

Delft University of Technology

Parallel Computing with the Thick Level Set Method

Mororó, L. A. T.; van der Meer, F. P.

DOI
10.1137/21M1400742
Publication date
2021
Document Version
Final published version
Published in
SIAM Journal on Scientific Computing

Citation (APA)
Mororó, L. A. T., & van der Meer, F. P. (2021). Parallel Computing with the Thick Level Set Method. SIAM
Journal on Scientific Computing, 43(6), C386-C410. https://doi.org/10.1137/21M1400742

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1137/21M1400742
https://doi.org/10.1137/21M1400742

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

SIAM J. SCI. COMPUT. © 2021 SIAM. Published by SIAM under the terms
Vol. 43, No. 6, pp. C386--C410 of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THE THICK LEVEL SET
METHOD\ast

L. A. T. MOROR\'O\dagger AND F. P. VAN DER MEER\ddagger

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The thick level set (TLS) method has been proposed as a nonlocal damage model
for the modeling of failure in solids being able to deal with crack initiation, branching, and merging.
The nonlocality of the TLS is achieved by introducing a characteristic length into the problem. This
way, the TLS does not suffer from spurious localization in the strain field. This paper introduces a
domain decomposition method to obtain a parallel implementation of the TLS method. It describes
how to handle the numerical features specific to the TLS analysis steps involving level set update,
equilibrium solution, and damage front advance. For each of these tasks an appropriate parallel
strategy is proposed. The most demanding task in terms of computational cost, i.e., solving the
linearized system of equations from the equilibrium problem, is performed with a parallel iterative
method profiting from the domain decomposition method adopted. A communication strategy to deal
with enriched nodes belonging to shared regions of subdomains is provided. Collective communication
strategies are also proposed to deal with operations related to the level set update and damage front
advance. Numerical experiments demonstrate the accuracy and efficiency of the proposed framework
to handle parallel computing with the TLS method.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . thick level set, parallel computing, domain decomposition, fracture mechanics

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 74S05, 74R99, 65Y99, 65M55

\bfD \bfO \bfI . 10.1137/21M1400742

1. Introduction. The thick level set (TLS) method, first introduced by Mo\"es
et al. [16], is a damage model that contains a nonlocal damage definition to prevent
spurious strain localization. In this method, the location of the damage front that
separates the damaged material from the undamaged material is tracked as the zero
level set of an auxiliary field whose evolution is dictated by the nonlocal energy re-
lease rate of the material. The TLS damage variable depends on the distance to the
damage front as evaluated with the signed distance level set field and varies over a
thick band of material with a predefined width according to a user-defined damage
function. Since its first advent, the TLS has been expanded in order to enhance
its numerical implementation for quasi-static loading condition [3, 17], to deal with
three-dimensional quasi-static problems [25] and dynamics [17], to couple with co-
hesive zone models [12], to treat fatigue crack growth [11], to improve the control
of damage initiation and representation of free sliding in shear [30], and to couple
damage with plasticity [18].

The TLS works with a staggered solution scheme in which displacements and
damage are separately computed. From an existing level set field, i.e., a given damage
distribution, an equilibrium problem is solved for the displacement field in a standard
finite element analysis. After computing the displacements, the configurational force
for front movement is evaluated with which the level set field is updated. As a result of

\ast Submitted to the journal's Software and High-Performance Computing section February 23,
2021; accepted for publication (in revised form) July 20, 2021; published electronically December 2,
2021.

https://doi.org/10.1137/21M1400742
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The work of the first author was supported by the IFCE. The work of the second

author was supported by the Dutch Research Council (NWO) under Vidi grant 16464.
\dagger Federal Institute of Education, Science and Technology of Cear\'a (IFCE), Morada Nova, Brazil

(l.a.taumaturgomororo@tudelft.nl, luiz.mororo@ifce.edu.br).
\ddagger Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft,

The Netherlands (f.p.vandermeer@tudelft.nl).

C386

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

https://doi.org/10.1137/21M1400742
mailto:l.a.taumaturgomororo@tudelft.nl
mailto:luiz.mororo@ifce.edu.br
mailto:f.p.vandermeer@tudelft.nl

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C387

the staggered approach, the TLS provides a robust framework for handling topological
events like merging and branching. From an implementation point of view, the global
solution scheme of the TLS contains three modules, where each one encapsulates
specific tasks: update of the level set field, equilibrium solution, and damage front
evolution [11, 30, 18].

Despite its robustness, the TLS can be a time-demanding approach, mainly be-
cause of the equilibrium solution phase [22]. The high computational demand comes
from the fact that the TLS requires element sizes smaller than the width of the dam-
aged band in order to achieve a desirable accuracy, especially for the computation of
nonlocal quantities [3, 11], giving rise to a system of equations with many degrees of
freedom (DOFs). This issue can be amplified if the size of the width of the damage
band is constrained to be small relative to the geometry of the problem being investi-
gated like, for instance, interlaminar cusp formation in a polymer matrix of composite
materials subjected to mixed mode loading condition [31], which takes place in a very
narrow area and involves multiple cracks that eventually merge. Additionally, in order
to guarantee numerical stability of the level set update, the damage front advance is
constrained such that it does not move more than one element length per time step
[3, 11, 30, 18]. Therefore, for simulations up to final failure of specimens with long
cracks, many time steps are required [30, 18].

Parallel computing may be used to mitigate the computational effort associated
with finite element simulations, where many operations (e.g., assembly of matrices
and vectors) can be performed simultaneously for different parts of the domain on
different cores. To take advantage of the parallel architecture of a machine for solving
large systems of equations, numerical techniques for decomposing the original prob-
lem into collaborating subproblems are needed. In a finite element context, domain
decomposition (DD) methods are used to build parallel frameworks running on dif-
ferent cores [24, 9]. The main idea behind a DD approach is to divide the whole
domain into subdomains that can be solved almost independently on different cores.
Since the solution on one subdomain is not completely independent from other sub-
domains, some exchange of data limited to the interface (or to a small overlapping
region) between neighboring subdomains is necessary. The first mathematical studies
on DD gave rise to a family of Schwarz algorithms based on overlapping domains
(e.g., restricted additive Schwarz method [6]). Later, nonoverlapping methods whose
interpretation is more mechanically oriented were proposed, such as finite element
tearing and interconnecting method [7] and balanced DD [27].

The main premise of this paper is that such strategies can be advantageous to
speed up the equilibrium solution stage that constitutes the main computational bot-
tleneck related to the TLS method. However, when applying DD to one task of the
TLS, care is required for the remaining analysis tasks (update of the level set field
and damage front evolution).

This work seeks to describe how to apply the DD framework to obtain an efficient
parallel version of the TLS method. It demonstrates how to handle the TLS-specific
analysis phases that spawn multiple operations on different processors, where time-
demanding parts of the solution scheme are performed in parallel, while other parts
that require global solution strategies are kept sequential. Two slightly different TLS
implementations are considered as starting points: firstly, the version by Moror\'o and
van der Meer [18] for ductile fracture and secondly, the version by van der Meer and
Sluys [30], which assumes a secant unloading behavior of material. Both of these
build on original concepts of the first paper on the TLS method by Mo\"es et al. [16]
and the improvements on its implementation by Bernard, Mo\"es, and Chevaugeon [3].

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C388 L. A. T. MOROR\'O AND F. P. VAN DER MEER

The parallel iterative solver combined with the Schwarz-type DD strategy by Lingen
et al. [14] is used.

It is worth mentioning that apart from the two TLS implementations considered
here, the proposed parallel framework can easily be extended to other TLS-based
methods, such as the interfacial TLS method by Latifi, Vander Meer, and Sluys [11].

The paper is structured as follows. Section 2 is dedicated to present the main
features that comprise the TLS method. The objective of section 2 is to be complete
and to provide the context for the parallel framework introduced in section 3 without
providing motivation for all details of the TLS as presented elsewhere in literature.
Numerical examples considering linear elasticity and plasticity are presented in sec-
tion 4 and used to assess the performance of the proposed framework. Numerical
results are presented with focus on the scalability of the framework and accuracy of
the parallel solution. Finally, conclusions are presented in section 5.

2. The TLS method. The TLS method makes use of the level set method [26]
to track the location of a damage front \Gamma 0 that separates the undamaged material
from a degraded region (see Figure 1). The damage front is defined as coinciding with
the zero level set (or the ``iso-0"") of an auxiliary field \phi (x), the level set field. The
level set field \phi is chosen to be the signed distance function to \Gamma 0 in which its gradient
satisfies the eikonal equation:

\| \nabla \phi \| = 1 on \Omega ,(2.1)

where \Omega is the domain on which \phi is defined. This equation guarantees that the
absolute value of \phi at a given point x is the shortest distance between that point and
\Gamma 0. On a discretized finite element domain, the definition of \phi at x is determined by
interpolating the values of \phi from nodes to x using finite element shape functions.

In the TLS, a damage variable is introduced which is defined as a function of \phi .
The damage variable is constrained to follow a given profile in a transition zone with
fixed length between undamaged and fully degraded zones as

d(\phi) =

\left\{
0, \phi \leq 0,

q(\phi), 0 < \phi \leq lc
1, \phi > lc,

,(2.2)

where q(\phi) is a function that has the properties of q(0) = 0, q(lc) = 1, and q\prime (\phi) \geq 0
on \phi \in [0, lc]. Therefore, the damage variable changes from zero to one as \phi goes from
zero to the critical length lc over a band bounded by \Gamma 0 : \phi = 0 and \Gamma c : \phi = lc. In
this paper, the arctangent profile proposed by Bernard, Mo\"es, and Chevaugeon [3] is
used for all numerical simulations

Undamaged zone

Fully degraded zone

Transition zone

Γc : φ = lc

Γ0 : φ = 0
lc

lc

lc

l

d

φ

φ φ

1

0

s

s

Fig. 1. The TLS makes use of a single level set function to describe multiple damaged zones;
the damage variable d is a function of the level set \phi .

