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Summary
The aim of this study is to innovate wave-based depth-inversion towards smarter
and faster algorithms to be used with various remote sensing instruments for broad
community use. Wave-based depth inversion describes a branch of coastal remote
sensing, which uses video recordings of a wave-field to derive depths and thereby
create digital maps of coastal bathymetries. The technique utilizes the fact that
waves react to the underlying bathymetry by changing their length and celerity,
respectively getting shorter and slower as the water depth gets shallower. Waves
may also change their direction due to refraction. Depth inversion techniques using
surface wave patterns can handle clear and turbid waters and thereby a variety of
global coastal environments. The idea to use observed wave characteristics as a
proxy for the underlying bathymetry already came up during the time of the second
world war, when the aim was to acquire bathymetry information for military landing
operations. Starting around the 1980’s, the idea received more attention among the
coastal engineering community, as increased computational power enabled easier
analysis of wave-field recordings through spectral decompositions. Since then, dif-
ferent depth inversion algorithms (DIA) have been developed in pursuit of getting
increasingly accurate bathymetry maps. Besides estimating depths, some DIAs also
incorporate functionalities to map wave propagation directions and wave celerity,
and even near-surface currents from wave-field video. While the video recording
instruments resemble the hardware, DIAs resemble the software needed for wave-
based coastal remote sensing (WCRS).
Yet, WCRS is a specialistic branch within the coastal engineering and -user com-

munity. The technique typically requires a certain amount of user-expertise and
it has mostly been applied in research settings. While data can be retrieved on
kilometre scale with XBand-radars and cameras, it was historically difficult to scale
up WCRS to entire coasts, which was a reason to discontinue its application in the
Netherlands. Besides land-based instruments (i.e., XBand-radars, fixed camera sta-
tions) in the meantime also airborne UAVs, and space-borne satellites can be used
to record a wave field, making WCRS more flexible and scalable. These recording
instruments have also become more accessible. Moreover, DIAs – the software
required to analyse the wave recordings – can be used interchangeably on data of
these different instruments. This means that WCRS becomes potentially attractive
to a broad user-community of coastal managers, the industry and the coast guard.
However, DIAs still restrict broad usage of WCRS: while an important step has been
taken in the open accessibility of DIAs, much is still to be gained in their handling
and computational speed. This study aims to improve upon that, by building to-
wards operational, self-adaptive and intelligent algorithms, which can provide maps
of depth, near-surface currents and wave hydrodynamics on-the-fly. For this pur-

xi



xii Summary

pose, video data from a variety of instruments (fixed camera station, UAV, XBand-
radar, satellite) on different spatial scales 𝑂(100m2,1km2,10km2,100km2) and
field-sites around the world (Netherlands, UK, USA, Australia, France) are analysed.
Combining rapid processing capabilities with a broad applicability this study forms
a stepping stone for a potentially broad WCRS user community. The analyses are
presented going from land-based to air-borne to space-borne WCRS. This is done
in three stages from (1) applying an operational DIA on XBand radar data, to (2)
applying an on-the-fly DIA on camera and UAV data, to finally (3) applying a DIA
on temporally sparse satellite data.

First, a DIA named XMFit (X-Band Matlab Fitting) is introduced, which is robust,
accurate and fast enough for operational use. This is achieved through an iterative
procedure that selects the best result among a series of depth and near-surface cur-
rent estimates. For this study, video data from XBand-radars are analysed. Focus-
ing on depth estimates, XMFit is validated for two case studies in the Netherlands:
(1) the “Sand Engine”, a beach mega nourishment at a uniform open coast, and
(2) the tidal inlet of the Dutch Wadden Sea island Ameland, characterizing a more
complex coast. Considering both sites, the algorithm performance is characterized
by a spatially averaged depth bias of −0.9m at the Sand Engine (corresponding to
an 18 h snapshot of the field site) and a time-varying bias of approximately −2–0m
at the Ameland Inlet (corresponding to a one-year time evolution with varying hy-
drodynamic conditions). When compared to in-situ depth surveys the accuracy is
lower, but the time resolution higher. Dutch in-situ surveys typically occur annually,
while depth estimates from the Ameland tidal inlet are produced every 50min by
an operational system using a navigational X-Band radar. It enables to monitor the
placement of a 5Mm3 ebb-tidal delta nourishment – a pilot measure for coastal
management. Volumetric changes in the nourishment area over the year 2018,
occurring at 7km distance from the radar, are estimated with an error of 7%.
Depth errors statistically correlate with the direction and magnitude of simultan-
eous near-surface current estimates. Additional experiments on Sand Engine data
demonstrate that depth errors may be significantly reduced using an alternative
spectral approach and/or by using a Kalman filter.

Having demonstrated the potential of DIAs for operational application, the next
step is to design an algorithm that can self-adapt to video from any field-site and
can process it on-the-fly. To do so, a DIA is designed whose code architecture for
the first time includes the Dynamic Mode Decomposition (DMD) to reduce the data
complexity of wavefield video. The DMD is paired with loss-functions to handle
spectral noise, and a novel spectral storage system and Kalman filter to achieve
fast converging measurements. The algorithm is showcased for videos from AR-
GUS stations and drones recorded at fieldsites in the USA, UK, Netherlands, and
Australia. The performance with respect to mapping bathymetry is validated us-
ing ground truth data. It is demonstrated that merely 32s of video footage is
needed for a first mapping update with average depth errors of 0.9–2.6m. These
further reduce to 0.5–1.4m as the videos continue and more mapping updates
are returned. Simultaneously, coherent maps for wave direction and -celerity are
achieved as well as maps of local near-surface currents. The algorithm is capable
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of mapping the coastal parameters on-the-fly and thereby offers analysis of video
feeds, such as from drones or operational camera installations. Hence, the innov-
ative application of analysis techniques like the DMD enables both accurate and
unprecedentedly fast coastal reconnaissance.
With a skilled, intelligent DIA at hand, the question remains whether it can also

be used on satellite imagery, as that would further broaden the application range.
DIAs commonly analyse video from shore-based camera stations, UAVs or XBand-
radars with durations of minutes and at framerates of 1–2 fps to find relevant wave
frequencies. However, these requirements are typically not met by raw, temporally
sparse satellite imagery. To overcome this problem a preprocessing step is util-
ized. Here, a sequence of 12 images of Capbreton, France, collected over a period
of ∼1.5min at a framerate of 1/8 fps by the Pleiades satellite, is augmented to
a pseudo-video with a framerate of 1 fps. For this purpose a recently developed
method is used, which considers spatial pathways of propagating waves for tem-
poral video reconstruction. The resulting video is subsequently processed with the
self-adaptive DIA. The combination of image augmentation with a frequency-based
depth inversion method shows potential for broad application to temporally sparse
satellite imagery and thereby aids in the effort towards broad usage of WCRS for
mapping coastal bathymetry data around the globe.
By improving DIAs and their application to different instruments, this study has

helped to increase the technological readiness of WCRS and its potential to be adop-
ted by end-users. It was shown that WCRS can be performed on wave field records
of land-based, airborne and space-born instruments and therewith on scales ran-
ging from 𝑂(100m2)(fixed camera) to 𝑂(100km2)(X-band radar,satellite). The
cost of WCRS is minor, as existing navigational X-band radars can be used, afford-
able UAVs and cameras, and accessible satellite data. X-band radars can operation-
ally monitor complex coastal environments and recognize morphological trends,
UAVs and cameras can be used for fast lean-and-mean mapping of coastal ba-
thymetry, and by estimating depths from satellite imagery valuable data can be
collected in otherwise data-poor environments. Yet, further steps should be taken
in the accessibility, multifunctionality, quality, robustness and user-friendliness of
WCRS. The key takeaway for effective WCRS monitoring is that future develop-
ments should strive towards integrated, self-adaptive software, which gives prompt
visual response and requires little user-expertise. These measures reduce the diffi-
culty to learn WCRS, increase its compatibility with data from different instruments
(Xband-radars, cameras, UAVs, satellites) and thereby enable relatively easy coastal
measurements. As a consequence WCRS becomes more adoptable by the coastal
remote sensing community. With the exponential growth of data volumes world-
wide, future data clouds may facilitate storage and offer future perspectives for
online integration of data with numerical models and modern data science tech-
niques like neural networks. This may create new possibilities for understanding
system dynamics and thereby further aid decision makers in coastal management,
the industry and the coast guard.





Samenvatting
Het doel van deze studie is om golfgebaseerde diepte-inversie te innoveren naar
slimmere en snellere algoritmen voor gebruik door een brede gemeenschap. Golfge-
baseerde diepte-inversie beschrijft een tak van kust-teledetectie, die gebruik maakt
van video-opnamen van een golfveld om dieptes af te leiden en zo kaarten te ma-
ken van de bathymetrie van kustgebieden. De techniek maakt gebruik van het feit
dat golven reageren op de onderliggende bathymetrie door hun lengte en snelheid
te veranderen, respectievelijk korter en langzamer worden naarmate de waterdiep-
te geringer wordt. Golven kunnen ook van richting veranderen als gevolg van re-
fractie. Diepte-inversietechnieken die gebruik maken van oppervlaktegolfpatronen
kunnen zowel heldere als troebele wateren aan en daardoor een verscheidenheid
van mondiale kustomgevingen. Het idee om waargenomen golfkarakteristieken te
gebruiken als proxy voor de onderliggende bathymetrie ontstond reeds ten tijde
van de tweede wereldoorlog, toen het de bedoeling was bathymetrische informa-
tie te verkrijgen voor militaire landingsoperaties. Vanaf de jaren 1980 kreeg het
idee meer aandacht in de kustbouwkundige gemeenschap, toen de toegenomen
computerkracht de analyse van golfveldopnames door spectrale decompositie ge-
makkelijker maakte. Sindsdien zijn verschillende diepte-inversie-algoritmen (DIA)
ontwikkeld met het oog op steeds nauwkeurigere bathymetriekaarten. Naast het
schatten van dieptes bieden sommige DIA’s ook de mogelijkheid om golfvoortplan-
tingsrichtingen en golfsnelheden, en zelfs stromingen nabij het oppervlak in kaart
te brengen. Samen met de opname-instrumenten vormen DIA’s het gebied van
wave-based coastal remote sensing (WCRS).
Toch is WCRS een specialistische tak binnen de kustengineering en gebruikersge-

meenschap. De techniek vereist doorgaans een zekere mate van deskundigheid van
de gebruiker en wordt meestal toegepast in onderzoeksomgevingen. Hoewel met
XBand-radars en camera’s gegevens op kilometerschaal kunnen worden verkregen,
was het historisch moeilijk om WCRS op te schalen naar hele kusten, wat een re-
den was om de toepassing ervan in Nederland te staken. Naast instrumenten op
het land (d.w.z. XBand-radars, vaste camerastations) kunnen inmiddels ook UAV’s
in de lucht en satellieten in de ruimte worden gebruikt om een golfveld op te nemen,
waardoor WCRS flexibeler en schaalbaarder wordt. Deze opname-instrumenten zijn
ook toegankelijker geworden. Bovendien kunnen DIA’s - de software die nodig is
om de golfopnamen te analyseren - op de gegevens van deze verschillende in-
strumenten door elkaar worden gebruikt. Dit betekent dat WCRS potentieel aan-
trekkelijk wordt voor een brede gebruikersgemeenschap van kustbeheerders, de
industrie en de kustwacht. DIA’s beperken echter nog steeds een breed gebruik
van WCRS: hoewel er een belangrijke stap is gezet in de open toegankelijkheid van
DIA’s, valt er nog veel te winnen in de hanteerbaarheid en de rekensnelheid ervan.

xv
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Deze studie wil dit verbeteren door te werken aan operationele, zelfaanpassende
en intelligente algoritmen, die kaarten kunnen opleveren van diepte, stromingen
nabij het oppervlak en golfhydrodynamica on-the-fly. Daartoe worden videogege-
vens van verschillende instrumenten (vast camerastation, UAV, XBand-radar, satel-
liet) op verschillende ruimtelijke schalen 𝑂(100m2,1km2,10km2,100km2) en
veldlocaties over de hele wereld (Nederland, UK, USA, Australië, Frankrijk) gea-
nalyseerd. Door de combinatie van snelle verwerkingsmogelijkheden en een brede
toepasbaarheid vormt deze studie een springplank voor een potentieel bredeWCRS-
gebruikersgemeenschap. De analyses gaan van WCRS op het land over WCRS in
de lucht tot WCRS in de ruimte. Dit gebeurt in drie fasen, van (1) het toepassen
van een operationele DIA op XBand radargegevens, naar (2) het toepassen van een
on-the-fly DIA op camera- en UAV-gegevens, tot ten slotte (3) het toepassen van
een DIA op temporeel schaarse satellietgegevens.

Eerst wordt een DIA met de naam XMFit (X-Band Matlab Fitting) geïntroduceerd,
die robuust, nauwkeurig en snel genoeg is voor operationeel gebruik. Dit wordt be-
reikt door een iteratieve procedure die het beste resultaat selecteert uit een reeks
diepte- en stroomschattingen. Voor deze studie worden videogegevens van XBand-
radars geanalyseerd. Met de nadruk op diepteschattingen wordt XMFit gevalideerd
voor twee case studies in Nederland: (1) de ”Zandmotor”, een mega-suppletie op
het strand bij een uniforme open kust, en (2) het zeegat van het Nederlandse Wad-
deneiland Ameland, dat een complexere kust karakteriseert. Voor beide veldlocaties
wordt de prestatie van het algoritme gekenmerkt door een ruimtelijk gemiddelde
dieptefout van 0.9m bij de Zandmotor (overeenkomend met een momentopname
van 18 uur van de veldlocatie) en een tijdsafhankelijke fout van ongeveer −2–0m
bij het Amelander Zeegat (overeenkomend met een tijdsverloop van één jaar met
variërende hydrodynamische omstandigheden). In vergelijking met in-situ diepte-
peilingen is de nauwkeurigheid lager, maar de tijdsresolutie hoger. Nederlandse
in-situ metingen vinden doorgaans jaarlijks plaats, terwijl diepteschattingen van de
Ameland getijdeninlaat elke 50min worden gemaakt door een operationeel sys-
teem dat gebruik maakt van een X-Band radar voor navigatiedoeleinden. Hiermee
kan de plaatsing van een eb-delta suppletie - een proefmaatregel voor kustbeheer
- worden gevolgd. Volumetrische veranderingen in het suppletiegebied gedurende
het jaar 2018, op een afstand van 7km van de radar, worden geschat met een fout
van 7%. Dieptefouten correleren statistisch met de richting en grootte van gelijk-
tijdige schattingen van de stroming nabij het oppervlak. Aanvullende experimenten
met Zandmotor data tonen aan dat dieptefouten aanzienlijk kunnen worden ver-
minderd door gebruik te maken van een alternatieve spectrale aanpak en/of een
Kalman-filter.

