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A B S T R A C T   

Metamodels are developed and used for aerodynamic optimization of a ducted opening integrated into a high- 
rise building to maximize the amplification factor within the duct. The duct consists of a nozzle, a throat, and 
a diffuser. 211 high-resolution 3D RANS CFD simulations are performed to generate training and testing datasets. 
The space-filling design and Genetic algorithm are used for data sampling and optimization, respectively. The 
performance of five commonly-used metamodels is systematically investigated: Response Surface Methodology 
(RSM), Kriging (KG), Neural Network (NN), Support Vector Regression (SVR), and Genetic Aggregation Response 
Surface (GARS). The investigation is based on (i) detailed in-sample and out-of-sample evaluations of the met
amodels, (ii) annual available power in the wind (Pavailable), and (iii) annual energy production (AEP) for a 3- 
bladed horizontal-axis wind turbine (HAWT) installed in the mid-throat for the optimum designs obtained by 
the metamodels. The results show that converging-diverging ducted openings can magnify the experienced wind 
speed by the turbine and enhance the available wind power. In addition, the use of different metamodels can lead 
to a variation of up to 153% in the estimated Pavailable. For a small dataset, crude yet still acceptable accuracy can 
be achieved for Genetic Aggregation Response Surface and Kriging at a very low computational time.   

1. Introduction 

1.1. State-of-the-art and research gaps 

Urban wind energy harvesting systems offer a decentralized power 
generation close to where the generated power is needed and can reduce 
the power load and the cost of electricity transmission infrastructure. By 
eliminating the long-distance from end-users, decentralized power 
generation leads to reducing transmission losses, allowing for power 
generation with high efficiency [1,2]. This is essential for the imple
mentation of sustainable development goals [3], such as realization of 
smart grid systems [4,5] and carbon emissions reduction [6]. However, 
the power performance of wind turbines in the urban environment is 
highly influenced by the complex wind flows characterized by rather 
low mean wind speed and high turbulence intensity [7]. As a result, for a 
considerable time fraction of the year, the mean wind speed is lower 
than the cut-in wind speed of the turbine. Consequently, the turbine fails 
to start and generate power [8]. In addition, because the wind direction 
frequently changes and the turbulence intensity is rather large, wind 
turbines undergo substantial fluctuations resulting in reduced generated 

power and also component fatigue. For these reasons, among others, 
urban wind energy potential has not yet been intensively exploited 
[9–11]. 

Wind energy in urban areas can be harvested through stand-alone 
wind turbines [12,13], building-mounted wind turbines on roofs [2], 
and building-integrated wind turbines incorporated into the architec
ture of buildings [6]. The integration of wind turbines into the archi
tectural design of buildings, e.g., between parallel buildings and within 
ducted openings through high-rise buildings, can increase the power 
performance of the wind turbines [14,15]. Building-integrated ducted 
openings allow the turbine to experience significantly higher velocities 
than the freestream velocity due to flow acceleration inside the duct. 
This increases the capacity factor by enabling the turbine to remain 
operational within a larger number of hours per year and also enhances 
the available wind power by magnifying the experienced wind speed by 
the turbine. For example, earlier research has shown that 
converging-diverging ducted openings can increase the streamwise wind 
velocity inside the duct by up to 33% [16]. In addition, they can effi
ciently reduce turbulence intensity, which is essential to reduce the risk 
of fatigue damage of urban wind turbines, inconsistent power output, 
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etc. Previous studies have also shown that building-integrated ducted 
openings can reduce vibration and noise pollution and reduce the risk of 
flicker and ice or wind turbine parts that could be shed and fall onto 
pedestrians and traffic [17,18]. Therefore, building-integrated ducted 
openings can be promising options for wind energy harvesting in low 
mean wind speed environments, such as urban areas. 

However, the geometrical characteristics of ducted openings need to 
be aerodynamically optimized to adapt to the complex wind flow in the 
urban environment [19–21]. The power performance of 
building-integrated ducted wind turbines is influenced by several pa
rameters that vary independently, e.g., wind resource, building char
acteristics and geometry, turbine technology, etc. Therefore, it would be 
computationally very expensive to perform direct optimization for 
which many alternatives need to be investigated. For example, 
CFD-based optimization of such complex systems would provide an 
unprecedented challenge in computational grid generation and exces
sive required computational resources for performing the large number 
of simulations, which are not always affordable [22]. This is especially 
the case for complex duct geometries, e.g., converging-diverging ducts. 
Therefore, advanced optimization approaches, such as 
metamodel-based design optimization, need to be used to obtain an 
aerodynamically optimized design of building-integrated ducted open
ings [23]. 

Metamodels (often called “data-driven models”) are statistical 
models developed based on a limited number of simulations to predict 
the output results of simulations yet to be performed [24,25]. Therefore, 
the use of metamodels is computationally less expensive than perform
ing direct CFD-based optimization. However, the accuracy of meta
models is of concern as it can be affected by the level of complexity and 
the number of input parameters for the design optimization, and also the 
“architecture” of the metamodel (e.g., Refs. [23,26,27]). Earlier studies 
have shown that the use of different metamodels for a given engineering 
application can considerably affect the accuracy [28,29]. For example, 
Paiva et al. [29] performed a comparative study to assess the perfor
mance of Response Surface Methodology (RSM), Kriging (KG), and 
Neural Network (NN) for three aircraft applications based on the cor
responding out-of-sample errors. It was observed that KG and NN pro
vide more accurate results where the number of input parameters is 
relatively large. In another study, Simpson et al. [28] compared the 
performance of RSM and KG for design optimization of an aerospike 
nozzle in order to improve the vehicle’s aerodynamic and structural 
performance, e.g., the engine thrust to weight ratio, where the com
parison was based on an out-of-sample evaluation. The results showed 
that for a small training dataset size and a small number of input pa
rameters, RSM and KG yield different yet still comparable out-of-sample 
errors. 

