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SUMMARY

In the last fifty years, the space missions Voyager, Galileo, Cassini-Huygens and Juno ex-
plored the moons of the outer Solar System and revealed a wide spectrum of worlds.
While some of these worlds are barren, others are among the most geologically active
of the Solar System. The innermost Jovian moon, Io, showcases spectacular volcanic
activity; its three companions, Europa, Ganymede and Callisto, are likely ocean worlds
that harbour subsurface oceans beneath their icy crusts. Similarly, the biggest Saturnian
moon, Titan, is believed to have a subsurface ocean concealed beneath its icy surface
and dense atmosphere. Saturn’s collection of smaller icy bodies feature different levels
of activity, Enceladus being the most remarkable. Above its limb, water plumes rise more
than hundred kilometers spilling its internal ocean into Saturn’s E-ring. In Neptune, the
captured moon Triton orbits in a peculiar retrograde orbit; its barely cratered surface is
similar to that of other ocean worlds and shows signs of cryovolcanic activity. The spec-
trum of geological activity displayed by the moons of the outer Solar System is thought
to be mainly the consequence of tides.

If a moon is in a circular orbit co-planar to its equatorial plane, the planet —as seen
from the moon— remains frozen in the sky. Instead, if the moon is in an elongated
eccentric orbit, the planet dances. As the moon moves closer and further away from
the planet, its apparent size changes and its right ascension librates. This causes the
gravitational pull experienced by the moon to change in time, which give rise to ec-
centricity tides. Coherent gravitational interactions between moons —mean-motion
resonances— pump their orbital eccentricity and cause strong eccentricity tides. More-
over, if the moon’s orbital plane is inclined with respect to its equator, the planet’s decli-
nation also changes as the moon orbits, causing the so-called obliquity tides. As a result
of eccentricity and obliquity tides, the moons of the outer Solar System are periodically
deformed as they orbit their planet. Such deformation is not adiabatic: different dissi-
pative processes within the moon transform the tidal energy into heat, which warms up
the interior of the moon and drives its internal engine; a process know as tidal heating.

Traditionally, the study of tides in the moons of the outer Solar System has focused
on their solid layers —ice crusts and rocky mantles. When computing the moon’s tidal
response, the dynamic response of fluid layers has been mostly ignored. However, ocean
tides can play a key role in the evolution of planets and moons. Just as the Moon stirs the
Earth’s oceans and seas, tidal currents can be excited in the internal liquid layers of Solar
System satellites. Robert H. Tyler proposed that ocean tides can drive strong currents
and lead to intense energy dissipation in ocean worlds and in Io, which could have a
molten liquid ‘magma ocean’ beneath its lithosphere. Since then, several advances have
been made in the study of liquid tides; however, our understanding of it is still shallow.
In this thesis, we present new advances in the modelling of the tidal dynamics of moons

xi
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with fluid layers.

We start by considering the tidal dynamics of subsurface oceans. The investigations
of extraterrestrial ocean tides have relied on the equations Pierre-Simon Laplace used
to study the tides of Earth’s oceans, the so-called Laplace tidal equations. The solutions
of the Laplace tidal equations are given by two types of surface waves: surface gravity
waves —where gravity acts as the restoring force— and Rossby-Haurwitz waves —where
the Coriolis force is the restoring force. Ocean currents and tidal dissipation due to tidal
forcing are generally negligible unless the ocean resonates at the tidal frequency. Gravity-
wave resonances can be excited by eccentricity tides, however these resonances occur in
oceans much thinner than those predicted for icy moons. In contrast, strong Rossby-
Haurwitz waves can be excited in thick oceans by the obliquity tide. Rossby-Haurwitz
waves can produce tidal dissipation above that resulting from solid tides provided the
satellite has a high obliquity; as it is the case of the Neptunian moon Triton.

Previous studies of ocean tides in subsurface oceans have relied on the assumption
that the oceans are of constant thickness. However, oceans might be of variable thick-
ness. The most evident example is Enceladus. Gravity and topography data indicates
that Enceladus’ ocean is not of uniform thickness but varies from ∼ 30 km at the equator
to ∼ 50 km at the south pole. We investigate what are the effect of ocean thickness vari-
ations on the response of a subsurface ocean (Chapter 3). We show that the occurrence
of gravity waves resonances is controlled by the equatorial ocean thickness. Moreover,
we find that ocean thickness variation hinders the excitation of Rossby-Haurwitz waves.
This is even more relevant for Triton, as it has been suggested that obliquity ocean tides
might be the prevalent heating mechanism maintaining its subsurface ocean. Our re-
sults show that this only occurs if the moon’s ocean is of nearly constant thickness.

The Laplace tidal equations make use of the shallow water approximation, which is
valid if the ocean is thin with respect to the moon’s radius. This approximation greatly
simplifies the equations involved in computing the tidal response of an ocean; however,
this comes at the expense of filtering out internal waves. In Chapter 4, we study tidally
excited internal waves in Enceladan and Europan unstratified subsurface oceans. The
properties of these waves are notably different from surface waves; upon reflection, in-
stead of keeping their wavelength constant, the wavelength can change. Depending on
ocean geometry, this can lead to wave focusing and the formation of internal shear lay-
ers. We show that internal shear layers form in Europa’s and Enceladus’ oceans whose
strength (i.e., velocity gradient) depends on the ocean geometry. While currents of few
centimeters per second can develop in these internal boundary layers, the integrated
tidal dissipation due to inertial waves is small compared to the amount of radiogenic
heating for both moons.

In some circumstances both solid and liquid phases can coexist in the same layer of
the moon. When this is the case, neither the theory of solid tides nor that of liquid tides
alone applies; the complex dynamics of multiphase media should be considered. The
presence of a liquid affects how the solid deforms; additionally, the flow of liquid through
the solid skeleton (Darcian flow) opens a new avenue for energy dissipation. The inferred
low density of Enceladus’ core together with evidence of hydrothermal activity suggest
that the moon’s core consists of a porous solid matrix throughout which ocean water can
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circulate. Io’s ‘magma ocean’ is another example of two phases (rock and magma) in one
layer.

Tides in multiphase media have received very little attention. Nevertheless, recent
work on the topic has suggested that Darcian dissipation in Enceladus’ core is behind
Enceladus’ geological activity. This is particularly relevant, as it is still uncertain where
(ice, ocean or rocky core) and how the energy that powers the moon’s plumes and pre-
vents its internal ocean from freezing is produced. As discussed above, tides in an un-
stratified ocean are unlikely to account for the moon’s thermal output, and dissipation
in the ice shell can only rise to the observed values if the ice shell viscosity is very low. In
Chapter 5, we extend the theory of tides for solid viscoelastic self-gravitating bodies to
bodies with porous layers and apply it to Enceladus to assess whether tides in its porous
core can explain its thermal activity. We show that tides excite Darcian flow in the moon’s
core but that the ocean prevents high velocities from being attained, making viscous dis-
sipation in the rocky matrix the leading source of energy dissipation in the core. Tidal
dissipation in the core can only rise to values comparable to Cassini observations if the
core has a very low viscosity compared to that of silicates. Previous work has suggested
that this might be the case if Enceladus’ core resembles an unconsolidated rubble pile
core. We propose that a future Enceladan mission could test this hypothesis by measur-
ing the phase lags in the tidal-induced gravitational field and surface displacements.

While the main body of this thesis focuses on the moons of the Solar System, in the
last part (Chapter 6), we consider the role that tidal heating might have in exomoons.
With more than four thousands exoplanets discovered so far, it is not bold to assume
that some of them harbour exomoons. Their detection is fraught with technical chal-
lenges. Different detection methods have been proposed, some specifically targeting
tidally heated exomoons. Extreme tidal heating can increase a moon’s surface tempera-
ture, rendering it observable in the infrared. Additionally, extensive volcanism leaves a
fingerprint on the spectrum of the system that could be detected in transits.

To asses to which degree these two factors can make an exomoon observable, it is
necessary to consider its thermal and orbital evolution. We identify thermal equilibrium
states attained for moons of sizes ranging from Io- to Earth-sized with different orbits.
Large moons in high eccentricity, low-period orbits experience high levels of tidal dissi-
pation. An Earth-sized moon in Io’s orbit would see its surface temperature increased to
around 300 K —at the verge of the James Webb Space Telescope sensitivity for the closest
stars. However, such amount of tidal dissipation comes at the expense of quickly circu-
larizing the moon’s orbit. In an isolated moon-planet system, high eccentricity orbits
cannot be sustained for very long. Alternatively, in systems with multiple moons, mean
motion resonances —akin to those responsible for the eccentricity of the moons of the
outer Solar System— can sustain a high orbital eccentricity for a long time. We show
that the inner moon of a pair of Mars-sized exomoons in a mean-motion resonance can
present tidally boosted temperatures for millions of years before orbital migration re-
duces their activity. Furthermore, we show that the moon can remain tidally active for
billions of years and feature Io-like levels of volcanism, thus giving ample opportunity
for the formation of a secondary atmosphere that might be detected in transits.

In this thesis, new advances have been made on the modeling front; however, several
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questions remain open. In Chapter 7, we revise the assumptions behind the models we
use and underline how future space missions will inform modellers studying the tidal dy-
namics of moons with fluid layers. New missions to the outer planets like JUICE and Eu-
ropa Clipper will provide a wealth of new data that will help constraining the bathymetry
and composition of subsurface oceans, and thus allow to build more detailed ocean dy-
namics models than those used in this thesis. Furthermore, these missions might return
the first remote measurements of extraterrestrial ocean currents against which the out-
put of extraterrestrial ocean tidal models can be compared. We argue that a future Ence-
ladan mission will bring similar benefits and resolve the outstanding question about how
and where energy is dissipated within the moon. A dedicated Io mission would shed new
light into the workings of moons experiencing high amounts of tidal heating, and partic-
ularly help understanding the unexplored regime that lays in-between solid and liquid
tides. In the meantime, the James Webb Space Telescope (JWST) is on its way to L2. The
discovery of a super-Io by the JWST would add a new member to the family of tidally
active worlds, revealing what occurs in extreme instances of tidal heating, and bringing
new insight into the interior of gas giants and the architecture of gas giant systems. We
have good reason to believe that the future holds great promise for the topics explored
in this thesis.
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De afgelopen vijftig jaar hebben de ruimtemissies Voyager, Galileo, Cassini-Huygens en
Juno de manen van andere planeten in ons zonnestelsel verkend. Deze missies hebben
een grote verscheidenheid aan manen aangetroffen. Sommige zijn ruig en onherberg-
zaam en andere behoren tot de geologisch meest actieve lichamen van ons zonnestelsel.
De binnenste Joviaanse maan, Io, vertoont een spectaculaire vulkanische activiteit; de
drie andere Joviaanse manen, Europa, Ganymede en Callisto, zijn werelden die waar-
schijnlijk een ondergrondse oceaan herbergen onder de ijzige korst. Verder herbergt
de grootste Saturniaanse maan, Titan, ook een ondergrondse oceaan en heeft het een
dichte atmosfeer. De verzameling kleinere ijzige manen van Saturnus verschillen in hoe
actief deze zijn. Van deze kleinere manen is Enceladus de meest opmerkelijke. De wa-
terpluimen van Enceladus komen meer dan 100 kilometer boven het oppervlak en daar-
mee brengen ze water van de oceaan naar de E-ring van Saturnus. Binnen Neptunus zit
de gevangen maan Triton in een bijzondere retrograde baan. Het oppervlak van Triton
bevat nauwelijks kraters, lijkt op dat van andere oceaanwerelden en laat tekenen zien
van cryovulkanische activiteit. De grote verscheidenheid aan geologische activiteit van
de manen wordt verondersteld te zijn veroorzaakt door getijden.

Wanneer een maan in een circulaire baan zit die coplanair is met zijn equatoriale vlak
dan staat de planeet – gezien vanaf de maan – stil aan de hemel. Als de maan zich daar-
entegen in een langwerpige excentrische baan bevindt dan ‘danst’ de planeet. Wanneer
de maan dichterbij de planeet komt en vervolgens weer verder weg beweegt dan veran-
dert zijn ogenschijnlijke grootte en varieert zijn rechte klimming. Dit zorgt ervoor dat
de zwaartekrachtsaantrekking van de maan verandert met de tijd waardoor de excen-
triciteitgetijden ontstaan. Zwaartekrachtsinteracties tussen manen – baanresonanties –
verhogen de excentriciteit van de baan en kunnen zorgen voor sterke excentriciteitge-
tijden. Door getijden, veroorzaakt door de excentriciteit en door de schuine stand van
de as, zijn de buitenste manen van ons zonnestelsel periodisch vervormt wanneer ze
om hun planeet bewegen. Deze vervorming is niet adiabatisch: verschillende processen
binnen de maan zetten de getijdenenergie om in warmte, waardoor het binnenste van
de maan in temperatuur toeneemt en de ‘motor’ in het binnenste van de maan wordt
aangedreven; dit proces staat bekent als getijdenverhitting.

Traditioneel gezien heeft het onderzoek naar getijden van de buitenste manen in ons
zonnestelsel zich altijd beziggehouden met de vaste lagen – de ijzige korst en de rots-
achtige mantels – van deze manen. Bij het berekenen van de reactie van de maan op de
getijden wordt de dynamische reactie van de vloeibare lagen meestal niet meegenomen.
De oceaangetijden kunnen echter een belangrijke rol spelen in de evolutie van planeten
en manen. Op dezelfde manier als dat de Maan de oceanen en de zeeën van de Aarde
aanstuurt, kunnen getijdenstromingen aangewakkerd worden in de binnenste vloeibare
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lagen van manen in het zonnestelsel. Robert H. Tyler suggereerde dat oceaangetijden
sterke stromingen kunnen aandrijven en dat deze kunnen leiden tot intens energiever-
lies in oceaanplaneten en in Io, waarin zich een gesmolten vloeibare magmaoceaan zou
kunnen bevinden onder de lithosfeer. Vanaf dat moment zijn er verschillende vorderin-
gen gemaakt wat betreft het bestuderen van vloeibare getijden. Echter,ons begrip hier-
van is nog laag. In deze scriptie presenteren we nieuwe vorderingen in het modelleren
van de getijdendynamiek van manen met vloeibare lagen.

We beginnen deze scriptie met het beschouwen van de getijden dynamiek van we-
relden met ondergrondse oceanen. De onderzoeken van buitenaardse oceaangetijden
zijn gebouwd op de vergelijken die Pierre-Simon Laplace gebruikt heeft tijdens zijn on-
derzoek naar de getijden van de oceanen op Aarde. Dit zijn de Laplace vergelijkingen
voor getijden. De oplossingen van deze vergelijkingen kunnen beschreven worden door
twee soorten oppervlaktegolven: zwaartekrachtsgolven aan het oppervlak – hier werkt
de zwaartekracht als een terugwerkende kracht – en de Rossby-Haurwitz golven – waar
de Coriolis kracht herstellend werkt. Getijdendissipatie en oceaanstromingen veroor-
zaakt door de getijden zijn over het algemeen verwaarloosbaar klein, tenzij de oceaan re-
soneert met de frequentie van de getijden. Resonanties van zwaartekrachtsgolven kun-
nen aangedreven worden door de excentriciteitgetijden. Deze resonanties komen echter
alleen voor in oceaan die vele malen minder diep zijn dan de oceanen die we verwachten
te vinden in ijzige manen. Daarentegen kunnen sterke Rossby-Haurwitz golven veroor-
zaakt worden in diepere oceanen door getijden die veroorzaakt worden door de schuine
stand van de as van de maan. Rossby-Haurwitz golven kunnen meer getijdendissipatie
produceren dan getijden in vaste lagen wanneer het lichaam een hoge scheefstand heeft,
zoals het geval is bij de Neptuniaanse maan Triton.

Eerdere studies naar getijden in ondergrondse oceanen zijn afhankelijk van de aan-
name dat de oceanen een constante diepte hebben. Dit hoeft echter niet het geval te zijn.
Het meest duidelijke voorbeeld is de oceaan van Enceladus. Metingen van de zwaarte-
kracht en topografie laten zien dat de diepte van de oceaan van Enceladus niet constant
is, maar varieert van 30 km op de evenaar tot 50 km op de zuidpool. We onderzoe-
ken wat het effect is van een variabele oceaandiepte op de reactie van een ondergrondse
oceaan (Hoofdstuk 3). We laten zien dat het voorkomen van resonanties met de zwaar-
tekrachtsgolven bepaald wordt door de diepte van de oceaan op de evenaar. Daarnaast
vinden we dat variaties in de dikte van de oceaan het ontstaan van de Rossby-Haurwitz
golven kan verhinderen. Dit is relevant voor Triton, aangezien gesuggereerd wordt dat
de oceaangetijden door de scheefstand van de as als het dominante verhittingsmecha-
nisme geldt voor het in stand houden van de ondergrondse oceaan. Onze resultaten
laten zien dat dit alleen het geval is als de oceaan van de maan een nagenoeg constante
diepte heeft.

De getijdenvergelijkingen van Laplace maken gebruik van de ondiep water benade-
ring, die alleen geldig is als de oceaan ondiep is in vergelijking met de straal van de maan.
Deze benadering vereenvoudigt de vergelijkingen voor het berekenen van de getijden
binnen een oceaan enorm. Door deze benadering filteren we echter ook de interne gol-
ven eruit. In Hoofdstuk 4 bestuderen we interne golven veroorzaakt door getijden in
ongelaagde ondergrondse oceanen, met focus opEuropa en Enceladus. De eigenschap-
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pen van deze interne golven zijn aanzienlijk anders dan die van oppervlaktegolven; wan-
neer de interne golven reflecteren kan de golflengte veranderen, in plaats van dat deze
constant blijft. Afhankelijk van de geometrie van de oceaan kan dit leiden tot het fo-
cusseren van een golf en het formeren van interne afschuiflagen. We laten zien dat in-
terne afschuiflagen gevormd worden in de oceanen van Europa en Enceladus waarvan
de grootte van de kracht (i.e., de gradiënt van de snelheid) afhankelijk is van de geome-
trie van de oceaan. Ondanks dat stromingen van enkele centimeters per seconde zich
kunnen ontwikkelen in deze interne grenslagen is de totale hoeveelheid getijdendissi-
patie door interne golven klein in verhouding tot de hoeveelheid radiogene verhitting
voor beide manen.

In sommige gevallen kunnen zowel een vaste als een vloeibare fase naast elkaar be-
staan in dezelfde laag van een maan. Wanneer dit het geval is kunnen de theorieën voor
vaste en vloeibare getijden niet meer toegepast worden. De complexe dynamica van
meerfase media moet hiervoor beschouwd worden. De aanwezigheid van een vloeistof
beïnvloedt namelijk hoe de vaste laag deformeert. Daarbovenop komt dat het stromen
van de vloeistof door de vaster matrix (Darcische stroom) een extra manier is om ener-
gie te dissiperen. De lage dichtheid van de kern van Enceladus suggereert samen met het
bewijs voor hydrothermische activiteit dat de kern van de maan bestaat uit een poreuze
vaste matrix waardoor het oceaanwater kan stromen. De magma-oceaan van Io is een
ander voorbeeld van twee fasen (gesteente en magma) in één laag.

Getijden in meerfase media hebben tot nu toe weinig aandacht gekregen. Deson-
danks suggereert recent werk dat Darcische dissipatie in de kern van Enceladus de reden
kan zijn voor de geologische activiteit van de maan. Dit is relevant, aangezien het nog
steeds onzeker is wáár (in het ijs, in de oceaan of in de rotsachtige kern) en hoe de ener-
gie wordt gegenereerd die zorgt voor het aandrijven van de pluimen van de maan en voor
het voorkómen van bevriezing van de interne oceaan. Zoals hierboven al genoemd, zijn
getijden in ongelaagde oceanen waarschijnlijk niet de reden voor de thermische output
van de maan. Bovendien kan dissipatie in de ijsschil alleen de geobserveerde waarden
bereiken wanneer de viscositeit van het ijs erg laag is. In Hoofdstuk 5 breiden we de theo-
rie voor getijden in vaste, viscoelastische, zelf-aantrekkende lichamen uit naar lichamen
met poreuze lagen. Deze nieuwe theorie passen we toe op Enceladus om te beoordelen
of getijden in een poreuze kern de thermische activiteit zouden kunnen verklaren. We
laten zien dat getijden een Darcische stroom veroorzaken in de kern van de maan, maar
dat de oceaan voorkómt dat hoge snelheden kunnen worden bereikt. Hierdoor wordt de
viskeuze dissipatie in het rotsachtige skelet de voornaamste bron van energiedissipatie
in de kern. Getijdendissipatie in de kern kan waardes vergelijkbaar met die van Cassini’s
observaties bereiken als de kern een erg lage viscositeit heeft in vergelijking tot die van
silicaten. Eerder werk suggereert dat dit het geval kan zijn wanneer de kern van Encela-
dus veel weg heeft van een niet-geconsolideerde ‘rubble pile’ (een collectie losse stenen
die samengehouden worden door hun eigen zwakke zwaartekracht). We stellen ons voor
dat een toekomstige missie naar Enceladus zou kunnen testen of deze hypothese waar
is door het meten van de fasevertraging in het zwaartekrachtsveld veroorzaakt door ge-
tijden en door het meten van de verplaatsingen op het oppervlakte.

Het grootste deel van deze scriptie gaat over de manen in ons zonnestelsel, maar in
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het laatste onderdeel (Hoofdstuk 6) bestuderen we de rol die getijdenverhitting kan heb-
ben in exomanen. Op dit moment zijn er meer dan vierduizend exoplaneten ontdekt en
het is aannemelijk dat een aantal hiervan exomanen hebben. De detectie van deze exo-
manen zit vol technische uitdagingen. Verschillende detectiemethodes zijn voorgesteld,
enkele hiervan specifiek voor exomanen met getijdenverhitting. Extreme getijdenverhit-
ting kan namelijk de oppervlaktetemperatuur van een maan doen toenemen, waardoor
deze waar te nemen is in het infrarood. Daarnaast laat vulkanisme een voetprint achter
die gedetecteerd zou kunnen worden bij astronomische transities.

Om te beoordelen in welke mate deze twee factoren een exomaan waarneembaar
maken, is het noodzakelijk om de thermische evolutie en de baanevolutie te beschou-
wen. We identificeren toestanden van thermisch evenwicht voor manen met een grootte
variërend van Io tot Aarde in verschillende baantrajecten. Veel getijdendissipatie vindt
plaats in grote manen die in een baan zitten met een hoge excentriciteit en een lage pe-
riode. Wanneer een maan ter grootte van de Aarde in de baan van Io zou zitten, dan kan
de oppervlaktetemperatuur stijgen tot ongeveer 300 K – op de grens van wat de James
Webb Space Telescoop aankan wat betreft gevoeligheid voor de dichtstbijzijnde sterren.
Echter zorgt de grote hoeveelheid getijdendissipatie ervoor dat de baan snel circulair
wordt. In een geïsoleerd maan-planeet systeem kunnen banen met een hoge excentri-
citeit niet lang bestaan. Als alternatief bekijken we systemen met meerdere manen, met
daarin baanresonanties vergelijkbaar met die verantwoordelijk voor de excentriciteit van
de manen in het buitenste deel van het zonnestelsel. Hierdoor kunnen de banen een
hoge excentriciteit hebben gedurende een langere tijd. Bij een maan-planeet systeem
met een paar manen ter grootte van Mars kan de binnenste maan in een baanresonantie
zorgen dat de aanwezigheid van hogere temperaturen door getijden vastgehouden kan
worden voor miljoenen jaren, voordat de banen migreren en de activiteit minder wordt.
Verder laten we zien dat in dit geval de getijden van de maan actief kunnen blijven gedu-
rende miljarden jaren met een vulkanische activiteit vergelijkbaar met Io. Dit alles biedt
genoeg mogelijkheden voor het ontstaan van een tweede atmosfeer die gedetecteerd zou
kunnen worden tijdens astronomische transities.

In deze scriptie zijn nieuwe vorderingen gemaakt op het modelleervlak. Enkele vra-
gen zijn echter nog niet beantwoord. In Hoofdstuk 7 kijken we opnieuw naar de aanna-
mes achter de modellen en benadrukken we hoe toekomstige ruimtemissies modelleurs
zullen informeren over de getijdendynamica van manen met vloeibare lagen. Nieuwe
missies naar planeten aan de rand van ons zonnestelsel, zoals JUICE en Europa Clipper,
zullen zorgen voor een grote hoeveelheid nieuwe gegevens. Deze gegevens gaan ons hel-
pen om de bathymetrie en de compositie van ondergrondse manen beter te begrijpen.
Hiermee kan een gedetailleerder model worden gemaakt van de oceaandynamica. Ver-
der zou het kunnen dat deze missies de eerste metingen op afstand voor buitenaardse
oceaanstromingen op gaan leveren waartegen de output van modellen vergeleken kan
worden. We betogen dat een toekomstige missie naar Enceladus vergelijkbare voordelen
met zich mee zal brengen, en ervoor kan zorgen dat de vraag beantwoord kan worden
over waar en hoe de dissipatie van energie binnen de maan plaatsvindt. Een |missie
gewijd aan Io zou nieuw licht kunnen werpen op de werking van manen met een hoge
getijdenverhitting. Dit helpt specifiek voor het begrijpen van het onontdekte regime dat
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ligt tussen vaste en vloeibare getijden. In de tussentijd is de James Webb Space Telescoop
(JWST) op weg naar L2. De ontdekking van een super-Io door de JWST kan een nieuwe
toevoeging betekenen aan de familie van werelden die actieve getijden hebben. Dit kan
onthullen wat er gebeurt in extreme gevallen van getijdenverhitting en kan ook nieuwe
inzichten brengen over het binnenste van gasreuzen en de architectuur van de systemen
van gasreuzen. We hebben goede redenen om aan te nemen dat de toekomst veel goeds
belooft voor de besproken onderwerpen van deze scriptie.





1
INTRODUCTION

If we’re stuck in one world, we’re limited to a single case; we don’t know what else is
possible[...] By contrast, when we explore other worlds, what once seemed the only way a
planet could turn to be turns out to be somewhere in the middle range of a vast spectrum

of possibilities.

—Carl Sagan, Pale Blue Dot

Point your backyard telescope towards Jupiter and you will have a similar —yet
improved— view of what Galileo Galilei and Simon Marius had when they looked
through their telescopes in the early 17th century. Floating around the mighty planet,
four bright dots. Repeat the observation every night and you will see how the dots gen-
tly move around Jupiter. Named after Zeus’ lovers, the Galilean moons —Io, Europa,
Ganymede and Callisto— dance to the beat of gravity.

If you are lucky, on the same night you might also get the chance to point your tele-
scope towards Saturn. The rings will surely catch your attention, but look closer and you
may be able to spot some bright dots around it. Titan will be the most evident but Rhea,
Tethys, Dione, Enceladus, Iapetus and Mimas might also be visible.

Since the discovery of the Jovian and Saturnian moons, some of the most prominent
astronomers and mathematicians have tried to understand the music of the moons’ mo-
tions. Today, thanks to space probes and the improvement of ground-based and space-
borne telescopes, these bright dots have turned to worlds. Io’s volcanic lava lakes, Titan’s
hydrocarbon lakes and Europa’s and Enceladus’ subsurface oceans are among the most
interesting views in the Solar System (see Figure 1.1). What do these geologically active
moons have in common? They are shaped by tides.

The geological activity of a body depends on how much energy is produced within

1
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it. If we consider two bodies of different sizes, we can expect one producing a higher
amount of heat per square meter to be more active. Earth’s internal energy is powered
by primordial heat still being released from its formation and radiogenic heat produced
by the decay of radioactive isotopes. For bodies of same age, the heat flux resulting from
these two sources is roughly proportional to the body’s radius; consequently, we could
expect the comparatively smaller moons of the gas giants to be geologically inert. Sur-
prisingly, they are not. Just as tidal waves raised by the Moon and the Sun wash the
shores of our planet, the gravitational attraction of gas giants raise tides in their moons.
Because the moons are viscous, part of the tidal energy is converted into heat, a process
known as tidal heating.

On Earth, tidal heating is relatively small compared with the two other heat sources,
but in other bodies tidal heating can be dominant and drive vigorous geological activity.
The most prominent example is the Jovian moon Io, where tidal heating results in an
average surface heat flux more than 20 times higher than that of Earth that manifests as
widespread volcanism. In the icy moons Enceladus and Europa, tidal heating partially
melts their ice-cover forming subsurface oceans, habitable oases outside of the tradi-
tional habitable zone. Tidal heating modulates the geological activity of tidally active
moons and results in a spectrum of tidally active worlds.

Figure 1.1 A glimpse of some tidally active moons of the outer Solar System. Enceladus’
limb with a plume rising from its cracked South Polar Terrain (a); ridges crisscrossing the
icy surfaces of Enceladus (b), Ganymede (c) and Europa (d); Titan’s hydrocarbon lakes as
seen by Cassini’s radar (e); a magma-filled patera on Io’s surface (f) and volcano erupting
over Pillan Patera (g). Images courtesy of NASA

1.1. A SPECTRUM OF TIDALLY ACTIVE WORLDS

We got our first close look of the outer Solar System moons thanks to Voyager 1 and Voy-
ager 2. The Voyager mission was designed to exploit a very rare opportunity to visit the
gas and ice giants in one go, an opportunity that will not take place in the next hundred
years. Voyager 1 was put in a course designed to study up close the Jovian moon Io and
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Saturnian moon Titan, but incompatible with a visit to Uranus and Neptune. Voyager
2’s trajectory, on the other hand, was planned so that it could visit Uranus and Neptune
after flying through the Jovian and Saturnian system.

The Voyager missions remains one —if not the most— of the most successful plan-
etary exploration missions. It revealed a rich spectrum of worlds ranging from volcanic
Io to icy Triton, redefining our understanding of the outer Solar System. Subsequent
missions such as Galileo and Cassini-Huygens, together with remote observations made
with ground and space telescopes, allowed to unveil more details of these fascinating
worlds. In what follows, we will visit these diverse bodies and concisely review their
main features, placing special emphasis in what we know about their interiors.

THE JOVIAN SYSTEM

Among the most important discoveries made by the Voyager missions was the first de-
tection of active extraterrestrial volcanism. When navigation engineer L. A. Morabito,
in an effort to improve the satellite’s ephemeris, was examining images of Io taken by
the camera onboard Voyager on 8 March 1979, she was surprised to see a strange bright
anomaly close to Io’s limb. After ruling out different explanations for the origin of the
anomaly (a previously unknown Jovian satellite, a defect in Voyager’s camera), Voyager’s
science team confirmed the first detection of active extraterrestrial volcanism (Morabito
et al., 1979)1. Remarkably, the discovery was made just a few days after Peale, Cassen
and Reynolds published a paper predicting tidally driven volcanism in Io (Peale et al.,
1979). Since then, Io’s spatially and temporally changing volcanic landscape has been
monitored by different space missions, and ground-based and orbital telescopes (e.g.,
de Pater et al., 2004; de Pater et al., 2020; Lopes and Spencer., 2007; Mura et al., 2020;
Spencer et al., 1997, 2007).

Io’s volcanism was not the only surprise awaiting Voyager. Images of Europa taken
by Voyager 1 (Smith et al., 1979a) and by Voyager 2 (Smith et al., 1979b) during a closer
encounter revealed a surprisingly young surface with fewer craters than Ganymede and
Callisto, and crisscrossed by a complex network of cracks and ridges. The same group
that predicted tidally driven volcanism in Io proposed that the same mechanism was be-
hind Europa’s geological activity and that tides could even maintain a subsurface ocean
there (Cassen et al., 1979). At more than five astronomical units from the Sun, Europa’s
icy surface has a mean temperature of 102 K and pressure of just about 0.1 µPa, making
it impossible for liquid water to exist at its surface. However, radiogenic and tidal heat
produced within the moon can prevent a subsurface ocean beneath its ice shell from
freezing.

The geological activity of Io and Europa is linked with their peculiar orbits. The or-
bits of the three innermost Galilean satellites are tightly related; every time Ganymede
completes one orbit, Europa completes two and Io four, a configuration known as the
Laplace resonance in honor of Pierre-Simon Laplace, who studied the resonance’s long-
term stability. Because of this orbital configuration, the moons mutually exert a coherent
periodic gravitational perturbation to each other that distorts their orbits. In particular,

1A personal account of the discovery by L.A. Morabito can be read in Morabito (2012)
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the orbits of the moons are more elongated than they would be if they were not in this
orbital configuration.

A moon in an elongated orbit experiences strong tides. As it moves from pericen-
ter to apocenter, the strength of the planet’s gravitational pull changes. Consequently,
the moon is periodically stretched and compressed. This process is not adiabatic; fric-
tion within the moon results in energy dissipation in the form of heat that can power
geological activity. Apart from this, tides have an important effect on the moon’s orbit.
Energy dissipation within the moon comes at the expense of losing orbital energy and
causes the moon’s orbit to shrink and circularize. Similarly, tides raised by the moons
on their planet deform the planet. This alters the gravitational field of the planet and
consequently affects the moon’s orbit causing a slow drift in the orbital size. The intri-
cate connection between interior and orbit renders precise information of the satellites’
ephemerides extremely useful in constraining their interior properties.

The discovery of active geology in Io and Europa evidenced these processes and
demonstrated how tidal heating in Io drives the evolution of the Laplace resonance (e.g.,
Yoder, 1979). In the years after Voyager’s visit to the Jovian system, advances in the under-
standing of the orbital dynamics and the interior dynamics of the Galilean satellites were
made. Segatz et al. (1988) showed that tidal heating affects the interior structure and dy-
namics of Io, controlling the location of its volcanoes; and Yoder and Peale (1981) and
Ojakangas and Stevenson (1986) explored how interior and orbital evolution are linked.
Tests of these models had to await for a return to the Jovian system.

In 1995, the Galileo spacecraft arrived at the Jovian system. In contrast to the Voyager
mission, which only flew by Jupiter, Galileo orbited Jupiter during eight years during
which it flew by the Galilean moons and returned a wealth of data. Among this data is
the radio tracking of the spacecraft, which can be used to obtain precise ephemeris of the
spacecraft and details of the moons’ gravity fields. The deviation of the gravity field of a
moon compared with that of a perfectly spherical body can be used to obtain the moon’s
moment of inertia (Murray and Dermott, 2000, Chapter 4), which holds important clues
about how mass is distributed within the interior of the moon2.

Using the moment of inertia and average density of the satellites (Table 1.1) (non-
unique) models of the interior of the satellites can be obtained. For Io, the data is con-
sistent with a 500 to 900 km metallic Fe-FeS core overlaid by a rocky mantle (Anderson
et al., 2001). For the icy satellites, the interior structure consists of possibly a metallic
core, a silicate mantle and an H2O layer. The decrease in average density of the moons
with distance to Jupiter indicates that the water/rock mass ratio changes from 5% for
Europa to roughly 50% for Callisto (Soderlund et al., 2020). Callisto’s highest moment of
inertia indicates that it is the least differentiated of the Jovian icy moons. The H2O com-
positional gradient has implications for the interior structure of the satellites. Because of
their thicker water envelopes, pressures exceeding those required for the crystallization
of high pressure ices (∼ 210 MPa) are attained inside Ganymede and Callisto. Apart from
the common Ice I, higher pressure ices with different crystal structure (Ice III, Ice V and
Ice VI) are expected in these two moons.

2The moment of inertia for a sphere of uniform density is I = 2
5 MR2, a lower moment of inertia suggests a

body whose density increases with depth.
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While the average density and moment of inertia can be used to determine how the
moon’s mass is partitioned between rock and water, these two observations hold little
clue about whether the water layer is completely frozen or partially molten. Theoretical
models based on the thermal budget of the moons can be used to infer the existence of
a subsurface ocean (Cassen et al., 1979); however, such a claim becomes stronger when
supported by observational evidence. Galileo’s magnetometer was key to providing this
evidence. The tilt of Jupiter’s magnetic dipole results in a synodic variation of the mag-
netic field at the moons’ positions. If a conductor (e.g., a subsurface water ocean, a
molten magma layer) is present within the moon, these variations induce a magnetic
field. Galileo’s magnetometer measured the spatially and temporally varying magnetic
field around the Galilean moons and provided evidence for the existence of a subsurface
ocean in Europa (Khurana et al., 1998; Kivelson et al., 2000). For Ganymede and Callisto
the magnetometer data was less conclusive; magnetometer data (Kivelson et al., 2002)
together with aurora observations (Saur et al., 2015) supports the existence of a subsur-
face ocean in Ganymede, for Callisto the measured magnetic field (Khurana et al., 1998)
can also be caused by the ionosphere (Hartkorn and Saur, 2017).

An Europan subsurface ocean is also consistent with geological observations (Pap-
palardo et al., 1999). The high resolution imagery returned by Galileo revealed tectonic
features that include mobile blocks of ice known as chaos terrain, ridges and cycloids
(Figure 1.1). These features have been interpreted as being the result of tidal deforma-
tions of an Europan floating ice shell (e.g., Carr et al., 1998; Greenberg et al., 1998; Hoppa
et al., 1999).

Magnetic observations were also used to probe Io’s interior. Khurana et al. (2011)
suggested that variations of the magnetic field around Io are evidence of a partially
molten magma ocean; however, this claim has been challenged (Blöcker et al., 2018;
Roth et al., 2017). Current models of Io’s interior range from an almost melt-depleted
mantle to a fully molten magma ocean (see Steinke, 2021, Chapter 1 for a comprehen-
sive overview). These models have different merits when compared to observations such
as the type of volcanism (McEwen et al., 1998), distribution of volcanoes (e.g., Hamilton
et al., 2013; Steinke et al., 2020a), or the height of Io’s mountains (Jaeger et al., 2003) (see
Lopes and Spencer. (2007) for a review). A partially-molten Io provides an efficient way to
transport the tidal heat produced inside the moon. Moore (2001) proposed that Io’s tidal
heat is transported by the advection of melt, a mechanism that might be important for
the early evolution of planets including Earth (Moore, 2003), making Io an archetype to
study the early evolution of terrestrial planets and moons.

THE SATURNIAN SYSTEM

The Saturnian system is markedly different from the Jovian system. While almost all the
mass of the Jovian moon system (∼ 99.997%) is split between the four Galilean moons,
Titan makes roughly 95% of Saturn’s moons’ mass. The remaining percentage corre-
sponds to a collection of smaller icy satellites, the most massive being —ordered by
proximity to Saturn— Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus. Voyager 1
and 2 showed that these icy satellites are remarkably diverse (Smith et al., 1981, 1982)
(see Rothery (1999) for a pre-Cassini and Castillo-Rogez et al. (2018) for a post-Cassini
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overview).

Images of Saturn’s icy moons returned by Voyager showed surfaces with different
crater densities. Mimas, Rhea and Iapetus are heavily cratered and show little sign of re-
cent activity, because of this they have been labelled as dead bodies. Tethys and Dione,
on the other hand, show resurfacing features evidencing they have been active after the
Big Bombardment Era (e.g., Czechowski, 2006). But most surprising of all is the tiny
moon Enceladus.

Enceladus presents distinct types of terrains. The oldest cratered terrains have crater
densities comparable to the other icy moons, but the moon has also heavily tectonized
regions almost free of impact craters (Crow-Willard and Pappalardo, 2015; Porco et al.,
2006; Smith et al., 1982). The low crater density implies that the moon is or has very
recently been active. The geological activity of Enceladus was quickly associated to tides.
Enceladus is in an orbital resonance with Dione, because of this Yoder (1979) already
anticipated that Voyager might observe a very active world with a young surface. Terrile
and Cook (1981) went one step further and postulated that tidally driven water eruptions
could be the source of Saturn’s E-ring, whose densest region happens to coincide with
Enceladus’ location. The confirmation of this hypothesis had to wait for two decades.

On 1 July 2004, Cassini-Huygens entered orbit around Saturn. For almost 13 years,
the spacecraft studied the planet, its rings and moons. Given the observations of Voy-
ager, one of the most anticipated parts of the mission was a series of close flybys of
Enceladus. Between February and July 2005, Cassini performed three flybys of the moon
(Porco et al., 2006) that demonstrated that Enceladus has a tenuous atmosphere around
it —denser in the South Pole. High resolution images of the region taken with the Imag-
ing Science Subsystem (ISS) showed that the South Polar Terrain (SPT) is barely cratered
but carved by tectonic features, the most prominent being ∼ 100 km long fractures nick-
named “Tiger Stripes” (Figure 1.1b), and the Composite Infrared Spectrometer (CIRS)
detected high thermal emissions emanating from the region. But most striking of all
were the images returned by the ISS that showed water plumes emanating from Ence-
ladus’ SPT.

Two possible origins of Enceladus’ water plumes were considered: melt pockets
within the ice shell and a subsurface ocean. Contrary to Jupiter, Saturn’s magnetic field is
not tilted, making it much more difficult to sample the interior of Enceladus using mag-
netic field measurements. The answer had to come from another instrument onboard
of Cassini, the Cosmic Dust Analyser (CDA). The detection of salt grains and silicate par-
ticles in the material ejected by the plumes indicates that the plumes originate from a
subsurface ocean in contact with Enceladus’ silicate core (Hsu et al., 2015; Postberg et al.,
2009, 2011). At first, the subsurface ocean was postulated to be restricted to the SPT,
where most of the geological activity is located (Iess et al., 2014), but later work proved a
global ocean to be also consistent with observations (McKinnon, 2015). To test this hy-
pothesis, Thomas et al. (2016) measured the libration (periodic changes in the spin rate)
of Enceladus’ ice shell by tracking the motion of the moon’s surface craters —an ice shell
pinned at the core would librate less than one decoupled from it— and demonstrated
that the subsurface ocean is global, albeit not necessarily of constant thickness.
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More recently, gravity, libration and topography data have been combined to con-
strain the geometry of Enceladus’ ice shell. This data shows that Enceladus’ ocean and
ice shell are on average ∼ 40 and ∼ 20 km thick, respectively. The ice shell thickness
varies from 5 km at the south pole to 35 km at the equator (Beuthe et al., 2016; Čadek
et al., 2016). The core density, 2.4 gcm−3, is low compared to that of the minerals ex-
pected to form the bulk of the core, 3–4 gcm−3, suggesting the core could be porous
(e.g., Choblet et al., 2017). Evidence of hydrothermal activity supports this hypothesis
(Hsu et al., 2015; Matson et al., 2007; Waite et al., 2017) and holds promise for astrobiol-
ogy; Enceladus’ seafloor might resemble terrestrial hydrothermal vents where life might
have originated on Earth.

The discovery of intense geological activity and of a global subsurface ocean in Ence-
ladus posed an important challenge to modellers. Preventing Enceladus’ ocean from
freezing requires an amount of internal heat difficult to reconcile with existing models
(e.g., Nimmo et al., 2018). A way out of the problem is that Enceladus’ ocean might in-
deed be freezing; however, precise ephemerides of the Saturnian moons indicate that
this is not the case. The migration rate of Enceladus can be related to the amount of tidal
dissipation within the moon. The measured migration rate of Enceladus is consistent
with the moon being close to thermal equilibrium, the amount of tidal heating can be
reconciled with the moon’s thermal activity and is sufficient to maintain its subsurface
ocean (Lainey et al., 2012). While it has long been theorized that eccentricity tides could
heat Enceladus interior and drive geological activity (Yoder, 1979), where in the moon
and precisely how this occurs remains a mystery. Different hypothesis ranging from in-
tense heating in the moon’s rocky core (e.g., Choblet et al., 2017; Liao et al., 2020), the
ocean (e.g., Tyler, 2009; Wilson and Kerswell, 2018), or in a very low-viscosity, convective
ice shell (e.g., Hemingway and Mittal, 2019) have been proposed.

Saturn’s biggest moon, Titan, is also remarkably interesting. At the beginning of the
20th century, observations made from the Fabra Observatory in Barcelona revealed that
Titan has an atmosphere (Comas Solá, 1908). Decades later, observing from the McDon-
ald Observatory, Texas, Kuiper identified methane in Titan’s atmosphere (Kuiper, 1944).
The Voyager 1 radio occultation experiments determined the thickness and composition
of Titan’s atmosphere with more precision (Lindal et al., 1983). The atmosphere is mostly
made of nitrogen (∼ 95%) and methane (∼ 5%), and the pressure at the moon’s surface
is roughly 1.5 bar. Because of the low surface temperatures, ethane and methane can
condensate and form seas, lakes and rivers, and an hydrologic cycle akin to that of Earth
(e.g., Lunine et al., 1983).

Titan has a high orbital eccentricity (Table 4.1) that can excite tidal waves in Titan’s
hydrocarbon seas. However, as opposed to the previously considered moons, Titan is not
in an orbital resonance. Without an orbital resonance to pump the eccentricity, Titan’s
orbit is currently being circularized. Sagan and Dermott (1982) and Dermott and Sagan
(1995) showed that if Titan’s hydrocarbon hydrosphere would resemble the Earth’s (with
oceans and continents), tidal dissipation would quickly circularise its orbit; the high ec-
centricity of Titan should then be the result of a recent disruption such as a big impact.
On the other hand, if Titan had a global hydrocarbon ocean or a series of small discon-
nected lakes and seas, Titan’s present eccentricity could be maintained during billions of
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years.

The second hypothesis turned out to be the correct one. Cassini’s Radar showed that
Titan’s surface is dotted with lakes (Stofan et al., 2007), the biggest ones being the Kraken
(roughly the size of Spain), Ligeia and Punga Mare, located at high latitudes (Hayes,
2016). The Mare are estimated to be ∼ 100 m deep and their tides have a small amplitude
(∼ 1 m) (Tokano, 2010). Hydrocarbon seas are not the only liquid bodies that Titan has.
On January 15th 2005, after travelling with Cassini, Huygens entered the history books
when it landed on Titan. During its decent, Huygens observed Extremely Low Frequency
electromagnetic waves that Beghin et al. (2010) attributed to a resonance between Titan’s
ionosphere and a subsurface conductive layer, most likely a subsurface ocean. Topogra-
phy, gravity and rotation data is also consistent with the presence of a subsurface ocean
∼ 100 km below Titan’s ice layer (Durante et al., 2019; Iess et al., 2012; Lorenz et al., 2008;
Nimmo and Bills, 2010).

BEYOND SATURN

Although we know much less about the moons of Uranus and Neptune, Voyager 2 gave
us a glimpse of these two systems. Among the different moons, Neptune’s Triton proved
to be very interesting. Triton’s orbit largely differs from that of the regular moons of the
Solar System (Table 1.1). Instead of being in a prograde orbit, Triton orbits in a retrogade
orbit tilted with respect to the ecliptic. The peculiar orbit of Triton has led to the con-
clusion that Triton is a Kuiper-belt object captured by Neptune (e.g., McKinnon, 1984).
This is further supported by the similarities between Triton and Pluto —they have similar
densities, composition, and an ice shell overlaid by a layer of frost nitrogen in equilib-
rium with a N2 atmosphere.

Just as Europa and Enceladus, Triton has just a few craters, presents tectonic features
and evidence of cryovolcanism (Smith et al., 1989); characteristics of a satellite that is
presently active (Schenk and Zahnle, 2007; Stern and McKinnon, 2000). Voyager 2 ob-
served nitrogen plumes ∼ 8 km high, which are likely driven by the sublimation of nitro-
gen frost due to solar heating (Kirk et al., 1990). In contrast to the other moons, Triton
has a very small eccentricity. Nevertheless, it probably experienced strong tides during
its capture. Furthermore, the inclination of Triton’s rotational axis with respect to its or-
bital plane (obliquity) can drive strong tides. The geological activity of Triton is most
likely powered by a combination of radiogenic and tidal heating and could have resulted
in the formation of an ammonia rich subsurface ocean (Gaeman et al., 2012; Nimmo and
Spencer, 2015).

We should not presume tidally active worlds to be a particular of the Solar System.
Although the detection of exomoons remains elusive (e.g., Heller, 2017), we can expect
exoplanets to host satellites. Tidally heated exomoons are interesting targets for exo-
moon hunters. Peters and Turner (2013) suggested that thermal emissions from a body
several times more active than Io could be detected using the James Webb Telescope.
Oza et al. (2019) went further and proposed that the spectra of some short-period gas
giants show features that hint at ongoing tidally powered volcanism from an orbiting
nearby moon. The known spectrum of tidally active worlds might soon widen.
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1.2. RESEARCH QUESTIONS AND THESIS OUTLINE

As we have seen in the previous section, the spectrum of tidally active moons spans from
frozen worlds to worlds with magma oceans (Figure 1.2). Because of this diversity, com-
puting the tidal response of these bodies requires different approaches. However, until
very recently, most studies of the tidal dynamics of the moons of the outer Solar System
focused on solid tides. With few exceptions (e.g., Sagan and Dermott, 1982; Sears, 1995),
the dynamical tidal response of the liquid layers of tidally active moons was largely ig-
nored.

Tyler (2008) put liquid tides back at the center of the discussion when he suggested
that strong tides stir Europa’s subsurface ocean. He later generalized this idea to other
icy moons including Enceladus (Tyler, 2011, 2009, 2020), Ganymede, Callisto, Mimas,
Dione, Rhea, Titan and Triton (Tyler, 2014), and to Io’s magma ocean (Tyler et al., 2015).
This work, together with advances in our understanding of the interiors of the moons of
the outer Solar System, has triggered a wave of new research into the tidal dynamics of
moons with liquid layers (e.g., Chen et al., 2014; Chen and Nimmo, 2011; Hay and Mat-
suyama, 2017, 2019; Hay et al., 2020; Kamata et al., 2015; Matsuyama, 2014; Matsuyama
et al., 2018; Nimmo and Spencer, 2015; Rekier et al., 2019; Wilson and Kerswell, 2018).

Despite this effort, many questions remain unanswered. In this thesis several new
aspects relevant to understanding tidally active moons with liquid layers are addressed.
We challenge common assumptions made in modelling moons with fluid layers with
the aim to interpret observations of the moons of the outer Solar System and inform
the planning of future space missions. While the overarching topic of tidal dynamics of
moons with fluid layers vertebrates the work presented here, the problems we tackle are
diverse. Below, we detail the specific topics we investigate.

To place the work presented in this thesis into context, Chapter 2 presents a brief
overview of the different aspects of the topic. We start by introducing the character
pulling the strings behind this tale: the tidal force. We then examine the dynamic ef-
fects of the tidal force in moons with solid, fluid and porous layers. We place special
emphasis on the different assumptions and approximations that can be used to study
tidal dynamics in these different contexts and point out their shortcomings to derive the
research questions tackled in chapters 3, 4 and 5. The effect of tides in the orbital evo-
lution of moons is then explained and the link between astronomical observations and
the interior properties of the moons established. This allows us to better appreciate the
relevance of the research questions tackled in chapters 3, 4 and 5 as well as to prepare
the grounds for the study of tidally heated exomoons presented in Chapter 6.

Chapters 3 and 4 are concerned with the study of subsurface ocean tides. Three main
research questions are addressed:

1. How does the tidal response of a subsurface ocean of variable thickness differ from
that of a constant thickness ocean?

2. What are the patterns and intensity of ocean currents resulting from tidally in-
duced inertial waves in subsurface oceans?
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3. Do tidally induced inertial waves heat the subsurface ocean of Europa and Ence-
ladus?

In Chapter 3, a model to study tides in subsurface oceans with variable thickness is de-
veloped. The model relies on the classic Laplace tidal equations, which we solve using
a Finite Element Method. We apply it to Enceladus and also discuss the implication of
our findings for Triton. In Chapter 4, we challenge some of the assumptions behind the
widely-used Laplace tidal equations. We show that internal waves are excited by the tidal
force in Europa’s and Enceladus’ oceans and discuss their relevance for the dynamics of
subsurface oceans.

In Chapter 5, a model to study tides in porous media is developed to tackle two re-
search questions:

4. How does the presence of a porous layer alter the tidal response of a tidally active
moon?

5. What is the contribution of Darcy dissipation to Enceladus’ energy budget?

The model relies on the viscoelastic theory of tides which is extended to include Biot’s
poroviscoelasticity theory. The new model can be used to study the tidal dynamics of
moons with porous layers such as Enceladus’ porous core and Io’s partially molten as-
thenosphere. We focus on Enceladus, we apply the new model to this moon and discuss
the implication of our result for its energy budget.

In Chapter 6, we take an excursion outside of the Solar System to consider the ex-
istence and detection of tidally heated exomoons. Moons undergoing extreme levels of
tidal heating, super-Ios, are prime targets in the exomoon hunt (Oza et al., 2019; Peters
and Turner, 2013). To assess how likely it is to discover a super-Io, it is important to un-
derstand the internal and orbital dynamics of moons experiencing extreme levels of tidal
heating. With this goal in mind, we address the following research questions:

6. What is the thermal state of a super-Io?

7. How long can a super-Io persist in an observable state?

The different elements of the tidal problem come now into full view, the coupling be-
tween internal and orbital evolution becomes evident. We first consider the thermal
state of a super-Io for different orbital configurations to assess its thermal output and
potential volcanic activity. We then investigate how longevous this activity could be and
what the discovery of a super-Io would imply.

Finally, Chapter 7 gathers the answers to the research questions presented here and
discussed in the body of the thesis. As it is often the case, our answers prompt new ques-
tions, which open avenues for future research. The last chapter of the thesis discusses
these questions and puts them in the broader context of the planetary exploration of the
outer Solar System.
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The construction of a model, therefore, was for him a miracle of equilibrium between
principles (left in shadow) and experience (elusive), but the result should be more

substantial than either

— Italo Calvino, Mr. Palomar

To tackle the research questions of this thesis, we need to understand very diverse
processes that range from the deformation of a grain of sand to the large-scale gravita-
tional interactions that govern the motion of the moons of gas giants. This chapter has
the ambitious goal to concisely review these processes.

In Section 2.1, we start by introducing the tidal force. We then discuss how this force
deforms a body with solid, liquid and porous layers; we present the equations of mo-
tion and underline the assumptions and approximations often used to obtain the tidal
response of a body (Section 2.2). Finally, we examine how the tidal deformation of the
body alters its orbit, linking the internal properties of a body to its orbit (Section 2.3).
Throughout the chapter, the research questions from Chapter 1 are contextualized and
their relevance discussed.

2.1. THE PULL OF TIDES

Almost everybody who has lived on or visited Earth’s coastlines has experienced tides;
the almost magical periodic flooding and ebbing of the sea. Yet for millennia nobody
could understand the cause of this daily phenomenon. From the Copernican Revolu-
tion to general relativity, the study of tides has shaped our understanding of one of the
fundamental forces of nature: gravity (see Cartwright (1999) for a comprehensive histor-
ical review). Before Newton, the theories on the origin of tides were very diverse, it was

15
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not until his Principia that the connection between tides and gravity was made evident
and the theory of tides as we know it today started to take shape.