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C389

Level set update: LSModule

- updateLevelSet

- reinitializeLS

- testInitiation

- makeNucleus

- solver

Equilibrium sol.: EquilModule

- initEnrichment

- initSPRHistory

- solver

Front evol.: VelocityModule

- solver

- extendVelocity

Next time step, t+∆t

φ εe

φ̄

vn, ε
e

Fig. 2. The global sequential staggered solution scheme for a single time step. Dashed arrows
represent the data exchange among the three modules.

q(\phi) = c2 arctan

\biggl(
c1

\biggl(
\phi

lc
 - c3

\biggr) \biggr)
+ c4(2.3)

with c1 = 10 and c3 = 0.5 and the other coefficients given by c4 = - c2 arctan (- c1c3)
and c2 = (arctan (c1 (1 - c3)) - arctan (- c1c3)) - 1.

A summary of the staggered algorithm used in this work is given in Figure 2. For
every time step, there are three main modules (or analysis phases) that are named
level set update, equilibrium solution, and front evolution. The level set update phase
consists of the update of the level set field and its reinitialization, evaluation of damage
initiation given an elastic strain field \bfitvarepsilon e, and computation of the size of damaged zones
\=\phi . In the equilibrium solution phase, for a given damage distribution (which could
consist of zero damage throughout \Omega), displacements and consequently strains and
stresses are computed in a standard finite element analysis. In the front evolution
phase, \=\phi and the elastic strain from the equilibrium solution, \bfitvarepsilon e, are used to compute
the nonlocal configurational force \=Y and the averaged material resistance to damage
growth \=Yc, which in turn are used to compute the front velocity vn along the front
that is subsequently extended throughout \Omega . With the velocity at hand, the resulting
new level set field can be determined and used for the next time step.

The remainder of this section is dedicated to outlining the main operations for
each of the three modules. Modular pseudocodes are provided to clarify the implemen-
tation. Parts of these pseudocodes are highlighted in blue to indicate modifications
related to the parallelism that will be addressed in section 3. In the present section,
where the original sequential algorithm is presented, these parts can be ignored. For
the sake of compactness, the framework for ductile fracture is firstly presented, and
the other one for linear elastic fracture assuming secant unloading behavior is then
addressed, inheriting the structure from the former.

2.1. Level set update. The first task in every time step is to define the level set
field for that step. In the first time step, the level set field is initialized. In all other
time steps it is updated with the nodal normal velocities, as shown in Algorithm 2.1.
The level set field at every node belonging to \scrN (the complete set of nodes in the
mesh) is then updated as

\phi \leftarrow \phi + vn\Delta t,(2.4)

where \Delta t is the time increment size. In order to guarantee the numerical stability of
the level set update, \Delta t is constrained as [18, 29]

\Delta t = min

\Biggl\{
\Delta t0, \alpha n

h

max\{ vn\}

\Biggr\}
,(2.5)

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C390 L. A. T. MOROR\'O AND F. P. VAN DER MEER

Algorithm 2.1 The updateLevelSet algorithm.

\bfI \bfn \bfp \bfu \bft : the nodal normal velocities vn; the default and maximum time increment size \Delta t0; and the constant
\alpha n and parameter h

\bfO \bfu \bft \bfp \bfu \bft : the updated level set field \phi at nodes and time increment size \Delta t
1: vmax \leftarrow 0 /\ast Compute the maximum velocity vmax \ast /
2: \bff \bfo \bfr \bfa \bfl \bfl node i \in \scrN \bfd \bfo
3: \bfi \bff vni > vmax \bft \bfh \bfe \bfn
4: vmax \leftarrow vni

5: \bfe \bfn \bfd \bfi \bff
6: \bfe \bfn \bfd \bff \bfo \bfr

7: Allreduce (vmax) /\ast Get the maximum vmax from all processes \ast /
8: \Delta t\leftarrow \alpha n

h
vmax

9: \bfi \bff \Delta t0 < \Delta t \bft \bfh \bfe \bfn /\ast Update the time increment size, if required \ast /
10: \Delta t\leftarrow \Delta t0

11: \bfe \bfn \bfd \bfi \bff
12: \bff \bfo \bfr \bfa \bfl \bfl node i \in \scrN \bfd \bfo /\ast Update the level set field \ast /
13: \phi i \leftarrow \phi i + vni \Delta t
14: \bfe \bfn \bfd \bff \bfo \bfr

in which \Delta t0 is the default and maximum time increment size, \alpha n is a constant defined
as 0 < \alpha n < 1, h is the characteristic size of the smallest element,1 and max\{ vn\} is
the largest value of vn over the entire domain.

In theory, when the level set field is updated with vn\Delta t and a properly extended
velocity field, the updated level set field obtained by (2.4) remains a signed distance
function. However, the discrete nature of the level set update deteriorates the property
of (2.1). Thus, a reinitialization procedure is periodically performed with a fast
marching algorithm [26, 29] in order to keep \phi as an accurate representation of the
signed distance function. Since it is a relatively cheap procedure [30, 18, 29], this
reinitialization is performed every time step.

Next, an initiation check is performed at every integration point in a user-defined
set of elements \scrE nucl where nucleation is allowed, according to Algorithm 2.2. A
damage nucleus, i.e., a small region with positive level set values, is inserted when the
local driving force for damage growth Y that depends on the elastic strain tensor \bfitvarepsilon e

is greater than or equal to the material resistance to damage initiation Y 0
c . If Y \geq Y 0

c

is met, a circle with radius \phi 0 is inserted around the point xnucl with the highest ratio
Y/Y 0

c . The initiation check is only performed in those elements belonging to \scrE nucl
that are at least a distance \phi spacing away from an existing damage front.

After the nucleation check, if a new damage front is added to the problem, the
value of \phi is checked at every node belonging to \scrN and updated if the node is closer
to the new front than to the existing front, as schematically shown in Algorithm 2.3.

The level set update phase is finished with the computation of a measure for the
size of enclosed damaged zones. For this purpose, the averaged level set value \=\phi is
computed in each time step in a similar way to \=Y in (2.13) by substituting level set
values and unknowns \=\phi for Y and \=Y , respectively, and by leaving out the weight
factor d\prime in (2.14) and (2.16) [30]. Unlike the computation of \=Y , in which only the
variation in the normal direction of \=Y is eliminated by means of Lagrange multipliers,
the variation of \=\phi along the front is also eliminated by considering a high value for
\kappa [30]. By eliminating the variation of \=\phi in both directions, a single representative
value for each individual damaged subdomain is obtained. By adopting the structure
of (2.13), the computation of \=\phi does not add much complexity to the framework since
its implementation inherits the basic structure from what is already needed for the
computation of \=Y and \=Yc.

1h is defined as the length of the diagonal of the smallest possible rectangle around an individual
element in the mesh.

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C391

Algorithm 2.2 The testInitiation algorithm.
\bfI \bfn \bfp \bfu \bft : the parameter \phi spacing; the elastic strain field; and a function getIPCoords to retrieve the coor-

dinates of a integration point j for a given element i
\bfO \bfu \bft \bfp \bfu \bft : the highest value of Y/Y0

c and its corresponding location \bfx nucl

1: \bff \bfo \bfr \bfa \bfl \bfl element i \in \scrE nucl \bfd \bfo
2: \bfi \bff any node-\phi -values of element i > - \phi spacing \bft \bfh \bfe \bfn
3: \bfc \bfo \bfn \bft \bfi \bfn \bfu \bfe
4: \bfe \bfn \bfd \bfi \bff
5: max\leftarrow 0 /\ast initialize the maximum value of Y/Y0

c \ast /
6: \bff \bfo \bfr \bfa \bfl \bfl integration point j \bfd \bfo
7: \bfx j \leftarrow getIPCoords(i, j) /\ast Get coordinates of integ. point j \ast /
8: Yj \leftarrow (2.9)

9: Y 0
cj \leftarrow (2.17)

10: ratio\leftarrow
Yj

Y 0
cj

11: \bfi \bff ratio > max \bft \bfh \bfe \bfn /\ast Update max and \bfx nucl, if required \ast /
12: max\leftarrow ratio
13: \bfx nucl \leftarrow \bfx j

14: \bfe \bfn \bfd \bfi \bff
15: \bfe \bfn \bfd \bff \bfo \bfr
16: \bfe \bfn \bfd \bff \bfo \bfr
17: \bfr \bfe \bft \bfu \bfr \bfn max and \bfx nucl

Algorithm 2.3 The makeNucleus algorithm.
\bfI \bfn \bfp \bfu \bft : the nucleus coordinates \bfx nucl and size of new front \phi 0

\bfO \bfu \bft \bfp \bfu \bft : the updated level set field \phi at nodes after nucleation
1: \bff \bfo \bfr \bfa \bfl \bfl node i \in \scrN \bfd \bfo
2: di \leftarrow \| \bfx i - \bfx nucl \|
3: \phi n \leftarrow \phi 0 - di

4: \bfi \bff \phi n > \phi i \bft \bfh \bfe \bfn
5: \phi i \leftarrow \phi n

6: \bfe \bfn \bfd \bfi \bff
7: \bfe \bfn \bfd \bff \bfo \bfr

Algorithm 2.4 The LSModule algorithm.

