variables. The optimization problem is free
of multicollinearity if both J; and J, are orthonormal matrices. The orthonormality of
J1 is determined by the flow physics and J, by the chosen design variables. Any design
variable which affects multiple nodes on the mesh will lead to J, which is not orthonor-
mal. This is because the blade surface is often defined with splines thus, change in mesh
nodes are strongly correlated and also predictable. Different classical design variables
also tend to change the same mesh nodes. Thus, it is difficult to isolate the impact of
individual design variables on objectives and constraints.

After defining the design variables, a search strategy is chosen (block 3). For the
multi-objective constrained optimization problem Non-dominated Sorting Genetic Al-
gorithm - IT (NSGA-II) and Particle Swarm Optimisation (PSO) are mostly used as they
are able to navigate a complex and discontinuous design space [57]. Among search
strategies, NSGA-III is also a promising development which has been demonstrated on
3 to 15 objective optimization problems with convex, concave, disjointed and differently
scaled Pareto fronts [90].

After the search strategy is chosen, the queried geometries are generated (block 4).
The geometries are then evaluated, usually using panel methods or CFD (block 5). In
most cases, to reduce the cost of several tens of thousand evaluations, Response Surface
(RS) methods or statistical machine learning approaches are employed to learn the re-
lation between objectives, constraints and design variables (block 5a). Most commonly
Artificial Neural Networks, Krigging, iKrigging, Cascading Neural Networks [112] have
been used. More recently Deep Learning [94] has also gained traction in propeller de-
sign and optimization [99].

In addition to deep learning, there is also a push towards explainable machine learn-
ing approaches [3]. This is particularly the case in critical applications such as health
care where regulation requires the use of explainable models. Within the maritime do-
main, explainable machine learning presents very interesting opportunities to provide
performance grantees thus presenting an interesting business advantage for propeller
manufacturers. Furthermore, explainable machine learning can also meaningfully re-
duce the computational cost of optimization. Similar to RS and deep learning, they can
be trained to learn the relation between objectives and constraints. Thus, they can be
used to predict where lucrative designs may be found in the design space and also pro-
vide insight into why the regions are lucrative. However, explainable machine learning
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approaches have not yet been fully investigated or considered. The reason for this is not
clearly known. Nonetheless, RS and deep learning models are trained till they are accu-
rate and used to find the optimum (block 6). When the convergence criteria are met, the
design method stops and reports the optimum. Along with the optimum, the necessary
trade-off between objectives, constraints and their relation to design parameters is also
often reported.

1. Objectives

& Constraint
fovjr 8

2. Design
Variables, §

3. DoE or
Search Agent

@777777777?
i
5a. RS
g
6. Find Optimum @
.

i mum |-~
Ye
Yes

Figure 1.3: Traditional Design and Optimisation (D&O) workflow

A few design and optimization methods also account for uncertainty in operational
parameters. These methods are identified as Robust Design [73]. The goal is to drive
optimization towards designs with gradual performance degradation. To find such de-
signs, Robust Design converts single point optimization problems into multi-point opti-
mization problems where the mean and variance in operational parameters determine
the range of operation over which a design is to be optimized. While uncertainties in
operational parameters are accounted for, current optimization methods in the prelimi-
nary design phase are yet to account for uncertainties in performance prediction of pre-
liminary design tools such as BEM and ETV [15, 83] used in hydroacoutic optimization
problems. Preliminary design tools tend to have high uncertainties. These uncertainties
result from lower-fidelity physical models, use of semi-empirical relations, numerical
methods and variance in operational parameters. Consequently, comparable or similar
efficiency and cavitation behaviour may be predicted for two designs even though their
actual performances may be significantly different. This is a problem because it could
lead optimization methods to converge to sub-optimal solutions resulting in expensive
design reworks or performance surprises in the detailed design phases.
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In summary, current multi-objective constrained propeller optimization problem
need to address three challenges in order to improve the efficiency of optimization with a
reasonable trade-off with completeness. The first challenge is that multicollinearity [91]
resulting from classical design variables can potentially make optimization expensive.
The second challenge is that in the preliminary design phase, BEM and ETV model may
lead to high uncertainties which could lead hydroacoustic optimization to sub-optimal
solutions. The third challenge is that even in the preliminary design phase optimization
is computationally expensive. While RS and deep learning have been applied, there is an
opportunity to use explainable machine learning models to reduce cost of optimization
by predicting where a lucrative region in the design space exists and also also provide
insight into why the region is lucrative.

The aforementioned challenges lead to three specific research objectives which are
pursued in this body of work.