Nadat het potentieel van DIA’s voor operationele toepassing is aangetoond, wordt
in de opeenvolgende studie een algoritme ontworpen dat zich zelf kan aanpassen
aan videobeelden van elke veldlocatie en deze on-the-fly kan verwerken. Daartoe is
een DIA ontworpen waarvan de code-architectuur voor het eerst de Dynamic Mode
Decomposition (DMD) bevat om de complexiteit van golfveldvideo te verminderen.
De DMD wordt gecombineerd met loss-functies om met spectrale ruis om te gaan,
en een nieuw spectraal opslagsysteem en een Kalman-filter om snel convergerende
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metingen te bereiken. Het algoritme wordt getoond voor video’s van ARGUS stati-
ons en drones opgenomen op veldlocaties in de VS, VK, Nederland, en Australië.
De prestaties met betrekking tot het in kaart brengen van de bathymetrie wor-
den gevalideerd met behulp van in-situ gegevens. Er wordt aangetoond dat slechts
32s aan videobeelden nodig zijn voor een eerste karteringsupdate met gemiddelde
dieptefouten van 0.9–2.6m. Deze fouten nemen verder af tot 0.5–1.4m naarma-
te de video’s vorderen en meer kaartupdates worden gegeven. Gelijktijdig worden
coherente kaarten voor golfrichting en -snelheid verkregen, alsmede kaarten van
lokale stromingen nabij het oppervlak. Het algoritme is in staat de kustparameters
on-the-fly in kaart te brengen en biedt daardoor analyse van video-feeds, zoals van
drones of operationele camera-installaties. De innovatieve toepassing van analy-
setechnieken zoals de DMD maakt dus zowel een nauwkeurige als een ongekend
snelle kustverkenning mogelijk.

Met een bekwame, intelligente DIA bij de hand, blijft de vraag of deze ook op
satellietbeelden kan worden toegepast. DIA’s analyseren gewoonlijk videobeelden
van camera’s, UAV’s of XBand-radars met een duur van minuten en een beeldfre-
quentie van 1–2 fps om relevante golffrequenties te vinden. Aan deze eisen wordt
echter meestal niet voldaan door ruwe, in de tijd karige satellietbeelden. Om dit
probleem op te lossen wordt gebruik gemaakt van een voorbewerkingsstap. Een
reeks van 12 beelden van Capbreton, Frankrijk, verzameld over een periode van
∼1.5min met een beeldfrequentie van 1/8 fps door de Pleiades-satelliet, wordt
aangevuld tot een pseudo-video met een beeldsnelheid van 1 fps. Daartoe wordt
een recent ontwikkelde methode toegepast, die ruimtelijke paden van voortplanten-
de golven gebruikt voor videoreconstructie in de tijd. De resulterende video wordt
vervolgens verwerkt met de zelfaanpassende DIA. De combinatie van videorecon-
structie met een frequentie-gebaseerde diepte-inversie methode toont potentieel
voor brede toepassing op temporeel schaarse satellietbeelden en helpt zo in het
streven naar een breed gebruik van WCRS voor het karteren van kust bodems over
de hele wereld.

Door de DIA’s en de toepassing ervan op verschillende instrumenten te verbete-
ren, heeft deze studie ertoe bijgedragen de technologische gereedheid van WCRS
en diens potentiele toepassing door eindgebruikers te vergroten. Aangetoond is dat
WCRS kan worden uitgevoerd op golfveldopnamen van instrumenten op het land,
in de lucht en in de ruimte en daarmee op schalen variërend van 𝑂(100km2)(vaste
camera) tot 𝑂(100km2)(X-band radar, satelliet). De kosten van WCRS zijn gering,
omdat gebruik kan worden gemaakt van bestaande X-band radars voor naviga-
tie, betaalbare UAVs en camera’s, en toegankelijke satellietgegevens. Met X-band
radars kunnen complexe kustomgevingen operationeel worden gevolgd en morfolo-
gische tendensen worden herkend, UAV’s en camera’s kunnen worden gebruikt voor
snelle lean-and-mean kartering van de bathymetrie van kustgebieden, en door de
diepte te schatten aan de hand van satellietbeelden kunnen waardevolle gegevens
worden verzameld in omgevingen waar anders weinig gegevens voorhanden zijn.
Toch moeten verdere stappen worden gezet in de toegankelijkheid, multifunctiona-
liteit, kwaliteit, robuustheid en gebruiksvriendelijkheid van WCRS. De belangrijkste
conclusie voor effectieve WCRS-monitoring is dat bij toekomstige ontwikkelingen
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moet worden gestreefd naar geïntegreerde, zelfaanpassende software, die snel vi-
sueel reageert en weinig deskundigheid van de gebruiker vereist. Deze maatregelen
verminderen de moeilijkheidsgraad om WCRS te leren, vergroten de compatibiliteit
met gegevens van verschillende instrumenten (Xband-radars, camera’s, UAV’s, sa-
tellieten) en maken daardoor relatief eenvoudige kustmetingen mogelijk. Als ge-
volg daarvan wordt WCRS beter te gebruiken door de kustgemeenschap. Met de
exponentiële groei van de datavolumes wereldwijd kunnen toekomstige data clouds
de opslag vergemakkelijken en toekomstperspectieven bieden voor online integra-
tie van data met numerieke modellen en moderne data science technieken zoals
neurale netwerken. Dit kan nieuwe mogelijkheden creëren om de dynamiek van
kustsystemen te begrijpen en zo de besluitvormers bij het kustbeheer, de industrie
en de kustwacht te helpen.
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Introduction

1.1. Motivation

T he coastal community needs data for decision making, such as determined by
coastal zone management goals, flood safety, ecological and recreational direct-

ives [1]. Also swimmer safety, navigational safety and industrial process monitoring
determine decision making [2–4]. All these applications need reliable up-to-date
coastal data, which involve measurements of hydrodynamics, such as currents and
wave characteristics, but also measurements of the underwater topography of the
coast, better known as the coastal bathymetry (Figure 1.1).
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Figure 1.1.: Illustration of coastal data.

Taking the Netherlands as an example, sustainable coastal zone management
aims to dynamically preserve the coastline for its flood-safety function, but also for
its ecological function and recreation. To assess these coastal functions, up-to-date
bathymetry data are crucial for decision makers as to recognize erosion trends. At

1
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the moment, yearly ”Jarkus” transects are measured along the entire Dutch coast
and in the more complex coastal environments 3-6 yearly ”Vaklodingen” measure-
ments aim to capture the coastal state. These measurements are mostly collected
in-situ, which means that instruments need to be placed at particular locations in
the field, or be carried on foot or on vessels [5]. This practice is labour intensive,
expensive and it may take up to a full year to acquire the data [6]. The temporal
resolution of these traditional measurements is coarse, whereby the evolution and
erosion of for example nourishments can only be monitored roughly [7]. Short-term
morphodynamics caused by high-wave events or rip-currents are rarely captured,
although they are a prominent cause for (nourishment) erosion [8]. Recognizing
short-term dynamics is important as erosion enforces flood hazards, and these flood
hazards are predicted to increase future economic and insured losses [9]. Currently,
erosion trends must be anticipated year(s) ahead for nourishment programming.
Moreover, measured transects typically lay hundred(s) of metres apart, leaving long
coastal sections without data. It shows that there is a large data gap to fill in both
time and space to improve system understanding and nourishment planning for
coastal management ([8], see also Chapter 2,[3]). In the 2000’s remote sens-
ing technology was suggested to aid for such coastal management purposes (e.g.,
[10]). Remote sensing technology collects data from a distance and over an area,
for example using cameras or radars. Yet, the adoption of the technology came to
a halt, probably due to technical limitations, required expertise and costs involved
to scale monitoring up from local areas 𝑂(100m2) to the entire Dutch coastline.
This work is driven by the idea of developing widely applicable and easy-to-use

technology to collect and map coastal data, which is available for a broad audience
[11]. While it is difficult to make in-situ measurements less labour intensive, it
might be possible to innovate coastal remote sensing to be easier to use and scale
up.

1.2. Wave-based Coastal Remote Sensing (WCRS)

I n particular the field of wave-based coastal remote sensing (WCRS) shows poten-tial for broad application. With WCRS the motions of a wave-field are recorded
and these recordings are subsequently analysed. By analysing a wave-field in mo-
tion, information can be derived on the waves themselves, such as their celerity
and direction, but also information on the underlying bathymetry and currents can
be derived. This is possible because waves react to the underlying bathymetry and
currents by changing their length, celerity and direction. A benefit of WCRS is that
it can be used in clear and turbid coastal waters and thereby in a variety of coastal
environments. WCRS includes hardware to record the wave-field and software to
analyse the recorded wave-field (Figure 1.2).

1.2.1. Hardware
In the past, mostly land-based instruments, such as Xband-radars or professional
camera installations could be used, which were costly and made it difficult to scale
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Figure 1.2.: Wave-based coastal remote sensing (WCRS): A wave field in motion is recorded
and subsequently analysed to derive wave celerity and direction, currents and
bathymetry.

up WCRS (an important reason to discontinue its application in the Netherlands).
Yet, nowadays also airborne UAVs, and space-borne satellites can be used, making
WCRS more flexible and scalable. Moreover, all recording instruments have become
more accessible. WCRS can now be conducted flexibly and economically using af-
fordable UAVs [12]. Global bathymetry data can be collected at times and places
where these are not available using satellites [13]. Local, systematic monitoring
with fixed cameras now allows to recognize erosion/accretion trends [14] and for
some areas bathymetry measurements up to decimetre accuracy are possible [15].
With nowadays hardware, WCRS might be used to address coastal management
needs such as to follow the (volumetric) evolution of nourishments. Satellite-based
remote sensing could also trace channel migration over Wadden-sea-sized areas
[16, 17] and be used to check navigational safety. Besides bathymetry data also
hydrodynamic data with high spatio-temporal coverage can be retrieved, for ex-
ample with Xband-radars [18]. Such data are needed as public safety can be at
risk, for example due to the presence of coastal (rip) currents [19]. WCRS could be
used to map and identify short-lived, dangerous currents and be a tool to recognize
hazardous situations for swimmer safety [2]. Concluding, with nowadays possibilit-
ies to use affordable and accessible land-based, airborne and space-borne remote
sensing hardware, WCRS has become scalable and it allows to derive data products
for decision making, such as coastal erosion/accretion trends for potential nourish-
ment programming and coastal current maps for swimmer safety monitoring. The
historic hardware limitations of WCRS have reduced, while software limitations still
exist.



1

4 1. Introduction

1.2.2. Software
A limitation of WCRS software lays in the analysis of wave-field recordings, which
is done with sophisticated algorithms [20–23]. These algorithms are often referred
to as depth-inversion algorithms (DIA), where ”depth” directly translates to bathy-
metry (Figure 1.3). In addition to depth, DIAs can simultaneously estimate currents
and wave hydrodynamics and thereby resemble a multifunctional tool to retrieve
coastal measurements.

Coastal Measurements

Remote Sensing

WCRS

In-situ

DIA

Hardware

Software

Figure 1.3.: Schematization of depth inversion algorithms (DIA) as an element of wave-
based coastal remote sensing (WCRS) and the broader fields of coastal remote
sensing and coastal measurements.

However, current DIAs are difficult to use, do to lacking accessibility, required
user expertise and no or slow visual response. The issue of accessibility lays in the
fact that DIAs are typically non-open source [22], or the programming language in
which they are written is non-open source [20]. The required user expertise lays
in the knowledge and experience necessary to handle DIAs and tune them to the
(site-specific) video data. A lacking visual response is a symptom of the fact that
it is usually experts who use DIAs and who are mostly interested in the numbers
that are generated.
Hence, although WCRS hardware (the recoding instruments) is affordable and

scalable, and the software has multifunctional capability, the technology is seem-
ingly unattractive to be used by a broad community due to the software’s lacking
accessibility, user friendliness and required expertise.

1.2.3. Technological Readiness and Adoption
WCRS can be placed into a larger framework and be viewed as a technology to be
used by potential end-users. In such a framework (i) the maturity of the technology
can be assessed, but also (ii) its potential adoption by end-users.

(i) The technological maturity (i.e., the progress in the development) of WCRS
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can be assessed by trying to classify it on a scale of technological readiness
levels (TRLs) [24]. The metric consists of 9 levels ranging from the initial idea
of a technology/product (TRL 1) to its full market release (TRL 9).

TRL 1. basic principles observed

TRL 2. technology concept formulated

TRL 3. experimental proof of concept

TRL 4. technology validated in lab

TRL 5. technology validated in relevant environment

TRL 6. technology demonstrated in relevant environment

TRL 7. system prototype demonstration in operational environment

TRL 8. system complete and qualified

TRL 9. actual system proven in operational environment

WCRS has passed the initial stages of technological readiness with exper-
imental proofs of concept in the 1940’s (TRL 3) [25] and more elaborate
validations in the 1980’s and 1990’s (TRL 5) (e.g., [26, 27]). The 2000’s can
be seen as the start of a demonstration period of WCRS with different instru-
ments and in different environments (TRL 6) (e.g., [23, 28, 29]). This period
is also shaped by the systematic development of different DIA’s in the 2000’s
and 2010’s (e.g., [20, 21, 30]. This work will demonstrate that WCRS has
reached even higher TRLs (7-9), by demonstrating WCRS in an operational
environment and employing it for multiple years in government-financed pro-
jects. It can be used to answer questions, which have not yet been posed
like ”can we track a nourishment”? Hence, from a performance point of view,
WCRS is already a quite mature technology.

