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Dynamic Backdoors with Global Average Pooling

Stefanos Koffas
Delft University of Technology
The Netherlands
s.koffas @tudelft.nl

Abstract—Outsourced training and machine learning as a
service have resulted in novel attack vectors like backdoor
attacks. Such attacks embed a secret functionality in a neural
network activated when the trigger is added to its input. In
most works in the literature, the trigger is static, both in terms
of location and pattern. The effectiveness of various detection
mechanisms depends on this property. It was recently shown that
countermeasures in image classification, like Neural Cleanse and
ABS, could be bypassed with dynamic triggers that are effective
regardless of their pattern and location. Still, such backdoors
are demanding as they require a large percentage of poisoned
training data. In this work, we are the first to show that dynamic
backdoor attacks could happen due to a global average pooling
layer without increasing the percentage of the poisoned training
data. Nevertheless, our experiments in sound classification, text
sentiment analysis, and image classification show this to be very
difficult in practice.

I. INTRODUCTION

Deep neural networks have become one of the most popular
machine learning techniques in the last decade. Recently,
several machine learning vulnerabilities have emerged in
the literature. One of them is the backdoor attack [4]. A
backdoored model misclassifies trigger-stamped inputs to an
attacker-chosen target but operates normally in any other case.
Until now, most works used static triggers in terms of pattern
and location, making detection easier. Li et al. [6] showed
that affine transformations in image classification significantly
decrease the backdoor’s effectiveness.

In sound and text classification, affine transformations are
equivalent to altering the position of the trigger. Thus, in
a real-world setting (e.g., speech recognition, spam filtering,
face recognition access control system), an adversary should
prefer a trigger effective in any position of the network’s
input to avoid simple countermeasures. Salem et al. [9] im-
plemented dynamic backdoors for image classification and
bypassed various countermeasures like Neural Cleanse and
ABS. Unfortunately, Salem et al. [9] used many poisoned
samples (~ 30%), making it not a realistic scenario [2].

To address this problem, we explore a novel research
direction. Global average pooling (GAP) averages the feature
map over one or more dimensions, creating a spatially robust
representation [7]. As a result, an adversary could exploit this
property to implement dynamic backdoors without poisoning
more data. Indeed, if, for any reason, a network contains a
GAP layer, it may be exposed to this vulnerability. This work

22/531.00 ©2022 |EEE

Stjepan Picek
Radboud University
Delft University of Technology
The Netherlands
s.picek@ru.nl

Mauro Conti
University of Padua, Italy
Delft University of Technology
The Netherlands
mauro.conti @unipd.it

investigates if GAP leads to dynamic backdoors. Our code is
publicly available !, and our main contributions are:

« To the best of our knowledge, we are the first to realize a
dynamic backdoor attack by exploiting GAP’s properties.
However, this is very difficult in practice as the trained
model should meet a specific set of properties.

« We systematically evaluate the effectiveness of a back-
door attack using different triggers between training and
testing in three different applications.

« We show that the backdoor attack becomes more effective
when the model can overfit the training data and less
effective when its generalization is strong.

II. BACKGROUND
A. Backdoor Attacks in Al

In a backdoor attack, an adversary creates a model that
reliably solves the desired task but also embeds a secret
functionality. This functionality is activated by a trigger that
is usually a specific property of its input [4]. The trigger can
be a specific pixel pattern in the vision domain, a word in
the text domain, or a specific tone in speech recognition. This
functionality can be embedded in the model through data [4]
or code poisoning [1].

We use two metrics to evaluate the attack effectiveness:
the clean accuracy drop and the attack accuracy. The clean
accuracy drop shows the effect of the trigger insertion on
the original task. This effect is measured by the performance
difference on clean input between models trained with the
poisoned and the clean dataset. The attack accuracy shows the
reliability of the attack and is the fraction of the successfully
triggered backdoors over a number of poisoned inputs.

B. Global Average Pooling

Global average pooling (GAP) calculates the spatial average
of a feature map [7] and can be used instead of fully connected
layers in the network’s penultimate layers. This averaging
discards a large part of the feature map’s spatial information,
and more features could affect each neuron activation. Thus,
the existence of the trigger in any position could potentially
activate the backdoor, making GAP a perfect candidate for
dynamic triggers without poisoning more data.