1.3. RESEARCH OBJECTIVES AND METHODS

The primary objective of this research is to improve the efficiency of optimization while
achieving a reasonable trade-off with completeness and robustness. The specific objec-
tives to address each of the three challenges - multicollinearity, uncertainty and compu-
tational cost - of state of the art optimization method are detailed below.

1.3.1. PARAMETRIZATION

OBJECTIVE

The first objective is to solve the problem of multicollinearity which can potentially make
optimization inefficient and computationally expensive.

METHOD

The problem is solved with an orthogonal parametric model (see Section 4.2.4) which
is derived from the propeller mesh. At the heart of the proposed model is SVD which is
shown to accurately capture geometric variations [52]. As there is a direct correlation be-
tween the propeller mesh and predicted efficiency or cavitation performance, machine
learning models can be trained quicker and better to identify lucrative regions in the
design space. This quicker and better learning is expected to improve the efficiency of
optimization.

1.3.2. UNCERTAINTY

OBJECTIVE

The second objective is to solve the problem of optimization methods converging to sub-
optimal designs due to high uncertainties in prediction of efficiency and acoustic radia-
tion in the preliminary design phase.
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METHOD

To account for uncertainties in predictions of efficiency and cavitation behaviour, it is
proposed that their mean and variance be modelled. The uncertainty in efficiency pre-
diction of BEM is known and well documented [83]. However, sources of uncertainty
in acoustic predictions of preliminary methods such as ETV-2 [16] are yet to be investi-
gated.

Firstly, sources of uncertainty in the predicting acoustic behaviour of isolated tip vor-
tices are investigated with scale resolved simulations to gain an insight into the govern-
ing physics which influences vortex dynamics. The insight gained in the investigation is
used to model uncertainties in the predictions of cavitation behaviour made by prelimi-
nary design tools for propellers.

When uncertainties for both efficiency and cavitation metrics are known, soft regres-
sion and classification are applied to learn the mean and variance in performance esti-
mations of preliminary design tools. The mean and variance predictions made by soft
regression and classification models are used to identify 95 % confidence interval. De-
signs with a better mean performance AND no overlap in the 95 % confidence interval
with compared designs are favoured in optimization iterations. This is expected to mit-
igate the risk of optimization methods converging to sub-optimal designs when uncer-
tainty is not accounted for. However within the scope of this research, the expectation is
not demonstrated.

1.3.3. EFFICIENCY

OBJECTIVE

The third objective is to address the problem of computational cost of optimization with
areasonable trade-off with completeness.

METHOD

Hydro-acoustic design and optimization of propellers is computationally expensive. Two
methods are proposed to improve efficiency of optimization. The first is by the use of
explainable machine learning methods to learn the location of lucrative designs in the
design space. The second is by the use of semi-empirical models such as ETV-2 [16] to
predict acoustic performance or tip-vortex cavitation behaviour.

1.4. OUTLINE

The first research objective is pursued in Chapter 2 where the application of SVD to cap-
ture geometric variation reliably is demonstrated for both a propeller and a 2D airfoil.
Based on the finding that geometric variation can be accurately captured, the orthogo-
nal parametric model is defined. The model is detailed in Section 4.2.4.

The second research objective is pursued and the method is demonstrated in Chap-
ters 4-5. In Chapter 4, supervised and unsupervised learning strategies are synergised
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and applied to a single objective constrained propeller optimization problem with the
goal to maximize efficiency. In the chapter, soft regression and classification are used to
model mean and variance in efficiency predictions of BEM. In Chapter 3, the dynamics
which influence the broad-band acoustic spectrum of tip vortices is investigated. The in-
vestigation provides insights into possible sources of uncertainty for empirical tip vortex
models. In Chapter 5, mean and variance in efficiency and acoustic performance predic-
tion is used to define the Pareto band where solutions dominate when there is no overlap
in the 95 % confidence intervals of performance with compared solutions. This reduces
the risk of false positives on whether a solution dominates or not. Consequently, Design
and Optimisation (D&O) strategies are expected to yield a range of solutions whose pre-
dicted performance does not differ significantly from operational performance.

The third research objective is pursued in Chapter 4 and 5. Machine learning strate-
gies are applied during optimization to identify lucrative regions in the design space with
very few objective function evaluations with a reasonable trade-off with completeness.






GEOMETRY DEFINITION AND
ANALYSIS

When optimizing propeller geometries it is very important to know sensitivities of perfor-
mance w.r.t the chosen design parameters and also to make sure that the chosen parame-
ters do not suffer from multicollinearity. If a suitable parameter set is chosen, it becomes
possible to correlate geometric variation and performance. Establishing the correlation
is also an important step towards facilitating machine learning approaches in optimiza-
tion. This chapter introduces Model Order Reduction (MOD) as a possible solution to mea-
sure geometric variation accurately. The method to quantify variation is demonstrated on
the skewed Seiun-Maru blade geometry and a 2D airfoil. For the latter, results of geometric
variance study is used to selectively include a diverse set of geometries with both major and
minor variations. The selective inclusion of design points results in focused evaluations
thus the efficiency of multi-objective optimization improves significantly. The trade-off
with completeness is also reasonable' .