(ii) The theory of diffusion of innovations contains directions on how to assess the
likelihood of innovative technology to be adopted. The overarching theory is
complex and comprises many aspects concerning the spreading of innovations
[11, 31]. This discussion focusses on a subpart of that theory, which is about
end-user considerations (EUCs) that promote adoption of a technology:

EUC 1. relative advantage compared to existing tools

EUC 2. compatability with pre-existing systems/hardware

EUC 3. complexity/difficulty to learn

EUC 4. testability

EUC 5. potential for reinvention

EUC 6. observed effects

Viewing these end-user considerations suggests that the adoption of WCRS by
the coastal community can be improved. Compared to other existing meas-
urement technology (EUC 1) WCRS has the benefit that data can be col-
lected over entire areas and it has become globally scalable. Moreover it
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is multifunctional as both bathymetry and hydrodynamics can be measured
simultaneously [32]. Yet, it is cumbersome to use, due to the DIAs’ lacking
accessibility, user friendliness and required expertise. Regarding the compat-
ability with pre-existing systems (EUC 2), WCRS has large potential as DIAs
can work interchangeably on wave-field video of different instruments [33].
A drawback of WCRS is still the complexity and difficulty to learn it (EUC 3).
Again, issues arise from the DIAs’ lacking accessibility, user friendliness and
required expertise. The potential testability of WCRS is high (EUC 4), as it
may be applied to wave-field video from various instruments and environ-
ments; however, currently video data often need to be requested from their
owners for testing. The potential for reinvention of WCRS (EUC 5) is difficult
to determine, but it may be possible to use DIAs on imagery that they were
not originally designed for, such as temporally sparse imagery from satellites
or video feeds. DIAs might also be combined with other remote sensing tech-
niques, such as shoreline tracking algorithms, suggesting that WCRS has a
potential for re-combination and added functionality. The observed effects of
WCRS (EUC 6) are potentially large, since bathymetric and hydrodynamic data
can be mapped for entire areas and this might be done by laymen. This can
also have large effect on the presentation of the data to decision makers in
coastal management, the industry and the coast guard. Yet, currently DIAs
require expert knowledge and provide low or slow visual response, leaving
no options to analyse video feeds and/or lean-and-mean mapping of coastal
parameters.

innovators
early adopters

early majority late majority

laggards

Figure 1.4.: Technology adoption lifecycle

Seeing the potential gain to be achieved in addressing end-user considera-
tions, WCRS technology is at the moment probably still in a phase of early
adoption (Figure 1.4). There is a majority of adopters to win over.

Looking at the current status of WCRS suggests that (i) it is a technology with
high technological readiness, but also (ii) a technology whose potential to be broadly
adopted has not yet been harnessed. This unused potential is what has motivated
this work and has lead set of research questions and technological challenges.



1.3. Research Questions

1

7

1.3. Research Questions
1. To what extent can DIAs be used on wave-field records of different remote
sensing instruments (X-band radar, fixed camera, UAV, satellite) to demon-
strate scalability and spatiotemporal coverage of WCRS? (TRL 8 and EUCs 1,
2, 4)

2. How can DIAs be used operationally to monitor the placement and evolution
of a nourishment for dredging and dumping surveillance and coastal manage-
ment? (TRLs 7, 9 and EUCs 1, 2)

3. How can DIAs self-adapt to wave-field video from different field-sites to reduce
required user-expertise? (EUCs 3, 6)

4. To what extent can DIAs acquire on-the-fly processing capability for analysis
of video feeds and lean-and-mean mapping with WCRS? (EUCs 1, 5, 6)

5. How can standard DIAs be used on temporally sparse imagery to achieve an
increased application range of WCRS? (EUCs 2, 5)

6. What are the perspectives of WCRS for broad future application? (EUCs 1-6)

1.4. Reader

T he overall goal of this thesis is to innovate DIAs towards smarter and faster
algorithms that can provide reliable estimates using different instruments and

scales, which can be used to identify and derive coastal features and trends. The in-
novation of DIAs is approached in three steps, which are divided over three chapters
(Chapters 2 to 4). Each chapter is published as an individual article [3, 34, 35].
The performance of DIAs is validated by their ability to estimate depth. Results for
near-surface current estimates and wave-hydrodynamics are assessed qualitatively.
(Research question 1) As a central thread running through this thesis, different

instruments are used to record wave-fields. First an X-band radar (Chapter 2), but
successively also stationary cameras, UAVs/drones (Chapter 3) and finally a satellite
(Chapter 4).
(Research question 2) The operational application of a DIA to video from a navig-

ational X-band radar is presented in Chapter 2. The DIA leans on traditional meth-
odology (using 3D Fourier based spectral analysis), but is specifically developed to
be employed operationally. Using this DIA, it is studied whether coastal manage-
ment questions can be answered, by monitoring the (volumetric) evolution of a
nourishment from a large distance of 7km.
(Research questions 3, 4) In Chapter 3 an innovative DIA is presented, which

is accessible, allows on-the-fly analysis, and is self-adaptive. At the same time it
retains the multifunctionality, robustness and accuracy of existing DIAs. This is
amongst others achieved by introducing new data analysis techniques, such as the
Dynamic Mode Decomposition to reduce video data to essential wave-field com-
ponents.
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(Research question 5) Chapter 4 explores the use of DIAs on temporally sparse
satellite imagery. A recently developed method is used to generate a smooth wave-
field video from a few satellite snapshots, after which the DIA from Chapter 3 serves
to estimate the coastal bathymetry.
(Research question 6) Chapter 5 reflects on the progress made in Chapters 2

to 4 in a synthesis on WCRS and discusses ways for further improvement. This
discussion is finalized with a vision for WCRS hardware and software in future global
coastal monitoring.



2
Operational bathymetry

with Xband-radar

We’ve got a thing that’s called radar love

Radar Love, Golden Earring

This chapter explores the use of an existing navigational XBand radar to
monitor coastal bathymetry and volumetric changes of a nourishment over
time. By deriving depths from observed wave properties, the bathymetry of
the Ameland eb tidal delta and the Sand Engine are mapped andmonitored.
For this purpose the depth inversion algorithm XMFit is introduced. The
study demonstrates that depth inversion of XBand radar video can be used
operationally as a monitoring tool for coastal managers.
Lessons learned:

• The depth inversion algorithm XMFit can be used operationally to estim-
ate bathymetry from XBand radar over long time periods.

• The XMFit algorithm uses local 3D Fourier transforms to capture spec-
tral wave contents in time and space. Spectral noise can be robustly
discarded by iterating over a series of spectral energy thresholds.

• The placement of a 5Mm3 ebb-tidal delta nourishment – a pilot measure
for coastal management – can be followed. Volumetric changes in the
nourishment area over the year 2018, occurring at 7km distance from
the radar, were estimated with an error of 7%.

• The accuracy of depth estimates varies over time with biases mostly
between −2–0m. Depth errors statistically correlate with the direction
and magnitude of simultaneous near-surface current estimates.

This chapter has been published in Coastal Engineering 159, 103716 (2020) [3].
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2.1. Introduction

W ith the extensive urbanization of the coastal hinterland, the role of coastal
management in the Netherlands has become increasingly important to ensure

flood safety and the protection of recreational and ecological values of the coast.
Modern coastal maintenance strives towards a “building with nature” approach [1],
using soft engineering strategies to mitigate long-term coastal recession. Along
uniform coastlines, large 1–2Mm3 shoreface nourishments have proved to be an
effective strategy [36], and a basic understanding has been established about their
behaviour [7, 8]. In pursuit of finding the optimal long-term solution, larger nour-
ishment designs have been explored of which the Sand Engine, a beach mega-
nourishment comprising 21Mm3 of sand is a famous example [37]. In the mean-
time even bigger nourishments have been placed with volumes up to 36Mm3 [38].
The most recent experiment involved the construction of a 5Mm3 nourishment in
the outer delta of a complex tidal inlet system at the Wadden Sea island Ameland.
To evaluate the success of these innovative coastal management interventions it

is necessary to map them and to monitor their evolution. Due to the large nourish-
ment volumes and long lifetime, monitoring with in-situ techniques is expensive and
it may be favorable to use remote sensing techniques instead. Such techniques can
capture morphological variability at a large spatial scale in high temporal resolution
over long periods of time [14]. To be used in an operational setting, remote sensing
techniques need to be robust. We define robust as being able to handle variations
in environmental conditions and data quality without the need for manual adjust-
ments and costly person hours. Here, we propose to derive bathymetries with a
technique that meets these desired requirements and uses already available X-Band
radar data from a lighthouse.
Marine radars operating in the X-Band range are routinely deployed aboard ships

and on marine traffic control towers to detect vessels and other floating objects. In
coastal areas, such radars may also be used to monitor waves, currents and water
depths. Their benefits over in-situ depth surveys are a high spatial and temporal
coverage and lower operating and maintenance costs. However, the spatial resol-
ution of X-Band radars can be coarse and, as sampling frequencies are often low,
they have a lacking ability to recognize shorter period waves. Moreover, an inherent
uncertainty exists in relating radar image intensities to the observed ocean surface
properties, bringing challenges to the analysis of X-Band radar data. Moreover, X-
Band radars are expensive instruments, which is why it may be attractive to exploit
existing navigational radars in areas of interest.
Although considered “noise” for navigational purposes, the wave field leaves a

signature on an X-Band radar known as sea clutter. This imprint is produced by
radar signal reflection off capillary waves, which are modulated by the underlying
surface gravity wave field [39, 40], the so-called Bragg-scattering [41]. Observing
the propagation of a wavefield through time offers a possibility to infer information
about the waves themselves, but also about currents and depths these waves feel.
In particular for the purpose of depth estimation, several depth inversion al-

gorithms (DIAs) have been developed. Most DIAs use wavefield recordings from
either radars or beach cameras, but these methods may be used interchangeably
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between instruments [33]. While some DIAs use a sequence of images (i.e., a
video of typically 6–12min) to link wavenumbers to wave frequencies and estim-
ate depths via the linear dispersion relationship [20, 27, 28, 42], other DIAs use the
average of a sequence of images (i.e., a time exposure) to estimate depths through
spatial patterns of breaking intensity [29, 43]. If the area of interest is large, X-
Band radars have an advantage above cameras because of their larger field of view.
Other advantages are their operability at night and a smaller sensitvity to rain or sun
glare. A large field of view means that depths are estimated far beyond the breaker
zone, therefore a dispersion-based DIA is preferred with a sequence of images as
input.
The commonly used dispersion-based DIAs to analyse image sequences from

XBand-radar, employ three dimensional Fast Fourier Transforms (3D-FFTs) to ac-
quire the necessary wavenumber – frequency relationships. Spatial variations are
captured by discretising an image sequence into smaller domains known as compu-
tational cubes (x,y,t) [44]. These computational cubes are processed separately. A
3D-FFT then converts each computational cube from the space-time domain (x,y,t)
into wave components in the wave number – frequency domain (kx,ky,ω). This in-
formation is used to constrain the Doppler-shifted linear dispersion shell

𝜔 = √g|𝑘𝑘𝑘| tanh𝑘𝑘𝑘ℎ +𝑈𝑈𝑈 ⋅ 𝑘𝑘𝑘 (2.1)

to estimate the water depth, 𝑑 (m), and the two horizontal current vector com-
ponents [𝑢, 𝑣] of 𝑈𝑈𝑈 (ms−1). The gravitational acceleration is given by g, the wave
number vector by 𝑘𝑘𝑘 (radm−1) with components [𝑘𝑥, 𝑘𝑦], and 𝜔 (rad s−1) is the
corresponding frequency. The idea to use 3D-FFTs originally came from the estim-
ation of 𝑈𝑈𝑈 under known 𝑑 [26]; however, it could naturally be extended to estimate
𝑑 as well by keeping 𝑑 as a free parameter (e.g., [18, 23, 32, 45]). The derivation
of the Doppler-shift in the form +𝑈𝑈𝑈 ⋅ 𝑘𝑘𝑘 in Equation (2.1), assumes a depth uniform
current equal to 𝑈𝑈𝑈. In practice, the current profile is not uniform over depth and
the vector 𝑈𝑈𝑈 represents a weighted average of velocities in the upper layer of the
water column (e.g., assuming a linearly sheared current profile, waves with periods
of 𝑇 = 5–8s travelling in water depths of 𝑑 = 5–15m feel velocities that occur at
20–45% of the water depth; see eq. 5 in [46]). Therefore, 𝑈𝑈𝑈 is commonly also
referred to as near-surface current [26, 47].
Several authors have applied the dispersion relation without Doppler-shift (+𝑈𝑈𝑈⋅𝑘𝑘𝑘

in Equation (2.1)), neglecting the presence of near-surface currents, to remotely
sense 𝑑 from X-Band radar data [27, 42]. Although conceptually proven, these early
developments were applied to limited datasets and lacked quantitative validation.
Later, based on two single daily-averaged estimates from Egmond aan Zee (NL) and
Teignmouth Pier (UK), Bell [48] demonstrated that error margins could be within
1m accuracy for depths up to 12m, with exception of the breaker zone where
errors were approximately 2m. For the site of Duck (North Carolina, US) with
depths up to 6m, Trizna [44] reported depth errors of 0–4m depending on the
wave-height and suggested that the inclusion of non-linear wave theory improves
estimates. This was then disproven by Flampouris et al. [49] who, for a site near
the Wadden Sea island Sylt (GE), reported root-mean-square-errors (𝑅𝑀𝑆𝐸) of at
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least 1.6m regardless of the (non-)linear wave theory used.
For airborne optical video, Dugan, Piotrowski and Williams [28] were one of the