\bfI \bfn \bfp \bfu \bft : the nodal normal velocity vn; the time increment size \Delta t0; the constant h; the parameter \alpha n; the
size of new front \phi 0; the parameter \phi spacing; and elastic strain field

\bfO \bfu \bft \bfp \bfu \bft : the insertion of a new damage front and updated level set field \phi
1: updateLevelSet (vn, \Delta t0, \alpha n, h)

2: Gather (\phi) /\ast Gather updated ϕ to the root process \ast /
3: reinitializeLS ()

4: Scatter (\phi) /\ast Scatter ϕ all over the processes \ast /

5: Y/Y 0
c , \bfx nucl \leftarrow testInitiation (\phi spacing, \bfitvarepsilon

e)

6: Allreduce (Y/Y 0
c , \bfx nucl) /\ast Get the maximum Y/Y0

c and \bfx nucl from all processes \ast /

7: \bfi \bff Y/Y 0
c \geq 1 \bft \bfh \bfe \bfn

8: makeNucleus (\bfx nucl, \phi 0)
9: \bfe \bfn \bfd \bfi \bff

10: Gather (\bfK , \bfL , \bff \phi) /\ast Gather matrices and right-hand side vector for (2.13) \ast /
11: \=\phi \leftarrow solver ((2.13))

12: Scatter (\=\phi) /\ast Scatter \=ϕ over the processes \ast /

The level set update phase is summarized in Algorithm 2.4.

2.2. Equilibrium solution. Following [18], the equilibrium solution phase is
executed in the framework of elasto-plastic finite element analysis for a given damage
distribution assuming small displacements and additive decomposition of the total
strain \bfitvarepsilon into an elastic part \bfitvarepsilon e and a plastic part \bfitvarepsilon p, i.e., \bfitvarepsilon = \bfitvarepsilon e + \bfitvarepsilon p. Moreover,
plasticity is only allowed to evolve in the undamaged material and not in regions
where \phi > 0.

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C392 L. A. T. MOROR\'O AND F. P. VAN DER MEER

The equilibrium equation without body force and the relation between the total
strain \bfitvarepsilon and the displacement field u in \Omega read, respectively, \nabla \cdot \bfitsigma = 0 and \bfitvarepsilon =
1
2 (\nabla u+\nabla uT), in which \bfitsigma is the stress tensor. The displacement field is subjected to
Dirichlet boundary conditions u = \^u on \Omega u.

Under the hypothesis of decoupling between elasticity damage and plastic hard-
ening, the specific free energy \psi is written as a function of the elastic strain \bfitvarepsilon e,
damage variable d, and equivalent plastic strain \varepsilon peq and is split as \psi (\bfitvarepsilon e, d, \varepsilon peq) =

\psi ed(\bfitvarepsilon e, d) + \psi p(\varepsilon peq) into a sum of an elastic-damage contribution \psi ed and a contri-
bution due to hardening \psi p.

The following elastic-damage energy density that takes into account stiffness re-
covery under compression [3] is used in all numerical simulations:

\psi ed(\bfitvarepsilon e, d) = \mu (1 - \alpha id)(\varepsilon
e
i)

2 +
\lambda

2
(1 - \alpha vd)tr(\bfitvarepsilon

e)2,(2.6)

where \lambda and \mu are Lam\'e's elastic constants, \varepsilon ei is the principal strain values, tr(\bfitvarepsilon e) is
the trace of the elastic strain tensor,

\alpha i =

\Biggl\{
1, \varepsilon ei > 0,

0, \varepsilon ei < 0,
and \alpha v =

\Biggl\{
1, tr(\bfitvarepsilon e) > 0,

0, tr(\bfitvarepsilon e) < 0.
(2.7)

With (2.6), the constitutive relation in principal stress space and the local driving
force for damage growth can, respectively, be expressed as

\sigma i =
\partial \psi ed

\partial \varepsilon ei
= 2\mu (1 - \alpha id)\varepsilon

e
i + \lambda (1 - \alpha vd)tr(\bfitvarepsilon

e)(2.8)

and

Y =
\partial \psi ed

\partial d
= - \mu \alpha i(\varepsilon

e
i)

2 - \lambda

2
\alpha vtr(\bfitvarepsilon

e)2.(2.9)

In regions where \phi \leq 0, the basic form of the constitutive law for plasticity is

\bfitsigma = De : \bfitvarepsilon e = De : (\bfitvarepsilon - \bfitvarepsilon p) ,(2.10)

where De is the elasticity tensor from Hooke's law. The plastic strain \bfitvarepsilon p, whose evolu-
tion is defined by a plastic flow rule, is computed by using an elastic predictor/return
mapping algorithm so that \bfitsigma satisfies the yield criterion f(\bfitsigma , \varepsilon peq) \leq 0 [20].

Inserting the constitutive relations in (2.8) and (2.10) into the equilibrium equa-
tion results in a nonlinear system of equations that is iteratively solved with the
Newton--Raphson method. In order to capture sharp load drops during unstable dam-
age growth, the update of prescribed displacements \^u is performed with the adaptive
time step size from (2.5), \^u \leftarrow \^u +\Delta \^u0 \Delta t

\Delta t0 , with \Delta \^u0 being the initial displacement
increment [18, 29].

The region with \phi > lc where d = 1 represents stress-free macrocracks in the TLS
method. In simulations with regular finite elements, this region needs to be at least
one row of elements wide to represent this stress-free state, causing mesh dependency
[30]. In order to achieve a stress-free state in elements that are only partially in \phi > lc,
the enrichment strategy proposed by Bernard, Mo\"es, and Chevaugeon [3] is employed,
which allows for a strain discontinuity across the iso-lc. In this strategy, extra DOFs
are added to a node inside the fully degraded region if the elements in its node support

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C393

Fig. 3. On the left, the nodes of element m and node n exemplify, respectively, typical cases of
nodes without and with the necessity of being enriched. In the dashed box on the right, the change
in integration scheme of the element l crossed by the iso-0 is illustrated (adapted from [3]).

are cut twice by the iso-lc, as shown in Figure 3. From an implementation point of
view, nodes are dynamically enriched and unenriched as the damage front advances.

The enrichment function is constructed as a continuous ramp function across the
fully degraded area where \phi > lc. In practice, this scheme divides the element support
for an enriched node into two lists of elements: positive and negative. This design
will be important when building the parallel framework in section 3.

The numerical integration scheme necessary for accuracy and robustness of the
TLS changes in elements that are crossed by the iso-0 and iso-lc as the front advances
from one load increment to another, e.g., the element l illustrated in Figure 3. In
the case of crack propagation in elastic-plastic materials, extra care is required with
this procedure since history variables that are stored at integration points have to be
transferred from old to new integration schemes. In this study, the superconvergent
patch recovery (SPR) technique [32, 33] is applied to transfer the plastic strain tensor
\bfitvarepsilon p and equivalent plastic strain \varepsilon peq, following [18].

In Algorithm 2.5, the equilibrium solution phase is summarized.

Algorithm 2.5 The EquilModule algorithm.
\bfI \bfn \bfp \bfu \bft : the damage distribution d(\phi) and level set field \phi
\bfO \bfu \bft \bfp \bfu \bft : the nodal displacements; the new integration scheme; and transferred history variables
1: initEnrichment ()

2: commEnrich () /\ast Enrichment update for receive nodes \ast /
3: initSPRHistory ()
4: \^u\leftarrow \^u + \Delta \^u0 \Delta t

\Delta t0

5: \bfu , \bfitvarepsilon p, \varepsilon peq \leftarrow solver ()

2.3. Front evolution. The last analysis phase concerns computation of the
front velocity. It begins with evaluation of the averaged configurational force along
the front. Due to the use of the signed distance function, all points sharing the same
curvilinear coordinate s are affected when the front at (0, s) (see Figure 1) experiences
a front advance.2 Thus, movement of the front at (0, s) leads to an increase in damage
and, consequently, to energy dissipation in all associated points. Therefore, the energy
dissipation per unit length as the front moves a unit distance reads

g(s) =

\int l

0

d\prime (\phi)Y (\phi , s)

\biggl(
1 - \phi

\rho (s)

\biggr)
d\phi ,(2.11)

where d\prime (\phi) = q\prime (\phi) is the spatial derivative of damage with respect to \phi , l is the size
of the damaged zone l \in (0, lc], and \rho is the curvature of the iso-0. To evaluate g(s)

2A curvilinear coordinate system (\phi , s) is introduced here for the derivation, but in the final
equations as implemented, the s-coordinates are not used or even constructed.

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C394 L. A. T. MOROR\'O AND F. P. VAN DER MEER

in a discretized setting, an averaged configurational force \=Y (s) is introduced which is
related to Y (\phi , s) through\int l

0

d\prime (\phi)Y (\phi , s)

\biggl(
1 - \phi

\rho (s)

\biggr)
d\phi =

\int l

0

d\prime (\phi) \=Y (s)

\biggl(
1 - \phi

\rho (s)

\biggr)
d\phi .(2.12)

Numerically, this averaged configurational force is discretized with DOFs on the nodes
of those elements that are at least partially inside the damaged domain \Omega d. Lagrange
multipliers are used to weakly enforce the constraint that \=Y is constant in \phi direction
[3]. The following system of equations is obtained [30]:\biggl[

K L
L 0

\biggr] \biggl\{
\=Y
l

\biggr\}
=

\biggl\{
fY

0

\biggr\}
,(2.13)

in which \=Y and l are vectors with \=Y and Lagrange multiplier DOFs, respectively. The
matrices and the right-hand side vector are defined as

Kij =

\int
\Omega d

d\prime NiNj +
\kappa h2

lc

\partial Ni

\partial xk

\partial Nj

\partial xk
d\Omega ,(2.14)

Lij =

\int
\Omega d

lc

\biggl(
\partial Ni

\partial xk

\partial \phi

\partial xk

\biggr) \biggl(
\partial Nj

\partial xk

\partial \phi

\partial xk

\biggr)
d\Omega , and(2.15)

fYi =

\int
\Omega d

Nid
\prime Y d\Omega ,(2.16)

where Ni and Nj are the shape functions associated with nodes i and j, \kappa is a
stabilization parameter, h is the same parameter used in (2.5), and Y is the local
configurational force which depends on the current elastic strain field through (2.9).