1.2. Objectives and novelty 

To the best knowledge of the authors, a detailed evaluation of 
different metamodels for aerodynamic shape optimization of building- 
integrated converging-diverging ducted openings has not yet been per
formed. Therefore, in this study, the performance of different 
commonly-used metamodels is systematically investigated for aero
dynamic shape optimization of such ducted openings integrated into 
high-rise buildings. Five metamodels are considered: Response Surface 
Methodology (RSM), Kriging (KG), Neural Network (NN), Support 
Vector Regression (SVR), and Genetic Aggregation Response Surface 
(GARS). The assessment is based on (i) detailed in-sample and out-of- 
sample evaluations of the metamodels, (ii) annual available power in 
the wind (Pavailable), and (iii) annual energy production (AEP) for a 3- 
bladed horizontal-axis wind turbine (HAWT) installed in the mid- 
throat for the optimum designs obtained by the metamodels. In total, 
211 high-resolution 3D steady Reynolds-averaged Navier-Stokes (RANS) 
CFD simulations are performed to generate training and testing datasets. 
The CFD simulations are extensively validated with wind-tunnel mea
surements. The space-filling design and Genetic algorithm are used for 
data sampling and optimization, respectively. 

The results of this study bring a better understanding of the aero
dynamic design optimization of building-integrated ducted openings, 
contribute to increasing the penetration level and competitiveness of the 
renewable energy systems, and support the realization of a sustainable, 
zero- and plus-energy built environment. Given the complexity involved 
in wind energy performance prediction of such systems in the built 
environment, the data-driven optimization approach can maximize en
ergy production and potentially lead to a higher level of successful de
ployments of urban wind energy systems. In addition, the performed 
sensitivity analysis of the metamodels in this study contributes to 
improving the prediction accuracy and is beneficial to the design of 
aerodynamically optimized building-integrated ducted openings. 

1.3. Outline 

The building-integrated ducted opening is described in Section 2. 
The methodology is presented in Section 3. The computational settings 
for CFD simulations are presented in Section 4. Section 5 presents 
detailed information about metamodeling. The results of the optimiza
tion and the sensitivity analysis of metamodels are provided in Section 6. 
A discussion on the limitations of the study and the main conclusions are 
presented in Sections 7 and 8, respectively. 

Fig. 1. (a) Perspective view and (b and c) side view of building and integrated ducted opening.  
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2. Building-integrated ducted opening 

A building with dimensions L × D × H = 30 × 30 × 150 m3 is 
considered (Fig. 1). The building has a ducted opening in which a wind 
turbine could be installed for wind energy harvesting. The duct is 
located at h = 0.7H, near the stagnation point on the windward façade if 
there would be no opening (e.g., Ref. [30]), and consists of three parts: 
nozzle, throat, and diffuser (Fig. 1b and c). The inlet opening of the 
nozzle and the outlet opening of the diffuser is located on the windward 
and leeward facades of the building, respectively. The building di
mensions and the position of the ducted opening are assumed to be 
fixed. Five parameters determine the geometry of the ducted opening: 
the diameter of the nozzle inlet (DN), the diameter of the throat (DT), the 
diameter of the diffuser outlet (DD), the length of the nozzle (LN), and 
the length of the diffuser (LD) (Fig. 1c). It should be noted that the length 
of the throat (LT) can be determined using LT = L − (LN +LD) and is not 
considered as an input parameter. Table 1 shows the parameters and the 
corresponding maximum and minimum values used for metamodeling 
and optimization. The table also presents the geometrical characteristics 
of the “reference case” used for the grid-sensitivity analysis that will be 
presented in Section 4.1. 

3. Methodology 

Metamodels are developed and used for aerodynamic optimization 
of the duct to maximize the amplification factor inside the throat 
(Fig. 1). The amplification factor (AF) is defined as the ratio between the 
streamwise velocity in the middle of the throat and the undisturbed 
streamwise velocity at the height of the centerline of the ducted opening 
(Uref = 4.19 m/s). The evaluation is based on 3D steady Reynolds- 
averaged Navier-Stokes (RANS) CFD simulations, extensively validated 
with wind-tunnel measurements. The design optimization application 
Ansys DesignXplorer is used to perform the optimization, which consists 
of three steps:  

(i) Sampling: the space-filling design is used to generate samples 
uniformly distributed and as far apart as possible over the design 
space (e.g., Ref. [31]). The excellent performance of space-filling 
designs for computer experiments has been shown on several 
occasions in the literature (e.g. Ref. [25]). For the five input pa
rameters presented in Table 1, this results in a training dataset of 
162 different geometries.  

(ii) Metamodeling: five commonly-used metamodels are considered: 
Response Surface Methodology (RSM), Kriging (KG), Neural 
Network (NN), Support Vector Regression (SVR), and Genetic 
Aggregation Response Surface (GARS). Detailed in-sample and 
out-of-sample evaluations are performed to assess the accuracy of 
the metamodels. 

(iii) Optimization: Genetic algorithm [32,33] is used to find an opti
mum design that maximizes the amplification factor inside the 
duct. The population size, the maximum number of iterations, 
and the crossover and mutation rates are set at 100, 100, 0.9, and 
0.1, respectively. The hyper-parameters are set based on the best 
practice guidelines (e.g., Ref. [34]). Note that for optimization, 
the diameter of the throat (DT) is assumed to be constant DT/D =

0.3. This assumption allows a fair comparison of the metamodels 
by assessing the annual energy production (AEP) considering a 
specific horizontal-axis wind turbine installed in the mid-throat 
of the optimized geometries. Therefore, four input parameters 
and a single objective are considered for optimization. 

4. CFD simulations 

4.1. Computational domain and grid 

As the geometry of the building and the ducted opening, and the 
results of steady RANS simulations are symmetric in the lateral direc
tion, only half of the computational domain is modeled (Fig. 2). The 
dimensions of the computational domain are based on the best practice 
guidelines for CFD simulations of urban flows [35,36]. The height of the 
domain is 5H, where H = 150 m is the building height. The upstream, 
downwind, and lateral domain lengths are 4H, 10H, and 5H, 
respectively. 