2.1. INTRODUCTION

D&O of propellers can be cost effective if lucrative regions in the design space are ex-
plored efficiently. This requires insight into the sensitivities of performance w.r.t design
variables in all regions of the design space. Using the sensitivities it is possible to reduce
the number of design variables and/or number of samples required to explore the de-
sign space thus reducing the cost of D&O. These sensitivities are estimated via analysis
(computational or experimental) which can be the most expensive steps of D&O rou-
tines. Thus, it would be a good advantage to gain insight into sensitivities with very few
design point evaluations or in an a-priori manner i.e. without analysis. As the variations
in performance correlate with variations in geometry of the propeller, such an a-priori
insight into the magnitude of sensitivities could be gained by investigating variations in

1 The research in this chapter is published in NuTTS conference 2018 [52].

11
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propeller geometry. As a pre-requisite to such an investigation, the variations in pro-
peller geometry need to be quantified. This chapter explores the applicability of MOD to
quantify geometric sensitivities in an a-priori manner to enable the design space to be
searched efficiently.

At the heart of MOD is Singular Value Decomposition where a real matrix A, is
factorized as
Amxn = UmxmzmannTxnv 1)

where U and V are left and right singular vectors of A respectively. U is a collection of or-
thonormal vectors (basis) and can be interpreted as the principal dimensions of the data
in A. Z is a diagonal matrix which stores the singular values ;. They can be interpreted
as the magnitude of each dimension. V can be interpreted as the rotation matrix for the
data set.

The high-dimensional data in A can be approximated in a lower-dimensional sub-
space [60]. This dimension reduction is called Proper Orthogonal Decomposition (POD)
when the leading basis of A are chosen [31]. SVD and POD have been successfully ap-
plied to quantify geometric variation and optimize geometries. Diez et. al [20] apply
Karhunen Loéve expansion (KLE) (also referred to as POD) to reduce dimensions of the
design space for D&O of a high speed catamaran hull. The design space with the largest
variance is considered for optimisation. Subsequent dimensions are iteratively intro-
duced to preserve 95% of the geometric variance. Oyama et. al [44] use POD to extract
design information from shape data of Pareto-optimal transonic airfoils. The principal
geometric modes are then used to classify geometries into low-drag designs, high-lift-
to-drag designs, and high-lift design families. [59] perform SVD on the Jacobian matrix
of a transonic airfoil’s aerodynamic performance w.r.t highly dimensional geometric un-
certainties. Dominant modes of geometric perturbation which influence performance
are identified. These modes are then used to select a small number of inspection points
on the airfoil surface to reduce uncertainty in airfoil performance by measuring manu-
facturing errors at the points.

In the above applications, the primary focus is to identify dominant modes or di-
mensions of the data. Thus, the smaller modes are ignored. This limits the applicability
of dimension reduction techniques in detailed design phases where the small geomet-
ric feature variations may result in flow features such as transition or flow separation.
Thus, it is important to preserve even the smaller modes. In this chapter, a sampling
technique which also preserves the smaller modes is detailed. Furthermore, for MOD
to be successful, the data matrix must be populated with data that accurately represents
geometric variations.

In Section 2.2 the construction of the data matrix is detailed. In Sections 2.3 the
Seiun-Maru propeller blade [54] and 2D airfoil test cases are detailed. Section 2.4 re-
ports the results of the sensitivity study for the propeller and 2D airfoil. For the latter,
the result of the sensitivity study is used to include designs with the largest and smallest
variations allowing the design space to be explored efficiently during aeroacoutic opti-
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mization.

2.2. DATA MATRIX

To populate the data matrix, a spline surface is built from classical design parameters.
For propellers examples of classical design parameters can be Diameter (D) and radial
distributions of Pitch (p), Skew (s), Rake (r), Chord length (c)[7]. For 2D airfoil classical
design parameters such as chord, thickness distribution and camber can be used as de-
sign parameters.