THE TIDAL POTENTIAL

Newton showed that tides arise because of the difference in gravitational attraction ex-
perienced by two separate points of a body. The point closer to the tide-raising body
experiences a stronger attraction as compared to the other 1. The gradient in the grav-
itational force provokes the relative motion between the two points and the everyday
experience of tides. The strength of the tidal acceleration (at i d al ) experienced by a point
P of the perturbed body (primary) with co-latitude θ and longitude ϕ depends on its lo-
cation relative to the tide-rising body. It is given by the tidal potential (at i d al =−∇φT )2:

φT =−GM∗

d∗
∞∑

l=2

( r

d∗
)l

Pl (cosψ). (2.1)

M∗ is the mass of the tide-raising body (secondary), d∗ the distance between the cen-
ters of the primary and the secondary, r the distance from point P to the center of the
primary andΨ the angle between r and d∗ (see Figure 2.1). Pl is a Legendre polynomial
of degree l . Note that the previous expression can be used to compute the tidal defor-
mation of a planet due to moon tides or the tidal deformation of a moon due to planet
tides by exchanging the role of the primary and the secondary.

Equation 2.1 is not practical for computing the deformation of a body due to tides.
The distance d∗ and angle Ψ change in a complicated way as the relative position be-
tween the tide-rising body and point P changes. If the secondary is orbiting around the
primary, d∗ andΨ can be written using the orbital elements of the secondary, the coor-
dinates of point P , and the rotation of the primary as given by its angular velocityΩ (see
Figure 2.1):

d∗ = f (a∗,e∗,ν∗), (2.2a)

ψ= f (θ,ϕ, i∗,γ∗,ω∗,ν∗). (2.2b)

a∗ is the semi-major axis, e∗ the eccentricity, i∗ is the angle between the rotational axis
and the normal to the orbital plane and ν∗ is the true anomaly. Longitudes in the frame
rotating with the primary areϕ, while those referring to the non-rotating reference frame
are given by ϕ∗, ϕ∗

0 being the sidereal time of the reference meridian – the angle formed
between an inertially fixed point in the equator and the intersection of the meridian of
the body from which longitude is measured with the equator. The remaining angles are
indicated in Figure 2.1. Eq. (2.2) can be expanded in a series and substituted in Eq. (2.1)
to obtain an expression of the tidal potential (Kaula, 1961):

1In the modern relativistic interpretation of gravity, tidal forces are the consequence of the curvature of space-
time

2Other authors (e.g., Jara-Orué and Vermeersen, 2011; Kaula, 1964) use at i d al =∇φT instead and hence their
formulas differ in a sign.
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φT =− GM∗

a∗
∞∑

l=2

( r

a∗
)l l∑

m=0

(l −m)!

(l +m)!
(2−δ0m)Plm(cosθ)

l∑
p=0

∞∑
q=−∞

Fl mp (i∗)Gl pq (e∗)[
cos

(
mϕ

){cos
sin

}l−m even

l−m odd

(
v∗

l mpq −mϕ∗
0

)
+ sin

(
mϕ

){ sin
−cos

}l−m even

l−m odd

(
v∗

l mpq −mϕ∗
0

)]
(2.3)

with

v∗
lmpq = (l −2p)ω∗+ (l −2p +q)M∗+mγ∗. (2.4)

Pl m are Legendre functions of degree l and order m, and Flmp and Gl pq are the eccen-
tricity and obliquity polynomials. M∗ is the mean anomaly, which is related to the or-
bital frequency as Ṁ∗ = n∗.

x

y

z

Ω

ϕ∗

θ

γ∗

i∗

r

Ψ

ω∗

ν∗

d∗

Ω: Rotational frequency

r: Distance from the center of the primary

θ: Co-latitude

ϕ: Longitude (ϕ∗ = ϕ∗0 + ϕ, ϕ̇∗0 = Ω)

d∗: Primary-secondary distance

i∗: Obliquity

γ∗: Longitude of the ascending node

ω∗: Argument of pericenter

ν∗: True anomaly

M∗: Mean anomaly

Figure 2.1 Relative motion of the tide-raising body (secondary) around the perturbed
body (primary). The orbital and equatorial plane are indicated in green and blue, re-
spectively. Longitudes in the rotating frame rotating with the object are given by ϕwhile
longitudes in the non-rotating reference frame (x,y,z) are indicated with ϕ∗.

TIDAL CONSTITUENTS

Eq. (2.3) makes more evident the different components of the tidal force; by examining
it, we can evaluate which are the leading components of the tidal force. We start by
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noting that a tidal component of degree l is proportional to (r /a∗)l , hence the higher
the degree the smaller the tidal amplitude; terms of order l = 2 are dominant. Flmp and
Gl pq are polynomials of the eccentricity and obliquity. In most cases, eccentricity and
obliquity are small; if this is the case, Fl mp and Gl pq rapidly converge and it is sufficient
to only consider the lower order terms of these two polynomials.

To illustrate this, let us consider tides raised by the Moon (secondary) on the Earth
(primary) and by the Earth (secondary) on the Moon (primary). The lowest order term
is O(1) and corresponds to q = 0, p = 0, m = 2. This term has frequency 2(ω̇∗+n∗+ γ̇∗−
Ω), which on Earth corresponds to the familiar semidiurnal lunar tide M2 that circles
the planet approximately every twelve hours and a half. On the other hand, because
the Moon is tidally locked in synchronous rotation (ω̇∗+n∗+ γ̇∗−ΩMoon ≈ 0), this tidal
component has zero frequency with respect to the Moon. It causes a frozen tidal bulge
but does not produce dynamic tides. For the Moon, higher order terms in e and i become
the leading components of the dynamical tide.

Similarly to the Moon, most moons of the Solar System are tidally locked in syn-
chronous rotation. If their orbits were circular (e∗ = 0) and co-planar with respect to
the equatorial plane (i∗ = 0), the relative position between the planet and a point at the
surface of the moon would not change; the planet’s location in the sky as seen from the
moon would remain fixed. The tidal force would be constant and there would not be
dynamic tides. However, the orbit is slightly eccentric and the equatorial plane of the
moon is inclined with respect to the orbital plane, which means that in the course of an
orbit the planet’s location with respect to a point on the moon’s surface slightly changes
as illustrated in Figure 2.2. The leading terms of the tidal potential (2.3) are then (e.g.,
Jara-Orué and Vermeersen, 2011; Murray and Dermott, 2000):

φT =−(nR)2
( r

R

)2 (
φT

0 +φT
e +φT

i

)
(2.5)

with:

φT
0 =−1

2
P2,0(cosθ)+ 1

4
P2,2(cosθ)cosϕ, (2.6a)

φT
e = e∗

(
− 3

2
P2,0(cosθ)cos

(
n∗t

)+ 3

4
P2,2(cosθ)cos

(
2ϕ

)
cos

(
n∗t

)
+P2,2(cosθ)sin

(
2ϕ

)
sin

(
n∗t

))+O(e∗2),
(2.6b)

φT
i = sin

(
i∗

)
P2,1(cosθ)cos

(
ϕ

)
sin

(
ω∗+n∗t

)+O(sin2 i∗). (2.6c)

θ and ϕ indicate the co-latitude and longitude of the point in the moon’s reference
frame.

The tidal potential (2.5) has three components. The first component, φT
0 , is the tide

that the moon would experience if the orbit were circular and contained in its equatorial
plane. As mentioned above, it produces a frozen tidal bulge. The two remaining compo-
nents have a diurnal frequency and produce dynamic tides. φT

e is known as the eccen-
tricity tide and, as its name indicates, is the consequence of the elongation of the moon’s
orbit. It can be split into two parts: one does not have a longitudinal dependence and
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the other does. The first part arises because the planet moves closer and further away
from the moon’s surface as the moon shifts from pericenter to apocenter. The second
appears because conservation of angular momentum implies that the moon does not
move at a constant velocity in its eccentric orbit, producing a longitudinal libration of
the subplanet point in the moon’s surface (Figure 2.2). φT

i is the obliquity tide, produced
by the latitudinal libration of the subplanet point resulting from the inclination of the or-
bital plane with respect to the moon’s equator. As mentioned above, (2.6) only contains
the leading order terms of the tidal potential. Due to the small obliquity and eccentric-
ity of the moons of the Solar System, this is normally sufficient. However, in bodies with
high eccentricities (e > 0.1), higher order terms start to play an important role in the tidal
dynamics (e.g., Renaud et al., 2021).

The time-varying tidal potential drives periodic deformations of the moon. In what
follows, we discuss how this periodic deformation can be computed. While our treat-
ment is general, we will place it in the context of previous work on tides in the moons of
the outer Solar System, paying special attention to the assumptions and shortcomings of
previous work, and, in this way, introducing the research questions that will be tackled
in the succeeding chapters.

2.2. TIDAL DYNAMICS

The changing tidal force induces motions in the solid and liquid layers of moons. If we
consider a small parcel of a moon, the effect of the tidal potential is given by Newton’s
second law (F = m dv

dt ). As the moon is rotating, it is convenient to study the relative
motion of the parcels in a reference frame that is rotating with it. Conservation of mo-
mentum implies that:

ρ

(
Dv

Dt
+2Ω×v

)
=∇·σ−ρ∇φ, (2.7)

where v is the velocity of the parcel and D indicates the Lagrangian derivative. The first
term on the left-hand side gives the acceleration of the parcel and the second term is
the Coriolis acceleration, which arises because of the rotational frame. The forces acting
on the parcel are on the right hand of the equation, with the first term being the surface
forces given by the stress tensor (σ) and the second term being body forces arising from
a potential (φ) that includes the tidal potential (φT ), the self-gravitation of the body in
question and the centrifugal force. The self-gravitation of the body depends on how
mass is distributed within the body and is given by Poisson’s equation:

∇2φ= 4πGρ. (2.8)

To obtain the tidal motions, we need to consider additional conservation equations.
Mass is conserved,

∂ρ

∂t
+∇· (ρv ) = 0. (2.9)
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Figure 2.2 Obliquity (a) and eccentricity (b) tide for a tidally locked moon in a moon-
fixed reference frame. A meridian corresponding to the average location of the subplanet
point is indicated in red, the tidal bulge is shown in blue and the planet is represented
by the black circle. For (a) the equatorial and orbital planes of the moon are shown in
blue and green, respectively. The semi-major axis (a), eccentricity (e) and obliquity of
the satellite’s ( i ) are indicated.
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Additionally, a constitutive equation for the stress tensor and an energy conservation
equation are needed to close the system of equations. In the subsequent sections, we
will briefly describe how tides can be modelled for different media, underline some com-
monly made assumptions in the study of tides and show the kind of tidal motions that
can be expected.

2.2.1. TIDAL DYNAMICS OF LIQUID MEDIA

While Newton was the first to accurately explain the origin of tidal forces, he did not
study their dynamical effect on the ocean. This task was undertaken by the French
mathematician Laplace who set to study l’action du soleil et de la lune sur la mer et sur
l’atmosphère (Laplace, 1798). Laplace used the now-called Laplace tidal equations to
study ocean tides. Since then, these equations have been widely used to study Earth’s
tides. More recently, they have also been applied to study tidally active moons (e.g.,
Beuthe, 2016; Kamata et al., 2015; Matsuyama, 2014; Sagan and Dermott, 1982; Tyler,
2008) and exoplanets (e.g., Blackledge et al., 2020) with oceans. As we will see, however,
the Laplace tidal equations rely on important assumptions that filter some solutions out
of the Navier-Stokes equations.

Starting with the momentum and mass conservation equations, we will present the
different waves that the tidal force can induce and examine in which cases they can(not)
be neglected. We will then examine which tidal waves are expected to dominate the tidal
response of subsurface oceans, finally leading to three of the research questions tackled
in this thesis.

GOVERNING EQUATIONS

We start by introducing a constitutive equation for the stress tensor. To do so, we split the
stress tensor into two components, the thermodynamic fluid pressure p, independent of
the fluid velocity, and the viscous stress tensor τ, which depends on the flow velocity,

σ=τ−p I . (2.10)

For a Newtonian fluid, the viscous stress tensor is given by:

τ= ζ tr(ϵ̇)I +2η

(
ϵ̇− 1

3
tr(ϵ̇)I

)
, (2.11)

where η and ζ are the dynamic and second viscosity, respectively associated with volu-
metric and shear deformations, and ϵ̇ is the rate of strain tensor:

ϵ̇= 1

2

(∇v + (∇v )T )
. (2.12)

Taking the continuity, momentum and Poisson equations (2.7-2.8) together with the
constitutive equation (2.11), we note that we have six unknown variables ( v , p, ρ and φ)
and five equations.

Parts of Section 2.2.1 are based on an unfinished survey paper on tides in extraterrestrial oceans that the author
worked on with Gerkema, Maas, Hay, Matsuyama, Tyler and Beuthe, and Chapter 7 of Gerkema (2019).
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An additional equation relating density and pressure can be obtained from thermo-
dynamic principles. Assuming local thermodynamic equilibrium, the density of a par-
cel can be written in terms of a state function that depends on three independent state
variables: pressure p, entropy s and salinity S, for a certain function that we can leave
unspecified here ρ(p, s,S). Material changes in density, i.e., following a parcel, can then
be expressed as

Dρ

Dt
=

(
∂ρ

∂p

)
sS

Dp

Dt
+

(
∂ρ

∂s

)
pS

Ds

Dt
+

(
∂ρ

∂S

)
ps

DS

Dt
. (2.13)

The subscripts on the right-hand side of (2.13) are added to indicate that these vari-
ables are kept constant in the respective partial derivatives. The first partial derivative
on the right-hand side has a special significance, for it is related to the speed of sound
cs (see Vallis (2006), Section 1.8). Assuming that the movement of water parcels is adia-
batic3, i.e., they exchange no heat or salinity with their surroundings, we have Ds/Dt = 0
and DS/Dt = 0, so that (2.13) reduces to

Dρ

Dt
= 1

c2
s

Dp

Dt
. (2.14)

Without loss of generality, we can split pressure and density and perturbing potential
into two components: a time-independent hydrostatic component (denoted by sub-
script 0) and a dynamic one (denoted by superscript ∆):

p = p0(r )+p∆(r , t ) (2.15a)

ρ = ρ0(r )+ρ∆(r , t ) (2.15b)

φ=φ0(r )+φ∆(r , t ) (2.15c)

Note that φ∆ includes both the external perturbing potential (i.e., the tidal potential φT )
and the gravitational potential that arises due to the ensuing deformation of the body. In
the hydrostatic state, v = 0, the density is ρ0 and the gravitational force is balanced by a
hydrostatic pressure field p0:

∇p0 =−ρ0∇φ0 =−ρ0g0er . (2.16)

g0 is the gravity of the unperturbed body and er the radial vector.

3The adiabatic assumption can be made to study processes that occur at timescales smaller than those at
which the background thermal state (temperature, density and salinity) of the medium changes. An apparent
contradiction occurs when these very same processes influence the thermal structure of the medium in the
long-term, here a coupling arises between the short and long timescales. A clear example is the study of
internal waves in Earth’s oceans; even though mixing provoked by internal waves plays a crucial role in the
stratification of Earth’s oceans, their short-term dynamics (for timescales comparable to the forcing period)
are normally modelled using the adiabatic approximation and their long-term effects on the ocean’s thermal
structure are assessed a posteriori or in a parametrized way.
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COMMON APPROXIMATIONS

A major simplification can be made by assuming that the flows of interest have a
small amplitude. This assumption allows to linearize the previous set of equations and
immensely simplifies the study of waves. Unfortunately, it removes important phe-
nomena including wave-wave and wave-flow interactions, and wave-breaking, all of
which can trigger instabilities and turbulence in the system. By plugging (2.15) into
(2.7,2.8,2.9,2.14) and linearizing we get:

∂ρ∆

∂t
+v ·er

dρ0

dr
=−ρ0∇·v , (2.17a)

∂ρ∆

∂t
+v ·er

[
dρ0

dr
+ ρ0g0

c2
s

]
= 1

c2
s

∂p∆

∂t
, (2.17b)

ρ0

(
∂v

∂t
+2Ω×v

)
=−∇p∆+∇·τ−ρ0∇φ∆−ρ∆∇φ0, (2.17c)

∇2φ∆ = 4πGρ∆. (2.17d)

Eqs. (2.17) describe a rich spectrum of waves including: sound waves, barotropic and
baroclinic waves, as well as various kinds of waves that are affected by the Coriolis force.
Because the tidal perturbation propagates slow compared to the speed of sound, we can
filter sound waves from our equations by assuming cs →∞. (2.17a,b) become

ρ0∇·v = 0, (2.18a)

∂ρ∆

∂t
+v ·er N 2 = 0. (2.18b)

N 2 = dρ0/dr + ρ0g0/c2
s is the so-called Brunt-Väisälä or buoyancy frequency N . If

N 2 > 0, it indicates that the fluid is stably stratified; radial perturbations can then excite
internal waves where gravity is the restoring force . If N 2 < 0, the fluid is gravitationally
unstable. For N = 0 the fluid is unstratified. In that case, the Coriolis force acts as the
sole restoring force; the associated waves are called gyroscopic or inertial.

While we have made several approximations, we have not yet obtained the well-
known Laplace tidal equations. The Laplace tidal equations rely on the shallow water
approximation which is based on the fact that the fluid occupies a thin layer compared
to the wavelength of the forcing, which in the case of tides can be approximated with the
body’s radius. Much has been written on the validity of the Laplace tidal equations (see
Gerkema et al. (2008); Miles (1974); Vallis (2006) for an in-depth analysis), here we will
only sketch the idea behind it. We write the continuity equation in spherical coordinates,

1

r

∂r 2vr

∂r
+ 1

sinθ

∂sinθvθ
∂θ

+ 1

sinθ

∂vϕ
∂ϕ

= 0; (2.19)
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and non-dimensionalize it considering a characteristic vertical length-scale H equal to
the ocean depth, and two characteristic velocities Vr , Vθ,ϕ corresponding to character-
istic radial and lateral velocities. Assuming that r = R +δ where δ is a small number, we
find that:

Vr

Vθ,ϕ
∼ H

R
. (2.20)

It follows that if H/R ≪ 1, radial flows are much smaller than meridional and zonal
ones, | vr |≪| vθ,ϕ |. The radial component of the momentum equation simplifies to

∂p∆

∂r
=−ρ∆g0 −ρ0

∂φ∆

∂r
+2Ωsinθvϕ, (2.21)

where vϕ is the zonal component of the velocity. A very common approximation is to
neglect the Coriolis term (2Ωsinθvϕ), thus assuming that the vertical dynamics are gov-
erned by hydrostatic balance,

∂p∆

∂r
=−ρ∆g0 −ρ0

∂φ∆

∂r
. (2.22)

If this is done, energy considerations require that the Coriolis terms containing sinθ are
also removed from the horizontal momentum equations, an approximation known as
the “traditional approximation”. This approximation was introduced by Laplace and
has been widely employed since then. Using (2.22) and averaging the continuity and
momentum equations in the radial direction, the Laplace tidal equations are finally ob-
tained:

∂η

∂t
+∇·hv̄θ,ϕ = 0 (2.23a)

∂v̄θ,ϕ

∂t
− f v̄θ,ϕ×er =−g0∇η−∇φ∆− fd (v̄θ,ϕ). (2.23b)

η is vertical displacement of the water surface, v̄θ,ϕ is the radially averaged zonal and
meridional velocity, h is the ocean thickness, and f = 2Ωcosθ the Coriolis parameter.
fd (vθ,ϕ) is a dissipation function used to account for momentum dissipation, a function
of the form

fd (vθ,ϕ) =αv̄θ,ϕ+
cD

h
v̄θ,ϕ | v̄θ,ϕ |, (2.24)

is normally assumed with either one or the two terms. α and cD are the Rayleigh and
bottom drag coefficients, respectively.

Compared to the set of equations (2.17c,d) and (2.18a,b), (2.23) remove the possibil-
ity of internal inertial waves (see Table 2.1). Solutions to (2.23) are given by two types of
surface waves: surface gravity waves —with gravity as the restoring force— and Rossby-
Haurwitz waves — with the Coriolis force as the restoring force.
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Approximation/Assumptions Filtered waves Equations Chapters

Linearization
Wave-breaking, wave-wave
and wave-flow interactions (2.17) Ch. 3, 4

Infinite speed of sound (cs →∞) Sound waves (2.18) Ch.3 4
Unstratified ocean (N 2 = 0) Internal gravity waves Ch. 3, 4

Hydrostatic approximation (h/R → 0) Internal inertial waves (2.22,2.23) Ch. 3
Equilibrium tide (c0 →∞) Surfaces wave (2.25) Ch. 5

Table 2.1 Approximations that can be used to study tidal flows and flow phenomena that
they filter. The third column refers to the equations that result from these approxima-
tions and the last column indicates which assumptions are used in some of the Chapters
of the thesis.

If the wave speed c0 is much higher than the velocity at which the tidal perturbation
propagates (ct =ΩR), the ocean can quickly adjust to the tidal perturbation. When this
occurs, v̄θ,ϕ ≈ 0 and the ocean response can be approximated by the equilibrium tide,

ηeq =− φ

g0
, (2.25)

or, if we ignore self-gravitation, ηeq =−φT /g0.

The equilibrium tide is an excellent proxy to measure the strength of tides. Table1.1
shows the amplitude of the equilibrium tide for different bodies. Moreover, the equi-
librium tide is normally used to assess the efficiency of dissipative processes within the
ocean (e.g., friction, wave-breaking). The amount of energy dissipation (dE/dt ) can be
compared to the peak energy contained in the equilibrium tide (E0) via the quality factor
Q (e.g., Efroimsky, 2012a)

Q ≡ 2πE0∫
(dE/dt )dt

. (2.26)

Q is analogous to the quality factor of an oscillator; it is frequency dependent and it
indicates how efficiently tidal energy is dissipated in the ocean. Its meaning can be un-
derstood as follows: if the tidal force would stop, it would take 2Q/n time for the oceans
to come to rest. The quality factor can also be associated with a phase lag between the
tidal force and the ocean response ϵ:

sinϵ= 1

Q
. (2.27)

The previous definition is not restricted to liquid tides. The quality factor Q can be
used to account for all the dissipative processes at play. As we will see in Section 2.3, the
quality factor is central to understanding the link between tides and orbital evolution.
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EXTRATERRESTRIAL OCEAN TIDES

The Laplace tidal equations have been widely used to study Earth’s ocean tides and have
proven very successful in explaining their general characteristics. It should not come
as a surprise that this set of equations is the go-to tool to study tides in other planetary
bodies. Sagan and Dermott (1982) first considered the tides of Titan’s hydrocarbon seas
using a simple analytical method that ignores the Coriolis force. Later, Sears (1995) ad-
dressed this issue and used a numerical approach to solve the Laplace tidal equations
and investigate the tides of Titan. More recently, Tyler used these equations to study
tides in subsurface and magma oceans (Tyler, 2011, 2014, 2008, 2009, 2020; Tyler et al.,
2015). Using the work of Longuet-Higgins (1968) on tides in global surface oceans, Tyler
(2008, 2009) showed that two kinds of waves can be excited by obliquity and eccentricity
tides: surface gravity waves and Rossby waves. The first kind are excited by both the ec-
centricity and the obliquity tide; the second kind are only excited by the obliquity tide.
As shown in Figure 2.3, their characteristics are markedly different: surface gravity waves
are characterized by ripples of the ocean surface that propagate at c2

g = g h. In contrast,
Rossby waves are nearly divergence-free, they feature small surface displacements.

Since the pioneering work of Tyler (2008, 2009), several improvements have been
made to the theory of tides in subsurface and magma oceans. The work of Tyler did not
consider the effects of self-gravity and ignored the presence of an ice shell. These two
issues have been resolved (Beuthe et al., 2016; Kamata et al., 2015; Matsuyama, 2014;
Matsuyama et al., 2018). Beuthe (2016) and Matsuyama et al. (2018) showed that the
role of the ice shell depends of the effective rigidity of the moon. For moons with a high
effective rigidity, such as Enceladus, the ice shell plays an important role, for moons with
low effective rigidity, such as Europa, the effect of the ice shell is smaller. Nevertheless,
all previous studies of tides in subsurface ocean still considered liquid layers of constant
thickness. Yet, it is possible that subsurface oceans feature thickness variations.

The most evident case is Enceladus. Gravity and topography data from the Cassini
mission shows that Enceladus’ ocean thickness varies from∼ 30km at the equator to∼ 60
km at the South Pole (e.g., Beuthe et al., 2016; Čadek et al., 2016; Hemingway and Mittal,
2019). On Earth, ocean bathymetry and the configuration of the continents shape the
ocean’s response to tides, something similar could occur in Enceladus. We explore this
idea in Chapter 3, where we address the following research question:

1. How does the tidal response of a subsurface ocean of variable thickness differ from
that of a constant thickness ocean?

As evidenced by the discussion above, up until now the Laplace tidal equations have
been the standard tool to study tides in moons with subsurface oceans. However, it is im-
portant to recall that the Laplace tidal equations filter out internal waves. Internal waves
are key to energy dissipation on Earth’s ocean (Garrett, 2003; Garrett and Munk, 1979;
Munk, 1997; Munk and Wunsch, 1997). Moreover, the h/R ratio of some ocean worlds
is higher than Earth’s (h/R ∼ 0.15 for Enceladus versus 0.001 for Earth), which suggests
that internal waves might be more relevant there. Vermeersen et al. (2013) proposed that
inertial waves could play a central role in the dynamics of Enceladus’ ocean and could
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(a) (b)

Figure 2.3 Snapshots of surface waves in Europa excited by eccentricity (a), and obliquity
tides (b). The arrows indicate flow velocities and the colormap corresponds to surface
displacements η. Contours of the equilibrium tide are superimposed. A 80 km thick
ocean and a 20 km thick ice shell is assumed. Figure from Soderlund et al. (2020).

even be behind the formation of Enceladus’ Tiger Stripes. An investigation of the role of
internal waves in the tidal dynamics of subsurface oceans is necessary. In Chapter 4, we
investigate the role of internal inertial waves in the ocean dynamics of Enceladus and
Europa. We tackle the following research questions:

2. What are the patterns and intensity of ocean currents resulting from tidally induced
inertial waves in subsurface oceans?

3. Do tidally induced inertial waves heat the subsurface ocean of Europa and Enceladus?

2.2.2. TIDAL DYNAMICS OF SOLID MEDIA

It should not come as a surprise that the theory of solid tides received attention later
than the theory of ocean tides. While the effect of ocean tides is readily noticed by any-
one standing on a beach, solid tides are more subtle. The study of solid Earth tides was
pioneered by Lord Kelvin (Thomson, 1863; Thomson and Tait, 1911), who suggested that
the solid Earth deformation could be used to infer its rigidity. However, the modern the-
ory of tides owes much to the work of A.E.H. Love, who studied the deformation of a
self-gravitating elastic Earth due to tides (Love, 1906, 1911) and established the firm ba-
sis upon which later work rested. A comprehensive review of the theory of tides for a
viscoelastic body can be found in Sabadini et al. (2016). Here we summarize the main
ideas and give some insight into the role of interior properties on the tidal response of a
body. A more detailed explanation can be found in Chapter 5.
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GOVERNING EQUATIONS

We start with Eqs. (2.7, 2.8, 2.9). As was the case of liquid tides, a constitutive equation
for the stress is required. Again, we split the stress tensor into two components —a vol-
umetric and a deviatoric component— and do the same for the strain tensor:

σ=−p I +σd , (2.28a)

ϵ= ϵM I +ϵd , (2.28b)

where the mean strain ϵM and pressure p are given by:

p =− tr(σ)

3
, (2.29a)

ϵM = tr(ϵ)

3
. (2.29b)

The pressure defined here is equivalent to that defined for a liquid only if the liquid is
incompressible. The mean strain is related to volume changes ∆V

V = 3ϵM . For an elas-
tic solid, the volumetric and deviatoric component of the stress and strain tensors are
proportional to each other:

p =−3K ϵM =−K
∆V

V0
, (2.30a)

σd
el = 2µϵd

el . (2.30b)

K andµ are respectively the bulk and shear modulus of the material. Eq. (2.30a) is closely
related with the thermodynamic identity (2.14) used to relate density and pressure in a
liquid; in fact the bulk modulus is related to the speed of sound (for a liquid, K=c2

s ρ0).

Apart from elastic behaviour, most materials also exhibit a viscous fluid-like be-
haviour: when a stress is applied, the material flows just like a fluid would do. This
behaviour can be modelled using an expression analogous to that we used for the vis-
cous stress tensor of a liquid, the stress is proportional to the strain rate via the viscosity
η:

σd
vi s = 2ηϵ̇d . (2.31)

A viscoelastic material exhibits both elastic and viscous behaviour. To capture this be-
haviour, Eqs. (2.30) and (2.31) can be combined in different ways. The simplest one is
the Maxwell model in which it is assumed that the stress is the same in the viscous and
elastic elements. The total strain of the material is then the combination of the elastic
and viscous strain:

σ̇d + µ

η
σd = 2µϵ̇d . (2.32)

The Maxwell model captures the elastic deformation of a material followed by an irrecov-
erable viscous deformation. Other deformation mechanisms are also possible. For ex-
ample, for an anelastic material, once a stress is applied, the deformation is recovered;
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but unlike an elastic material, the recovery does not occur instantaneously. This kind of
behaviour can be represented using the Voigt-Kelvin model. Both the elastic and viscous
element experience the same strain and the total stress is the result of adding the elastic
and viscous stresses:

σ̇d = 2µϵd +2ηϵ̇d . (2.33)

More complex material responses can be obtained by combining the Maxwell and Voigt-
Kelvin mechanisms (see Renaud and Henning (2018) for an overview).

The shear and bulk modulus and the viscosity are macroscopic parameters that de-
pend on the microscopic structure of the material. The viscosity of a solid can be ap-
proximated by (Karato and Wu, 1993; Reese et al., 1999)

η= A
d m

sn−1 exp

(
E +pV ∗

RT

)
, (2.34)

where A is a material constant, s is the second invariant of the deviatoric stress ten-
sor, d is the grain size, E and V ∗ are the activation energy and activation volume, R the
ideal gas constant, n and m the stress and grain size exponents and p and T the pres-
sure and temperature. From the previous expression it is evident that as temperature
increases, the viscosity decreases, which agrees with our everyday experience. The value
of n depends on the dominant micromechanic flow mechanism. If the prevalent de-
formation mechanism is the diffusion of defects in the crystal lattice (diffusion creep),
n = 1, and the viscosity does not have an explicit dependence on the stress state. This is
not the case for other deformation mechanisms, such as the movement of dislocations
within the crystal lattice (dislocation creep), which has n ≈ 3–3.5 (e.g., Reese et al., 1999).
Although it might not always be the case, for tidal studies it is normally assumed that
diffusion creep dominates.

Even though a solid can flow as a liquid, the viscosity of a solid is much higher than
that of a fluid. Moreover, inside a solid, perturbations propagate as seismic waves. As the
speed at which seismic waves propagate is high compared to the speed at which the tidal
perturbation does, the body quickly adjusts to the external perturbation. These two facts
combined imply that inertial terms (left side of (2.7)) are generally much smaller than the
other terms in the momentum equation and thus can be ignored:

∇·σ−ρ∇φ= 0 (2.35)

As we did for liquid tides (Eq. (2.15)), we can split the different fields into their hy-
drostatic and dynamic components. Doing so and linearizing Eqs. (2.9, 2.8, 2.35), we
get:

∇·σ∆−∇(
ρ0g u ·er

)−ρ0∇φ∆−ρ∆∇φ0 = 0, (2.36a)

ρ∆ =−u ·er
∂ρ0

∂r
−ρ0∇·u, (2.36b)
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∇2φ∆ = 4πGρ∆. (2.36c)

To obtain the response of a solid body to tides, the previous set of equations should
be solved under appropriate boundary conditions. Different sets of boundary condi-
tions apply depending on the interior structure of the body. It is generally assumed that
there are no loads on the surface (σr r = σr,θ = σr,ϕ = 0) and the gravitational potential
φ is continuous at the surface, but its gradient is not. More details on the specific set of
surface and internal boundary conditions can be found in Chapters 5 and 6.

LOVE NUMBERS AND TIDAL HEATING

Different approaches can be used to solve the previous set of partial differential equa-
tions. If the body is close to spherically symmetric, spherical harmonics are often em-
ployed to solve the previous set of equations (e.g., Alterman et al., 1959; Love, 1911;
Peltier, 1974; Sabadini et al., 2016; Segatz et al., 1988; Tobie et al., 2005, chs. 5 and 6).
In case the body is not spherically symmetric, spherical harmonics (Beuthe, 2018, 2019)
can still be used, but other numerical techniques such as finite elements become an at-
tractive option (e.g., Steinke et al., 2020b; Wu, 2004).

The solution of the tidal problem is normally expressed in terms of tidal Love num-
bers, complex numbers that relate the perturbing tidal potential to the response of the
body:

ur (r,θ,ϕ, t ) = Re

{
h(r,θ,ϕ)

g0
φT (R,θ,ϕ, t )

}
=−| h |

g0

[
φT ]

l ag , (2.37a)

uθ,ϕ(r,θ,ϕ, t ) = Re

{
l (r,θ,ϕ)

g0
∇θ,ϕφ

T (R,θ,ϕ, t )

}
=−| l |

g0

[∇θ,ϕφ
T ]

l ag , (2.37b)

φ(r,θ,ϕ, t ) = Re

{[( r

R

)l
+k(r,θ,ϕ)

]
φT (R,θ,ϕ, t )

}
=

( r

R

)l
φT + | k | [φT ]l ag , (2.37c)

with ∇θ,ϕ = ( ∂
∂θ , 1

sinθ
∂
∂ϕ ). The h and l tidal Love numbers relate a unit tidal perturbation

to radial and lateral displacements. The k tidal Love number indicates how the ensuing
tidal deformation of the body affects its gravitational field.

The Love numbers depend on the internal properties of the body, and the wavelength
and frequency of the forcing. If the body is spherically symmetric, they are independent
of θ andϕ. For | h |= 1, we recover the equilibrium tide (2.25); however, due to the body’s
rigidity | h |< 1. The Love numbers are generally complex numbers. The notable excep-
tion is if the body is perfectly elastic; in such a case the tidal response is instantaneous
and the Love numbers are real. In contrast, for a viscous body, there is a phase lag ϵ be-
tween the tidal force and the tidal response, which is reflected in the phase of the tidal
Love numbers. The phase lag is the result of energy dissipation within the body. The
average amount of tidal dissipation over a tidal period (T ) can be obtained as:

Ė = 1

T

∫ T

0
σ : ϵ̇d t . (2.38)
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(a) (b)

Figure 2.4 Tidal dissipation for two interior models of Io with a | Im{k2} | consistent with
observations (0.015). (a) shows a meridional cut going through the sub-Jovian point, (b)
shows the surface heat flow. For both (a) and (b), the interior model of the left has a
weaker asthenosphere than that on the right. Model parameters are from Steinke et al.
(2020b) models A and B.

The amount and location of tidal dissipation strongly depends on the interior proper-
ties of a body. As an example, Figure 2.4 depicts tidal dissipation for two models of Io
that produce an amount of tidal dissipation compatible with observations (Steinke et al.,
2020b). Even though the total amount of dissipated energy is the same, its distribution
is markedly different.

The total amount of tidal dissipation can be obtained by integrating the volumetric
heating rate given by (2.38) over the volume of the body. For spherically symmetric bod-
ies, this integral can be performed in the Fourier domain using the Love numbers. For a
tidal perturbation given by (2.3), the total tidal dissipation is (Renaud et al., 2021):

Ė =− GM∗2

a∗
∞∑

l=2

(
R

a∗

)2l+1 l∑
m=0

(l −m)!

(l +m)!
(2−δ0,m)

l∑
p=0

F 2
lmp (i∗)

∞∑
q=−∞

G2
l pq (e∗)

| v̇∗
lmpq −mΩ | Im

{
kl (v̇∗

lmpq −mΩ)
}

,

(2.39)

where M∗ is the mass of the tide-raising body and R the radius of the primary . As evi-
denced by the previous expression, tidal dissipation depends on the interior structure of
the body via the imaginary component of the Love numbers, kl . Im{kl } can be related to
the quality factor we defined in Eq. (2.26), and the phase lag (ε) mentioned before:

− Im{kl } = | kl |
Q

=| kl | sinε. (2.40)

For a synchronous satellite with eccentricity e∗ and obliquity i∗ whose tidal potential
is given by (2.3), (2.39) reduces to:
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Ė =− Im(k2)
(n∗R)5

G

(
21

2
e∗2 + 3

2
sin2 i∗

)
+O(e∗4)+O(sin4 i∗), (2.41)

with k2 evaluated at the orbital frequency.

The theory of solid tides has been very successful in explaining some of the main
features of the tidally active moons of the Solar System. It has been used to link the tim-
ing of Enceladus plumes to its interior properties (Běhounková et al., 2015; Nimmo et al.,
2014), explain the formation of cracks in Europa (e.g., Greenberg et al., 1998; Harada and
Kurita, 2006; Hoppa et al., 1999; Hurford et al., 2007; Poinelli et al., 2019), and link the lo-
cation of Io’s volcanoes to the interior structure of the moon (e.g., Hamilton et al., 2013;
Segatz et al., 1988). Additionally, it has proved central to understanding the interior of
tidally active moons, helping to predict the presence of melt in Io and resulting volcan-
ism (Peale et al., 1979), and allowing to constrain the thickness and stability of subsurface
oceans (e.g., Cassen et al., 1979; Hussmann et al., 2002; Ojakangas and Stevenson, 1989;
Roberts and Nimmo, 2008). In Chapter 6, we will use the ideas presented in this section
to compute tidal dissipation in exomoons. Additionally, in the next section, the theory
of tides for a solid body will serve as a starting point to develop a theory for the tidal
response of bodies with porous or molten layers.

2.2.3. TIDAL DYNAMICS OF MULTIPHASE MEDIA

Some tidally active worlds have layers in which solid and liquid phases coexist. This is
the case of Enceladus, which likely has a porous core (e.g., Choblet et al., 2017) and Io,
which probably has a partially molten asthenosphere (Khurana et al., 2011). While solid
and liquid tides have been widely studied before, tides in porous media have received
much less attention. In this section, we first obtain the equations governing the tidal
deformation of a body with porous layers and discuss the brief history of the study of
tides in porous media, leading us to two of the research questions tackled in subsequent
chapters.

GOVERNING EQUATIONS

If we want to compute the tidal response for a body with porous layers, we need to simul-
taneously consider the mass, momentum and Poisson’s equations (Eqs. (2.7, 2.9, 2.8)) for
the liquid and the solid phases. We consider a parcel of the body with volume V , whose
volume is partitioned between a solid Vs and a liquid Vl with densities ρs and ρl , respec-
tively (Figure 2.5). The porosity is given by:

Φ= Vl

V
, (2.42)

and the bulk density is just ρ =Φρl + (1−Φ)ρs . Mass and momentum conservation for
the two phases reads (Ganesan and Poirier, 1990),

∂Φρl

∂t
+∇· [Φρl vl

]= 0, (2.43a)
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ice shell

ocean

porous core

Figure 2.5 Model of Ence-
ladus’ interior. The inset
shows a parcel of the
porous core, the total
stress tensor and those
of the liquid and solid
phases are indicated. The
big blue arrows show the
relative velocity of the
liquid with respect to the
solid.

∂(1−Φ)ρs

∂t
+∇· [(1−Φ)ρs vs

]= 0, (2.43b)

Φρl

(
Dvl

Dt
+2Ω×vl

)
=∇·Φσl −Φρl∇φ−F , (2.43c)

(1−Φ)ρs

(
Dvs

Dt
+2Ω×vs

)
=∇· (1−Φ)σs − (1−Φ)ρs∇φ+F . (2.43d)

q is the segregation flux given by the relative velocity of the liquid phase with respect to
the solid phase, q = Φ(vl − vs ) and F is an interaction force resulting from the viscous
interaction between the solid and liquid phases given by (Mckenzie, 1984):

F =Φηl

κ
q −p∇Φ. (2.44)

ηl is the liquid viscosity, κ the matrix permeability, which depends on the geometry of
the solid matrix (grain size, tortuosity of the pore space), and p the pore pressure. It
is also useful to introduce an additional kinematic variable known as the variation of
fluid content ζ that gives the volume of liquid entering the control volume per unit of
solid frame volume, ζ = Φ∇ · (us −ul ) (Cheng, 2016). As noted in the previous section,
the inertial terms of the momentum equation for the solid phase can be neglected. For
the fluid phase, the interaction force is larger than the inertial terms, which results in a
low Reynolds number indicative of laminar flow. If this is the case, the inertial terms of
the liquid phase momentum equation can also be neglected. It is common to assume
that the stress tensor of the liquid is isotropic, σl = −p I (see Chapter 5). With these
approximations the mass and momentum equations can be written as:

∂ρ

∂t
+∇· [ρl q +ρvs

]= 0, (2.45a)

∇·σ−ρ∇φ= 0, (2.45b)
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∂ζ

∂t
=−∇·q , (2.45c)

q =− κ

ηl

(∇p +ρl∇φ
)

, (2.45d)

where we have introduced the total stress σ = (1−Φ)σs −Φp I . Eqs. (2.45a, b) are the
total mass and momentum conservation equations, and Eqs. (2.45c, d) are the mass and
momentum conservation equations for the liquid phase, the second one being the well-
known Darcy law for porous media.

To close the system, a constitutive equation relating stress and strain is required. It
is very similar to the one used for a solid, except that instead of using the total stress (σ),
an effective stress (σ′) should be employed (Biot, 1941),

σ′ =σ+αp I . (2.46)

α ∈ (0,1) is Biot’s coefficient. The rheology parameters that appear in the constitutive
equation (bulk modulus, shear modulus and viscosity) are not those of the solid phase
alone. We can understand why this is the case if we consider how a porous and a solid
deform if a pressure is applied. For a solid parcel, all compression arises from volume
changes of the solid phase. In contrast, for a porous parcel, compression is split into
three components: the compression of the solid phase, the compression of the liquid
phase, and the compression arising due to the rearrangement of the pore matrix. For ho-
mogeneous isotropic material, the relation between the bulk modulus of the solid phase
(Ks ) and the porous matrix (K ) is given by Biot’s coefficient α as:

α= 1− K

Ks
. (2.47)

As we did for the solid phase, we can split the different fields into an unperturbed
and a perturbed state to obtain a linearized version of the equations:

∇·σ∆−∇(ρ0g u ·er )−ρ0∇φ∆−ρ∆g er = 0, (2.48a)

ρ∆

ρ0
=−∇·u + ρl ,0

ρ0
ζ, (2.48b)

q =− κ

ηl

(∇p∆+ρl ,0∇φ∆+ gρ∆l er
)

, (2.48c)

∂ζ

∂t
=−∇·q , (2.48d)

∇2φ∆ = 4πGρ∆. (2.48e)

Comparing these equations with those obtained for solid and liquid phases alone,
we can see some similarities and differences. The presence of a fluid introduces an ad-
ditional pressure (the pore pressure) that can affect how the solid matrix responds to
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tides. Additionally, pressure gradients induce a Poisseuille-like flow of water through the
porous matrix, introducing an additional source of energy dissipation, Darcy dissipa-
tion, that can be computed as:

Ėl =
1

T

∫ T

0

ηl

κ
q ·qd t . (2.49)

A LARGELY UNCHARTED TERRITORY

As mentioned above, the tidal response of bodies with porous tides has received little
attention. Vance et al. (2007) provided a first estimate of energy dissipation due to Dar-
cian flow on Europa and Enceladus hydrothermal system. They used the approach Wang
and Davis (1996) and Wang et al. (1999) employed to study dissipation in Earth’s subsea
formations due to the M2 tide. The approach of Vance et al. (2007); Wang and Davis
(1996); Wang et al. (1999), however, did not consider how the pore pressure affects the
tidal response of the body.

Liao et al. (2020) addressed the previous issue and accounted for the interactions be-
tween the solid and liquid phases. They applied Biot’s poroviscoelasticity theory (Biot,
1941) to Enceladus and showed that tidal dissipation can be enhanced due to porovis-
coelastic effects. Nevertheless, they introduced several simplifications that require fur-
ther examination, the most important ones being: they ignored self-gravitation, consid-
ered only the moon’s core and ignored ocean and ice shell, and used a simplified set of
boundary conditions at the core’s surface. In Chapter 5, we present an extension of the
model of Liao et al. (2020) that does not rely on such simplifications. We use the model
to tackle the following research questions:

4. How does the presence of a porous layer alter the tidal response of a tidally active
moon?

5. What is the contribution of Darcy dissipation to Enceladus’ energy budget?

2.3. TIDES AND ORBIT

So far, we have considered how a body’s orbit results in a changing tidal potential (Sec-
tion 2.1) and how the body responds to this tidal potential (Section 2.2) as two sepa-
rate problems. However, as we will see in this section, orbit and tides are closely re-
lated. When Neil Armstrong and Buzz Aldrin landed on the Moon, they left more than
footprints on the surface. In the Mare Tranquillitatis, next to the remnants of the Eagle
landing module, a half meter wide array of retroreflectors stand facing the Earth. These
retroreflectors can be used to obtain with precision the distance between the Earth and
the Moon by firing a laser and measuring how much time it takes for the signal to get
back. By periodically repeating this measurement, it is found that the moon is on aver-
age moving away from the Earth at a rate of approximately 4 cm per year (e.g., Munk and
Wunsch, 1997).
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Why is the Moon moving away from the Earth? The answer is again tides. As we
will see, the rate at which the Moon moves away from the Earth is closely linked with
how much energy is dissipated in the Earth’s oceans, shallow seas and interior due to
tides. For this reason, measurements of a moon’s position and how it changes over time
provide invaluable insights into the tidal response of a body. These observations range
from precise measurements of an object’s angular position in the sky (astrometry) ob-
tained from both Earth-based observations and spacecraft measurements, to laser rang-
ing measurements (such as those done using the retroreflectors left on the Moon’s sur-
face) and the radio tracking of space probes. In this section, we will explain how tides
and orbital changes are interlinked and underline what observations of the orbits of the
Solar System moons tell us about the interior of planets and their satellites.

As opposed to the Earth-Moon pair, the tidally active moons of gas giants are in sys-
tems with multiple moons. To understand the interplay between tides and orbit we need
to consider the orbital interaction between moons. In what follows, we will first study the
tidal effects in a relatively simple system consisting of one planet and one moon (Sec.
2.3.1), and then examine how gravitational interactions between multiple moons alter
this picture (Sec. 2.3.2). There, we will place special emphasis on two bodies: Enceladus
and Io, for which we will discuss how astrometric observations can be used to constrain
their thermal budget and forecast their orbital evolution.

2.3.1. ISOLATED MOON-PLANET SYSTEM

The first rigorous study of how tides affect the rotation and orbit of planetary objects was
done by the son of the British naturalist Charles Darwin, George Darwin (Darwin, 1880).
Darwin’s work was later generalized by Kaula (1964) and led to a myriad of applications.
Here, we briefly review the theory, for a more in-depth treatment of the problem we
refer the interested reader to Boué and Efroimsky (2019); Efroimsky and Williams (2009);
Kaula (1964).

TIDAL-INDUCED PERTURBING POTENTIAL

As showed in Section 2.2, tidal forces exerted by a secondary deform the primary. The
tidal distortion of the primary produces a perturbing potential (T ) proportional to the
tidal potential (2.37). The tidal response is not instantaneous, but is characterized by a
phase lag given by the quality factor Q (Eq. (2.27)). We can write the perturbing potential
at the surface of the primary as (2.37)

T =
∞∑

l=2
| kl |

[
φT

l (R)
]

l ag , (2.50)

where kl is the tidal Love number of spherical harmonic degree l of the primary. The
perturbing potential at a point outside the primary located at distance d can be found
by solving Laplace’s equation, ∇2T = 0, in spherical coordinates (see Dermott and Sagan,
1995, Chapter 4) and using that the tidal potential should be given by (2.50) at d = R and
vanish at d →∞;
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T (d) =
∞∑

l=2

(
R

d

)l+1

| kl |
[
φT

l (R)
]

l ag . (2.51)

Let us imagine now that we want to compute what the effect of this perturbation is in
a body M orbiting the primary. Firstly, we note that the tidal potential φT is given by
Eq. (2.3), secondly, we can expand d in similar way as we did for d∗ in the tidal potential
(Eq. (2.1)) and we get (e.g., Efroimsky and Williams, 2009; Kaula, 1964):

T =−GM∗

a∗
∞∑

l=2

(
R

a

)l+1 (
R

a∗

)l l∑
m=0

(l −m)!

(l +m)!
(2−δ0m)

l∑
p=0

Flmp (i∗)
∞∑

q=−∞
Gl pq (e∗)

l∑
h=0

Fl mh(i )
∞∑

j=−∞
Glh j (e)

| kl mpq | cos
(
(v∗

lmpq −mϕ∗
0 )− (vlmh j −mϕ0)−ϵl mpq

)
.

(2.52)

ϵlmpq and kl mpq are the phase lag in the tidal response and the tidal Love numbers of
the primary, which depend on the forcing frequency v̇∗

l mpq −mΩ as indicated by the

subscripts. Orbital elements with and without (*) correspond to the tide-raising body
and the body whose orbital changes we want to study, respectively. Both ϕ′

0 and ϕ′
0
∗

indicate the sidereal time of the primary and are equal, the reason we keep them will
become evident shortly. Of particular interest is the situation where we want to study
the effects of the tidal deformation of the primary in the orbit of the secondary (e.g., how
does the tidal response of the Earth to lunar tides affect the Moon’s orbit?). If this is the
case, we have that (a,e, i ,M ,ω,γ) = (a∗,e∗, i∗,M∗,ω∗,γ∗) and using the definitions of
vlmpq and v∗

lmh j (2.4), the angular argument reduces to:

v∗
lmpq − vl mh j −ϵl mpq = (2h −2p +q − j )M + (2h −2p)ω−ϵl mpq . (2.53)

TIDAL EFFECT ON ORBIT AND SPIN

The perturbing potential has two effects: (1) it changes the orbit of the secondary, and
(2) it alters the spin of the primary (Figure 2.6). As noted before, the role of the primary
and the secondary can be exchanged: in the same way M1 raises tides in M2 that alter the
spin of M2 and orbit of M1, M2 raises tides in M1 that alter the spin of M1 and the orbit
M2. Considering M1 and M2 to be a planet and a moon, we consider the tidal effects on
spin and orbit of the two bodies.

The attraction of the secondary on the tidal bulge of the primary produces a grav-
itational torque that affects the spin of the primary. The gravitational torque is given
by:

τ=−M∗ ∂T

∂ϕ0
. (2.54)

Taking the derivative of Eq. (2.52), using that ϕ0 −ϕ∗
0 = 0, Eq. 2.53 and averaging over an

orbital-period, we get (e.g., Efroimsky and Williams, 2009):
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ε = asin 1
Q

Ωp

τp−m

a

Figure 2.6 Sketch showing the effects of the tidal bulge raised by the moon on the planet
on the planet’s spin and moon’s orbit. It is assumed that the spin-rate of the planet is
higher than the moon’s orbital frequency. The phase lag in the planet’s tidal response
provokes a tidal torque τp−m that spins down the planet and produces a tangential ac-
celeration that causes outward orbital migration.

τ̄= GM∗2
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(2.55)
The spin change of the planet and the moon simply follow from the conservation of
angular momentum:

Ip
dΩp

dt
= τ̄p−m , (2.56a)

Im
dΩm

dt
= τ̄m−p , (2.56b)

where Ip and Im are respectively the moon and planet moment of inertia, and τp−m and
τm−p are the torques exerted by the moon to the planet and by the planet to the moon,
respectively.

The effect of tides in orbit can be computed using Lagrange-type planetary equations
(see Boué and Efroimsky, 2019, for the explicit equations and their derivation), which
allow to compute the change in orbital elements due to a perturbing potential R

dβi

dt
= bi j

∂R

∂β j
. (2.57)

βi stands for the orbital elements, bi j are a series of coefficients that depend on the
orbital elements, and R is the total perturbing potential, which accounts for both the
effect of the deformation of the planet due to moon tides (Tm−p ) and of the deformation
of the moon due to planet tides (Tp−m) (Boué and Efroimsky, 2019; Kaula, 1964)

R = Mp +Mm

Mp Mm

(
MmTm−p +Mp Tp−m

)
. (2.58)
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Eqs. (2.57), (2.56) provide a consistent and robust way to compute the effects of tides
in orbit and spin state. However, they are not always transparent and intuitive. We can
try to understand the first order effects by considering the first order terms in the previ-
ous equations and using conservation principles. To do so, we assume a moon orbiting
a planet with zero inclination.

As noted before, if neither the moon nor the planet are synchronous, the leading
term in eccentricity is the semidiurnal tide (i.e., l = 2,m = 2, p = 0, q = 0). In such a case,
the tidal torque exerted by the moon to the planet τp−m , and by the planet to the moon
τm−p are given by (2.55):

τp−m =−3

2

| k2,p |
Qp

GM 2
mR5

p

a6 sign(Ωp −n), (2.59a)

τm−p =−3

2

| k2,m |
Qm

GM 2
p R5

m

a6 sign(Ωm −n). (2.59b)

If the planet or moon rotates faster than the moon’s orbital frequency, the torque
slows it down. Using the conservation of angular momentum, we can compute how fast
the planet and the moon slow down. Comparing the expression obtained for the moon
and the planet, we get:

dΩm/dt

dΩp /dt
= | k2,m | /Qm

| k2,p | /Qp

ρp

ρm

(
Mp

Mm

)2

(2.60)

Rocky bodies have a | k2 | /Q larger than that of gas giants. Additionally, moons
are smaller or much smaller than their planet (Mm ≪ Mp ). This implies that a moon
slows down much faster than the planet, which explains why the Moon and other satel-
lites of the Solar System are tidally locked while planets are not. The tidal torque has
an additional consequence; conservation of angular momentum implies that if the
moon exerts a torque τp−m to the planet, a torque of the same magnitude and oppo-
site sign acts on the moon. Such torque changes the angular momentum of the moon,
J 2 = M 2

mG(Mp + Mm)a(1− e2), as J̇ = −τp−m . Assuming the eccentricity is small and
Mp ≫ Mm , the change in semi-major axis follows from:

da

dt
= 2a

J

dJ

dt
= 3na

Mm

Mp

(
Rp

a

)5 | k2,p |
Qp

sign(Ωp −n) = a

τa
sign(Ωp −n) (2.61)

where we have introduced the migration time scale τa . If the planet rotates faster
than the moon orbits, the moon migrates outwards. This is the case for our Moon and
most moons in the Solar System with the notable exception of the Martian moon Pho-
bos. From (2.61), it follows that measurements of ȧ can be used to obtain the value of
| k2,p | /Qp . Using the ȧ obtained using the retroreflectors installed on the Moon by the
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Apollo astronauts, we find4 | k2,p | /Qp = 2.4 ·10−2, which corresponds to 3.2 TW of en-
ergy dissipated due to Lunar tides (2.39). Similarly, precise astrometric observations of
the Jovian and Saturnian moons done over the last centuries — and radiometric obser-
vations for the Saturnian system— allow to estimate the drifts in semi-major axis of the
moons and constrain the Qp of the planet (Lainey et al., 2009, 2012, 2017, 2020), as we
will discuss in more detail in the next section.