The computational grid is generated using Fluent Meshing 19.3 and 
considering best practice guidelines for grid generation [35–38]. For all 
geometries, the grid is refined near the ground, the building, and duct 
surfaces where the average y+ values are 589, 484, and 292, respec
tively. As standard wall functions are used in this study, these values 
ensure that the center point of the wall-adjacent cell is placed in the 
logarithmic layer. A maximum growth ratio of 1.1 controls the cells 
located in the immediate surroundings of the above mentioned regions. 
For the reference case, introduced in Table 1 and shown in Fig. 3, the 
grid consists of 2,456,780 polyhedral cells. 

The grid resolution is resulted from a grid-sensitivity analysis per
formed for the reference case by coarsening and refining the grid with an 
overall linear factor of 

̅̅̅
2

√
. The number of cells is 1,118,49 and 

4,969,471 for the coarse and fine grids, respectively. Fig. 4 shows the 
dimensionless mean streamwise velocity (u/Uref) along a horizontal and 
a vertical line in the middle of the ducted opening for the three grids 
where Uref = 4.19 m/s is the undisturbed streamwise velocity at the 
height of the centerline of the ducted opening, i.e., h = 0.7H. For the 
horizontal line, the average absolute deviation between the coarse and 
the basic grids and the basic and fine grids are 0.42% and 1.43%, 
respectively. For the vertical line, these deviations are 1.70% and 
2.23%, respectively. This indicates that the CFD results do not signifi
cantly change by further refining the grid. Therefore, the basic grid is 
retained for all simulations. 

The grid convergence index (GCI) by Roache [39] is also calculated 
using the maximum streamwise velocity in the middle of the throat with 
a safety factor (Fs) of 1.25. The GCIcoarse and GCIfine for the 

Table 1 
List of parameters and corresponding min. and max. values for metamodeling 
and optimization, and geometrical characteristics of the reference case.  

Parameters Minimum Maximum Values for reference case 

DN/D 0.3 0.9 0.9 
DT/D 0.3 0.9 0.3 
DD/D 0.3 0.9 0.6 
LN/D 0.2 0.4 0.3 
LD/D 0.2 0.4 0.3  

Fig. 2. Perspective view of computational domain (H = 150 m).  
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coarse-medium grid pair are 1.62% and 0.87%, respectively. As a large 
number of CFD computations are to be performed in the present study, 
the coarse-basic grid pair is used for this analysis. 

4.2. Boundary conditions 

At the inlet of the domain, neutral atmospheric boundary layer 
inflow profiles of mean velocity u (m/s) (Eq. (1)), turbulent kinetic 
energy TKE (m2/s2) (Eq. (2)), and turbulent dissipation rate ε (m3/s3) 
(Eq. (3)) are imposed [40]: 

u(z)=
u*

ABL

κ
ln(

z + z0

z0
) (1)  

TKE(z)= 3.33 u*2
ABL (2)  

ε(z)= u*3
ABL

κ(z + z0)
(3)  

where u*
ABL is the atmospheric boundary layer friction velocity, κ = 0.42 

is the von Karman constant, z is the height coordinate, and the reference 
velocity at z = 10 m is u(10) = 3 m/s. It is assumed that the building is 
situated on a large grass-covered terrain with an aerodynamic roughness 
length z0 = 0.03 m [41]. The ground surface and the building walls are 
considered as no-slip walls. The standard wall functions by Launder and 
Spalding [42] with roughness modification by Cebeci and Bradshaw 
[43] are used for both ground surface and building walls. The values of 
the roughness parameters, i.e., the sand-grain roughness height kS and 
the roughness constant CS, are determined using their consistent rela
tionship with z0 derived by Eq. (4) [44]. The kS value is equal to the 
distance between the center point of the wall-adjacent cell and the wall 
throughout the domain (kS = 0.25). Zero-gauge static pressure is applied 
at the outlet plane. Symmetry conditions are used at the top and lateral 
sides of the domain. 

kS =
9.793 z0

CS
(4)  

4.3. Computational settings 

The commercial CFD code ANSYS/Fluent 19.3 is used to perform the 
simulations. The 3D steady RANS equations are solved in combination 
with the Renormalization Group k − ε turbulence model (RNG) [45,46] 
for closure. The turbulence model is selected based on a detailed vali
dation study provided in Section 4.4. The SIMPLE algorithm is used for 
pressure-velocity coupling, and second-order discretization schemes are 
used for the RANS equations. A converged solution is assumed to be 
obtained when the scaled normalized residuals stabilize at a minimum of 

Fig. 3. Details of computational grid for reference case (2,456,780 cells) at (a) windward side and roof of building, ground and ducted opening surfaces, (b) 
symmetry plane and building walls, (c) ducted opening surfaces, and (d) nozzle surface and mid-throat plane. 

Fig. 4. Grid-sensitivity analysis: dimensionless mean streamwise velocity along 
(a) horizontal and (b) vertical lines in middle of ducted opening for three grids. 
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10− 5 for TKE, x, y, and z momentum, and 10− 4 for continuity and ε. 

4.4. Validation 

Atmospheric boundary layer wind-tunnel experiments of amplifica
tion factor within a building-integrated ducted opening conducted by 
Hassanli et al. [16] are used for CFD validation. The building model was 
made of Perspex and had dimensions of B× B× H = 0.04× 0.04×

0.12 m3. A through-building converging-diverging ducted opening was 
placed at 75% of the building height with the inlet and outlet openings 
on the windward and leeward facades, respectively (Fig. 5). The 
experiment was performed in a closed-loop wind tunnel with 20 m long 
and a cross-section of 2× 3 m2. The wind flow was parallel to the axis of 
the duct. Two-component Particle Image Velocimetry (PIV) was used to 
measure the time-averaged streamwise and vertical wind velocity 
components at a vertical plane inside the ducted opening. 

For the CFD simulation, a computational model of the reduced-scale 
building model is made based on the best practice guidelines (e.g., Refs. 
[35,36,47]). The same computational setting and parameters as in 
Section 4.3 are used. Fig. 6a and b shows the measured and simulated 
dimensionless streamwise wind velocity in the PIV measurement plane 
(x/B = 0.825) along horizontal and vertical lines, respectively. A fairly 
good agreement between wind tunnel and CFD is achieved. The average 
absolute deviation from the experimental data for the streamwise wind 
velocity along the horizontal and vertical lines are about 6%, and 7%, 
respectively. Further information on possible reasons for the deviations 
can be found in Ref. [16]. 