The built surface can be probed in the spline’s parametric space where the coor-
dinates u, v € [0.0,1.0] represent the same point on the surface for all designs. In the
Cartesian space, probed points B;(u, v) and the local gradients VB; (u, v) are extracted
from spline parameters. The difference between probed points and local gradients of
the i-th design and baseline design are used to quantifying geometric variation. Thus,
our data matrix (also referred to later as geometry probe data matrix) becomes Xy, =
{XI,XZ...XN}, where

Xi = {P;(uo, vo) — Pref (ug, v0), VP; (g, vo) = VPre £ (ug, vo)... o
ﬁi(un’y Vn’) _ﬁref(un’; Vn’))Vﬁi(un’r Un’) _Vﬁref(un’r Un’)}

The sum of singular values A = Z;’zl o; can be a measure of the total variance of the
data. When data corresponding to a particular design is removed from X, the new sum
of singular values A’ is lower than A. The magnitude of difference |1 — A'| indicates the
reduction in total variance. X; can also be defined as the design vector of classical vari-
ables making X the design matrix.

For the geometry probe data matrix, AA; indicates the magnitude of similarity be-
tween the i-th design (G;) and the reference design (Ggp). A low value of AA indicates that
G; is very similar to the reference design and a high value of AA indicates that G; varies
significantly from Gp. This information can then be used to identify design variables
which significantly influence design as well as choose geometries which represent high,
mid and low variance design clusters.

2.3. TEST CASES

Two cases are considered to test the viability of using SVD. The first is the Seiun-Maru
propeller blade geometry and the second is a NACA4412 airfoil. The goal of this exercise
is to investigate whether it is possible to classify classical design variables based on the
magnitude of influence on the geometry and/or reduce the number of sample points
required to explore the design space.

2.3.1. PROPELLER BLADE
The baseline geometry is initialized from coordinates of a reference propeller. Six hy-
drofoil cross-sections are defined and the blade is then lofted through them. Figure 2.1
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Figure 2.1: Generated Blade Geometry

illustrates the generated blade geometry. To study the geometric variation, design vari-
ables listed in Table 2.1 are varied within the specified bounds. The schematics to modify
the geometry are detailed in Chapters 4 and 5. The suffix i indicates the section which is
modified. The suffix s f indicates that the design variable is a scaling factor. For this case,
it is important to note that variation in classical design variables are not proportional to
variations in the geometry. For example, both As;, Ap; € [-0.056,0.056] however, their
influence on the geometry may be quite different. The test for the proposed method is
to distinguish between the influence of these design variables.

2.3.2. NACA 4412

NACA 4412

Figure 2.2: NACA4412 parametrisation

The NACA4412 airfoil’'s camberline is parametrized with two control points By, P, as
illustrated in Figure 2.2. The design variables are the ordinates of the control points. In
this case, both design variables y.p1, ycp2 are varied within the bounds [-4.5¢-2,1.0e -
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Table 2.1 Design Variables and Bounds

Desi . Lower Upper
Varial?lltlas Units Bounds Bolzll:lds
AD mm -300.00 | +400.00
Asy rad -0.056 +0.56
Asy rad -0.056 +0.56
Cst2 - 0.8 1.2
Csf3 - 0.8 1.2
Csfa - 0.8 1.2
Csf5 - 0.8 1.2
Apy rad -0.056 +0.56
Ap2 rad -0.056 +0.56
Aps rad -0.056 +0.56
Apy rad -0.056 +0.56
Aps rad -0.056 +0.56
thk_dist,y, - -0.04 0.04
thk_dist, - -0.04 0.04
thik_distsf 5 - -0.04 0.04

5]. The setup is such that it is not possible to reduce the number of design variables as
both influence the geometry in comparable magnitudes. The goal thus is to investigate
whether the number of samples required to map the design space can be reduced. To
achieve this goal, trends in Coefficient of Lift (CL), wsprmax and Sound Pressure Level
(SPL)(w) predicted from the reduced sample set must lead to minima and maxima which
are in close proximity to that predicted by the unreduced sample set.

CL is predicted with XFOIL [23] and broadband turbulence noise is estimated with
NAFNoise [40]. NAFNoise is a semi-empirical method developed to estimate the broad-
band frequency spectrum due to turbulent boundary layer of a 2D airfoil [41]. The un-
derlying models correlate the thickness of the boundary layer, shear stresses within the
boundary layer and freestream velocity to estimate amplitude and frequency of surface
pressure fluctuations. While the absolute uncertainties in SPL prediction for broadband
frequencies is high, NAFNoise claims to have low relative uncertainty in prediction for
NACAO0012 at moderate angles of attack with a laminar boundary layer. The authors rec-
ognize that in our case, high uncertainties are expected in the prediction of SPL(w).

Both CL and SPL(w) are predicted for a flow assumed to be at Mach number (M)
=0.2, Re = 5.4e5 with an Angle of Attack (a) of 0°.