The material resistance to damage growth Yc is made into a function of the size
of the damaged zone in order to take into account independent input parameters for
damage initiation and propagation [30]. In this approach, Yc varies from an initial
strength-based value Y 0

c to an energy-based value Y G
c as the size of the damaged zone

\=\phi increases. For intermediate values of Yc, the following interpolation is adopted [11]:

log(Yc) = log(Y 0
c) +

\=\phi - \=\phi init
\=\phi max - \=\phi init

\bigl(
log(Y G

c) - log(Y 0
c)

\bigr)
,(2.17)

where \=\phi init and lc/3 \leq \=\phi max \leq lc/2 are, respectively, the initial size of the damaged
zone and the size for which the damaged zone is considered a crack. The quantity Y 0

c

is related to the strength of the material, where we follow earlier work in [18]. The
parameter Y G

c related to propagation is given by Y G
c = Gc

2Alc
, with A being the area

under the curve q(\phi) given in (2.3) and Gc being the fracture energy [3].
As Yc is not constant on \Omega d due to its dependence on \=\phi (cf. (2.17)) and in order

to account for the general case of multiple materials being used in the same mesh,
the resistance is also averaged over the width of the damaged band. Therefore, \=Yc is
computed by solving once more the system of equations in (2.13) but then with \=Yc in
the right-hand side vector instead of Y .

Next, the computation of nodal normal velocity vn is carried out in two steps.
Firstly, vn is computed at the nodes belonging to\scrN 0 (the set of nodes of those elements
that contain the front) based on \=Y and \=Yc as

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C395

vn =
1

\eta

\Biggl\langle
\=Y
\=Yc
 - 1

\Biggr\rangle
+

,(2.18)

where \eta is a parameter that can be interpreted as viscous resistance against crack
growth. Brackets are used to denote the positivity condition, which reflects the ir-
reversibility of crack growth. Secondly, the nodal velocity is propagated throughout
the domain by solving \nabla \phi \cdot \nabla vn = 0 with a fast marching method [26, 29].

Algorithm 2.6 summarizes the operations of this phase.

Algorithm 2.6 The VelocityModule algorithm.
\bfI \bfn \bfp \bfu \bft : the nodal values of \=\phi ; the elastic strain field; and parameters lc, h, \kappa , and \eta
\bfO \bfu \bft \bfp \bfu \bft : the nodal velocity vn

1: Gather (\bfK , \bfL , \bff Y, \bff Yc) /\ast Gather matrices and right-hand side vector for (2.13) \ast /
2: \=Y , \=Yc \leftarrow solver ((2.13))

3: Scatter (\=Y , \=Yc) /\ast Scatter \=Y and \=Yc over the processes \ast /
4: \bff \bfo \bfr \bfa \bfl \bfl node i \in \scrN 0 \bfd \bfo

5: vni = 1
\eta \langle

\=Yi
\=Yci
 - 1\rangle +

6: \bfe \bfn \bfd \bff \bfo \bfr

7: Gather (vn) /\ast Gather vn at nodes of the front \ast /
8: extendVelocity ()

9: Scatter (vn) /\ast Scatter vn all over the processes \ast /

2.4. Secant unloading scheme. If one wants to let the crack grow under the
condition that \=Y cannot exceed \=Yc instead of with (2.18), that is possible with an
alternative loading scheme under the assumption of secant unloading [3, 16, 30]. This
alternative involves solving a unit load analysis in the equilibrium solution and de-
termination of a load scale factor \gamma after the \=Y corresponding to unit loading is
evaluated.

With this approach, there is no adaptive time increment procedure. The velocity
is defined such that the maximum is always equal to vlim. Hence, the first loop in
Algorithm 2.1 is skipped, and the second loop is passed with \Delta t = 1 s (cf. (2.4)). The
nucleation check should be performed with the actual load level. The ratio Y/Y 0

c is
therefore scaled by \gamma 2 (see (2.19)) in the tenth and seventh lines of Algorithms 2.2

and 2.4, respectively. For simulation without plasticity, Y 0
c is defined as Y 0

c =
f2
t

2E ,
where ft and E are, respectively, the tensile strength and Young's modulus.

Because unit load analysis only makes sense under secant unloading, this loading
scheme cannot be used in combination with plasticity in the undamaged part of the
material. Therefore, in Algorithm 2.5, the operations in lines three and four are
skipped for this loading scheme.

The pseudocode in Algorithm 2.7 illustrates the front evolution phase with this
loading scheme. The strain field and, consequently, the averaged configurational forces
\=Y are evaluated with unit load boundary conditions. The actual load level for a time
step is then determined by scaling the unit-load solution with a load scale factor \gamma
such that the maximum scaled value for \=Y along the front is equal to \=Yc:

\gamma 2 max
i\in \scrN 0

\Biggl\{
\=Yi
\=Yci

\Biggr\}
= 1.(2.19)

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C396 L. A. T. MOROR\'O AND F. P. VAN DER MEER

Algorithm 2.7 The VelocityModule algorithm for secant unloading scheme.
\bfI \bfn \bfp \bfu \bft : the nodal values of \=\phi ; the elastic strain field; and parameters lc, h, c, k, and vmax

\bfO \bfu \bft \bfp \bfu \bft : the nodal velocity vn

1: Gather (\bfK , \bfL , \bff Y, \bff Yc) /\ast Gather matrices and right-hand side vector for (2.13) \ast /
2: \=Y , \=Yc \leftarrow solver ((2.13))

3: Scatter (\=Y , \=Yc) /\ast Scatter \=Y and \=Yc over the processes \ast /
4: max\leftarrow 0 /\ast Initialize the highest ratio \=Y/\=Yc \ast /
5: \bff \bfo \bfr \bfa \bfl \bfl node i \in \scrN 0 \bfd \bfo

6: ratio\leftarrow
\=Yi
\=Yci

7: \bfi \bff ratio > max \bft \bfh \bfe \bfn
8: max\leftarrow ratio
9: \bfe \bfn \bfd \bfi \bff

10: \bfe \bfn \bfd \bff \bfo \bfr

11: Allreduce (max) /\ast Get the highest ratio \=Y/\=Yc from all the processes \ast /

12: \gamma =
\sqrt{}

1
max /\ast Compute the load scale factor \ast /

13: \bff \bfo \bfr \bfa \bfl \bfl node i \in \scrN 0 \bfd \bfo

14: vni = k\langle c\gamma
2 \=Yi
\=Yci

 - 1\rangle +
15: \bfe \bfn \bfd \bff \bfo \bfr

16: Gather (vn) /\ast Gather vn at nodes of the front \ast /
17: extendVelocity ()

18: Scatter (vn) /\ast Scatter vn all over the processes \ast /

Finally, the front velocity vn for every node in \scrN 0 is obtained through [30]

vn = k

\Biggl\langle
c\gamma 2 \=Y
\=Yc
 - 1

\Biggr\rangle
+

with k =
vlim
c - 1

,(2.20)

where vlim is the maximum growth the front can experience for a time step. In order
to guarantee the numerical stability of the staggered scheme, a value vlim = \alpha nh (cf.
(2.5)) is used in this paper, following [30]. The parameter c influences the spread of
the front movement to nodes with lower values for the ratio \=Y / \=Yc. For c \rightarrow 1, only
the node with the highest value \=Y / \=Yc undergoes a front advance. On the other hand,
for higher values of c, nonzero front movement is found in more nodes.

3. Parallel version of the TLS method. This section deals with the modifi-
cations to the sequential algorithm presented above that are needed to parallelize it.
This parallelization consists of concurrent tasks or processes being executed on dis-
tinct processors, in which each task encapsulates a copy of the sequential framework.
Tasks are not completely independent; as a result, they need to interact by exchanging
data (i.e., sending and receiving data) or messages. For the communication between
processors, the message passing interface (MPI) [19] communication protocol is used.

3.1. DD. The DD strategy described by Lingen et al. [14] is used in this work.
In this strategy, the problem is divided into subproblems that are solved almost inde-
pendently. Therefore, the original finite element mesh is first partitioned into nonover-
lapping groups of elements, each one corresponding to one subdomain as exemplified
in Figure 4. A task is defined for each subdomain. Both tasks and subdomains are
identified by an integer number called rank that ranges from 1 to np. The np subdo-
mains are then optionally extended with overlapping regions by assigning extra nodes
(and consequently elements) from neighboring subdomains.

The original nodes and elements on one subdomain are called internal nodes and
elements, whereas the additional ones are called overlapping nodes and elements (see
Figure 4). Observe that some nodes and elements on the overlapping region are also

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C397

Fig. 4. An original finite element mesh decomposed into two subdomains. The dashed box on
the right indicates the mesh overlapping option.

internal quantities; they are referred to as send nodes and elements. The counter-
parts of send nodes and elements are named receive nodes and elements. Although
overlapping regions are not necessary in the DD strategy [21], it has been shown that
this overlap can improve the convergence rate of parallel iterative algorithms [6].

Nodes and elements are indexed locally. However, the exchange of messages
among subdomains is based on unique global indices (IDs), which are assigned during
the partitioning of the original mesh [13, 21].

3.2. Allreduce, Gather, and Scatter routines. Modifications to achieve
a desirable parallelism for the level set update and front evolution analysis phases
require communication among tasks. Unlike the equilibrium solution phase, where the
majority of communications are point-to-point (i.e., send and receive communication
routines) between neighboring subdomains, collective communication routines in the
sense that they involve participation of all subdomains or a group of them are proposed
for the level set update and front evolution analysis phases. The main idea behind
setting up these communication routines is to be minimally intrusive to the operations
in Algorithms 2.4, 2.6, and 2.7.