Note that the selection of this wind-tunnel experiment was due to the 
lack of available high-quality experimental data of converging-diverging 
building-integrated ducted openings, the same as the one used in the 
present study. Nevertheless, the essential flow features and the level of 
flow complexity around the building and inside the ducted opening are 
relatively similar. Therefore, it can reasonably be assumed that the given 
combination of computational parameters and settings that provided 
accurate simulation results in the validation study will also provide 
accurate results for the full-scale buildings. 

5. Metamodeling 

A metamodel of computer simulations, represented as y = f(x), can 
be given as y = ŷ + eg, where eg is the generalization error [48], i.e., the 
difference between the real output results directly obtained from the 
simulations (y) and those predicted by the metamodel (ŷ) [49]. Meta
models involve a large variety of statistical models, which can be cate
gorized as parametric metamodels, non-parametric metamodels, and 
ensembles of parametric and non-parametric metamodels (e.g., Refs. 
[26,50]). 

Response Surface Methodology (RSM), as a parametric metamodel, 
is widely used for different engineering applications. However, it is not 
basically suitable for approximating non-linear output results. In para
metric metamodels, the input-output relationship is assumed to be 
known in the form of a low-degree polynomial where the samples are 
normally distributed, i.e., the deviation from the metamodel is assumed 
almost the same for all samples (Fig. 7a). Therefore, prediction based on 
parametric metamodels requires estimating a finite number of co
efficients associated with polynomial regression models, and prediction 
highly depends on the selected polynomial [49,51]. In this study, a 
second-order polynomial is used, which provides information about the 
linear and quadratic interactions of the input parameters. 

Kriging (KG), Neural Network (NN), and Support Vector Regression 
(SVR) are non-parametric metamodels (Fig. 7b–d). Unlike parametric 
metamodels, non-parametric metamodels are relatively flexible as pre
diction depends on the training dataset [50]. They are especially suit
able in computer experiments where the input-output relationship is 
usually highly non-linear [52]. KG, also known as spatial correlation 

Fig. 5. CFD validation: schematic of reduced-scale building model used in 
wind-tunnel measurement [16]. 

Fig. 6. CFD validation: comparison of wind-tunnel and CFD results of dimen
sionless streamwise wind velocity along (a) horizontal and (c) vertical lines 
located in middle of PIV measurement plane (x/B = 0.825). 
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modeling, is useful for predicting spatially correlated data. Among 
non-parametric metamodels, KG is one of the most flexible metamodels 
as it interpolates the training dataset and can be developed using a wide 
range of correlation functions. It consists of a global metamodel, usually 
a parametric metamodel, and local deviations [53,54]. In this study, the 
KG metamodel uses the Gaussian correlation function, which selects one 
correlation coefficient for each input parameter. NN mimics the func
tions and architecture of the nervous system (neurons). It has three 
layers of input, hidden and output to form a network where the hidden 
layer(s) connects the input and output layers. Each layer consists of 
several neurons, and the metamodel is developed by weighted connec
tions between the neurons in the different layers. Each neuron in a 
hidden layer receives the output values of the neurons in the previous 
layer as its input value and transfers this value to the neuron(s) in the 
next hidden layer or output layer [55]. A transfer function, also known 
as the activation function, is used to map the output value of each 
neuron in the previous layer to the input value of the neurons in the 
current layer [56,57]. In this study, the NN architecture is as follows: an 
input layer with five neurons, each representing each of the five input 
parameters, a hidden layer with five neurons, and an output layer with 
one neuron representing the output result, i.e., the maximum amplifi
cation factor in the mid-throat. One hidden layer is used in line with 
recommendations by Ref. [58]. A sensitivity analysis is also performed 
to investigate the impact of the number of neurons in the hidden layer 
(Nn) on the accuracy of NN. The analysis is performed for ten cases with 
Nn = 1–10 based on in-sample and out-of-sample evaluations. The re
sults show that Nn = 5 leads to the minimum in-sample (8%) and 
out-of-sample (15%) errors. Therefore, five neurons are considered in 
the hidden layer. In addition, the hyperbolic tangent is used as the 
transfer function for the hidden and output layers. SVR, also known as 
non-parametric regression, is a data classification method that finds the 
input-output relationship with an error margin (e) in a way that the 
predicted output results (ŷ) do not deviate from the real output results 

more than the error margin. SVR ignores those samples that create the 
maximum gradient in the input-output relationship, leading to a sig
nificant reduction in the computational time (e.g., Refs. [59,60]). In this 
study, the linear e-insensitive loss function is used to characterize the 
error margin. 

Genetic Aggregation Response Surface (GARS) is an ensemble of 
parametric and non-parametric metamodels and consequently takes 
advantage of all involved metamodels. It employs a Genetic algorithm to 
generate a population of parametric and non-parametric metamodels (e. 
g., Polynomial Regression, KG, and SVR). Fig. 7e schematically shows an 
ensemble that involves two parametric and one non-parametric meta

models. An ensemble can be defined as ŷens =
∑n

i=1
wi ŷi where n is the 

number of involved metamodels, wi is the weight coefficients for each 
metamodel, and ̂yi demonstrates the individual metamodels. The weight 

coefficients satisfy 
∑i=1

n
wi = 1 and need to be determined such that the 

accuracy of the ensemble is maximized [61]. Detailed information about 
different techniques to determine weight coefficients (also known as 
weight factors) of involved metamodels can be found in Refs. [26,62]. 
Further information about the developed GARS in the present study will 
be provided in Section 6.1. 