2.4, RESULTS

2.4.1. PROPELLER BLADE
Figure 2.3 compares A1;/A when data for the i-th design is removed from the design
matrix and geometry probe data matrix. The histogram shows clustered bars and each
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- Design Matrix = Geom prop matrix

Relative Delta Sigma
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K

Figure 2.3: Propeller Blade AA/A vs design variables

cluster corresponds to a design variable. The leftmost bar in the cluster corresponds to
the design when x; = Ib; and the right most bar in the cluster corresponds to x; = ub;.

SVD of the design matrix indicates that D has the highest influence on the geome-
try. This is because the magnitude of AD is highest among design variables. Given that
the bounds for As; and Ap; are the same, corresponding AA/A are also the same. Thus,
no inference can be drawn about the influence of each design variable on the geome-
try. However, SVD of the geometry probe data matrix makes a distinction between the
influence of the two design variables. Furthermore, it also gives insight into sensitivities
of the geometry w.r.t design variables allowing them to be classified. This classification
can be beneficial in multi-stage D&O routines where variables which influence geometry
significantly can be investigated in the preliminary design stages and finer modifications
in the detailed design phases.

2.4.2. NACA 4412

1.0 | mmm Design Matrix == Performance Matrix
== Geom prob data matrix

Relative Delta Sigma

0 5 10 15 2
DsnPtD

Figure 2.4: NACA 4412 AA/A vs design variables

Figure 2.4 compares A1;/A when data for the i-th design is removed from the design
matrix and geometry probe data matrix. The performance matrix Xy.3 has CL in the
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first column, wsprmax in the second column and the corresponding SPL(w4xspr) in
the third column. The histogram shows clustered bars and each cluster corresponds to
a design variable. As in the case of the propeller, the design variables are systematically
changed one at a time. The leftmost bar in the cluster corresponds to the design vector
when x; = Ib; and the right most bar in the cluster corresponds to x; = ub;.

04 0.4
~0.005 -0.005

~0.010 ~0.010

~0.015 -0.015

~0.020 -0.020
00 3

~0.025 ~0.025

,,,,,
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(@) RS for CL (a) RS for CL
generated from all samples  generated from 50% of original samples

Figure 2.5: CL Response Surfaces
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]
8
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(@) RS for wsprmax (@) RS for wsprmax
generated from all samples  generated from 50% of original samples

Figure 2.6: w;;4xspr, Response Surfaces

From Figure 2.4 it can be observed that the geometry is comparably sensitive to both
the design variables. Thus, it is not possible to reduce the number of design variables in
the current stage of design. While design variables cannot be classified, the designs can
be clustered to significantly reduce the number of designs required to map the design
space.

To make a-priori design selections for analysis, AA; from SVD analysis of the geom-
etry probe data matrix is used to classify designs into high, mid and low variance cate-
gories. From each category, half the samples are selected. For the selected subset the
performance predictions are made with XFOIL and NAFNoise. A Radial Basis Function
(RBF) RS is built to correlate the design vector with performance predictions. Figure 2.5
- 2.7 illustrate the response surfaces built from the original design matrix (N = 38) and
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Figure 2.7: SPL(wsprmax)Response Surfaces

Table 2.2 Minima
RS1 RS2
Num Training Samples 38 19
CLmin -0.14 -0.12
XsolCL [-0.033, -0.045] [-0.032, -0.045 |
min(wsprmax) 179.95 174.36
Xsolminspimas) [ -4.50e-02, 1.00e-05] | [-4.50e-02, 1.00e-05]
min(SPLyqx) 74.48 74.29
Xsol,sPL [-0.0058, -0.0067] [-0.033, -0.033 |

the reduced design matrix (N = 19) for CL, wsprmax and SPL(wsprmax)- It is observed
that there is reasonable agreement between the RS built with the unreduced sample set
(RS1) and the reduced sample set (RS2). The RSs are searched with a constrained Se-
quential Least SQuares Programming (SLSQP) algorithm to find the minima. The results
are listed in Table 2.2. It is observed that for CL and wsprmax, the minima predicted by
RS1 and RS2 are close. However, for SPL(wsprmax) the minima are quite far apart. This
is because, there are two possible minima as shown in Figure 2.7 and one of them was
not included in the reduced sample set. This issue can be addressed with adaptive sam-
pling where ever a lucrative trough is located on the RS.