Three general collective routines are used: Allreduce, Gather, and Scatter.3

Allreduce is an all-to-all collective routine that is used to compute the maximum
value of a quantity from all processes and distributes the result back, as schematically
illustrated in Figure 5. Gather and Scatter are, respectively, designed to collect
and spread messages involving a single receiving or originating process named the
root. Gather is an all-to-one (or a ``some-to-one"") collective function in which each
process (root process included) sends the contents of their send buffer; the root process
receives the messages and stores them in rank order. Scatter , on the other hand, is
a one-to-all (or a ``one-to-some"") collective routine used by the root to send a message,
possibly with different sizes, to all processes or a group of them.

Note that Gather and Scatter are well suited for having operations executed
by the root that are mostly sequential in nature and/or have the necessity of using
global solution strategies. Depending on the nature of the operation executed by the
root, all processes or a subset of processes participate in the Gather and Scatter
routines, as illustrated in Figure 6. In all algorithms, operations that are positioned
in between a Gather-Scatter pair are only executed by the root, and the inputs
and outputs necessary for this operation are exchanged between the root and other
processes by the Gather and Scatter routines.

3They have similar functionality as MPI Allreduce, MPI Gather, and MPI Scatter functions
found in MPI. However, Allreduce, Gather , and Scatter might operate on nondefault MPI data
types. Moreover, Gather and Scatter might involve only a small group of processes.

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C398 L. A. T. MOROR\'O AND F. P. VAN DER MEER

rank 1

rank 1

rank 2

rank 2

rank 3

rank 3

rank 4

rank 4

max

1

8888

8 2 0

Fig. 5. The collective routine Allreduce is used to compute the global maximum value of a
quantity from all the local values \{ 1, 8, 2, 0\} allocated on different tasks and distribute the result back
to all the tasks. Arrows and colored blocks indicate, respectively, the data flow and content.

rank 1

rank 1

rank 1

rank 1

rank 1

rank 1

rank 1

rank 1

rank 2

rank 2

rank 2

rank 2

rank 3

rank 3

rank 4

rank 4

rank 4

rank 4

operation1 operation2

GatherGather

ScatterScatter

Fig. 6. The root executes functions operation1 and operation2 along with a Gather-
Scatter execution block. Rank 1 is considered as the root process. In this illustration, all processes
contribute to both communications for operation1, whereas rank 3 is the only process that does
not participate in the communication routines for operation2. Arrows and colored blocks indicate,
respectively, the data flow and content.

The two fast marching algorithms used for the reinitialization of the level set field
\phi (i.e., the reinitializeLS function in Algorithm 2.4) and for the extension of
front velocity vn (i.e., the extendVelocity functions in Algorithms 2.6 and 2.7) are
performed in combination with the Gather and Scatter routines, mainly because
they use a global sorting of the nodes based on their level set values for determining
the order in which the \phi and vn are updated [29].

Furthermore, Gather and Scatter routines are used for the solution of (2.13)
for the averaged quantities \=Y , \=Yc, and \=\phi (i.e., the solver functions in Algorithms 2.4,
2.6, and 2.7). When solving (2.13) concurrently, the imposed constraints (i.e., \=Y , \=Yc,
and \=\phi are constant in \phi direction and \=\phi also in s direction) for these averaged quantities
will not be satisfied in a global sense. Note that these quantities are only computed
on the damaged domain \Omega d. In many cases, not all subdomains will contain damage,
which is why some-to-one and one-to-some versions of the Gather and Scatter
routines are relevant.

For the execution of these general Gather and Scatter communication routines,
a data structure management, slightly different from what is already used for the
parallel iterative solver, is adopted in which the root has information on the original
mesh and each subdomain keeps an operator R to extract elements from a root vector
as ai = Ria, where ai is a vector containing the elements from a root vector a
associated with the ith subdomain. The root also keeps a collection of operators

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C399

Qi associated with each subdomain for assembly of root vectors as a =
\sum np

i=1 Q
T
i ai.

Note that np does not necessarily include all processes. The operators R and Q
are nonsquare Boolean matrices and have similar structures as the right and left
restriction operators defined in the parallel iterative solver proposed in [14].

3.3. Level set update. The additional modifications related to the level set up-
date phase are addressed following the order of the operations shown in Algorithm 2.4.
Firstly, updateLevelSet (see Algorithm 2.1) is executed. Evaluation of the time
increment size with (2.5) needs the largest value of velocity vn over the whole mesh.
After executing the first loop in parallel, the function Allreduce is therefore called,
as shown in Algorithm 2.1. Allreduce computes the maximum value of max\{ vn\}
from all tasks and distributes the result back to all of them. For those subdomains
without damage front, their contributions to this operation are null.

Next, the fast marching algorithm for reinitialization of \phi is executed by the root
only. The reinitializeLS function is therefore sandwiched between a Gather-
Scatter pair, where the root first receives the \phi updated by updateLevelSet
from each process and sends back the reinitialized values. All processes are involved,
similar to operation1 in Figure 6.

After the reinitialization, testInitiation is called in order to concurrently
perform the nucleation check using Allreduce to compute the global maximum
ratio Y/Y 0

c . For this particular operation, Allreduce is designed such that it also
returns the corresponding coordinates xnucl related to the maximum value because
makeNucleus needs xnucl in all processes to update \phi concurrently.

Finally, the averaged quantity \=\phi is computed by the root. Again, the function
solver is positioned in between the Gather-Scatter pair. The matrices and right-
hand side vector necessary for solving (2.13) for \=\phi are concurrently partially assembled
but only by processes belonging to \scrP d (the set of processes that possess any damage
front). The root process gathers these partial quantities from the processes in \scrP d by
means of a Gather routine in order to assemble the global system of equations. Once
the solution for \=\phi is obtained, the root sends it back to the same set of processes
through a Scatter routine.

Unlike the Gather routine used in the reinitialization operation in which a one-
way communication is performed, i.e., the data flows from senders to the root with
nothing going back in return, the Gather routine considered in the assembly pro-
cedure of (2.13) encompasses three stages of data communication. First, the root
queries processes that have a damage front (i.e., processes that form the set \scrP d) for
global IDs of the nodes belonging to the set of elements completely or partially inside
the damaged domain \Omega d. Once the root receives these nodal IDs, the root numbers
DOFs at these nodes and sends them back along with the size of the final system of
equations to the processes belonging to \scrP d in rank order. Then, each process makes
use of this information to assemble its own matrix and right-hand side vector and
sends them back to the root. The root then assembles the final system of equations
by summing these contributions, as depicted in Figure 7.

For the sake of consistency and efficiency in terms of message communication,
two points of extra attention exist in the aforementioned assembly procedure. First,
to avoid duplicated contributions from the elements in the overlapping region (see
Figure 8), receive elements are excluded from the assembly procedure. Second, due
to the sparse structure of the system of equations, there may be many zero entries
which can unnecessarily overload these Gather and Scatter calls. To make matters
worse, the expanded system of equations assembled on a single subdomain may have

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C400 L. A. T. MOROR\'O AND F. P. VAN DER MEER

Fig. 7. Assembly of the global matrix, belonging to \scrP d, used by the root to solve the final system
of equations. All the small matrices, each belonging to a single process, have the same indexing as
the global n\times n matrix.

Fig. 8. The node n is shared by two subdomains and can automatically be identified when the
iso-lc crosses both subdomains. Dashed lines represent the part of the iso-lc that belongs to the
neighboring subdomain.

just a few nonzero elements. Therefore, a sparse data storage structure is necessary.
For this purpose, a compressed row storage format is adopted [2, 10], which stores
2nnz+n+1 elements instead of n2 for an n\times n matrix with nnz nonzero entries. Note
that each quantity assembled concurrently by a single process belonging to \scrP d uses
the same global indexing from the root. This design allows for efficient summation of
the global sparse matrix in the root process from a number of sparse matrices from
the other processes.

3.4. Equilibrium solution. For solving the linear system of equations from the
equilibrium problem, the parallel iterative generalized minimum residual (GMRES)
solver proposed by Lingen et al. [14] is used. This solver is equipped with a two-
level preconditioner that consists of a restricted additive Schwarz preconditioner that
acts on the level of subdomains and an algebraic coarse grid preconditioner that
operates on the global level. The restricted addictive Schwartz preconditioner is
based on an incomplete Cholesky decomposition, while the coarse grid preconditioner
is constructed in terms of the rigid body modes of the subdomains.

The interaction communication associated to this solver is mostly one-to-one, i.e.,
involving only the shared region between adjacent subdomains, except when global
reduction operations such as a global sum necessary for computing a scalar product.
The messages involved in this interaction consist of a vector with a given length and
a data type (e.g., integer or double). The length of this vector is usually proportional
to the number of DOFs attached to the nodes (i.e., send and receive nodes) on the
shared regions.

3.4.1. Parallel enrichment scheme. It is important to recall that as the iso-
lc evolves, DOFs are added to and/or removed from the problem, which changes the

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C401

dimensions of stiffness matrices and force vectors. If one overlapping node is enriched
or unenriched on a subdomain, its counterparts, i.e., the nodes with the same global
ID on different subdomains, also have to be enriched or unenriched accordingly. This
is necessary since the messages exchanged by the routines of the solver along the
boundaries of neighboring subdomains need to be equal in size.

Hence, after performing its own enrichment procedure, each process has to ex-
change data with its neighbors about the enrichment status of its own overlapping
nodes. Note that this communication is only necessary when a crack is propagating
across subdomain boundaries. In this communication, the message is a vector with
entries of a special data type, which encodes three types of information (or a trip-
let): the global ID of an overlapping node, its enrichment flag (whether or not it is
enriched), and element support (positive and negative lists of global element IDs).