6. Results 

6.1. Metamodel accuracy 

It is well known that the size of the training dataset can significantly 
affect the performance of a metamodel (e.g., Refs. [63,64]). Therefore, 
care is required in the selection of proper dataset size, which is highly 
correlated to the architecture of the metamodel, the number of input 
parameters, the complexity of the input-output relationship, etc. (e.g., 
Ref. [65]). In this study, a sensitivity analysis is performed based on 

Fig. 7. Schematic of (a) parametric metamodels, (b–d) non-parametric metamodels, and (e) ensemble of three metamodels involving two parametric and one non- 
parametric in which the impacts on the predicted output results are based on weight factors (i.e., w1, w2, and w3). Circles indicate samples. 
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in-sample and out-of-sample errors to systematically investigate the 
impact of the training dataset size on the accuracy of the metamodels. 
Seven different design of experiments (DOE) methods are used to 
gradually generate unique samples in seven steps where each DOE 
method adequately covers the design space. In each step, new samples 
are added to the existing samples generated in the previous step(s). The 
size of each step is the same as the number of samples for the Central 
Composite Design DOE method for the five input parameters, i.e., 
2(k− 1) + 2k+ 1 = 24 + 2× 5+ 1 = 27. Note that it could be possible to 

generate samples using a given space-filling method with a larger 
number of samples. However, this could fail in full coverage of the 
design space at each step, leading to a poor generalization. Table 2 
presents the different DOE methods used for the seven steps. 

For the in-sample evaluation, the k-fold cross-validation is performed 
[66,67]. The training dataset is split into k = 10 sets of samples (folds) of 
which k-1 folds are used as the training set. The last fold is used as the 
testing set to validate the metamodel based on the square root of the 
average squared difference between the output results directly obtained 
from CFD simulations (AFCFD) and those predicted by the metamodel 
(AFmetamodel), i.e., root mean square error (RMSE), as follows: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(AFCFD − AFmetamodel)
2

n

√

(5)  

where n is the number of samples in the testing set. This process is 
repeated k times in which each fold is used once as the testing set. The 
in-sample error is computed using Eq. (6): 

in-sample error =
∑k

i=1RMSEi

k
(6)  

where RMSEi represents the RMSE obtained for each fold, and k is the 
number of folds. 

For the out-of-sample evaluation, the Max. Min. Distance Space- 
Filling Design method and the Latin Hypercube Design method are 
used to generate 22 testing samples. For each of the methods, the testing 
samples are generated using the pure quadratic model sampling for the 
five input parameters, i.e., 2k+ 1 = 2× 5+ 1 = 11. The out-of-sample 
error is computed using Eq. (5) where n = 22, AFCFD and AFmetamodel are 
the output result directly obtained from CFD simulations, and predicted 
by the metamodel for the testing samples, respectively. 

Fig. 8 presents the in-sample and out-of-sample errors for the seven 
dataset sizes. The most sensitive in-sample error to the training dataset 
size is observed for NN (Fig. 8a). In this case, by increasing the number 
of samples from 27 (step 1) to 54 (step 2) and 189 (step 7), the in-sample 
error reduces by 70% and 81%, respectively. In addition, for NN, KG, 
and GARS, a significant sensitivity of the out-of-sample error to the 
training dataset size can be seen for the rather small number of samples, 
i.e., steps 1–4 (Fig. 8b). A closer look at Fig. 8 reveals that 162 samples 
(step 6) can be considered sufficiently large for all the metamodels as a 
further increase in the size of the training dataset does not significantly 
reduce the in-sample and out-of-sample errors for the five metamodels. 
Therefore, the dataset with 162 samples is considered the training 
dataset for the remaining study. 

Fig. 9 shows the in-sample and out-of-sample errors for the training 

Table 2 
DOE methods and number of generated samples for seven training dataset sizes.  

Step DOE method No. of generated 
samples 

Dataset 
size 

1 Max. Min. Distance Space-Filling Design 27 27 
2 Centered L2 Space-Filling Design 27 54 
3 Maximum Entropy Space-Filling Design 27 81 
4 Latin Hypercube Design 27 108 
5 Max. Min. Distance Space-Filling Design 27 135 
6 Latin Hypercube Design 27 162 
7 Central Composite Design 27 189  

Fig. 8. Sensitivity analysis for impact of dataset size on (a) in-sample and (b) 
out-of-sample errors for five metamodels. 

Fig. 9. In-sample and out-of-sample error for different metamodels using 162 
samples (step 6 in Table 2). 
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Fig. 10. Maximum amplification factor predicted by metamodels (AFmetamodel) versus values directly obtained using CFD simulations (AFCFD) for training and testing 
datasets for different metamodels. 

Fig. 11. Parameter importance measurement for different metamodels.  
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dataset with 162 samples (step 6) for the five metamodels. Fig. 10 shows 
the maximum amplification factors predicted by the metamodels 
(AFmetamodel) for 162 training and 22 testing samples versus those 
directly obtained by CFD simulations (AFCFD). The following observa
tions can be made:  

• For the given dataset, the use of different metamodels can affect the 
out-of-sample error by up to 61%.  

• The largest in-sample and out-of-sample errors are achieved for RSM 
(Fig. 9). For this metamodel, relatively large deviations between the 
AFmetamodel and AFCFD for the training and testing datasets are also 
observed (see Fig. 10a), indicating that RSM fails to accurately 
capture the complex input-output relationship.  

• For SVR, a relatively large difference between the in-sample and out- 
of-sample errors can be seen, which indicates overfitting, i.e., the 
metamodel is perfectly developed over the training dataset while it is 
incapable of accurately predicting the testing dataset, thus it lacks 
generalization [68] (Fig. 9).  

• The in-sample and out-of-sample errors associated with GARS are 
relatively small (Fig. 10e). For the dataset with 162 samples, it in
volves a polynomial regression and two KG metamodels with linear 
and quadratic correlation functions. The corresponding weights for 
the involved metamodels are 2%, 51%, and 47%, respectively. 

6.2. Parameter importance measurement 

Parameter importance measurement is performed to assess the 
relative importance of each input parameter in the prediction of the 
output result (e.g., Refs. [64,65]). It is done by varying an input 
parameter from its minimum to maximum values while the other input 
parameters are kept fixed at a given value. The following steps are taken 
to determine the importance of each input parameter [69,70]:  

1. for i = 1 to m do  
2. select one input parameter (Var(i))  
3. assume constant values for the other input parameters (Var(1,i− 1))  
4. vary value of Var(i) from minimum to maximum  
5. calculate output result (AFmetamodel) for each value of Var(i)
6. determine the sensitivity of AFmetamodel to each input parameter 

(Δulocal/Δuglobal)  
7. end do 

where m is the number of input parameters, Δulocal is the difference 
between the largest and smallest AFmetamodel when one input parameter 
varies, and Δuglobal is the difference between the largest and smallest 
AFmetamodel when all input parameters vary. 