2.5. CONCLUSION

SVD seems to be a promising technique to (a) reduce the number of samples in Design of
Experiments (DoE) and, (b) classify design variables based on their magnitude of influ-
ence on the geometry. For the method to be applicable, data populating the factorized
matrix must represent geometric variations reliably. Thus, data such as probed points
and local gradients are more useful to quantify geometric variation as opposed to de-
sign vectors with classical design variables. This is because, the magnitude of change in
geometry is not always proportional to the magnitude of change in classical design vari-
ables all the time.
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In the propeller blade case, SVD of the geometry probe data matrix enabled the clas-
sification of variables based on the magnitude of influence on the geometry. To gain
insight into the sensitivities of performance w.r.t design variables, analysis of specific
design points is required. The jacobians of performance data w.r.t design variables may
be appended to the data matrix for analysis. The hypothesis is that the method may
require fewer design point evaluations compared to classical methods to provide neces-
sary insight into global sensitivities of performance parameters.

In the case of the airfoil, it was possible to identify from SVD of the geom probe data
matrix that classification of variables is not viable. Furthermore, it was also possible to
reduce the number of sample points by 50% while still capturing the performance trends
globally in the design space. However, it is noted that the reducing the initial sample set
may lead to exclusion of one or more local minima. This can be addressed by adaptively
refining the RS in regions where a trough is observed and a local minima is expected.

Also, for the 2D airfoil case, the use of lower-fidelity methods leads to monotonic
or convex trends in performance. But the use of higher fidelity methods could lead to
more complex performance trends. Under such circumstances, SVD’s applicability is
yet to be investigated. This concern mainly arises from studies which drop all smaller
modes/dimensions of the data. However, these smaller modes may be necessary to
preserve dynamics within the data. Our methods preserve some of the smaller dimen-
sions/modes, but they need to be demonstrated for cases with complex performance
trends.

2.6. RECOMMENDATIONS
* In the current study, classical design variables - pitch, diameter, hydrofoil cam-
ber, thickness distribution, skew and rake are used to parametrize the geometries.
Thus, it is recommended that the sensitivity studies also be repeated for other
parametric models such as coefficients of polynomials that define propeller fami-
lies and control points of splines and free-form deformation boxes.

* Model Order Reduction: For dimension reduction, it is recommended that Gappy
POD be further investigated. Gappy PoD may preserver the smaller singular values
which contain information regarding smaller geometric variations resulting from
modifications to thickness distribution. Consequently, better relations between
modified thickness distribution and cavitation behaviour can be established.
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TiP VORTEX CAVITATION NOISE

In this research, the authors simulate a cavitating vortex without forced excitation. In the
simulation, (a) the influence of Kelvin-Helmholtz instabilities on the vortex cavity and, (b)
the relevance of compressibility is investigated. Due to the presence of the water-vapour
interface, KH instabilities develop and excite the vortex cavity in an axis asymmetric man-
ner. This results in a broadband acoustic spectrum. In the free-stream the acoustic waves
result in relatively small density perturbations however, within the core of the vortex the
gradient of density is significantly higher when compared to the free-stream. This suggests
that water is largely incompressible and in contrast the vapour core is compressible. While
dynamics in the free-stream can influence the flow within the core the momentum within
the vapour core is expected to be too low to influence free-stream dynamics .

3.1. INTRODUCTION

The maritime industry has embraced its responsibility towards the environment and
aims to significantly reduce emissions of GHG and Underwater Radiated Noise (URN).
Modern propellers are typically optimised to bounds of performance thus, they are more
likely to operate with vortex cavitation as the dominant source of radiated pressure fluc-
tuations and broadband noise [8].

The acoustic spectrum of the propeller tip vortex cavity results from excitation by (a)
the wake-field [108], (b) turbulence, (c) flow separation on the lifting surface [37] and,
(d) sheet cavity feeding into the tip-vortex [15]. Furthermore, for a cavitating vortex, the
presence of an interface is likely to result in Kelvin-Helmholtz instabilities [12, 28]. The
relation between these instabilities and resulting broadband spectrum is investigated in
this study:.

1The research in this chapter will be submitted as a paper to International Journal of Fluid Mechanics
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Chandrasekhar [17] and Drazin and Reid [22] studied the stability of perturbed vortex
cavities. For stable vortex filaments which are excited, three primary modes of oscilla-
tion illustrated in Figure 3.1 are expected. Axisymmetric disturbances result in the n =0
breathing mode. The bending mode n = 1 occurs when the axis of the vortex is deformed
and velocity perturbations remain at r = 0. The helical mode n = 2 occurs when the vor-
tex is deformed into an ellipse that rotates about the axis [49]. The first mode is expected
to behave as a monopole, the second as a dipole and the third as a quadrupole [45].