first to include the Doppler-shift in Equation (2.1), for the joint estimation of 𝑑 and
𝑈𝑈𝑈 using 3D-FFTs. The extension was subsequently also used in the analysis of X-
Band radar data from the Dee Estuary (UK) [23]. Although near-surface currents
could not be validated, it was noted that their inclusion had improved depth estim-
ates, which is consistent with a recent study showing that currents can influence
depth estimates significantly [50]. Based on three high tide estimates, Bell [23]
found depth errors to be mostly within a 1m range in the spatial domain, how-
ever, estimates in the deep channel (> 20m) were larger as waves only weakly
felt the bottom. More recently, 3D-FFT based DIAs have been applied to complex
nearshore situations, for example by Hessner et al. [18], who built on work done
by Seemann, Ziemer and Senet [51] and Senet, Seemann and Ziemer [47] by solv-
ing for 𝑑 in addition to 𝑈𝑈𝑈 for an analysis of two days of radar data from a coastal
site in New Zealand with strong tidal currents. Their near-surface current estim-
ates reasonably agreed with model data, yet simultaneous depth estimates lacked
validation. Similarly, Hessner, Wallbridge and Dolphin [52] investigated a site at
the southeast coast of the UK. Here, accumulated depth estimates were compared
to ground truth measurements and agreed qualitatively but error metrics were not
quantified. Ludeno et al. [32] used an algorithm proposed by Serafino, Lugni and
Soldovieri [30] to jointly estimate 𝑑 and 𝑈𝑈𝑈 from 45min of radar data from a ferry
near the harbour of Salerno (IT) and used a spatial partitioning technique to ac-
celerate computations. The local depth was between 10 and 20m, which Ludeno
et al. [32] estimated to have a bias of approximately 1m. Rutten, De Jong and
Ruessink [45] were one of the first to explore the possibility of estimating volume
budgets from estimates of 𝑑 in the nearshore region over a long time period of
one year, taking a first step from research to a potential use of radar based DIAs
in coastal management. A large depth bias of 2.3m for depths smaller than 6m,
however, caused volume estimates to be 3.9Mm3 short of what was expected.
While near-surface current estimates were not presented, they noted that poor 𝑑
estimates concurred with poor 𝑈𝑈𝑈 estimates.
So far, 3D-FFT based depth inversion from XBand-radar data has focussed on the

development and (often conceptual) testing of DIAs [18, 23, 32]. The accuracy of
depth estimates is generally in a 1–2m range and depends on the location, radar,
and the algorithm used. Moreover, presented error statistics are mostly based on
short, experimental data sets. The accuracy is generally lower in deeper areas
where waves are hardly affected by the depth [23] and in very shallow water where
waves become non-linear (e.g., [44, 53]). Even though the validation of near-
surface currents themselves is often lacking, it has been reported that including
their effect on waves is important: while it improves depth estimates [23], a poor
current estimate can also be an indicator for a poor, joint depth estimate [45]. The
effect of higher significant wave heights, Hs, has been shown to increase depth
errors in shallower waters [44], while a minimum 𝐻𝑠 > 1m is needed for sufficient
sea-clutter [23].
3D-FFT based DIAs have mostly been applied in an experimental setting and the
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question arises whether they are ready to be used for practical coastal management
purposes, such as the quantification of volumetric changes caused by nourishments.
To that end, they need to run operationally on long-term radar data and hence be
able to handle variations in environmental conditions and data quality. In this pa-
per, we present a 3D-FFT-based DIA named XMFit (X-Band Matlab Fitting), which
manages such variations by selecting the best values from a set of [𝑑, 𝑈𝑈𝑈]-solutions,
for every location in the radar domain at any point in time. The generation of a
set of solutions is done by a set of different energy thresholds to separate spec-
tral wave data from the noise floor. This is different from other currently used
DIAs, which may (i) optimize a [𝑑, 𝑈𝑈𝑈]-solution by iterating on a first, high energy
threshold guess with a lower energy threshold guess including aliases and higher
order effects [18, 47] or (ii) by maximizing a normalized scalar product between
the image amplitude spectrum and a characteristic function, which omits the use of
thresholds [30, 32]. Similar to those algorithms, the present method also includes
the Doppler-shift (Equation (2.1)) to allow for the effect of near-surface currents
on the depth estimates. XMFit uses different spectral filters, an anti-aliasing step
and a least-squares fitting procedure.
We validate the DIA using two different sites in the Netherlands: The Sand En-

gine, and the ebb-tidal delta of the Ameland Inlet to the Wadden Sea. Detailed
ground truth data from 2014 and 2018 are respectively used for validation. With
7.5km, the XBand-radar range at the Ameland Inlet is double the range previously
reported for depth inversion studies and enables us to capture the extensive size of
the Inlet. By that, we track a 5Mm3 ebb-tidal delta nourishment at 7km distance
from the radar, creating a one-year time evolution of its volume.
Section 2.2 introduces the XMFit algorithm and its features. In Section 2.3, the

field sites and data collection are described. Results on validation and monitoring
the placement of the nourishment are presented in Section 2.4. In the Discus-
sion Section 2.5, we elaborate on errors and methods to mitigate them and then
conclude our findings in Section 2.6. Radar specifics and details on computational
settings are documented in Appendix A.

2.2. Depth-inversion Method

T he depth-inversion algorithm XMFit is based on an original idea by Young,
Rosenthal and Ziemer [26], where radar image sequences of a wave field are

first split into smaller cubes, then processed via 3D-FFT to retrieve spectral wave
characteristics, after which the Doppler-shifted dispersion relation can be used to
obtain estimates of depth and near-surface currents (Equation (2.1)). In order to
process an image sequence, the algorithm requires information about the radar,
user settings and optionally a bathymetry and a water level (Figure 2.1, top row).
The radar information includes the coordinates of the radar, its radius and the fram-
erate of the image sequence and pixel size. User settings include a grid definition,
which consists of the location and size of the computational cubes, and limiters that
are used to constrain the analysis.
Before an image sequence is analysed, a high-pass threshold on the significant
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Figure 2.1.: XMFit workflow for depth and near-surface current inversion from an image
sequence. Consecutive processing steps in the flowchart are visualized along
their left. The flowchart includes: data (brown), user input (green), decision
(red), process loop start (blue; trimmed top corners) and process loop end
(blue; trimmed bottom corners), and process (white). Arrows and their annota-
tions signify flow of information. The algorithm requires input on radar specif-
ics, user settings and optionally a bathymetry and water level (grey squares top
row). The output contains maps of depth estimates and near-surface current
fields (grey square bottom row). Symbols represent: [𝑘𝑥, 𝑘𝑦] = wavenumber
components, 𝜔 = wave frequency, [dmin, dmax] = depth limits, [Tmin, Tmax] =
wave period limits, |Umax| = velocity magnitude limit, [Eth,low,..Eth,i,..Eth,high] =
array of spectral energy thresholds, [𝑑𝑖, 𝑈𝑈𝑈𝑖] = depth and near-surface current
estimates corresponding to 𝐸𝑡ℎ,𝑖, and [d, UUU] = optimal depth and near-surface
current pair.

wave heights of Hs = 0.9m is made, similar to Bell [23] as a proxy for sufficient
sea-clutter (Figure 2.1, red diamond). Note that the wave height information has
to be provided as an external input to the DIA.

The processing of an image sequence commences by dividing it into a number of
computational cubes (𝑐 = 1…N) according to the user defined grid. Cubes are pro-
cessed consecutively, each providing an estimate for a depth, 𝑑𝑐, and near-surface
current vector, 𝑈𝑈𝑈𝑐, at its location. The inversion of [𝑑𝑐, 𝑈𝑈𝑈𝑐] consists of seven steps
(Figure 2.1, labels 1 … 7 ). Since the procedure is identical for all cubes, we drop
the subscript 𝑐 from here onwards and use [𝑑, 𝑈𝑈𝑈] for notational simplicity. The first
step is to taper the computational cube with a 3D-Hanning window and to generate
a 𝑘𝑥,𝑘𝑦,𝜔-energy spectrum via 3D-FFT. If the time-sequence is long enough, the
spectrum may also be smoothed through spectral averaging in time, by dividing the
cube into smaller time-bins. Using min-max normalization, the spectral energy is
then converted to the range [0,1] to prepare it for a fitting procedure later in the
process (Figure 2.1, 1 ). At this stage, the spectrum carries redundant informa-
tion in non-relevant spectral components, such as noise and aliases, which can be
discarded to save computer memory. A wide-dispersion filter removes spectral en-
ergy beyond realistic depths (Figure 2.1, 2 ), by means of limiting dispersion shells
corresponding to a minimum depth dmin, and a maximum depth dmax. These lim-
iting dispersion shells do not include a Doppler-shift, as experience shows that it
does not provide additional result accuracy but does increase computation time. A
frequency filter removes spectral energy beyond realistic wave periods (Figure 2.1,
3 ), by means of a minimum wave period Tmin and a maximum wave period Tmax.
The limits for realistic water depths and wave periods are supplied by the user and
are typically set around [dmin, dmax] = [0.5, 25] (m) and [Tmin, Tmax] = [4, 15]
(s) respectively; indicating the ranges where we expect waves to be mostly in in-
termediate or shallow water to get reliable depth estimates. Note that for depths
larger than approximately 15m, shorter period waves (𝑇 < 6s) are mainly useful
in determining near-surface currents.
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If the frame rate of the image sequence is low due to a slow turning radar an-
tenna, as is the case in this study with 1/2.85s−1, the filtered spectrum may show
aliasing since the Nyquist frequency is close to the governing wave periods. An
anti-aliasing step removes these unwanted by-products, (Figure 2.2; Figure 2.1,
4 ) and permits the use of data up to two times the Nyquist frequency [51].
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Figure 2.2.: Anti-aliasing on a spectral cube with dimensions kx, ky, ω. Energetic spectral
data with energies above a threshold Eth,low are given by a set of 𝑝 = 1…P
points with coordinates 𝑘↑𝑥,𝑝, 𝑘↑𝑦,𝑝, 𝜔↑𝑝. This set contains correct data points (red
dots) and aliases (blue dots), below and above the Nyquist frequency (grey
plane). Aliases are detected and removed via a singular value decomposition.
The ω-axis rotates (ωrot) towards the correct spectral data by which aliases
can be separated and a non-linear fit can be done on the correct spectral data
(red dispersion shell) according to Equation (2.1). The blue shell indicates the
orientation of aliases in the spectrum.

To separate the aliases from correct wave data a singular value decomposition
(svd) (Equation (2.2)) is performed on the energetic parts of the spectrum. En-
ergetic parts are defined by all spectral data with energies above a user defined
threshold Eth,low, which is the lower bound of the set 0 < {Eth,low…Eth,high} < 1
used in the fitting procedure that follows this anti-aliasing step.

𝐴𝐴𝐴 = 𝑈𝑈𝑈ΣΣΣ𝑉𝑉𝑉𝑇
where

𝐴𝐴𝐴 = [𝑘𝑘𝑘↑𝑥 , 𝑘𝑘𝑘↑𝑦 ,𝜔𝜔𝜔↑] =
⎡
⎢
⎢
⎢
⎣

𝑘↑𝑥,1 𝑘↑𝑦,1 𝜔↑1
𝑘↑𝑥,2 𝑘↑𝑦,2 𝜔↑2
⋮ ⋮ ⋮
𝑘↑𝑥,P 𝑘↑𝑦,P 𝜔↑P

⎤
⎥
⎥
⎥
⎦

(2.2)

The matrix 𝐴𝐴𝐴 lists the 𝑝 = 1…P energetic points in the spectrum by their spectral
coordinates 𝑘↑𝑥,𝑝, 𝑘↑𝑦,𝑝, 𝜔↑𝑝 in the columns [𝑘𝑘𝑘↑𝑥 , 𝑘𝑘𝑘↑𝑦 ,𝜔𝜔𝜔↑], where the upward arrow
signifies energy higher than Eth,low. The amount of points, P, depends on the
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value of Eth,low and the spectral wave signal. The svd factorizes the matrix 𝐴𝐴𝐴 into
two unitary matrices 𝑈𝑈𝑈, 𝑉𝑉𝑉 and a diagonal matrix ΣΣΣ. The superscript T denotes the
transpose. In practice, 𝑉𝑉𝑉 represents a rotation of the kx, ky, ω-coordinate system:
𝑉𝑉𝑉 = [𝑘𝑘𝑘𝑥,𝑟𝑜𝑡 , 𝑘𝑘𝑘𝑦,𝑟𝑜𝑡 ,𝜔𝜔𝜔𝑟𝑜𝑡], which best follows the spectral data 𝐴𝐴𝐴. Due to the position
of the aliases in the spectrum, the ω-axis rotates (ωrot) towards the correct spectral
data and away from the aliases, which allows for a clear separation: Correct data
have higher values on ωrot (found via 𝐴𝐴𝐴𝜔𝜔𝜔𝑟𝑜𝑡) compared to the original ω-axis and
for aliases this is the opposite, which means that they are identified and can be
removed.
After pre-processing the spectrum several spectral fits are done. Using a Levenberg-

Marquardt minimisation, the Doppler-shifted linear dispersion relationship (Equa-
tion (2.1)) is fitted to all spectral data above a certain energy threshold 𝐸𝑡ℎ to yield
an estimate for [𝑑, 𝑈𝑈𝑈]. Since the spectrum has been normalized this threshold
lies between 0 < 𝐸𝑡ℎ < 1. However, the optimal value of 𝐸𝑡ℎ is not known be-
forehand. The solution is to iterate an optimal value by making several fits for an
array of energy thresholds {Eth,low, … ,Eth,high}, which produces a set of depth and
near-surface current pairs {[dlow,UUUlow], …, [dhigh,UUUhigh]} (Figure 2.1, 5 ). By de-
fault, {Eth,low, … ,Eth,high} covers the range {0.4, …, 0.6} in 10 increments, which is a
generic setting, but can be adjusted by the user. By using a set of 𝐸𝑡ℎ, instead of
single threshold, we omit the need to tailor the algorithm to each image sequence
separately, which makes the algorithm robust to use on long time-series of data.
The goal is now to find the optimal pair of [di,UUUi] among the list of candidates

{[dlow,UUUlow], … , [dhigh,UUUhigh]}. Pairs are retained using three criteria: (1) di falls
within the pre-set depth range [dmin, dmax], (2) |UUUi| is smaller than a user-defined
maximum velocity magnitude |Umax|, and (3) the coefficient of determination 𝑟2 >
0.6, (Figure 2.1, 6 ). Note that the depth constraint [dmin, dmax] has been used
in an earlier step to reduce the spectrum with a wide dispersion filter (Figure 2.1,
2 ). However, a poor candidate fit on those data may still suggest a solution
beyond those limits, therefore criterion (1) is needed here. To improve estimates
of an operational system, knowledge about previous depth estimates can be used
to (A) tighten criterion (1) or (B) in a Kalman filter. In case of option (A), an
average is taken over a certain number ofM previous depth estimates, 𝑑𝑎𝑣𝑔,𝑀, and
a margin Δd is chosen to tighten criterion (1) by redefining 𝑑𝑚𝑖𝑛 = 𝑑𝑎𝑣𝑔,𝑀–

1
2Δd and

𝑑𝑚𝑎𝑥 = 𝑑𝑎𝑣𝑔,𝑀 +
1
2Δd. Option (B) is a postprocessing step and does not affect the

depth inversion procedure. In this study we used option (A) for the site of Ameland
(Section 2.4) and experimented with option (B) for the Sand Engine (Section 2.5).
The 𝑟2 of criterion (3) is used as the optimization criterion as it indicates how

well the non-linear fit represents the spectral data. This value is unity for a perfect
match. Hence, the optimal [d, UUU] amongst the remaining candidates is finally
found by the fit with maximum 𝑟2, (Figure 2.1, 7 ) and can be stored as the
representative estimate for the computational cube. After a computational cube
has been processed, the sequence of steps repeats for the next computational cube
in the grid (Figure 2.1, steps 1 … 7 ), eventually producing full maps of depths
and near-surface currents (Figure 2.1, output).
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2.3. Radar in-situ data collection
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Figure 2.3.: Radar locations (centre crosses) and ranges (see top scales) at the two field
sites of Sand Engine (left) and the Ameland inlet (right). A map of the Neth-
erlands (middle) indicates the location of the two sites.