In the present study, for all the metamodels, the importance of each 
input parameter is determined based on the maximum amplification 
factor in the mid-throat (AFmetamodel). The results are shown in Fig. 11. 
Note that the negative percentages denote that the input parameters are 
reversely proportional to the output result. The following observations 
can be drawn:  

• All the metamodels identify the diameter of the diffuser outlet (DD)

as the most important input parameter in predicting AFmetamodel. For 
example, for the most and the least accurate metamodels, i.e., GARS 
and RSM, the importance of DD is 47% and 34%, respectively. Note 
that in converging-diverging ducts, DD can significantly affect the 

Fig. 12. Optimum designs obtained by different metamodels (dimensions are in meters). Wind flow is from left to right.  

Fig. 13. Maximized amplification factor in mid-throat obtained from meta
models (AFmetamodel) and directly obtained by CFD simulations (AFCFD) for 
different metamodels. 
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positive pressure gradient inside the diffuser (e.g., Ref. [19]), which 
could lead to the separation of the boundary layer from the walls and 
greater pressure losses [71].  

• The diameter of the throat (DT) is recognized as the second most 
important input parameter for all the metamodels. For example, the 

importance of DT is − 22% and − 26% for GARS and RSM, 
respectively.  

• All metamodels show insignificant sensitivity of the AFmetamodel to 
the diameter of the nozzle inlet (DN), the length of the nozzle (LN), 
and the length of the diffuser (LD). For GARS, for example, the 

Fig. 14. Contour plots of dimensionless streamwise velocity, static pressure coefficient, and reference turbulence intensity in symmetrical plane for optimized duct 
geometry obtained by different metamodels. Wind flow is from left to right. 
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importance of these three parameters is about -3%, 0%, and -2%, 
respectively. 

It should be noted that the significance of each parameter in this 
analysis depends on the following factors:  

• The range of input parameters. For example, in this study, the outlet 
diameter of the diffuser can vary between 9 and 27 m, restricted with 
regard to the building dimensions. In contrast, the length of the 
diffuser varies in a more limited range, i.e., 6–12 m. The use of 
different ranges would affect the obtained significance for the 
parameters. 

• The fixed values for the other parameters. In this study, the impor
tance of each parameter is determined at the mean value of the other 
input parameters computed as the sum of the maximum and mini
mum values, presented in Table 1, divided by two. If other values 
were selected, the outcome would be different. 

While the results of this analysis are case-specific, they can give 

insights into the relative importance of different input parameters on the 
output results. 

6.3. Optimum design 

Fig. 12 shows the optimum designs for the five metamodels. Fig. 13 
presents the maximum amplification factors in the mid-throat obtained 
by the metamodels (AFmetamodel) and those directly obtained by CFD 
simulation (AFCFD) for the optimum designs. The following observations 
can be made:  

• The use of the different metamodels can lead to different optimum 
designs with a 36% variation in the AFmetamodel where the maximum 
and minimum AFmetamodel are achieved for RSM (AFmetamodel = 3) and 
KG (AFmetamodel = 2.2), respectively.  

• The maximum and minimum diameter of the diffuser outlet (DD) is 
predicted by the least and the most accurate metamodels, i.e., RSM 
(DD/DT = 2.42) and GARS (DD/DT = 1.56), respectively. Note that 
the pressure inside the diffuser scales in proportion to the DD, and 
consequently the DD can significantly affect the streamwise flow 
velocity in the duct [72]. 

• The minimum and maximum volume of the ducted opening is ob
tained for KG (3087 m3) and RSM (4781 m3), respectively. It should 
be noted that smaller ducted openings are usually preferred to reduce 
structural and wind loads (e.g., Refs. [71,73]). 

• The deviation between the AFmetamodel and the AFCFD is more pro
nounced for the less accurate metamodels. This deviation is 114% 
and 41% for RSM and SVR, respectively. The main reason for the 
large deviations is the underfitting occured for RSM and overfitting 
occured for SVR. This deviation, however, is 0% for KG and 4% for 
GARS for which relatively small in-sample and out-of-sample errors 
are obtained (see Fig. 9). 

In order to better understand the impact of the optimized geometries 
obtained by the five metamodels on the flow features, the following 
parameters are investigated in detail in the middle plane:  

1. Dimensionless streamwise velocity (u/Uref) where Uref = 4.19 m/s is 
the streamwise velocity in the undisturbed flow at the height of the 
centerline of the ducted opening (h = 105 m).  

2. Static pressure coefficient (Cp) computed as Eq. (7): 

Cp =
P − P0

0.5ρU2
ref

(7) 

Fig. 15. Average annual mean wind speed frequency distribution for the city of 
Rotterdam, the Netherlands (2011-2020), obtained from Royal Netherlands 
Meteorological Institute (KNMI). 

Table 3 
Geometrical and operational characteristics of selected wind turbine (Hummer 
H8. 10 kW).  

Type Horizontal axis wind turbine (HAWT) 

Power 
Rated power [kW] 10 
Cut-in wind speed [m/s] 5 
Rated wind speed [m/s] 11 
Cut-out wind speed [m/s] 25 
Survival wind speed [m/s] 50 
Rotor 
Number of blades [− ] 3 
Diameter [m] 8.2 
Swept area [m2] 50.3 
Rotor max. speed [U/min] 100 
Tip speed [m/s] 43 
Material Fiberglass reinforced composite 
Gear box 
Type None-direct drive 
Generator 
Type Permanent magnet alternator (SCF technology) 
Number [− ] 1 
Generator max. speed [U/min] 100 
Voltage [v] 400  

Fig. 16. Power curve of selected wind turbine (Hummer H8. 10 kW).  
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where P is the mean static pressure, P0 = 0 Pa is the reference static 
pressure and ρ = 1.225 kg/m3 is the air density. 