Figure 3.1: The primary vortex cavity oscillation modes. (Figure reproduced from [13])

To date, simulations of vortex cavitation [10, 37, 51] have been performed with an
incompressibility assumption and on relatively coarse domains. In this research an iso-
lated vortex cavity is simulated. It is initialised in a finer domain without explicit exter-
nal perturbations to observe the resulting response of vortex cavity. Water is modelled
as a compressible barotropic fluid. The governing equations and thermodynamic model
are detailed in Sections 3.2.1-3.2.2. The turbulence model and the numerical scheme is
discussed in Section 3.2.3. The geometry, boundary conditions and mesh for the com-
putational domain is detailed in Section 3.3.

3.2. PHYSICAL AND NUMERICAL MODEL

3.2.1. GOVERNING EQUATIONS
The governing equations of flow are barotropic three-dimensional Navier-Stokes equa-
tions:

0p O(pu;

9p  Olpui)

— =0, 1
ot 0x; W

d(pu;) . dlpuju;)  dp N 0tij
ot ax]' 0x; ax]' ’
where ¢ is time, u; is the component of velocity, p is density, p is pressure and 7 is
the viscous stress tensor. The thermodynamic model correlates pressure and density to

)
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complete the system of equations.

3.2.2. THERMODYNAMIC MODEL

In the cavitating flow, phase change is modelled by assuming thermodynamic and ther-
modynamic equilibrium [34]. For water-vapour mixtures the pressure and vapour vol-
ume fraction are functions of mean density:

0 =apyap+ 1 —a)piig, 3)

where the vapour volume fraction is

Vvap
a= 4
v 4)

It is assumed that phase change is instantaneous, isentropic and in mechanical equi-
librium. Thus, the vapour fraction can be computed as:

0 P = Psatliq
a= { Psatlig—Pliq 5 < . (5)
Psat,lig=Psat,vap P < Psatliq
Liquid water (a = 0), is modelled by the Tait equation of state [34]:
ﬁ N
p = (psat + B). ) - B, (6)
psat,liq
where N = 7.1 and B = 3.06e8 Pa. When 1 > a > 0, the equilibrium pressure is:
p=prar+C-—— - =] @)
= Psat -=|-
o Psatlig P
The parameter C is:
_72 p?ut,vap ®)
(Cpliq T)’

where L is the latent heat of vaporisation and Cp is the specific heat of water at constant
pressure and T is the temperature. The thermodynamic properties comply with Inter-
national Association for the Properties of Water and Steam (IAWPS) Formulation [58].
Based on Beattie et. al [9] volume averaged viscosity is defined as:
_ 5
/.t:(l—a)(1+5a)/.tl,-q+a/.tmp. 9)
The above model is derived by merging the viscosity definitions

5
a=0+ Ea)pliq (bubble flow) (10a)

f= 0= P g+ Blvap (annular flow) (10b)
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The bubble and annular flow definitions are merged because Beattie et. al [9] find
that at higher void fractions the coefficient 2.5 is too low and the annular flow definition
is based on the concept of interfacial waves switching ;4 and py4p intermittently. As
both higher void fractions and interfacial waves are expected to play a role in the simu-
lation, the hybrid viscosity definition is adopted.

3.2.3. LARGE EDDY SIMULATIONS

For Large Eddy Simulations a Sub-Grid Scale (SGS) closure model is required. For this
an Implicit LES (ILES) turbulence model [32, 33] based on the Adaptive Local Decon-
volution Method (ALDM) is used. ILES is an approach where the nonlinear truncation
error resulting from discretisation of the convective terms is used as the SGS model
[5]. ALDM is a non-linear discretisation scheme designed for ILES where the discreti-
sation is based on a solution-adaptive deconvolution operator that allows control over
the truncation error. The parameters of deconvolution were tuned to obtain an opti-
mum spectral match for numerical viscosity. This approach has also been demonstrated
to work well in simulating complex multi-phase fully compressible flows [24, 39, 43].
The ALDM reconstruction is applied to velocity and pressure. The density and free-gas
mass fraction are reconstructed by first-order upwind biased method. The viscous flux
is discretized by a second-order centred scheme. Time integration is performed with an
explicit, third-order Runge-Kutta method.

3.3. COMPUTATIONAL DOMAIN

The computational domain is illustrated in Figure 3.2. The domain has a length of 0.02
m with a square cross-section of width 3.2 m. The principal axis of the domain is parallel
to positive x-axis. The longitudinal faces are treated as periodic boundaries. The lateral
faces are modelled as free-slip walls.

The cross section width is chosen to minimise the influence of a square cross section
on an annular flow. The domain length of 0.02 m is chosen to specify the wavelength of
resulting modes with the periodic boundary condition.