2.3.1. Sand Engine

T he first field site is the Sand Engine, a sandy mega-nourishment of approxim-
ately 21Mm3 constructed on the southwestern Dutch coast in 2011 (Figure 2.3

left). It was designed to combat erosion by diffusing along the coastline over an
extended period of 10–20yr, while minimizing ecological stress and creating space
for recreation [37]. To gain insight into the development and impact of the unpre-
cedented scale of the nourishment an extensive monitoring campaign was launched
in 2012 [54]. A radar station was installed 3km north of the nourishment area,
covering approximately 40km2. The available radar data covered a short time-
frame of 18h during 20-21 October 2014 and were used to create a snapshot
of the nourishment for that moment. Specific details on the radar properties are
summarized in Appendix A.1 Table A.1.
The significant wave height (Hs) ranged from 1.0–1.7m and the peak period

(Tp) from 6.0–7.0s, which are average wave conditions for the site [54]. In total,
184 image sequences were available, each consisting of 128 images in intervals of
2.85s, translating to 6min of wave motion at a resolution of 3.75m. Ground truth
data were based on a detailed bathymetrical survey from 6 September 2014 which
was merged with Jarkus transect data from 2014 to get greater coverage offshore.
A local tide gauge was used to compensate for water level fluctuations in the depth
estimates. For consistency, we only use the term depth throughout this chapter,
but note that it excludes the influence of water level modulation and is referenced
to NAP (Dutch ordnance datum, about Mean Sea Level) for both sites.
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2.3.2. Ameland tidal inlet

T he second field site is the Ameland Inlet, one of the tidal inlets of the Dutch
Wadden Sea (Figure 2.3 right). The inlet is characterized by a wave-dominated

ebb-tidal delta and deep tide-dominated inlet channels formed by strong tidal cur-
rents with maximum velocities around 1.5ms−1. The semi-diurnal tide has a mean
range of approximately 2m. Over the study period Dec 2017 – Dec 2018, 𝐻𝑠
ranged from 0.1–6.2m and 𝑇𝑝 from 1.8–17.0s. Wave conditions were on average
Hs = 1.3m and Tp = 5.6s and exceeded 𝐻𝑠 > 3.0m and 𝑇𝑝 > 9.0s during 5% of
the time.
The inlet is being extensively monitored within the framework of the Coastal

Genesis 2.0 (Dutch: Kustgenese 2.0) research program, which was commissioned
by the Dutch Ministry of Infrastructure and Environment in 2017 [55]. As part of
the monitoring program, XMFit software runs operationally on X-Band radar data
collected at the Ameland lighthouse. The navigational radar monitors the tidal inlet
and has a spatial coverage of approximately 180km2 (Figure 2.3 right). Specific
details on the radar properties can be found in Appendix A.1. The goal of employing
the radar is to track the evolution of a pilot nourishment of 5Mm3 at the outer
rim of an ebb-shield. Commencing 20 March 2018, the gradual placement of the
nourishment ended in February 2019.
Radar image sequences at Ameland consist of 256 images spaced at 2.85s.

Image sequences cover a time window of 12min and are produced at 20min
intervals, leaving 8min of downtime in between. The pixel size is 7.5m. Note
that the range resolution is 7.5m, but that the beam widens with distance from
the radar. Depending on the alignment of the radar beam and wave crests, we
estimate the resolution to be between 7.5m and 57m at 7km distance from the
radar (see also Appendix A.1). Due to presently limited storage space (in this case
16TB), raw image sequences (each 3GB) are overwritten after 2 months and
hence not available for reanalysis. The image sequences are processed locally in
the light house such that the much smaller sized result files (each 0.1–0.5MB) can
be transferred via a 4G internet connection. Note that the storage buffer allows for
the analysis of up to 72 image sequences a day; the increasing lag can be caught
up during times when 𝐻𝑠 < 0.9m.
Poor depth estimates were suppressed by tightening criterion (1) (section 2) using

an averaging window ofM = 5 and a depth margin of Δd = 4m. Initial bathymetry
data was needed to start the process. Tidal depth modulation was accounted for by
passing information from a local wave buoy at Terschelling (Figure 2.1: grey square,
top right). As initial bathymetry data a combination of surveys from February and
September 2017 was used. Their initial influence on the estimates quickly phased
out due to the choice of a rather large depth margin Δd. To additionally ensure that
presented depth estimates were independent from the initial bathymetry the first
1000 estimates were ignored in this study. The choices for the averaging window
and the allowable depth margin were made arbitrarily and other values may be
chosen, yet the current combination of values underlies the results presented in
this study.
Between Dec 2017- Dec 2018, the operational system returned approximately
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7500 estimates of morphology. Within this period the Ameland Inlet was surveyed
twice using a single beam mounted on a vessel. The first survey was done in
the beginning stage of nourishment works 31 May – 5 June 2018 (Survey #1)
and the second survey about half way, from 12 – 14 October 2018 (Survey #2).
The surveys were done during calm periods that fell below the threshold of Hs =
0.9m used by the operational system to produce depth estimates. For validation,
therefore the average was taken over daily median estimates with similar spatial
coverage shortly before and after each survey. Specifically for the nourishment
location, additional multibeam surveys were available, which were used in this study
to compute volumetric changes over the placement period of the nourishment.
The computational grids and user settings underlying the analyses of both the

Sand Engine and the Ameland Inlet can be found in Appendix A.2.

2.4. Results
2.4.1. Sand Engine

T he application of XMFit to radar images from the Sand Engine produced spa-
tially smooth depth estimates (Figure 2.4a). Comparison of the median depth

inversions with depth measurements revealed an overall bias of −0.9m, reveal-
ing a tendency for depth overestimation by the DIA. The average standard devi-
ation around a depth estimate was 0.85m and likely stemmed from tidally induced
changes in flow direction relative to the direction of wave incidence, see also Dis-
cussion Section 2.5.1. The spatial root mean square error (𝑅𝑀𝑆𝐸) was 1.32m and
was mostly caused by inaccuracies close to shore and at the northern boundary
of the radar domain. Near the shoreline, especially around the 5m depth contour
(Figure 2.4b), waves start to break over the nearshore bars and the used linear
wave theory is not representative, which causes errors to be locally larger. This
is similar to a previous observation by Bell [48] for Egmond aan Zee, a site about
60km to the north of the Sand Engine. Close to the boundary of the radar domain,
the radar image quality degrades. Furthermore, at the north-eastern end of the do-
main the radar beam aligns with wave crests, and depth estimates were poor or not
returned. It is interesting to observe that estimates at large depths 𝑑 = 10–15m
were generally close to ground truth, although peak wave periods were relatively
short 𝑇𝑝 = 6–7s, meaning that an error in wavenumber leads to a large error in
depth. There are two reasons why such errors are limited in the current approach:
First, wavenumber errors are minimized through spectral averaging with 5 tem-
poral bins (see Appendix A.2). Secondly, many spectral coordinates are used for
the non-linear fit (Figure 2.1, 5 ). For the Sand Engine at these large depths on
average about 75 coordinates spread over several angles and 11 frequencies. An
important property of 3D-FFTs in combination with anti-aliasing is that frequencies
up to two times the Nyquist frequency can be used for the fit [47, 51]. This sup-
plies extra spectral coordinates for the fit (red points above Nyquist frequency in
Figure 2.2), which especially for 𝑇𝑝 = 5–6s can offer some extra certainty on the
depth estimate in this case.
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Note that it is possible to improve the results by making changes to the spectral
treatment of the radar data or by using a Kalman filter in post-processing, which
we address in the Discussion Section 2.5.
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Figure 2.4.: Radar-derived results for the Sand Engine. (a) Inverted depths 𝑑𝑖𝑛𝑣 (m) (col-
orbar). (b) Comparison of 𝑑𝑖𝑛𝑣 against in-situ measured depths 𝑑0 (m), where
red/blue colors indicate under-/overestimation of depth respectively. In both
panels, contour lines of measured depths are superimposed for reference. Res-
ults represent the median over 184 image sequences spanning 18h in total.
Values are included for the percentage of grid cells returning a result (inv.
cells), the overall bias (bias) and the root mean squared error (𝑅𝑀𝑆𝐸).

2.4.2. Ameland tidal inlet

D epth results for the Ameland Inlet distinctly captured the characteristic mor-
phological features of the outer delta (Figure 2.5a,c). The horseshoe-shaped

ebb-shield in the west, the central ebb channel, and the large swash platform front-
ing Ameland were detected by the algorithm. The estimated depths at instances
of Survey #1 and Survey #2 compared to ground truth with spatially averaged bi-
ases of respectively 0.85m and 0.63m, and 𝑅𝑀𝑆𝐸s of respectively 1.34m and
1.14m (Figure 2.5b,d), which were largely determined by inaccuracies between
the 5–10m contour lines. We hypothesize these imprecisions to be partly linked
to complex local hydrodynamics, which are not accounted for by Equation (2.1), in
combination with some radar image related effects. For example, we expect some
error due to tide driven shear flows in the channel between the ebb-shield and the
swash platform and intense wave breaking and strong wave driven currents along
the northern edges of these two features. In the region close to the island of Ter-
schelling, in the western part of the domain (Figure 2.5b), we ascribe some error to
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Figure 2.5.: XMFit results from the operational Ameland system as compared to a survey
from 31 May to 5 June 2018 (Survey #1) and a survey from 12-14 October
2018 (Survey #2). Panels (a,c): average depth estimates over two days en-
compassing each survey, as indicated by (a) 𝑑𝑖𝑛𝑣,𝑆1 for Survey #1 and (c)
𝑑𝑖𝑛𝑣,𝑆2 for Survey #2. Single beam observations are outlined by white depth
contours. Panels (b,d): difference of inverted depths 𝑑𝑖𝑛𝑣 with the corres-
ponding single beam measurements 𝑑0 (now accentuated by black contours
instead of white contours) as indicated by (b) 𝑑0,𝑆1–𝑑𝑖𝑛𝑣,𝑆1 for Survey #1 and
(d) 𝑑0,𝑆2–𝑑𝑖𝑛𝑣,𝑆2 for Survey #2. Similar to the Sand Engine a mostly negative
bias (depth overestimation; blue) is observed, being a little higher for Survey
#1 (bias = −0.85m) than Survey #2 (bias = −0.63m).

the unfavourable angle of the radar beam with respect to the incoming wave crests.
Yet another source of error was present, as the ebb-shield and the western branch
of the ebb channel appeared slightly shifted to the south compared to single beam
data. This shift stood out in the comparison with ground truth data (Figure 2.5b,d)
through sharp negative biases around feature-edges facing north and correspond-
ing positive biases around feature-edges facing south. Revisiting the raw radar
images, revealed that this shift was partly rooted in a localized distortion of the
raw radar image data, which was probably caused by a slight misalignment of the
radars Northing, but the full origin is unknown and could therefore not be assessed
in detail. In contrast, the system performed well for shallow parts such as the large
swash platform near Ameland and deep parts to the north of the outer delta. Here,
depth estimates were consistently accurate (Figure 2.5b,d: white areas).
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The difference between the two time instances of Survey #1 and Survey #2
brought out the signature of the nourishment at the outer rim of the ebb-shield,
in the single beam measurements (Figure 2.6b) as well as radar-inverted results
(Figure 2.6a). These results were in line with the location of the nourishment site
as provided by the dredging contractor. A succession of sedimentation-erosion pat-
terns across north-eastern direction over the ebb-shield furthermore suggested a
slight, clockwise turning of the ebb-shield over this four-month period. Although
less pronounced than in the single beam measurements (Figure 2.6b), these pat-
terns were also found in the radar-derived results (Figure 2.6a).
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Figure 2.6.: Difference between June (Survey #1) and October (Survey #2) as derived for
radar and single beam measurements. (a) radar: inverted depths 𝑑𝑖𝑛𝑣,𝑆1, of
Survey #1 are subtracted from 𝑑𝑖𝑛𝑣,𝑆2 of Survey #2. (b) single beam: accord-
ingly, measurements 𝑑0,𝑆1 of Survey #1 are subtracted from 𝑑0,𝑆2 of Survey #2.
The pilot nourishment fronting the ebb shield is clearly visible in both cases and
its position is in line with expectation (green polygon). Note that the surveys
do not cover the entire radar domain. For visual clarity, differences between
radar results (a) are truncated to the same area as the surveys (b).