Finally, we also examine how tidal dissipation within the moon affects the orbit. As
in the case of the planet, the tidal distortion of the moon gives rise to a perturbing po-
tential Tm−p that also affects its orbit (see (2.58)). Again, some insight can be obtained
applying conservation principles. Energy dissipated within the moon (Eq. 2.41) results
in a decrease of the orbital energy, Eor bi t =−0.5GMm Mp /a:

da

dt
= 2

a2

GMm Mp

(
dE

dt

)
t i des

=−21na

(
Rm

a

)5 Mp

Mm

| k2,m |
Q

e2 (2.62)

Additionally, energy dissipation within the moon modifies the orbital eccentricity.
The change in eccentricity is related to the change in semi-major axis and orbital angular
momentum J , if the eccentricity is small:

2J

GMp M 2
m

dJ

dt
= da

dt
−2ae

de

dt
. (2.63)

If tidal dissipation occurs at constant angular momentum, we find:

de

dt
= 1

2ae

da

dt
=− e

τe
(2.64)

with the circularization time-scale τe . Combining Eqs. (2.61, 2.62 and 2.64) we can get
the total effect of tides on the moon’s orbit:

1
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− pe e2

τe
, (2.65a)
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| k2,m | . (2.66)

Note that we have introduced an additional constant pe . For energy dissipation at con-
stant angular momentum it equals 2, but, in general, the assumption that energy dis-
sipation within the moon occurs at constant angular momentum J is not correct and
pe = 38/7 (see Section 6.7).

4Note that the 4 cmyr−1 corresponds to the total tidal dissipation in the Earth and here we have just considered
the semidiurnal component of the lunar tide (M2), hence the value we obtain should be understood as an
upper bound
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2.3.2. MULTIPLE MOON SYSTEM

Comparing the migration and the circularization time-scales, we can get some insight
into how fast a moon migrates and how fast its orbit is circularized:

τe

τa
= 2

7

(
ρm

ρp

)2 Rm

Rp

| k2,p | /Qp

| k2,m | /Qm
. (2.67)

For a moon around a gas giant, Rm ≪ Rp and | k2,p | /Qp ≪| k2,m | /Qm ; consequently,
we can expect that a moon’s orbit is circularized much faster than the time it takes for it
to migrate in the system. This introduces a new question: Why do some of the moons of
the outer Solar System have a non-zero eccentricity? Two possible answers exist: (1) the
eccentricity is a remnant of a past event that altered the moon’s orbit (impact, resonance
crossing, etc.) and the moon orbit is currently being circularized, or (2) a third body in
orbit around the planet is modifying the orbit of the moon and constantly pumping the
eccentricity. (1) is likely the case of Titan, (2) is the case of the three Galilean moons Io,
Europa and Ganymede, as well as Saturnian moons Enceladus and Dione. Here, we will
briefly explain how third body perturbations can excite the eccentricity of a moon.

MOON-MOON GRAVITATIONAL INTERACTIONS AND MEAN-MOTION RESONANCES

If there are multiple moons in a planetary system, they gravitationally interact. We con-
sider two moons located at planetocentric distances ri , and ro , with i and o indicating
inner and outer, respectively. The gravitational potential experienced by the inner moon
is:

Ri−o =−GMo

(
1

| ri − ro | −
ri · ro

r 3
o

)
. (2.68)

The first term is called the direct term and results from the direct gravitational attrac-
tion of the outer moon to the inner moon, the second term is the indirect term, which
accounts for the fact that we are using a planetocentric reference frame rather than an
inertial reference frame (the planet orbits around the planet-moon barycenter). As we
did to go from Eq. (2.1) to (2.3), we can expand ri and ro by using the orbital elements of
the two moons to obtain the perturbing potential (e.g., Le Verrier, 1855; Murray and Der-
mott, 2000). The full expansion can be found in Murray and Dermott (2000), the leading
terms are of the form

Ri−o =−GMo

ao
f (α)e |q1|

i e |q2|
o

(
sin

ii

2

)|q3| (
sin

io

2

)|q4|
cos

(
Φpq1q2q3q4

)
, (2.69)

with α= ai /ao and f (α) is a sum of Laplace coefficients and their derivatives ( see Mur-
ray and Dermott (2000) for details about the f (α) function). Additionally, the condition
q =∑4

i=1 qi applies. The angular variableΦpq1q2q3q4 is:

Φpq1q2q3q4 = pλi − (p +q)λo +q1ω̃i +q2ω̃o +q3γi +q4γo , (2.70)

where λ is the mean longitude (λ= ω̃+M), and ω̃ the longitude of pericenter (ω̃=ω+γ).
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Due to the small mass of the moons compared to the planet, the perturbing poten-
tial is much smaller than the planet’s gravitational potential. Moreover, the perturbing
potential often changes fast during an orbital revolution; consequently, its average over
an orbital period is close to zero (R̄ = 0) and the effect of moon-moon perturbations is
small. However, if Φ̇pq1q2q3q4 ≈ 0, the moon experiences a net force (R̄ ̸= 0) that can alter
its orbit. If this occurs, we speak of a p : (p + q) mean-motion resonance (MMR); q is
the order of the resonance and indicates every how many conjunctions of the moons a
conjunction occurs at the same mean longitude.

MMRs are common in the Solar System and have also been observed in exoplanetary
systems, the most well-known being the TRAPPIST-1 system (Gillon et al., 2017). In the
Solar System the most classic example is the Laplace resonance, which involves the three
inner Galilean moons. The study of the Galilean moons has played a central role in the
development of astronomy (see de Sitter (1931) for a historical overview of the problem).
The mean longitudes and longitudes of pericenter of the three moons obey the following
relations:

λ1 −2λ2 + ω̃1 ≈ 0◦, (2.71a)

λ1 −2λ2 + ω̃2 ≈ 180◦, (2.71b)

λ2 −2λ3 + ω̃2 ≈ 0◦. (2.71c)

An expression involving the three satellites can be found:

λ1 −3λ2 +2λ3 ≈ 180◦. (2.72)

The previous equations are not exact identities, in fact the angles librate around the val-
ues indicated. For the last angle, the libration period is 2074 days (Lieske, 1980). If we
look closer at (2.71), we see that the Laplace resonance is a chain of two 2:1 MMRs in-
volving the pairs Io-Europa and Europa-Ganymede.

The stability of the Laplace resonance was a puzzle until Lagrange presented a math-
ematical theory of the motion of the moons that demonstrated that it naturally arises
from the gravitational interaction of the moons5. Nevertheless, the origin of the Laplace
resonance is, even today, a topic of intense debate. Two competing theories exist: the
Laplace resonance is either primordial in origin or not. The first theory postulates that
the Laplace resonant chain was assembled in the protoplanetary disk due to the inward
migration of the Galilean moons (Peale and Lee, 2002). In contrast, the second theory de-
fends that the resonance was assembled once the protoplanetary disk dissipated and the
moons migrated outwards due to tides via the process explained in the previous section
(e.g., Malhotra, 1991; Yoder, 1979).

5The work of the French mathematicians Lagrange and Laplace on the Galilean moons was closely related
to another question that had troubled Newton and the answer of which involved creating the mathematical
machinery that today is so central to celestial mechanics. This question was: is the Solar System stable?
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ECCENTRICITY PUMPING AND THE EQUILIBRIUM ECCENTRICITY

Regardless of its origin, the orbital commensurability given by (2.71) results in a coherent
gravitational perturbation that can increase the eccentricity of the moons involved. The
change in eccentricity close to a resonance can be obtained using Lagrange’s planetary
equations (Eq. (2.57)). It can be shown that the change of orbital eccentricity of the inner
moon in a MMR is given by (Dermott et al., 1988, Equation 21):

1
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(2.73)

ṅt indicates the change in orbital frequency due to the action of tides alone. Note that
for simplicity in the last step we ignored the change in semimajor axis due to dissipa-
tion in the satellite. If the inner moon migrates outwards faster than the outer moon
(τa,i < p(p+q)−1α−3/2τa,o), its eccentricity is pumped. This is indeed normally the case.
Recalling the tidal migration time-scale (Eq. (2.66)), we see that, unless k2,p /Q is fre-
quency dependent —as seems to be the case for Saturn (Lainey et al., 2017, 2020)— or
the outer moon is much more massive than the inner moon, the inner moon migrates
faster than the outer moon. This seems to suggest that as the inner moon moves deeper
into resonance its eccentricity increases until outward migration causes the moon to
move out of resonance. However, we need to remember that tidal dissipation within
the moon tends to decreases its eccentricity, (2.65). As a consequence, an equilibrium
configuration can be attained in which

(
dei

dt

)
r es

+
(

dei

dt

)
t i des

≈ 0. (2.74)

Using (2.65) and (2.73), we find that this occurs for an eccentricity of:

e2
i ∼

τe,1

τa,1
= 2

7

(
Mi

Mp

)2 (
Rp

Ri

)5 | k2,p | /Qp

| k2,m | /Qm
(2.75)

The equilibrium configuration can be understood as follows: if the inner moon is
perfectly elastic and there is no tidal dissipation, conjunction occurs when the inner
moon is at its pericenter and the outer moon is at its apocenter; the tangential compo-
nent of the gravitational force exerted by the inner to the outer moon during an orbital
period averages out to zero. In contrast, if there is tidal dissipation in the inner satellite,
conjunction occurs when the inner moon is slightly past its pericenter. This breaks the
symmetry and results in a net tangential force exerted by the inner moon to the outer
moon. Angular momentum is transferred from the inner to the outer moon; the inner
moon “pushes” the outer moon. If the amount of transferred angular momentum is such
as that (2.74) is satisfied, the eccentricity stops growing and the two moons can remain
in a stable configuration for a long period of time.
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Plugging (2.75) into the expression of tidal dissipation for a synchronous moon,
Eq. (2.41), we can compute the amount of tidal dissipation when this configuration is
attained:

Ė ∼
n5R5

p

G

(
Mm

Mp

)2 | k2,p |
Qp

. (2.76)

Interestingly, in equilibrium dissipation does not depend on the structure of the satellite
but on how much energy dissipation occurs within the planet —dissipation within the
planet prompts a transfer of rotational energy from the planet to the moon where it is
dissipated. The previous equation makes evident that the more dissipative a planet is,
the higher tidal dissipation in one of its moons can be.

As mentioned above, the value of | k2,p | /Qp can be estimated from the observations
of the moon’s dynamics. Using observations spanning more than a century, the migra-
tion rate of the moons of Jupiter and Saturn have been obtained (Lainey et al., 2009, 2012,
2017, 2020) and the value | k2,p | /Qp for these planets inferred. In the case of the Jovian
system, intense tidal dissipation within Io has such a prominent role in the dynamics of
the Laplace resonance that the value of | k2,I o | /QI o has also been estimated from astro-
metric data — albeit with a high correlation with the | k2,p | /Qp of Jupiter (Lainey et al.,
2009). Apart from this, direct measurements of Ė are available for two moons, Io and
Enceladus. Below we discuss what this ensemble of observations implies for the thermal
and orbital state of these two moons.

ENCELADUS

Enceladus’ thermal output has been measured by Cassinis’ CIRS instrument: the South
Polar Terrain radiates around 16 GW of energy (Howett et al., 2011). An additional con-
straint on Enceladus’ thermal output can be obtained by considering the amount of heat
conducted through the ice shell. If we assume Enceladus is in thermal equilibrium (the
amount of heat produced inside is conducted through the shell and radiated to space),
it can be shown that (Nimmo et al., 2018):

Ė ≈ 20

(
25

hi ce

)
[GW] (2.77)

where hi ce is the mean ice thickness in km.

Using the concepts introduced in the previous section, we can compare these two es-
timates with the amount of energy dissipation Enceladus would experience in its current
2:1 MMR with Dione if it was in orbital equilibrium. Using (2.76), we get

Ė ≈ 1.5

(
18000

QS

)
[GW], (2.78)

where we have retained the prefactors and assumed that k2,S = 0.34 (Lainey et al., 2017).
As noted above, the thermal output of Enceladus in orbital equilibrium solely depends
on the dissipative properties of Saturn, and not those of the moon. A lower bound of
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| k2,S | /QS can be obtained by considering the time it would take for Saturn’s moons
to migrate from the planet’s Roche limit or synchronous radius to their current posi-
tion during the age of the Solar System. For the innermost icy moon, Mimas, this yields
QS > 18000 (Peale et al., 1980). Inserting this value in (2.78) and comparing the result

with the observed Ė or that given by (2.77), this would imply Enceladus is not in orbital
equilibrium. If this was the case, it would indicate that we are witnessing Enceladus
in a transient state of anomalously high thermal activity, probably associated with an
episodic release of tidal heat built up in its interior during many years.

As mentioned above, rather than inferring the value of QS from theoretical con-
siderations, we can try to measure it using precise observations of the moons’ posi-
tions. Combining Earth-based astrometric observations of Saturn’s moons with accu-
rate ephemerides of the moons obtained using the Cassini space probe, Lainey et al.
(2012, 2017, 2020) obtained a QS about ten times lower. The low quality factor of Saturn
can imply a late-formation of the Saturnian moons as proposed by Asphaug and Reufer
(2013) or be indicative of a QS strongly dependent on frequency. Most important for our
present discussion is the fact that a low QS reconciles the observed thermal output of
the moon with the moon being in thermal-orbital equilibrium.

If Enceladus is in thermal-orbital equilibrium, a major question arises. Using tra-
ditional viscoelastic models, tidal dissipation in the solid layers (ice and core) cannot
easily account for this high level of tidal dissipation. The core and conductive ice shell
are expected to be too rigid to generate sufficient heat (e.g., Roberts and Nimmo, 2008;
Souček et al., 2016). This has puzzled the scientific community in the last decades (e.g.,
Lainey et al., 2012; Meyer and Wisdom, 2007; Nimmo et al., 2018) and has prompted re-
search into other processes that can close Enceladus’ thermal budget such as ocean tides
(e.g., Chen and Nimmo, 2011; Tyler, 2009; Wilson and Kerswell, 2018) or tides in an un-
consolidated porous core (Choblet et al., 2017; Liao et al., 2020). In this context, we can
appreciate the relevance of research questions 3 and 5 in new light.

IO

Io’s volcanic activity is so prominent that its thermal emissions can be observed and
measured using ground-based telescopes (e.g., Matson et al., 1981; Veeder et al., 1994).
The moon’s thermal emissions were also accurately measured thanks to the Galileo mis-
sion (Spencer et al., 2000). Average surface heat flux estimates obtained using the two
methods cluster around 2 Wm−2. This value is consistent with the | k2,I o | /QI o obtained
from astrometric observations indicating that the moon is in thermal equilibrium (Io
radiates approximately as much heat as it produces inside). Even though the value of
| k2,I o | /QI o is well constrained, how and where energy is dissipated within Io is still a
matter of debate. Io’s volcanic activity might be primarily driven by tidal dissipation in a
thin partially-molten asthenosphere, in the deep mantle (e.g., Segatz et al., 1988, Figure
2.4), or, alternatively, in a liquid magma ocean (Tyler et al., 2015). As for Saturn, Jupiter’s
| k2,j | /Qj has been constrained using astrometric observation (Lainey et al., 2009). The
obtained value indicates that Io is not in orbital equilibrium: it is losing more orbital en-
ergy than it is gaining due to the transfer of angular momentum from Jupiter. While it
is unknown whether this is a trend or a long-term period variation, it evidences that the
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Laplace resonance is not static but it is presently evolving.

The fact that Io’s volcanic activity can be observed from Earth has prompted an inter-
est in the detection of tidally heated exomoons. Just as our Io, it is possible that similar
tidally heated moons might exist in other planetary systems. Peters and Turner (2013)
hypothesized that future telescopes such as the James Web Telescope could observe the
thermal emission of a tidally heated exomoon with a thermal output higher than that of
Io, a super-Io. Furthermore, Oza et al. (2019) proposed that some of the chemicals ex-
pelled via volcanism in a tidally heated moon leave a distinct signature in the spectra of
gas giants.

We have seen that for Io to exist, several aspects need to converge: a mean-motion
resonance, the moon needs to have certain internal structure and rheology, Jupiter must
be quite dissipative, etc. The same is true for a super-Io. Moreover, as evidenced by as-
trometric observations, the Laplace resonance is not static, it has evolved and will evolve
throughout the life of the Solar System. This exemplifies that a super-Io is not necessarily
active during its whole life —we can expect that as it migrates away from the planet tides
become weaker and so does tidal dissipation. In Chapter 6, we study these elements to
answer the following research questions:

6. What is the thermal state of a super-Io?

7. How long can a super-Io persist in an observable state?
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WITH MERIDIONAL VARYING
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Tidal heating can play an important role in the formation and evolution of subsurface
oceans of outer-planet moons. Up until now tidal heating has only been studied in sub-
surface oceans of spatially uniform thickness. We develop a numerical model to consider
oceans of spatially variable thickness. We use the Laplace Tidal Equations for the ocean
and model the ice shell using membrane theory. The problem is solved using the com-
mercial Finite Element software Comsol Multiphysics ®. We use this new model to study
the tidal response of Enceladus’ ocean with a twofold objective: to understand how ocean
thickness variations modify the tidal response of a subsurface ocean and to assess if tidal
dissipation in an Enceladan ocean with varying ocean thickness can explain the high heat
flux emanating from Enceladus’ South Polar Terrain and the perdurance of a subsurface
ocean. We consider the effect of meridional ocean thickness changes of spherical harmonic
degree two and three as suggested by topography and gravimetry data. We observe that an
ocean with degree two topography responds with the same eigenmodes as an ocean of con-
stant thickness but resonances occur for thicker oceans. However, resonant ocean thick-

An earlier version of this chapter is published in Icarus (Rovira-Navarro et al., 2020): Rovira-Navarro, M.,
Gerkema, T., Maas, L. R., van der Wal, W., van Ostayen, R., & Vermeersen, B. (2020), Tides in subsurface oceans
with meridional varying thickness, Icarus, 343, 113,711.
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nesses are still thin compared to current estimates for Enceladus ocean thickness. Rossby-
Haurwitz waves, excited by the obliquity tide for thick oceans of constant thickness, are
not excited at the tidal frequency when oceans of variable thickness are considered. This
result implies that the role of the obliquity tide in ocean tidal-dissipation might have been
overestimated for Enceladus and other icy worlds. An antisymmetric, degree-three ocean
thickness variation mixes the ocean modes excited in a constant thickness ocean by the
eccentricity and obliquity tide.
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3.1. INTRODUCTION

The discovery of subsurface oceans in the outer Solar System (e.g., Beghin et al., 2010;
Beuthe et al., 2016; Iess et al., 2014; Khurana et al., 1998; Kivelson et al., 1996; Saur et al.,
2015; Thomas et al., 2016) has raised new questions on the thermal evolution of icy
moons. Because they receive little energy from the Sun, the persistence of subsurface
oceans in these bodies needs to be explained by internal heat sources such as radiogenic
heating and tidal dissipation and/or the presence of dissolved salts or ammonia that de-
crease water’s melting temperature. Tidal dissipation arises due to the non-zero obliq-
uity and eccentricity of synchronously rotating icy satellites. It has long been recognised
that tidal dissipation in solid viscoelastic layers can generate enough heat to maintain
subsurface water reservoirs (e.g., Cassen et al., 1979). This is the case of the Jovian satel-
lites Europa, Ganymede and Callisto, where models including radiogenic and tidal heat-
ing predict the presence of subsurface oceans (e.g., Hussmann et al., 2002; Ojakangas
and Stevenson, 1989; Spohn and Schubert, 2003). However, for Enceladus, tidal heating
in the solid layers of the moon is not enough to explain the presence of a global ocean
(Bêhounková et al., 2017; Souček et al., 2019; Tobie et al., 2008) unless the satellite rocky
core is unconsolidated (Choblet et al., 2017). Neither can it account for the 10−50 GW
of average tidal dissipation suggested by astrometric observations (Lainey et al., 2012,
2017; Nimmo et al., 2018) and the 4.2 GW of heat emanating from Enceladus’ South Po-
lar Terrain (SPT) observed by Cassini’s CIRS instrument (Spencer et al., 2013). This fact
has led to the speculation that oceanic tidal dissipation contributes significantly to the
thermal budget of subsurface oceans (e.g., Tyler, 2008).

In the last decade, the role of ocean dynamics in tidal-dissipation has been inves-
tigated. Tyler (2011, 2014, 2008, 2009) considered the response of an ice-free ocean to
tides, Matsuyama (2014) expanded the formulation to consider the effect of self-gravity
and a deformable rocky core. More recently, models that consider the overlying ice shell
have been developed (Beuthe, 2016; Hay and Matsuyama, 2017, 2019; Matsuyama et al.,
2018). The ocean response highly depends on the surface gravity wave speed (c) which
is given by

√
g h, with g being the ocean surface gravity and h the ocean thickness. The

time it takes for a perturbation to travel around the moon is 2πR/c, with R the moons’s
radius. If this time is much smaller than the tidal period, the ocean responds following
nearly the equilibrium tide and oceanic tidal dissipation becomes negligible. Otherwise,
the dynamic response of the ocean needs to be considered. Resonant ocean thicknesses
exist for which tidal dissipation becomes very high. However, these resonances hap-
pen for oceans considerably thinner than those present on the moons of the outer Solar
System (e.g., Matsuyama et al., 2018; Tyler, 2014). It has been suggested that these res-
onances can prevent subsurface oceans from freezing as they get thinner (Tyler, 2011),
although this may not be the case for small satellites like Enceladus where the effective
rigidity of the ice shell is large (e.g., Hay and Matsuyama, 2019).

The obliquity tide can also excite (planetary) Rossby-Haurwitz waves (Tyler, 2008).
Contrary to surface gravity waves, the restoring force lies in the conservation of potential
vorticity (the fluid dynamical analog of angular momentum conservation) arising in a
field where background vorticity varies spatially (such as due to a latitudinal gradient in
planetary vorticity, or due to thickness-variations of a rotating fluid). These waves are
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characterised by an ocean flow that is tangentially non-divergent implying that there are
no surface displacements in the radial direction. Rossby-Haurwitz waves were argued to
play a major role in preventing Enceladus and Europa’ ocean from freezing (Tyler, 2011,
2008, 2009). However, this argument relied on what is likely a two orders of magnitude
overestimate of the obliquity of Enceladus (Chen and Nimmo, 2011) and the debate on
the role of tidal heating in the ocean of Enceladus was reopened.

All of the previous studies are restricted to oceans of constant thickness. However,
it is expected that subsurface oceans have thickness variations. For instance, gravity
and topography data suggests that Enceladus’ ocean thickness is not constant: the ice
shell has degree two and three meridional thickness variations (Beuthe et al., 2016; Čadek
et al., 2016; Hemingway and Mittal, 2019). On Earth, tides are greatly affected by ocean
bathymetry, which raises the question of how the tidal response of a subsurface ocean
of variable thickness differs from that of an ocean of constant thickness. In particular,
we want to understand what the effect of ocean thickness variations is on gravity waves
resonances and the excitation of Rossby-Haurwitz waves.

To tackle these questions we use a finite element software package Comsol Multi-
physics ® to solve the Laplace Tidal Equations for an ocean with varying thickness. To
account for the ice shell we use the thin shell theory of Beuthe (2008, 2016) in the mem-
brane limit. We consider a subsurface ocean overlying a rigid spherical core and neglect
the effects of self-gravity. While our method can illustrate the effect of ocean thickness
changes for subsurface oceans in general, we focus on Enceladus as there is compelling
evidence for meridional ocean thickness variations and closing its thermal budget has
proven to be more problematic than for other icy worlds (Nimmo et al., 2018). We start
by considering an ocean of constant thickness and its solutions and then add meridional
degree two and three ocean thickness variations via the dependence of phase speed on
ocean thickness, while formally keeping the thickness of the elastic lid constant. This
implicitly corresponds to an ocean with bedrock topography (Figure 3.1). Even though
our model has limitations (no self-gravity, a rigid core and constant ice shell thickness),
it provides the first insight on how ocean thickness variations change the dynamic tidal
response of subsurface oceans.
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(a) Constant ocean thickness
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(c) n30 =−0.5
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Figure 3.1 Ocean thickness for a uniform ocean 10 km thick (a) and oceans with degree
two (b) and three (c) meridional thickness variations.

3.2. PROBLEM FORMULATION AND ASSUMPTIONS

The Laplace Tidal Equations (LTE) were presented by Laplace (1798) in his study of
barotropic (surface) tides. We use the formulation given in Tyler (2011). The linearised
LTE for an ocean of variable thickness h and surface gravity g on a spherical body with
radius R rotating at angular frequencyΩ are given by:

∂t s − f s × r =−c2∇(m +m f )−Fdi ss , (3.1a)

∂t m +∇· s = 0, (3.1b)

where c is the local surface gravity wave phase speed that is a function of ocean thick-
ness, f the Coriolis parameter (2Ωcosθ with θ being co-latitude), m f a potential forcing
term and r the unit radial vector. m and s are respectively a surface density and a verti-
cally integrated momentum flow defined as:

m = ρwη, (3.2)
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s =
∫

h
ρw udr. (3.3)

ρw is the ocean density (assumed to be constant), and η and u are the radial surface
displacement and tangential flow velocity. The forcing term m f follows from the tidal
potential φ:

m f =
ρw

g
φ. (3.4)

The term Fdi ss is a dissipative term that can take different forms. It is often described
using a linear drag term, a quadratic drag terms or a combination of both:

Fdi ss =αs +
(

cD g 2

c4ρw

)
s | s | . (3.5)

α and cD are the Rayleigh and the bottom drag coefficient, respectively. Differences be-
tween both approaches are discussed in detail in Hay and Matsuyama (2017). For a given
bottom drag coefficient, scaling relations can be used to estimate a linear drag coefficient
(Matsuyama et al., 2018). As most studies have considered the simpler case of linear drag
(e.g., Matsuyama, 2014; Matsuyama et al., 2018; Tyler, 2011) and we want to investigate
how the response of an ocean with variable thickness compares with an ocean of con-
stant thickness we adopt the simpler linear approach.

If a pressure load q (positive inwards) acts on the ocean surface (e.g., atmospheric
pressure, force exerted by an elastic lid), Eq. (3.2a) can be modified as:

∂t s − f s × r =−c2∇(m +m f +q/g )−αs (3.6a)

∂t m +∇· s = 0. (3.6b)

A problem that can arise depending on the choice of coordinates is the “pole-
problem": nodes located at the poles become singular as the definition of east-west be-
comes singular (Hay and Matsuyama, 2017; Platzman, 1978). To avoid this problem the
equations can be rewritten using a Helmholtz decomposition. The momentum flow is
split into curl-free (Φ) and divergence-free (Ψ) components:

s =∇Φ+∇× (Ψr ). (3.7)

By using this definition and taking the curl and divergence of (3.6a), (3.6) becomes
(Tyler, 2011):

∂t m +∇2Φ= 0, (3.8a)
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(∂t +α)∇2Φ+ f ∇2Ψ−∇ f · [(∇Φ+∇× (Ψr ))× r ] =
−c2∇2 (

m +m f +q/g
)−∇c2 ·∇(m +m f +q/g ),

(3.8b)

(∂t +α)∇2Ψ− f ∇2Φ+ r · [∇ f × (∇Φ+∇× (Ψr ))× r
]=

r · [∇c2 ×∇(m +m f +q/g )
]

.
(3.8c)

From (3.8b) and (3.8c) it becomes clear that ocean thickness variations enter the equa-
tions through the implicit dependence of c2 on ocean thickness. In case of uniform c2,
we recover the equations for an ocean of constant thickness.

The term q couples the ocean and the ice shell response. Two different approaches
have been used to account for this term: the thick and the thin shell approaches. The
thick shell approach considers all the elements of the stress and strain tensor (Mat-
suyama et al., 2018). The thin shell theory is a 2D analogue of the 1D beam theory. It
can be used if the shell is thin compared with the radius of the body (i.e., five to ten per-
cent of the radius) (Beuthe, 2008). Under this circumstance it can be assumed that the
transverse stress is negligible and that normals to the reference surface remain normal
after deformation. The membrane limit is a further simplification that consists in ne-
glecting bending within the ice shell. Matsuyama et al. (2018) and Hay and Matsuyama
(2019) used the thick shell approach to study tidal dissipation in subsurface oceans, and
showed that the membrane approach is accurate to 4% for Enceladus.

We use the thin shell approximation in the membrane limit. Beuthe (2008) derived a
set of equations to study the deformation of a membrane of changing thickness under
transverse and tangential loads. However these equations proved to be difficult to be
efficiently implemented using Comsol’s Multiphysics® tools. The equations are fourth
order differential equations which imply that quintic or higher order elements need to
be used together with a high spatial resolution. This fact highly increases the computa-
tional time making it difficult to explore the parameter space. Due to this limitation we
consider an ice shell of constant thickness, which implies that changes in ocean thick-
ness are implicitly represented by bedrock topography. In this case, the relation between
surface displacements (η) and pressure exerted by the ice shell (q) is given by a second
order differential equation:

1

R
∆′η−βR∆′q + (1+ν)βRq = 0. (3.9)

ν is the Poisson ratio and β is extensional rigidity of an ice shell of constant thickness hi

and Young modulus E and is given by (Beuthe, 2008, 2016):

β= 1

Ehi
. (3.10)

∆′ is a differential operator equal to R2∇2 +2.
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Equations (3.8) and (3.9) can be solved to obtain the ocean response to tidal forc-
ing. Once the ocean tidal response is obtained, the momentum flow s can be used to
compute the amount of tidal dissipation for each time-step:

D =
∫

S

α

ρw h
s · sdS. (3.11)

D changes over a tidal-period. We are interested in the average tidal dissipation over a
tidal-period, which is obtained as:

D̄ = 1

T

∫
T

Dd t (3.12)

where T is the tidal period.

Equations (3.8) are forced through the tidal potential φ, which arises due to the ec-
centricity (e) and obliquity (θo) of the satellite. The tidal potential can be written in terms
of the satellite’s orbital elements (Jara-Orué and Vermeersen, 2011):

φ=− (nR)2 (φ0 +φe0 +φe2e +φe2w +φo1e +φo1w ), (3.13)

where n is the mean motion of the satellite, which equals its rotational frequency Ω. φ0

is the static component of the tidal-potential, which does not have any dynamic effect.
The eccentricity and obliquity tide can be written in terms of spherical harmonics of de-
gree two and different harmonic orders. The eccentricity tide consists of an order zero
component (φe0) and an order two component that can be further split into an eastward
(φe2e ) and a westward component (φe2w ). The obliquity tide is an order one forcing that
can also be split into eastward and westward components (φo1e ,φo1w ). These compo-
nents are given by:

φe0 =−3e

2
P2,0(cosθ)cos(nt ), (3.14a)

φe2e = 7e

8
P2,2(cosθ)cos

(
2ϕ−nt

)
, (3.14b)

φe2w =−e

8
P2,2(cosθ)cos

(
2ϕ+nt

)
, (3.14c)

φo1e =−sin(θo)

2
P2,1(cosθ)sin

(
ϕ−nt −ω)

(3.14d)

φo1w = sin(θo)

2
P2,1(cosθ)sin

(
ϕ+nt +ω)

. (3.14e)

where e, θo and ω are the satellite’s eccentricity, obliquity and argument of pericenter, ϕ
is the longitude and Pl ,m are associated Legendre polynomials of degree l and order m.
The physical parameters used for Enceladus are given in Table 3.1.
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3.3. SOLVING THE LTE USING FEM
Different approaches exist to solve the previous set of partial differential equations. If the
ocean thickness is constant, spectral methods are very efficient (Beuthe, 2016; Longuet-
Higgins, 1968; Matsuyama, 2014; Matsuyama et al., 2018; Tyler, 2011, 2014). In such
methods, m, Φ, Ψ are expanded in a series of spherical harmonics and Equations (3.8)
are reduced to a set of algebraic equations that can be inverted to obtain the spherical
harmonic coefficients. However, if c2 is not constant this approach is more problematic
and other numerical approaches are more suitable.

For example, for Earth, Platzman (1975) used a finite difference method to study the
eigenmodes of the Atlantic ocean. The finite difference method presents some chal-
lenges, one of them being the previously mentioned “pole-problem”. Platzman (1978)
developed an alternative approach using a Finite Element Method (FEM) and applied it
to study the eigenfrequencies and modes of Earth’s ocean basins. In the context of plan-
etary sciences, Sears (1995) used a finite difference approach to solve for tides in Titan’s
hydrocarbon lakes. This approach was incorporated in the first version of ODIS (Ocean
Dissipation in Icy Satellites) (Hay and Matsuyama, 2017) to study tides in icy satellites
with non-linear bottom drag. A finite volume method is used in the most recent version
of ODIS (Hay and Matsuyama, 2019).

We use the commercial Finite Element software Comsol Multiphysics® to solve the
system of partial differential equations. Comsol Multiphysics ® allows to solve user-
defined partial differential equations and has extensively tested build-in integration
methods that can be employed (Comsol Multiphysics®, 2012). More specifically, we use
the Boundary PDE module to solve the PDEs in the boundary of a 3D domain, in our
case a sphere of radius R. The equations are discretised using a mesh of quadratic tri-
angular elements. The use of quadratic elements gives a smooth representation of the
derivatives of m,Φ,Ψ and therefore of the flow momentum s (see Eq. (3.7)) which results
in a more accurate estimation of tidal dissipation for a given mesh size.

The eigenmodes and eigenfrequencies of the system are obtained using the eigen-
value solver algorithm of Comsol ® which uses the implicitly restarted Arnoldi method
(IRAM). Different methods can be used to integrate the system forward in time. Hay
and Matsuyama (2017, 2019); Sears (1995) use an explicit method. This implies that the
time step should fulfill the Courant-Friedrichs-Lewy (CFL) stability conditions, which
dictates that ∆t ≤∆l /c with ∆l being the mesh size, and places a stringent constraint on
time-step for thick oceans. In contrast, we decide to use the Generalized-Alpha method,
an implicit second-order integration method (Chung and Hulbert, 1993). The use of an
implicit method has the advantage that the CFL condition can be relaxed.

The system is forced with the eccentricity and obliquity tide and integrated forward
in time until a periodic solution is reached. The accuracy of the solution depends on the
mesh-size and time step. Appendix 3.6 shows a benchmark of the FEM model as well as
a study of the effect of mesh-size and time step. Based on the results presented there we
decide to use a mesh with 834 elements (Figure 3.7) and a time step of 0.008 Enceladus
orbital period for the simulations presented below. Using these parameters the error is
shown to be smaller than 3% in most of the parameter space with the exception of few



3

56 3. TIDES IN SUBSURFACE OCEANS WITH MERIDIONAL VARYING THICKNESS

Parameter Value
R [km] 252.1
g [m · s−2] 0.11
Ω [rad · s−1] 5.31 ·10−5

e [-] 0.047
θo [◦] 0.00045
ω [rad] 0
ρw [kg ·m−3] 1007
E [109Pa] 8.778
ν [km] 0.33
hocean [km] 0.01−45
hi ce [km] 0,1,10
α [s−1] 1 ·10−5,−6,−7

Table 3.1 Enceladus physical parameters used for this study. Physical and orbital pa-
rameters are obtained from the JPL ephemerides ( http://ssd.jpl.nasa.gov/?sat_
elem). Enceladus’ obliquity is an upper bound obtained considering Enceladus is in a
Cassini state (Baland et al., 2016). We use the same Young modulus (E), Poisson ratio (ν)
and ocean density (ρw ) as in Souček et al. (2016). Ocean (hocean) and ice shell thickness
(hi ce ) are varied within the indicated range.

cases close to resonant states for which the error can be up to 20%.

3.4. RESULTS

We use the FEM presented above to compute the response of subsurface oceans to the
time-varying eccentricity and obliquity tidal potential (3.14). We consider ocean thick-
nesses between 10 m and 45 km. For each ocean thickness we force the system with
the eccentricity and obliquity tide, the solution approaches the periodic steady solution
asymptotically. In order to speed-up convergence we follow the approach of Hay and
Matsuyama (2017). Instead of using initial conditions of the rest state, we use the con-
verged solution of the previous ocean thickness as starting point. For some ocean thick-
nesses, the ocean response exhibits oscillations with a period of few Enceladan orbits
diminishing in amplitude (see Figure 3.8). For these cases we compute tidal dissipation
by averaging tidal dissipation for the last oscillation.

The Rayleigh coefficient depends on the dissipation mechanism at work in the
ocean. Using values of Earth’s Rayleigh and bottom drag coefficients, Matsuyama et al.
(2018) argues that its value can range from 10−5 s−1 to 10−11 s−1. We consider a nominal
Rayleigh coefficient of 10−7 s−1 and briefly discuss the effect of changing this parameter
by exploring two more dissipative scenarios (10−5,−6 s−1).

We are interested in studying the effect of ocean thickness variations on the ocean
response. However, to put our results into context, we start by considering the very thor-
oughly studied case of a global ocean of constant thickness without any ice-cover, then

http://ssd.jpl.nasa.gov/?sat_elem
http://ssd.jpl.nasa.gov/?sat_elem
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discuss the effects of adding an elastic ice shell of constant thickness and, finally, we
study how ocean thickness variations alter the ocean response.

3.4.1. OCEAN OF UNIFORM THICKNESS

The case of a global ocean with a free surface (no ice shell) has been widely studied in the
past in the context of geosciences (e.g., Hough, 1898; Longuet-Higgins, 1968) and recently
revisited in the context of planetary sciences (e.g., Beuthe, 2016; Hay and Matsuyama,
2017; Matsuyama, 2014; Tyler, 2008). The behaviour of the system can be understood in
terms of its eigenmodes and eigenfrequencies. Resonances can occur when the system
is forced at one of its eigenfrequencies with a forcing that has a spatial pattern similar
to that of the eigenmode. We will first consider the eigenmodes of Equations (3.8,3.9)
without a forcing term and then the response of an ocean forced with the tidal potential.
For the discussion that follows, we will name the different modes as follows: the first let-
ter indicates whether the mode is symmetric (S) or antisymmetric (A) with respect to the
equator; the number that follows indicates the order of the mode (wave number in the
longitudinal direction), and the second letter indicates the propagation direction: east
(E), west (W) or standing non-propagating wave (-). As some modes share the previous
characteristics we will use subindices to distinguish modes belonging to the same family,
with 1 corresponding to the mode excited for the thickest ocean.

It is very common to study the LTE in terms of the non-dimensional Lamb parameter
ϵ= 4Ω2R2/g h (e.g., Hough, 1898; Longuet-Higgins, 1968). In his pioneering work, Hough
(1898) studied the response of a non-dissipative ocean in the limit of a thick ocean h →
∞ (or ϵ→ 0) and identified two classes of waves: waves of the first class (gravity-waves),
and waves of the second class (vorticity waves)1. He showed that the eigenfrequencies
(in the asymptotic limit) are respectively given by:

n

2Ω
=

√
l (l +1)

ϵ
(3.15a)

n

2Ω
= m

l (l +1)
(3.15b)

where l and m are the degree and order of the ocean response. Class 2 oscillations propa-
gate westward, while class 1 oscillations can propagate either east- or west- ward. Figure
3.2 shows a representative Class 1 (S2E)1 and Class 2 (A1W )1 mode. The plots show the
amplitude and phase of surface displacements (η) as well as the tangential flow velocity
(u) at t = 0 (in red) and tidal ellipses showing the change of magnitude and direction
of the current vector over a tidal period. The difference between these two modes can

1Vorticity waves were first discovered by Laplace (Laplace, 1798). These oscillations were forgotten until Mar-
gules (1893) and Hough (1898) rediscovered them independently and called them oscillations of second class.
Rossby and Haurwitz (Haurwitz, 1940; Rossby, 1939) rediscovered the waves of the second class again and
since then the term "Rossby-Haurwitz waves" or "planetary waves" is also widely used to refer to Class 2
oscillations. We use both terms depending on the context
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be further appreciated by computing the ratio of potential energy to total energy (ki-
netic plus potential). For an ocean thickness of 10000 km this ratio equals 0.4659 for
the Class 1 (S2E)1 mode and 0.016 for the Class 2 (A1W )1 mode, indicating that surface
displacements are small for the (A1W )1 mode, which means that the flow is nearly non-
divergent. As ocean thickness increases, the ratio approaches 0.5 and 0 for Class 1 and 2
modes, respectively (Longuet-Higgins, 1968, Figures 14,15).

The eigenfrequencies of the system for different ocean thicknesses are shown in Fig-
ure 3.3. The modes that have the right spatial structure to be excited by the eccentricity
and obliquity tide are labeled. For an ocean of constant thickness symmetric and anti-
symmetric modes with respect to the equator are decoupled. Therefore the symmetric
eccentricity tide excites symmetric modes while the antisymmetric obliquity tide excites
antisymmetric modes. These modes are shown in Figures 3.9 and 3.10, where the dis-
tinction between symmetric and antisymmetric modes can be identified as a 180◦ phase
lag between the Northern and Southern Hemisphere. The order of the mode is evident
as the number of cycles in the zonal direction. Class 2 modes can be distinguished in
Figure 3.3 as modes that asymptotically approach a constant frequency. This is the case
of the (A1W )1 mode, which in the asymptotic limit has an eigenfrequency equal to that
of the tidal forcing n/2Ω= 0.5. By contrast, the other indicated modes are Class 1 modes
whose frequency in the thick ocean limit is proportional to h1/2 and therefore show up
as straight lines of slope 1/2 in Figure 3.3.

As the ocean becomes thinner the spectrum becomes denser and we cannot use the
classification into Class 1 and 2 modes anymore. In the limit h → 0 (ϵ→ ∞), Longuet-
Higgins (1968) distinguished three types of modes. For the first type, the eigenfrequency
is proportional to h1/4 while for the second and third type it is proportional to h1/2. The
second and third type can be distinguished because they propagate westward and east-
ward respectively. All modes labelled in Figure 3.3 are type 1 except mode (S2E)1, which
is type 3 as evidenced by its slope. In between the two asymptotic limits (ϵ→ ∞ and
ϵ→ 0) the eigenfrequency curves change their slope as they transition to class 1 and 2
oscillations.
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(a) (S2E)1

(b) (A1W )1

Figure 3.2 Class 1 (a) and Class 2 mode (b). The arrows show the flow velocity at t = 0,
the surrounding ellipses show the change of the flow velocity during a tidal period. The
phase and amplitude of surface displacements are shown in the background, with the
phase represented by the colour and amplitude by brightness. Black indicates diminish-
ing amplitude.
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(a) No topography
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Figure 3.3 Eigenfrequencies for an ocean without ice cover and different ocean thickness
changes. The modes excited by the obliquity tide and the eccentricity tide are indicated.
For the ocean with degree three order zero topography only the new excited modes (in-
dicated in darker blue) are labeled. High frequency eigenmodes corresponding to thin
oceans (upper left corner) are not shown.

When forced with the tidal potential, the response of the system is given by a com-
bination of the previous eigenmodes. The tidal response is maximized if the eigenfre-
quency of the mode is the same as the tidal frequency, which can be visualised as a
mode crossing the horizontal line corresponding to n/2Ω= 1/2 in Figure 3.3. When this
happens a resonance occurs. Figure 3.4 shows the average tidal dissipation for different
ocean thicknesses due to the eccentricity and obliquity tide. The ocean response is char-
acterised by a series of resonance peaks, i.e. ocean thicknesses for which tidal dissipation
is enhanced by several orders of magnitude. For these resonant peaks, tidal dissipation
can be above Enceladus’ observed thermal flux (Spencer et al., 2013). The resonance peak
corresponding to a thicker ocean occurs for an ocean thickness of ho = 363 m. However,
as noted before, the actual ocean on Enceladus is expected to be much thicker (Beuthe
et al., 2016). Surface heat flux patterns due to the eccentricity tide for a resonant and
non-resonant configuration are shown in Figure 3.5 a,b. In both cases tidal dissipation
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is symmetric and maximum in equatorial regions, for the resonant ocean thickness tidal
dissipation is increased by 7 orders of magnitude. Dissipation patterns depend on flow
amplitudes, from the eigenmodes depicted in Figure 3.9, it follows that tidal dissipation
in polar regions is very small for the eccentricity tide, which does not agree with Cassini’s
observation of enhanced heat flux in Enceladus SPT.

The curves corresponding to the eccentricity and the obliquity tides are markedly
different. Dissipation due to Enceladus’ obliquity is lower than that due to its eccentric-
ity, mainly because the obliquity of Enceladus is predicted to be very small (see Table
3.1). Moreover, the behaviour for an increasing ocean thickness differs. For the eccen-
tricity tide we observe that tidal dissipation decreases with ocean thickness. As the ocean
thickness increases the surface gravity wave-speed increases too, thus the ocean can ad-
just faster to the varying tidal potential. Interestingly, this is not the case for the obliquity
tide, which shows the opposite behaviour. This is because the ocean response is mainly
given by the Rossby-Haurwitz mode (A1W )1. We should not label this behaviour as a
resonance (Beuthe, 2016). In contrast to the other resonance peaks, where in the invis-
cid limit kinetic energy diverges as the difference between eigenfrequency and forcing
frequency becomes smaller, the excitation of the (A1W )1 mode does not result in a di-
vergent response. Dissipation patterns for this mode are shown in Figure 3.5c. Contrary
to the eccentricity tide, where tidal dissipation is maximum at the equator, tidal dissipa-
tion is enhanced at the poles for the obliquity tide. However, dissipation patterns remain
symmetric and the values are still small compared with the estimated radiogenic heat-
ing (∼ 4×10−4 Wm−2) making it difficult to explain Enceladus dichotomy through this
mechanism.

The ocean response is influenced by the value of the Rayleigh coefficient. As ex-
pected, for more dissipative oceans (higher α) resonant peaks are smoothed (Figure 3.4
d,e). Similarly, lower values result in narrower resonance peaks but do not alter the ocean
thickness for which they occur provided α≪Ω. When damping is increased, the obliq-
uity tide in the thick ocean limit is no longer only described by the Rossby-Haurwitz
alone, gravity waves are added to the solution. In such cases, the maximum value of
tidal dissipation is not obtained in the limit h →∞ (Beuthe, 2016; Hay and Matsuyama,
2019; Matsuyama, 2014).

If an ice shell is added, the response of the system is altered. We compute the tidal
response of an ocean of constant thickness covered by a 1 or 10 km ice shell. As in Beuthe
(2016) and Matsuyama et al. (2018) we find that the effect of adding an elastic ice shell
is twofold (Figure 3.4): (1) it shifts the gravity mode resonance peaks to thinner oceans
and (2) for thick oceans it dampens the ocean response. Using the (S2E)1 mode as an
example we can see that the ocean thickness for which this mode has an eigenfrequency
equal to that of the tidal force decreases with increasing ice shell thickness (Figure 3.6b),
resulting in the shift of the resonance peaks. The (A1W )1 mode still has an eigenfre-
quency equal to n/2Ω= 0.5 in the thick ocean limit and thus Rossby-Haurwitz waves are
still excited by the obliquity tide in an ocean covered by an ice shell.
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Figure 3.4 Tidal dissipation for different ocean thicknesses for an ocean of constant
thickness and oceans with degree two and three thickness topography. Each panel shows
tidal dissipation due to the obliquity tide and eccentricity tide with the curves for the
obliquity tide corresponding to lower values of tidal dissipation. The different panels
show the solution for different ice shell thicknesses (0,1 and 10) km and Rayleigh coef-
ficient (10−5,10−6,10−7) s−1. In (a) the different resonances are labelled, those excited
due to antisymmetric topography are indicated in blue. The horizontal grey band corre-
sponds to the observed thermal output of Enceladus (Spencer et al., 2013)
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(a) hocean = 363m (b) hocean = 30km

(c) hocean = 30km (d) hocean = 5km

Figure 3.5 Time-averaged tidal dissipation patterns for the eccentricity (a,b) and obliq-
uity tide (c,d) in an ice-free ocean. (a,b,c) show dissipation patterns for an ocean of con-
stant thickness while (d) correspond to an ocean with degree three topography

3.4.2. OCEAN OF VARIABLE THICKNESS

Using gravity, topography and libration data Beuthe et al. (2016) Čadek et al. (2016) and
Hemingway and Mittal (2019) showed that Enceladus’ ice shell has degree two and three
thickness changes resulting in ocean thickness variations of the same type. As explained
in Section 3.2, our model uses an ice shell of constant thickness; ocean thickness varia-
tions are therefore implicitly given by sea-floor topography. We consider an ocean with
thickness variations of the same kind as those inferred for Enceladus’ ice shell:

h = ĥ(1+n20P20 +n30P30) (3.16)

where ĥ is the average ocean thickness and P20 and P30 are respectively the degree two
and three order zero Legendre functions. These two types of ocean topography are
shown in Figure 3.1. Their effect will be studied separately.
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The values of n20 and n30 depend on ocean and ice shell geometry. For a 38 km thick
ocean and an ice shell of 22.8 km, Beuthe et al. (2016) obtains values for n20 and n30 equal
to ∼ 0.3 and ∼ −0.1, respectively. To make the effect of variable ocean thickness more
evident we use higher nominal values of n20 and n30 equal to 1 and −0.5, respectively.

We start by considering how symmetric ocean thickness changes affects the ocean
response. We compute tidal dissipation due to the eccentricity and the obliquity tide,
the results are shown in Figure 3.4. Some differences are apparent when comparing the
tidal response to that of an ocean without topography. Firstly, the same resonant peaks
characteristic of an ocean of constant thickness are observed, however, they are shifted
towards thicker oceans. For the case of an ocean with a free-surface the (SE2)1 reso-
nance moves from a 363 to a 550 m deep ocean. Secondly, we observe that, oppositely
to what occurs when the ocean is uniform, tidal dissipation decreases with increasing
ocean thickness for the obliquity tide, which suggests that the Rossby-Haurwitz mode
(A1W )1 is not efficiently excited in an ocean with degree two topography.

Some further insight can be obtained by considering the eigenmodes of the system
when topography is included. Figure 3.3b, shows the eigenfrequencies of the system for
n20 = 1. We observe that the general appearance of the spectrum is not very different
from that of a uniform ocean. The ocean thicknesses at which the gravity modes cross
the tidal frequency line change, which translates in the shift of resonance peaks observed
in Figure 3.4. In contrast, the Rossby-Haurwitz (A1W )1 mode approaches a frequency
lower than the forcing frequency in the thick ocean limit, which diminishes the role of
this mode. As we did before for different ice shell thicknesses, we track the (A1W )1 and
the (S2E)1 modes for different values of n20 (Figure 3.6 b). The (S2E)1 resonance gradu-
ally shifts towards thicker oceans as n20 increases and the asymptotic Rossby-Haurwitz
eigenfrequency decreases.

We move now to the case of oceans with antisymmetric ocean thickness changes.
The dissipation curve corresponding to an ocean with antisymmetric thickness varia-
tions is similar to that of an ocean of constant thickness (Figure 3.4). However, we ob-
serve that new resonant peaks corresponding to new modes appear (labelled in blue
in Figure 3.4). We will first discuss the effect of degree three topography in the modes
already present in the constant thickness ocean response and then examine the new
modes.

With the exception of the (A1W )1 mode, the modes also excited for a constant thick-
ness ocean occur for roughly the same ocean thickness as in the constant ocean thick-
ness case. This fact contrasts with degree two topography, where we observe a shift in
the resonance peaks towards thicker ocean. The different behaviour can be understood
by examining the geographical patterns of the gravity modes excited by the eccentricity
and obliquity tide (Figures 3.9 and 3.10). We observe that these modes are confined to
low and mid latitude regions. Thus, it can be expected that the ocean thickness in this
latitudinal range will control the tidal response. Looking at Figure 3.1 it is evident that
an ocean with degree two topography deviates from an ocean of constant thickness in
low and mid latitudes. For n20 > 0 the ocean is thinner than the average ocean thickness;
this means that at low and mid latitudes an ocean thickness similar to that for which the
gravity modes are excited for a constant thickness ocean will be attained for a higher ĥ,
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explaining the shift towards higher ĥ in the resonant peaks. In contrast, ocean thickness
variations at low and mid latitudes for degree three topography are small (Figure 3.1).
This results in the terms related with ocean thickness variations in Equations (3.8) to
be small and results in gravity mode resonances occurring approximately for the same
average ocean thickness (ĥ) as in the constant thickness ocean.

In contrast, the (A1W )1 mode (Figure 3.2 b) is not confined to low latitudes and thus
the previous argument does not apply. The ocean response is more affected by degree
three thickness variations, which are large at high latitudes. As in the constant thickness
ocean, we observe that the (A1W )1 mode eigenfrequency asymptotically approaches
a constant frequency in the limit h → ∞ in Figure 3.3c. However, this asymptotic fre-
quency is higher than the tidal frequency. Therefore the mode crosses the tidal frequency
line and as a consequence dissipation due to the (A1W1) mode reaches a maximum and
then decreases with increasing ocean thickness. We obtain tidal dissipation patterns for
this mode and compare them with the same mode for a uniform ocean (Figure 3.5 c,d).
Degree three topography results in anti-symmetric tidal dissipation patterns, tidal dis-
sipation is enhanced in north polar regions, where the ocean is shallow. This simply
follows from mass conservation, Eq. (3.6b); currents are stronger in shallower regions,
which results in higher energy dissipation. Although this mechanism presents a new
way to introduces anti-symmetries in tidal dissipation patterns it does not agree with
Enceladus heat flux being higher at the Southern Hemisphere.

As mentioned before, new modes are excited when the antisymmetric topography
is considered. The new modes are shown in Figure 3.11. As opposed to the two previ-
ous cases we notice that antisymmetric modes (A2E)1,2 and (A0)1,2 are excited by the
symmetric eccentricity tidal forcing and the symmetric modes (S1E)1 and (S1W )1 are
excited by the antisymmetric obliquity forcing. Figure 3.3c shows the eigenfrequencies
of the modes excited by the eccentricity and obliquity tide. Indicated in dark blue are the
new modes that appear due to the degree three order zero topography. The (A0)1 reso-
nance is particularly interesting. For an ice-free ocean, its resonance thickness is the
same as that of the (S2E)1 mode and thus it is shadowed by this mode in the dissipation
curve. Adding an ice shell separates the two modes and the (A0)1 mode becomes visible
in the dissipation curves (Figures 3.4b,c) to the right of the (S2E)1 resonance peak for the
1 and 10 km thick ice shells.