The send nodes control this process because they are interior nodes and, hence,
always have sufficient information to decide whether the node should be enriched
and because every node in the overlapping region is always a send node in no more
and no less than one subdomain. Thus, when DOFs attached to one send node
are updated, receive nodes on the neighboring subdomains will follow, as shown in
Figure 8. Note that this is only possible as long as the continuity of \phi is guaranteed
across the boundaries of subdomains, which ensures that all subdomains involved in
this communication process share the same geometric location of the iso-lc on their
overlapping regions. Consequently, these subdomains are able to determine the exact
length of the message for both send and receive packets of data.

The parallel enrichment scheme involves two stages. Firstly, each process p exe-
cutes the function initEnrichment (see Algorithms 2.5 and 3.1) for all its nodes
with level set value \phi > lc, except for those that are receive nodes. During the execu-
tion of initEnrichment, the send and receive nodes are collected, and their triplets
(i.e., global ID, enrichment flag, and element support) are stored in two special data
structures sendBuffer and recvBuffer, respectively. Both sendBuffer and recvBuffer store
the exact amount of data for each neighbor of process p. At this point, the triplet of
each node that is stored in recvBuffer only contains the global node IDs, whereas the
triplet of each node that is stored in sendBuffer may be complete. If a send node is
unenriched, the element support associated with this node is not stored, and hence,
the enrichment flag in the triplet related to this node becomes false.

Secondly, the exchange of information between processes is handled. The proce-
dure for sending and receiving sendBuffer and recvBuffer on one process p is executed
only if send and/or receive nodes have been collected. First, once data are stored in
recvBuffer, process p loops over all its neighbors i calling the function InitReceive,4

which initiates a nonblocking receive communication [19]. This function returns a han-
dle (or request recvreq) that can be used at a later time to check whether the message
has been received. Note that if p does not have messages to be received from one
specific neighbor i, the size of recvBuffer (i.e., recvBuffer[i] .size() \leq 0) is checked and
the call of InitReceive is then skipped. Because InitReceive does not block
the calling process, messages can be called in any order without risking ``deadlock""
issues. Next, as long as sendBuffer contains any data, the send procedure is executed
in a similar way to the receive one. After these two receive and send loops, the func-

4InitReceive and InitSend make use of nonblocking functions from MPI, such as MPI Irecv
and MPI Isend, as well as MPI Waitall (which is represented here as WaitAll) for the completion
of communication. A special MPI data type is also designed in order to deal with recvBuffer and
sendBuffer data structures.

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C402 L. A. T. MOROR\'O AND F. P. VAN DER MEER

Algorithm 3.1 The commEnrich algorithm for communication of enrichment.
\bfI \bfn \bfp \bfu \bft : the enrichment status of send nodes
\bfO \bfu \bft \bfp \bfu \bft : the enrichment update of receive nodes
1: \bfi \bff processor p has collected receive nodes \bft \bfh \bfe \bfn /\ast Receive data \ast /
2: \bff \bfo \bfr \bfa \bfl \bfl neighbor i of process p \bfd \bfo
3: \bfi \bff recvBuffer[i] .size() \leq 0 \bft \bfh \bfe \bfn
4: \bfc \bfo \bfn \bft \bfi \bfn \bfu \bfe /\ast Skip neighbors without message to be sent \ast /
5: \bfe \bfn \bfd \bfi \bff
6: InitReceive (recvBuffer[i], recvreq[i], i)
7: \bfe \bfn \bfd \bff \bfo \bfr
8: \bfe \bfn \bfd \bfi \bff
9: \bfi \bff processor p has collected send nodes \bft \bfh \bfe \bfn /\ast Send data \ast /

10: \bff \bfo \bfr \bfa \bfl \bfl neighbor i of process p \bfd \bfo
11: \bfi \bff sendBuffer[i] .size() \leq 0 \bft \bfh \bfe \bfn
12: \bfc \bfo \bfn \bft \bfi \bfn \bfu \bfe /\ast Skip neighbors without message to be received \ast /
13: \bfe \bfn \bfd \bfi \bff
14: InitSend (sendBuffer[i], sendreq[i], i)
15: \bfe \bfn \bfd \bff \bfo \bfr
16: \bfe \bfn \bfd \bfi \bff
17: \bfi \bff process p has collected receive nodes \bft \bfh \bfe \bfn /\ast End receive procedure \ast /
18: WaitAll (recvreq)
19: setLEnrich(recvBuffer) /\ast Update enrichment for receive nodes \ast /
20: \bfe \bfn \bfd \bfi \bff
21: \bfi \bff process p has collected send nodes \bft \bfh \bfe \bfn /\ast End send procedure \ast /
22: WaitAll (sendreq)
23: \bfe \bfn \bfd \bfi \bff

tions WaitAll are called in order to complete the multiple receive and send requests.
Finally, once p has received messages from all its neighbors, it updates the enrichment
status for receive nodes by means of the function setLEnrich.

Note that InitReceive is called as early as possible to increase the chance that
a matching call InitSend by another process can be completed immediately. This
strategy helps to lower communication overhead because each message that cannot
be moved directly to a receiver buffer must be temporarily stored in a pending queue
[19]. This communication pattern is similar to what was proposed in [21] to deal with
enriched nodes in an extended finite element context for hydraulic fracturing in elastic
materials.

3.4.2. Mapping operators. Regarding the SPR technique for transferring his-
tory, it is chosen to let each subdomain deal with its own execution of routine
initSPRHistory, even though this means that incomplete patches are used for
nodes at boundaries of subdomains. In order to be more consistent, an extra commu-
nication strategy would be necessary for those patches to be completely assembled.
However, this will not have a significant effect on the global response.

Another option would be the inverse distance weighted interpolation scheme in
which all the transferring of history takes place locally on the element level without
iteration with its vicinity. However, it was shown in [18] that the SPR technique is
more suitable, especially for coarse meshes.

3.5. Front evolution. The modifications of the front evolution analysis phase
follow those introduced for the parallel version of level set update phase. Two
Gather-Scatter execution blocks are introduced, as shown in Algorithm 2.6. For
the solution of (2.13) for the averaged forces \=Y and \=Yc, the same strategy is adopted
as already discussed for \=\phi . For the fast marching algorithm, extendVelocity, the
strategy is the same as for the reinitialization of the level set field.

3.6. Secant unloading scheme. The main difference between the two loading
schemes considered in this work is found in the front evolution phase, as outlined in
subsection 2.4. To parallelize the scheme with secant unloading (see Algorithm 2.7),

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C403

one additional Allreduce call is introduced in order to compute the maximum value
of the load scale factor, which is needed for the nucleation check by all subdomains,
as shown in Algorithm 2.4.

4. Results and discussion. The performance of the parallel versions of the
TLS model is investigated with numerical examples in this section. The models have
been developed within the parallel open source Jem/Jive toolkit [10], which provides
graph-based partitioning algorithms for decomposition of the original mesh [21] and
the parallel GMRES solver [13]. The simulations have been run on the numerical
mechanics cluster HPC27, which is a regular high performance computing master-
slave system at Delft University of Technology. Each node is equipped with two Intel
Xeon E5-2630 version 4 processors, having 10 cores each, and 128 GB memory.

For all numerical examples, unstructured meshes of linear triangles generated
with Gmsh [8] are considered. For nucleation, the size of a new damage nucleus \phi 0 is
about the effective element size h. Regarding the stabilization parameter, two values
of \kappa are used: \kappa = 1 for \=Y ((2.13)) and \kappa = 1 \cdot 104 for \=\phi . All presented results are
obtained under plane strain assumptions.

4.1. Doubly notched square plate (DNSP). As a first example, the response
of a DNSP [16] is simulated. The material is modeled as elastic, allowing the use of
the secant unloading scheme. To investigate the scalability of the parallel approach,
the same analysis is performed with different numbers of subdomains, each time using
as many cores as there are subdomains. For each number of subdomains, the problem
is run three times, and the average runtime is computed.

Boundary conditions and the geometry of the specimen are shown in Figure 9.
Young's modulus, Poisson's ratio, fracture energy, and tensile strength are, respec-
tively, E = 7000MPa, \nu = 0.3, Gc = 40N/mm, and ft = 79MPa. The critical length
lc is equal to 0.8mm. This example is performed with c = 2, \alpha n = 0.5, \=\phi init = 0,
and \=\phi max = lc/3. A region around the notches with refined mesh is defined, where
the effective element size h = 0.1mm. Away from this region, the element size is
0.5mm, leading to a mesh of 151370 elements and 76136 nodes, i.e., 152272 DOFs.
The nucleation check is only performed on elements in the fine mesh region.

Before the number of subdomains is varied, the influence of using an overlapping
region on the runtime is investigated. The analysis with 20 subdomains is performed
with overlap region ranging from zero to six elements wide. Table 1 shows the total
runtime for different layers of elements in the overlapping region. It is found that an
overlapping region with one layer of elements is optimal for this example.

The load-displacement curve for a reference solution, obtained without parallel-
ism, is compared with the result of using 20 subdomains in Figure 10. Even in the

40

8

1

0.5

F

x

y

Fig. 9. DNSP: boundary condition and geometry (dimensions in mm).

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C404 L. A. T. MOROR\'O AND F. P. VAN DER MEER

Table 1
Total runtime for different sizes of the overlap region.

\bfO \bfv \bfe \bfr \bfl \bfa \bfp \bfl \bfa \bfy \bfe \bfr \bfs \bfT \bfi \bfm \bfe [s]

0 595.21
1 526.68
2 555.31
4 584.70
6 628.79

0 0.2 0.4 0.6 0.80

1

2

3

4

Displacement [mm]

Lo
ad

[k
N

]

Monolithic
20 subdomains

Fig. 10. DNSP: load-displacement curve (right) and final crack distribution in the mesh parti-
tioned into six subdomains (left).