Since the nourishment was clearly visible in the time snapshots, the analysis was
refined towards a more detailed time evolution to see whether we were able to mon-
itor volume changes in the nourishment area during placement. For this, we used
all the results produced between Dec 2017- Dec 2018. Before analysing nourish-
ment volumes, the noise of the radar-derived depth estimates throughout the radar
domain was assessed, as this noise could impact volume calculations. A timeser-
ies of the spatially averaged depth bias was computed by the difference between
radar-derived estimates and single beam data from Survey #1 (Figure 2.7). It was
assumed that the influence of actual morphological change on the bias was neg-
ligible compared to the variability in radar depth estimations (cf. Figure 2.6b and
Figure 2.5b). Although tidal water level changes were accounted for, the timeseries
of depth biases fluctuated roughly between −2m and 0m. The average standard
deviation around a daily depth estimate was 0.71m. This noise was inherent to
the operational system and was likely a product of a combination of factors, such as
differences in radar image quality due to external factors (wind, rain, fog), but was
also a consequence of applying idealized theory (Equation (2.1)) to a complex and
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variable outer delta environment: we found weak linear dependencies of the depth
bias on the water level and the wind speed. For low water levels, NAP−1.5m, the
depth bias was on average −0.74m and decreased linearly to −1.06m for high
water levels of NAP+1.5m. Yet, with a standard deviation of 0.84m the uncer-
tainty in these depth bias values was high and showed that it would be difficult to
predict the depth bias from a given water level. A similar linear relation was found
between depth bias and wind magnitude: for wind speeds of 3ms−1 the depth
bias was on average ≈ −0.5m, while for wind speeds of 15ms−1 this bias was
≈ −1.2m. Yet again, the standard deviation was high at 0.81m, showing that
a prediction of the depth bias based on wind speed would be uncertain. Depth
estimates also correlated with simultaneous near-surface current estimates, whose
directions and magnitudes are indicators for local depth underestimation or overes-
timation, as we discuss in detail in Section 2.5.1. Since the current fields constantly
change in space and time, they likely contribute to the observed fluctuations in
the overall depth bias. No correlations of the depth bias with wind direction, wave
height or wave period were found.
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Figure 2.7.: Mean spatial bias over the full radar domain of XMFit estimates with ground
truth data surveyed between 31 May to 5 June 2018 (Survey #1, yellow). The
start of nourishment works is indicated by a vertical green line. Representat-
ive bed elevations are obtained by subtracting local water level measurements
from the XMFit depth estimates. Dots represent the daily median result and
whiskers the corresponding 25th and 75th percentiles. Colors indicate the av-
erage depth over the parts of the radar image that contain results and show
that the bias appears lower for moments when only small (small marker size),
shallow (magenta, red) areas could be inverted. When coverage is high (large
marker size) the bias also accounts for sensitive deeper parts (purple, blue).
Note that the lack of data during February is due to a temporary system shut-
down.

On the time scale of days, the observed noise would severely impact the calcula-
tion of nourishment volumes, therefore a straightforward solution was to ensemble
average over a time window: we based volume calculations on median depth es-
timates in the nourishment area over a sliding time-window of one month. Besides
denoising, volume estimates were then continuous in time, bridging over gap peri-
ods where the radar system had not been able to produce depth estimates for the
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nourishment area (Figure 2.8, gaps between grey bars). A window size of one-
month was chosen as most data gaps could be overcome, except for a large gap
in February 2018, while noise was largely suppressed. Volume changes were cal-
culated by multiplying the average depth changes by the nourishment area (see
Figure 2.6, green polygon). For the comparison, volumes were computed based on
inverted depths as well as the depths from the multibeam surveys of the nourish-
ment.
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Figure 2.8.: The time-evolution of the sediment volume changes in the nourishment area
(Figure 2.6, green polygon) for the period Dec 2017–Dec 2018 according to
radar (red line) and multibeam surveys (blue dots). Volume changes are nor-
malized to the 2nd multibeam survey (cyan dot). Per day, the number of avail-
able XMFit results that covered the nourishment area – and could hence be used
for volume calculations – is indicated by a vertical grey band (see colorbar).
The monthly median radar estimate (red line) is presented with correspond-
ing 25th–75th percentile range (shaded red) and 10th–90th percentile range
(shaded yellow). The start of nourishment execution, 20 Mar 2018, is indicated
by the vertical green line.

To focus the comparison between radar-estimates and multibeam measurements
on volume changes, we referenced both the radar estimates and the measurements
to the second multibeam measurement. The reason for this is a bias of 2Mm3

between the radar estimates and the measurements in the nourishment area at
the time of the second multibeam survey (Figure 2.5). We assumed this bias to
be constant in time, as fluctuations caused by environmental conditions and data
quality should average out using a one-month averaging window over a long period
of time. This meant that volume changes could be studied.
Computed volume changes in the nourishment area were relatively stable until

they started to increase at the beginning of March 2018 (Figure 2.8). Considering
the start of nourishment works (20 March 2018), this increase appeared two weeks
premature. This could be explained by the one-month time window to suppress
noise, while having no pre-nourishment data in February to counter balance March
data. A 𝑅𝑀𝑆𝐸 of 276000m3 was calculated based on the 7 instances where
radar-derived volumes could be related to the multibeam surveys. It represented
an error of 7% on the total placement volume of 3.8Mm3. It is interesting to
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note that the location was at more than 7km distance from the radar station, near
maximum range.

2.5. Discussion

T he depth inversion showed skill for both the Sand Engine as well as the complex
Ameland Inlet. Yet, the depth was often overestimated in regions (i) that were

close to the boundary of the radar domain (ii) where the radar beam aligned with
wave crests (iii) where we expected complex hydrodynamics due to wave breaking,
strong currents or shear flows. These errors are related to the backscatter, but
also to the limitations of using a simplified physical model (i.e., Equation (2.1),
idealized wave-current interaction) for depth inversion. The quality of 𝑑 estimates
by their covariance with 𝑈𝑈𝑈 estimates provides insight into the role of the Doppler-
shift. This is done from a statistical point of view, based on the extensive dataset
from the Ameland Inlet (Section 2.5.1). The 𝑑 estimates can also be improved. By
changing the computation procedure (Section 2.5.2) and/or by post-processing the
results (Section 2.5.3), errors in (i) - (iii) are reduced. Experiments to reduce depth
errors were conducted for the Sand Engine, since the image sequences could be
recomputed at this site. Note that Ameland depth estimates were collected during
a time where the DIA did not yet include a measure for error variance, which means
that we could not test the Kalman filter on those data.

2.5.1. The role of near-surface current estimates in depth
inversion

N ear-surface currents are estimated per computational cube via the Doppler-shift
(+𝑘𝑘𝑘 ⋅𝑈𝑈𝑈, Equation (2.1)), being the dot product of a wavenumber vector with a

near-surface current vector. Only current components in/against the wave direction
alter the wave frequency and thereby affect the depth estimate 𝑑. To investigate
the effect of 𝑈𝑈𝑈 on 𝑑, near-surface current directions were translated to near-surface
current angles (𝑁𝑆𝐶𝐴) with respect to wave direction, which was here taken to be
the energy-weighted mean wave direction (𝑀𝑊𝐷) over the spectrum.
First a preliminary check was done whether patterns of 𝑈𝑈𝑈 and 𝑀𝑊𝐷 were real-

istic and thereby suited for further analysis (Figure 2.9). This appeared to be the
case: The 𝑀𝑊𝐷 captured the effect of wave refraction, being stronger during low
tide conditions (Figure 2.9b) than during high tide conditions (Figure 2.9a). It
also revealed more intricate patterns as for example waves which followed ebb-
channels to meet at the bifurcation just below the horseshoe-shaped ebb-shield
(Figure 2.9b). Estimated 𝑈𝑈𝑈-vectors also appeared realistic, reflecting the charac-
teristic tidal flows expected for the area: The tidal wave travels along the barrier
islands (Figure 2.9c,d: vector fields in north-northeast of domain) pushing water
into the inlets at upcoming tide (Figure 2.9c: east-south-eastward flow through
ebb-channels) and causing outward flow at falling tide (Figure 2.9d: westward flow
through western ebb-channel and northward flow through central ebb-channel).
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Details such as flow through the small flood channels near Terschelling at rising
tide were also captured.
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Figure 2.9.: Examples of mean wave directions (𝑀𝑊𝐷) and near-surface currents (𝑁𝑆𝐶)
at the Ameland Inlet, as estimated by XMFit. Turquoise arrows indicate 𝑀𝑊𝐷-
patterns. 𝑁𝑆𝐶 arrows are scaled and colored according to magnitude (col-
orbar). Panels (a,c): An example from 25 Oct 2018 at 05:50, rising tide with a
water level (𝑊𝐿) = 𝑁𝐴𝑃+1.1m. Panels (b,d): An example from the preceding
falling tide at 01:30, with 𝑊𝐿 = 𝑁𝐴𝑃−0.9m.

For the Doppler-shift analysis, we retrieved the required 𝑁𝑆𝐶𝐴s by expressing
near-surface currents relative to the collocated 𝑀𝑊𝐷s. The accuracy of depth es-
timates was measured by the local depth bias 𝑑0,𝑆1–𝑑𝑖𝑛𝑣, which was computed for
each cube in the domain and for all available time instances. In this way a compre-
hensive dataset was constructed, comprising >20 × 106 pairs of depth biases and
coincident near-surface current vectors. Analogous to Figure 2.7, we used Survey
#1 as reference to calculate depth biases.
The analysis revealed that near-surface current estimates in direction of wave

propagation (𝑁𝑆𝐶𝐴 → 0°) generally cooccurred with underestimation of depth,
while near-surface current estimates against the direction of wave propagation
(𝑁𝑆𝐶𝐴 → ±180°) coincided with an overestimation of depth (Figure 2.10a: sinus-
oidal shape). These under- and overestimations increased with increasing near-
surface current magnitudes (Figure 2.10a: bright colors at peak 𝑁𝑆𝐶𝐴 = 0°, and
trough 𝑁𝑆𝐶𝐴 = ±180°). However, weak near-surface current estimates in direc-
tion of wave propagation did not guarantee a good depth estimate (Figure 2.10a:
dark colors between 𝑁𝑆𝐶𝐴 = −60° to 63°). Still, the observations generally show
that the Doppler-shift overcompensates for the presence of currents, as without the
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Doppler-shift we would expect current-induced depth errors to behave the opposite
way ([50]; eq. 10).

In shallow water, 𝑑0,𝑆1 = 0.5–5.0m, depth overestimations and depth underes-
timations nearly balanced each other over the range of 𝑁𝑆𝐶𝐴s from −180° to 180°
(Figure 2.10b: median depth bias per 𝑁𝑆𝐶𝐴, green curve, undulates around zero.
Transition from general depth underestimation to overestimation at 𝑁𝑆𝐶𝐴 = ±73°,
vertical magenta lines). This changed with increasing depth, 𝑑0,𝑆1 = 5.0–10.0m, as
depth overestimations started to dominate depth underestimations for most NSCAs
(Figure 2.10c: green curve only positive for 𝑁𝑆𝐶𝐴 between −43° to 52°), with
chronical overestimation for 𝑑0,𝑆1 = 10.0–25.0m (Figure 2.10d: green curve stays
below zero). However, in direction of wave propagation these overestimations
were on average small with values close to zero (Figure 2.10d: green curve within
𝑁𝑆𝐶𝐴 < ±90°). Besides the tendency towards depth overestimations, also the
sensitivity in the depth estimates increased with increasing depth (cf. Figure 2.10b-
d: bandwidth, given by 2.5th–97.5th percentile range, increases from b) ≈3m to
c) ≈4m to d) ≈6m) especially for situations where near-surface current estimates
pointed in direction of wave propagation (cf. Figure 2.10b-d: bandwidth larger
for 𝑁𝑆𝐶𝐴 < ±90°). It was interesting to observe that for shallow depths estim-
ated maximum near-surface current magnitudes were larger in direction of wave
propagation than against it (Figure 2.10b: brightest colors for 𝑁𝑆𝐶𝐴 → 0°, depth
underestimation). For large depths, maximum near-surface current magnitudes
were estimated against direction of wave propagation (Figure 2.10c,d: bright-
est colors for 𝑁𝑆𝐶𝐴 → 180°, depth overestimation), while near-surface current
estimates in direction of wave propagation appeared to be underestimated (Fig-
ure 2.10c,d: dark colors for 𝑁𝑆𝐶𝐴 < ±90°).

In summary, observed biases in both depth and near-surface current estimates
suggest that the non-linear fit of Equation (2.1) to the spectral data is sensitive to
the local depth and the wave direction: (1) Generally, depths are underestimated
for near-surface currents following the direction of wave propagation and depths
are overestimated for opposing near-surface currents. (2) Strong near-surface cur-
rent estimates correlate with strong depth biases, but a weak near-surface current
estimate in direction of wave propagation does not guarantee a small depth bias.
(3) For increasing depth, the depth estimate is more uncertain, tends towards over-
estimation, and especially so for opposing near-surface currents. (4) This is correl-
ated with near-surface currents against direction of wave propagation having larger
magnitudes than in direction of wave propagation.