3

66 3. TIDES IN SUBSURFACE OCEANS WITH MERIDIONAL VARYING THICKNESS

(a)

10 100 1,000 10,000
0.158

0.2

0.251

0.316

0.398

0.501

0.631

Ocean Depth [m]

n
/2

Ω
[-

]
hice = 0 km
hice = 1 km
hice = 10 km

(b)

10 100 1,000 10,000
0.158

0.2

0.251

0.316

0.398

0.501

0.631

Ocean Depth [m]

n
/2

Ω
[-

]

n20 = 0
n20 = 0.5
n20 = 1
n20 = 1.5

Figure 3.6 Eigenfrequencies for the (S2E)1 (straight lines) and (A1W )1 (bended lines)
modes for an ocean of constant thickness and different ice shell thicknesses (a), and an
ocean with a 1 km ice shell and different amplitudes (n20) of degree two topography.

3.5. CONCLUSIONS

In this paper we present a new numerical model to solve ocean tides in subsurface
oceans with variable thickness. We solve the Laplace Tidal Equations for an ocean of
variable thickness coupled with an elastic membrane of constant thickness. We use the
Boundary PDE module of the commercial finite element software Comsol Multiphysics
®. The equations are spatially discretised using quadratic triangular elements and inte-
grated in time using the Generalized Alpha algorithm. We benchmark the model against
the solution of the LTE for an ocean of constant thickness obtained by Matsuyama (2014)
using a spectral method. We show that the model converges to the analytic solutions of
Matsuyama (2014) provided that sufficiently small time steps and mesh size are used.

We use this model to study tides in Enceladus’ subsurface ocean. We start with the
thoroughly studied case of an ocean of constant thickness to identify characteristics in
the system that help us understand the response for an ocean with variable thickness
(e.g Beuthe, 2016; Hay and Matsuyama, 2019; Tyler, 2008). As in previous studies, we
find that the ocean response to the eccentricity and obliquity tide is characterised by a
series of resonant peaks where tidal dissipation surpasses Enceladus’s observed heat flux
(Spencer et al., 2013) but does not agree with the observed distribution of heat. The res-
onant peaks can be related to the eigenmodes of the system. The equatorially symmet-
ric eccentricity tide excites symmetric modes while the anti-symmetric obliquity tide
excites anti-symmetric modes. All the excited modes are gravity-waves modes except
for the westward propagating Rossby-Haurwitz mode that corresponds to a vorticity (or
Class 2) mode. Gravity mode resonances occur for oceans that are thinner (few hun-
dred meters) compared to the average ocean thickness of around 30 km estimated using
gravity, libration and altimetry data (Beuthe et al., 2016; Čadek et al., 2016; Hemingway
and Mittal, 2019). The Rossby-Haurwitz mode is excited by the obliquity tide for thick
oceans, which results in an increase of tidal heating with ocean thickness for the obliq-
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uity tide.

We then explore the effect of degree two and three meridional ocean thickness vari-
ations in the ocean response. We observe that the equatorially symmetric degree two
topography does not add additional resonant modes to the ocean response. However,
the resonant ocean thicknesses for the gravity wave modes are shifted to thicker oceans
than those of an ocean of uniform thickness. This shift does not push the resonant ocean
thickness to a value close to Enceladus’ estimated ocean thickness. The antisymmetric
degree three topography can activate new resonant modes. We observe that equatorially
symmetric modes can be excited by the antisymmetric obliquity tide and antisymmetric
modes are excited by the symmetric eccentricity tide.

Topography also affects the excitation of Rossby-Haurwitz waves. For degree two
topography, Rossby-Haurwitz waves have a frequency lower than the tidal frequency,
which limits the excitation of these waves by the obliquity tide. With degree three topog-
raphy, the maximum dissipation due to the Rossby-Haurwitz mode occurs for thinner
oceans than in the constant ocean thickness case. Additionally, degree three topography
results in anti-symmetric dissipation patterns, but maxima are attained at the north po-
lar regions and not the south polar regions as observed by Cassini. These results have
important implications as the Rossby-Haurwitz mode has been suggested to play a ma-
jor role in preventing subsurface oceans in Europa (Tyler, 2008), Enceladus (Tyler, 2009)
or Triton (Chen et al., 2014; Hay and Matsuyama, 2019; Nimmo and Spencer, 2015) from
freezing. We show that an uneven ocean diminishes the amount of tidal heating pro-
duced through the excitation of Rossby-Haurwitz waves. These results are similar to
those of Tyler (2011), who already pointed out that the Rossby-Haurwitz wave amplitude
is greatly reduced in the case of an Enceladan ocean confined to the South Pole.

This study illustrates the importance of topography in controlling the tidal response
of subsurface oceans. However, very little information on ocean thickness variations is
available for icy moons. In the case of Enceladus, gravity, libration and altimetry data
suggest degree two and three variations in the ice shell thickness (Beuthe et al., 2016;
Čadek et al., 2016; Hemingway and Mittal, 2019). For Europa these lateral variations
could be smaller (Nimmo et al., 2007) and they are unknown for other ocean worlds. Very
little is known about seafloor topography, however low gravity objects like Enceladus can
potentially support large topographic relief. Future missions such as JUICE or Europa
Clipper might help to estimate ocean thickness for some of these bodies leading to a
better understanding of tides in subsurface oceans.

Our numerical model has some limitations that should be pointed out. Firstly, it does
not include self-gravity and the ocean is assumed to be covering a rigid core. Matsuyama
(2014) showed that including the effect of self-gravity and considering a deformable core
results in a shift of gravity mode resonances to thicker oceans. Moreover, self-gravity
slightly enhances tidal dissipation per unit time due to the obliquity tide for thick oceans
(Hay and Matsuyama, 2019). However, these two elements do not add new modes to the
ocean response. Similar effects are expected if self-gravity and a deformable core would
be added to our model. Secondly, while our ocean model includes meridional thickness
variations through a thickness dependent phase speed we model the ice shell as an elas-
tic membane of constant thickness. This implies that ocean thickness variations are due
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to seafloor topography instead of ice shell thickness variations. Bêhounková et al. (2017);
Souček et al. (2019) considered the response of Enceladus’ ice shell of variable thickness
above an ocean that is in hydrostatic equilibrium. Their ice shell model is 20 km thick
on average and varies from about 5 km in the SPT to more than 30 km near the equa-
tor, additionally the Tiger Stripes are included as weak regions in the SPT. They showed
that, when forced with the eccentricity tide, ice thickness variations lead to a higher am-
plitude of surface displacements in the SPT compared with a uniformly thick ice shell.
Based on our results, we expect that this would result in the excitation of the antisym-
metric ocean modes as happens with the degree three seafloor topography considered
here.

Another point that deserves further attention is the validity of the Laplace Tidal
Equations in the context of subsurface oceans. The Laplace Tidal Equations are de-
rived from the Navier-Stokes equations assuming: (1) a perfectly homogeneous fluid;
(2) horizontal length-scale of the problem larger than vertical length-scale; and (3) small
perturbations relative to a state of uniform rotation (e.g., Gerkema et al., 2008; Hender-
shott, 1981; Miles, 1974). Considering the little amount of information about the com-
position of subsurface oceans and the premise that they are heated from below it seems
reasonable to make the assumption that subsurface oceans are neutrally buoyant (Vance
and Goodman, 2009) and thus justify (1). However, depending on the ocean salinity, the
ocean might be stably stratified (Melosh et al., 2004; Vance and Brown, 2005). In that
case, internal gravity waves might develop. The effect of stratification has been consid-
ered by Tyler (2011) who used a scaling law to relate the baroclinic and barotropic ocean
response and suggested that baroclinic tides in a stratified ocean could close Enceladus’
energy budget. However, it is not clear how the baroclinic response would be excited.
The effect of stratification in the ocean response to tides could be further investigated
by using a multilayered shallow-water system. Moreover, the flow of the barotropic tide
over topography can result in the excitation of internal gravity waves (Egbert and Ray,
2003). The barotropic response of the ocean obtained with our model could be used as
starting point to study the excitation of the baroclinic tide through this mechanism.

Assumption (2) leads to the hydrostatic and traditional approximations, which filter
internal waves from the solution. The LTE have been widely used to study tides on Earth
and successfully explain ∼ 70% of tidal dissipation in the ocean, the remaining part be-
ing due to internal waves excited in regions of rough topography (Egbert and Ray, 2000,
2003). Taking the radius and ocean thickness as horizontal and vertical length-scales, re-
spectively, we find that the ratio between vertical and horizontal length-scales is ∼ 0.15
for Enceladus as compared to ∼ 0.001 for Earth. Rovira-Navarro et al. (2019) and Rekier
et al. (2019) showed that internal inertial waves can be excited in Enceladus but found
dissipation due to internal waves to be generally small in the linear regime for oceans
of constant thickness. However, non-linear terms neglected under assumption (3) in
the Navier-Stokes equations can induce domain filling turbulence (Lemasquerier et al.,
2017; Wilson and Kerswell, 2018). The effect of topography on the propagation of inertial
waves as well as in triggering turbulence in subsurface oceans remains to be studied.
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3.6. APPENDIX A: MESH SELECTION AND MODEL BENCH-
MARK

We study the effect of the time step and mesh resolution in the FEM model. To do so,
we consider the results of Matsuyama (2014) who solved the LTE for an ice-free ocean
using a spectral method. We use the solutions obtained with a Rayleigh coefficient of
2.7 ·10−7 s−1. We start by considering the effect of the time step. We select a thick ocean,
as it implies a more stringent CFL condition. We consider a 9937 m thick ocean and use
a mesh with N = 848 elements (Figure 3.7). For this mesh size and ocean thickness, a
time step of 0.01TEn would be needed to fulfil the CFL criteria. We run the model for 300
Enceladan orbits with different time steps and compute the average tidal dissipation
using Eq. (3.12) for each orbital period. The results are shown in Figure 3.8a. For all
the different time steps the solution converges to a value of tidal dissipation, however
accuracy increases with decreasing time step.

To study the effect of mesh size we select two ocean thicknesses; one close to a res-
onance peak (ho = 30.35 m) and one far from a resonance peak (ho = 500.18 m) and run
the model for 300 Enceladan orbits using different meshes ranging from 246 to 2814 el-
ements (Figure 3.7) and a time step of 0.008TEn . Figure 3.8 b and c show the surface
average tidal dissipation for the different meshes. We see that for the ocean thickness
far from a resonance peak all the meshes converge towards the solution of Matsuyama
(2014). In contrast, for the resonant ocean thickness, a higher resolution mesh is needed
to converge to the solution.

Based on the previous results we chose to use a time step of 0.008TEn and a mesh
with 848 elements. To assess the numerical error obtained with this model configuration
we compute tidal dissipation for subsurface oceans with thickness ranging from 10m to
10km and compare the results with those of Matsuyama (2014). We observe a very good
agreement between the FEM model and analytic results. For most ocean thicknesses
errors are smaller than 3%, however close to resonant peaks errors can be as as high as
20%.
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(a) N = 246 (b) N = 464

(c) N = 834 (d) N = 2814

Figure 3.7 Meshes used for the benchmark of the FEM code against analytical results
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(c) hocean = 500.18 m
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(d) hocean = [10−10000] m
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Figure 3.8 (a,b,c) Surface average dissipation obtained using the FEM model for different
mesh sizes (represented by number of elements N ) and time steps for three different
ocean thicknesses. The dashed line corresponds to the analytic solution of Matsuyama
(2014). (d) Comparison of the FEM solution obtained with N = 848 and a time step of
0.008TEn and the analytic solutions for ocean thickness between 10 and 10000 m, the
error is shown in red and the ocean thicknesses corresponding to the numerical tests of
panels a,b and c are indicated with a black crosses.
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(a) (S2E)2 (b) (S0)1

(c) (S2W )1

Figure 3.9 Symmetric eigenmodes that can be excited by the eccentricity tide. .
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(a) (A1E)2
(b) (A1E)1

Figure 3.10 Antisymmetric modes excited by the obliquity tide.

(a) (A0)1 (b) (A2E)1

(c) (S1E)1 (d) (S1W )1

Figure 3.11 Same as Figure 3.2 but for four of the extra modes excited by degree three
order zero ocean thickness variations.
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MAAS, W. VAN DER WAL,B. VERMEERSEN

Some of the moons of the outer Solar System harbour subsurface liquid oceans. Tidal dis-
sipation plays an important role in preventing these oceans from freezing. In the past,
most studies considered only tidal dissipation in the solid layers of these bodies (rock and
ice). Recently, new studies considering tidal dissipation in the oceans of these moons have
appeared. All of them make use of the shallow water approximation. However, the use of
this approximation might not be adequate. Here we consider the linear non-hydrostatic
three dimensional response of these oceans to tidal forcing with the full Coriolis force. To
do so we consider an ocean of homogeneous density contained within a perfectly spher-
ical shell and neglect the effect of the ice shell. We force the ocean with a time changing
tidal potential and observe patterns of periodic inertial waves that take energy from the
global tidal forcing and focus it along thin shear layers that propagate in the fluid. We

An earlier version of this chapter is published in Icarus (Rovira-Navarro et al., 2019): Rovira-Navarro, M., Rieu-
tord, M., Gerkema, T., Maas, R.M., van der Wal, W., & Vermeersen, B. (2019), Do tidally-generated inertial waves
heat the subsurface oceans of Europa and Enceladus?, Icarus, 321, 126 – 140.
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focus on Europa and Enceladus, showing that inertial waves result in fluid flows of signif-
icant amplitude (a few cm/s). Nevertheless, we find that under the previously mentioned
assumptions tidal dissipation due to inertial waves is several orders of magnitude smaller
than Europa’s radiogenic heating and Enceladus’ observed heat flux. Finally, we propose
additional dissipation mechanisms that might play a relevant role in Europa and Ence-
ladus and could be further investigated.
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4.1. INTRODUCTION

Evidence for underground water reservoirs in some of the moons of the outer Solar Sys-
tem has accumulated over the last few decades. The existence of a subsurface water body
in Europa was first hypothesised by Cassen et al. (1979). They argued that radiogenic and
tidal heating could melt Europa’s interior and form an ocean. The hypothesis was con-
firmed when Khurana et al. (1998) and Kivelson et al. (2000) reported variations of the
magnetic field in Europa associated with an induced magnetic field and showed that a
layer of subsurface salty water is consistent with these observations. The existence of a
subsurface ocean is also consistent with the complex geology of Europa’s surface (e.g.,
Pappalardo et al., 1999).

The case of Enceladus is markedly different. This tiny moon of Saturn, its radius
being just over 250 km, features vigorous geological activity. Cassini flybys revealed water
plumes emanating from long parallel cracks (nicknamed tiger-stripes) on the South Pole
(Porco et al., 2006; Spencer et al., 2006). The detection of salt-rich grains in the plumes
(Postberg et al., 2009, 2011) and evidence of hydrothermal activity within the moon (Hsu
et al., 2015) indicate that the plumes originate from an underground water reservoir.
The observed forced libration of Enceladus’ surface reveals that the ocean is not only
restricted to the moon’s southern pole but it completely decouples the ice shell from the
moon’s rocky mantle (Thomas et al., 2016).

Far away from the Sun, these oceans cannot be maintained by solar irradiation. An-
other heat source is therefore needed to prevent them from freezing; this heat source
is most likely tidal dissipation. Due to orbital resonances with Io and Ganymede, Eu-
ropa orbits Jupiter in an eccentric orbit. Similarly, in the Saturnian system, Enceladus’
eccentricity is maintained by an orbital resonance with Dione. The orbital eccentricity
results in a time-varying tidal potential that raises a prominent tide. The moons’ obliq-
uity results in additional latitudinal librations of the tidal bulge. Most studies focused on
studying tidal dissipation in the solid layers of Europa and Enceladus (e.g., Ojakangas
and Stevenson, 1989; Roberts and Nimmo, 2008). These studies show that the Europan
ocean can be maintained by tidal and radiogenic heating; thermal models suggest that
the ocean might be around 100 km thick (Hussmann et al., 2002). This is, however, not
the case of Enceladus, where tidal and radiogenic heating in the solid parts of the moon
are not sufficient to prevent a global ocean from freezing (Bêhounková et al., 2017; Tobie
et al., 2008) unless Enceladus has an unconsolidated rocky core (Choblet et al., 2017).

By analogy with Earth, where most tidal energy dissipation occurs in the ocean, it has
been suggested that tidal dissipation within the ocean plays a major role. Tyler (2008)
was the first to propose that oceanic tidal currents could heat the moons of the outer
Solar System. Tyler (2008) considered the response of an ice-free shallow ocean of con-
stant density. He solved the Laplace Tidal Equations (LTE) using the method of Longuet-
Higgins (1968) for the different tidal constituents. He showed that Europa’s obliquity
excites planetary Rossby waves of considerable amplitude and suggested that this mech-
anism might close Enceladus’ thermal energy budget (Tyler, 2009). However, it was later
found that the obliquity of Enceladus is too small for this mechanism to generate enough
tidal heating (Chen and Nimmo, 2011). Tyler (2014) and Hay and Matsuyama (2017) also
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showed that the eccentricity tide can generate sufficient tidal heating but only for unre-
alistically shallow oceans. Subsequent studies considered the effect that the ice shell has
on oceanic tidal dissipation and concluded that the ice crust further dampens the ocean
response (Beuthe, 2016; Matsuyama et al., 2018).

A possible criticism to the previous studies is the assumption of an ocean of constant
density. An unstratified ocean filters out internal gravity waves which have an important
role in tidal dissipation and mixing in Earth’s ocean (Garrett, 2003). There is little infor-
mation about the stratification of Europa’s and Enceladus’ oceans. The ocean is heated
from the bottom by tidal and radiogenic heat within the silicate mantle, likely creating
a well-mixed convecting ocean (Goodman and Lenferink, 2012; Goodman et al., 2004;
Soderlund et al., 2013). Nevertheless, under certain conditions the ocean might be strat-
ified (Melosh et al., 2004; Vance and Brown, 2005). We do not challenge the assumption
of an unstratified ocean and focus on the other assumptions underlying the LTE.

The main assumption of the LTE is that the ocean is in hydrostatic equilibrium, cur-
rents are predominantly horizontal. Because vertical currents are assumed to be small,
the hydrostatic approximation is often used together with the traditional approximation,
which consists in neglecting the terms of the Coriolis force linked to vertical motions in
the ocean (Gerkema et al., 2008). For an unstratified ocean these assumptions hold as
long as the ratio of the characteristic vertical and horizontal length scales is small (see
Vallis (2006)). Using the ocean thickness and body’s radius as a measure of vertical and
horizontal length scales, respectively, higher ratios are obtained for Europa and Ence-
ladus than for Earth (∼ 0.06 and ∼ 0.15 versus ∼ 0.001). It is therefore expected that the
neglected vertical velocity is of more relevance in these bodies, making the LTE incom-
plete to describe tidal currents in Europa’s and Enceladus’ subsurface oceans.

Without the hydrostatic and traditional approximations, new kinds of waves are pos-
sible in the unstratified oceans of the icy moons, the so-called internal inertial (gyro-
scopic) waves (Bretherton, 1964; Greenspan., 1969; Maas, 2001; Stern, 1963; Stewartson,
1971). These waves have properties that are markedly different from those of the more
familiar surface waves (Maas, 2005) and have been suggested to be of importance for
tidal dissipation in giant planets and binary stars (Lainey et al., 2017; Ogilvie and Lin,
2004; Rieutord and Valdettaro, 1997, 2010; Rieutord et al., 2001). In this study, we want
to take the young field of “planetary oceanography" one step further by exploring the
relevance of inertial waves for tidal dissipation in the icy moons.

We consider an ocean contained within a deformable spherical shell and study
tidally induced inertial waves for different ocean thicknesses. Our main goal is to quan-
tify the amount of tidal heating that is generated by these waves to assess whether they
are a significant component in the thermal energy budget of these moons. Addition-
ally, we compare the flow amplitude of inertial waves to that of surface gravity waves
obtained with the LTE and consider the footprint that they might have on the satellites’
surface. To do so we solve the linearised incompressible Navier-Stokes equations for the
different components of the eccentricity and obliquity tide using the spectral methods
developed to study inertial waves in an astrophysical context (stars and giant planets)
(e.g., Ogilvie and Lin, 2004; Rieutord and Valdettaro, 1997, 2010).
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The text is structured as follows: Section 4.2 introduces inertial waves and presents
their main properties, in Section 4.3 we give the mathematical formulation of the prob-
lem, we introduce the tidal potential and then explain how the linearised Navier-Stokes
equations are forced with this tidal forcing. Afterwards, the results are shown and dis-
cussed (Section 4.4) and conclusions are presented (Section 4.5)

4.2. PROPERTIES OF INTERNAL INERTIAL WAVES

To understand the properties of internal inertial waves we start by considering a simpli-
fied situation. We consider an inviscid fluid of constant density (ρ0) inside a container
rotating with angular velocityΩ. For this situation, the mass and momentum conserva-
tion equations, written in a co-rotating frame, are given by (e.g., Le Bars et al., 2015):

∇·u = 0, (4.1a)

∂u

∂t
+u ·∇u +2Ω×u =−∇W. (4.1b)

u is the fluid’s velocity, W is a reduced pressure that contains the fluid pressure, the
body’s gravity potential and other possible conservative body forces. We neglect non-
linear terms and seek plane wave solutions of the form:

u = Re
[

ũei(k ·x+ωt )
]

, (4.2)

with k the wavevector, ũ the wave amplitude andω the wave frequency. Introducing this
trial solution to Eq. (4.1) we obtain a dispersion relation of the form:

ω2 = 4Ω2

(
k2

z

k2
x +k2

y +k2
z

)
, (4.3)

where z is parallel to the rotational axis and x, y normal to it. This dispersion relation is
markedly different from that of the more familiar surface-gravity waves. While for sur-
face waves the frequency of the wave only depends on the magnitude of the wavenum-
ber, for internal inertial waves it only depends on the angle that the wavevector forms
with the rotational axis. The group velocity, (cg = ∂ω

∂k ) is perpendicular to the wavevector
k . Energy propagates along surfaces of constant slope, which form an angle θ with the
rotational axis:

θ = arcsin
( ω

2Ω

)
, (4.4)

the so-called characteristics (see Figure 4.1a).

These properties lead to a fundamental difference in how inertial waves behave upon
reflection as compared to surface waves (e.g., Maas, 2005). When a monochromatic sur-
face wave packet encounters a surface it reflects specularly without changing its wave-
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θ

Ω

cg

k

θ = arcsin(ω/(2Ω))

cg group velocity

Ω angular velocity

k wave vector

(a) (b)

Figure 4.1 Inertial wave propagation. The wave packet propagates with group velocity cg

following characteristics that form an angle θ with the rotational axis. The wavevector k
is perpendicular to the group velocity(a). (b) Depending on the container’s geometry a
wave packet (blue) can converge towards a periodic trajectory (black).

length. In contrast, an internal inertial wave packet reflects keeping the wavevector incli-
nation with respect to the rotational axis constant. Upon reflection, the wavelength can
change. Depending on the container’s geometry this can lead to focusing of the wave
packet, which becomes an efficient mechanism to transport energy from large to small
scales.

The focusing properties of inertial waves can result in wave attractors. As its name
indicates, wave attractors are trajectories in which energy accumulates. For ocean ge-
ometries that have focusing trajectories, two wave packets originating at different loca-
tions will converge towards the same trajectory (Figure 4.1b). Wave attractors have the
peculiarity of focusing the energy of a large-scale forcing to smaller scales regardless of
the nature and location of the excitation. This phenomenon has been observed in the
laboratory, both for internal gravity waves (e.g., Brouzet et al., 2016; Maas et al., 1997)
and internal inertial waves (e.g., Maas, 2001; Manders and Maas, 2003, 2004).

As it is of special relevance for astrophysical and geophysical applications, the propa-
gation of inertial waves in spherical containers has been widely studied (e.g., Bretherton,
1964; Bryan, 1889; Greenspan., 1969; Ogilvie, 2009; Rieutord and Valdettaro, 1997; Stern,
1963; Stewartson, 1971, 1972). The response of an inviscid fluid inside an spherical con-
tainer is given by well-behaved eigenmodes (Bryan, 1889). However when a nucleus is
added, wave attractors can develop, which lead to singularities; velocity increases with-
out bound along the attractor (Stewartson, 1971). Something similar happens at the crit-
ical latitude (Θc ), the latitude at which a characteristic is tangent to the nucleus, where
the velocity also develops a singularity (Rieutord et al., 2001). In reality, viscosity prevents
the development of such singularities. The result is the development of prominent inter-
nal shear layers that propagate in the fluid domain following the characteristics where a
significant amount of energy can be dissipated.
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4.3. PROBLEM FORMULATION

4.3.1. THE TIDAL POTENTIAL

The obvious candidate for the generation of inertial waves in the oceans of the icy moons
is the tidal potential caused by the obliquity and eccentricity of the moons. We can ex-
press the tidal potential in terms of the orbital elements of the satellite (Jara-Orué and
Vermeersen, 2011):

φ=−(nR)2
( r

R

)2 {
φ0 +φns +φe0 +φe2 +φo1

}
, (4.5)

where n is the mean motion of the satellite given by n2 = GMp /a3, G is the universal
gravitational constant, Mp the mass of the planet and a the semi-major axis of the satel-
lite’s orbit. As we are considering tidally locked satellites, n is the same as the rotational
frequency of the satellite (Ω). R is the satellite’s radius and r the distance from the center
of the satellite to the considered point inside the satellite. The different components of
the tidal potential are (Jara-Orué and Vermeersen, 2011):

φ0 =−1

2
P2,0(cosθ)+ 1

4
P2,2(cosθ)cos

(
2ϕ

)
, (4.6a)

φns =−1

2
P2,2(cosθ)sin

(
2ϕ+Ωns t

)
sin(Ωns t ), (4.6b)

φe0 =−3e

2
P2,0(cosθ)cos(nt ), (4.6c)

φe2 = e

4
P2,2(cosθ)

[
3cos

(
2ϕ

)
cos(nt )+4sin

(
2ϕ

)
sin(nt )

]
, (4.6d)

φo1 = P2,1(cosθ)sin(ϵ)cos
(
ϕ

)
sin(Φ+nt ). (4.6e)

θ andϕ are the co-latitude and longitude in the body-fixed reference frame, respectively.
φ0 is the static component of the tidal potential, φns arises due to non-synchronous ro-
tation. The eccentricity tide is given by φe0, which is caused by the variation in distance
between the planet and the satellite; and φe2, caused by the east/west libration of the
position of the subplanet point on the moon’s surface. On the other hand, the obliq-
uity tide, φo1, is the result of the latitudinal libration of the subplanet point due to the
satellite’s obliquity. Pl ,m are the associated Legendre polynomials of degree l and order
m and Φ, e and ϵ are the argument of pericenter, the eccentricity and the obliquity of
the moon, respectively. We only consider degree two terms of the tidal potential, as the
amplitude of the other components rapidly decreases with increasing degree as (r /a)l .

The non-axisymmetric term of the eccentricity tide (φe2) and the obliquity tide (φo1)
can be further divided in a westward (φe2w , φo1w ) and an eastward (φe2e , φo1e ) propa-
gating wave:
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φe2 =φe2e +φe2w = 7e

8
P2,2(cosθ)cos

(
2ϕ−nt

)− e

8
P2,2(cosθ)cos

(
2ϕ+nt

)
, (4.7)

φo1 =φo1e +φo1w =−sin(ϵ)

2
P2,1(cosθ)sin

(
ϕ−nt −Φ)+ sin(ϵ)

2
P2,1(cosθ)sin

(
ϕ+nt +Φ)

.

(4.8)

For this study we consider the different components of the eccentricity and obliquity
tide and ignore the non-synchronous rotation of the satellite. We also ignore the static
component of the tidal potential as it does not induce a dynamic ocean response. The
relevant physical parameters of Europa and Enceladus are given in Table 4.1.

Europa Enceladus
R [km] 1565.0 252.3
M [kg] 4.797 ·1022 1.0805 ·1020

ρav [kgm−3] 2990 1606
g [ms−2] 1.31 0.11
Ω [rads−1] 2.05 ·10−5 5.31 ·10−5

e [-] 0.0094 0.0047
ϵ [deg] < 0.1 < 0.0015

z(eq)
e0 [m] 11.08 11.50

z(eq)
e2e [m] 19.39 20.13

z(eq)
e2w [m] 2.77 2.88

z(eq)
o2e [m] 1.03 0.003

z(eq)
o2w [m] 1.03 0.003
Φ [deg] 0 0
ρo [kgm−3] 1000 1000

Table 4.1 Physical parameters for Europa and Enceladus. Radius (R), mass (M), av-
erage density (ρav ), surface gravity (g ) and rotational rate (Ω) are obtained from:
https://ssd.jpl.nasa.gov/?horizons and Chen et al. (2014). The obliquity (ϵ) of Europa
and Enceladus are obtained assuming that the moons are in a Cassini state (Baland et al.,
2012; Chen and Nimmo, 2011). The maximum amplitude of the different components of
the equilibrium tide are computed considering a non-self gravitating ice-free ocean sur-
rounding an infinitely rigid core (Eq. (4.17)) and using the maximum value of the satel-
lites’ obliquity. The argument of pericenter (Φ) and ocean density (ρo) are assumed to
be 0 and 1000 kgm−3, respectively.

4.3.2. GOVERNING EQUATIONS AND ASSUMPTIONS

In contrast to Section 4.2, we now consider the fluid to be viscous and expand the re-
duced pressure in its different components. The equations of motion can be written as:
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∇·u = 0, (4.9a)

∂u

∂t
+u ·∇u +2Ω×u =− 1

ρ0
∇p ′+ 1

ρ0
∇·τ−∇φ−∇φ′. (4.9b)

The primed quantities denote deviations from hydrostatic equilibrium. φ′ represents
the gravitational potential of the body, p ′ is the fluid pressure and τ the stress tensor of
the fluid, which we assume to follow Stokes’ constitutive law:

τ=µ(∇u +∇uT ), (4.10)

where µ is the dynamic molecular viscosity. We further use perturbation theory and
consider the different quantities to be small. Under such consideration the non-linear
advective term (u · ∇u) is neglected. The validity of this assumption will be discussed
later (Section 4.5). We introduce an effective viscosity µe f f , which is higher than the
molecular viscosity of the fluid and accounts for non-modelled small-scale dissipation
mechanisms (e.g., turbulent mixing, interactions of waves with turbulent convection,
etc.).

Finally, we obtain the non-dimensional form of the equations of motion by using the
inverse of the satellite’s rotational frequency (2Ω)−1 and the satellite radius (R) as time
and length scales respectively:

∇̂ · û = 0, (4.11a)

∂û

∂t̂
+ez × û =−∇̂Ŵ +E∇̂2û, (4.11b)

with ez the direction of the satellite’s rotational axis, W again the reduced pressure:

W = p ′

ρo
+φ+φ′

(4.12)

and the non-dimensional variables (indicated with a hat) and parameters defined as:

u = 2ΩRû, (4.13a)

W = 4Ω2R2Ŵ , (4.13b)

E = µe f f

2ρΩR2 , (4.14a)

ω̂= n

2Ω
. (4.14b)
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We have introduced the non-dimensional Ekman number (E), which gives the ratio of
viscous to Coriolis forces; and the non-dimensional frequency (ω̂), which, since the
problem is forced at the diurnal tidal frequency, equals 0.5. In the discussion that fol-
lows we use the non-dimensional equations; to avoid cumbersome notation we drop
the hat from the variables.

As a starting point we assume that the moons have a free surface. If the surface wave
speed (

√
g h, with g the satellite’s surface gravity and h the ocean depth) is high enough

so that the ocean adjusts quickly to forces varying at the tidal potential frequency, we
can assume that the radial displacement of the ocean surface is given by the equilibrium
tide (Ogilvie, 2009; Tyler, 2008). This assumption breaks down if the ocean is too shallow,
in that case surface gravity waves dominate the ocean response and other kinds of reso-
nances occur (Matsuyama et al., 2018). For the icy moons, the surface wave speed is high
enough as long as the oceans are thicker than 0.78 km or 1.6 km for Europa and Ence-
ladus, respectively. With ocean thicknesses of ∼ 100 km (Hussmann et al., 2002) and ∼ 38
km (Beuthe et al., 2016) for Europa and Enceladus respectively, the previous assumption
seems reasonable for the problem at hand.

We follow the approach of Ogilvie (2005) and Rieutord and Valdettaro (2010) and split
the fluid response into two components: the equilibrium tide u(eq) plus a dynamical tide
u(d ). By using this decomposition, Eq. (4.11) becomes:

∂u(d )

∂t
+ez ×u(d ) =−∇W +E∇2u(d ) + f (eq). (4.15)

f (eq) is an inertial force associated with the equilibrium tide given by:

f (eq) =−∂u(eq)

∂t
−ez ×u(eq). (4.16)

Note that the dynamic tide is forced indirectly through the equilibrium tide as it does
not satisfy the momentum equation (Ogilvie and Lin, 2004). If we consider a non self-
gravitating ocean around an infinitely rigid core with a free-surface the equilibrium tide
is simply given by:

z (eq)
l ,m =−φl ,m

g
er , (4.17)

where φl ,m is the degree l order m component of the tidal potential. The maximum
amplitude of the equilibrium tide for Europa and Enceladus for the different tidal com-
ponents is given in Table 4.1. If the effect of self-gravitation, the finite rigidity of the core
or the presence of an ice-shell is considered the equilibrium tide can be obtained as:

z (eq)
l ,m =−Zl ,m

φl ,m

g
er , (4.18)
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with Zl ,m being an admittance factor. Matsuyama et al. (2018) showed that an ice
shell dampens the response of the ocean resulting in Zl ,m to be smaller than or close to
1. In particular, for realistic ice shell thicknesses, the admittance is close to 1 for Europa
while it can be more than one order of magnitude smaller for Enceladus. In this work,
we assume the ocean to follow the equilibrium tide of an ice-free, non self-gravitating
ocean in a satellite with a infinitely rigid core (Eq. (4.17)). By doing so, we obtain an
upper bound of tidal dissipation due to inertial waves in a spherical shell shaped ocean.

We assume the system to have a response with the same frequency as the forcing tidal
potential and thus we consider the different fields to be proportional to eiωt . By doing so
we can eliminate time from the equations of motion and we are left with the system:

∇·u(d ) = 0, (4.19a)

iωu(d ) +ez ×u(d ) =−∇W +E∇2u(d ) + f (eq), (4.19b)

f (eq) =−iωu(eq) −ez ×u(eq). (4.19c)

We solve Equations (4.19) in a spherical shell, assuming no-slip boundary conditions
at the fluid-solid interfaces (ud = 0).

4.3.3. NUMERICAL APPROACH

We solve Equations (4.19) for the different constituents of the equilibrium tide
(Eq. (4.17)). As we did with the tidal potential, we expand the equilibrium tide into its

different constituents: the order 0 eccentricity tide (u(eq)
e0 ), and the eastward and west-

ward components of the order 2 eccentricity tide and order 1 obliquity tide (u(eq)
e2e ,u(eq)

e2w

and u(eq)
o1e ,u(eq)

o1w ) (see Appendix 4.6). We then solve Equations (4.19) using ω = 0.5 and
ω=−0.5 for the westward and eastward propagating components respectively.

We use the method of Rieutord and Valdettaro (1997, 2010), which is detailed in Ap-
pendix 4.6. We make use of the spherical symmetry of the problem and expand the
velocity and reduced pressure fields using L spherical harmonics in the horizontal di-
rection. The resulting equations are discretised in the radial direction using Chebyshev
polynomials on N +1 Gauss-Lobatto collocation nodes. By doing so, Eq. (4.19) and the
boundary conditions result in an algebraic system of (L−m+1)(N +1) linear equations.
The associated matrix of this linear system is block-tridiagonal, and the system is solved
using classical LU-factorization of a banded matrix. Except where otherwise indicated,
the resolution, given by L and N , is chosen so that the truncation error is less than∼ 10−4.

We are specially interested in computing tidal dissipation due to the tidally-induced
flows. We compute the amplitude of tidal dissipation as (e.g., Ogilvie and Lin, 2004):

D̂v = 2E
∫

V
c∗i j ci j dV , (4.20)

where ci j are the elements of the rate-of-strain tensor, ci j = 1
2 (∂i u j +∂ j ui ). We expand

Eq. (4.20) using spherical harmonics as indicated in Appendix 4.7.
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4.4. RESULTS

4.4.1. PARAMETER REGIME

The two parameters that control the fluid response are the ocean thickness and the Ek-
man number. We characterise the thickness of the ocean using the ratio of the inner to
outer ocean radius, η. Europa’s and Enceladus’ ocean thicknesses are still not known.
To understand the effect of ocean geometry on the propagation of inertial waves, we
explore the range η = 0.3−0.99, which corresponds to ocean thicknesses ranging from
1095.5 to 15.7 km for Europa and 176.6 to 2.5 km for Enceladus. For this range we use a
resolution of ∆η = 0.005, which is equivalent to ocean thickness changes of 7825 m for
Europa and 1262 m for Enceladus. However, current estimates suggest an η of ∼ 0.93
(Hussmann et al., 2002) for Europa and ∼ 0.85 (Beuthe et al., 2016) for Enceladus. It is for
this reason that we further explore the range η= 0.8−0.99 using a ∆η of 0.0005.

The Ekman number depends on the fluid viscosity (Eq. (4.14)). If we compute the
Ekman number using the molecular viscosity of water we obtain a value of 10−14 and
10−13 for Europa and Enceladus respectively. These low Ekman numbers require cur-
rently unattainable resolutions. In any case, when linearising the equations of motion
we have introduced a new effective dynamic viscosity (µe f f ) that accounts for small-
scale dissipation mechanisms. Given our limited knowledge about these oceans it is dif-
ficult to estimate the appropriate value of this parameter. It is however expected that the
effective viscosity will be orders of magnitudes higher than the molecular viscosity (e.g.,
Ogilvie and Lin, 2004). In the following experiments we explore a wide range of Ekman
numbers (E = 10−4 −10−10) to account for this uncertainty.

We first study the propagation of inertial waves for different ocean thicknesses and
Ekman numbers and explain the main characteristics in terms of the properties defined
in Section 4.2 such as wave attractors and the critical latitude singularity (Section 4.4.2).
Afterwards, we focus on tidal dissipation and quantify the relevance of inertial waves for
Europa’s and Enceladus’ thermal energy budget (Section 4.4.3)

4.4.2. WAVE ATTRACTORS AND THE CRITICAL LATITUDE SINGULARITY

As explained in Section 4.2 the response of the fluid is dominated by the convergence
of wave packets towards wave attractors and the critical latitude singularity. We start
by studying the structure of wave attractors that are excited by tidal forcing. As the
moons are phase-locked, the frequency of the forcing equals the rotational frequency
of the moon, hence, the angle that the characteristics form with the vertical is 30◦ (Fig-
ure 4.1a). We use ray-tracing to study the propagation of energy in meridional planes
of the fluid domain. The intersection of the characteristic surfaces with a meridional
plane are straight lines (rays) along which energy propagates. We launch a wave packet
from a point on the inner sphere without zonal velocity and follow its propagation along
the characteristics until it converges towards an attractor in the same meridional plane.
Note that when a wave packet is launched with a zonal component it may end up trapped
in a meridional plane or escape meridional trapping and reflect endlessly around the
domain (Rabitti and Maas, 2014, 2013). However, because of the symmetry of the tidal
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potential with respect to rotation around the z axis we focus on wave attractors in the
meridional plane.

We launch a wave ray from a point equatorward of the critical latitude (5◦) and one
poleward (85◦). The latitude of the last 100 inner boundary reflections are then noted
and shown in a Poincaré plot in Figure 4.2a. Additionally, we compute the Lyapunov ex-
ponent, which measures the asymptotic rate at which two neighbouring rays converge:

Λ= lim
N→∞

N∑
n=1

log

∣∣∣∣dΘn+1

dΘn

∣∣∣∣ . (4.21)

dΘ is the angular distance between the reflection points of two neighbouring charac-
teristics. High (in absolute value) Lyapunov exponents mean highly attracting wave at-
tractors while a Lyapunov exponent equal to 0 indicates non-attracting trajectories. The
Lyapunov exponent for different ocean geometries is displayed in Figure 4.2b.

We distinguish between two types of attractors: equatorial attractors, trapped equa-
torward of the critical latitude, and polar attractors, with reflections outside the previ-
ously mentioned interval. As can be seen in Figure 4.2a, the shape of the attractor de-
pends on the ratio of inner to outer ocean radius (η). For some ocean geometries, attrac-
tors with few reflections (short attractors) and high (in absolute value) Lyapunov expo-
nents exist. This is the case of the band [0.5775,0.6545] and [0.7235,0.7420]. In the first
case, both equatorial and polar attractors exist, while for the second only polar attractors
appear. The peak for η = 0.6545 corresponds to an attractor with reflections infinitesi-
mally close to the critical latitude, where there is nearly infinite focusing. For such attrac-
tors, the Lyapunov exponent goes to minus infinity as resolution in η increases (Rieutord
et al., 2001).

For η < 0.57, there are non-attracting periodic trajectories with a Lyapunov expo-
nent close to 0. In fact, it can be shown that for η ≤ 0.5 all trajectories associated with
the frequency n/2Ω = 0.5 are strictly periodic and have a Lyapunov exponent equal to
0 (Rieutord et al., 2001). For these ocean geometries if a ray is launched from the inner
sphere it will eventually return to the same point after some reflections, explaining the
horizontal lines in Figure 4.2a.

The response of the fluid is characterised by the opposing effects of wave focusing
and viscous diffusion. The focusing effect of the geometry tends to focus energy towards
small scales ultimately leading to a singularity along the wave attractor. On the other
hand, viscosity diffuses the velocity countering the geometrical focusing effect and the
development of wave attractors. As we will now see, these two competing effects deter-
mine whether a wave attractor is excited for a particular ocean geometry or not.

We start by choosing two ocean geometries with a high (in absolute value) Lyapunov
exponent, η = 0.63 and η = 0.73, and force the fluid with the axisymmetric eccentricity
tidal component for two different Ekman numbers, 10−7 and 10−9. To achieve a trunca-
tion error less than ∼ 10−4, we use a resolution of L = 500 and N = 200 for E = 10−7 and
N = 200 and L = 1200 for E = 10−9. A meridional cut of the sphere showing the amplitude
of the kinetic energy and viscous dissipation is shown in Figure 4.3. For this tidal com-
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Figure 4.2 Poincaré plot (a) and Lyapunov exponent (b) for a forcing frequency of
n/(2Ω) = 0.5. In (a) the latitude of the last 100 reflection points on the inner sphere for
rays launched from ±5◦ and ±85◦ latitude are indicated for different inner to outer ocean
radius ratios (η). The shaded region indicates reflections equatorward of the critical lat-
itude. Two specific ocean geometries for which short, highly attractingwave attractors
exist (η= 0.63,0.73) are indicated in red and shown in (c) and (d), respectively. (b) gives
the Lyapunov exponent for the polar attractors.
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ponent the plots are independent of the meridional cut. Also superimposed, we show
the wave attractors characteristic of these two ocean geometries.

As can be seen, in both cases wave attractors are generated. Internal shear layers are
clearly observed along the attractors where both kinetic energy and viscous dissipation
are enhanced. As in Rieutord and Valdettaro (2010) we observe the importance of the
critical latitude singularity for producing the attractor. The attractor seems to be “fed" by
the shear layer emanating from for critical latitude. As expected, as the Ekman decreases
the internal shear layer becomes thinner.

We also explore the behaviour of the fluid for ocean geometries with a low (in ab-
solute value) Lyapunov exponent. In such cases, the critical latitude singularity domi-
nates the flow (Ogilvie, 2009; Ogilvie and Lin, 2004; Rieutord and Valdettaro, 2010). We
distinguish two cases: ocean geometries where periodic non-focusing trajectories exist
(e.g., η = 0.35,0.5), Λ = 0, and geometries with long weakly-attracting wave attractors
(e.g., η = 0.75,0.8815), Λ < 0. For the first case, the shear layer emitted from the critical
latitude propagates following the characteristics and widens slowly due to viscous dissi-
pation and the lack of focusing (Figures 4.4a-4.4b). In contrast, for the second case we
observe the focusing of the shear layer upon reflection (Figures 4.4c-4.4e).

For η= 0.75 and 0.8815 we observe that as the ray approaches the polar regions both
kinetic energy and dissipation are enhanced (Rieutord and Valdettaro, 1997). The effect
of changing the Ekman number is similar to that reported for those cases where wave at-
tractors appear. It is expected that if the Ekman number is sufficiently small the focusing
effect will prevail over viscous diffusion leading to the generation of long wave attrac-
tors for η = 0.75 and 0.8815 similar to those observed for η = 0.63 and 0.73. However,
the low Ekman number for which this transition occurs requires resolutions currently
computationally unattainable.

The case of η = 0.8815 is especially interesting as it corresponds to an Enceladan
ocean thickness of around 30 km, which is close to current estimates for Enceladus
(Beuthe et al., 2016; Čadek et al., 2016; Thomas et al., 2016). For this ocean thickness
we compute the maximum velocity amplitude of inertial tides and study the possible
manifestation of inertial waves on Enceladus’ surface. We find that the maximum ve-
locity amplitude varies from 0.5 to 3 cm/s for Ekman numbers ranging from 10−7 to
10−10. Moreover, the maximum velocity amplitude is always encountered in polar re-
gions. These currents are stronger than those induced by the eccentricity tide under the
shallow water approximation, which for realistic ocean thicknesses have a magnitude of
around 1 mm/s (Tyler, 2009).

Vermeersen et al. (2013) suggested that wave attractors in a polar ocean basin could
be the origin of Enceladus’ tiger-stripes; here we investigate this hypothesis for the
present configuration (an unstratified global ocean of constant depth). Interaction be-
tween the fluid and the ice shell are likely to occur at the inertial waves reflection points,
where we observe enhanced dissipation. For a 30 km thick ocean, we observe that the
pressure at these points is in the order of ∼ 1 Pa. Moreover, we can estimate the melting
rate of the ice shell at these points by assuming that all the energy dissipated in a ray is
focused there and does not radiate outwards. We obtain a maximum melting rate in the
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order of 1 m every 10 kyr. Even though it is unclear how inertial waves would interact
with the ice shell, these numbers suggest that in an ocean of constant thickness it is un-
likely that tidally-excited inertial waves could be the origin of observed surface features,
such as the tiger stripes. More work is needed to study if other ocean geometries can
result in enhanced energy focusing and higher stresses.
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Figure 4.3 Non-dimensional kinetic energy (left quadrant) and viscous dissipation (right
quadrant) amplitude due to the degree two, order zero eccentricity tide for two ocean
geometries where short wave attractors exist. The patterns are shown for different Ek-
man number (E) and inner to outer ocean radius ratio (η). Polar and equatorial wave
attractors are superimposed in black and green, respectively, and the critical latitude is
indicated in red. A logarithmic scale is used both for kinetic energy and viscous dissipa-
tion. The maximum values of the non-dimensional colour-scale correspond to a kinetic
energy of 0.65 Jm−3 and 4.69 Jm−3; and a viscous dissipation of 0.26 µWm−3 and 4.97
µWm−3 for Europa and Enceladus, respectively.
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Figure 4.4 Same as Figure 4.3 but for ocean geometries with a small Lyapunov exponent.
Rays emanating from the critical latitude (and not wave attractors) dominate the flow
response.

4.4.3. TIDAL DISSIPATION

The main focus of this work is to study tidal dissipation within Europa and Enceladus.
We start by assuming an Ekman number of 10−7 and compute tidal dissipation for the
different tidal constituents and different ocean thickness (η = 0.3−1) as detailed in Ap-
pendix 4.7. To strengthen our conclusions, we then analyse the effect of varying the
Ekman number on the degree-two order-zero tidal constituent. For the different shell
geometries, we first vary the Ekman number between 10−4 − 10−8. We then study the
asymptotic behaviour of dissipation with decreasing Ekman number for some relevant
shell geometries for which we use an Ekman number as low as 10−10.

TIDAL DISSIPATION FOR THE DIFFERENT TIDAL COMPONENTS

Dissipation due to tidally induced inertial waves in Europa and Enceladus for E = 10−7,
is shown in Figure 4.5. As a reference, we also indicate the estimated value of radiogenic
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heating in Europa (Hussmann et al., 2010) and the observed thermal output of Ence-
ladus’ tiger stripes (Spencer et al., 2013).

It can be seen that the values of the tidal dissipation are well below the reference val-
ues for both Europa and Enceladus. Moreover, when we consider the region of the plot
that corresponds to likely values of ocean thickness on Europa and Enceladus, η > 0.9
(Anderson et al., 1998; Hussmann et al., 2002) and η > 0.8 (Beuthe et al., 2016; Čadek
et al., 2016; Thomas et al., 2016), respectively, we observe that the values of tidal dissipa-
tion are several orders of magnitude smaller than radiogenic heating in Europa and the
observed heat flux in Enceladus. Nevertheless, it is interesting to study the contribution
of the different tidal constituents. We see that the axisymmetric eccentricity and east-
ward tide dominate the fluid response. Moreover, the order one obliquity tide produces
considerably lower tidal dissipation, especially in Enceladus. This fact follows from the
small amplitude of this tidal component as compared with the others (see Table 4.1) .

For most tidal constituents the tidal dissipation curve is markedly spiky (Figure 4.5).
There are values of η for which dissipation is enhanced by more than one order of mag-
nitude. The complex system of internal-shear layers that arise due to the singularities of
the problem results in different values of dissipation for different ocean geometries. This
is not the case of the westward propagating obliquity tide whose dissipation is given by a
much smoother curve. This is because for a degree two, order one forcing the equations
of motion admit a purely toroidal solution (Rieutord and Valdettaro, 1997), the so called
“spin-over" mode. This solution is an exact solution of the equations of motion in case
stress-free boundary conditions are used.

However, when no-slip boundary conditions are used for the westward obliquity tide
the “spin-over" mode disappears. The use of no-slip boundary conditions results in the
development of an oscillatory Ekman layer at the solid-liquid boundary. The thickness of
this Ekman layer scales with ≈ E 1/2, however at the critical latitude it thickens and scales
as ∼ E 2/5 over a region of width ∼ E 1/5 (Hollerbach and Kerswell, 1995; Kerswell, 1995).
The thickening of the Ekman layer breaks the symmetry of the problem and launches
inertial waves that propagates in the interior. However, the resulting internal shear layers
are weaker in this case than those generated by the other tidal constituents, dissipation
is dominated by the Ekman layer that forms in the solid-liquid boundary, which is less
dependent on the shell geometry.

DEPENDENCE OF TIDAL DISSIPATION ON EKMAN NUMBER

We study the dependence of tidal dissipation with Ekman number. For a given ocean
thickness (η) we distinguish three different cases depending on the behaviour of viscous
dissipation in the limit E → 0. Dissipation can increase, decrease or become asymp-
totically constant. We call the first and second cases resonance and anti-resonance, re-
spectively, after Rieutord and Valdettaro (2010). As we will see, the last case is associated
with the appearance of a wave attractor Note that this definition differs from the classic
definition of a resonance, commonly associated with the excitation of eigenmodes.

We start by varying the Ekman number from 10−4 to 10−8 for the axisymmetric ec-
centricity tide (Figure 4.6). For high Ekman numbers (E = 10−4,10−5) the flow is domi-
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Figure 4.5 Tidal dissipation amplitude due to tidally excited inertial waves in Europa (a)
and Enceladus (b). The ocean is assumed to be within a spherical shell of constant thick-
ness (inner to outer ocean radius ratio, η). All values are computed using E = 10−7. The
axisymmetric and non-axisymmetric components of the eccentricity tide (m = 0 and
m = 2 ) as well as the obliquity tide (m = 1) are considered. As reference, an estimate
of Europa’s radiogenic heating and the power radiated from Enceladus tiger stripes are
indicated.
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nated by the Ekman boundary layer formed at the solid-fluid boundary and not internal
shear layers and wave attractors (see Figure 4.4c). For such cases the dissipation curve
is smooth, similarly to the westward order one obliquity tide. As the Ekman number de-
creases, internal shear layers and wave attractors become the dominant features of the
fluid response and the curve becomes more spiky.

We see that for small values of η dissipation decreases with Ekman number, an anti-
resonance. The behaviour becomes more complicated for thinner oceans for which res-
onances occur for some values of η (e.g., 0.75, 0.807, 0.8415, 0.8815), moreover, we see
that these cases correspond to local maxima of tidal dissipation (in η). We select some
representative cases of η in which we observe wave attractors (η = 0.63 and 0.73), anti-
resonances (η = 0.35) or resonances (η = 0.76 and 0.8815) for further study. For these
cases we further explore the change of dissipation as the Ekman number decreases (Fig-
ure 4.7). We use an Ekman number as low as 10−10, which requires enhanced resolution
(L = 2000, N = 350) to achieve a truncation error of ∼ 10−3.

For a thick ocean (η = 0.35), dissipation decreases with decreasing Ekman number.
Dissipation approximately follows a power law of the form ∼ E 0.35. As explained, for this
ocean geometry, strictly non-attracting periodic trajectories exist. Rieutord and Valdet-
taro (2018) have shown that in such a situation the fluid responds to the excitation with a
flow characterised by an ever increasing wavenumber that ultimately, when E=0, inhibits
any response. This is actually the anti-resonance associated with the periodic trajectory
ω= sin(π/6).

We now consider the two cases with highly attracting short wave attractors, η= 0.63
and η = 0.73, depicted in Figure 4.3. Figure 4.7 shows that for these two cases dissipa-
tion tends towards an asymptotic limit. In a wave attractor there is a balance between
focusing and diffusion. As the Ekman number is reduced, the thickness of the internal
shear layer is reduced and the velocity gradient increased in such a way that dissipation
remains constant. This situation is similar to that observed in Ogilvie (2005) who showed
the asymptotic convergence of dissipation in wave attractors in a rectangular container.
It is also interesting to note that the asymptotic limit is reached at higher Ekman num-
bers for η = 0.63 than for η = 0.73. Figure 4.3 shows that the η = 0.73 attractor is longer
and less attracting, viscous dissipation acts along a longer distance and prevents the at-
tractor from developing for high Ekman number.

Finally, we focus on two cases where a resonance occurs (η= 0.75 and 0.8815). These
resonances are of special relevance if the Ekman number of Europa’s and Enceladus’
ocean is very low, for example close to that given by the molecular viscosity of water
(10−14 −10−13). In such a case, if a resonant state is attained, dissipation could be con-
siderably higher than the values computed for Ekman numbers several orders of mag-
nitude higher. As seen in Figure 4.7, for these two cases dissipation increases with de-
creasing Ekman number until it reaches a maximum and then starts to decrease again.
This behaviour can be understood by analysing the resonance peaks in Figure 4.6b. We
see that as the Ekman number decreases the curve becomes more spiky, the resonance
peak narrows. If the exact η for which the resonance occurs is not chosen, dissipation
will decrease with decreasing Ekman number as the resonance peak becomes narrower.
As is evident from this plot, our current resolution does not allow us to resolve the exact
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value of η at which dissipation reaches its maximum.