0 5 10 15 200

0.5

1

1.5

2

Subdomains [-]

T
im

e
[h

]

Level set update
Equilibrium sol.

Front mov.
Total

0 5 10 15 200

5

10

15

20

Subdomains [-]

Sp
ee

d-
up

[-]

Level set update
Equilibrium sol.

Front mov.
Total
Linear

Fig. 11. DNSP: wall clock time (left) and speedup (right) graphs.

oscillatory postpeak part, the results with 20 cores are exactly the same as those from
a single core. By using 20 cores, the parallel framework accelerates the sequential
approach by a factor of 13.4 without loss of accuracy. Figure 10 shows for the case
of six subdomains that the continuity of the level set field is ensured even when the
crack crosses the subdomain boundaries.

Figure 11 shows the total runtime as well as the total time spent for each analysis
phase (level set update, equilibrium solution, and front evolution) as a function of
the number of subdomains. As expected, the equilibrium solution phase is the most
time consuming. The total time spent on this phase scales very well as the number
of subdomains increases with close to the optimum of linear scaling.

Unlike the equilibrium solution phase, the level set update and front evolution
phases are barely accelerated since their main operations rely on collective commu-
nication patterns, yielding a low level of parallelism. Going from one to four sub-
domains, a speedup of about a factor of two is obtained, but further increasing the
number of subdomains does not lead to significant changes in the total time needed
for these phases. However, the total time needed for these phases without parallelism
is much less than for the equilibrium solution phase. Therefore, the overall scaling is
still very favorable. Nevertheless, the fact that part of the framework is not scaling
optimally means that the scaling in total runtime deviates increasingly from optimal
linear scaling.

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C405

One possible option to achieve better scaling for the level-set-related operations
in the level set update and front evolution phases would be to use the weak form,
and its discretization, to solve the reinitialization and velocity extension problems
following Adams, Giani, and Coombs [1] and Dekker et al. [5]. In this approach, we
have systems of equations for both problems which can also be solved by the parallel
iterative solver. Matrices and right-hand side vectors have assembly procedures similar
to standard finite elements. Thus, we could have a better parallelism level, i.e., a more
one-to-one communication strategy, instead of a global-like solution strategy, which
involves global reduction communication patterns as presented.

4.2. Single-notched shear test (SNST). In the second example, the response
of a single-edge notched plate considering plasticity is simulated. Once again, the
scalability and accuracy of the parallel framework are assessed by means of load-
displacement and speedup curves considering different numbers of subdomains and
cores for the same analysis.

Figure 12 shows the boundary conditions and geometry of the example. A
horizontal displacement is applied to the top half of the left edge. The material
is modeled with the pressure-dependent plasticity model for polymers by Melro et
al. [15] as revised by van der Meer [28]. This plasticity model makes use of a
paraboloidal yield surface that takes into account different compressive and tensile
yield stresses. Young's modulus, Poisson's ratio, and fracture energy are, respec-
tively, E = 3760MPa, \nu = 0.3, and Gc = 0.9N/mm [15, 28]. The other properties of
the material, such as hardening curves, plastic Poisson ratio, and the ultimate yield
stress values for the nucleation check, are the same as in [28]. The critical length lc is
equal to 2mm. This example is performed with \alpha n = 0.5, \=\phi init = 0, and \=\phi max = lc/3.
The whole geometry is meshed with h = 0.4mm, leading to 157600 elements and
79419 nodes or 158838 DOFs. The nucleation check is only performed on a region
near the notch tip. The viscous parameter against crack growth and displacement
rate are, respectively, \eta = 5 smm - 1 and \.u = \Delta u0/\Delta t0 = 0.05mms - 1.

Figure 13 depicts the comparison between the reference solution obtained with
the sequential framework and the result of using 20 subdomains. Again, there is
no loss of accuracy in the sense that both responses are in excellent agreement. The
level set continuity across the subdomain boundaries is also preserved, as illustrated in
Figure 13 for the case of 20 subdomains. With 20 subdomains, the parallel framework
accelerates the sequential approach by a factor of 13.2, as shown in Figure 14.

The total runtime, as well as the total time spent for each analysis phase, and their
corresponding speedups are given in Figure 14. The same trends presented for the
previous example with the secant unloading scheme are also observed for this example

100

96

51

2

u̇

x

y

Fig. 12. SNST: boundary condition and geometry (dimensions in mm).

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C406 L. A. T. MOROR\'O AND F. P. VAN DER MEER

0 0.5 1 1.5 2 2.50

0.5

1

1.5

Displacement [mm]

Lo
ad

[k
N

]

Monolithic
20 subdomains

Fig. 13. SNST: load-displacement curve (right) and final crack distribution in the mesh parti-
tioned into its 20 subdomains (left). Shading indicates the subdivision into its 20 subdomains.

0 5 10 15 200

50

100

150

200

Subdomains [-]

T
im

e
[h

]

Level set update
Equilibrium sol.

Front mov.
Total

0 5 10 15 200

5

10

15

20

Subdomains [-]

Sp
ee

d-
up

[-]

Level set update
Equilibrium sol.

Front mov.
Total
Linear

Fig. 14. SNST: wall clock time (left) and speedup (right) graphs.

0 5 10 15 20

70

80

90

100

Subdomains [-]

Pe
rc

en
ta

ge
[%

] DNSP
SNST

Fig. 15. Percentage of the equilibrium solution phase to the total runtime for the first two
examples.

with plasticity. The equilibrium solution phase is the most time consuming and
presents the best scalability among the three analysis phases, although the scalability
of the equilibrium solution phase is not as good as in the previous example. The level
set update and front evolution phases, again, do not scale as well as the equilibrium
solution phase, but for this example they have an even smaller contribution to the
total runtime.

Figure 15 shows the percentage of the equilibrium solution phase to the total run-
time for the two cases discussed so far. Despite having slightly different mesh sizes, it
is noteworthy that the equilibrium solution phase is even more dominant for the plas-
ticity case, reinforcing the importance of a good parallel strategy for that particular
phase. However, when comparing speedup of the equilibrium solution phase to that
of the simulation without plasticity (Figure 14 versus Figure 11), it can be observed
that the additional nonlinearity reduces the scalability of the parallel iterative solver.
As a result, overall speedups are similar for the two cases.

4.3. Three-point bend end-notched flexure (3ENF) test configuration.
The final example is chosen as a case where computation time without parallel

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C407

approach would become prohibitively long. The case is inspired by experimental
observations of cusp crack patterns taking place in resin-rich regions of composite
materials in mode II loading conditions [31, 4]. This process begins with an array
of inclined cracks perpendicular to the maximum principal stress, which eventually
merge to form a single crack on a higher level of observation. Therefore, this example
requires the proposed parallel framework to deal with several damage nuclei arising
on various subdomains that grow and join up in merging and branching events. More-
over, in realistic simulation of this process, nucleation and growth of the crack should
take place in a medium with hardening plasticity. The 3ENF setup is adopted (see
Figure 16). Because the cusp formation takes place in a narrow area close to the
notch tip, a very fine discretization is needed near in this area, which gives rise to a
large system of equations that would be prohibitive to be solved with a direct solver
or with a single computer core.

The geometry consists of two stiff arms and one weak core as schematically il-
lustrated in Figure 16. The round cross-section is inspired by the rail shear test in
[23]. Note that the top arm is also supported in y direction in order to avoid inter-
penetration without having to model contact between the arms. The two faces are
considered as linear elastic materials whose properties are E = 200GPa, \nu = 0.33,
Gc = 9N/mm, and ft = 960MPa. The core is modeled with the same plasticity
model and material properties mentioned in the second example.

When the crack reaches the interface between the core and faces, the crack cannot
grow in pure mode I, and the constitutive law in (2.6) leads to stress transfer across
the crack. As a result, an artificial hardening is found, as reported by van der Meer
and Sluys [30]. In order to circumvent this undesirable behavior, the interphase
constitutive law introduced in [30] is adopted in a band next to the material interface
as indicated in Figure 16. This constitutive law only takes into account stiffness
recovery on the strain component normal to the plane that defines the interface,
which, in this case, is the strain component in y direction.

The region where the nucleation check is performed is indicated in Figure 16.
The smallest element size h is 0.1mm for the nucleation check region. For the other
region of the core and faces, the mesh has an element size of 0.15mm and 0.45mm,
respectively. The mesh therefore has 229919 elements, 115527 nodes, and, initially,
231054 DOFs. The critical length lc is equal to 0.6mm. The distance between a new
damage nucleus and existing damage front is set to be \phi spacing = 4mm. The viscous
parameter against crack growth and displacement rate are, respectively, \eta = 5 smm - 1

and \.u = \Delta u0/\Delta t0 = 0.01mms - 1. This simulation is performed with \alpha n = 0.2,
\=\phi init = 0.1, and \=\phi max = 0.36.

Figure 17 shows the load-displacement curves for different numbers of subdo-
mains. The original mesh is divided into 20, 30, and 40 subdomains. The whole
analysis takes 74.35 h by using 40 subdomains, whereas the models subdivided into
30 and 20 take 86.54 h and 118.94 h, respectively. Observe that all solutions are in
excellent agreement.

12

12
4

23 1515 35

70

140

x

y

u̇

uy = 0

A

A
fine mesh region

core

arm

interphase/core

Sec. A-A

5.4

8.5

2.64

Fig. 16. 3ENF: boundary condition and geometry (dimensions in mm).