The observations suggest that depth estimates may benefit from stricter con-
straints on maximum surface current magnitudes (e.g., |Umax| < 0.5m instead of
|Umax| < 1.5m). This entails that it be difficult to find an optimal solution among
the list of [𝑑𝑖, 𝑈𝑈𝑈𝑖]-candidates which satisfies the stricter criterion (Figure 2.1, 6 ).
A way to solve this problem could be to penalize the non-linear fit for large |𝑈𝑈𝑈|.
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Figure 2.10.: Observed depth bias (vertical axis) as a function of the near-surface cur-
rent angle (NSCA) with respect to mean wave direction (horizontal axis). At
𝑁𝑆𝐶𝐴 = 0degree, near-surface currents point in direction of wave propaga-
tion, whereas for 𝑁𝑆𝐶𝐴 = ±180° they oppose each other. The depth bias is
used as proxy for the depth error. Corresponding near-surface current mag-
nitudes (|𝑈𝑈𝑈|) are shown in bronze colors (colorbar). Panels present data
within different ranges of depth: a) 0.5 < 𝑑0,𝑠1 < 25.0m (all data); b)
0.5 < 𝑑0,𝑠1 < 5.0m; c) 5.0 < 𝑑0,𝑠1 < 10.0m; d) 10 < 𝑑0,𝑠1 < 25.0m. Depth
biases are calculated as the difference between measured depths from Sur-
vey #1 and water level corrected inverted depths, 𝑑0,𝑠1–𝑑𝑖𝑛𝑣. Per 𝑁𝑆𝐶𝐴, the
95% range of observed depth biases is presented (bandwidth) along with
their median value (green line); the 95%, 80% and 50% range contours
are indicated with dotted black lines and labelled as shown by the green boxes
in panel (a). 𝑁𝑆𝐶𝐴 = ±90° are emphasized by additional vertical grid lines,
to indicate where near-surface currents have no effect on waves according to
Equation (2.1). The angles that are optimal for depth inversion are given by
the zero crossings of the median depth bias and are emphasized by vertical
magenta grid lines. The dataset includes the results of all analysed cubes
over the entire period from Dec 2017 – Dec 2018, amounting to >20 × 106
observations.
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2.5.2. Choice of spectrum (amplitude vs. energy)

D epth estimates can also be improved in other ways. Depth inversion results
are a product of relating wave characteristics to wave theory. A different rep-

resentation of the wave characteristics may lead to different results, which is in-
vestigated by using amplitude spectra instead of energy spectra. The difference is
simply that spectra are not squared after performing the 3D-FFT. It does not alter
the wavenumber-frequency relationships, but their weights and hence changes the
sets of spectral data that are passed to the non-linear fitter during the thresholding
procedure (Figure 2.1, 5 ).
The results of this experiment suggest that more favorable sets of spectral data

are established if amplitude spectra are used, as the overall depth bias (median over
all analyzed image sequences) improved by 0.13m, from −0.90m to −0.77m (cf.
Figure 2.11a,b). The improvements especially occurred around the bars where
waves break (Figure 2.11a,b, right column: red line vs. green line between 𝑑0 =
4–8m). This was also emphasized by an improvement of the bias by 0.22m for the
nearshore area, above the 10m depth contour. Similarly, also the 𝑅𝑀𝑆𝐸 improved
by 0.20m from 1.32m to 1.12m with improvements being largest in shallow re-
gions and the bar area. This effect can be explained by the disproportionate spectral
weight of breaking waves in the image spectrum who by their asymmetry do not
agree with the linear dispersion assumption underlying the analysis. Using an amp-
litude spectrum keeps the spectral weights closer together and thereby reduces the
impact of breakers. Improvements were also noticed for the more difficult area to
the north-east of the Sand Engine (Figure 2.11a,b,left column: whitening of north
east area), which we ascribe to a relatively weaker impact of bad wave represent-
ations; in this case due to radar beam - wave crest alignment and lesser image
quality.

2.5.3. Kalman filtering

A n alternative way to improve the XMFit results is through post-processing with
a Kalman filter. The Kalman filter is used in time on the derived morphological

changes, assuming slowly varying morphology in comparison to the radar sampling
interval, analogous to Holman, Plant and Holland [20]. The Kalman filter is an in-
strument for quality control and improvement: It weighs the current depth estimate
𝑑𝑡 at time 𝑡 against a previous estimate 𝑑𝑡−1 at 𝑡 − 1 using the Kalman gain, 𝐾,
by 𝑑𝑡 = 𝑑𝑡−1 + 𝐾(𝑑𝑡 − 𝑑𝑡−1), where overbars denote Kalman adjusted estimates.
The Kalman gain requires an indication for the confidence we have in the current
𝑑𝑡 estimate (𝑅 in eq. 5 of Holman, Plant and Holland [20]). In line with Holman,
Plant and Holland [20], we use the error variance 𝜎2 of the non-linear fit for this
purpose. This error variance of 𝑑𝑡 is compared against the variance 𝜎2 of 𝑑𝑡−1 (𝑃 in
eq. 5-7 of Holman, Plant and Holland [20]), which depends on previous estimates
of 𝜎2, but also on process variance (𝑄 in eq. 6 of Holman, Plant and Holland [20]).
The process variance, 𝑄, accounts for morphological change that may occur over
the period of observations, but since Sand Engine data only cover a period of 18h,
we neglect it (i.e., 𝑄 = 0). For further details on the application of a Kalman filter
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Figure 2.11.: Methods to improve the XMFit results for the example case of the Sand Engine,
shown by comparisons of inverted depths 𝑑𝑖𝑛𝑣 (𝑚) against in-situ measured
depths 𝑑0 (𝑚). The left column presents difference maps where red/blue col-
ors indicate under-/overestimation of depth respectively. The right column
presents direct comparisons of 𝑑𝑖𝑛𝑣 against 𝑑0, including the 1 ∶ 1 reference
(green), the median over all 𝑑𝑖𝑛𝑣 at a certain 𝑑0 (red), and the 5–95% con-
fidence interval (dashed red). Panels (a,b): Median depth estimates over all
184 image sequences from 20-21 Oct 2014, for (a) the base case using the
energy spectrum and (b) using the amplitude spectrum. Panels (c,d): The
final, 184th estimate of the Kalman filter after application to results produced
using (c) energy spectra and (d) amplitude spectra.

to bathymetry estimates from a DIA, we refer to Holman, Plant and Holland [20].
This experiment presents the results after the last, 184th Kalman filter iteration.
The Kalman filter reduced the depth bias by 0.21m, from −0.90m to −0.69m,

and the 𝑅𝑀𝑆𝐸 by 0.25m, from 1.32m to 1.07m (cf. Figure 2.11a,c). In this case,
the improvements were quite evenly distributed across all depths, including deeper
areas (Figure 2.11a,c,left column: whitening of northern area; Figure 2.11a,c,right
column: narrowing of 𝑑𝑖𝑛𝑣-confidence interval for 𝑑0 > 10m). The combined effect
of a Kalman filter and an analysis based on amplitude spectra was a reduction of the
overall depth bias to −0.58m and 𝑅𝑀𝑆𝐸 to 0.88m (Figure 2.11d). The broad im-
provements clearly showed when compared to the base case (cf. Figure 2.11a,d):
Depth estimates of the difficult regions in the north and north-east improved (Fig-
ure 2.11a,d,left column), but also the breaker region (Figure 2.11a,d,right column),
which is known to experience larger errors [23]. Hence, on the short term, the ap-
plication of a Kalman filter without process variance is superior to using the median
estimate. Though we recommend the data to cover at least one tidal cycle as to
dampen out temporary tide induced inaccuracies.
Although we could not test the Kalman filter on the Ameland data, due to lack-

ing information on 𝜎2, it is also not straightforward to apply. While the Kalman
filter has proved itself valuable for the Sand Engine and also other uniform coast-
lines such as Duck [20], more complex coastal systems – like an ebb-tidal delta
– may pose a problem when viewed over long periods of time, as morphological
change needs to be described by process variance as a function of time and loc-
ation, 𝑄(𝑡, 𝑥, 𝑦). Tidal deltas are subject to various drivers and mechanisms that
move sediment [56, 57]. Their influence and interactions continuously change in
both space and time, which makes it difficult to formulate and quantify 𝑄(𝑡, 𝑥, 𝑦).
A spatiotemporally uniform implementation could be the choice of an upper bound
𝑄 = 𝑚𝑎𝑥(𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒), however, remains subject for further study.
By reducing both bias and 𝑅𝑀𝑆𝐸, the change of spectrum (Section 2.5.2) and

the Kalman filter (Section 2.5.3) have demonstrated that results can be improved.
Stricter constraints on near-surface current magnitudes may also increase the ac-
curacy of depth estimates (Section 2.5.1). Future work might provide insights that
could lead to additional improvement of the results since some bias and 𝑅𝑀𝑆𝐸
remains. Early thoughts on common sources of error are (i) more radar image pre-
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processing to enhance radar image quality with increasing distance from the sensor,
for example using FFT-accelerated video reconstruction techniques [58] (ii) the ap-
plication of multiple radars to cover unfavourable wave-angles and (iii) including
breaker intensity as a proxy for depth-induced dissipation to improve estimates in
breaker zones [43].

2.6. Conclusions

A depth inversion algorithm (DIA), XMFit (X-Band MATLAB Fitting), is a radar-
based technique to monitor coastal evolution on large space (10s of kilometers)

and time (months) scales. We mapped and analyzed two nourishments in the Neth-
erlands using this technique: (1) an 18h snapshot of the beach mega nourishment,
the Sand Engine, and (2) a one-year time-series of a 5Mm3 pilot nourishment in the
ebb-tidal delta of the Wadden Sea island Ameland. Derived morphologies in both
cases largely agreed with ground truth data. Depth biases were around −0.9m
at the Sand Engine and fluctuated between approximately −2–0m at the Ame-
land ebb-tidal delta. By averaging and debiasing the radar-derived morphologies,
it was possible to accurately quantify the growth of the ebb tidal delta nourishment
at Ameland during its placement in 2018 with a volumetric margin error of 7%.
Depth errors in the Ameland delta correlated with near-surface current magnitude
and direction relative to the direction of wave propagation. The depth errors were
generally smaller for small surface current magnitudes and respectively showed
under- and overestimation for near-surface currents, in and against the direction of
wave propagation. For the Sand Engine, experiments with the spectral treatment
and the conceptual employment of a Kalman filter in post-processing improved the
depth bias to 0.6m. Further improving the results and the algorithm remains a
scientific and operational challenge.
This research presents the successful operation of a DIA on data from a naviga-

tional X-Band radar to monitor a mega nourishment in a complex tidal inlet system,
allowing coastal managers to assess volume changes over time.
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On-the-fly bathymetry with

drones & cameras

alles loopt op klompen en dit is een kokosnoot

Kokosnoot, Drs. P

This chapter explores the possibility to map coastal bathymetry on-the-fly
with a depth inversion algorithm (DIA) that self-adapts to given video data.
The idea is to create a tool that continuously returns mapping updates,
while requiring little user-expertise. The DIA is showcased for video from
stationary cameras and drones in the USA, UK, Netherlands, and Australia.
Lessons learned:

• The proposed DIA can be used for on-the-fly analysis of video (feeds) by
continuously giving mapping updates of bathymetry, but also of wave
celerity and near-surface currents.

• The DIA uses the Dynamic Mode Decomposition (DMD) to reduce the data
complexity of wavefield video. The DMD automatically finds dominant
wave components by their phase images and corresponding frequencies.

• The optimal size of local analysis subdomains is determined automatic-
ally per wave component. Subdomains become smaller with increasing
frequency, creating pyramid-shaped cells.

• Estimates of depth, wave celerity and surface currents quickly converge
by temporarily storing and calling up spectral information. Additional
fast convergence is achieved using Kalman filtering.

• Merely 32s of video footage are needed for a first mapping update with
average depth errors of 0.9–2.6m. These further reduce to 0.5–1.4m as
the videos continue and more mapping updates are returned.

This chapter has been published in Remote Sensing 13, 4742 (2021) [34].
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3.1. Introduction

O bservations of near-shore hydrodynamics and bathymetry are used for various
purposes: to study and manage the coast [3, 55, 59], to update early warning

systems [60], to monitor swimmer safety [2, 61, 62], for dredging-and-dumping
surveillance [4], and military landing operations [25]. An observation of hydro-
dynamics or bathymetry with areal coverage, a map, is thereby often beneficial if
not a prerequisite to recognize relevant spatial details. A straightforward approach
to map coastal hydrodynamics and bathymetry is via video-based remote sens-
ing of a wave-field. In comparison to in-situ measurements, video-based remote
sensing is less accurate, however, data acquisition is also less labor-intensive and
measurements have high spatial coverage by default.
Different instruments and video processing methods are used to map hydro-

dynamics and bathymetry. In terms of instruments, videos may be recorded with
stationary cameras [63], aircrafts [28], UAVs/drones [12, 64–67], (navigational) X-
Band radars [26, 27, 30, 51, 68] or satellites [69, 70]. In terms of video-processing
methods, various types exist e.g., [21, 26, 27, 29, 43, 71–74]. Most widely used
among the coastal remote sensing community are video processing methods that
analyse wave dispersion properties. They prove applicable to different instruments
[33, 75] and allow to estimate several coastal parameters. Consecutive frames of a
wave-field recording are scanned [26, 76] to extract dominant wave frequencies, 𝜔
(rad s−1), and associated wave lengths and directions via wavenumber vectors, 𝑘𝑘𝑘
with [𝑘𝑥, 𝑘𝑦] (radm−1) [51, 68, 77–79], but also wave celerity vectors, 𝑐𝑐𝑐 with [𝑐𝑥,
𝑐𝑦] (ms−1) [80–82], near-surface current vectors, 𝑈𝑈𝑈 with [𝑢, 𝑣] (ms−1) [18, 26,
28, 47] and the apparent depth, 𝑑 (m) [20, 25, 27, 28, 42, 83]. While 𝜔, 𝑘𝑘𝑘 and 𝑐𝑐𝑐
are retrieved directly from wave patterns [84, 85] or their corresponding frequency-
wavenumber spectra e.g., [80], (Figure 3.1 left), 𝑈𝑈𝑈 and 𝑑 are retrieved indirectly,
albeit simultaneously [3, 21, 23, 32, 50], by matching frequency-wavenumber spec-
tra with a theoretical wave model (Figure 3.1 right). This study focusses on map-
ping 𝑐𝑐𝑐, 𝑑 and 𝑈𝑈𝑈. Vector fields of 𝑘𝑘𝑘 are directly coupled to vector fields of 𝑐𝑐𝑐 via
corresponding 𝜔.
The wave model is typically given by the Doppler-shifted linear dispersion rela-

tionship, Equation (3.1):

𝜔𝑚𝑜𝑑𝑒𝑙(𝑑,𝑈𝑈𝑈) = √g|𝑘𝑘𝑘| tanh (|𝑘𝑘𝑘|𝑑) +𝑈𝑈𝑈 ⋅ 𝑘𝑘𝑘, (3.1)

where 𝜔𝑚𝑜𝑑𝑒𝑙 (rad s−1) is the wave model frequency, which is adjusted with
unknown parameters 𝑑 and 𝑈𝑈𝑈 until it optimally matches (and therewith explains)
observed 𝜔. The gravitational acceleration is given by 𝑔 (rad s−2). Note that 𝑈𝑈𝑈 is
derived as the depth-averaged velocity of a depth-uniform current profile; however,
in natural settings with depth varying current profiles, 𝑈𝑈𝑈 represents the weighted
average of velocities in the upper layer and is therefore typically referred to as
near-surface current vector [26, 47]. Advanced techniques also allow to resolve the
underlying current profile [46, 86]. Yet, the advantage of condensing the profile to
a bulk vector 𝑈𝑈𝑈 is a comparably simple expression for the Doppler shift (+𝑈𝑈𝑈 ⋅ 𝑘𝑘𝑘 in
Equation (3.1)), by which 𝑈𝑈𝑈 can be estimated together with 𝑑 [23, 32]. Moreover,
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Figure 3.1.: Video of a wave field (left) as basis to retrieve wave spectra and coastal para-
meters (𝑐𝑐𝑐, 𝑑, 𝑈𝑈𝑈) (right grey box). Local gravity wave spectra are given by
clouds of frequency-wavenumber (𝜔,𝑘𝑘𝑘) pairs (blue dots). Local wave celer-
ity vectors 𝑐𝑐𝑐 (ms−1) (green) are calculated from the frequency 𝜔 (rad s−1)
and wavenumber vector 𝑘𝑘𝑘 (radm−1). Fitting the Doppler-shifted linear disper-
sion relationship as theoretical model (magenta) to the observed spectral data
yields local estimates of depth 𝑑 (m) and near-surface current 𝑈𝑈𝑈 (ms−1).

near-surface currents can then directly be visualized through maps of vector fields
e.g., [18, 52].
Two aspects need to be considered for estimating coastal parameters from video:

first, the optimal extraction of wave length and wave frequency characteristics from
optical spectra, and second, the optimal estimation of 𝑐𝑐𝑐, 𝑑, 𝑈𝑈𝑈 from the found wave
length and -frequency data. Both aspects are successively treated in Section 3.1.1
and Section 3.1.2.