Higher resolution is needed in our explored parameter space to find the exact res-
onant values of η. It is likely that at these exact resonant ocean geometries the actual
dissipation for an Ekman number close to that given by the molecular viscosity of water
(E = 10−13−10−14) is several orders of magnitude higher than what we find in Figure 4.6.
However, we need to recall that as the Ekman number decreases the resonance peak be-
comes narrower, thus a resonance would only occur over a very narrow range of ocean
thicknesses. For instance, we see that by using∆η= 126 m for Enceladus or 783 m for Eu-
ropa the resonance peak for η= 0.8815 at an Ekman number of 10−9 is already missed. It
seems impossible that the ocean of Europa or Enceladus is of the thickness precisely re-
quired for such resonances to occur, specially since this would require the sea-floor and
ice shell to be devoid of topographical features of higher amplitude than the previously
mentioned resolution.

4.5. DISCUSSION AND CONCLUSIONS

In this work we analyse for the first time tidal dissipation due to inertial waves in Eu-
ropa and Enceladus. We consider tides caused by the eccentric orbit of these satellites
as well as their obliquity. We consider an ocean contained within a spherical shell and
use a spectral method to compute tidal dissipation for different ocean thicknesses and
dynamic viscosity coefficients (given by the Ekman number). We neglect the effect of the
ice shell and argue that our results represent an upper bound estimate for tidal dissipa-
tion for an ice-covered moon.

We find that dissipation depends strongly on ocean thickness and Ekman number.
One of the challenges in computing tidal dissipation is the scarcity of information about
Europa and Enceladus oceans. For instance, the effective viscosity, which depends on
small-scale dissipative processes, is not known. It is for this reason that we analyse the
behaviour of the fluid for a wide range of Ekman numbers. For a given ocean thick-
ness we distinguish three different scenarios depending on the behaviour of dissipation
with Ekman number. If a wave attractor is excited, an asymptotic limit is reached where
dissipation is independent of viscosity. Otherwise, there can be an anti-resonance or
resonance depending on the ocean geometry. Anti-resonant states, where we observe a
decrease of dissipation with decreasing Ekman number, are attained for unrealistically
thick oceans; while resonant states, where dissipation increases with decreasing Ekman
number, are common for shallower oceans.

After analysing the effect of changing the ocean thickness and viscosity we conclude
that under the aforementioned assumptions, tidal dissipation due to inertial waves is
several orders of magnitude smaller than Europa’s radiogenic heating and Enceladus’
observed heat flux and thus does not play an important role in preventing these oceans
from freezing. Still, we observe that the induced tidal currents can be one order of mag-
nitude stronger than those obtained using the Laplace Tidal Equations (e.g., Tyler, 2008,
2009). We find that for a 30 km thick Enceladan ocean tidal currents of amplitude 3 cm/s
are excited. We also consider the possible interaction of inertial waves and the ice shell
and conclude that for global oceans of constant thickness it is unlikely that inertial waves
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Figure 4.6 (a) Tidal dissipation amplitude in an ocean contained within a spherical shell
due to inertial waves excited by the degree-two order-zero eccentricity tide. The forcing
frequency equals the rotational frequency of the body. Dissipation is given for varying
ocean thickness, varying values of inner to outer ocean radius ratios (η) and Ekman num-
ber ranging from 10−4 to 10−8. (b) is a zoom-in of (a) for the most relevant range of ocean
thicknesses for Europa and Enceladus (η= 0.8−1).
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Figure 4.7 Non-dimensional tidal dissipation amplitude, as defined in Eq. (4.35), as a
function of Ekman number for different representative inner to outer ocean radius ra-
tio (η) for the degree-two order-zero eccentricity tidal compinent. η = 0.63,0.73, cor-
responds to an ocean with wave attractors with high (in absolute value) Lyapunov ex-
ponent; for η = 0.35 there is an antiresonance; and η = 0.75,0.8815 correspond to two
resonant states. The markers indicate the different numerical experiments performed.

could result in observable surface features.

The difficulty in explaining Enceladus’ present state through tidal dissipation in its
solid parts (ice and mantle) have led to a focus on tidal dissipation within the ocean
in the past years. However, so far tidal dissipation estimations using the Laplace Tidal
Equations have resulted in low values of tidal dissipation for Enceladus’ estimated ocean
thickness (Hay and Matsuyama, 2017; Matsuyama et al., 2018; Tyler, 2014). It was sug-
gested that internal inertial waves might produce enough additional tidal dissipation.
Here we show that the direct generation of inertial waves in a spherical shell does not
provide significant additional heat to prevent the ocean from freezing either.

However, the discussion on tidal heating in the subsurface oceans of the icy moons
is far from settled. In our study we have made several assumptions that need to be re-
visited. We have assumed the ocean to be (1) unstratified, (2) of constant-thickness (no
topography), and (3) we have neglected non-linear effects. Each of these elements are
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discussed in the next paragraphs.

We are limited by the absence of direct observations of the extraterrestrial oceans.
We do not have any information about their density structure, thus, we can only apply
our knowledge of similar environments on Earth to make an educated guess. Follow-
ing the suggestions of Goodman and Lenferink (2012); Goodman et al. (2004) we have
considered the ocean to be convectively mixed. However, under some circumstances
the ocean can be stratified (Melosh et al., 2004; Vance and Brown, 2005). In a stratified
ocean, internal gravity waves, which play an important role in tidal dissipation on Earth
(Garrett, 2003), can also be generated, adding a new possible source of tidal dissipation.

In this study we consider an ocean contained within a spherical shell. However, it is
expected that Enceladus’ and Europa’s ocean basins deviate from this idealised shape. It
is known, for example, that Enceladus’ ocean does not have a constant thickness. On the
contrary, the ice shell thickness varies from 7 km at the south pole to 24 km at the equator
(Beuthe et al., 2016; Čadek et al., 2016). Moreover, due to rotation and tidal deformations
both Europa and Enceladus have the shape of a triaxial ellipsoid (e.g., Nimmo et al., 2007;
Thomas, 2010). Wave attractors also exist in more general ocean basins. We expect that
the conversion of large-scale tides into small scale inertial waves will be facilitated by
additional topographic variations. Inertial waves for complex ocean geometries is an
exciting topic for future work.

Besides, the barotropic tide given by the LTE highly depends on the ocean’s basin
geometry. The interaction of the barotropic horizontal currents with topography ex-
cites internal waves. On Earth most tidal dissipation occurs on the shallow continental
shelf where barotropic currents have a higher amplitude, but an additional ∼ 30% of tidal
dissipation occurs in the oceanic ridges due to the excitation of internal waves (Egbert
and Ray, 2000, 2003). The effect of topography on both the barotropic and internal tide
should be further studied.

Finally, in this study we have used perturbation theory, we have ignored the non-
linear terms in the momentum equations. The use of non-linear terms would change
the behaviour of the fluid. For example, inertial waves could interact with the under-
ling convective flow. Another possible interaction is that of inertial waves with a mean-
flow excited by libration, which can lead to the well-known elliptic instability (Kerswell,
2002). This flow instability gives rise to fully three dimensional turbulence, which might
enhance dissipation and change its geographical pattern. Both Europa and Enceladus
might be subject to this instability (Lemasquerier et al., 2017). Further experimental and
numerical work is needed to understand the relevance of this phenomenon in heating
the icy moons and shaping their surface.

4.6. APPENDIX A: NUMERICAL APPROACH EXPANDED

We solve Equations (4.19) using the spectral method of Rieutord and Valdettaro (1997).
We expand the different fields using vector spherical harmonics:
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with:
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where Y m
l are normalized spherical harmonics, which satisfy the following orthogonal

relations:
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Using the previous expansion the continuity equation becomes:
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Taking the curl of Eq. (4.15) to eliminate the potential and introducing Eq. (4.25) we
get the following Equations for the Rm

l , and T m
l velocity components:
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with:
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l 2
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The forcing terms fR and fT are given by :

fR =− r
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∗dΩ (4.28a)

fT =
∫

4π
∇× f (eq) ·T m

l
∗dΩ (4.28b)

The values of fT and fR are obtained for the different tidal constituents. We need to
obtain the non-dimensional components of the different constituents of the equilibrium
tide ueq in terms of spherical harmonics. We compute their amplitude by taking the
time derivative of Equation (4.6) and using the definition of the equilibrium tide given
in Eq. (4.16). We write the resulting expressions using the previously defined normalised
spherical harmonics Yl ,m :
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Introducing Eq. (4.29) into Eq. (4.28) we can get the values of fR and fT for m = 0,
m = 1 and m = 2 components, ( f 0

R , f 0
T , f 1

R , f 1
T and f 2

R , f 2
T ).
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4.7. APPENDIX B: TIDAL DISSIPATION COMPUTATION

4

101

ke2e (ko1e ) or ke2w (ko1w ) should be used in the place of ke2 (ko1) depending if we solve
for the westward or eastward wave. Note that the constant k contains information about
the physical characteristics of each moon. Due to the fact that the PDEs are linear we
solve the system for k = 1 and multiply the solution by the corresponding value of k to
obtain the solution for each configuration.

By inspecting Equations 4.26 it is clear that the different orders are decoupled, but
there exists a coupling between degrees. However, not all the degrees are coupled, sym-
metric (X +

m) and antisymmetric (X −
m) modes with respect to the equator are decoupled

and can be solved independently.

X +
m =


um

m
wm+1

m
um+2

m
wm+3

m
...

 X −
m =


wm

m
um+1

m
wm+2

m
um+3

m
...

 . (4.31)

Note that for the m = 0 and m = 2 tidal components the X +
0 and the X +

2 solutions are
excited, respectively, while m = 1 excites the X −

1 solution.

The partial differential equations 4.26 are discretised in the radial direction using
the Chebyshev polynomials on the Gauss-Lobatto collocation nodes (see Section 4.3.3).
More details about this method can be found in Rieutord and Valdettaro (1997).

4.7. APPENDIX B: TIDAL DISSIPATION COMPUTATION

We expand Eq. (4.20) as:

D̂v = E
∫ 1

η
d(r )r 2dr, (4.32)

where d(r ) is the dissipation in a spherical layer with radius r . We can write the previous
equation using the spherical harmonic decomposition of the velocity (Eq. (4.22)):
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(e.g., Rieutord, 1987). The total value of D̂v is obtained by numerically integrating
Eq. (4.32). Finally, we obtain the dimensional value as:

Dv = 8k2ρon3R5D̂v (4.35)

where k depends on the tidal component considered and is given by Eq. (4.29).
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THE TIDES OF ENCELADUS’

POROUS CORE

M. ROVIRA-NAVARRO , R. KATZ , Y. LIAO, W. VAN DER WAL, F.
NIMMO

The inferred density of Enceladus’ core, together with evidence of hydrothermal activity
within the moon, suggests that the core is porous. Tidal dissipation in an unconsolidated
core has been proposed as the main source of Enceladus’ geological activity. However, the
tidal response of its core has generally been modeled assuming it behaves viscoelastically
rather than poroviscoelastically. In this work, we analyze the poroviscoelastic response to
better constrain the distribution of tidal dissipation within Enceladus.

A poroviscoelastic body has a different tidal response than a viscoelastic one; pressure
within the pores alters the stress field and induces a Darcian porous flow. This flow repre-
sents an additional pathway for energy dissipation. Using Biot’s theory of poroviscoelas-
ticity, we develop a new framework to obtain the tidal response of a spherically symmet-
ric, self-gravitating moon with porous layers and apply it to Enceladus. We show that
the boundary conditions at the interface of the core and overlying ocean play a key role
in the tidal response. The ocean hinders the development of a large-amplitude Darcian
flow, making negligible the Darcian contribution to the dissipation budget. We therefore
infer that Enceladus’ core can be the source of its geological activity only if it has a low
rigidity and a very low viscosity. A future mission to Enceladus could test this hypothe-

This chapter is published in the Journal of Geophysical Research: Planets (Rovira-Navarro et al., 2022): Rovira-
Navarro, M., Katz, R. F., Liao, Y., van der Wal, W., & Nimmo, F. (2022). The Tides of Enceladus’ Porous Core.
Journal of Geophysical Research: Planets, 127, e2021JE007117.
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sis by measuring the phase lags of tidally induced changes of gravitational potential and
surface displacements.

5.1. INTRODUCTION

When Voyager 1 and Voyager 2 flew by Enceladus they revealed a surprisingly young and
active world (Smith et al., 1982). More than two decades later, the Cassini spacecraft dis-
covered water plumes erupting from Enceladus’ South Polar Terrain (SPT) (Porco et al.,
2006), showed that the SPT radiates ∼ 10 GW of energy to space (Howett et al., 2011),
and demonstrated that Enceladus has a global subsurface ocean (Postberg et al., 2011;
Thomas et al., 2016) .

Explaining the high geological activity of Enceladus remains challenging (Nimmo
et al., 2018). The moon’s activity is linked to diurnal tides (e.g., Yoder, 1979). Enceladus is
currently in a 2 : 1 mean-motion orbital resonance with Dione that forces its orbital ec-
centricity, causing time-varying tides that periodically deform the moon. As Enceladus
is not perfectly elastic, part of the tidal energy is transformed into heat, a process known
as tidal heating. Energy dissipation in Enceladus is ultimately dependent on tidal dissi-
pation in Saturn. Dissipation within the planet causes a phase-lag in Saturn’s tidal bulge;
consequently, rotational energy is transferred to Enceladus and Dione where part of it is
dissipated (e.g., Nimmo et al., 2018).

Astrometric observations of the Saturnian system can be used to constrain the
phase-lag of Saturn’s tidal bulge and estimate the amount of energy dissipated in the
moons (Meyer and Wisdom, 2007). They suggest that Enceladus is in orbital and thermal
equilibrium (Fuller et al., 2016; Lainey et al., 2012). If the moon is in thermal equilibrium,
ice-shell thickness estimates combined with measurements of the SPT thermal flux can
be used to obtain the total energy produced within the moon, which adds up to ∼ 35
GW (Hemingway et al., 2018). However, explaining where and how this much energy is
dissipated within Enceladus has been problematic (e.g., Nimmo et al., 2018), giving rise
to Enceladus’ energy puzzle.

Enceladus’ ice shell is most likely brittle and conductive, limiting the amount of heat
that can be dissipated within it to about 1 GW (Beuthe, 2019; Souček et al., 2019). Fric-
tional heating along Enceladus’ tiger stripes can contribute an additional 0.1−1 GW of
energy dissipation (Pleiner Sládková et al., 2021), but, overall, tidal heating in the ice-
shell can only account for roughly 10% of the observed SPT thermal output. Ocean tides
have been proposed as an additional heating mechanism (Tyler, 2011), but they only be-
come important if Enceladus has an orbital obliquity two orders of magnitude higher
than the expected value (Chen and Nimmo, 2011); or the ocean is unrealistically thin, ra-
dially stratified or turbulent (Chen et al., 2014; Hay and Matsuyama, 2019; Matsuyama,
2014; Rekier et al., 2019; Rovira-Navarro et al., 2019, 2020; Tyler, 2020; Wilson and Ker-
swell, 2018). Modelling the core as a purely solid, viscoelastic body, tidal dissipation
produced within it can only account for the observed thermal output if the core has a
viscosity of ηc < 1013 Pas, much lower than that characteristic of rock. Because of this,
substantial tidal dissipation in the core was first disregarded. However, Roberts (2015)
and Choblet et al. (2017) recently suggested that a low viscosity can be attained if Ence-
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ladus’ core is porous.

An Enceladan porous core is consistent with observations. The density of the core
inferred from gravity data, 2.4 gcm−3 (e.g., Beuthe et al., 2016), is low compared to that
of the minerals expected to form the bulk of the core (Choblet et al., 2017). Furthermore,
the detection of salt-rich particles (Postberg et al., 2009, 2011), silicon-rich nanoparticles
(Hsu et al., 2015) and molecular hydrogen (Waite et al., 2017) in material ejected by Ence-
ladus’ plumes suggests that the ocean interacts with the silicate core in hydrothermal
systems. Taken together, these observations suggest that the moon’s core is a porous,
water-saturated matrix of silicates or loosely packed rock pieces through which water
can circulate.

Even though Roberts (2015) and Choblet et al. (2017) attributed Enceladus’ activity
to a porous core, they did not explicitly model how a porous core responds to tides. In-
stead, they modelled the core as a viscoelastic, rocky solid. The response of a porous,
permeable, water-saturated body to tidal forces differs from that of a pure solid. The de-
formation of the matrix induces a flow of water through the permeable interior, which
in turns affects the response of the solid matrix and modifies the dissipation in the solid.
Furthermore, the viscous flow of water through the pores adds an additional source of
dissipation that may not be negligible.

While the tidal response of solid and liquid layers have been thoroughly examined
(e.g., Beuthe, 2016; Chen et al., 2014; Jara-Orué and Vermeersen, 2011; Kaula, 1964; Love,
1911; Matsuyama et al., 2018; Renaud and Henning, 2018; Rovira-Navarro et al., 2019;
Segatz et al., 1988; Tyler, 2008), the tidal response of bodies with porous layers has been
subjected to much less scrutiny. Wang et al. (1999) estimated energy dissipation due
to tidally-induced flows in Earth’s permeable seafloor and showed it to be negligible;
Vance et al. (2007) applied the same approach to Enceladus’ hydrothermal systems and
reached a similar conclusion for the icy moon. Liao et al. (2020) developed a more com-
plete approach based on Biot’s theory of poroviscolasticity (Biot, 1941) and argued that
the interaction between solid and liquid phases lead to a heat production that can easily
exceed 10 GW and thus solve Enceladus’ energy puzzle.

The model presented by Liao et al. (2020) included several simplifications that re-
quire further examination: (1) only the tidal response of the core was considered instead
of that of the whole moon (core, ocean and ice shell); (2) the authors forced the prob-
lem via an imposed surface strain derived from viscoelastic models and only considered
one component of the eccentricity tide instead of forcing the core with the complete
tidal potential; (3) the authors neglected the effect of self-gravity, the body force arising
from the tidal deformation itself; and (4) they assumed that the displacement field was
irrotational.

In this paper, we relax the assumptions of Liao et al. (2020) and develop a self-
consistent model to compute the tidal deformation and fluid flow of self-gravitating bod-
ies with porous layers (Section 5.2) that can be applied to Enceladus and other bodies
with internal porous layers. The new approach is an extension of the standard theory
of tides for self-gravitating viscoelastic bodies (Love, 1906; Peltier, 1974; Sabadini et al.,
2016; Saito, 1974; Takeuchi et al., 1962) to bodies with poroviscoelastic layers. We apply
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Figure 5.1 Interior structure of Enceladus consisting of three layers: a porous core, a sub-
surface ocean and an ice shell. The porous core boundary is assumed to be permeable.

the new model to Enceladus (Section 5.3), and examine the circumstances under which
sufficient tidal dissipation can be produced within the core to explain the thermal en-
ergy radiated by the moon. In Section 5.4 we conclude that Darcy dissipation is likely
negligible in Enceladus’ thermal budget, leaving a low-viscosity, low-rigidity core as the
most plausible avenue for substantial tidal dissipation in the rocky core. We propose
how future missions could test this hypothesis.

5.2. METHODS

Our aim is to obtain the linear, periodic, tidal response of a body with internal porous
layers to a tidal perturbation. We assume the moon is composed of N spherically sym-
metric layers of uniform properties. The boundary between a layer i and i +1 is at radius
ri . We consider layers that are either purely liquid, purely solid, or a contiguous solid
matrix with a permeable network of liquid-filled pores. We use a viscoelastic model of
the solid. The model can include as many layers as required to approximate the interior
structure of the moon under consideration. Figure 5.1 shows the interior structure that
is thought to be valid for Enceladus, consisting of an icy shell, a subsurface ocean and a
porous core.

Liao et al. (2020) applied Biot’s theory of poroviscoelasticity to the tidal problem.
However, the present work is the first derivation of a self-consistent model of body tides
in porous media; we therefore provide a detailed formulation of the problem, highlight
key assumptions, and explain how it differs from the standard tidal theory for viscoelas-
tic solids and the work of Liao et al. (2020). To this end, we start by presenting the gov-
erning equations for porous media in detail, show how they reduce to those of a pure
solid, and discuss how internal liquid layers are modelled (Section 5.2.1); then we intro-
duce the tidal potential and boundary conditions (Section 5.2.2); and, finally, sketch the
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solution method (Section 5.2.3), leaving full details of the mathematical formulation to
the Appendices.

5.2.1. GOVERNING EQUATIONS

We use the volume-averaged mass and momentum conservation equations for a parcel
of the moon. The parcel contains a solid and a liquid phase of densities ρs and ρl and
volumes Vs and Vl , respectively. The parcel is at least one order of magnitude bigger than
the typical grain size. This way, we can use continuum mechanics rather than explicitly
modelling the microphysical interactions of grains within the parcel. Thus the variables
that follow should be understood as averages. The porosity of the parcel is simply de-
fined as the ratio between the liquid (Vl ) and total (V ) volumes:

Φ= Vl

V
. (5.1)

The mass conservation equations for the liquid and solid phases can be written as
(e.g., Ganesan and Poirier, 1990)

∂Φρl

∂t
+∇· [Φρl vl

]= 0, (5.2a)

∂(1−Φ)ρs

∂t
+∇· [(1−Φ)ρs vs

]= 0. (5.2b)

Eqs. (5.2a) and (5.2b) can be added to obtain

∂ρ

∂t
+∇· [ρl q +ρvs

]= 0. (5.3)

ρ is the bulk density, ρ =Φρl +(1−Φ)ρs ; and q is the segregation flux given by the relative
velocity of the liquid phase with respect to the solid phase, q =Φ(vl−vs ). We additionally
introduce the variation of fluid content, defined as the amount of liquid entering the
solid frame per unit of the solid frame (Cheng, 2016),

ζ=Φ∇· (us −ul ), (5.4)

with u being a displacement vector.

The momentum equation in a frame rotating with the moon’s angular velocity (Ω) is
given by (Mckenzie, 1984)

Φρl

(
Dvl

Dt
+2Ω×vl

)
=∇·Φσl −Φρl∇φ−F , (5.5a)

(1−Φ)ρs

(
Dvs

Dt
+2Ω×vs

)
=∇· (1−Φ)σs − (1−Φ)ρs∇φ+F . (5.5b)

σ is the stress tensor, φ is a potential that includes gravitational forces and the centrifu-
gal force. F is an interaction force between the solid and liquid phases given by
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F =Φηl

κ
q −p∇Φ. (5.6)

p is the pore pressure and ηl is the liquid viscosity. κ is the matrix permeability, which
depends on the geometry of the solid matrix. For a solid matrix made of uniform, spher-
ical grains of size dg , a commonly used expression is the Kozeny-Carman law (Carman,
1997; Kaviany, 1995):

κ= Φ3

180(1−Φ)2 d 2
g (5.7)

The inertial terms in the momentum equations (Eq. (5.5)) can be neglected. For the
solid phase, high viscosity and the long period of tidal forces as compared to seismic
waves imply that the solid is in quasi-equilibrium. In a porous medium, the interaction
force is generally larger than inertial terms in (5.5b), which in turn results in a small
Reynolds number. Summing the two momentum equations, an equation for the bulk or
total stress is obtained

∇·σ−ρ∇φ= 0, (5.8)

with the total stress tensor being

σ= (1−Φ)σs +Φσl . (5.9)

We assume that deviatoric stresses in the liquid fluctuate on the pore scale and hence
they volume-average to zero, except for their contribution to the interaction force (5.6).
The stress tensor of the liquid phase is thus isotropic and given by the pore pressure,

σl =−p I , (5.10)

with I being the identity matrix. Using the interaction force expression, the liquid phase
momentum equation reduces to Darcy’s law,

q =− κ

ηl

(∇p +ρl∇φ
)

. (5.11)

Note that if the porosity is zero, we recover the mass and momentum conservation equa-
tions for a solid.

A constitutive equation relating the stress tensor and pore pressure to kinematic vari-
ables is needed. We define the strain tensor as

ϵ= 1

2

[∇u + (∇u)T ]
, (5.12)

where u is the volume average of the solid displacement (us ). The stress and strain ten-
sors can be split into a mean and a deviatoric component:

σ=−P I +σd , (5.13a)
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ϵ= ϵM I +ϵd , (5.13b)

with ϵM = tr(ϵ)/3 and P =− tr(σ)/3; tensile stress is taken to be positive.

In a compressible poroviscoelastic solid, deformation is associated with an effective
stress σ′ (Biot, 1941; Cheng, 2016),

σ′ =σ+αp I . (5.14)

α is Biot’s constant, the meaning of which will become evident later. We consider that the
material is viscoelastic. Different rheological laws can be used to consider the behaviour
of a viscoelastic material (e.g., Renaud and Henning, 2018). We consider the Maxwell
model, in which case effective stress and strain are related as

dσ′′′

dt
+ µ

η
σ′′′− 1

3

µ

η
tr(σ′′′)I = 2µ

dϵ

dt
+

(
K − 2

3
µ

)
dtr(ϵ)

dt
I , (5.15)

or, in terms of total stress,

dσ

dt
+ µ

η
σ− 1

3

µ

η
tr(σ)I = 2µ

dϵ

dt
+

(
K − 2

3
µ

)
dtr(ϵ)

dt
I −αdp

dt
I . (5.16)

Here, µ and η are the shear modulus and viscosity of the two-phase aggregate, respec-
tively. The Maxwell model does not capture the anelastic behaviour of ice and sili-
cates, which can become especially important when the forcing period is much smaller
than the Maxwell time η/µ (Efroimsky, 2012b). It is for this reason that recent stud-
ies have considered the Andrade rheological model (Andrade and Trouton, 1910) for
ices (Castillo-Rogez et al., 2011; Gevorgyan et al., 2020; Rambaux et al., 2010; Rhoden
and Walker, 2022; Shoji et al., 2013) and silicates (Bierson and Nimmo, 2016; Efroim-
sky, 2012b; Renaud and Henning, 2018; Walterová and Běhounková, 2017). In 5.10 we
discuss how more complex rheology models can be incorporated into our theory and
demonstrate this using the Andrade model.

One further constitutive equation relates the pore pressure with the isotropic strain
and the variation of fluid content as (Cheng, 2016),

p = Ku −K

α
tr(ϵ)+ Ku −K

α2 ζ, (5.17)

where Ku and K are the bulk modulus of the material in undrained (ζ = 0) and drained
(p = 0) conditions, respectively. These are effective properties of the two-phase medium;
the drained modulus depends on the mechanical properties of the solid matrix; in con-
trast, the undrained modulus depends on both the properties of the liquid and the solid
phases. If the material is microscopically homogeneous and isotropic, K , Ku and α can
be obtained using the bulk modulus of the solid Ks and liquid Kl phases, and the bulk
modulus of porosity KΦ, which measures the resistance to grain rearrangement, (e.g.,
Cheng, 2016),

α= 1+Φ(1−Φ)2KΦ/Ks

1+ (1−Φ)2KΦ/Ks ,
(5.18a)
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K = (1−Φ)3KΦ/Ks

1+ (1−Φ)2KΦ/Ks
Ks = (1−α)Ks , (5.18b)

Ku = K + Kl (Ks −K )2

Kl (Ks −K )+ΦKs (Ks −Kl )
. (5.18c)

With this definition, it becomes apparent that the Biot parameterα relates the resistance
to compression of the solid constituent and the porous matrix. A strong porous matrix
has a small α while an easily deformable matrix has an α close to 1. If the solid is much
less compressible than the frame, KΦ/Ks → 0 and therefore α→ 1.

The previous set of constitutive equations define a material that, upon a stress per-
turbation, exhibits an elastic response and viscous creep. Moreover, a perturbation pro-
duces a pore pressure field that drives Darcian porous flow. Viscous creep and Darcian
flow result in energy dissipation. The rate of volumetric tidal dissipation averaged over a
tidal cycle due to these two processes is (e.g., Liao et al., 2020)

Ėv,sol i d = 1

T

∫ T

0

(
σ :

∂ϵ

∂t
+p

∂ζ

∂t

)
dt , (5.19a)

Ėv,l i qui d = 1

T

∫ T

0

ηl

κ

(
q ·q

)
dt , (5.19b)

respectively.

If the body has an internal liquid layer (i.e., ocean), alternate equations are required
for that layer. We assume internal liquid layers are inviscid, incompressible and in hy-
drostatic equilibrium. If this is the case the radial displacements follow equipotential
surfaces,

u ·er =−φ/g , (5.20)

except at solid-liquid interfaces, where this might be hindered (Jara-Orué and Ver-
meersen, 2011). er is the radial unit vector, and g the gravitational acceleration. Under
these assumptions, surface (e.g., Hay and Matsuyama, 2017; Matsuyama, 2014; Rovira-
Navarro et al., 2020; Tyler, 2011) and internal waves (Rekier et al., 2019; Rovira-Navarro
et al., 2019) are excluded from the solution.

In all layers, the gravitational potential of the body can be computed using Poisson’s
equation,

∇2φ= 4πGρ. (5.21)

5.2.2. TIDAL FORCING AND BOUNDARY CONDITIONS

We consider a synchronously rotating moon of radius R with an orbital frequency n and
eccentricity e. As the obliquity of Enceladus is expected to be very small (Chen and
Nimmo, 2011), we focus on eccentricity tides and ignore obliquity tides. The tidal po-
tential at a point with co-latitude and longitude θ,ϕ located at radial distance r from the
center of the moon is given by (e.g., Jara-Orué and Vermeersen, 2011; Kaula, 1964)
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φT (r,θ,ϕ) =(nR)2e
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√
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}
+O(e2).

(5.22)

Y m
l are normalized, real spherical harmonics of degree l and order m (Eq. 5.36).

To solve the previous set of equations, boundary conditions at the moon’s surface are
required. The normal and shear stress at the surface are zero,

σr r (R) =σrθ(R) =σrφ(R) = 0. (5.23)

The potential, φ, is continuous at the surface but its gradient is not. Using Poisson’s
equation and applying Gauss’ theorem for an infinitesimal control volume surrounding
the surface layer, we find

∫
S
∇φ ·er dS = 4πG

∫
S

∫ R+δ

R−δ
ρdr dS. (5.24)

We note that Liao et al. (2020) considered only the zonal component of the tidal po-
tential (m = 0). Furthermore, the tidal forcing was imposed via a prescribed strain at
the surface of the core instead of via the tidal potential φT as explained here, and the
no-stress boundary conditions (Eq. (5.23)) were not used. The distinct effect of each of
these boundary conditions will be explored in Section 5.3.

Additional boundary conditions must be prescribed at internal boundaries. For the
core–ocean and ocean–ice shell interfaces, we use the boundary conditions discussed in
Jara-Orué and Vermeersen (2011) and given in 5.5. Nevertheless, an additional boundary
condition should be provided at the porous layer interface (rp ). Two different boundary
conditions can be considered: no radial Darcy flux

q(rp ) ·er = 0, (5.25)

or force balance and continuity of fluid pressure. In the latter case, the ocean pressure
at the core surface is balanced by the radial component of the stress tensor and the pore
pressure equals the ocean pressure,

σr r (rp ) =−Pocean , p(rp ) = Pocean , (5.26)

which implies p(rp ) +σr r (rp ) = 0. For Enceladus, we consider that the core–ocean
boundary is permeable and thus use the second boundary condition.

5.2.3. PERTURBATION THEORY AND SOLUTION METHOD

To make the analysis tractable, we linearize the equations of motion using perturbation
theory. We split the density, stress tensor and potential force into a background and a
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perturbed component. The background component corresponds to the pre-stressed,
hydrostatic state arising from the self-gravity of the body; the perturbed component is
the result of the time-dependent tidal potential,

σ=−P0I +σ∆, (5.27a)

p = p0 +p∆, (5.27b)

ρ = ρ0 +ρ∆, (5.27c)

ρl = ρl ,0 +ρ∆l , (5.27d)

φ=φ0 +φ∆. (5.27e)

Here,φ0 is the gravitational potential of the unperturbed body andφ∆ includes both the
perturbing tidal potential and the potential arising from self-gravitation of the perturbed
body. In the unperturbed state, Eqs. (5.8) and (5.11) are given by:

∇P0 +ρ0∇φ0 = 0, (5.28a)

∇p0 +ρl ,0∇φ0 = 0, (5.28b)

with ∇φ0 = g er .

Using the previous definitions and linearizing by assuming that the products of per-
turbation variables are negligible, the momentum equations can be written as:

∇·σ∆−∇(
ρ0g u ·er

)−ρ0∇φ∆−ρ∆g er = 0, (5.29a)

q =− κ

ηl

(∇p∆+ρl ,0∇φ∆+ gρ∆l er
)

. (5.29b)

The mass conservation equation can be obtained by linearizing Eq. (5.3) and assum-
ing that under small displacements the Lagrangian and Eulerian derivatives are approx-
imately equal,

ρ∆

ρ0
=−∇·u + ρl ,0

ρ0
ζ. (5.30)

Similarly, using the definition of the variation in liquid content (Eq. (5.4)), and the segre-
gation flux, we obtain:

∂ζ

∂t
=−∇·q . (5.31)

Finally, the density change of the liquid phase can be obtained using the definition of
the liquid bulk modulus,

ρ∆l
ρl ,0

= p∆

Kl
. (5.32)

The perturbed gravitational potential is obtained by solving the linearized Poisson’s
equation,
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∇2φ∆ = 4πGρ∆. (5.33)

Eqs. (5.29)–(5.33) reduce to those used in Liao et al. (2020) if the solid and liquid
phases are assumed to be massless (ρ0,ρl ,0 = 0). If the layer is purely solid (Φ= 0,α= 0),
we recover the classic equations used for a viscoelastic solid (Sabadini et al., 2016).

To obtain the tidal response of the body, the momentum equations (5.29), mass con-
servation equations (5.30) and (5.31), and Poisson’s equation (5.33) together with consti-
tutive equations (5.16) and (5.17) should be solved under appropriate boundary condi-
tions (Section 5.2.2). As the tidal forcing is periodic, we solve the equations of motion in
the Fourier domain. We assume a solution proportional to exp(i nt ) and transform the
previous set of equations to the Fourier domain. Because of the symmetry of the prob-
lem, we solve the previous set of equations using spherical harmonics. We obtain stress
and strain tensors, the pore pressure and Darcy flow, and we compute tidal dissipation
in the solid and liquid phases using Eq. (5.19). Further details can be found in Sections
5.8–5.5.

5.3. APPLICATION TO ENCELADUS

To understand how the predictions of this model differ from the previous treatment of
Liao et al. (2020) we consider three different cases: (1) Enceladus’ core forced via a pre-
scribed surface strain as in Liao et al. (2020); (2) Enceladus’ core with a free surface and
forced with the tidal potential; and (3) a complete model of Enceladus consisting of a
porous core, an ocean, and an ice shell, forced with the tidal potential. We begin by
examining the simpler cases 1 and 2 to illustrate the effect of the boundary conditions
used by Liao et al. (2020) (Section 5.3.1) and then move to the more complex, multilay-
ered model to show how the ocean and ice shell affect the core’s tidal response (Section
5.3.2).

We assume a core density of 2.4 gcm−3 consistent with gravity observations (Beuthe
et al., 2016). Choblet et al. (2017) obtained a core porosity of 20−30% for realistic core
compositions; we use a value of 20%. For a consolidated silicate core, the shear modulus
is ∼ 1− 10 GPa and the viscosity is ∼ 1020 Pas or higher at low homologous tempera-
ture. However, if the core is unconsolidated, it can become weaker and the shear mod-
ulus and viscosity can be orders of magnitude lower than the typical values of silicates
(Choblet et al., 2017; Goldreich and Sari, 2009; Nimmo et al., 2018). The parameters used
are summarized in Table 5.1.

5.3.1. CORE-ONLY MODEL

Liao et al. (2020) studied the response of Enceladus’ core to a prescribed radial strain
imposed at the core’s surface (in this section, R = rc ). The strain was given by a degree-2
order-0 field of the form: ϵr r (R,θ,ϕ) = ϵ(R)Y 0

2 . The amplitude of the strain was estimated
from the theory of viscoelastic tides (Murray and Dermott, 2000). For a homogeneous
body in which rigidity dominates over self-gravity, the maximum radial strain attained at
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Quantity Symbol Value Units
Surface radius R 252.1 km
Mass M 1.08 ·1020 kg
Ocean thickness (1) hocean 38 km
Ice shell thickness (1) hi ce 23 km
Average core’s density(1) ρcor e 2422 kgm−3

Ocean’s density ρocean 1000 kgm−3

Ice viscosity (2) ηi ce 1 ·1018 Pas
Ice shear modulus (2) µi ce 3.3 GPa
Ice bulk modulus Ki ce 33 GPa
Core shear modulus µs 0.01−10 GPa
Core solid phase bulk modulus (3) Ks 10 GPa
Core viscosity ηs 1010 −1020 Pas
Biot’s constant α 0−1 −
Water viscosity(3) ηl 1.9 ·10−3 Pas
Water bulk modulus (3) Kl 2.2 GPa
Core permeability(3) κ 10−8 −10−4 m2

Core porosity Φ 0.2 -
Eccentricity e 0.0047 -
Orbital Period T 33 h

Table 5.1 Enceladus physical and mechanical properties. (1) Beuthe et al. (2016); (2) Huss-
mann and Spohn (2004); (3) Liao et al. (2020).
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the poles is ϵr r (R,0◦) = 9
4π

n2

ρG e 5
3 | k2 |, where k2 = 3/2

1+19µ̂/2ρg R is the gravitational potential
Love number and µ̂ is the complex rigidity. Additionally, Liao et al. (2020) assumed the
displacement field to be irrotational, ∇×uuu = 0, and considered the solid and liquid to be
massless, (ρ,ρl ) = 0. For case 1 we make the same assumptions.

Liao et al. (2020) found that for Biot parameter α→ 1, tidal dissipation is enhanced
as compared to standard viscoelastic models. In what follows, we assess whether this
still holds when the core is forced via the tidal potential rather than via a prescribed
surface strain. We first take a fixed core permeability (κ = 10−8 m2), and compute tidal
dissipation for different values of core viscosity and Biot parameter α. Changing α for a
given porosity is equivalent to changing the ratio between the bulk modulus of porosity
and the solid bulk modulus (Eq. (5.18)), as α approaches 1 the porous matrix becomes
more compressible. Afterwards, we study the role of the core’s permeability. While we
keep the porosity fixed, we note that variations in porosity between 0.2− 0.3 result in
changes of α and κ much smaller than the ranges explored below (Eqs. (5.7,5.18)).

Figure 5.2 shows total tidal dissipation in the core for different values of Biot param-
eter α and core viscosity ηs for cases 1 and 2. For case 1, we reproduce the results of
Liao et al. (2020). For α = 0.95 tidal dissipation features two peaks, one at a core vis-
cosity of ∼ 1011 Pas, also characteristic of the viscoelastic response, and another one
attained at higher core viscosity ∼ 1015 Pas, only characteristic of the poroviscoelastic
model. Around the two peaks, most of the energy dissipation occurs in the solid phase,
as shown by the thin lines. As core viscosity increases further, dissipation in the solid de-
creases but the total dissipation remains high due to Darcy dissipation. This dissipation
occurs in a shallow layer close to the core’s surface (Figure 5.3c), where a strong pres-
sure gradient develops that drives flows of up to 2×10−5 ms−1. The second dissipation
peak is the result of the compressibility of the porous matrix. As α→ 1, the drained bulk
modulus decreases (Eq. (5.18a)), the second peak becomes more prominent, and Darcy
dissipation also increases.

For case 2, forcing by the tidal potential, the second dissipation peak is not present
(heavy dashed line in Fig. 5.2). Tidal dissipation reaches its maximum at the same core
viscosity as in the non-porous, viscoelastic case and then decreases as viscosity increase
until Darcy dissipation becomes dominant. However, as opposed to (1), the amount of
heat resulting from Darcy dissipation is less sensitive to the porous-matrix compress-
ibility and, more importantly, it is severely reduced. The prominent pressure gradients
characteristic of case 1 do not develop and the maximum flow velocities attained are
reduced by two orders of magnitude. This suggests that explaining Enceladus’ thermal
budget in terms of poroviscoelastic dissipation may be more problematic. However, a
highly permeable core may mitigate this to some extent.

The permeability dictates how easily water can flow through the core. Figure 5.3a,b
show the total amount of internal heat production for cases 1 and 2 for different values of
core permeability. As before, for both cases we observe the high dissipation band charac-
teristic of a viscoelastic core with a low viscosity (∼ 1011 Pas). As core viscosity increases
Darcian dissipation becomes dominant and the total tidal dissipation becomes inde-
pendent of core viscosity. In this regime, dissipation increases with permeability and
the flow velocity is controlled by the dimensionless numberΩD = nR2ηl /κµ, which can



5

116 5. THE TIDES OF ENCELADUS’ POROUS CORE

be understood as a ratio between the timescale of Darcy flow (R2ηl /κµ) and of the tidal
perturbation (1/n). WhenΩD ≪ 1, high flow velocities are attained (q ∝Ω−1

D , Eq. (5.11))
which in turn results in high values of tidal dissipation (Ėl i qui d ∝Ω−1

D , Eq. (5.19b)). We
note that when ΩD becomes very high, some of the terms in the equations (for exam-
ple, the term A87 in Eq. (5.53)) can become very large, causing numerical problems. This
limits the lowest value of permeability we can attain under our current formulation to
∼ 10−9 m2. Nevertheless, we derive an analytical expression for Darcian dissipation in
the limit of an incompressible porous matrix and liquid (5.9) that presents good agree-
ment with the numerical results (Figure 5.2) and shows that Darcian dissipation can be
expected to further decrease for lower permeability values.

While dissipation increases with permeability in both cases, Darcy dissipation in the
tidally forced case is lower than in the case where a surface strain is prescribed. In case
(1), a high surface stress follows from the imposed strain, producing a large gradient in
pore pressure and driving high-amplitude Darcian flow; in contrast, in case (2) the no-
stress boundary conditions prevent this from occurring. To produce an amount of heat
similar to that observed, a permeability of κ > 10−5 m2 is required (Figure 5.3b). These
are high permeability values compared to the permeability of Earth’s hydrothermal sys-
tems, which can reach values of about 10−8 m2 (Lauer et al., 2018). However, it is possible
that Enceladus’ core does not resemble such a system, but is instead akin to an uncon-
solidated rubble pile. In that case, Enceladus’ core would be made up of loosely packed
material through which water can easily circulate.

If Enceladus’ core has a porosity of ∼ 0.2−0.3, a permeability of ∼ 10−5 m2 requires
grain sizes of about ∼10–50 cm (Eq. (5.7)). This blocky structure could be the relic of
a violent formation process such as Enceladus forming after a series of collisions of a
previous generation of moons (Asphaug and Reufer, 2013; Ćuk et al., 2016).

5.3.2. MULTI-LAYERED MODEL

We now move to the more realistic multi-layered model consisting of a porous core, a
subsurface ocean and an ice shell (case 3). Although Enceladus’ ice shell is of variable
thickness (e.g., Beuthe et al., 2016; Čadek et al., 2016; Hemingway and Mittal, 2019), we
consider an ice shell of constant thickness equal to its average value. For the core radius,
core density, and ice and ocean thicknesses we use values in agreement with gravity,
shape and libration data (Beuthe et al., 2016). We keep these values and the rheological
properties of the ice constant and vary the properties of Enceladus’ core (Table 5.1).

As in the previous cases, we compute the tidal response of the moon for different val-
ues of core viscosity and permeability. The results are shown in Figure 5.4; they demon-
strate that the presence of an ocean reduces the tidal response of the core. As in cases (1)
and (2), we find a peak in tidal dissipation for a core viscosity of ∼ 1011 Pas. Around this
value, tidal heating is compatible with Enceladus’ thermal output. However, the high-
dissipation band is narrower than for cases (1) and (2)—the presence of an ocean and an
ice crust reduces the tidal deformation of the core (Beuthe, 2015). Most importantly, the
amount of Darcian dissipation is drastically reduced.

As opposed to case (2), Darcian dissipation is small even for a highly permeable core.
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Figure 5.2 Tidal dissipation in Enceladus’ core when forced with a prescribed surface
strain (solid lines) or the tidal potential (dashed line) for different values of Biot coeffi-
cientα. The thin lines indicate tidal dissipation in the solid layer, the gray line shows the
amount of Darcy dissipation for incompressible solid and liquid phases obtained using
Eq (5.80).

The reduction in Darcian dissipation is due to the presence of the overlying ocean and
ice shell. They impose a non-zero pressure at the core surface that largely balances the
forcing of the tidal potential. The Darcian flow q is driven by the modified pressure
p∗ = p∆+ρl ,0φ

∆ (Eq. 5.29b). Without an ocean, the pressure at the surface p∆ is 0 and
the tidal force drives the Darcian flow, p∗ = ρl ,0φ

∆. In contrast, if there is an overlying
ocean and ice shell, the pressure at the core–ocean boundary is not zero. To under-
stand this, consider a core that is just covered by an ocean. Under our assumptions,
the ocean surface follows the equilibrium tide −φ∆/g while the core–ocean boundary
has a radial displacement of u. As a result, the pressure perturbation at the core–ocean
boundary is p∆ = ρl ,0g (−u−φ∆/g ). This ocean pressure partially compensates the driv-
ing tidal potential, leading to a modified pressure p∗ proportional to the the core radial
displacement −ρl ,0g u. Writing this in terms of h2, the radial displacement Love num-
ber, p∗ = ρl ,0h2φ

∆. Because of its rigidity, the radial displacement of the core is generally
much smaller than the equilibrium tide (h2 ≪ 1), explaining why Darcy dissipation is
greatly reduced when considering an ocean-covered core.

The presence of an ice shell above the ocean inhibits the ocean surface from follow-
ing the equilibrium tide by imposing a pressure load. If the ice shell is completely rigid
(no surface displacements), the pressure load compensates the equilibrium tide and is
given by −ρl ,0φ

∆. Hence the ice shell imposes a pressure equivalent to that imposed by
the water column in an ice-free ocean, leading to the same reduction in effective pres-
sure at the core. 5.9 provides analytical solutions for an incompressible core with and
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(a) (b)

(c) (d)

Figure 5.3 Total tidal dissipation in an Enceladan core with a free surface for various
values of core viscosity and permeability. In (a) the core is forced via a prescribed strain
field of order degree 2 and order 0, in (b) via the tidal potential. The contour for Ė = 10
GW is indicated in both plots. (c) and (d) show tidal dissipation in the liquid and solid
phases for a meridional cut at longitude 0◦ for the two points indicated in (a) and (b).
Both points have a viscosity of 1018 Pas and result in the same amount of tidal dissipation
(28 GW). For all cases we assume µ= 1 GPa, Ks = 10 GPa, Kl = 2.2 GPa and α= 0.95.
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Figure 5.4 Total tidal dissipation in Enceladus’ core for different values of core viscosity
and permeability. We assume µ= 1 GPa, Ks = 10 GPa, Kl = 2.2 GPa and α= 0.95.
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without a free surface that further demonstrate the role of the pressure at the core–ocean
boundary.

5.3.3. AN UNCONSOLIDATED CORE

In light of the reduced tidal dissipation in Enceladus’ porous core in comparison to the
findings of Liao et al. (2020), we reconsider the low viscosity band where dissipation is
enhanced. In all cases, we found that tidal dissipation peaks at ∼ 1011 Pas. Close to
this viscosity value, the amount of heat dissipated within the core is compatible with
Enceladus’ observed thermal output. Such a low viscosity is incompatible with the vis-
cosity characteristics of silicates (Roberts and Nimmo, 2008). However, Choblet et al.
(2017) proposed that low effective viscosity values can be attained if Enceladus’ core is
unconsolidated. If this is the case, friction between grains can give rise to substantial dis-
sipation. We next reconsider this hypothesis and discuss its plausibility and remaining
unknowns.

If strains are small, a granular material essentially behaves as a monolith. The grains
deform elastically and stresses are transmitted at the grain boundaries. Some viscous
deformation can also occur mainly due to diffusion creep. Under higher strains, grain–
grain sliding becomes important and, combined with inter-granular friction, it can result
in enhanced energy dissipation (Lambe and Whitman, 1969). Instead of using µ and ηs

to characterise the rheology, a granular material is normally characterized in terms of an
effective shear modulus (µe f f ) and a damping coefficient (υ) (e.g., Choblet et al., 2017;
Seed et al., 1986). These two variables are related to the shear modulus and the solid
viscosity introduced before as

µ= µe f fp
1−4υ2

, (5.34a)

ηs =
µe f f

2nυ
. (5.34b)

Figure 5.5 shows the amount of tidal dissipation in the core as function of µe f f and
υ. For υ> 0.1 more than 10 GW can be generated in Enceladus’ core, provided the shear
modulus is low enough. The values of the damping coefficient and effective shear mod-
ulus depend on factors that include the amplitude of the deviatoric strain, the confining
pressure, and the forcing frequency (Faul and Jackson, 2005; Lambe and Whitman, 1969;
Seed et al., 1986).

Goldreich and Sari (2009) showed that the effective rigidity of an unconsolidated
body is smaller than that of a monolith due the concentration of stresses in sharp con-
tact points. They proposed that the shear modulus is controlled by the curvature radius
at these contact points, which in turn depends on the yield strain of the material ϵY ,
and showed that the effective rigidity of an unconsolidated body can be estimated as

µe f f =
(

2gρR
19

µ
ϵY

)1/2
, with R and g the surface radius and gravity and ρ the bulk density.

This expression is consistent with an increase in shear modulus with confining pressure
seen in the laboratory (Goddard, 1990). Using values representative of Enceladus’s core



5.3. APPLICATION TO ENCELADUS

5

121

Figure 5.5 Total tidal dissipation in Enceladus’ core for different values of core effective
shear modulus and damping coefficient. A viscoelastic core and ice shell are assumed.
The red lines indicate the maximum deviatoric strain attained within the core.

(µ∼ 1 GPa, ϵY = 10−2), we find µe f f ∼ 0.7 GPa—a value much higher than that required
to attain high values of tidal dissipation for moderate values of damping coefficient υ
(Figure 5.5).

Laboratory experiments can also be used to bound υ andµe f f . If the material experi-
ences high deviatoric strains, υ increases. Laboratory data shows a pronounced increase
of υ for ϵ > 0.01%; υ can reach values higher than 0.15 for ϵ > 0.1% (e.g., Rollins et al.,
1998; Seed et al., 1986). For Enceladus’ tidal amplitude, these high strains are only at-
tained if the material has a low effective shear modulus (µe f f ∼ 107−108 Pa) (Figure 5.5).
The shear modulus increases with increasing overburden pressure and decreases with
the amplitude of the deviatoric strain. For small strains (ϵ < 0.001%), the shear mod-
ulus of typical sand mixtures at Enceladus’ core pressure (5–50 MPa) is on the order of
109 Pa (Seed et al., 1986), incompatible with enhanced dissipation. Strains on the or-
der of 0.01–0.1% can reduce the effective shear modulus by around 50% (Rollins et al.,
1998; Seed et al., 1986). Furthermore, the effective shear modulus is expected to decrease
and the damping coefficient to increase at lower forcing frequencies (Faul and Jackson,
2005). Unfortunately, laboratory data is only available for a frequency range (0.01–1 Hz)
much higher than Enceladus’ tidal frequency (∼ 10−5Hz). It remains to be seen if such
changes are sufficient to access the high-dissipation region of Figure 5.5. Laboratory ex-
periments at Enceladus-like conditions (high confining pressure, low forcing frequency)
are required to assess whether Enceladus’ core is in the highly deformable state required
for the generation of the observed thermal activity.

A more direct measurement of Enceladus’ core viscosity could be provided by a fu-
ture Enceladan mission. Due to the viscosity of the core and the ice shell, their tidal
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responses are characterised by phase lags with respect to the forcing. The ice-shell and
core phase lags affect the gravity field and the surface displacements of the moon in dif-
ferent ways. Because the ocean decouples the ice shell from the core, the phase lag of the
moon’s surface displacement is mostly dependent on the viscosity of the ice shell; in con-
trast, the phase lag of the moon’s gravity field depends on both the viscosity of the core
and the ice shell. A low-viscosity core leads to a large gravity phase lag but has a much
smaller effect on the surface-displacement phase lag; in contrast, a low viscosity ice shell
produces phase lags in the gravity field and surface displacements of similar magnitude.
Therefore, by measuring the difference between gravity and surface displacement phase
lags, we can distinguish between a low-viscosity and a high-viscosity core. Hussmann
et al. (2016) proposed this strategy to constrain Europa’s core viscosity and the viscos-
ity of high-pressure ice layers within Ganymede; a similar technique could be used for
Enceladus (Marusiak et al., 2021).

The gravity and surface-displacement phase lags are given by the phase lags of the
gravitational and radial displacement Love numbers k2 and h2. Figure 5.6 shows the
difference in gravity and surface-displacement phase lags ξk2 − ξh2 . If the core has a
low viscosity, phase-lag differences up to 50◦ are attained. This also holds if the more
complex Andrade rheology is considered (5.10). The gravity phase lag ξk2 could be mea-
sured by precise tracking of a single or dual orbiter around Enceladus (e.g., Ermakov
et al., 2021). The surface-displacements phase lag ξh2 could be measured using a laser
or radar altimeter (Steinbrügge et al., 2015, 2018). Such measurement would help to con-
strain Enceladus’ core viscosity and settle the long-standing puzzle of where Enceladus’
heat is coming from.

5.4. CONCLUSIONS

Several observations suggest that Enceladus’ core likely is a porous silicate matrix
throughout which water can permeate. The tidal response of a porous core is expected to
be markedly different from that of a non-porous one: the presence of pores renders the
body more compressible, pressure within the pores can alter the stress field, and water
can flow within the core adding an additional dissipation mechanism. For a non-porous
core, tidal dissipation is only high if the core has a rigidity and a viscosity significantly
lower than those expected for a monolithic silicate core. Recently, Liao et al. (2020) pre-
sented an analysis of the tidal response of Enceladus’ porous core using Biot’s theory of
poroviscoelasticity and showed that poroviscoelastic effects can increase tidal dissipa-
tion for core properties compatible with those of silicates.

Liao et al. (2020) cautioned that their model relies in some assumptions that required
further scrutiny: they considered the tidal response only of the core and ignored the
overlying ocean and ice shell, neglected the effects of self-gravity, and forced the prob-
lem via a prescribed surface strain rather than via the tidal potential. In this paper, we
extended the model of Liao et al. (2020) by combining the theory of poroviscoelasticity
(e.g., Biot, 1941; Cheng, 2016) with the theory commonly used to obtain the tidal defor-
mation of viscoelastic, self-gravitating bodies (e.g., Love, 1906; Sabadini et al., 2016).