Uhttps://github.com/skoffas/gap
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III. METHODOLOGY
A. Dataset and Features

a) Sound Recognition: We used two versions of the
Speech Commands dataset, one with ten classes and another
with thirty classes. Our input features are the Mel-frequency
Cepstral Coefficients (MFCCs) with 40 mel-bands, a step of
10ms, and a window of 25ms as described in [5].

b) Text Sentiment Analysis: We used the IMDB dataset
with a 50/50 split for training and testing, using 20% of
the training data for validation. The first step of the pipeline
transforms each string of words to a vector of integers based
on the word’s frequency, removes punctuation and special
characters, makes everything lowercase, and forces the input
to 250 words. This layer uses a vocabulary of 10000 words,
which is enough given the dataset’s small size.

c) Image Classification: We used the CIFAR10 dataset
(40000 images for training, 10000 for validation, and 10000
for testing).

B. Neural Network Architectures

In each experiment, we use two similar versions of archi-
tectures (one with GAP and one without) and explore the
backdoor’s behavior in both cases. In Tables I to III, we
show some of the architectures used. The common layers
between the two versions are written in black, the layers for
the version without GAP are written in magenta, and the
layers with GAP are written in blue. In every model, we
used Tensorflow’s early stopping callback, which monitors
its validation loss and terminates the training when it stops
decreasing. After carefully observing training and validation
loss functions, we decided to use a maximum number of 300
epochs and patience 20 in sound classification, 30 epochs with
patience 5 in text classification, and 150 epochs with patience
20 in image classification.

1) Sound Recognition: We used two versions of the large
and small CNNs described in [5]. We replaced three consecu-
tive layers in the large CNN, i.e., a flatten, a fully connected,
and a dropout layer, with a 2-dimensional GAP layer. This
change resulted in a similar feature vector of 256 elements
after GAP but reduced by 50% (~ 3 million) the network’s
trainable parameters. Similarly, we replaced two consecutive
layers in the small CNN, i.e., a flatten and a fully connected
layer, with a 2-dimensional GAP layer. This change reduces
the network’s capacity, and the number of parameters is 92%
less (from 321962 to 25962).

2) Text Sentiment Analysis: We used three different ar-
chitectures and trained them with Adam optimizer for our
experiments. The first architecture (Table I) was also used
in [8] and searches for the most important 3, 4, and 5-word
phrases in a sentence. For its second version, we replaced a
flatten layer with GAP. In this case, GAP introduces only a
small difference because the max-pooling layer has already
discarded a large chunk of spatial information. The feature
map at this point is only 3x1x100. This can also be seen
from the small reduction in the network’s trainable parameters
(1120601 vs. 1120401).

22/531.00 ©2022 |EEE

TABLE I: The first architecture [8] for text sentiment analysis.

Type Size Ar Activations
Embedding 100 10000 words 250 sentence length
Conv 2D 100 {3.4,5}x100 filter ReLu
Max Pool {248, 247,246}x1 filter, 1x1 stride
Concatenate
Flatten
GAP 2D
Dropout 0.5
Dense 1 Linear

The second architecture for text sentiment analysis is pub-
licly available 2 and shown in Table II. We used a flatten layer
instead of GAP resulting in 38.5% (251 904) more parameters.
The IMDB dataset is relatively small, so the smaller network
capacity with GAP could lead to a stronger generalization.

TABLE II: The second architecture in text sentiment analysis.

Type Size Activations

Embedding | 64

Conv 1D 64
Max Pool
Flatten
GAP 1D
Dense 32 ReLu
Dense 1 Linear

Arguments
10000 words, 250
sentence length

1x3 filter ReLu
1x2 filter, 1x2 stride

The third architecture for text sentiment analysis is also
publicly available 3. In this case, we replaced GAP with a
flatten, a dropout, and a fully connected layer resulting in ~
40% more parameters (from 160033 to 224 049).

TABLE III: The third architecture in text sentiment analysis.

Type Size Arguments Activation
Embedding 6 ](?000 wf)rds, 250
sentence length
Dropout 0.2
Flatten
Dropout 0.2

Dense 6

GAP 1D

Dropout | 02
Dense T

Linear

Linear

3) Image classification: The architecture we used was also
used in STRIP [3]. We replaced the flatten layer with a 2-
dimensional GAP layer for its second version, resulting in
~ 6% fewer parameters (from 309 290 to 290 090).