3.3.1. DOMAIN INITIALISATION

For the flow, Re = 9e5 and o € {1.2,1.7,2.6}, the system of Equations (11)-(13) are solved
for free-stream density (poo), free-stream velocity (1) and free-stream temperature (Too).
The solutions are listed in Table 3.1. As the computational domain has periodic bound-
ary conditions, 1,,=6.0193ms™! is maintained for all three cases. Turbulence intensity
of the flow is also initially set to zero. Thus, in the situation that the imposed boundary
condition itself becomes a numerical source of excitation, a strong response would be

expected at v = 755 ~301Hz.

Re = psat,liq(Too) X Uog X d

lToo) v



3.3. COMPUTATIONAL DOMAIN 25

0.02m

Main flow
direction Periodic Periodic
BC

- 32m b %

N
N~ N

2
2

Free slip wall

Figure 3.2: The computational domain to simulate the cavitation vortex.

Table 3.1 Free-stream temperature, velocity and density for the three cavitation numbers

| parameters(Units) | Cavitation numbers |

| |12 | 17 26 |
Too (K) 2.9830e2 | 3.009¢2 | 3.007e2
oo (M5~ 63759 | 6.0193 | 6.0491

Poo (kgm™) 9.9698e2 | 9.9626e2 | 9.9635e2

o= Poo — Psat(Too) (12)

1
5Psat,lig(Too) X uz,

% psantiq(Too) 12
Prc = Psat(Tx) = _f AL A *t Poo (13)

re r

The azimuthal velocity (ug) is initialised with the Proctor-Winkelmans kinematic
model. Pennings et. al [46] study the flow field around cavitating vortices generated
by an elliptical hydrofoil at different angles of attack and cavitation numbers. The goal
of the study was to establish a correlation between the vapour cavity size and the circu-
lation strength of the vortex. Towards this end, the kinematics of a wetted and cavitating
vortex were studied. It was observed that the kinematics were best captured by the mod-
ified 2D Proctor-Winkelmans vortex model as it performed well even in the vortex roll-
up region. When r < 1.157,, the ug is specified by the Winckelmans model described
in Equation (14) and when r >= 1.15r,, ug is specified by the modified Proctor model
described in Equation (15). In Equation (14), B is the span of the lifting surface which
generates the vortex and Vortex Circulation (I'). By accounts for the vortex roll-up and
inclusion of the wing boundary layer wake in the outer part of the vortex flow. §; sets
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Table 3.2 Proctor-Winckelmans vortex model parameters for cavitating vortex cases

| Parameter(Units) | Cavitation numbers |

|12 1.7 26 |

Fyc(mm) 2.8152 2.1627 1.7401
re(mm) 2.4042 1.8980 1.0995
L(rad.m?.s71) 0.2159 0.2163 0.2186

Bi 5.6195€3 | 7.6927e3 | 1.0470e4

Bo 1.6588el | 1.6375el | 1.6748el

B 1.6590el | 1.6374el | 1.6731el

B (m) 0.3 0.3 0.3
p 1.6200e2 | 3.6843el | 2.1417el

the relation for viscous core as r,/B = (By/B:)*'°. p is tuned to match the peak uy. In
Equation (15), B is optimised to ensure uy is continuous.

r ~Bi (%)
ug=——_1-exp '61(3) : (14)
2nr Bi (r 5\P\p
(1+(m(§)4) )
T 710.75
= — (1-eB8(5)
g = 3 — (1 e PlE ) (15)
1 0 0-42

Normalised azimuthal velocity

0.1

0.0
0

Figure 3.3: (Reproduced from [45]). Uncertainty in experimental measurements of azimuthal velocity for an
elliptical hydrofoil at C; = 0.66 and Re = 9e5 for various cavitation numbers. ug ;;4x = 6.7ms! and
Tye =1.1mm.
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Figure 3.3 illustrates the azimuthal velocity and corresponding uncertainties in To-
mographic Particle Image Velocimetry (PIV) measurements used to train the Proctor-
Winckelmans kinematic model. It is observed that the uncertainty is relatively higher
near the interface compared to the viscous roll-up region. Furthermore, as these mea-
surements are made with Tomographic PIV, no measurements could be made within the
core of the vortex. For the available data, Table 3.2 lists parameters of the trained kine-
matic model for the three cavitating vortex cases.

From the Proctor-Winckelmans kinematic model, the pressure and density field are
initialised. The pressure at radius r from the principal axis for the 2D vortex is,

(16)

o p(p)u?(r,T, Bi, Bo, B,p)
p(r):poo—f p(P)ug (1,1, Bi, Po P
.

r

As pressure and density are correlated, a simple pressure density iteration algorithm
solves for pressure. The radial pressure at the j+1 iteration is,

T, 17)

0 p(p')uz(r,ryﬁi)ﬁOJBy