With this theory, we assessed the relevance of the assumptions made by Liao et al.



5.4. CONCLUSIONS

5

123

Figure 5.6 Difference in gravity and surface displacements phase lags for different values
of core and ice shell viscosity. The thick and thin black contours show combinations of
parameters for which tidal heating is 10 and 1 GW, respectively. A shear modulus of 1
GPa is assumed for the core; the properties of the ice shell are those given in Table 5.1,
except for the viscosity, which we vary.
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(2020), and studied the subspace of core properties for which tidal heating can explain
Enceladus’ thermal output. We started by considering a model of Enceladus’ core with-
out an overlying ocean and ice shell and showed that the boundary conditions at the
core boundary play a central role. If the core is forced via a prescribed radial strain —
as done in Liao et al. (2020)— tidal dissipation in both the solid and liquid phases can
be orders of magnitude higher compared to that given by standard viscoelastic models.
However, if a free surface is assumed (no-stress) and the core is forced via a tidal body
force, dissipation in both liquid and solid phases is reduced. In this scenario, Enceladus’
thermal output can only be explained by tidal dissipation in the solid phase if the core
viscosity is very low (ηs ∼ 109–1012 Pas) compared to that characteristic of silicates or via
Darcian dissipation in the fluid if the core is highly permeable (κ > 10−5 m2). We then
considered a more realistic multi-layered model consisting of a porous core, a subsur-
face ocean and an ice-shell. We showed that the presence of a hydrostatic ocean hinders
the tidal response of the core. More importantly, tidal dissipation due to Darcy flow is
severely reduced, making it complicated to reconcile a rocky core with Enceladus’ ther-
mal output.

Dissipation within the solid phase can still account for Enceladus’ thermal output if
the core is weak and has a low viscosity. This requirement appears to be incompatible
with a monolithic, silicate core. Yet Choblet et al. (2017) ascribed the low shear modulus
and viscosity to grain–grain friction in a fragmented core akin to a rubble pile. While it
is true that a low viscosity can arise from this process, it only occurs if the tidal strain is
sufficiently large, which requires a low shear modulus that is difficult to reconcile with
laboratory experiments (Rollins et al., 1998; Seed et al., 1986). However, available labo-
ratory data is not representative of Enceladus’ core conditions, which points to the need
for further laboratory work. Alternatively, we show that a future Enceladus mission could
probe the core’s viscosity by measuring the phase lag of tidally-induced changes in the
gravity field and surface deformation.

Other tidally active worlds might also have porous regions. Vigorous tidal heating
can partially melt the mantle of a planet or a moon forming a porous sublayer filled with
magma. Galileo’s magnetometer data suggests that Io has a partially molten astheno-
sphere with a melt fraction of 20% (Khurana et al., 2011) (although alternative expla-
nations have been proposed for the magnetometer data (Blöcker et al., 2018; Roth et al.,
2017)). Io is the closest example of a magma-rich world (Khurana et al., 2011; Peale et al.,
1979; Spencer et al., 2020), but extrasolar worlds experiencing higher levels of tidal heat-
ing might also be common (e.g., Peters and Turner, 2013; Rovira-Navarro et al., 2021).
So far, attempts to compute the tidal response of bodies with a partially molten astheno-
sphere have either used the theory of viscoelasticity (e.g., Fischer and Spohn, 1990; Segatz
et al., 1988), or the Laplace tidal equations commonly employed to model ocean tides
(Hay et al., 2020; Tyler et al., 2015). Our model opens the door to study the tidal response
of these worlds in a new light.
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5.5. APPENDIX A: SOLUTION METHOD

We solve Eqs.(5.29-5.33) in the Fourier domain. Using the spherical symmetry of the
problem, we decompose the Fourier-transformed variables using spherical harmonics.
Scalar fields such as φ̂∆, ρ̂∆ are written using normalized real spherical harmonics (Y m

l )
of degree l and order m as

φ̂∆(r,θ,ϕ) = φ̂∆l m(r )Y m
l (θ,ϕ), (5.35a)

ρ̂∆(r,θ,ϕ) = ρ̂∆l m(r )Y m
l (θ,ϕ), (5.35b)

with

Y m
l =



(−1)m
p

2

√
2l +1

4π

(l−|m|)!

(l+|m|)!
P |m|

l (cosθ)sin
(|m|ϕ)

, if m < 0√
2l +1

4π
P m

l (cosθ), if m = 0

(−1)m
p

2

√
2l +1

4π

(l −m)!

(l +m)!
P m

l (cosθ)cos
(
mϕ

)
, if m > 0

(5.36)

P m
l are associated Legendre polynomials of degree l and order m.

The vector fields are similarly expanded using vector spherical harmonics:

û(r,θ,ϕ) = ûl m(r )Rm
l + v̂lm(r )Sm

l , (5.37a)

q̂(r,θ,ϕ) = q̂lm(r )Rm
l + ŝlm(r )Sm

l . (5.37b)

ûl m and q̂lm , and v̂lm and ŝlm are the radial and tangential components of the displace-
ment and flow field, respectively, and Rm

l and Sm
l are vector spherical harmonics,

Rm
l =Y m

l er , Sm
l =∇θ,ϕY m

l . (5.38)

Using the previous definitions and the constitutive equations, the governing equations
can be cast into a first order differential equation of the form

dŷ

dr
= Aŷ . (5.39)

A is a matrix given in 5.6 and ŷ is a vector containing 8 radial functions:

ŷ1 = ûl m (5.40a)

ŷ2 = v̂lm (5.40b)

ŷ3 = λ̂ϵ̂V
l m −αp̂∆l m +2µ̂

dûl m

dr
(5.40c)

ŷ4 = µ̂
(

dv̂lm

dr
− v̂l m

r
+ ûlm

r

)
(5.40d)
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ŷ5 = φ̂∆lm (5.40e)

ŷ6 =
dφ̂∆l m

dr
+ l +1

r
φ̂∆lm +4πGρ0ûl m − 4πGρl ,0κ

inηl

(
d

dr

(
p̂∆l m +ρl ,0φ̂

∆
lm

)+ gρl ,0

Kl
p̂∆lm

)
(5.40f)

ŷ7 = p̂∆lm (5.40g)

ŷ8 = d

dr

(
p̂∆lm +ρl ,0φ̂

∆
lm

)+ gρl ,0

Kl
p̂∆l m (5.40h)

ϵ̂lm is the divergence of the displacement vector given by

ϵ̂V
lm = dŷ1

dr
+ 2

r
ŷ1 − l (l +1)

r
ŷ2. (5.41)

and µ̂ and λ̂ are the complex rigidity and complex drained first Lamé parameter,

µ̂=µ 1

1− iµ
ηn

, (5.42a)

λ̂= K − 2

3
µ̂. (5.42b)

Note that the radial functions ŷ1−8 are the same radial functions commonly used to
solve the viscoelastic tidal problem (e.g., Sabadini et al., 2016) except that two extra vari-
ables (ŷ7 and ŷ8) are added, and ŷ6 is modified. ŷ1 and ŷ2 are respectively the radial and
tangential displacements, ŷ3 and ŷ4 correspond to the radial and tangential components
of the stress tensor (σ∆r r , σ∆

θr ), ŷ5 is the disturbing potential, and ŷ6 is the so-called po-
tential stress. ŷ7 is the pore pressure and ŷ8 is proportional to the radial component of
Darcy flow.

For incompressible internal liquid layers, it is sufficient to solve Laplace’s equation.
The problem can be similarly cast into a matrix form

dẑ

dr
= Ao ẑ (5.43)

where z = (ẑ5, ẑ6)T and z5 and z6 are two radial functions corresponding to the perturb-
ing potential and potential stress in the ocean:

ẑ5 = φ̂∆l m , (5.44a)

ẑ6 =
dφ̂∆lm

dr
+

(
l +1

r
− 4πGρ0

g

)
φ̂∆lm . (5.44b)

Ao follows from Poisson’s equation and is given in 5.6.

The surface boundary conditions, Eqs. (5.23-5.26), should be written in terms of
the y functions. The stress boundary conditions at the surface are easily obtained. In
contrast the boundary condition for the gradient of the tidal potential requires some
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further discussion. Using Eq. (5.30) for the perturbing density, the Fourier-transformed
Eq. (5.31) and the divergence theorem, Eq. (5.24) can be written as

∂φ̂∆(R +δ)

∂r
− ∂φ̂∆(R −δ)

∂r
= 4πρ0Gû ·er +4πG

ρl ,0

ni
q̂ ·er . (5.45)

We split the perturbing potential into the self-gravity and the tidal potential components
(φG , φT ). In order to fulfill Poisson’s equation outside of the body (r > R), φG should be
of the form

φ̂G (r ) =φG (R)
( r

R

)−l−1
. (5.46)

Furthermore for a tidal forcing of degree l we have

φ̂T (r ) =φT (R)
( r

R

)l
. (5.47)

Plugging (5.46, 5.47) into (5.45), expanding the different fields in spherical harmon-
ics, using Darcy’s law to compute q (Eq. (5.29b)), and taking the limit δ→ 0, we get

ŷ6(R) = 2l +1

R
, (5.48)

where we have assumed a unit tidal forcing,φT
lm(R) = 1. In a similar way, it can be shown

that ŷ6 is continuous at solid interfaces. The continuity of ŷ6 and the fact that the bound-
ary condition at the surface for the tidal forcing adopts a simple form, make using ŷ6

convenient. Together with the stress boundary condition, the surface boundary condi-
tions are

ŷ3(R) = 0, (5.49a)

ŷ4(R) = 0, (5.49b)

ŷ6(R) = 2l +1

R
. (5.49c)

As explained in Section 5.2.2 these boundary conditions are different than those used
by Liao et al. (2020). Using our notation, Liao et al. (2020) surface boundary conditions
translate to:

dŷ1(R)

dr
= ϵ̂r r,0, (5.50a)

dŷ2(R)

dr
+ ŷ2(R)− ŷ1(R)

r
= 0, (5.50b)

ŷ6(R) = 0. (5.50c)

(5.50a) imposes a prescribed strain of amplitude ϵ̂r r,0, (5.50b) imposes an irrotational
displacement field, and (5.50c) sets the gravitational tidal perturbation to 0.
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The boundary condition at the porous layer interfaces (5.25,5.26) are simply:

ŷ8 = 0, (5.51a)

ŷ3 + ŷ7 = 0. (5.51b)

Continuity of ŷ1 − ŷ6 is assumed at the solid layers boundaries. In case an inter-
nal liquid layer is present, additional boundary conditions are introduced at solid-liquid
interfaces: the tangential stress vanishes, the radial stress is given by the difference be-
tween the radial displacement and an equipotential surface and the disturbing potential
is continuous but the potential stress is not (Greff-Lefftz et al., 2000; Jara-Orué and Ver-
meersen, 2011):

ŷ4(r ) = 0, (5.52a)

ŷ1(r )− ŷ3(r )

g (r )ρocean
+ ŷ5(r )

g (r )
= 0, (5.52b)

ŷ5(r )− ẑ5(r ) = 0, (5.52c)

ŷ6(r )− ẑ6(r )−4πGρocean

(
ŷ1(r )+ ẑ5(r )

g (r )

)
= 0. (5.52d)

Starting from the center of the moon or the liquid core-mantle boundary (if the body
in question has a liquid core), the previous equations are integrated radially using a
Runge-Kutta-4 integrator (see 5.7). Once the radial functions are obtained for the dif-
ferent components of the tidal potential, the displacement, flux, stress and strain fields
can be computed as explained in 5.8.
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5.6. APPENDIX B: PROPAGATION MATRIX

The non-zero elements of the propagation matrix A are:

A11 =−2
λ̂

(2µ̂+ λ̂)r

A12 = l (l +1)
λ̂

(2µ̂+ λ̂)r

A13 = 1

2µ̂+ λ̂
A17 = α

2 ˆ̂µ+ λ̂

A21 =−1

r

A22 = 1

r

A24 = 1

µ̂

A31 = 4

r

(
µ̂

r

3λ̂+2µ̂

2µ̂+ λ̂ −ρ0g

)
+ 2gαρl ,0

r

(
−λ̂

2µ̂+ λ̂ +1

)

A32 =− l (l +1)

r

(
2µ̂

r

2µ̂+3λ̂

2µ̂+ λ̂ −ρ0g

)
+ l (l +1)gρl ,0α

r

(
λ̂

2µ̂+ λ̂ −1

)

A33 = 1

2µ̂+ λ̂

(
−4µ̂

r
+ gαρl ,0

)
A34 = l (l +1)

r

A35 =−ρ0
l +1

r
A36 = ρ0

A37 = α

2µ̂+ λ̂

(
−4µ̂

r
+ρl ,0gα

)
+ gρl ,0

(
Φ

K f
+ α−Φ

Ks

)
A38 =

4πGρl ,0ρ0κ

inη f

A41 =−1

r

(
µ̂

r

(
2+ 4λ̂

2µ̂+ λ̂

)
−ρ0g

)

A42 = 2µ̂

r 2

(
l 2 + l −1+ l (l +1)λ̂

(2µ̂+ λ̂)

)

(5.53)
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A43 =−1

r

(
1− 2µ̂

2µ̂+ λ̂

)

A44 =−3

r

A45 = ρ0

r

A47 = 2
αµ̂

r (2µ̂+ λ̂)

A51 =−4πGρ0

A55 =− l +1

r
A56 = 1

A58 =
4πGρl ,0κ

inηl

A61 =−4π(l +1)Gρ0

r

A62 = 4πl (l +1)Gρ0

r

A65 =−
4πl (l +1)Gρ2

l ,0κ

inηl r 2

A66 = (l −1)

r

A67 =−4πl (l +1)Gρl ,0κ

inηl r 2

A68 =
4πG(l +1)ρl ,0κ

inηl r

A71 = 4πGρl ,0ρ0

A75 = ρl ,0
(l +1)

r
A76 =−ρl ,0

A77 =− gρl ,0

Kl

A78 = 1−
4πGρ2

l ,0κ

inηl
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A81 = 2iαnηl

κr

(
1− λ̂

2µ̂+ λ̂

)

A82 =− il (l +1)αnηl

κr

(
1− λ̂

2µ̂+ λ̂

)

A83 = iαnηl

κ(2µ̂+ λ̂)

A85 =
l (l +1)ρl ,0

r 2

A87 = l (l +1)

r 2 + inηl

κ

(
α2

2µ̂+ λ̂ + Φ

K f
+ α−Φ

Ks

)

A88 = −2

r

The propagation matrix of a non-porous incompressible material is recovered if α=
0,Φ = 0,ρl ,0 = 0 and λ̂→∞. Also, by turning-off self-gravity (ρ0,ρl ,0 = 0) the equations
used in (Liao et al., 2020) are recovered.

For the ocean propagator matrix Ao , we have Saito (1974):

Ao,11 = 4πGρ0

g
− l +1

r

Ao,12 = 1

Ao,21 = 2(l −1)

r

4πGρ0

g

Ao,22 = l −1

r
− 4πGρ0

g

(5.54)

5.7. APPENDIX C: PROPAGATING THE SOLUTION

We start integrating Eq. (5.39) at the center of the body (r0 = 0), or at the core-mantle
interface (r0 = rc ) if the moon has a liquid core. In either case, three integration constants
C0 = (C1,C2,C3)T are introduced. The solution at r0 is ŷ = B0C0. B0 is a matrix. If the
body does not have a liquid core it is given by
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B0 =



0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0


, (5.55)

otherwise, if the body has a liquid core, it is (Sabadini et al., 2016)

B0 =



− 3r l−1
c

4πGρc
0 1

0 1 0

0 0
4πGρ2

c rc
3

0 0 0
r l

c 0 0
2(l −1)r l−1

c 0 4πGρc

0 0 0
0 0 0


, (5.56)

with ρc and rc the density and core radius. An integration constant C4 is introduced for
the porous layer so that y7(rp ) =C4. At interfaces between solid layers continuity implies
that

ŷ i (ri ) = P ŷ i−1(ri )+δi p Bpor ousC4, (5.57)

where δi p is the Kronecker delta, the superscript indicates the layer index –p being the
index of the porous layer– and P and Bpor ous are two matrices given by

P =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (5.58)

and

Bpor ous = (0,0,0,0,0,0,1,0)T . (5.59)

If an internal ocean is present, additional integration constants are introduced. At
the ocean base, the solution is given by

z(ro) = ICocean (5.60)
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with Cocean = (C5,C6)T . At the upper-boundary of the ocean (ro), the solution is:

y(ro) = Bi ceCi ce (5.61)

with Ci ce = (C7,C8,C9,C10)T and Bi ce being

Bi ce =



1 0 − 1
g (ro ) 0

0 1 0 0
ρocean g (ro) 0 0 0

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


. (5.62)

Note that y(ro) already satisfies the boundary conditions (5.52a,b).

The integration constants C1 −C10 are obtained by propagating the solution (5.39)
and (5.43) and applying the boundary conditions (5.49,5.51), and (5.52) if the moon has
an internal liquid layer.

5.8. APPENDIX D: BUILDING THE SOLUTION

Once the radial functions (y , z) are obtained, they can be used to build the complete
solution. The displacement and flow fields are:

û(r,θ,ϕ) = ŷ1Rm
l + ŷ2Sm

l , (5.63a)

q̂(r,θ,ϕ) =− κ

η f
ŷ8Rm

l − κ

η f

1

r

(
ŷ7 +ρ f ŷ5

)
Sm

l . (5.63b)

Similarly, the different components of the strain tensor are given by:

ϵ̂∆r r (r,θ,ϕ) = dŷ1

dr
Y m

l , (5.64a)

ϵ̂∆θθ(r,θ,ϕ) = 1

r

{[
ŷ1 − l (l +1)

2
ŷ2

]
Y m

l + ŷ2

2
X m

l

}
, (5.64b)

ϵ̂∆ϕϕ(r,θ,ϕ) = 1

r

{[
ŷ1 − l (l +1)

2
y2

]
Y m

l − ŷ2

2
X m

l

}
, (5.64c)

ϵ̂∆rθ(r,θ,ϕ) = 1

2

[
dŷ2

dr
+ ŷ1 − ŷ2

r

]
∂Y m

l

∂θ
, (5.64d)

ϵ̂∆rϕ(r,θ,ϕ) = 1

2

[
dŷ2

dr
+ ŷ1 − ŷ2

r

]
1

sinθ

∂Y m
l

∂ϕ
, (5.64e)
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ϵ̂∆θ,ϕ(r,θ,ϕ) = ŷ2

2r
Z m

l , (5.64f)

with

X m
l = 2

∂2Y m
l

∂θ2 + l (l +1)Y m
l , (5.65a)

Z m
l = 2

∂

∂θ

(
1

sinθ

∂Y m
l

∂ϕ

)
. (5.65b)

The different components of the stress tensor are:

σ̂∆r r = λ̂ϵ̂V
lmY m

l +2µ̂ϵ̂∆r r −αŷ7Y
m

l , (5.66a)

σ̂∆θθ = λ̂ϵ̂V
lmY m

l +2µ̂ϵ∆θθ−αŷ7Y
m

l , (5.66b)

σ̂∆ϕϕ = λ̂ϵ̂V
lmY m

l +2µ̂ϵ̂∆ϕϕ−αŷ7Y
m

l , (5.66c)

σ̂∆rθ = 2µ̂ϵ̂∆rθ, (5.66d)

σ̂∆rϕ = 2µ̂ϵ̂∆rϕ, (5.66e)

σ̂∆θϕ = 2µ̂ϵ̂∆θϕ, (5.66f)

The variation in fluid content ζ can be obtained using

ζ̂=αϵ̂V
lmY m

l + α2

Ku −Kd
p̂∆lmY m

l . (5.67)

The approach presented above allows us to obtain the internal response of a moon
to a unit tidal forcing of degree l and order m (φT = Y m

l ). For a satellite in an eccentric
orbit, the tidal potential contains terms of degree 2 and orders 0, −2 and 2 (Eq. (5.22)). As
the equations are linear, to obtain the tidal response we can compute the radial functions
for l = 2 and combine them considering the amplitude of the different terms. To obtain
the total tidal response for a given field â (e.g., displacement vector, stress tensor, strain
tensor, etc.), we use

â(r,θ,ϕ) = (nR)2e

(
3

√
π

5
â02(r,θ,ϕ)−3

√
3π

5
â22(r,θ,ϕ)+4

√
3π

5
iâ2−2(r,θ,ϕ)

)
, (5.68)

where aml are the solution for degree l and order m. The solution in the time domain is

a(r,θ,ϕ, t ) =(nR)2e Re

{(
3

√
π

5
â02(r,θ,ϕ)

−3

√
3π

5
â22(r,θ,ϕ)+4

√
3π

5
iâ2−2(r,θ,ϕ)

)
exp(int )

}
.

(5.69)
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Once the solution is obtained, we can compute the volumetric energy dissipated in
the solid,

Ėv,sol i d =−n

2

[
Re(σ̂∆) : Im(ϵ̂∆)− Im(σ̂∆) : Re(ϵ̂∆)+Re(p̂∆) Im(ζ̂)− Im(p̂∆)Re(ζ̂)

]
, (5.70)

and liquid phase,

Ėv,l i qui d = 1

2

ηl

κ

(|q̂r |2+|q̂θ|2+|q̂ϕ|2
)

. (5.71)

The total energy dissipated in the solid and the liquid is obtained by numerically in-
tegrating Eqs. (5.70,5.71). Alternatively, it can also be found by plugging the radial func-
tions (ŷ) into (5.63,5.64 and 5.66) and then using Eqs (5.70,5.71). Using that∫

S
Rm

l ·Rm′
l ′ dS = δl ,l ′δm,m′ (5.72)

and ∫
S

Sm
l ·Sm′

l ′ dS = l (l +1)δl ,l ′δm,m′ , (5.73)

we obtain the angular averaged of the volumetric power (Ės ):

Ės,sol i d (r ) = Im(µ̂)n

8πr 2

(4

3
|r dŷ1

dr
− ŷ1 + l (l +1)ŷ2|2

+ l (l +1)

∣∣∣∣ r ŷ4

µ̂

∣∣∣∣2

+ l (l +1)(l (l +1)−2)|ŷ2|2
) (5.74a)

Ės,l i qui d (r ) = 1

8πr 2

κ

ηl

(
r 2|ŷ8|2+l (l +1)|ŷ7 +ρl ,0 ŷ5|2

)
(5.74b)

The first expression is equivalent to that obtained by Beuthe (2013) and Tobie et al. (2005)
for a viscoelastic body. The total tidal dissipation Ėt can then be obtained by performing
the radial integral of (5.74):

Ėt = 4π
∫ R

0
r 2Ės dr. (5.75)

For a tidal forcing of the type given by Eq. (5.22), we find

Ėt ,sol i d = 336π2

5
n5R4e2

∫ R

0
r 2Ės,sol i d dr. (5.76a)

Ėt ,l i qui d = 336π2

5

n4R4κ

ηl
e2

∫ R

0
r 2Ės,l i qui d dr. (5.76b)

5.9. APPENDIX E: INCOMPRESSIBLE CORE SOLUTION

If we consider that both the liquid and the porous matrix are incompressible (Ks →∞,
Kl → ∞), we can obtain an analytical expression for the flow field in the porous layer.
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Mass conservation implies that ζ→ 0 (Eq. (5.31)), and the pore pressure field can simply
be obtained by solving the Laplace equation (Eq. (5.29))

∇2(p∆+ρl ,0φ
∆) =∇2p∗ = 0. (5.77)

with p∗ a modified pressure. Solving Laplace’s equation in spherical coordinates we find

p∗ = (Al r l +Bl r−l−1)Y m
l (θ,ϕ), (5.78)

where Y m
l is a spherical harmonic of degree l and order m and Al and Bl are two in-

tegration constants to be found using the boundary conditions. The solution should be
regular at r = 0, which implies that Bl = 0. Additionally, at the boundary we impose the
boundary conditions given by (5.26) to find Al . If there is no ocean, we have p∗(r1) =
ρl ,0φ

∆(r1); in contrast, if there is an ocean, we have p∗(r1) = Pocean(r1)+ρl ,0φ
∆(r1). The

pressure at the core-ocean boundary is given by the difference between the equipoten-
tial surface −φ∆/g and the radial displacement at the core ocean-boundary ur (r1) (Eqs.
5.52). Using these boundary conditions, we can obtain Al for a core with a free surface
or one overlaid by an ocean:

A f r ee
l = ρl ,0φ

∆
l (r1)

r l
1

; Aocean
l =−hl (r1)

ρl ,0φ
∆
l (r1)

r l
1

, (5.79)

where hl is the radial displacement Love number.

We can now use Eq. (5.76b) to compute the total amount of Darcian dissipation,

Ė f r ee
l i qui d ,t =

84

5
π

R5
cρ

2
l ,0n4κe2

ηl
, (5.80a)

Ė ocean
li qui d ,t =

84

5
h2

2(Rc )π
R5

cρ
2
l ,0n4κe2

ηl
. (5.80b)

The previous expressions provide a good approximation to the compressible cases pre-
sented in Section 5.3 (see Figure 5.2). Bearing in mind that |hl (r1)| ≪ 1, we find that
Darcy dissipation is severely reduced by the presence of an ocean.

5.10. APPENDIX F: ANDRADE RHEOLOGY

Alternative rheology laws can be introduced using the correspondence principle. If An-
drade rheology is considered, the complex shear modulus (Eq. 5.42), is given by

µ̂=
(

1

µ
− i

ηn
+ µβ−1β!

(iηχn)β

)−1

. (5.81)

β is a constant that takes values between 0.1−0.4 (e.g., Renaud and Henning, 2018) and
χ a parameter that depends on the ratio between the anelastic and the Maxwell time
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Figure 5.7 Same as Figure 5.6 but for Andrade rheology.

(Efroimsky, 2012b). If diffusion creep dominates, χ≈ 1, which is commonly assumed for
ices (Castillo-Rogez et al., 2011; Rhoden and Walker, 2022; Shoji et al., 2013).

We obtain Figure 5.7 using the Andrade rheology and β = 0.3 and χ = 1 for both ice
and rock. As in Shoji et al. (2013), we find that the Andrade rheology increases tidal
dissipation in the ice shell for viscosities with a Maxwell time higher than the forcing
frequency. The difference in phase-lag remains similar as those found using the Maxwell
model (Section 5.3.3).
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TIDALLY HEATED EXOMOONS

AROUND GAS GIANTS

M. ROVIRA-NAVARRO , W. VAN DER WAL, T. STEINKE, D.
DIRKX

Thousands of exoplanets have been discovered; however, the detection of exomoons re-
mains elusive. Tidally heated exomoons have been proposed as candidate targets for ob-
servation; vigorous tidal dissipation can raise the moon’s surface temperature, making
direct imaging possible; and cause widespread volcanism that can have a signature in
transits. We assess whether the required amounts of tidal dissipation can be attained and
how long it can be sustained. In a first step, we look at the thermal state of a super-Io for
different orbital configurations. We show that close-in exomoons with moderate (e ∼ e I o)
to high (e ∼ 0.1) orbital eccentricities can feature surface heat fluxes one to three orders
of magnitude higher than that of Io if heat transfer is dominated by heat piping or the
moon has a magma ocean. In a second step, we investigate the longevity of a super-Io. The
free eccentricity of an isolated close-in exomoon is quickly dampened due to tides; high
orbital eccentricities can be maintained if the moon is in a mean-motion resonance with
another moon and the planet is highly dissipative. However, this scenario leads to fast or-
bital migration. For a Mars-sized exomoon, we find that tides alone can raise the surface
temperatures to more than 400 K for ten million yr, and surface heat fluxes higher than
that of Io can be maintained for billions of years. Such tidally active bodies are expected
to feature more vigorous volcanic activity than Io. The material outgassed via volcanism
might be detected in transits.

An earlier version of this chapter is published in the Planetary Science Journal (Rovira-Navarro et al., 2021):
Rovira-Navarro, M., van der Wal, W., Steinke, T., & Dirkx, D. (2021), Tidally heated exomoons around gas giants,
The Planetary Science Journal, 2(3), 119.
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6.1. INTRODUCTION

With the list of confirmed exoplanets continually growing, it is no surprise that the
search for exomoons has started to gain momentum. The small size of the satellites
with respect to their host planets makes their detection challenging. However, with im-
provements in observation capabilities and novel detection methods, the observation
of exomoons is now within reach. Several techniques have been proposed for the de-
tection of exomoons (e.g., Heller, 2017). These methods include transits (Ben-Jaffel and
Ballester, 2014; Hippke, 2015; Kipping, 2009; Kipping et al., 2015; Teachey and Kipping,
2018; Teachey et al., 2017), microlensing (Bennett et al., 2014; Han and Han, 2002), cy-
clotron radio emissions (Noyola et al., 2014, 2016), pulsar timing variations (Lewis et al.,
2008) and direct imaging (Cabrera, J. and Schneider, J., 2007; Heller, R., 2016; Peters and
Turner, 2013).

Tidally heated exomoons are promising targets in the exomoon hunt (e.g., Ben-Jaffel
and Ballester, 2014; Heller, 2017; Oza et al., 2019; Peters and Turner, 2013). Tidal dissipa-
tion within an exomoon can heat its interior and result in vigorous observable geologic
activity. Io, the innermost Galilean satellite, is a good archetype. Although it has a ra-
dius four times smaller than that of Earth, tides raised by Jupiter result in an intrinsic
surface heat flux roughly 30 times higher than that of Earth (Lainey et al., 2009; Turcotte
and Schubert, 2014). Tidal dissipation drives widespread volcanism, which in turn is re-
sponsible for the formation of a secondary atmosphere that extends over more than 400
Jupiter radii (Mendillo et al., 1990). Among the outgassed material, there is sodium and
potassium, which have not been detected in the gaseous envelopes of gas giants and
thus can be used as a proxy for volcanic activity within a planetary system (Johnson and
Huggins, 2006; Oza et al., 2019). Moreover, the interaction of the outgassed secondary
atmosphere with Jupiter’s magnetosphere produces Io’s plasma torus. While Io is unique
in the Solar System, objects with similar or higher levels of internal heating, super-Ios,
might be common. In fact, it is possible that these kinds of objects have already been
detected. Ben-Jaffel and Ballester (2014) suggested that the early ingress of close-in exo-
planets WASP-12b and HD 189733b observed in the UV can be explained by the presence
of a plasma torus, and Oza et al. (2019) proposed that Na signatures in the spectra of the
hot Jupiter WASP-49b are evidence of a tidally heated exomoon. If confirmed, these ex-
omoons are likely very different from Io, though; due to the close proximity of the planet
to the star, surface temperatures are between 1000 and 3000 K, and tidal dissipation is
the result of stellar tides. Transits of temperate/cold gas giants are less likely than transits
of close-in giant planets, as they orbit further away from the star and thus have smaller
transit probabilities (Dalba et al., 2015). However, cold gas giants suited for transit spec-
troscopy have already been identified, for example, HIP 41378 f (Becker et al., 2018).

In extreme cases, tidal heating can exceed solar irradiation and have an observable
footprint in the surface temperature. Peters and Turner (2013) proposed that a super-
Io orbiting a cold gas giant could be directly imaged using current and planned tele-
scopes. For this to happen, the moon should have a highly eccentric and/or a short-
period orbit around a cold planet. Peters and Turner (2013) concluded that Earth-sized
exomoons with surface temperatures higher than 600 or 300 K could be detected with the
Spitzer Space Telescope and future telescopes such as the James Webb Space Telescope
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or SPICA, respectively. The high surface temperatures needed to observe tidally heated
exomoons require surface heat fluxes on the order of 500 Wm−2, 2 orders of magnitude
higher than current values of Io. It remains uncertain if such extreme cases of super-Ios
can exist. Furthermore, while episodes of extreme tidal heating might occur, the odds of
detecting a super-Io are higher the longer it remains active. Motivated by the prospects
of detecting a super-Io around a cold gas giant, we ask the question of under which con-
ditions can a super-Io persist. The question can be further split into (1) what is the possi-
ble thermal state of a super-Io?; and (2) how long can a super-Io persist in an observable
state?

In Section 6.2, we tackle the first question. We investigate thermal equilibrium states
of exomoons of different sizes. While bigger exomoons are more prone to becoming
super-Ios, current formation models limit the permissible size of exomoons around gas
giants to approximately the size of Mars (Heller and Pudritz, 2015a,b). We push this limit
and consider exomoons ranging from Io to Earth sizes and identify thermal states for
which the amount of generated internal heat equals the amount of heat removed from
the interior. We consider rocky exomoons with Io-like structure and composition. To
account for the high temperatures reached within the mantle of a super-Io, our model
allows for the formation of a sublayer of melt (Section 6.2.1). We compute tidal dissipa-
tion using the viscoelastic theory for self-gravitating bodies (e.g., Peltier, 1974; Wu and
Peltier, 1982) using Andrade rheology (Section 6.2.2) and compare it with estimates of
heat removed from the mantle (Section 6.2.3) via convection or melt advection (heat
piping) to find thermal equilibria states. We first apply the model to Io and find that it
can successfully explain its thermal state. Equipped with this model, we compute sur-
face temperatures and heat fluxes for a range of fixed eccentricities and orbital periods
to assess whether these bodies could be directly imaged or could exhibit vigorous tidal
activity and have substantial exospheres.

In Section 6.3, we tackle the second question: how long can a super-Io live? Instead
of considering fixed values for orbital period and eccentricity, we take into account the
feedback between tidal dissipation, internal structure, and orbital parameters. We con-
sider two scenarios: an isolated moon-planet system and a system with two exomoons
where orbital resonances can occur. Orbital resonances are common in the solar system
(e.g., Peale, 1976) and are responsible for the high geological activity featured by some
of the outer planet moons. Classic examples of resonances in the solar system include
Janus-Epimetheus, Mimas-Tethys, and Enceladus-Dione in the Saturnian system and
the Laplace resonance involving the three inner Galilean moons. We consider the 2:1
mean-motion resonance and study the thermal-orbital evolution of a Mars-sized exo-
moon in more detail.

6.2. THERMAL STATES OF A SUPER-IO

6.2.1. INTERIOR STRUCTURE AND RHEOLOGY

We consider three different moons with radii equal to (1,2,4) ·RI o , which represent Io
and roughly Mars- and Earth-sized exomoons. The moons are assumed to be spheri-
cally symmetric and made of concentric layers with uniform mechanical and thermal
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properties (Figure 6.1). Each moon is assumed to have a metallic core of density ρc and
radius Rc , and a silicate rocky layer with density ρs , which is a standard composition for
bodies in this size range. The ratio of the surface (R) and core (Rc ) radii is assumed to
be the same for the three exomoons and equal to the value estimated for a sulfur-rich
Io core, 0.52 (Anderson et al., 1996a). We note that the core ratio could be different for
other exomoons; however, the core size has a small effect on our conclusions (see Sec-
tion 6.2.2).

The outer rocky layer consists of an elastic lithosphere where heat is transferred via
conduction and heat piping and a convective mantle (see Section 6.2.3). In the elastic
lithosphere, the temperature decreases linearly to the surface temperature Tsur f . Inside
the convective mantle, the temperature follows an adiabat (Turcotte and Schubert, 2014):

dT

dP
= αT

ρCc
. (6.1)

α and Cc are the thermal expansivity and the heat capacity, respectively (see Table 6.1).
As an example, for a characteristic mantle temperature of 1800 K, the adiabatic temper-
ature gradient is ≈ 9 KGPa−1.

For sufficiently high mantle temperatures, the local mantle temperature can exceed
the local solidus temperature at a given depth. When this occurs, a partially molten sub-
layer is formed (see Figure 6.1). The average melt fraction (Φ ) of the layer is computed
as

Φ= T −Ts

Tl −Ts
, (6.2)

with T being the average temperature of the layer. Ts and Tl are the averages of the
pressure-dependent solidus and liquidus temperatures (Takahashi, 1990),

Ts = 1409.15+134.2P −6.581P 2 +0.1054P 3 (6.3)

Tl = 2035+57.46P −3.487P 2 +0.00769P 3, (6.4)

with the pressure in gigapascals. When a slope of dTs,l /dP = 10 KGPa−1 is reached, we
assume that the solidus and liquidus temperature increase linearly with pressure (Reese
et al., 1999).

The lithosphere is assumed to behave elastically, and the viscosity of the mantle de-
pends on the temperature following an Arrhenius relation,

η= ηs exp

(
Ea

Rg Ts

(
T s

T
−1

))
, (6.5)

where ηs is the viscosity at the solidus temperature, Ea is the activation energy and, Rg is
the ideal gas constant. We do not consider the change of activation energy with pressure,
which leads to an increase of activation energy with depth (Karato and Wu, 1993), and
we assume a constant viscosity for the layer. This can result in an underestimation of
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the activation energy of the mantle. For example, the activation pressure at Mars’ man-
tle varies between 300 KJmol−1 close to the surface to 540 KJmol−1 in the mid-mantle
(Nimmo and Stevenson, 2000). We expect this variation to have a small effect in our first-
order modelling.

The presence of melt weakens the mantle and results in a decrease of viscosity. For
the sublayer of melt, we parameterize the decrease of viscosity with melt fraction (Φ)
following Moore (2003) and Henning et al. (2009) and the change of shear modulus with
melt fraction using the fit of Fischer and Spohn (1990) and Shoji and Kurita (2014) to
laboratory experiments made by Berckhemer et al. (1982):

η= ηs exp

(
Ea

Rg Ts

(
T s

T
−1

))
exp

(
−BΦ

)
, (6.6)

µ= 10
µ1

T−T s+1600
−µ2 . (6.7)

The value of B can range from 10 to 40 for a strong or weak mantle, respectively (Hen-
ning et al., 2009). We adopt an intermediate value B = 25 consistent with laboratory
experiments (Mei et al., 2002). For the layers without melt, we assume a constant shear
modulus µ0. µ1 is an empirical constant, and µ2 is adjusted so that the shear modulus is
continuous at the solidus temperature.

The melt fraction increases with temperature until the disaggregation point is
reached. When this occurs, the asthenosphere does not behave as a viscoelastic solid
anymore, and it should be modeled as a magma ocean. We assume that this occurs
when Φ > 0.45 (e.g., Moore, 2003). Although we do not model heat transport and tidal
dissipation in this regime, we discuss this aspect further in Sections 6.2.2 and 6.2.3.

6.2.2. INTERNAL HEAT

We consider two mechanisms of internal heat generation: radiogenic heating and tidal
dissipation. Radiogenic heating is computed assuming chondritic composition of the
mantle (Schubert et al., 1986) and that the age of the body is the same as the age of the
Solar System.

Due to tidal interactions with the planet, regular moons evolve into a 1:1 spin orbit
resonance (become tidally locked) soon after formation (e.g., Peale, 1999). If the orbit
is eccentric or the moon has a nonzero obliquity, tidal forces result in periodic defor-
mations of the moon. As the moon is not perfectly elastic, energy is dissipated in the
interior. The total amount of tidal dissipation is (e.g., Cassen et al., 1980; Makarov and
Efroimsky, 2014; Segatz et al., 1988)

Ė =− Im(k2)
(nR)5

G

(
21

2
e2 + 3

2
sin2θ

)
(6.8)

where R is the radius of the body, n is the orbital frequency, G is the universal gravita-
tional constant, and e and θ are the moons’ eccentricity and obliquity, and Im(k2) is the
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Figure 6.1 Interior structure of the moons. (a) A metallic core is surrounded by a silicate
layer. The silicate layer is further subdivided into a conductive and a convective layer.
For high mantle temperatures, a sublayer of melt is formed beneath the lithosphere (red
pattern). (b) Solidus and liquidus temperature profiles for a Mars-sized exomoon and a
characteristic temperature profile. The average solidus, liquidus, and mantle tempera-
tures are shown by dashed lines.

imaginary component of the k2 Love number, which is related to the quality factor (Q)
as | Im(k2) |=| k2 | /Q. We assume that the moon is in a Cassini state with small obliq-
uity, as is the case for Io (Baland et al., 2012), and neglect the contribution of obliquity
to the thermal budget. We note that the previous equation is accurate to second order
in eccentricity. For high orbital eccentricities, terms of order O(e4) should be added.
High-order terms start to have a noticeable effect for e > 0.1 and orders-of-magnitude
differences can arise for very high eccentricities (e > 0.6; Renaud et al., 2021). Addition-
ally, for e > 0.1 higher-order spin-orbit resonances might occur (Makarov, 2012; Renaud
et al., 2021; Walterová and Běhounková, 2020), which results in nonsynchronous rotation
and increased tidal dissipation before the moon’s orbit is circularized.

The value of Im(k2) depends on the internal structure and rheology of the body and
the tidal frequency. It can be computed using the viscoelastic theory for self-gravitating
bodies (Peltier, 1974; Sabadini et al., 2016; Wu and Peltier, 1982). By using the corre-
spondence principle (Peltier, 1974), the equations of motion governing the deformation
of each layer can be transformed to the Fourier domain and written as a set of differential
equations of the form

dỸYY

dr
= AỸYY . (6.9)



6.2. THERMAL STATES OF A SUPER-IO

6

145

ỸYY is a vector containing the Fourier-transformed radial and tangential displacements
(ỹ1,ỹ2), the radial and shear stress (ỹ3, ỹ4), the gravitational potential (ỹ5), and the so-
called potential stress (ỹ6). A is a matrix given in Appendix 6.5. We use the matrix prop-
agator method of Sabadini et al. (2016) and Jara-Orué and Vermeersen (2011) to solve
Equation (6.9) under appropriate boundary conditions (Appendix 6.5).

To use the correspondence principle, a rheological law relating stress and strain is
needed. Different rheological models have been developed for the study of tidally active
bodies (e.g., Renaud and Henning, 2018); the viscoelastic behavior of the material de-
pends on its shear modulus µ and viscosity η. The simplest and most commonly used is
the Maxwell model. The response is characterized by the so-called Maxwell time (η/µ).
When the tidal period is close to the Maxwell time, tidal dissipation is enhanced. For
much shorter forcing periods, the body behaves as an elastic body, while for much longer
forcing periods the body responds as viscous fluid. While the Maxwell model has been
widely used for the study of tidally active bodies (e.g., Fischer and Spohn, 1990; Hen-
ning et al., 2009; Moore, 2003; Segatz et al., 1988), it does not properly capture the com-
plex behavior of olivine observed in laboratory experiments (Jackson and Faul, 2010;
McCarthy and Castillo-Rogez, 2013). In particular, the Maxwell model does not incorpo-
rate the anelastic transient creep deformation mechanism that describes the viscoelastic
behavior of the material over time-scales shorter than the Maxwell time, which are rel-
evant for tidal dissipation. The Andrade rheology model (Andrade and Trouton, 1910)
has been particularly successful in capturing this behaviour and has been adopted in re-
cent studies of tidally active bodies of the Solar System (e.g., Bierson and Nimmo, 2016;
Castillo-Rogez et al., 2011; Gevorgyan et al., 2020) and other planetary systems (e.g., Re-
naud and Henning, 2018; Walterová and Běhounková, 2017). These studies have shown
the dramatic influence that changing the rheology from Maxwell to Andrade can have on
tidal dissipation models. We use the more realistic Andrade rheology as baseline for this
study and briefly compare it with the classic Maxwell model to illustrate the differences
between the two and the implications they have for the thermal-orbital evolution of a
moon (Section 6.2.4 and Appendix 6.8).

The Fourier-transformed shear modulus can be defined in terms of the creep func-
tion J̃ :

µ̃= J̃−1. (6.10)

For the Andrade rheology, the Fourier transform of the creep function ( J̃ ) is (Efroimsky,
2012b)

J̃ = 1

µ
− i

ηn
+ µα−1

(iζηn)α
α!. (6.11)

The first two terms of Eq. (6.11) correspond to the elastic and steady-state creep response
characteristic of the Maxwell model, and the last term accounts for the transient creep
response included in the Andrade model. Here ζ and α are two empirical parameters
that characterize the transient creep response. The value of α for olivine is constrained
to vary from 0.1 to 0.5 (e.g, Gribb and Cooper, 1998; Jackson et al., 2004). We use an in-
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termediate value of 0.3. The value of ζ depends on the ratio between the anelastic and
the Maxwell time-scales. It can have a dependence on forcing frequency, as the domi-
nant anelastic deformation mechanism might change depending on the forcing period.
However, accurate characterization of the deformation mechanisms in this regime is not
available, and we make the assumption that diffusion dominates the anelastic response
(e.g., Renaud and Henning, 2018; Shoji and Kurita, 2014; Walterová and Běhounková,
2020). In that case, both timescales are equal and ζ ≈ 1 (Efroimsky, 2012b). We caution
that for high frequencies or high-stress situations, other deformation mechanisms, such
as boundary sliding and dislocation unpinning, might become dominant, resulting in an
underestimation of tidal dissipation.

The value of Im(k2) depends on the core size, which can differ for different exo-
moons. However, its effect is small. We find that for an Io-sized exomoon dissipation
can vary by a factor of two for a core-size range of 0.1–0.5 if a constant-viscosity mantle
is assumed. If a low-viscosity asthenosphere is present, the core size has a smaller effect
and changes the dissipation by less than 5%.

When the disaggregation point is reached, the viscoelastic theory for tides cannot be
applied. Previous studies of tidal dissipation (e.g Fischer and Spohn, 1990; Moore, 2003;
Renaud and Henning, 2018) assumed that when the disaggregation point is reached, vis-
cosity is reduced to that of the liquidus, and dissipation drops dramatically. However,
dynamic tides in magma oceans can produce dissipation rates equal to or higher than
those observed on Io (Tyler et al., 2015). Tidal dissipation in a magma ocean depends on
weakly constrained parameters, such as the magma-ocean dissipation time-scale. In-
stead of explicitly modeling tidal dissipation in the magma ocean we assume that once
the disaggregation point is attained, tidal dissipation remains constant.

6.2.3. HEAT TRANSPORT

The heat generated in the interior of the body via radiogenic heating and tidal dissipa-
tion is transported through the mantle of the moon to the surface and radiated to space.
While most studies on tidally heated moons and planets consider heat transport via con-
vection only (e.g., Fischer and Spohn, 1990; Henning et al., 2009; Hussmann and Spohn,
2004; Renaud and Henning, 2018), heat transport via heat piping has been proposed to
be the heat transport mechanism prevalent in Io (Moore, 2001, 2003; O’Reilly and Davies,
1981) and Earth’s early history (Moore and Webb, 2013). Here, we consider both convec-
tion (Section 6.2.3) and heat piping (Section 6.2.3) as possible heat transfer mechanisms.
We do not model heat transfer in the magma-ocean regime but briefly discuss it in Sec-
tion 6.2.3.

MANTLE CONVECTION

Due to the strong dependence of viscosity on temperature, most terrestrial planets in
the Solar System are in the stagnant-lid convection regime. The only notable exception
is Earth, where plate tectonics provides a more efficient way to remove internal heat
(Korenaga, 2013; Schubert et al., 2001). To estimate the heat transport due to mantle
convection, we assume that the exomoon is in the stagnant-lid regime. Tidal heating
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might trigger plate tectonics (Zanazzi and Triaud, 2019). In such a case, the cold near-
surface material is recycled, making heat transfer more between 20 and 100 times more
efficient than heat transport in the stagnant-lid regime and resulting in lower mantle
temperatures (Nimmo and Stevenson, 2000).

In the stagnant-lid regime, the body’s interior is divided into a well-mixed adiabatic
convective layer beneath a much stiffer conductive layer (Morris and Canright, 1984;
Reese et al., 1999; Schubert et al., 1979; Solomatov, 1995). The conductive layer is subdi-
vided into a thermal boundary layer, where viscosity decreases by around three orders
of magnitude, and an immobile stagnant lid. We assume the conductive layer (thermal
boundary layer+lid) to behave elastically (see Section 6.2.1). The amount of heat trans-
ported via convection in the mantle can be parameterized as

q = k
∆T

Dm
Nu, (6.12)

where k is the thermal conductivity of the mantle, ∆T the temperature increase within
the convective layer, Dm is the thickness of the convective layer, and Nu is the Nusselt
number. In the stagnant-lid regime, the Nusselt number depends on the Rayleigh num-
ber (Ra) and the Frank-Kamenetskii parameter θ (e.g., Reese et al., 1999; Schubert et al.,
2001):

Ra = gαρD3
m∆T

κη(Tm)
, (6.13)

θ = ∆T Ea

Rg T 2
m

. (6.14)

For Newtonian viscosity, scaling arguments lead to (Reese et al., 1999; Solomatov, 1995)

Nu ≈ aθ−4/3Ra1/3, (6.15)

with a ≈ 0.5 being a nondimensional parameter (Reese et al., 1999). Inserting
Eqs. (6.14,6.15) into Eq. (6.12), the heat flux transported via convection can be obtained
(Nimmo and Stevenson, 2000; Shoji and Kurita, 2014):

qm ≈ k

2

(
ρgα

κη

)1/3

γ−4/3
c , (6.16)

with

γc = Ea

Rg T 2
m

. (6.17)

For typical mantle conditions, γc is of order ≈ 0.01 (Nimmo and Stevenson, 2000). The
thickness of the elastic lithosphere (Dl ) is computed as

Dl = k
Tm −Tsur f

qm
, (6.18)
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where Tsur f is the surface temperature. In the heat-pipe regime, the thickness of
the lithosphere and its thermal structure differs from that of the stagnant-lid regime
(Kankanamge and Moore, 2019; Spencer et al., 2020); the effect on the total tidal dissi-
pation is expected to be negligible.

HEAT PIPING

As the mantle temperature increases and melt starts to form (Section 6.2.1), heat piping
becomes a more efficient heat transport mechanism than convection. Melt is segregated
from the solid mantle and advected upward due to its positive buoyancy. An equilibrium
can be reached in which the amount of melt advected upward is compensated for by the
melt generated by tidal heating. Moore (2001) developed a model to study heat piping in
Io that can be used to compute how much heat can be transported via heat piping inside
a rocky body. We follow the approach of Moore (2001) and Bierson and Nimmo (2016) and
compute heat transport via heat piping by solving mass conservation and using Darcy’s
law for porous media (see Appendix 6.6) in the sublayer of melt. The amount of heat
transport via heat piping depends on two parameters: the permeability exponent n, and
the scale velocity γ. γ depends on the grain size (b), the density contrast between melt
and solid matrix (∆ρ), the surface gravity (g ), the melt’s viscosity (ηl ), and a constant (τ)
closely linked to the permeability exponent (Moore, 2001):

γ= b2∆ρg

τηl
. (6.19)

Heat transport efficiency increases with increasing γ and decreasing n. The value of
n is typically taken to be between 2 and 3 (Katz, 2008). For Io, Moore (2001) estimated
γ to range between 10−5 and 10−6. We consider both a low- and a high-efficiency melt
transport scenario with n = 3 and γ/g = 10−6/g I o and n = 2 and γ/g = 10−5/g I o , respec-
tively. By doing so, we are assuming that grain sizes, melt viscosity, and density contrasts
are similar for the range of body sizes considered in this study.

CONVECTION IN A MAGMA OCEAN

When the disaggregation point is reached, the sublayer of melt behaves as a magma
ocean. The viscosity of a magma ocean is very low (∼ 0.1 Pas), rendering heat trans-
port via convection very efficient (Solomatov, 2007). As for the tidal response, we do not
model heat transport in this regime. We assume that heat transport in a magma ocean is
sufficiently efficient to remove all of the internal heat.

6.2.4. THERMAL EQUILIBRIUM STATES

STABLE AND UNSTABLE EQUILIBRIUM STATES

The thermal state of an exomoon depends on the balance between heat generated in the
interior of the body and removed through the lithosphere. The evolution of the mantle
temperature can be modeled via a simple equation (e.g., Fischer and Spohn, 1990; Shoji
and Kurita, 2014):
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Parameter Units Formula/Value Definition
Rg Jmol−1 K 8.3144 Universal gas constant
RI o km 1821 Radius Io
ρm kgm−3 3542 Mantle density
ρc kgm−3 5150 Core density 1

Rc
R - 0.5206 Surface core radius ratio 1

α K−1 2 ·10−5 Thermal expansivity modulus2

k Wm−1K−1 4 Thermal conductivity 2

κ m3s−1 10−6 Thermal diffusivity 3

Cc Jkg−1K−1 1142 Heat capacity
Ea kJmol−1 300 Activation energy4

ηs Pas 1 ·1016 Mantle solidus viscosity
µ0 GPa 65 Mantle shear modulus5

µ1 K 8.2 ·104 Melt shear modulus coefficient 16

µ2 - 40.44 Melt Shear modulus coefficient 2
α - 0.3 Andrade coefficient 1
ζ - 1 Andrade coefficient 2
B - 25 Melt fraction Coefficient
n - 2−3 Permeability exponent 7

γ - b2∆ρg
τηl

Melt scale velocity

Sj Wm−2 50.26 Solar irradiation at Jupiter’s orbit
AI o - 0.52 Io’s bond albedo 8

Table 6.1 Model parameters. (1) Anderson et al. (1996a); (2) Sohl and Spohn (1997); (3)
Hussmann and Spohn (2004) ;(4) Karato and Wu (1993); (5) Segatz et al. (1988); (6) Fischer
and Spohn (1990); (7) Moore (2003); (8) Simonelli et al. (2001)
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VmρCc (1+St )
dT

dt
= Q̇i nt −Q̇s . (6.20)

Vm is the mantle’s volume, St is the Stefan number, Q̇s is the surface heat flow, and Q̇i nt

is the internal heat production, which includes radiogenic and tidal heating. The surface
heat flow is the sum of the heat flow transported via convection and heat piping; cou-
pling between the two mechanisms is neglected. We neglect other energy sources, such
as primordial heat and heat due to the cooling and solidifying of the core. Neglecting the
feedback between interior and orbital evolution for now, we can say that when the total
heat production equals the total heat lost, an equilibrium state is reached. A thermal
equilibrium state is stable if, for a deviation in mantle temperature, the system tends
to restore its equilibrium: dQ̇s /dT > dQ̇i nt /dT . If the amount of internally generated
heat stays constant, the object can remain in this equilibrium state for a long period of
time. The number of equilibrium points depends on the rheological model, as well as the
prevalent heat transport mechanism (e.g., Ojakangas and Stevenson, 1986; Renaud and
Henning, 2018). As mentioned before, we use the Andrade model as a baseline and com-
pare it with the classic Maxwell model to underline the differences with previous studies
of thermal-orbital evolution of rocky moons (e.g., Fischer and Spohn, 1990; Hussmann
and Spohn, 2004; Moore, 2003).