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C408 L. A. T. MOROR\'O AND F. P. VAN DER MEER

0 0.2 0.4 0.6 0.80

5

10

15

20

25

Displacement [mm]

Lo
ad

[k
N

]

20 subdomains
30 subdomains
40 subdomains

Fig. 17. 3ENF: load-displacement curve.

0 0.2 0.4 0.6 0.80

5

10

15

20

25

(a)

(b)

(c) (d)

Displacement [mm]

Lo
ad

[k
N

]

(a)

(b)

(c)

(d)

Fig. 18. 3ENF: final crack distribution, load-displacement graph, and crack evolution (close-
up) located ahead of the notch tip considering the mesh partitioned into 30 subdomains. The colored
set of elements represents the 30 subdomains.

Figure 18 presents the damage distribution for the model subdivided into 30
subdomains. Observe that damage initiation takes place in different subdomains and
some initial fronts evolve crossing multiple subdomains where the compatibility of \phi
is guaranteed on shared regions.

5. Conclusions. In this paper, a parallel framework is proposed for the TLS
method. Two TLS models have been adopted: one considering the secant unloading
loading scheme [30] and the other one for ductile fractures [18]. The parallel iterative
solver by Lingen et al. [14] equipped with a DD scheme is used for the equilibrium
solution stage. Profiting from the adopted DD scheme, collective communication
strategies have been introduced in order to deal with the level set information and the
computation of averaged quantities. Moreover, a special data type and communication
pattern have been developed to handle enriched nodes belonging to shared regions in
the mesh.

In three examples, a successful parallel implementation has been shown. The
quality of the results is not influenced by the number of subdomains. The results
show that it is possible to apply the parallel framework to different variations of the
TLS to benefit from parallel computing power.

Near-ideal speedups are obtained for the equilibrium solution phase, which is
the most time demanding part of the TLS in terms of computational cost. For the
level set update and front evolution phases, speedups remained limited. However,

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PARALLEL COMPUTING WITH THICK LEVEL SET METHOD C409

because these phases are less demanding, they did not become a real bottleneck for
the investigated number of cores. Adding plasticity makes the equilibrium solution
phase more dominant, but the added nonlinearity also reduces the speedup of that
particular phase such that overall speedups with and without plasticity are compara-
ble. Altogether, substantial speedups have been achieved using a moderate amount
of cores which decreased the total computational time significantly. This is a neces-
sary improvement in order to use the TLS models for fracture analysis in large-scale
problems, as exemplified with the simulation of shear cusps at the notch tip in mode
II loading conditions.

Data availability. The data used to generate the graphs and the mesh parti-
tions of the first two examples in this article are available at the 4TU.ResearchData
repository through https://doi.org/10.4121/14869314.

REFERENCES

[1] T. Adams, S. Giani, and W. M. Coombs, A high-order elliptic PDE based level set reini-
tialisation method using a discontinuous Galerkin discretisation, J. Comput. Phys., 379
(2019), pp. 373--391.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, Society for Industrial and Applied Math-
ematics, Philadelphia, 1994.

[3] P. E. Bernard, N. Mo\"es, and N. Chevaugeon, Damage growth modeling using the thick level
set (TLS) approach: Efficient discretization for quasi-static loadings, Comput. Methods
Appl. Mech. Engrg., 233-236 (2012), pp. 11--27.

[4] A. Biel and U. Stigh, Strength and toughness in shear of constrained layers, Int. J. Solids
Struct., 138 (2018), pp. 50--63.

[5] R. Dekker, F. P. van der Meer, J. Maljaars, and L. J. Sluys, A level set model for
stress-dependent corrosion pit propagation, Int. J. Numer. Methods Eng., 122 (2021), pp.
2057--2074.

[6] V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition Methods,
Society for Industrial and Applied Mathematics, Philadelphia, 2015.

[7] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its
parallel solution algorithm, Int. J. Numer. Methods Eng., 32 (1991), pp. 1205--1227.

[8] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in
pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79 (2009), pp. 1309--1331.

[9] P. Gosselet and C. Rey, Non-overlapping domain decomposition methods in structural me-
chanics, Arch. Comput. Methods Eng., 13 (2006), pp. 515--572.

[10] Jem-Jive, Software Development Kit for Advanced Numerical Simulations, https://software.
dynaflow.com/jive/. Accessed November 16, 2021.

[11] M. Latifi, F. P. van der Meer, and L. J. Sluys, An interface thick level set model for
simulating delamination in composites, Int. J. Numer. Methods Eng., 111 (2017), pp.
303--324.

[12] B. L\'e, N. Mo\"es, and G. Legrain, Coupling damage and cohesive zone models with the thick
level set approach to fracture, Eng. Fract. Mech., 193 (2018), pp. 214--247.

[13] F. J. Lingen, Design of an Object Oriented Finite Element Package for Parallel Computers,
Ph.D. thesis, Delft University of Technology, 2000.

[14] F. J. Lingen, P. G. Bonnier, R. B. J. Brinkgreve, M. B. V. Gijzen, and C. Vuik, A par-
allel linear solver exploiting the physical properties of the underlying mechanical problem,
Comput. Geosci., 18 (2014), pp. 913--926.

[15] A. R. Melro, P. P. Camanho, F. M. A. Pires, and S. T. Pinho, Micromechanical analysis
of polymer composites reinforced by unidirectional fibres: Part I - constitutive modelling,
Int. J. Solids Struct., 50 (2013), pp. 1897--1905.

[16] N. Mo\"es, C. Stolz, P.-E. Bernard, and N. Chevaugeon, A level set based model for dam-
age growth: The thick level set approach, Int. J. Numer. Methods Eng., 86 (2011), pp.
358--380.

[17] K. Moreau, N. Mo\"es, D. Picart, and L. Stainier, Explicit dynamics with a non-local damage
model using the thick level set approach, Int. J. Numer. Methods Eng., 102 (2015), pp.
808--838.

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

https://doi.org/10.4121/14869314
https://software.dynaflow.com/jive/
https://software.dynaflow.com/jive/

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

C410 L. A. T. MOROR\'O AND F. P. VAN DER MEER

[18] L. A. T. Moror\'o and F. P. van der Meer, Combining the thick level set method with
plasticity, Eur. J. Mech. A Solids, 79 (2020), 103857.

[19] MPI Forum, MPI, Version 3.1, http://www.mpi-forum.org.
[20] E. A. S. Neto, D. Peri\'c, and D. R. J. Owen, Computational Methods for Plasticity: Theory

and Applications, 1st ed., John Wiley and Sons, West Sussex, United Kingdom, 2008.
[21] E. W. Remij, Fluid Driven and Mechanically Induced Fracture Propagation: Theory and Nu-

merical Simulations, Ph.D. thesis, Eindhoven University of Technology, 2017.
[22] I. B. C. M. Rocha, F. P. van der Meer, L. A. T. Moror\'o, and L. J. Sluys, Accelerating

crack growth simulations through adaptive model order reduction, Int. J. Numer. Methods
Eng., 121 (2020), pp. 2147--2173.

[23] C. E. Rogers, Investigating the Micromechanisms of Mode II Delamination in Composite
Laminates, Ph.D. thesis, Imperial College London, 2009.

[24] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and
Applied Mathematics, Philadelphia, 2003.

[25] A. Salzman, N. Mo\"es, and N. Chevaugeon, On use of the thick level set method in 3D
quasi-static crack simulation of quasi-brittle material, Int. J. Fract., 202 (2016), pp. 21--49.

[26] J. A. Sethian, Level Set Methods and Fast Marching Methods: Envolving Interfaces in Com-
putational Geometry, Fluid Mechanics, Computer Vision, and Material Science, 2nd ed.,
Cambridge University Press, Cambridge, United Kingdom, 1999.

[27] P. L. Tallec, Y. H. D. Roeck, and M. Vidrascu, Domain decomposition methods for
large linearly elliptic three-dimensional problems, J. Comput. Appl. Math., 34 (1991), pp.
93--117.

[28] F. P. van der Meer, Micromechanical validation of a mesomodel for plasticity in composites,
Eur. J. Mech. A Solids, 60 (2016), pp. 58--69.

[29] F. P. van der Meer, N. Mo\"es, and L. J. Sluys, A level set model for delamination --
Modeling crack growth without cohesive zone or stress singularity, Eng. Fract. Mech., 79
(2012), pp. 191--212.

[30] F. P. van der Meer and L. J. Sluys, The thick level set method: Sliding defomations and
damage initiation, Comput. Methods Appl. Mech. Engrg., 285 (2015), pp. 64--82.

[31] H. Wafai, A. Yudhanto, G. Lubineau, R. Yaldiz, and N. Verghese, An experimental
approach that assesses in-situ micro-scale damage mechanisms and fracture toughness
in thermoplastic laminates under out-of-plane loading, Compos. Struct., 207 (2019), pp.
546--559.

[32] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori er-
ror estimates. Part I: The recovery technique, Int. J. Numer. Methods Eng., 33 (1992),
pp. 1331--1364.

[33] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery (SPR) and adaptive
finite element refinement, Comput. Methods Appl. Mech. Engrg., 101 (1992), pp. 207--224.

D
ow

nl
oa

de
d

09
/0

1/
22

 to
 1

31
.1

80
.1

12
.1

94
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

http://www.mpi-forum.org

	Introduction
	The TLS method
	Level set update
	Equilibrium solution
	Front evolution
	Secant unloading scheme

	Parallel version of the TLS method
	DD
	Allreduce, Gather, and Scatter routines
	Level set update
	Equilibrium solution
	Parallel enrichment scheme
	Mapping operators

	Front evolution
	Secant unloading scheme

	Results and discussion
	Doubly notched square plate (DNSP)
	Single-notched shear test (SNST)
	Three-point bend end-notched flexure (3ENF) test configuration

	Conclusions
	References