3. Reference turbulence intensity based on the International Electro
technical Commission (IEC) Standard 61400-1 (Iref) [74]. The IEC 
Standard 61400-1 defines different classes of wind turbines for 
which a limitation on the maximum turbulence intensity is deter
mined to control diverse effects of fluctuating loads. For high (Class 
A), medium (Class B), and low (Class C) turbulence intensity, Iref =

0.16, 0.14, and 0.12, respectively. The Iref refers to the expected 
value of hub-height turbulence intensity at a 10-min average wind 
speed of 15 m/s, derived by Eq. (8): 

Iref =
TI

(0.75 + 5.6
Uref

)
(8)  

where TI is the turbulence intensity and is calculated using Eq. (9): 

TI=

̅̅̅̅̅
2
3 k

√

U
(9)  

where k is turbulence kinetic energy directly obtained from RANS sim
ulations, and U is the mean velocity. Note that the lower value of Iref 
denotes the lower fluctuating loads that is necessary within the lifetime 
of a turbine. 

The results are presented in Fig. 14. Accordingly, low turbulence 
intensity inside the duct is achieved based on the IEC Standard 61400-1 
(Fig. 14k-o) for all the optimum designs. For all the metamodels, the 
turbulence level inside the duct is less than the value corresponding to 
Iref = 0.12. 

6.4. Wind energy performance 

In order to give insight into the impact of different metamodels on 
the wind energy performance of the ducted openings, two parameters 
are computed: (i) The annual available wind power (Pavailable) in the mid- 
throat of the optimized ducted openings obtained by the five meta
models, and (ii) the annual energy production (AEP) for a given 
horizontal-axis wind turbine installed in the mid-throat of the five 
optimized ducted openings. For this assessment, it is assumed that the 

building is located in the city of Rotterdam, the Netherlands, and the 
corresponding mean wind speed distribution at 10 m height (u(10)) is 
obtained from the Royal Netherlands Meteorological Institute (KNMI). 
The data is measured at 10-min intervals over 10 years (2011–2020). 
Fig. 15 shows the average annual mean wind speed frequency distri
bution for Rotterdam where the mean wind speed ranges from 0 to 20 
m/s with 21 bins of 1 m/s. A Weibull distribution function is also fitted 
to the wind data to determine the scale (c) and shape (k) parameters 
where the corresponding values are c = 5.39 m/s and k = 1.92. 

The Pavailable can be estimated using Eq. (10): 

Pavailable =
∑n=21

i=1
hri

(
0.5ρAu3

i

)
(10)  

where n is the number of the mean wind speed bins, hri the total hours 
associated with the ith mean wind speed bin, ρ = 1.225 kg/m3 the air 
density, A = 28.3 m2 the cross-sectional area of the throat, and u the 
mean wind speed in the mid-throat given by Eq. (11): 

u= u(105)AFmetamodel (11)  

where u(105), wind speed at 105 m height, is estimated using the loga
rithmic law described by Eq. (1) and u(10) obtained from the KNMI. 
AFmetamodel is the maximum amplification factor in the mid-throat (see 
Fig. 13). 

A small-scale (urban) 3-bladed Horizontal Axis Wind Turbine 
(HAWT) with a rated power of 10 kW and a rotor diameter of 8.2 m is 
assumed to be installed in the mid-throat. Table 3 presents the 
geometrical and operational characteristics of the selected wind turbine. 
The turbine power curve, showing the turbine output power versus 
mean wind speed, is used to estimate the AEP using Eq. (12): 

AEP=
∑n=21

i=1
hriPi (12)  

where n is the number of the mean wind speed bins (i.e., 21), hri the 
total hours associated with the ith mean wind speed bin, and Pi the 
corresponding turbine output power obtained from the turbine power 
curve developed by the manufacturer (Fig. 16). 

Table 4 presents the available wind power and wind energy 

Table 4 
Available wind power and wind energy production for optimum design obtained by KG (AFmetamodel = 2.2) using annual mean wind speed frequency distribution of 
Rotterdam.  

bin U(10) [m/s] U(105) [m/s] U(105) × AFmetamodel  

[m/s] 
hri [h] (0.5ρAui

3) [kW/h] Annual available wind power 
per bin [kW] 

Pi [kW/h] Annual energy production 
per bin [kW] 

1 0 0 0 100 0 0 0 0 
2 1 1.4 3.1 904 0.5 461 0 0 
3 2 2.8 6.2 1267 4.1 5182 2.4 3041 
4 3 4.2 9.3 1425 13.7 19579 8.3 11827 
5 4 5.6 12.4 1404 32.7 45883 11 15444 
6 5 7.0 15.4 1179 63.7 75114 11 12969 
7 6 8.4 18.5 876 109.9 96316 11 9636 
8 7 9.8 21.6 604 175.2 105803 11 6644 
9 8 11.2 24.7 416 261.1 108638 11 4576 
10 9 12.6 27.8 254 372.3 94562 11 2794 
11 10 14.0 30.9 157 510.2 80100 11 1727 
12 11 15.4 33.9 79 678.5 53603 11 869 
13 12 16.8 37.1 43 881.7 37915 11 473 
14 13 18.2 40.1 22 1120.3 24647 11 242 
15 14 19.7 43.2 12 1400.3 16804 11 132 
16 15 21.0 46.3 7 1721.3 12049 11 77 
17 16 22.5 49.4 2 2087.9 4176 11 22 
18 17 23.9 52.5 0 2506.1 0 11 0 
19 18 25.3 55.6 0 2973.5 0 11 0 
20 19 26.7 58.7 0 3501.0 0 11 0 
21 20 28.1 61.8 0 4081.5 0 11 0       

Pavailable¼780832  AEP ¼70472  
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production as a function of mean wind speed for the optimum design 
obtained by KG with AFmetamodel = 2.2. Fig. 17a and b shows the avail
able wind power and the wind energy production as a function of mean 
wind speed for the optimum designs obtained by the five metamodels, 
respectively. Table 5 shows the Pavailable and AEP estimated by the five 
metamodels. The following observations can be made:  

• The use of the different metamodels can lead to large variations in 
the predicted Pavailable (~153%) and AEP (~14%).  