Figure 6.2 illustrates the location and stability of equilibrium points for an Io-like
exomoon for two different mantle rheology (Maxwell and Andrade) and heat transport
(convection and heat piping) mechanisms. For the Maxwell model, tidal dissipation is
negligible for low mantle temperatures; as the mantle temperature increases and ap-
proaches the melting temperature, tidal dissipation sharply increases. A further increase
of mantle temperature leads to the formation of a sublayer of melt. Viscosity further de-
creases within this layer and thereby causes a further increase of tidal dissipation. Tidal
dissipation peaks at Tr es when the Maxwell time of the asthenosphere equals the forcing
period. Finally, additional warming of the mantle induces a decrease of viscosity and
shear modulus and detunes the astenosphere from the forcing period. For the Andrade
rheology, a similar behavior is observed at high mantle temperatures, but for low mantle
temperatures, the transient creep mechanism results in higher heat generation.

Equilibrium points for both models are also indicated in Figure 6.2. In both cases,
there is a stable equilibrium point. Moreover, the Maxwell plus convection model has
an additional unstable point at T < Tr es . A change in the moon’s orbital parameters
that reduces the amount of tidal dissipation has very different consequences depending
on whether the system is at a stable or an unstable point. In the first case, the moon
evolves smoothly from one equilibrium point to the other; in the second, the moon en-
ters a runaway cooling phase. As mentioned earlier, the previous analysis holds if the
evolution of the orbit is not considered. When the feedback between interior properties
and orbital dynamics is considered, a more complex picture arises. As we will show in
Appendix 6.8, the differences in the location and stability of the equilibrium points dis-
cussed above for the two models have important consequences for the orbital evolution
of a moon/exomoon.

In the following subsections, we adopt the more realistic Andrade model and apply it
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first to Io and then to exomoons to obtain the range of orbital parameters for which hot
states can be attained.

(a) (b)

Figure 6.2 Tidal dissipation and transported heat as a function of mantle temperature
for an Io-like exomoon. Panel (a) corresponds to a body with Maxwell rheology, while
panel (b) corresponds to a body with Andrade rheology. Stable and unstable equilibrium
points are indicated in red and blue, respectively. Tidal dissipation is displayed for Io’s
present eccentricity and orbital frequency; a decrease in eccentricity or orbital frequency
changes the amount of tidal dissipation (gray line) and drives the system evolution, as
indicated by the blue line.

THE CASE OF IO

Before applying our model to the more general case of an exomoon, we explore its im-
plications for Io and assess whether it can successfully explain its thermal state.

Figure 6.3a shows Io’s heat flux and tidal dissipation as a function of mantle temper-
ature. Depending on melt fraction and the prevalent heat transport mechanism, we dis-
tinguish three regimes: the stagnant-lid regime, which corresponds to a mantle without
a sublayer of melt; the heat-pipe regime, where melt advection dominates heat transfer;
and the magma-ocean regime. Tidal dissipation is computed at Io’s current orbital pe-
riod and different eccentricities. When the eccentricity is low, radiogenic heat is the only
significant heat source, and thermal equilibrium is reached for a low mantle tempera-
ture, ≈ 1200 K. As eccentricity increases, the equilibrium state moves to higher mantle
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temperatures. For moderate eccentricities (∼ e I o/2), the dislocation creep mechanism
can lead to situations where dQ̇s /dT ≈ dQ̇i nt /dT . In such cases, a quasi-equilibrium
state can be attained in which temperature varies slowly and the thermal evolution of
the system stagnates (Renaud and Henning, 2018). For higher eccentricities, new equi-
librium configurations appear at higher mantle temperatures. The mantle temperature
and stability of such points depend on the considered heat transfer mechanism (see Fig-
ure 6.3).

If we consider Io’s current eccentricity, we find that heat transported via mantle con-
vection in the stagnant-lid regime is insufficient to remove Io’s present heat flux, as also
found in Moore (2003). In contrast, the equilibrium points obtained for the heat-pipe
regime are much closer to Io’s observed heat flux. For the high-efficient heat transport
scenario, we obtain that an equilibrium point is attained for a model with a 40 km thick
asthenosphere with a melt fraction of 0.02. The equilibrium heat flux in this configu-
ration is roughly half of Io’s. In the low-efficiency heat-piping model, the equilibrium
point is reached at roughly two times Io’s observed heat flux for a model with a 330 km
asthenosphere with a 0.2 melt fraction. The truth probably lies in-between, but the sec-
ond scenario is more consistent with the interpretation of Galileo’s magnetometer ob-
servations as evidence of a near-surface partially molten layer with a 0.2 melt fraction
(Khurana et al., 2011). However, this claim has recently been challenged (Blöcker et al.,
2018; Roth et al., 2017). For this model, tidal dissipation is mainly focused in the astheno-
sphere (≈ 90%) and is higher in equatorial regions (Figure 6.4). Assuming that all of the
molten rock travels to the surface through channels in the lithosphere, we can estimate
the resurfacing rate, which is on the order of 1 cmyr−1. This rate is higher than the mini-
mum 0.02 cmyr−1 required by the lack of impact craters and consistent with the 0.4−14
cmyr−1 resurfacing rate estimated from surface changes observed during Galileo’s mis-
sion (Phillips, 2000).

VOLCANIC EXOMOONS AND TIDALLY BOOSTED SURFACE TEMPERATURES

We apply the approach used to obtain thermal equilibrium states for Io to the more gen-
eral case of exomoons of different sizes and orbital parameters. We are primarily inter-
ested in estimating the surface heat flux and surface temperature. The average surface
temperature can be estimated by considering that the moon is a blackbody with surface
temperature Tsur f :

T 4
sur f =

1

σ

(
(1− A)S

4
+qs

)
, (6.21)

where σ is the Stefan–Boltzmann constant, S is the stellar irradiation, and A the moon’s
bond albedo. As we are considering volcanic rocky worlds around cold exoplanets, we
use Io’s albedo AI o and the solar flux at Jupiter’s orbit Sj. Localized volcanic activity can
result in spatial and temporal variations of surface temperature. Our estimations of sur-
face temperature should be understood as the total thermal output of a rocky exomoon,
keeping in mind that how and when this energy is released will depend on the thermal
regime of the moon. Moreover, the outgassing of material and formation of a substantial
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(a) RI o

(b) 2RI o (c) 4RI o

Figure 6.3 Internal and transported heat in terms of surface heat flux as a function of the
average mantle temperature for exomoons of different radii. The internal heat includes
both radiogenic and tidal heating. Tidal heating is computed at Io’s orbital frequency and
shown for a range of orbital eccentricities. The thickest line corresponds to Io’s present
eccentricity. Three different heat transport regimes are indicated with different shad-
ings; the stagnant-lid regime, the heat-pipe regime and the magma-ocean regime. Heat
transported via convection (black line) and heat piping (blue lines) are indicated. For
comparison, surface heat fluxes for Mars, Earth, and Io, as well as the solar irradiation at
Jupiter’s orbit, are also shown.

atmosphere would alter the heat balance of the moon and thus the surface temperature
(e.g., Noack et al., 2017).
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(c) (b)

Figure 6.4 Surface heat flux (a) and internal heat distribution along a meridional cut go-
ing through the subjovian point (b) for an Io in thermal equilibrium.

We can also estimate the amount of outgassed material (Ṁo) and resulting column
density. This quantity is closely related to the surface heat flux. A proxy for the outgassing
rate can be obtained by considering Io’s outgassing rate, Ṁo,I o , and a tidal efficiency, ηT ,

ηT =
(

R

RI o

)2 q

qI o
(6.22)

as Ṁo ∼ ηT Ṁo,I o (Oza et al., 2019; Quick et al., 2020). The previous expression gives
an order-of-magnitude estimate; other factors such as the style of heat transport and
volcanism and the mantle composition, are likely to affect the outgassing rate.

We start by considering exomoons of sizes 2RI o and 4RI o orbiting at Io’s orbital fre-
quency (Figure 6.3 (b) and (c)). Some differences with Io (Figure 6.3(a)) are apparent.
For bigger exomoons, higher values of tidal dissipation are attained for the same orbital
eccentricity. This should not come as a surprise, as tidal dissipation has a strong depen-
dence on body size (Ė ∝ R5). In contrast, the heat transported via mantle convection has
a smaller dependence on body size (Eq. (6.12)). Heat transport via melt advection quickly
becomes the dominant heat transport mechanism as orbital eccentricity increases.

If we consider Io’s orbital eccentricity, we find surface heat fluxes more than 1 and 2
orders of magnitude higher than Io for Mars- and Earth-sized exomoon (i.e., 2RI o and
4RI o), respectively. By using the previous proxies, we can infer that these exomoons
would likely feature more volcanic activity than Io and produce a plasma torus with col-
umn densities 2− 3 orders of magnitude higher than those observed in the Jovian sys-
tem for a 2RI o and 4RI o moon, respectively. Additionally, for R = 4RI o , we observe that
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thermal equilibrium is reached for a surface heat flux above solar irradiation. In such
circumstances, the second term in Equation 6.21 becomes important, and tides have a
signature in the surface temperature that increases to ∼ 300 K.

Figure 6.5 shows the surface heat flux and surface temperature for different combi-
nations of orbital eccentricity and orbital distance. The orbital distance is shown as a
function of the Roche limit, a/aR = (2πρmG)1/3/(3n2)1/3, which does not depend on the
mass of the orbiting planet. The equilibrium states are obtained for the high-efficiency
heat-piping transport scenario. If otherwise, the low-efficiency scenario is considered,
similar results follow, but the magma-ocean regime is attained for lower eccentricities
and orbital frequencies. As expected, surface heat flux and temperature increase with in-
creasing eccentricity and decreasing orbital distance (Eq. (6.12)). For instance, Io would
have a surface temperature of 400 K provided it orbited with its current eccentricity at
a/aR ≈ 2 or at its current orbital distance with an eccentricity of ≈ 0.1. As body size
increases, the subset of orbital parameters for which tides increase the moon’s surface
temperature grows.

From Figure 6.5, it is clear that, provided an exomoon has a high enough eccentric-
ity and/or orbits close to the planet, super-Ios with intense volcanism and even tidally
boosted surface temperatures arise. A question immediately follows: do we expect exo-
moons to orbit within these regions, and for how long?
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(a) RIo

(b) 2RIo

(c) 4RIo

Figure 6.5 Equilibrium surface heat flux and surface temperature for an Io-sized (a),
Mars-sized (b), and Earth-sized (c) exomoon as a function of orbital eccentricity and
distance. The orbital parameters of the Galilean moons and the surface heat flux of Io,
Mars, and Earth are indicated. The amount of outgassed material compared to Io can be
estimated using the heat flux with Eq. (6.22).
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6.3. LONGEVITY OF A SUPER-IO

As we have shown in the previous section, for tidally active exomoons to be observable,
vigorous tidal dissipation linked to a high orbital eccentricity and/or low orbital period
is needed. However, it remains to be seen if these orbital states are attainable, let alone
long-lived, so that they provide opportunities for observation. Instead of taking orbital
period and eccentricity as constant parameters, as we did in the first part of the paper,
in this section we explore the coupling between the interior thermal state of a moon and
its orbital parameters. Clearly, we cannot tackle all possible orbital evolution scenarios;
we pick two representative cases. We start by considering tidal interactions between a
gas giant and an orbiting exomoon in an isolated moon-planet system. Afterwards, we
consider how orbital resonances can excite the orbital eccentricity of an exomoon by
focusing on the simplest orbital resonance: a 2 : 1 MMR.

6.3.1. ISOLATED MOON-PLANET SYSTEM

As we are considering cold gas giants that, in contrast to close-in exoplanets, are far from
their star, we neglect the effect of stellar tides in both the planet and the moon. In an iso-
lated moon-planet system, tidal dissipation within the moon removes energy from the
moon orbit and circularizes it. Additionally, tidal dissipation within the planet produces
a phase lag in the planets’ response to the tide raised by the moon. As a consequence,
the moon exerts a torque on the planet that changes the planet’s spin rate, and the planet
exerts a torque of the same magnitude to the moon that drives orbital migration. The di-
rection of moon migration depends on whether the orbital period of the moon is higher
or lower than the rotational period of the planet. We consider that the planet’s rotation
period is lower than the moon’s orbital period. This is justified by the fast rotation rates
of the Solar System gas giants and those measured for extrasolar gas giants (Bryan et al.,
2018; Snellen et al., 2014). Under the previous assumptions, the change of orbital fre-
quency (n), orbital eccentricity (e), and the planet’s spin rate (θ̇) are given by (Appendix
6.7)

1

n

dn

dt
= 1

τn
+ pe e2

τe
, (6.23a)

1

e

de

dt
=− 1

τe
, (6.23b)

dθ̇

dt
=−3

2

GM 2
mR3

p

κMp a6

| k2,p |
Qp

, (6.23c)

with pe = 57/7, and where τn and τe are the orbital migration and circularization time-
scales and are given by
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where m and p stand for moon and planet, respectively.

Tidal dissipation within the moon results in orbit circularization and inward orbital
migration. The rate at which this occurs depends on the internal structure of the moon
via the second-degree Love number Im(k2,m). On the other hand, under the aforemen-
tioned assumptions, tidal dissipation within the planet results in outward orbital expan-
sion and despinning of the planet. Combining Eqs. (6.23a) and (6.23c), the change in
planet spin rate produced as the moon migrates can be obtained. Unless the moon is
very massive and formed very close to the planet, the effects of the moon on the planet’s
rotation are small. A Mars-like exomoon around Jupiter would slow down Jupiter less
than 1% as it migrates from 2aR to 20aR . In what follows, we assume dθ̇/dt ≈ 0, the
planet is treated as an infinite source of energy that drives orbit migration. The migration
rate depends on how energy is dissipated within the planet, as given by the imaginary
component of the planet’s second-degree Love number, Im(k2,p ). In classical tidal the-
ory, it is considered to be independent of the forcing frequency; we make this assump-
tion and consider a range of frequency independent Im(k2,p ). However, new observa-
tions indicate a strong dependence of Im(k2,p ) on forcing frequency (Lainey et al., 2017,
2020), which has been linked with the excitation of internal waves in the planet’s gaseous
envelope (e.g., Ogilvie and Lin, 2004). The Im(k2,p ) spectrum depends on weakly con-
strained parameters such as the structure and composition of the planet, which in turn
can undergo significant changes as the planet evolves. Implicitly, our model assumes
that the exomoon does not excite any of the resonant modes in the planet’s dissipation
spectrum. The incorporation of such effects would require the analysis of a broad range
of properties of the giant planet’s dissipation spectrum, as no robust bottom-up model
of this spectrum can be set up for poorly constrained exoplanet interiors.

Figure 6.6 shows the circularization time-scales as a function of orbital distance
for a hot exomoon with a Im(k2,m) similar to that of Io (Lainey et al., 2009). Here, τe

strongly depends on orbital distance (τe ∝ (a/aR )13/2); if the moon is far from the planet
(a/aR ⪆ 20), the circularization time-scale is more than 1 Gyr. At such orbital distances,
tidal dissipation is quite low. However, a highly eccentric (e > 0.1) Earth-like exomoon
would still experience high levels of tidal dissipation that could even increase the surface
temperature to around 500 K (Figure 6.5). Can we imagine a plausible scenario where
this could occur? A possible candidate is the capture of a terrestrial-sized planet by a
gas giant via the binary-exchange capture process (Williams, 2013). The capture process
results in highly eccentric orbits compatible with high values of tidal dissipation.

For close-in exomoons, the eccentricities required for high tidal activity are lower
(Figure 6.5). However, the circularization time-scales are much shorter, less than a mil-
lion years for a moon orbiting closer to the planet than Io (Figure 6.5). A sporadic boost
in eccentricity could result in high values of tidal dissipation and boost the surface tem-
perature, but such a boost would inevitably be short-lived, lowering the chances of de-
tection. For these moons to exhibit vigorous geological activity for a longer time period,
it is necessary that the eccentricity is continuously forced. This can occur via MMRs.
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Figure 6.6 The τe as a function of orbital distance and moon-to-planet mass ratio for a
body with an | Im(k2,m) |= 10−2, similar to Io’s present value. The Galilean moons are
indicated.

6.3.2. 2:1 MEAN-MOTION RESONANCE

MMRs occur when two moons consistently apply a periodic gravitational perturbation
to each other. This happens when the orbital frequencies of the two objects (n1,n2) are
related via (e.g., Murray and Dermott, 2000): (p +q)n2 −pn1 −qω̇1 ≈ 0, where ω1 is the
argument of the pericenter and p and q are two integers. The periodic gravitational forc-
ing alters the orbit of both objects and excites the eccentricity of the moons. As already
mentioned, we cannot explore all possible orbital resonances. Thus, we focus on the 2 : 1
orbital resonance (p = 1, q = 1).

In a 2:1 orbital resonance, the resonant variable v = n1−2n2 is close to zero. Using the
perturbing potential up to first order in eccentricity, the equations governing the orbital
evolution of the two moons can be obtained (Yoder and Peale, 1981):
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(6.25b)

e1 =− M2

Mp

n1

v
αC1, e2 = M1

Mp

n1

v
α3/2C2. (6.25c)

Here C1 and C2 are two constants with values of −1.19 and 0.428, respectively; α is the
ratio between the inner and outer moon semi-major axes, which, close to the 2:1 reso-
nance, equals 0.63; and K (e1,e2) is a positive number,
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which is small provided the eccentricities are also small.

Different orbital migration timesscales (τn1 ̸= τn2) can lead to the convergence of a
pair of moons and the assembly of an MMR resonance (Eq. (6.25b), Figure 6.7). This can
occur either in the protoplanetary disk via differential orbital decay (Figure 6.7(a)); or,
once the protoplanetary disk has dissipated, via differential tidal expansion of the or-
bit (Figure 6.7(b) and (c)). In the second case, τn and τe are given by Equation (6.24). In
the first case, the orbital evolution is driven by the interactions of the protoplanetary disk
with the recently formed moons (Canup and Ward, 2002; Peale and Lee, 2002). The satel-
lites excite density waves in the protoplanetary disk that cause a torque on the moons
and result in inward migration. The protoplanetary disk also dampens the satellite ec-
centricity. Equation (6.23) can still be used to model the effects of moon protoplanetary
disk interactions in the orbital evolution, provided we use pe = 3 and define τn and τe as
(Goldreich and Schlichting, 2014):

1

τn
∼

(
Mm

Mp

)(
Md

Mp

)( a

h

)2
n, (6.27a)

1

τe
∼

(
Mm

Mp

)(
Md

Mp

)( a

h

)4
n, (6.27b)

where h/a is the aspect ratio of the disk, and Md is the disk mass.

As the moons move deeper into the orbital resonance, the orbital eccentricity in-
creases (Eq. (6.25c)). Depending on the ratio of the migration time-scales of the two
moons (τn1/τn2), two scenarios are possible: the moons (1) cross the orbital resonance
or (2) get trapped in it. The first scenario results in a boost of orbital eccentricity that is
later circularized in a time-scale τe (Figure 6.7(a)). In the second scenario (Figure 6.7(b)
and (c)) an equilibrium eccentricity is reached that can persist for a long time.

For MMR assembled via tidal expansion of the orbit once the protoplanetary disk is
dissipated, the first scenario can occur provided the outer moon migrates faster than the
inner moon. Given the strong dependence of τn with orbital distance (Eq. (6.24b)), this
requires that | Im

{
(k2,p (n2))

} |>| Im
{
(k2,p (n1))

} |, which can occur under the resonance-
locking scenario (e.g., Fuller et al., 2016; Lainey et al., 2020). The boost in orbital eccen-
tricity due to the crossing of the 2 : 1 MMR can be estimated as (Dermott et al., 1988)

e1 =
2

p
6 M2

Mp
α |C1 |

1+4 M1
M2
α2

1/3

(6.28)

We note that similar expressions can be obtained for different values of p and q ; thus,
Eq. (6.28) gives an order-of-magnitude estimation of the orbital eccentricity boost for
other MMRs. Using the previous equation, we can obtain the boost in orbital eccen-
tricity for different values of M1/M2 and M1/Mp . As shown in Figure 6.8, the boost of



6.3. LONGEVITY OF A SUPER-IO

6

161

Figure 6.7 Semi-major axis and orbital eccentricity of two moons in a 2 : 1 MMR for dif-
ferent scenarios. In the first scenario, panel (a), τn1 > τn2 and the moons go through the
resonance but do not get trapped, while in the second scenario, panels (b) and (c), the
moons can remain in resonance for a long time. For panel (b) the resonance is assem-
bled in the protoplanetary disk, while in (c) via tidal expansion once the protoplanetary
disk dissipates. Note that once the protoplanetary disk dissipates, the system can relax
to the equilibrium eccentricity of panel (c) or the orbit is circularized in a time-scale τe

as shown in panel (a).
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orbital eccentricity due to the crossing of a resonance can be close to 0.1. For exam-
ple, for M1/M2 = 1 and M1/Mp = 10−4, e ≈ 0.05. Such an increase in orbital eccentricity
could result in vigorous and tidally boosted surface temperatures if resonance crossing
occurs when the moon is close to the planet. As an example, a Mars-sized exomoon or-
biting between Io and Europa’s orbit would experience surface temperatures up to 400 K
(Figure 6.5), but the eccentricity would be dampened in less than 10 Myr (Figure 6.6).

Figure 6.8 Boost in orbital eccentricity due to the crossing of a 2:1 MMR for different
ratios of M1/Mp and M1/M2. The locations of the Galilean moons are indicated.

As mentioned before, in the second scenario, the two moons remain caught in an
orbital resonance for a long period of time. As the moons move deeper into the orbital
resonance, the orbital eccentricity increases (Eq. (6.25c)). The increase of orbital eccen-
tricity results in a phase lag between both moons, which prompts a transfer of angular
momentum from one moon to the other. As we will see, under certain conditions, this
transfer of angular momentum ensures that both moons migrate at the same rate (v̇ = 0),
and an equilibrium eccentricity is reached. The value of the equilibrium eccentricity can
be computed as (Eq. (6.29))

e2
1 =− τe1
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(
1− τn1

τn2

)(
(3+pe )+12

M1

M2
α2+
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(
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M2

)2 (
C2

C1

)2 (
2(6−pe )α5/2 +3

M2

M1
α−1/2

))−1

.

(6.29)

The value of the equilibrium eccentricity is proportional to
p
τe /τn , while the prefactor

multiplying this ratio differs depending on p and q . The proportionality of the equilib-
rium eccentricity to

p
τe /τn remains for different values of p and q (Dermott et al., 1988,

Equation 39).
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For the assembly of a 2 : 1 MMR in the protoplanetary disk, the existence of such
equilibrium eccentricity requires that M2 > 2M1. The value of the equilibrium eccen-
tricity is e ∼ h/a. For a disk aspect ratio of the order of ∼ 0.1 (Canup and Ward, 2002;
Peale and Lee, 2002), orbital eccentricities of ∼ 0.1 can be attained (Figure 6.9). Once
the protoplanetary disk dissipates, the eccentricity is dampened on a timescale τe or the
system relaxes to the equilibrium configuration of the tidally driven scenario.

In case orbital migration is driven by tidal forces, the existence of an equilibrium ec-
centricity requires that the inner moon migrates faster than the outer moon, τn1 < τn2,
which, for a frequency-independent Im(k2,p ), implies M2 < 20M1. The forced eccentric-
ity is (Equations (6.29) and (6.24))

e2 ∼
(

Mm

Mp

)2 (
Rp

Rm

)5 Im(k2,p )

Im(k2,m)
. (6.30)

Figure 6.9a shows the forced eccentricity for an Io-like moon in a 2:1 orbital reso-
nance with a second moon. We consider that tidal dissipation is negligible in the outer
moon and use Im(k2,p ) and Im(k2,m) compatible with those estimated for Jupiter and
Io (Lainey et al., 2009). For the planet radius, we use the empirical mass-radius relation
of Bashi, Dolev et al. (2017). If the inner-to-outer moon mass ratio is too low, the outer
moon migrates too fast, and the moons do not get caught in the MMR. On the other
hand, if the ratio is high, the forced eccentricity of the inner moon is small. For a mass
ratio equal to that of Io and Europa, we obtain a forced eccentricity of approximately
half of Io’s present eccentricity. This discrepancy is because Io is part of a more complex
resonance chain, the Laplace resonance, which can excite higher eccentricities (Yoder
and Peale, 1981). However, by considering the simple 2 : 1 MMR, we obtain an order of
magnitude estimation of the forced eccentricity that can be attained if the moon is part
of a more complex resonance chain.

We further consider the case where both moons have equal mass and obtain the
forced eccentricity for different moon and planet masses and different values of Im(k2,p )
using Eq. 6.29 (Figure 6.9(b)). Moderate-to-high orbital eccentricities (10−3 −10−1) that
result in high surface heat fluxes are attained, provided that (1) the moon-to planet mass
ratio is high and/or (2) the planet is highly dissipative. Configurations with Mm/Mp >
10−4 should be regarded with caution, as satellite formation models for giant planets pre-
dict Mm/Mp ∼ 10−4 (Canup and Ward, 2006; Heller and Pudritz, 2015a,b). This makes
Mars-sized exomoons plausible around super-Jovian (1− 12MX) planets, but the ratio
for Earth-sized is only attained well inside the brown dwarf regime , Mp > 12MX (e.g.,
Boss et al., 2005).

The value of Im(k2,p ) is uncertain and a matter of intense research. Equilibrium tidal
theory suggests | Im(k2,p ) |∼ 10−13 (Goldreich and Nicholson, 1977); however, astrometric
observations of the Jovian and Saturnian systems indicate that | Im(k2,X) |∼ 10−5 and as

high as | Im(k2,Y) |∼ 10−3 (Lainey et al., 2009, 2020). High values of | Im(k2,p ) | lead to

high-equilibrium eccentricity. However, high | Im(k2,p ) | implies fast orbital migration
(Equation ( 6.24)). As the moon migrates outwards, tidal dissipation rapidly decreases (
Equation (6.8)) limiting the longevity of a super-Io.
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Figure 6.9 (a) Equilibrium eccentricity of the inner moon in a 2:1 orbital resonance as a
function of the ratio of inner and outer moon mass (x-axis). Both resonance assembly
in the protoplanetary disk (black line) and via tidal interactions with planets of different
sizes are shown. An Io-sized moon with | Im(k2,m) | compatible with Io and a planet
with | Im(k2,p ) | similar to Jupiter are assumed (10−2 and 10−5). Tidal dissipation in the
outer moon is neglected. For the case in which both moons have the same mass, panel
(b) shows the orbital eccentricity for different combinations of planet and moon mass
assuming Io- and Jupiter-like values for Im(k2,m) and Im(k2,p ). For a different Im(k2,p ),
the equilibrium eccentricity can be recovered by multiplying the value given in the plot

by
√
| Im(k2,p ) | /10−5. Different ratios of Mm/Mp are indicated, with Mm/Mp = 10−4

consistent with moon formation theory indicated in bold. The vertical lines correspond
to the three sizes of bodies considered in this study.

This becomes evident if we study the coupled thermal-orbital evolution of a close-in
exomoon. As the formation of a pair of Earth-sized exomoons seems unlikely from moon
formation theory, and high values of tidal dissipation are more easily attained for Mars-
sized than Io-sized exomoons, we focus on the case of a pair of close-in (a = 2aR ) Mars-
sized exomoons orbiting a super-Jovian planet (5MX). As shown before, the orbital and
thermal evolution of the moon are coupled via the imaginary component of the second-
degree Love number (Im(k2,m)), which in turn depends on the interior structure. We
compute tidal dissipation and heat transfer as explained in Section 6.2.1. The orbital
evolution is computed using Equation (6.25) and the thermal evolution using (6.20). The
system is integrated forward in time using a two-step Euler method with an adaptive step
size. We assume | Im(k2,p ) | is frequency-independent, and we vary its value from 10−3 to
10−6 and study the thermal-orbital evolution of the exomoons. In all cases, we assume
that the moons start deep into the resonance with an eccentricity of 0.01.

The evolution of the exomoons for different values of | Im(k2,p ) | is depicted in Figure
6.10. At the start of the simulation, the high eccentricity combined with the close prox-
imity of the exomoon to the planet results in high tidal dissipation and tidally boosted
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surface temperatures. At this time, the moon is in the magma-ocean regime. The moon’s
eccentricity changes until the equilibrium eccentricity is reached. The value of the equi-
librium eccentricity depends on the value of | Im(k2,p ) |, with higher values leading to
higher values of orbital eccentricity. Meanwhile, the moon migrates at a rate dependent
on Im(k2,p ), tidal dissipation decreases, and the moon cools down enough to enter the
heat-pipe regime. Upon cooling, the value of Im(k2,m) changes and, in a range of 1–10
Myr, a new equilibrium orbital eccentricity is attained.

The close proximity of the moon to the planet combined with high orbital eccentric-
ity results in high surface heat fluxes, as well as tidally boosted surface temperatures. For
instance, for | Im(k2,p ) |= 10−4, surface heat fluxes of more than 1000 Wm−2 are attained.
Surface temperatures are higher than 400 K for the first 10 Myr. This phase is, however,
short-lived due to the fast orbital migration of the moon. Tidal dissipation quickly de-
creases, the melt fraction in the asthenosphere diminishes, and the moon shifts from the
magma-ocean regime to the heat-pipe regime. After 100 Myr surface temperatures are
down to 200 K and, after 500 Myr, the contribution of tides to surface temperature is neg-
ligible. As the semi-major axis increases, the migration time-scale (τn ; Equation (6.24))
decreases, but the eccentricity remains nearly constant. A surface heat flux 10–100 times
higher than Io is maintained during the first billion years and then decreases to values
similar to Io while the moon stays in the heat-pipe regime.

If the planet is less dissipative, the equilibrium eccentricity is lower, but the or-
bital migration time-scale is reduced. These two factors partly compensate each other;
while the eccentricity attained for | Im(k2,p ) |= 10−5,−6 is lower than that for | Im(k2,p ) |=
10−3,−4, the moon stays closer to the planet during a longer time. As in the more dissi-
pative cases, high surface temperatures are attained during the first million years, but
the contribution of tides to surface temperature is negligible after 500 Myr. The surface
heat flux stays above that of Io for more than 2 billion years, giving ample time for the
outgassing of material and the formation of a secondary atmosphere and plasma torus.

While we observe small-amplitude fast oscillations of the eccentricity at the begin-
ning of our simulation, our models do not feature the pronounced periodic oscillations
characteristic of the models of Hussmann and Spohn (2004) and Fischer and Spohn
(1990) for Io. As we show in Appendix 6.8, this is a consequence of the very efficient
transfer mechanism included in our model (heat piping) and the use of Andrade rheol-
ogy, which implies that Io could be in thermal equilibrium instead of in an oscillatory
state, as proposed in Fischer and Spohn (1990).

6.4. CONCLUSIONS

We started this paper with a clear question — what are the prospects of detecting a super-
Io?— and we addressed two important sides of it: where and in which thermal state we
can expect to find super-Ios and for how long we expect a super-Io to be tidally active.

To do so, we presented a thermal model of an exomoon. Based on our current knowl-
edge of Io, we considered a multilayered model that allows for the formation of a sublayer
of melt in which heat can be transported via melt advection. Our model confirms the
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(a)

Figure 6.10 Thermal-orbital evolution of a Mars-sized exomoon orbiting around a 5MX
planet in a 2:1 orbital resonance with an exomoon of the same size. Panel (a) shows the
semi-major axis in terms of the Roche limit (y-axis) as a function of time (x-axis). The
trajectories are colored according to surface heat flux and surface temperature. Panel
(b) shows the detail of the evolution of the eccentricity (solid lines) and semi-major axis
(dashed lines), (c) shows the surface temperature using a logarithm time-scale.

findings of Moore (2001, 2003) and Moore and Webb (2013) that this mechanism plays
a crucial role in the heat budget of a tidally heated (exo)moon. We applied our model
to Io and found that it can successfully explain its thermal state and is consistent with
Galileo’s observation hinting at a partially melted asthenosphere (Khurana et al., 2011).

In order to simplify our model, we made some assumptions. As it is commonly done
(e.g., Fischer and Spohn, 1990; Henning et al., 2009; Hussmann and Spohn, 2004; Re-
naud and Henning, 2018; Shoji and Kurita, 2014), we used the viscoelastic tidal theory to
model tidal dissipation. However, when tidal dissipation is very high, the melt fraction
increases and can reach high values. The body is then better described either as a highly
porous material consisting of a matrix of rock filled with magma or, for higher melt frac-
tions, a magma ocean with rocky particles in suspension. Our treatment of tidal dissipa-
tion and heat transport in the high-melt fraction regime was highly simplified. In such
circumstances, the classical theory of viscoelastic tides does not adequately describe the
behavior of the body. Advances have been made in understanding the role of porosity
(Liao et al., 2020) and tides in a liquid reservoir (e.g., Hay et al., 2020; Matsuyama et al.,
2018; Rovira-Navarro et al., 2019; Tyler et al., 2015) for tidal dissipation, yet our knowl-
edge remains limited. Further study of these regimes will be key to understanding Io and
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ultimately super-Ios. Additionally, we considered that material properties only vary ra-
dially and not laterally. While this assumption allows to get a first-order understanding
of Io and super-Ios, unveiling their complex dynamics might require taking into account
the complex feedback between tidal dissipation, internal properties, and resulting het-
erogeneities (Steinke et al., 2020b). In the case of Io, the availability of high-resolution
observations justifies this kind of modelling, but we are still very far from this point for
exomoons.

We applied our model to exomoons ranging from Io to Earth-sized and found that
exomoons orbiting within a few Roche radii of their planet experience high levels of
tidal dissipation if they have moderate eccentricities (similar to Io). Thermal equilib-
rium states with surface heat fluxes higher than those of Io are obtained for a wide range
of orbital parameters. For some of theses cases, tidal dissipation is very high, and the
thermal budget of the moon is dominated by tidal dissipation, resulting in a high surface
temperature that could make direct imaging by future telescopes possible (Peters and
Turner, 2013).

While our analysis of thermal equilibrium states as a function of orbital parameters
showed that super-Ios can result for different orbital configurations, one key question
remained: do we expect a population of exomoons to fill this space, and for how long?
This question should be tackled from a moon formation and evolution point of view. We
addressed the second aspect by considering the coupling between interior structure and
orbit evolution of a close-in exomoon.

We showed that an Earth-sized exomoon orbiting far away from the planet (a/aR >
20) with a high eccentricity can remain tidally active for billions of years and specu-
lated that this might happen if such an exomoon is captured via a mechanism known
as the binary-exchange capture process (Williams, 2013). However, under these circum-
stances, our assumption of the moon being tidally locked and having a small obliquity
could break. Moreover, higher-order eccentricity terms will be become relevant for the
orbital evolution of the moon (Renaud et al., 2021). The more general problem of cap-
ture and tides for a nonsynchronous rotating moon should be addressed. This opens
the door to higher-order spin-orbit resonances, such as a Mercury-type 3 : 2 resonance
(e.g., Dobrovolskis, 2007; Makarov, 2012; Walterová and Běhounková, 2020), as well as
obliquity tides that can be investigated in future work.

For moons closer to theri planet, circularization time-scales are on the order of mil-
lion of years, which implies that long-lived super-Ios require active forcing of the eccen-
tricity, for example, via MMRs (e.g., Peale, 1976). We considered a super-Io in a 2 : 1 or-
bital resonance and found a trade-off between high orbital eccentricity and fast orbital
migration. We obtained that in order for the forced eccentricity to be high enough for
surface temperatures to be dominated by tidal heating, the orbited exoplanet should be
highly dissipative (i.e., have a low quality factor). Low quality factors are not compatible
with the equilibrium tide theory of Goldreich and Nicholson (1977), but are in agreement
with the low values measured for Jupiter and Saturn (Lainey et al., 2009, 2020). However,
we showed that highly dissipative planets lead to fast orbital migration which limits the
amount of time the moon spends near the planet, where tidal dissipation is high. We
studied in more detail the case of a Mars-sized exomoon orbiting a super-Jovian planet.
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We found that tidal dissipation decreases below solar irradiation≈ 500 million years after
the establishing of the MMR, limiting the window for direct imaging. However, the moon
can remain tidally active for billion of years with heat fluxes exceeding those of Io. This
implies that a plasma torus denser than that of Jupiter can be expected in the system,
which provides an opportunity for detection in transmission spectra (Johnson and Hug-
gins, 2006; Oza et al., 2019). Finding a tidally heated exomoon via transit spectroscopy or
direct imaging would provide an important constraint on the planet’s interior structure
due to the relation between the moon’s eccentricity and dissipation within the planet.

6.5. APPENDIX A: PROPAGATOR MATRIX TECHNIQUE

A detailed description of the propagator matrix technique for the viscous gravitation
problem can be found in Sabadini et al. (2016). Here, we give a brief summary of the
method. For each layer (i ) (1 for the uppermost layer and N for the core), Eq. (6.9) needs
to be solved. Matrix A is given by

A =



− 2
r

l (l+1)
r 0 0 0 0

− 1
r

1
r 0 1

µ̃ 0 0
4
r

(
3µ̃
r −ρg

)
− l (l+1)

r

(
6µ̃
r −ρg

)
0 l (l+1)

r −ρ(l+1)
r ρ

− 1
r

(
6µ̃
r −ρg

)
2(2l 2+2l−1)µ̃

r 2 − 1
r − 3

r
ρ
r 0

−4πGρ 0 0 0 − l+1
r 1

− 4πGρ(l+1)
r

4πGρl (l+1)
r 0 0 0 l−1

r


. (6.31)

l is the spherical degree harmonic, which equals 2 for tidal forcing.

The solution to the previous set of differential equations can be written as

ỹ ĩy ĩyi (r,ω) = Ỹi (r,ω)CiCiCi , (6.32)

where ω is the forcing frequency, and Y the so-called fundamental matrix which equals:
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Ỹi (r,ω) =



l r l+1

2(2l+3) r l−1 0
(l+3)r l+1

2(2l+3)(l+1)
r l−1

l 0
(lρg r+2(l 2−l−3)µ̃)r l

2(2l+3) (ρg r +2(l −1)µ̃)r l−2 −ρr l

l (l+2)µ̃r l

(2l+3)(l+1)
2(l−1)µ̃r l−2

l 0

0 0 −r l

2πGρl r l+1

2l+3 4πGρr l−1 −(2l +1)r l−1

(l+1)r−l

2(2l−1) r−l−2 0
(2−l )r−l

2l (2l−1) − r−l−2

l+1 0
(l+1)ρg r−2(l 2+3l−1)µ̃

2(l−1)r l+1
ρg r−2(l+2)µ̃

r l+3 − ρ

r l+1

(l 2−1)µ̃
(2l−1)r l+1

2(l+2)µ̃
l (l+1)r l+3 0

0 0 − 1
r l+1

2πGρ(l+1)
(2l−1)r l

4πGρ
r l+2 0



(6.33)

and CiCiCi is a vector of integration constants.

The solution at the surface of the moon (ỹ̃ỹy(R)) can be computed by propagating the
solution from the core-mantle boundary (Rc ) to the surface (R) by imposing continuity
at the layers’ boundaries:

ỹ(R,ω)ỹ(R,ω)ỹ(R,ω) =
(

N−1∏
i=1

Ỹi (ri ,ω)Ỹ −1
i (ri+1,ω)

)
IcCcCcCc . (6.34)

Ic is a matrix that follows from the boundary conditions at the core-mantle boundary
and is given by

Ic =
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0 1 0
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(6.35)

and CcCcCc is a vector of three integration constants that we obtain by applying the surface
boundary conditions:

ỹ3(R,ω) = 0, (6.36)

ỹ4(R,ω) = 0, (6.37)

ỹ6(R,ω) = 2l +1

R
. (6.38)
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The second-degree tidal Love number is

k2 = ỹ5(R,ω)−1 (6.39)

6.6. APPENDIX B: HEAT PIPING

The advection of melt in a partially molten asthenosphere can be described using con-
servation of mass and Darcy’s law for porous media (Moore, 2001):

∇· (Φvl ) = s, (6.40)

∇· ((1−Φ)vs ) =−s, (6.41)

Φ(vl − vs ) = kΦ∆ρg

ηl
. (6.42)

vs and vl are, respectively, the ascend velocities of the solid and liquid phases; Φ is the
melt fraction; and kΦ is the permeability, which depends on the geometry of the porous
matrix

kΦ = b2Φn

τ
, (6.43)

b is the grain size, n and τ two constants related with the geometry of the matrix, and s
is the melt production rate and is related with the volumetric heat rate qvol as

s = qvol

ρL
. (6.44)

Although heat is not uniformly distributed within the asthenosphere, we assume qvol to
be constant within the layer. vs can be eliminated from Equuation (6.42) to obtain two
equations for vl andΦ:

dvl
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(6.45)
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−2(1−Φ)Φ

vl

r
. (6.46)

For different values of volumetric heat (qvol ), we integrate the previous set of equa-
tions from the bottom of the asthenosphere to the top. The average melt fraction Φ is
then computed and a curve relating the average melt fraction (Φ) and qvol is obtained.

6.7. APPENDIX C: TIDAL EFFECTS ON ORBIT EVOLUTION

The effects of planet and moon tides on the evolution of a moon-planet system have
been widely studied (e.g., Boué and Efroimsky, 2019; Kaula, 1964). Here we follow
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Efroimsky and Williams (2009) and Boué and Efroimsky (2019) to obtain the tidal effects
on the orbit of a synchronously rotating satellite with low inclination orbiting around a
planet spinning at angular rate θ̇. The evolution of the satellite’s orbital frequency and
eccentricity are given by Boué and Efroimsky (2019), Equations (143) and (156), and the
change of the planet’s spin rate due to moon is given by Efroimsky and Williams (2009)
Equation (34):
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m and p stand for moon and planet, respectively. Ip is the planet’s moment of inertia
(I = κMp R2

p , with κ = 2/5 for a homogeneous planet); and C and D are two constants
that depend on the physical properties of the planet and moon,
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K2 are second degree quality functions at frequency ω which are given by:

K2(ω) =−sign(ω) Im[k2(|ω |)] = sign(ω)
| k2 |

Q
(6.49)

where k2 is the second-degree Love number, and Q is the quality factor. By looking at
Equations (6.47a)-(6.47c), it is evident that the leading term is due to semidiurnal tides
raised in the planet by the satellite. Moreover, D > 1 and, in general, | Kp | is several
orders of magnitude lower than | Km |. In such circumstances, and assuming that the
spin rate of the planet (θ̇) is higher than the orbital frequency of the moon (n), Eq. (6.47)
can be written as:
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with pe = 57/7. τe and τn are the damping time-scale for the eccentricity and orbital
frequency,
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with the moon and planet Love numbers evaluated at n and 2θ̇−2n, respectively. We
note that the previous assumption can break in the resonance-locking scenario, where
K2,p (2n −2θ̇) might be similar in magnitude to K2,m(n). Finally, it is important to note
that higher-order can become important for high orbital eccentricities (e > 0.1; Renaud
et al., 2021).

Comparing Eq. (6.50) with the equations used in previous studies (e.g., Fischer and
Spohn, 1990; Malhotra, 1991; Shoji and Kurita, 2014; Yoder, 1979), we note that those
studies use pe = 3 instead of the value obtained above. This discrepancy arises from
the incorrect assumption in some past publications that eccentricity damping occurs at
constant angular momentum.

6.8. APPENDIX D: IMPLICATIONS OF ANDRADE RHEOLOGY

AND HEAT PIPING FOR THE THERMAL-ORBITAL EVOLU-
TION OF ROCKY MOONS

The thermal-orbital evolution scenarios presented in Section 6.3 are markedly different
from those obtained by Fischer and Spohn (1990) and Hussmann and Spohn (2004) for Io.
In Fischer and Spohn (1990) and Hussmann and Spohn (2004), the thermal-orbital evo-
lution is characterized by a nearly equilibrium phase followed by an oscillatory phase of
alternating cold and warm phases and finally a runaway cooling of the body. In contrast,
in our model the body evolves following a series of near-equilibrium thermal-orbital
states. The difference is due to the use of Andrade rheology instead of Maxwell rheol-
ogy, as well as from the introduction of a more efficient heat transport mechanism: heat
piping. Here, we briefly explore how these two factors affect the thermal-orbital evolu-
tion of a rocky exomoon.

The difference can be explained in terms of the location and stability of thermal equi-
librium points. To illustrate this point, we consider the thermal-orbital evolution of an
Io-sized moon using the two different models presented in Section 6.2.4: (a) Maxwell
rheology and heat transport via mantle convection, and (b) Andrade rheology and heat
transport via heat piping. In both cases, we consider that the moon starts its evolution at
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a/aR = 2 with an initial orbital eccentricity of 10−3 in an orbital resonance with a moon
of the same size. Due to the close proximity of the moon to the planet, tidal dissipation
is high, and a stable equilibrium point with T > Tr es is reached in both cases. As the
moon migrates outward and tidal dissipation decreases, the equilibrium mantle tem-
perature decreases accordingly until the point T = Tr es . This point is unstable for model
(a) but stable for model (b). For model (a), further orbital migration starts a runaway
cooling phase. As the moon cools downs, Im(k2,m) sharply decreases, which leads to an
increase of the orbital eccentricity (Equation (6.29)) and thus tidal dissipation, causing
the body to heat up again (Figure 6.11). This process is repeated several times resulting
in thermal-orbital oscillations. In contrast, when Andrade rheology and heat piping are
included, the equilibrium point is stable, and the moon can evolve following thermal
equilibrium states and no oscillatory phase occurs.

This result can also be interpreted in the context of the linear stability analysis pre-
sented in Ojakangas and Stevenson (1986). Ojakangas and Stevenson (1986) showed
that the stability and subsequent orbit evolution depend on the exponents of the
power dependence of tidal dissipation and heat transport with mantle temperature
(n = dln ˙Qi nt /dT and m = dlnQ̇s /dT ). The Andrade rheology and heat piping reduce n
and increase m, which brings the system to the stable regime.

Figure 6.11 Thermal-orbital evolution of an Io-sized exomoon in a 2:1 orbital resonance
around a Jovian planet. The solid line corresponds to a model with Maxwell rheology and
heat transport dominated by convection, and the dashed line corresponds to Andrade
rheology and heat transport dominated by heat piping. In both cases, | Im(k2,p ) |= 10−5

is assumed.
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CONCLUSION AND OUTLOOK

Eliminate all other factors, and the one which remains must be the truth.

—Sir Arthur Ignatius Conan Doyle, The Sign of the Four

In chapters 3, 4, 5 and 6, we addressed the research questions introduced in Chapter
1 and discussed in Chapter 2. Here, we gather the answers to those questions, discuss
what their broader implications are for our understanding of tidally active moons and
identify new research directions towards which the knowledge gained steers us. The
chapter is split in four sections. First, we discuss the advances made in the understand-
ing of tides in subsurface oceans (Section 7.1), tides in moons with porous layers (Sec-
tion 7.2), and summarise our findings regarding tidally active exomoons (Section 7.3).
For each of these sections, we recapitulate the research questions, summarise the con-
clusions obtained in the thesis and then indicate avenues for future research. Finally, in
Section 7.4, we widen our outlook and explore how future observations and space mis-
sions can contribute to the topics explored in this thesis.

7.1. TIDES IN SUBSURFACE OCEANS

7.1.1. RESEARCH QUESTIONS AND MAIN FINDINGS

The discovery of volcanoes on Io and subsurface oceans in Europa prompted a profound
interest in tides in the moons of the outer Solar System. In the post-Voyager era, efforts
focused on the study of solid tides (e.g., Cassen et al., 1980; Ojakangas and Stevenson,
1989; Ross and Schubert, 1987; Segatz et al., 1988) and their link to interior structure and
surface features; the role of ocean tides was generally overlooked. Sagan and Dermott
(1982) speculated about the role that tides in Titan’s hydrocarbon lakes might play in
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the moon’s orbital evolution, but the topic received little attention until Tyler (2008) pro-
posed that dynamic ocean tides power the geological activity of icy moons.

Subsequent efforts extended the work of Tyler (2008) and applied it to different bod-
ies of the Solar System. Nevertheless, at the core of nearly all these studies two assump-
tions remained: (1) oceans were assumed to be of constant thickness, and (2) the study
of ocean tides relied on the shallow water approximation. In Chapters 3 and 4 we chal-
lenged these two assumptions. Below we summarize our main findings and their impli-
cations.

THE TIDAL RESPONSE OF OCEANS OF VARYING THICKNESS

To put our results into context, it is instructive to briefly recapitulate the main charac-
teristics of the tidal response of global oceans of constant thickness (for more details
see Chapter 3). Longuet-Higgins (1968) studied the response of global oceans using the
Laplace tidal equations and identified two main types of waves: gravity waves, where
gravity is the restoring force; and planetary Rossby waves, where the Coriolis force is the
restoring force. He also showed that the eigenmodes and eigenfrequencies of a global
ocean depend on the body’s radius and the ocean’s thickness. If an ocean is forced at
one of its eigenfrequencies strong tidal currents are excited, leading to substantial en-
ergy dissipation.

Almost half a century later, Tyler (2014, 2008, 2009, 2020, 2021) and Tyler et al. (2015)
applied the approach of Longuet-Higgins (1968) to study tides in the water oceans of icy
moons and Io’s magma ocean. They showed that the high surface wave velocity charac-
teristic of moons with deep subsurface oceans hinders the occurrence of surface gravity
wave resonances, which would only occur for much thinner oceans, but that high am-
plitude Rossby-Haurwitz waves can be excited by the obliquity component of the tidal
potential if the obliquity of the moon is large. With the exception of Titan, the obliquity of
the moons of the outer Solar System have not been measured. Nevertheless, dissipation
is expected to quickly dampen the free obliquity of a moon and bring it to a Cassini state.
Chen and Nimmo (2011) and Chen et al. (2014) used this to compute the obliquity of the
moons of the outer Solar System and showed that while obliquity tides could be relevant
in moons with substantial obliquity (e.g., Triton), they were unlikely to play a major role
in moons with low obliquity (e.g., Enceladus). Since the work of Tyler (2008) several im-
provements have been made in theory of ocean tides in subsurface oceans (e.g., Beuthe,
2016; Hay and Matsuyama, 2017; Matsuyama, 2014; Matsuyama et al., 2018; Tyler, 2020),
however, the assumption of a global ocean of uniform thickness remained unchallenged.

On Earth, the global ocean scenario is clearly unrealistic. As the tidal wave propa-
gates, it encounters the continents and enters into the shallow seas giving rise to a com-
plex global response. Gravity, rotation and topography data suggest that the oceans of
icy moons are global, yet they are not necessarily of uniform thickness. The details of the
ice and sea-bed topography are far from certain for most moons, but for Enceladus grav-
ity and topography data evidences long-wavelength ocean thickness variations (Beuthe
et al., 2016; Čadek et al., 2016; Hemingway and Mittal, 2019) that could play a similar role
as that played by continents on Earth. In Chapter 3, we used the Laplace tidal equations
to study the response of an Enceladan ocean of variable thickness to the eccentricity and
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obliquity tide and tackled the following research question:

1. How does the tidal response of a subsurface ocean of variable thickness differ from
that of a constant thickness ocean?

To resolve this question, we studied ocean tides in subsurface oceans of variable
thickness representative of Enceladus (Beuthe et al., 2016; Čadek et al., 2016; Hemingway
and Mittal, 2019): oceans with degree two thickness variations (thinner at the equator
and thicker at the poles) and oceans with degree three thickness variations (correspond-
ing to a thicker ocean in the South Polar Terrain as compared to the Northern Hemi-
sphere). As done in previous work, we used the shallow water approximation and con-
sidered the Laplace tidal equations, which we solved using the finite element method.

We found that the tidal response of oceans with degree two thickness variations to
the eccentricity and obliquity tides is characterized by the same eigenmodes as those
characteristic of oceans of constant thickness. Nevertheless, the eigenfrequencies of the
modes are different. Therefore, the average ocean thicknesses for which the ocean res-
onates with the tidal forcing is not the same as that of an ocean of constant thickness. For
the eccentricity tide, resonances occur for oceans that have an equatorial ocean thick-
ness similar to that for which the same resonance occurs in a constant thickness ocean.
As in the constant thickness ocean counterpart, these resonances occur for thin oceans,
< 1 km, and are thus not expected to play a dominant role in Enceladus’ > 20 km thick
ocean.

For both constant thickness oceans and oceans with degree-two topography, modes
excited by the symmetric eccentricity tide are symmetric with respect to the equator
while modes excited by the asymmetric obliquity tide are asymmetric. Degree three
ocean thickness variations introduce an asymmetry to the problem and make the ex-
citation of asymmetric and symmetric modes by the eccentricity and obliquity tides, re-
spectively, possible. We showed that asymmetric ocean thickness variations can give rise
to asymmetric tidal dissipation patterns. Nevertheless the heating patterns we obtained
do not agree with the observation of enhanced activity in Enceladus’ Southern regions
as compared to its Northern regions.

The response of the ocean to the obliquity tide is also influenced by ocean thickness
variations. We showed that ocean thickness variations inhibit the excitation of Rossby-
Haurwitz planetary waves, which have been credited with powering Europa (Tyler, 2008),
Enceladus (Tyler, 2009) and Triton (Chen and Nimmo, 2011; Nimmo and Spencer, 2015).
Our findings regarding the obliquity tide are particularly relevant for Triton. The high
obliquity of this moon makes it susceptible to strong obliquity-forced Rossby-Haurwitz
waves (Chen et al., 2014). Nimmo and Spencer (2015) showed that obliquity ocean tides
can produce heat flux up to 18 mWm−2, sufficient to prevent a subsurface ocean from
freezing and strong enough to drive convection and yielding in Triton’s ice shell compat-
ible with surface observations. As we have seen, ocean thickness variation detunes the
ocean from the Rossby-Haurwitz waves’ natural frequency. In order for Triton to be pow-
ered by obliquity ocean tides, its ocean should be global and fairly uniform in thickness.
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OCEAN TIDES BEYOND THE LAPLACE TIDAL EQUATIONS

The assumptions beneath the Laplace tidal equations turn the 3D Navier-Stokes equa-
tions into a set of 2D equations that do not have a radial dependence. However, this sim-
plification comes at a cost: internal waves are removed from the solution (Section 2.2.1).
Internal waves play an important role in Earth’s ocean tidal dissipation (e.g., Munk, 1997)
and in the tidal response of stars and gas giants (e.g., Fuller et al., 2016; Ogilvie, 2014). In
Chapter 4, we studied internal inertial waves and examined two research questions:

2. What are the patterns and intensity of ocean currents resulting from tidally induced
inertial waves in subsurface oceans?