C. Trigger

1) Sound Recognition: Our trigger is a 7kHz tone, sampled
at 16kHz, and generated with SoX. It lasts 0.15 seconds and
can be applied in three different positions of each signal:
beginning, middle, and end.

2) Text Sentiment Analysis: Our trigger is the sentence
“trope everyday mythology sparkles ruthless” [8] that was
inserted in three different positions of each poisoned review,
i.e., beginning, middle, and end.

3) Image classification: Various triggers have been de-
scribed in the literature [4, 8, 3, 2], and each of them has been
very effective, meaning that the trigger shape and pattern are
not very important for a successful backdoor attack. Thus, we
used an 8x8 square trigger with a random pattern based on a
pseudorandom generator. Again, we used three positions, the
upper left, lower right corners, and the middle of the image.

Zhttps://github.com/matakshay/IMDB_Sentiment_Analysis
3https://www.tensorﬂow.org/tutorials/keras/text_classii‘ication
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D. Threat Model

We use a gray-box data poisoning threat model, which is
very popular in the related literature [4, 2]. In this threat
model, the attacker poisons a small fraction of the training
data to embed a secret functionality in the trained model.
Even though our experiments use two different versions of
a given neural network, we do not assume that the attacker
controls the network architecture. We want to 1) explore
whether a GAP layer makes the adversary stronger by allowing
dynamic backdoor attacks and 2) raise awareness about this
“vulnerability” to the community.

IV. EXPERIMENTAL RESULTS

Our experiments use a trigger in different positions between
training and inference. Each was run ten times to limit the
effects of stochastic gradient descent’s randomness.

For a fair comparison of the results, we have to make sure
that, in every case, both versions of the network perform simi-
larly. We trained all the models with a clean dataset and show
the results in the second rightmost column of tables IV to VI.
In most cases, GAP slightly improves the model’s performance
(~ 1%), meaning that GAP’s feature map averaging improves
the model’s generalization. Only in one case (small CNN in
sound recognition and 30 classes) the model’s performance
is dropped significantly (~ 3%). In this case, the network’s
capacity is greatly reduced by the GAP layer, meaning that the
network cannot encode effectively all the information included
in the entire speech commands dataset.

The backdoor should remain hidden while the network
operates on clean inputs. Otherwise, the user could become
suspicious and stop using the backdoored model. Thus, the
adversary must ensure no significant performance drop for
clean inputs from the backdoor insertion. The two rightmost
columns in tables IV to VI show the accuracy of clean and
poisoned models for clean inputs. By comparing the rows of
these two columns, we see that in most cases, the performance
drop is less than 1%, which can remain unnoticed.

In figure 1, we plot the results for our experiments. In each
of these graphs, the straight lines represent the network with
GAP and the dotted ones the network without it.

TABLE IV: Clean accuracy drop in sound recognition.

CNN | classes | type original poisoned
10 FC | 95.56 (£ 0.172) [ 94.92 (£ 0.368)

Jarge GAP | 96.18 (£ 0.22) 9581 (£ 0.3D)
30 FC [ 94.80 (£ 0.288) [ 94.64 (£ 0.437)
N GAP | 95.60 (£ 0.09) 95.67 (£ 0.21)
10 FC [ 90.27 (+ 0.369) [ 89.56 (£ 0.458)

small GAP | 91.40 (£ 0.41) 90.27 (£ 0.80)
30 FC 88.06 (£ 0.451) | 87.44 (£ 0.376)
N GAP | 85.75 (£ 0.63) 86.15 (£ 0.58)

A. Sound Recognition

Figures la and 1b show the attack accuracy for different
triggers in sound recognition for the large CNN. In both cases,
when GAP is omitted, the backdoor attack is successful only
when the same trigger is used for training and inference.
However, when GAP is used, the position of the trigger
becomes unimportant, and the backdoor attack is successful

22/531.00 ©2022 |EEE

TABLE V: Clean accuracy drop for text sentiment analysis.