• The Pavailable and AEP predicted by RSM and SVR is considerably 
larger than those of the other metamodels. This overestimation is 
correlated to the deficiencies of RSM and SVR in accurately pre
dicting the AFmetamodel (see Fig. 13). Therefore, the Pavailable and AEP 
values obtained for the least accurate metamodels, i.e., RSM and 
SVR, should be treated with caution. 

7. Discussion 

The main limitations of this study need to be mentioned: 

• A wide range of functions and hyper-parameters are usually avail
able to develop a metamodel. These functions and hyper-parameters 
that have to be set by the user can significantly affect the accuracy of 
metamodels. For example, different correlation functions can be used 
to develop Kriging (KG), e.g., triangular, exponential, Gaussian, 
cubic, etc. [75]. Future research can focus on the impact of different 
functions and hyper-parameters on metamodel-based optimization 
of wind energy systems.  

• In this study, the performance of the metamodels is evaluated based 
on in-sample and out-of-sample evaluations. Other criteria, such as 
robustness and interpretability, can also provide insight into the 
performance of the metamodels and can be investigated in future 
studies (e.g., Ref. [27]).  

• In this study, the performance of different metamodels is evaluated 
for the given design of experiments (DOE) and optimization 
methods. However, earlier studies have shown that using different 
sampling (e.g., DOE) and/or optimization methods can considerably 
affect the prediction accuracy but also the optimization results. In 
addition, the combined impacts of different methods in each step can 
be explored.  

• In this study, the only evaluated parametric metamodel is a second- 
order polynomial. However, earlier studies have shown that the 
metamodel accuracy can considerably increase by using higher- 
order polynomials [76] while they are computationally more 
expensive. It is of interest to further evaluate higher-order poly
nomials to investigate the accuracy of parametric metamodels 
against non-parametric metamodels for complex non-linear 
applications.  

• This study focuses on a single-objective multivariable optimization. 
Nevertheless, the insights provided in the present study can still be 
useful in the multi-objective optimization of complex computer ex
periments. Special attention should be given to the following items: 

(i) Earlier studies have shown that increasing the number of ob
jectives can provide further challenges to reaching the global 
optima [48]. This issue can be addressed by converting a 
multi-objective optimization to a single-objective optimization 
where proportions are identified for objectives, and their pref
erences are encoded as weights. 

(ii) The impact of different hyper-parameters, such as the popula
tion size (the number of generated geometries in each period), 
the number of iterations, the crossover and mutation rates, 
should be taken into account, as suggested in Refs. [34,77]. 

(iii) Hybrid algorithms, i.e., combinations of more than two opti
mization algorithms, are expected to leverage the individual 
algorithms (e.g., Ref. [78]). For example, a hybrid of Genetic 
algorithm and Particle Swarm Optimization performs more 
efficiently than each of the two algorithms [79]. 

8. Conclusion 

Metamodel-based optimization is performed to improve the aero
dynamic performance of a building-integrated ducted opening. The 
performance of five commonly-used metamodels is evaluated by (i) 
detailed in-sample and out-of-sample evaluations of the metamodels, (ii) 
annual available power in the wind (Pavailable), and (iii) annual energy 

Fig. 17. (a) Available wind power and (b) wind energy production as a func
tion of mean wind speed for each optimum design obtained by 
different metamodels. 

Table 5 
Pavailable and AEP for different metamodels.  

Metamodel Pavailable [MW] AEP [MW] 

RSM 1980.0 80.4 
KG 780.8 70.5 
NN 892.4 71.7 
SVR 1013.8 73.1 
GARS 892.4 71.7  
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production (AEP). The following conclusions are made:  

• The use of different metamodels for a given dataset can affect the 
out-of-sample error by up to 61%.  

• The second-order polynomial is not suitable for complex computer 
experiments, such as CFD simulations. In this case, increasing the 
dataset size rarely improves the metamodel accuracy. 

• For a small dataset, crude yet still acceptable accuracy can be ach
ieved for Genetic Aggregation Response Surface (GARS) and Kriging 
(KG) at a very low computational time.  

• Non-parametric metamodels, such as Neural Network (NN) and 
Support Vector Regression (SVR), rely on the dataset size. Therefore, 
these metamodels should be treated with caution when the dataset 
size is limited.  

• Among the studied geometrical characteristics for the building- 
integrated ducted opening, the diameter of the diffuser (DD) and 
the diameter of the throat (DT) are found to significantly impact the 
maximum amplification factor in the mid-throat (AFmetamodel) for all 
the metamodels while the diameter of the nozzle (DN), the length of 
the nozzle (LN), and the length of the diffuser (LD) have a marginal 
impact.  

• For the optimum designs obtained by different metamodels, the 
AFmetamodel values experience a variation of about 36%.  

• Using different metamodels can lead to significant variations in the 
predicted annual available power in the wind (Pavailable) and annual 
energy production (AEP) by up to 153% and 14%, respectively. 

Credit authors statement 

Zeynab Kaseb: Conceptualization, Methodology, Validation, Formal 
analysis, Investigation, Writing - Original Draft, Visualization. Hamid 
Montazeri: Conceptualization, Methodology, Writing - Review & Edit
ing, Supervision, Project administration. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

Acknowledgement 

The authors gratefully acknowledge the partnership with ANSYS 
CFD. The authors also acknowledge Nedpower SWH company, repre
sented by ing. R. Kroezemann, for helpful discussions. 

References 

[1] El-Khattam W, Salama MMA. Distributed generation technologies, definitions and 
benefits. Elec Power Syst Res 2004;71:119–28. https://doi.org/10.1016/j. 
epsr.2004.01.006. 

[2] Rezaeiha A, Montazeri H, Blocken B. A framework for preliminary large-scale 
urban wind energy potential assessment: roof-mounted wind turbines. Energy 
Convers Manag 2020;214:112770. https://doi.org/10.1016/j. 
enconman.2020.112770. 

[3] Gusmão Caiado RG, Leal Filho W, Quelhas OLG, Luiz de Mattos Nascimento D, 
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