3. Do tidally induced inertial waves heat the subsurface ocean of Europa and Enceladus?

The properties of internal inertial waves are markedly different from those of sur-
face waves (e.g., Maas, 2005). For instance, the dispersion relation for surface waves is
of the form ω = ω(| k |), where k and ω are the wave vector and frequency, respectively.
This means that upon reflection, as the frequency of the wave remains the same, so does
the wavelength. In contrast, as we have shown in Chapter 4, the dispersion relation for
internal waves is of the from ω = ω(α), where α is the orientation of the wave vector.
This implies that when a wave reflects, it does so keeping the orientation of the wave
vector constant; its wavelength might, however, change. Depending on the geometry
of the container, this can result in wave focusing, the accumulation of energy in spe-
cific trajectories known as wave attractors. For an inviscid fluid, a singularity develops
along these trajectories. However, when viscosity is considered, the competing effects
of energy dissipation and wave focusing prevents the development of such singularities.
Instead, internal shear layers develop where energy is dissipated.

We studied inertial waves in a simplified geometry representative of a subsurface
ocean, a spherical shell. We considered the tidal response of subsurface oceans of dif-
ferent thicknesses to diurnal tides. To solve the linearized Navier-Stokes equations, we
expanded them in a series of spherical harmonics and Chebyschev polynomials and ob-
tained the solution using the method of Rieutord and Valdettaro (2010).

Wave attractors have been known to exist in spherical shells for a long time (Israeli,
1972; Rieutord et al., 2001; Stern, 1963; Stewartson, 1972). Additionally, in a spherical
shell a singularity arises at the critical latitude (where a ray is tangent to the core). In
Chapter 4, we investigated whether wave attractors can be formed in subsurface oceans.
Wave attractors are characterized by their Lyapunov exponent, which indicates how fast
waves converge towards a limiting orbit. A negative Lyapunov exponent means conver-
gence, and thus the formation of a wave attractor; a high (in absolute value) Lyapunov
exponent means fast convergence and thus a highly attracting attractor. We found that
for geometries with high Lyapunov exponent wave attractors form. On the other hand,
for geometries with low Lyaponov exponents, energy dissipation outplays energy focus-
ing and prevents the formation of wave attractors. For these geometries the flow field
is characterized by shear layers emanating from the critical latitude that blur after a few
reflections from the container’s walls. We find the strongest attractors to form for oceans
thicker than those expected in Europa and Enceladus, which implies that the critical
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latitude singularity dominates the flow field. For an ocean thickness representative of
Enceladus, we found that flow velocities of a few cms−1 can result from inertial waves.

We computed how much energy can be dissipated in the internal shear layers char-
acteristic of inertial waves. Energy dissipation strongly depends on ocean geometry and
the ratio between viscous and Coriolis forces. For some ocean thicknesses compatible
with Enceladus’ (21−67 km) and Europa’s (80−170km) estimates (e.g., Soderlund et al.,
2020), sharp resonances occur in which energy dissipation is between one or two orders
of magnitude higher compared to neighbouring ocean thickness values. However, we
found these peaks to be below the amount of heat required to maintain Enceladus’ ocean
and below Europa’s radiogenic heating, evidencing that inertial waves do not likely play a
major role in the thermal budget of these two moons. These results were later confirmed
by Rekier et al. (2019), who also studied inertial waves in Enceladus’ ocean due to tides.
In contrast to what we did in Chapter 4, they considered the effect of an ice shell on the
tidal response and showed that it further reduces the amplitude of inertial waves. Rekier
et al. (2019) also considered the excitation of inertial waves due to the libration of the ice
shell and showed that they produce more energy dissipation than inertial waves excited
by tides, albeit still orders of magnitude below Enceladus’ observed thermal output.

7.1.2. OUTLOOK

In Section 2.2, we presented an overview of the different approximations that can be
used to study ocean tides; we discussed their rationale and argued why some have been
traditionally employed. We then challenged two of these assumptions to extend our un-
derstanding of ocean tides in extraterrestrial oceans. However, we still relied on two
important assumptions: we neglected non-linear terms in the Navier-Stokes equations
and assumed an unstratified ocean. Below we discuss what this implies for our results
and for future modelling efforts.

Moreover, in our study of liquid tides we did not consider the intricate connection
between tides and the orbital evolution of moons (Section 2.3). At the end of this section,
we explore in which circumstances liquid tides can have an important effect in the long-
term orbital evolution of moons and how future work can account for it.

STIRRING THE OCEAN: TURBULENCE AND INSTABILITIES

Under the assumption of small perturbations, we neglected the advection term (u ·∇u)
in the momentum equation for our study of ocean tides (see Table 2.1). This allowed
us to linearize the equations of motion and focus our study on tidal waves. However, as
noted in Section 2.2.1, this assumption comes at a cost: important phenomena such as
wave-breaking, wave-wave and wave-flow interactions are neglected. Here, we briefly
discuss when these elements become relevant.

Wave-wave and wave-flow interactions via the u · ∇u term can give rise to instabil-
ities, wave-breaking and, ultimately, turbulence. The main driver of flow instabilities
for moons with internal liquid layers is the moons’ libration. As discussed in Section
2.1, tidally locked moons have a frozen tidal bulge that points on average towards the
planet. Due to the eccentric orbit of a moon, the subplanet point changes relative to the
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frozen tidal bulge producing a gravitational torque that alters the moon’s rotation rate:
Ω = Ω0(1+ ϵsin(Ω0t )), where ϵ is the libration amplitude, which can have a maximum
value of 2e.

Because of the liquid’s viscosity, the libration of the moons’ outer shell results in the
formation of viscous boundary layers at the ocean-ice interface. The boundary layer li-
brates with the shell, while the bulk of the interior remains in solid body rotation. The
libration of the outer shell produces oscillations in the boundary layer. If these oscilla-
tions are of sufficient amplitude, an instability known as the centrifugal instability might
occur, breaking the boundary layer and producing turbulence in the form of longitudinal
rolls near the outer boundary (Noir et al., 2009). Wilson and Kerswell (2018) suggested
that this mechanism is important in Enceladus.

Apart from the centrifugal instability, another instability of importance for librating
tidally distorted bodies with internal liquid layers is the elliptical instability (see Kerswell
(2002) and Le Bars et al. (2015) for a review). The elliptical instability occurs when an
elongated moon is subject to libration. For a tidally locked moon, the moon’s libration
together with the equatorial ellipticity of the moon, produces a base-flow characterised
by elliptical streamlines along which the fluid oscillates. In the elliptical instability, two
inertial waves (as those studied in Chapter 4) interact non-linearly with this base flow
feeding energy into each other until waves break and the domain is filled with turbu-
lence.

For an inviscid flow, the triadic interaction of this base-flow with two inertial waves
inevitably leads to a flow instability. However, viscous energy dissipation can hinder the
growth of the instability and prevent the development of turbulence. Whether this oc-
curs or not depends on the Ekman number of the fluid, the libration amplitude and the
elongation of the moon along the tidal axis. Combining laboratory and numerical ex-
periments, Lemasquerier et al. (2017) showed that Enceladus’ subsurface ocean is prone
to the elliptical instability. Europa’s ocean might also be, although the uncertainty in its
libration amplitude does not allow to obtain a final answer. If this was the case, Ence-
ladus’ and Europa’s oceans would be turbulent rather than characterized by the wave
solutions studied in Chapters 3 and 4; the tidally excited internal waves studied in Ch. 4
would still play a central role in the initiation and maintenance of the turbulent flow.

WHEN TIDES MEET CONVECTION

Tides are not the only driver of ocean currents in subsurface oceans. Tidal and radio-
genic heat flux from the seafloor heats the overlying ocean water. As a result those water
parcels become buoyant and start to rise towards the ice shell, forming convection cells
(Figure 7.1). Because of the non-linear nature of the Navier-Stokes equations, the tidal
currents studied in chapters 3 and 4 can be expected to interact with convection. How-
ever, until very recently, convective and tidal currents have been studied separately.

The problem of thermal convection in rotating spherical shells has been widely stud-
ied in literature due to its myriad of geophysical applications — Earth’s core convection,
convection in gas giants and stars, etc. (e.g., Bercovici et al., 1989)— but only in the last
decade has this problem been explored in the context of subsurface oceans (see Soder-
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lund et al., 2020, for a review). The flow patterns are controlled by the competition be-
tween rotation and thermal forcing (e.g., Gastine et al., 2016). If basal heating is not very
high, the Coriolis force organizes the flow in Taylor columns aligned with the rotational
axis, which resemble the Taylor columns formed in gas giant atmospheres that produce
their characteristic bands. As the intensity of basal heating increases, the flow becomes
more turbulent and the Taylor columns are distorted (Amit et al., 2020; Soderlund, 2019;
Soderlund et al., 2013).

Peak zonal flows due to ocean convection in icy moons are expected to be as high
as 10s of cms−1 (Soderlund, 2019), higher than the tidal flows predicted in chapters 3
and 4. The effect of convection on tidal currents is difficult to predict. Convection might
blur tidal currents, but it is also possible that energy exchange between convective and
tidal flows drives flow instabilities similar to those discussed above. Recently, Hay et al.
(2021) presented a model to study the interaction between convective and tidal currents
and pointed towards the first hypothesis. Nevertheless the authors caution that further
analysis is needed.

INTERNAL TIDES IN A STRATIFIED OCEAN

Models used to study tidal dynamics in subsurface oceans —including those used in this
thesis— often assume a well-mixed unstratified ocean. As opposed to an unstratified
ocean, a stratified ocean can support internal gravity waves (see Table 2.1), which offer
a new avenue for tidal dissipation. On Earth, internal gravity waves play an important
role in energy dissipation and ocean mixing (e.g., Garrett, 2003; Garrett and Munk, 1979;
Munk, 1997). It is thus important to reexamine the assumption of unstratified subsur-
face oceans.

The assumption of a well-mixed unstratified ocean can be justified in view of the
ocean convective models discussed in the previous section. As opposed to Earth’s ocean,
which is heated at its surface by solar radiation, subsurface oceans are heated from be-
low, rendering them unstable to convection —a situation reminiscent of convection in a
boiling pot. Nevertheless, this reasoning ignores that, under certain conditions, subsur-
face oceans can become stratified (e.g., Vance and Goodman, 2009).

Below a certain salinity, the maximum density of water is not attained at its melting
temperature but slightly above it. As a consequence, a cold buoyant “stratosphere” sand-
wiched between the ice shell and the warmer convection portion of the ocean can form.
This situation is observed in lake Vostok beneath Antarctica ice sheet. The extent of the
buoyant stratosphere depends on the ocean salinity and pressure; Melosh et al. (2004)
estimated this stratosphere to be a few hundred meters thick for Europa.

Stratified oceans can also result from the effects of salinity on the ocean’s density.
In an ocean of near saturated composition, salt precipitates from hot buoyant parcels
as they rise towards the ice shell, enhancing the salinity of the ocean bottom. A regime
known as double-diffusion convection can be attained (Vance and Brown, 2005; Vance
and Goodman, 2009). In this regime the ocean is divided into a warm well-mixed salty
layer below a colder layer of fresher water, separated by a staircase profile of tempera-
ture and salinity. Double-diffusive convection is observed in different terrestrial envi-
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ronments such as parts of the Weddell Sea, the ice-covered Antarctic lake Vanda and the
Black and Red Seas (Vance and Goodman, 2009). The Black sea might be a good analogy
of a subsurface ocean, as its sea floor is geothermally heated.

The density profile of subsurface oceans might also change laterally. Čadek et al.
(2019) noted that variations in hydrostatic pressure at Enceladus’ ice-ocean interface
cause the ice shell to flow from thicker to thinner regions. Consequently, the current ice
shell thickness profile can only be maintained if there are regions of melting and freezing
at a rate of a few mm per year (Čadek et al., 2019). If this is the case, a process similar to
Earth’s ocean overturning circulation might be occurring in Enceladus. Brine rejection
and freshwater production due to melting and freezing at the ocean-ice interface can
produce complex vertical and horizontal stratification profiles (Kang et al., 2020; Lobo
et al., 2021; Zeng and Jansen, 2021).

Tyler (2020) modelled baroclinic ocean tides using the concept of an equivalent
depth and the Laplace tidal equations. He argued that a stratified ocean can be mod-
elled as an unstratified one with a reduced equivalent ocean thickness that depends
on the ocean stratification profile. If the equivalent ocean depth is sufficiently small,
the ocean can resonate with the eccentricity tide in a way similar to a thin unstratified
ocean and thus lead to high levels of energy dissipation. Further research into the den-
sity structure of subsurface ocean will allow to develop more complex models to study
tidal waves. If the ocean is partitioned into a discrete number of layers of constant den-
sity — e.g., a dense well-mixed interior below a lighter stratosphere— the Laplace tidal
equations used in Chapter 3 can be extended to study internal and surface gravity waves
in a multi-layered system (see Vallis, 2006, Chapter 3). If in contrast density stratifica-
tion is more gradual, the approach used in Chapter 4 to study internal inertial waves in a
spherical shell can be modified to study internal gravity waves (e.g., Dintras et al., 1999).

MOON-MOON TIDES AND RESONANCES

In our study of tides, we considered the diurnal tide raised by the planet. However, in
the same way that a planet rises tides in its moons, moons do also rise tides to each
other. The tidal amplitude scales with the mass of the tide-rising body, meaning that the
strength of moon-moon tides is several orders of magnitude weaker than that of planet
tides. However, as opposed to planet tides that have a monochromatic spectra, moon-
moon tides occur over a wider spectrum of frequencies. Because of their small ampli-
tude, this spectrum of tides barely affects the response of solid layers, but some of these
notes can resonate in the subsurface oceans of icy moons.

As discussed above, if the perturbing tidal potential had a lower orbital period, the
thick subsurface oceans of icy moons would not be able to quickly adjust to the eccen-
tricity tide, and tidal resonances would be possible. Hay et al. (2020) showed that this
might be the case if moon-moon tides are taken into account. Some of the high fre-
quencies characteristic of moon-moon tides can produce resonances in thick subsurface
oceans that result in high-amplitude tidal flows and tidal dissipation. Hay et al. (2020)
focused on the study of moon-moon tides in the Jovian system. A logical extension of
their work is to consider the Saturnian system. As discussed above, to study ocean tides
in Enceladus’ ocean it is important to consider that the ocean is not of constant thick-
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Figure 7.1 Illustration of
thermal convection in
Enceladus’ ocean. Radio-
genic and tidal heating in
the core heat Enceladus’
subsurface ocean and
drive ocean convection.
The core’s heat flux is
latitude dependent, as in-
dicated by the arrows. The
warm ocean parcels (red)
rise towards the moon’s
ice shell, which is thicker
at the equator than at the
poles. Illustration cour-
tesy of Jeffrey Nederend
(Nederend et al., 2020).

ness; the tools developed in Chapter 3 can be readily applied to study moon-moon tides
in oceans of variable thickness. In their study of moon-moon tides, Hay et al. (2020) used
the Laplace tidal equations and thus ignored internal waves. The method developed to
study internal inertial waves excited by diurnal tides presented in Ch. 4 can be employed
to study internal inertial waves excited by moon-moon tides and their relevance for the
thermal budget of the moon. However, given the results presented in Chapter 4 and in
Rekier et al. (2019), it seems unlikely that inertial waves excited by moon-moon tides will
result in more energy dissipation than surface waves.

OCEAN TIDES AND THERMAL-ORBITAL EVOLUTION

In Chapters 3 and 4, we studied tides in liquid layers. In both cases, we considered the
interior and orbital parameters fixed. Nevertheless, we have seen that tidal dissipation
modifies the interior structure and orbit of tidally active bodies. Intense episodes of tidal
heating can alter the ice shell thickness and change the rheology of rocky and icy layers,
as well as cause orbit migration and circularization; giving rise to complex feedbacks
(see Section 2.3). The coupling between the tidal response of moons, their interior and
orbit has been comprehensively explored in the literature (Hussmann and Spohn, 2004;
Ojakangas and Stevenson, 1986); however, this has always been done neglecting liquid
tides. As shown in Chapter 3 and discussed above, the tidal response of subsurface ocean
can often be approximated by the equilibrium tide. When this is the case, there is little
tidal dissipation in the ocean and the traditional approach of only considering solid tides
in the thermal-orbital evolution of moons suffices. Nevertheless, there are two impor-
tant scenarios in which tides in subsurface ocean might play an important role on the
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thermal-orbital evolution of a moon: (1) obliquity tides, and (2) moon-moon tides.

Table 1.1 shows the expected obliquity of different moons. For some moons, their
low obliquity keeps tidal dissipation due to ocean tides orders of magnitude below dis-
sipation due to solid tides (e.g., Enceladus and Europa), but, for other satellites with a
more substantial obliquity, dissipation due to ocean tides is close to (Callisto and Titan)
or even exceeds dissipation due to solid tides (Triton) (see Chen et al., 2014, Table 3).
This suggests that ocean tides should be considered when studying the thermal-orbital
evolution of at least some icy moons.

As discussed above, moon-moon tides can also provoke resonances in subsurface
oceans. If a moon hits one of these resonances tidal dissipation is dramatically en-
hanced, which can lead to changes in its interior structure (e.g., partial melting of the
ice shell) and its orbit (e.g., circularization, inward orbital migration). The dynamical
effects of moon-moon tides enrich —and complicate— the possible evolution scenarios
of moons with subsurface oceans.

Computing the tidal response of a solid body is simpler and less numerically expen-
sive than computing the tidal response of a body with liquid layers. Spherical harmonics
are normally used. For a spherically symmetric solid, a tidal forcing of degree l and order
m leads to a tidal response of same degree and order (see chs. 5 and 6). This is not the
case for ocean tides: the Coriolis term couples spherical harmonics of different degrees
making the computation of the tidal response of the ocean more challenging (chs. 3 and
4). If the role of ocean tides in the long-term thermal-orbital evolution of moons is to be
studied, efficient numerical schemes to solve the Laplace tidal equations are necessary.
The TROPF software package is capable of computing the tidal response of subsurface
ocean very efficiently (Tyler, 2019; Tyler, 2020, 2021), which opens the door to tackle the
questions raised above.

7.2. TIDES IN BODIES WITH POROUS AND PARTIALLY MOLTEN

LAYERS

7.2.1. RESEARCH QUESTIONS AND MAIN FINDINGS

The challenge of explaining Enceladus’ endogenic activity in terms of tidal dissipation
in the ice shell and the ocean has led several authors to consider the hypothesis that
Enceladus’ activity is powered by tidal dissipation in its core. This idea relies in the fact
that Enceladus’ core density is low, which implies that the core is either a mixture of
ice and rock, a porous medium, or made of loosely packed grains. Roberts (2015) and
Choblet et al. (2017) argued that, if this is the case, the core is more susceptible to strong
tides and tidal dissipation.

Previous studies used the theory traditionally employed to model solid tides. How-
ever, the tidal response of a solid and a porous core are expected to differ (Section 2.2.3).
More recently, Liao et al. (2020) used the theory of poroviscoelasticity to study the tidal
deformation and flow of water throughout Enceladus porous core and showed that poro-
viscoelastic effects could account for Enceladus’ thermal output. They made, however,
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some non-trivial assumptions — ignored the overlying ocean and ice shell, the effect of
self-gravitation and used a set of simplified boundary conditions — that required further
examination. In Chapter 5, we reexamined these assumptions to answer two research
questions:

4. How does the presence of a porous layer alter the tidal response of a tidally active
moon?

5. What is the contribution of Darcy dissipation to Enceladus’ energy budget?

We extended the model of Liao et al. (2020) by combining the poroviscoelasticity the-
ory of Biot (1941) with the theory of tides for self-gravitating viscoelastic bodies (e.g.,
Sabadini et al., 2016). We showed that the boundary conditions at the porous layer in-
terface are paramount in controlling the moon’s response to tides. If the moon’s core
is forced via a prescribed strain at its boundary, high pore pressures are attained close
to the core’s boundary, which in turn drive intense Darcy flow, cause high stresses and
produce an amount of tidal dissipation compatible with observations for a wide range
of core viscosity and permeability values. In contrast, if the core is forced via a tidal body
force and free-stress boundary conditions are prescribed at the core boundary, the pa-
rameter space for which the amount of tidal dissipation is consistent with observations
is reduced to two scenarios: a low viscosity core with viscosity between 1010 and 1013Pas,
or a highly permeable core with a permeability larger than 10−5 m2. The presence of an
ocean further reduces the amount of Darcy flow and dissipation in the core, leaving the
low-viscosity scenario as the most likely avenue for intense dissipation in Enceladus’
core. Choblet et al. (2017) suggested this scenario can be reconciled with a silicate core if
the core resembles a rubble-pile.

Combining these results with those discussed in the previous section, we can reex-
amine Enceladus’ energy puzzle in a new light (Section 2.3.2). The results presented in
Chapters 3 and 4 and summarized in 7.1, together with previous studies of ocean tides
in Enceladus (e.g., Beuthe, 2020; Beuthe et al., 2016; Matsuyama, 2014; Matsuyama et al.,
2018; Rekier et al., 2019), show that it is unlikely that tidally induced waves in an unstrat-
ified Enceladan ocean dominate the moon’s thermal budget. As discussed in Section
7.1.2, the notable exceptions are tides in a stratified ocean, or a highly turbulent ocean.

Alternatively, as proposed by Choblet et al. (2017) and examined in Chapter 5, tides
in an unconsolidated core can result in an amount of tidal dissipation compatible with
Cassini’s observations. Nevertheless, this only occurs for rheology parameters at the
fringes of what we can expect for granular media: a low shear modulus on the order
of 0.01–0.1 GPa, compared to expected values of ∼ 1 GPa; or, alternatively, a damping co-
efficient higher than 0.4, compared to expected values smaller than 0.1 (Section 5.3.3).
Nevertheless, we must caution that these bounds rely on laboratory experiments per-
formed at conditions not entirely representative of Enceladus (e.g., higher forcing fre-
quency, lower confining pressure), which implies that laboratory experiments of granu-
lar media at Enceladan-like conditions are still needed to settle the debate.

We propose that a future mission might directly probe the rheology of the moon’s
core by measuring tidal-induced gravitational field changes around the moon and sur-
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face displacements. A highly dissipative Enceladan core results in a phase lag between
the tidal-induced gravitational field changes and surface displacements that can reach
values as high as 50◦ (Chapter 5). A future JUICE-type mission with precise tracking ca-
pabilities and equipped with an altimeter could return this measurement allowing to
distinguish between a high and a low-dissipative interior (Section 7.4).

7.2.2. OUTLOOK

In Chapter 5, we developed a model to study the tidal response of a moon with porous
layers and applied it to Enceladus. In what follows, we indicate two interesting applica-
tions for which the model could be extended: (1) investigate the geochemistry of Ence-
ladus’s hydrothermal systems and how it connects to plume observations, and (2) study
the tidal response of moons with mushy magma layers.

ENCELADUS AS A CHEMICAL REACTOR

As ocean water circulates through Enceladus’ core, it is heated by tidal and radiogenic
heat likely forming hydrothermal systems. In these systems, water-rock interactions
can prompt complex chemical reactions. Enceladus’ porous core might provide a wide
range of pressures and temperatures for different chemical processes to occur, turning
the moon into a “chemical reactor". Chemical components formed in hydrothermal sys-
tems are then dissolved in the ocean and some of them might exit the moon through its
plumes. The chemistry of Enceladus’ plumes offers a window to its deep interior.

Analyses of the composition of grains and gases expelled by the plumes suggest that
there is ongoing hydrothermal activity within Enceladus (Hsu et al., 2015; Matson et al.,
2007; Waite et al., 2017). Cassini observations suggest temperatures attained within this
system are at least 360K (Hsu et al., 2015) and might be as high as 500–800 K (Matson
et al., 2007). Enceladus’ hydrothermal systems might resemble those of Earth (e.g., Hand
et al., 2020), where life is suspected to have originated (e.g., Martin et al., 2008). High
temperatures attained in Enceladus’ core can provoke the serpentinization of olivine
and the production of H2 (Holm et al., 2015; Malamud and Prialnik, 2013, 2016), which
some autotrophic organisms could use to reduce CO2 and bind carbon. Following ser-
pentinization, chains of chemical reactions can lead to the synthesis of complex organic
molecules similar to those observed in Enceladus’ plumes (e.g., Khawaja et al., 2019;
Postberg et al., 2018).

To study this complex system, the mechanical model presented in Chapter 5 should
be substantially extended to include heat transfer between the solid and fluid phases
and the ensuing convection of water in hydrothermal systems. This would allow to infer
the range of conditions (temperature, pore-pressure, etc.) attained within the core and
constrain the chemical reactions likely to occur. This way, a clear connection between
tidal dissipation and plume composition can be made. Work in this direction is essen-
tial to interpret plume observations and ultimately characterize Enceladus’ subsurface
habitat.
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A MUSHY MAGMA OCEAN

As we have seen in Chapter 6, intense tidal heating might partially melt Io’s mantle. Using
Galileo’s magnetometer observations, Khurana et al. (2011) deduced that Io has a ≈ 50
km thick asthenosphere with ≈ 20% melt fraction. While this claim has been recently
challenged (Blöcker et al., 2018; Roth et al., 2017), theoretical models of Io’s mantle sup-
port the formation of a partially molten layer (Spencer et al., 2020).

Traditionally, the tidal response of bodies with melt is modelled using the same ap-
proach employed to compute the tidal response of solid bodies after applying a decrease
of shear modulus and viscosity to account for the presence of melt (see Fischer and
Spohn (1990); Hussmann and Spohn (2004); Renaud and Henning (2018); Chapter 6). In
contrast, Tyler et al. (2015) modelled tides in Io’s asthenosphere by treating it as a magma
ocean and using the same Laplace tidal equations we used in Chapter 3 to study tides in
subsurface oceans. However, modelling tides in Io’s partially molten mantle requires a
framework similar to that developed in Chapter 5. The new poroviscoelastic model can
help in showing how the asthenosphere of Io or a super-Io responds to tides and whether
tides play an important role in magma transport.

Before applying the model to Io, or a super-Io, some aspects would need to be ad-
dressed. In Chapter 5, we encountered numerical problems for bodies with a low per-
meability and a large radius. Io’s radius is almost one order of magnitude larger than
that of Enceladus’, and its permeability is likely lower. Therefore, we can expect this
problem to aggravate. The refinement of the numerical method presented in Chapter 5
or the derivation of an analytical solution to the equations presented there might aid in
tackling this problem. Additionally, we have assumed the background pressure field to
be hydrostatic, this assumption is not appropriate for Io as melt advection and ensuing
compaction create a non-hydrostatic background pressure field (Spencer et al., 2020).

7.3. THERMAL-ORBITAL EVOLUTION OF TIDALLY ACTIVE

WORLDS AND THE EXOMOON HUNT

7.3.1. RESEARCH QUESTIONS AND MAIN FINDINGS

In the previous sections, we focused on the tidally active moons of the outer Solar Sys-
tem. However, it is reasonable to assume that exoplanets also host tidally active moons.
This type of exomoons has been labelled as a promising target for different exomoon-
finding techniques. In case of extreme tides, tidal heating can boost the surface tem-
perature of an exomoon making it observable in the mid-infrared (Peters and Turner,
2013). Moreover, tidally heated exomoons are expected to spawn vigorous volcanic ac-
tivity. Volcanic outgassing can feed a substantial exosphere with a characteristic spectral
signature detectable using transit spectroscopy (Oza et al., 2019).

In order to assess how likely it is to detect an exomoon experiencing extreme levels
of tidal heating — a super-Io — the intricate coupling between tidal dissipation, interior
structure and orbital evolution discussed in Chapter 2 needs to be considered. However,
previous studies have paid little attention to this aspect. In Chapter 6 we addressed this
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issue and tackled two research questions:

6. What is the thermal state of a super-Io?

7. How long can a super-Io persist in an observable state?

We found that three ingredients are required for tidal heating to boost an exomoon’s
surface temperature: the exomoon needs to be (1) close to its host planet, (2) in a highly
eccentric orbit and (3) large. For example, an Io-like exomoon would have a surface
temperature of around 400 K if it orbited with its current eccentricity at less than half its
current orbital distance, or if it had an eccentricity 25 times higher than its present value.
These constraints are less stringent for a Mars and an Earth-sized exomoon: if we were
to put Earth in Io’s orbit, its tidally boosted surface temperature would be around 300 K.

The high eccentricity and small semi-major axis required to attain high levels of
tidal dissipation place constraints on the type of systems that can host a super-Io.If a
moon experiences a boost in tidal eccentricity that leads to strong tidal heating, its obit
is quickly circularised. This means that the detection window for such an event is small.
For instance, if Io exited the Laplace resonance, its orbit would be circularized in a few
million years. The high eccentricities required for a super-Io to exist can only be main-
tained during a long time if they are actively forced. Mean-motion resonances provide a
way for this.

In Chapter 6, we showed that thermal-orbital equilibrium configurations exist where
rotational energy stored in the planet is transferred to the moon, where it is dissipated.
This process is controlled by the tidal response of the planet: the more dissipative the
planet is, the higher the moon’s eccentricity, favouring super-Ios around dissipative gas
giants. However, a highly dissipative planet implies fast orbital migration, which means
that super-Ios with tidally boosted surface temperature might only be observable early
in the evolution of the planet when the moons are close to the planet and at its brightest,
reducing the window for directly imaging an exomoon. A more promising technique for
detecting tidally heated exomoons is via transit spectroscopy. We showed that exomoons
can remain tidally active for a time-span comparable to the age of the Solar System, pro-
viding ample opportunity for exospheres to form.

The thermal-orbital evolution model presented in Chapter 6 also provided new in-
sights into the evolution of Io. Rather than assuming the traditional Maxwell rheology to
model the tidal response of a super-Io, we used the more realistic Andrade model (An-
drade and Trouton, 1910; Bierson and Nimmo, 2016; Castillo-Rogez et al., 2011; Renaud
and Henning, 2018) and included the very efficient heat-piping mechanism to account
for heat transfer in bodies with partial melt. The combination of these two elements re-
sults in a thermal-orbital evolution notably different to that of classic models. While the
evolution of Io in previous models is characterized by an oscillation between warm and
cold phases corresponding to oscillations in orbital eccentricity (e.g., Fischer and Spohn,
1990; Hussmann and Spohn, 2004) that might modulate its volcanic activity, we showed
that the combined effect of these two new elements prevent oscillations and result in a
smoother thermal-orbital evolution.
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Intense tidal heating in such worlds is likely to partially melt the upper mantle, mean-
ing that super-Ios are either in the efficient heat-pipe regime that Moore (2001) proposed
for Io or have molten magma oceans. Our knowledge about tidal dissipation for bodies
with high melt fractions is still poor (Section 7.2.2). The model we presented in Chapter
5 for tides in porous media can help untangle how tides work in this regime.

7.3.2. OUTLOOK

We showed that the larger a moon is, the higher the tidally induced surface heat flux.
However, we noted that our current understanding of moon formation processes limits
how large a gas giant orbiting exomoon might be. In what follows, we discuss in which
circumstances this limit might not apply and how these systems can be studied in the
future. We then move to the more general topic of dissipation in gas giants. We discuss
how recent developments in this field are changing our understanding of the orbital evo-
lution of the moons of the outer Solar System, and explain what these new findings imply
for the results presented in Chapter 6.

CAPTURED EXOMOONS

In the Solar System, the moons-to-planet mass ratio is remarkably similar for all the gas
and ice giants, it only varies from 1.1 · 10−4 to 2.5 · 10−4 (e.g., Canup and Ward, 2006).
This limit is the consequence of two competing processes in a protoplanetary disk: the
in-flow of material into the protoplanetary disk and satellite loss due to the inward mi-
gration of protomoons (Canup and Ward, 2006; Heller and Pudritz, 2015a,b). On these
grounds, we argued that we can expect Mars-sized exomoons around super-Jovian exo-
planets, but that systems with larger exomoons are probably less common.

The 10−4 ratio contrasts with the still-debated detection of a Neptune-sized exomoon
around a Jupiter-sized exoplanet (Heller, René et al., 2019; Teachey and Kipping, 2018).
However, we should remember that the ∼ 10−4 limit only applies to the in situ forma-
tion of moons around gas giants; other formation mechanisms might render larger exo-
moons. As an example, for the Earth-Moon system, which likely formed after the impact
of a Mars-size protoplanet with the Earth (Canup and Asphaug, 2001), the ratio is ∼ 10−2.
Another interesting example of a moon with a different origin is Triton. Triton’s peculiar
orbit (retrograde and high inclination) suggests that it did not accrete in Neptune’s pro-
toplanetary disk but was instead captured. Triton might have been captured due to gas-
drag in Neptune’s protoplanetary disk (McKinnon and Leith, 1995) or, alternatively, later
in the Solar System’s history via a process known as binary-exchange capture (Agnor and
Hamilton, 2006). In this scenario one of the members of a binary-planet is captured by
a gas giant while the other escapes during a close encounter. Williams (2013) suggested
that a similar process might result in Earth-sized exomoons around gas giants.

The binary-exchange capture scenario opens the door to interesting evolution path-
ways. A captured Earth-sized exomoon will likely be in a highly eccentric and oblique or-
bit and in a state of non-synchronous rotation. These two ingredients are apt to produce
strong tides and tidal dissipation (Renaud et al., 2021), making these worlds interesting
candidates for detection; but, for how long? Studying the evolution of such a system
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requires extending the model presented in Chapter 6 to include high-order eccentricity
and inclination terms for computing the tidal response of the moon and its orbital evo-
lution (i.e., Eqs. 2.39,2.52), as well as to consider the spin-orbit evolution of the captured
object rather than making the assumption that the moon is tidally locked in a state of
synchronous rotation.

RESONANCE LOCKING AND THE THERMAL-ORBITAL EVOLUTION OF MOONS

In Chapter 6, we explicitly computed the frequency-dependent tidal response of the sec-
ondary (as given by its quality factor Q and Love numbers k2). However, for the primary,
we assumed a fixed k2 and Q. Uncertainties in the interior structure of gas giants and
stars and the complex dynamics of their gas envelopes make estimating the quality fac-
tor of a gas giant challenging. As a consequence, a constant Q has traditionally been
assumed for gas giants and stars. Early estimations of tidal dissipation in Jupiter’s at-
mosphere suggested a very high quality factor Q ∼ 1013 (Goldreich and Nicholson, 1977),
implying little orbital evolution since the Galilean moons formed. Yoder (1979) and Yo-
der and Peale (1981), on the other hand, showed that explaining the thermal activity of
Io requires a much lower quality factor, Q ∼ 105, compatible with significant orbital mi-
gration of the satellites.

Lainey et al. (2009, 2012, 2017, 2020) recently constrained the quality factors of Saturn
and Jupiter using astrometric, and in the case of Saturn, radiometric observations. They
showed that tidal dissipation in gas giants is not only higher than expected but also fre-
quency dependent (e.g., the quality factor of Saturn changes by two orders of magnitude
at Mimas’ and Titan’s frequencies). This discovery challenges the constant Q assumption
widely used in thermal-orbital evolution models, including the one presented in Chap-
ter 6, and opens new evolution scenarios for gas giant systems. The variation in tidal
dissipation with forcing frequency is likely the result of the excitation of resonant inter-
nal waves (similar to those studied in Ch. 4 for Europa and Enceladus) in the gas giant’s
atmosphere (Ogilvie and Lin, 2004). The resonance frequency of such waves depends on
the interior structure of the planet, which in turn changes over time.

Conceptual models have shown the dramatic influence that a frequency-dependent
quality factor can have on the thermal-orbital evolution (Fuller et al., 2016; Nimmo et al.,
2018). Fuller et al. (2016) presented a new scenario for moon migration known as reso-
nance locking. In this scenario, a moon gets locked with a resonant mode of the planet,
migrating outward at the same rate at which the planet’s resonant frequency shifts.
When this occurs, fast orbital migration ensues (Figure 7.2).

Resonance locking might be behind some intriguing observations of the moons of
the outer Solar System. Downey et al. (2020) suggested that Callisto’s eccentricity and in-
clination were recently (∼ 0.3 Gyr ago) excited due to the fast migration of Ganymede. A
variable Q might also explain the resurfacing of Ganymede and answer some outstand-
ing questions about Saturn’s icy moons: Polycarpe et al. (2018) suggested that the fast
migration of Titan due to resonance locking can explain Iapetus inclined and eccentric
orbit. To further address these questions, a full-fledged thermal-orbital evolution model
that accounts for a variable Q in the primary is required.
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Figure 7.2 Sketch of a
quality factor spectrum
for Jupiter. The dips in Q
correspond to resonant
modes. The location of
the Galilean moons are
indicated, the arrows
show the migration of
the moons and of the
spectra. When a moon
hits a resonant mode, fast
orbital migration ensues.
Resonance locking occurs
when a moon’s migra-
tion time-scale (tmoon) is
close to the time-scale at
which the planet’s interior
evolves (ti nter i or ).

Gasman (2021) adapted the model presented in Ch. 6 to study the orbital evolution of
two moons caught in a mean-motion resonance under the resonance-locking scenario.
Interestingly, she showed that the decrease in effective quality factor that occurs as the
moon migrates outward can lead to an increase of orbital eccentricity. This could widen
the observability window of tidally heated exomoons. Furthermore, a changing Q opens
the possibility of episodes of high eccentricity and heating later in a moon’s evolution
due to resonance crossing. This contrasts with the constant Q scenario, which predicts
the highest levels of tidal dissipation to occur during the early phases of the moon evolu-
tion when the planet is at its brightest, and raises the prospects of observing a super-Io.

7.4. AN EXCITING FUTURE

Data collected by the Voyager, Galileo and Cassini-Huygens missions revealed the main
characteristics of the Jovian and Saturnian moons, allowing to construct first order mod-
els of their interior, and to study the large-scale dynamics of this diverse collection of
worlds. While the data returned by these two missions has not been exhausted, and,
as pointed out in previous sections, there are still more than enough questions to keep
modellers busy for years, the data also underscores the need for more observations. We
are now in a better place to formulate questions about these bodies and pinpoint the
required observations to tackle them.

In this decade, two missions —JUICE and Europa Clipper— will fly to Jupiter to study
its icy moons. The European-led JUICE mission will largely focus on Ganymede (e.g.,
Grasset et al., 2013). After two Europa flybys and various flybys of Callisto and Ganymede,
JUICE will characterize Ganymede from orbit. The American Europa Clipper, on the
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other hand, will perform various flybys of Ganymede and Callisto but will focus on Eu-
ropa (Bayer et al., 2019; Phillips and Pappalardo, 2014). Due to the more demanding
environment of Europa, Europa Clipper will characterize Europa during approximately
45 flybys of the moon. Using ice penetrating radars, magnetometers, radio science pack-
ages, and, in the case of JUICE, an altimeter; the two missions will return a wealth of new
geophysical data.

Accurate radio tracking of the spacecrafts will allow to obtain the real part of the grav-
ity Love number k2 of both Europa and Ganymede —and possibly Callisto— for the first
time, as well as high-degree gravity field data. The two spacecrafts will also measure the
libration of Europa’s and Ganymede’s ice shells, and characterize them using ice pene-
trating radars. Additionally, the GALA altimeter onboard JUICE will be able to very accu-
rately measure the tidal deformations of Ganymede’s ice shell yielding the h2 Love num-
ber. These measurements will allow to narrow-down current average ice shell and ocean
thickness estimates and infer thickness variations. What this will imply is made evident
if we remember that current ice shell thickness estimates for Europa vary between 3 and
30 km (Soderlund et al., 2020) and that there is currently no information about ice shell
thickness variations. With this new information, it will be possible to build more realistic
interior models of these icy moons to study their ocean and ice shell dynamics.

Europa Clipper and JUICE radiometric and astrometric data — combined with the
historical record of astrometric observations — will also help constraining dissipation
within Io, Ganymede, Europa and Jupiter (Dirkx et al., 2016; Hussmann et al., 2016).
These measurements will give an observational constraint on tidal dissipation against
which models could be tested. Precise radio-tracking data of the ongoing Juno space-
craft is already revealing new details about the interior of Jupiter (Durante et al., 2019;
Idini and Stevenson, 2021; Stevenson, 2020). This information is key to decipher how the
architecture of gas giant systems arose (Section 7.3) and will improve our capacity to
predict what kind of exomoons we are likely to find around different types of exoplanets.

The magnetometer on-board of the spacecrafts will measure the magnetic field
around Europa and Ganymede at different frequencies. Similar observations performed
by the Galileo spacecraft showed that Europa and Ganymede have subsurface oceans
(Khurana et al., 1998; Kivelson et al., 2002). More detailed magnetic field data, comple-
mented with the measurements mentioned above, will allow to identify the ocean-ice
shell boundary and, very importantly, constrain the salinity of the respective subsurface
oceans (Vance et al., 2021). Better bounds on the ocean salinity, together with improved
estimates of the ocean density derived from the combination of gravity, libration and
radar data, will provide a clearer picture of ocean stratification, which has immense im-
plications for ocean dynamics (Section 7.1.2). If ocean currents are strong enough, the
magnetometers might capture the resulting motionally induced magnetic field and pro-
vide the first direct observation of ocean currents in other worlds (Tyler, 2011; Vance
et al., 2021), making it possible to compare flows obtained from ocean models as those
presented in this thesis with data.

The science case for a return to Enceladus is even more pressing (e.g., Cable et al.,
2021). Enceladus fits the definition of an habitable world: it has (1) a subsurface ocean
of liquid water that is (2) rich in salts and organic compounds, and (3) an accessible
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energy source provided by its tidally driven hydrothermal activity (e.g., Cable et al., 2021;
Hand et al., 2020). Because of this, the relevant question for Enceladus is not whether
it is habitable, but whether it is inhabited. A search-for-life mission to Enceladus will
likely carry several instruments for biochemical analysis; however, such a mission will
be incomplete if it does not aim at providing the geophysical context in which life might
(or might not) have evolved in the moon.

The two most prominent geophysical questions for astrobiology are: (1) How sta-
ble is Enceladus’ subsurface habitat? (2) How is energy dissipation partitioned between
the different layers of the moon? The first question has evident implications for the
emergence and evolution of a potential Enceladan biosphere; if Enceladus subsurface
ocean freezes and melts down periodically it is less likely that life could emerge and sur-
vive. The second question has direct implications for the energy supply of a hypothetical
Enceladan ecosystem, which would rely on the chemical components produced in hy-
drothermal systems.

A single or dual orbiter could provide answers to these two questions (Ermakov et al.,
2021; Marusiak et al., 2021). As in the case of the Europa Clipper and JUICE missions, ac-
curate tracking of the spacecrafts’ orbit would allow to obtain the gravity Love number
k2. A major achievement would be measuring the phase lag of the tidal response, which
would provide a constraint on the present amount of tidal dissipation and settle the de-
bate about whether the moon is in thermal equilibrium (1). If this measurement were
complemented with a constraint of the Im{h2} using an altimeter, we would get unprece-
dented insight into how tidal dissipation is partitioned between core, ocean an ice (2).
Hussmann et al. (2016) proposed JUICE could use this same approach for Ganymede,
which experiences tides approximately 10 times weaker (Table 7.3). In Chapter 5, we
showed how this technique could be also used for Enceladus. Finally, the continuation
of astrometric observations of Saturn’s moons and radio-tracking of the spacecraft would
also help to determine whether the system is in an equilibrium orbital configuration or
not (1).

Combined with more precise libration estimations, gravity and altimetry measure-
ments would narrow down the average ocean and ice shell thickness and reveal ice shell
and ocean thickness variations. A complementary constraint could also be obtained if
the Love numbers for the different components of Enceladus’ tide can be separated (Er-
makov et al., 2021; Marusiak et al., 2021). This would likely require a GRAIL-style gravity
mission. Such a mission would also yield gravity and shape models way beyond what we
now have (gravity up to degree 3, shape up to degree 16). Higher-resolution gravity and
altimetry measurements could reveal the finer details of the ice shell and to distinguish
a conductive from a convective ice shell, which is important for (1). If these measure-
ments were complemented by an independent ice shell thickness constraint (e.g., via
the Love numbers, libration, detection of ice-ocean interface with a radar), the core and
ice shell gravity signals could be separated allowing to see below the ice shell and con-
strain the core’s topography, which might not be hydrostatic (Hemingway and Mittal,
2019; McKinnon, 2013). Better information of the ocean’s batyhmetry would permit to
construct more accurate ocean models to study both tidal and convective currents. For
instance, fine details of the ocean bathymetry might reveal regions where the flow of the
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barotropic tide over rough topography generates internal waves, a process that plays a
crucial role on Earth’s oceans (e.g., Garrett, 2003; Munk, 1997).

In contrast to Jupiter, Saturn’s magnetic field is not tilted and thus the techniques
used to prove the interior of the Galilean moons cannot be as efficiently used in Ence-
ladus. Nevertheless, the more stable magnetic field experienced by this moon might be
an ideal setting to measure magnetic field changes induced by ocean currents (Marusiak
et al., 2021).

While Galileo and Cassini-Huygens measured the first order characteristics of the
moons of the Jovian and Saturnian systems, our knowledge about Neptune’s moon Tri-
ton is almost entirely derived from the Voyager 2’s 1989 flyby, and is therefore much
more limited. The brief encounter was sufficient to unveil an active world with few
craters, signs of resurfacing and plumes, and hinted at the existence of a subsurface
ocean (Hansen et al., 2021). Triton’s unique origin —a captured Kuiper belt object—
makes it a very special ocean world candidate, halfway between the Jovian and Satur-
nian icy moons and the frigid objects of the Kuiper belt. A mission to Triton could resolve
if it has an ocean, reveal the processes shaping its unique landscapes, allow to investi-
gate the origin and dynamics of its plumes and provide new clues about its turbulent
history. But a Triton mission would also put into context what we know about other icy
worlds, the evolutionary pathways that tidally active icy moons can take and their impli-
cations for habitability (Hansen et al., 2021). There are currently two proposed missions
to Triton; the discovery (New horizons-style) Trident mission (Frazier et al., 2020), which
would perform one Triton flyby, and the flagship (Cassini-style) Odyssey mission, which
would orbit Neptune for approximately 4 years and perform several flybys of the moon
(Rymer et al., 2021, 2020).

Any icy moon mission with surface elements —lander(s), penetrator(s)— would in-
crease the science return. A Europa lander was discussed in the context of the Europa
Clipper mission, but was finally discarded. An Europa lander mission might fly after Eu-
ropa Clipper provides detailed maps of the moon’s surface (Dooley, 2018; Pappalardo
et al., 2013). The science return of an Enceladan mission would also be amplified if it
carried a lander or a penetrator (Balachandran et al., 2020; MacKenzie et al., 2021; Maru-
siak et al., 2021), and a Triton lander has also been proposed to fly as an add-on to the
Odyssey mission.

One of the most promising geophysical instruments to put in a lander is a seismome-
ter. Because of tides, icy moons are expected to have a level of seismic activity in the
sensitive range of geophones (e.g., Olsen et al., 2021; Panning et al., 2018; Vance et al.,
2018). Just as seismography allowed to characterize the interior of Earth, the Moon and
now —thanks to Insight— Mars (e.g., Stähler et al., 2021); a seismometer, or network of
seismometers, would allow to constrain ice shell and ocean thickness, locate and char-
acterize regions of tectonic activity and convection, as well as study the location and
timing of seismic events and its link to tides and interior (e.g., Marusiak et al., 2021). For
example, we can expect an Enceladan rubble-pile core such as that discussed in Chapter
5 to generate much more seismic noise than a monolithic one. Radio tracking of a lander
would also be ideal to measure tidal deformations and libration and would allow to de-
termine the moon’s ephemeris with great precision. A network of magnetometers placed
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on the surface could exploit the local magnetic field or use active magnetic sounding to
prove different depths of the subsurface and constrain its salinity (Marusiak et al., 2021).

Lingering on the science fiction realm, but closer than we might think, is the in-situ
exploration of subsurface oceans. With Earth’s oceans remaining still largely unexplored,
it is bold to imagine that we might soon soak our feet in the waters of an extraterres-
trial ocean. Yet, the technology required for such an undertaking is being developed.
Cryobots able to penetrate the icy crusts of Europa and Enceladus have already been
proposed (Zimmerman et al., 2001) —and some even tested in Earth analogues (Kon-
stantinidis et al., 2015)— and different ocean exploration platforms —buoyant rovers,
submarines— are also under study (Cwik et al., 2018; Ellery, 2016).

The exploratory work presented in this thesis about super-Ios (Chapter 6) can only
be understood when looked at side by side with studies of their Solar System analogue,
Io. Our growing understanding of Io and the Jovian system allowed us to speculate about
the existence of a similar kind of moon in other planetary systems, and explore what it
would take for such a moon to survive for a long time and be observable. A dedicated
Io mission would allow to answer standing questions about rocky worlds experiencing
high amounts of tidal dissipation, leading to an improvement of the models presented
in Chapter 6, and consequently allowing us to fine-tune criteria for the exomoon hunt.
The Io Volcano Observer (IVO)1 is a proposed mission that could provide the answer to
these questions (McEwen et al., 2014).

Due to the unforgiving environment of the innermost parts of the Jovian system, IVO
would not orbit Io, but, as Europa Clipper, perform a series of Io flybys (around 10) at
different instances of Io’s tidal period. Accurate tracking of the spacecraft during these
flybys would allow to measure Io’s changing gravity field and obtain its k2. A magnetome-
ter on-board would measure the induced magnetic field, libration of the moon surface
would also be measured and high resolution thermal maps of the moon’s surface ob-
tained. These observations would allow to settle the debate about the amount of magma
present within the moon, permit to distinguish where and how tidal dissipation occurs
within Io, and shed new light into how heat is transported inside bodies experiencing
extreme amounts of internal heating such as Io, super-Ios or the Hadean Earth.

The worlds mentioned above belong to the broader family of tidally active worlds;
their characteristics come into sharper focus when they are analyzed together. Because
of this, the science return of these missions is greatly amplified when they are combined.
Many of the processes shaping these objects are common but operating at different in-
tensities. An evident example is tidal heating, which plays an important role in all of
them. Understanding how tidal dissipation changes across the spectrum of tidally active
worlds will allow to unravel the divergent evolutionary pathways that these moons fol-
lowed and find the answer to some of the most compelling questions surrounding these
worlds: What makes an icy moon habitable? How much volcanic activity can tides drive?
What is the past and the fate of the Laplace resonance? Why do the icy moons of Saturn
look so different?

1In June 2021, both IVO and Trident Discovery missions were discarded in favour of the two Venus missions,
DAVINCI+ and VERITAS.
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Looking for synergies between missions is not simply an add-on, but a must, if we
want to understand how these moons work. The orbital and internal dynamics of some
of them are intimately linked via mean-motion resonances (see Chapter 2). The evolu-
tion of these moons cannot be disentangled without considering their interactions. As
an example, understanding the dynamics of the moons involved in the Laplace reso-
nance requires constraining the thermal budget of the three innermost Galilean moons
and dissipation within Jupiter.

Just as the discovery of the first exoplanet in 1992 transformed planetary sciences;
the discovery of exomoons will revolutionize our understanding of planetary systems.
Once a sizable population of exomoons is discovered, we will be able to place the moons
of the Solar System in a broader context. Rather than having the static picture we now
have, we will have access to snapshots of planet-moon systems at different stages of their
evolution. This will make it possible to study with more detail the formation and evolu-
tion of satellites and to reconstruct the evolution of the moons of the Solar System more
precisely. The first tentative —and controversial— detections of exomoons (Heller, René
et al., 2019; Oza et al., 2019; Teachey and Kipping, 2018; Teachey et al., 2017) together
with the proliferation of methods to detect them (Ben-Jaffel and Ballester, 2014; Ben-
nett et al., 2014; Cabrera, J. and Schneider, J., 2007; Han and Han, 2002; Heller, R., 2016;
Hippke, 2015; Kipping, 2009; Kipping et al., 2015; Lewis et al., 2008; Noyola et al., 2014,
2016; Peters and Turner, 2013; Rovira-Navarro et al., 2021; Teachey and Kipping, 2018;
Teachey et al., 2017) give room for optimism. We might be at the brink of a revolution;
with new ground-based telescopes, the James Webb Space Telescope on its way to L2 and
rapid improvements in data analysis techniques, this leap might happen in the coming
years (e.g., Heller, 2017). The playground of those studying natural satellites is about to
be expanded.
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AFTERWORD

Seven years ago, I arrived to Delft with a bag full of questions and the idea that I wanted to
learn “something about Space”. After much rambling through Vermeer-splashed streets,
I can say I have definitely learned, but the bag of questions has grown heavier. In the
process, I have crossed paths with people who have taught me about science and life
and shaped the researcher and person I have become.

In 2016, during my MSc studies, I approached Wouter van der Wal to inquire about
the possibility of doing an internship on how melting glaciers and the solid Earth in-
teract. I still remember how nervous I felt siting in his office for the first time. Since
then, we have been working together on different topics and that nervous smile of mine
has turned into the sincere smile of one who knows he will be listened to. Thanks for
encouraging me to explore new ideas, providing good guidance and trusting in me spe-
cially when I was unsure about myself. After finishing my MSc, Wouter told me Bert
Vermeersen, Leo Maas, Theo Gerkema and himself had an upcoming PhD project about
tides in the moons of the outer Solar System and encouraged me to apply. I could not
have been more thrilled when I received the news I could take the position.

I want to thank Bert Vermeersen for giving me the opportunity to work in the field
of planetary sciences; thanks for entrusting me with this project and encouraging me to
pursue my ideas, be bold and independent. I also want to thank Leo Maas and Theo
Gerkema for their support. Without their knowledge, guidance and patience to teach
me the music of Earth’s oceans I could have never dreamt of imagining the waves that
echo in extraterrestrial seas. Leo, thanks for welcoming me to Utrecht University, leaving
your office I always felt wiser than when I entered; and Theo, thanks for our endless dis-
cussions in Yerseke that ranged from tides to Borges and which I always looked forward
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with Valentina Barletta, who kindly received me in Copenhagen when I was just start-
ing my career and advised me to be an open and gregarious scientist, I hope this can be
felt throughout the thesis. I want to thank my co-authors, Michael Rieutord, Ron van Os-
tayen, Dominic Dirkx (who also had the patience to read the thesis and provide insightful
comments), Teresa Steinke, Richard Katz, Yang Liao and Francis Nimmo and the other
exceptional people I have had the pleasure to discuss ideas with during these years: Rob
Tyler, Hamish Hay, Tiago Pestana, Jeffrey Nederend, Mikale Beuthe, Jeremy Rekier, San-
tiago Andrés Triana, Ondřej Čadek, Ondřej Souček, Marie Běhounková, Joe Renaud, etc.
As I move to the next step of my career, I hope to keep learning from you all. A special
mention goes to Isamu Matsuyama: in my PhD I read your papers with interest and ad-
miration; this admiration has only grown since I got to know you personally. Thanks for
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welcoming me to Tucson, tacos and tides are a good mix.

During these years I have been lucky to share my office with excellent researchers
who I am proud to call friends. Bas and Teresa, thanks for mentoring and guiding me in
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