architecture | type original poisoned
15t FC 84.64 (& 0.398) | 84.86 (£ 0.424)
GAP | 84.01 (£ 0.41) 83.88 (£ 0.45)
ond FC 86.14 (£ 0.698) | 85.96 (£ 0.811)
GAP | 86.56 (£ 0.2T) 86.46 (£ 0.38)
3rd FC 85.60 (£ 0.366) | 85.54 (£ 0.325)
- GAP | 86.13 (£ 0.06) 86.13 (£ 0.08)

TABLE VI: Clean accuracy drop for image classification.

architecture | type original poisoned
STRIP FC 86.26 (+ 0.419) | 86.16 (£ 0.315)
GAP | 87.26 (£ 0.271) | 87.25 (£ 0.277)

for all the triggers tried. In this architecture, the network’s
capacity is high even with a GAP layer, meaning that most of
the dataset’s information can still be encoded in its weights.
Additionally, GAP’s feature map averaging makes the learned
representation spatially invariant. Thus, an adversary could
create a stronger backdoor attack under the same threat model
without requiring access to more data just by exploiting GAP’s
properties.

The small CNN behaves differently. GAP makes the attack
impossible when the entire dataset is used, even if the same
trigger is used in training and testing. In this case, the model’s
capacity is very small, and it cannot learn useful information
from only a few poisoned samples. Only an increase in the poi-
soning rate could increase the attack accuracy. When we use
ten classes (figure 1c), GAP introduces some spatial invariance
in the trigger as the attack is, in general, more successful when
different triggers are used in training and inference. Still, GAP
results in a lower attack success rate when the same trigger is
used in training and testing because its generalization prevents
any overfitting required for a successful backdoor attack.

B. Text Sentiment Analysis

For the first architecture (figure 1d), the attack performs
identically for both versions. As we discussed in section III-B,
the two network versions are very similar, and the GAP layer
does not introduce any noticeable differences. Additionally,
in figure 1d, the trigger’s position is unimportant for both
versions. This model uses max-over-time-pooling and finds
the most important phrases of 3, 4, or 5 words in a sentence.
Thus, in most cases, our 5-word trigger can be spotted easily.

The two remaining architectures in text sentiment analysis
show similar behavior, and for that reason, we plot only
the results (figure le) for the second architecture (table II).
First, GAP makes the trigger almost equally effective even
if it is injected in different positions in training and testing.
However, GAP’s generalization makes the attack more difficult
in general, and the attack success rate does not surpass 65%
in our experiments. This percentage is increased only by
poisoning more data or allowing overfitting. For example,
if we continue training even if validation loss increases, the
attack success rate increases up to 85%. This indicates that a
backdoor could be harder for models affected by an average
of their inputs and not only by specific features. On the other
hand, the trigger’s position can play a crucial role in the attack

AICAS 2022
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Fig. 1: Attack accuracy for different triggers between training and inference in sound and text classification.

success rate when GAP is not used. The network can easily
spot the trigger when inserted at the sentence’s beginning in
the test time, regardless of its position in training. Still, the
attack success rate is lower in any other case.

C. Image Classification

To test our hypothesis in image classification, we poisoned
100 samples (0.2%). We saw that GAP alone could not create
a dynamic backdoor attack as the attack accuracy is high
(> 90%) only for the same triggers in training and testing.
It slightly increases the attack accuracy in three cases at 33%,
but the introduced spatial invariance is not strong enough
for a successful dynamic backdoor attack. This number is
not increased notably even if we significantly increase the
poisoning rate. To conclude, in deeper CNNs, it is very
challenging to create dynamic backdoors with a GAP layer
as they have already discarded spatial information through the
convolution filters.

V. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, we are the first to experiment
with different triggers in training and inference in sound, text,
and image classification. These experiments led to various
useful insights. First, we showed that a GAP layer could
lead to dynamic backdoor attacks in neural networks. This
is a very rare event, though, as the network’s capacity should
remain large enough to encode the dataset’s information but
low enough to avoid learning particular data relations.

Furthermore, we saw that the backdoor attack could be
effective when the model can overfit the data and ineffective
when the model’s generalization is strong. Thus, robust gen-
eralization techniques and methods that prevent learning from

22/531.00 ©2022 |EEE

features in very few training samples could result in effective
defenses, which is an interesting future research direction.
Additionally, we plan to exploit GAP’s properties to bypass
existing defenses based on the static nature of the triggers and
the feature maps of the last network layers.
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