3.1.1. Optimizing wavenumber-frequency extraction from
optical spectra

O ne of the core challenges of wave dispersion-based video processing is to ro-
bustly identify the wavenumber-frequency signature of gravity waves (𝑘𝑘𝑘↑, 𝜔↑,

where ↑ denotes ”gravity wave signature”). Different strategies [20, 21, 80, 87]
follow different pathways to do this (Figure 3.2). All strategies use grey scale video
as basis and inspect local subdomains to capture spatial variation in 𝑘𝑘𝑘↑. Search-
ing for an optimal pathway to retrieve 𝑘𝑘𝑘↑, 𝜔↑, the alternatives are briefly presented
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(Figure 3.2). Appendix B.1 contains a more detailed review of how successive trans-
formations in different strategies lead to the retrieval of 𝑘𝑘𝑘↑, 𝜔↑ (Figure 3.2, arrows)
and summarizes some benefits and drawbacks in (Table B.1).
Local cut-outs from the video form cubes in space time (x,y,t; in short xxx,t) and

can directly be used as analysis subdomains. Decomposing a cube reveals the wave
constituents of different frequency, either directly in wavenumber-frequency space
(in 𝑘𝑘𝑘, 𝜔) [80] (Figure 3.2, left pathway) or via their complex-valued phase images
(in 𝑥𝑥𝑥, 𝜔) [21] (Figure 3.2, center pathway). Separation from the spectral noise floor
finally yields 𝑘𝑘𝑘↑, 𝜔↑ (Figure 3.2 bottom). Associated to one frequency component,
a phase image is referred to as one-component phase image [21] and shows the
distinct wave pattern at a certain wave frequency. The suggested benefit of using
one-component phase images is better localization of 𝑘𝑘𝑘↑. Instead of deriving Local
One-Component Phase Images (LOCPI) from video cut-outs (Figure 3.2, center
pathway), also Global One-Component Phase Images (GOCPI) of the full video
domain can be derived [87] (Figure 3.2, right pathway). These GOCPI are then
further analysed in local subdomains. Independent of using LOCPI [21], GOCPI
[87] or both [20], the final phase structure should be spatially coherent to get 𝑘𝑘𝑘↑.
Benefits of GOCPI are that they can be generated taking global spatial coherence

into account [87], while additionally the dimensionality of the video data can be
reduced [87]. Reducing dimensionality is an important asset as it offers a reduction
of required computational working memory and thereby an increase in computa-
tional speed. For this purpose a singular value decomposition (svd)(Appendix B.1,
Equation (B.1)) can be employed, which is a dimensionality reduction technique
that is controlled by the variance in the video. The svd splits the video into modes,
consisting of spatial and temporal structures. The first 𝑟 ∼ 𝑂(1)−𝑂(10)modes typ-
ically describe most of the video’s variance (see 𝜎𝑗 in Appendix B.1, Equation (B.1))
and thereby capture its essence. The remaining modes confine noise and can be
discarded, which reduces the data load. Simarro et al. [87] directly use the spatial
structures from svd as GOCPI. However, a spatial structure from svd may contain
mixed wave patterns of different frequencies (see [88], Fig. 6) such that its corres-
ponding temporal structure is not a pure oscillation. Hence, using spatial structures
from svd as GOCPI is suboptimal.
Aiming to map coastal parameters on-the-fly, 𝑘𝑘𝑘↑, 𝜔↑ must be retrieved at minimal

computational cost. A strategy similar to Simarro et al. [87] is therefore desirable,
but with pre-knowledge of oscillating spatial structures when generating GOCPI.
This is what the Dynamic Mode Decomposition (DMD) aims to do (Appendix B.1,
Table B.1).

The DMD is a mathematical procedure designed to reduce the dimensionality of
video data by identifying dominant oscillating spatial structures. Different variants
of DMD have been developed e.g., [88–94], employed in various fields of science
amongst which electrical engineering [95, 96], system and control applications [91],
neuroscience [97], but also physical oceanography [92] and coastal engineering
[98].
Here, the spatial structures from DMD represent phase images of waves with
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Figure 3.2.: Pathways to identify wavenumber-frequency signatures of gravity waves
(𝑘𝑘𝑘↑, 𝜔↑) (bottom panel, purple dots) in video of a wave field (top panel).
The video can be transformed directly from space-time (x,y,t) into the spec-
tral domain (kx,ky,ω) (left pathway), or via construction of one-component
phase images (x,y,ω), which may be local (LOCPI) (middle pathway) or global
(GOCPI)(right pathway). In left and middle pathway all analyses are local (yel-
low). In the right pathway, the initial construction of GOCPI is global (orange)
and then followed by local subdomain analysis to capture spatial variation in
𝑘𝑘𝑘↑, 𝜔↑.
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different periods. The DMDs’ foundation lies in the assumption that snapshots in
a video (sequence of frames) are related to each other through a linear dynamic
system of oscillatory components. This means that the benefits of Simarro et al.
[87], offering GOCPI and the possibility for dimensionality reduction can be comple-
mented with a guarantee that GOCPI oscillate in time. What is more, the oscillation
frequencies are inherently found.

To summarize, the DMD can be used to reduce video data to a set of GOCPI (Fig-
ure 3.2, right pathway), but with guaranteed oscillatory time behaviour. These
GOCPI are the basis to find local 𝑘𝑘𝑘↑, 𝜔↑ signatures (Figure 3.2 left, purple dots):
while (global) 𝜔↑ are known from the DMD, 𝑘𝑘𝑘↑ still need to be locally deduced. This
can be done in various ways, such as via characteristic spatial phase differences in
sub-domains [20, 21, 87], or alternatively via (computationally cheap) spatial 2D-
FFTs or Particle Image Velocimetry (PIV) [70, 99]. Derived local 𝑘𝑘𝑘↑, 𝜔↑ form the basis
to retrieve maps of wave celerity per GOCPI frequency, via 𝑐𝑐𝑐(𝜔↑) = 𝜔↑/𝑘𝑘𝑘↑ [100],
but also maps of depths and near surface currents 𝑑, 𝑈𝑈𝑈 through Equation (3.1).

3.1.2. Optimizing depth and near-surface current estimates

P ursuing the best approximations to 𝑑 and 𝑈𝑈𝑈, optimization problems using Equa-
tion (3.1) (with/without Doppler shift +𝑈𝑈𝑈⋅𝑘𝑘𝑘) have been stated differently. Some

as (non-linear) least-squares (LS) minimization problems [20, 21, 26] and others
as maximization problems of a normalized scalar product (NSP) [30, 32]. These
schemes have been formulated to handle an abundance of spectral information from
Fourier decompositions. However, applying dimensionality reduction techniques to
video data concentrates spectral information to its essence offering much less data
points for an optimization of 𝑑, 𝑈𝑈𝑈. As such, inaccuracies and outliers in the spectral
data gain negative influence on the solution. Standard LS minimization is not fit to
handle this issue and with little data to fit, NSP maximization using a Heaviside step
function is a crude approach. Outlier contamination is a common issue in applica-
tions such as the training of neural networks [101], because reducing the relatively
large residual of an outlier is more attractive in minimizing the cost function than
reducing the small residual of an inlier. In standard LS optimization, residuals are
squared, whereby the impact of outliers on the solution is disproportionately large.
However, LS problem statements have the benefit that many different methods
have been developed to solve them [102], among which the Levenberg-Marquardt
method is often applied to invert 𝑑, 𝑈𝑈𝑈 e.g., [3, 20]. It is therefore attractive to adapt
LS formulations such that they can handle outliers. This is achieved using various
kinds of loss functions [103], among which the Cauchy (also called Lorentzian) loss
function is an effective type.
Higher accuracy in 𝑑, 𝑈𝑈𝑈 can also be achieved by successively producing estimates

and converging the results with a Kalman filter [20, 43, 45]. The quality of an
estimate is thereby typically judged based on the sensitivity of the fit to the data. If
the data are plagued by inaccuracies and outliers, this sensitivity increases, making
the Kalman filter a suitable tool to mitigate their influence.
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To summarize, while loss-functions can increase the quality of an individual 𝑑, 𝑈𝑈𝑈
estimate, the application of a Kalman filter increases the quality over several 𝑑, 𝑈𝑈𝑈
estimates. Both techniques can be used simultaneously.

3.1.3. Outlook

T his study is about a self-adaptive, robust method to map 𝑐𝑐𝑐, 𝑑 and 𝑈𝑈𝑈 on-the-fly
from video of a wave-field. The DMD plays a key role in making the video-

processing algorithm self-adaptive to the data and computationally fast: it reduces
(video) data complexity, finds the dominant wave-components and allows self-
adaptive sampling schemes, which cause the standardly used computational cubes
to instead become pyramids for optimal localization. For the optimization of 𝑑, 𝑈𝑈𝑈
the algorithm implements a loss-function to handle spectral outliers, which seem-
ingly counteracts the error of overestimating 𝑈𝑈𝑈 and also reduces depth errors. Two
errors commonly interlinked [3, 23, 45, 50]. The algorithm temporarily stores spec-
tral data and employs Kalman filtering for quick convergence of measurements, and
comprises a set of rules and filters for autonomous decision making such that the
algorithm does not need to be tuned to the field site. In summary, the algorithms
main elements include:

• Data reduction and retrieval of wave components through DMD

• Wave component dependent subdomains using pyramid cells

• Counteracting spectral outliers and errors in 𝑑,𝑈𝑈𝑈 with loss functions

• Fast convergence of 𝑑,𝑈𝑈𝑈 and recognition of current refraction through tem-
porary spectral data storage

• Additional fast convergence of 𝑑,𝑈𝑈𝑈 using Kalman filtering

Section 3.2 describes the workflow of the proposed video processing algorithm,
which includes explanations of the core principles of the DMD, and the workflow
of the algorithm. Section 3.3 describes the field sites and data. In Section 3.4 the
algorithm is validated for measuring near-shore bathymetry (i.e., 𝑑) based on four
field sites in the USA, UK, Netherlands and Australia. A qualitative discussion on
the algorithms ability to measure hydrodynamics (i.e., 𝑐𝑐𝑐, 𝑈𝑈𝑈) follows in Section 3.5,
together with a discussion on the algorithms potential for mapping on-the-fly. Find-
ings are concluded in Section 3.6.

3.2. Method

A head of presenting the mapping algorithm in Section 3.2.2, first the imple-
mented Dynamic Mode Decomposition (DMD) is explained and demonstrated

in Section 3.2.1.
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3.2.1. Dynamic Mode Decomposition

T he DMD forces oscillatory time dynamics through a set of discrete linear differen-
tial equations whose solution consists of complex eigenvalues and eigenvectors.

The eigenvalues represent the temporal oscillations, which may include a real part
denoting growth or decay. The corresponding eigenvectors are the, so called, Dy-
namic Modes and represent spatial structures, which after entry-wise normalization
to unity represent Global One-Component Phase Images (GOCPI).
Suppose a linear model 𝐴𝐴𝐴 can advance a (squeezed) frame 𝑥𝑥𝑥𝑛 at time 𝑡𝑛 to the

next frame at time 𝑡𝑛+1: 𝑥𝑥𝑥𝑛+1 = 𝐴𝑥𝐴𝑥𝐴𝑥𝑛. Extending the model to advance a (time)
series of 𝑁 frames simultaneously, 𝑌𝑌𝑌 = 𝐴𝑋𝐴𝑋𝐴𝑋, where matrices 𝑋𝑋𝑋 = [𝑥𝑥𝑥1, 𝑥𝑥𝑥2, ..., 𝑥𝑥𝑥𝑁−1] and
𝑌𝑌𝑌 = [𝑥𝑥𝑥2, 𝑥𝑥𝑥3, ..., 𝑥𝑥𝑥𝑁] pair each frame 𝑥𝑥𝑥𝑛+1 with the previous frame 𝑥𝑥𝑥𝑛. It essentially
requires 𝐴𝐴𝐴 to propagate a frame through time since [𝑥𝑥𝑥1, 𝑥𝑥𝑥2, 𝑥𝑥𝑥3...] = [𝑥𝑥𝑥1,𝐴𝑥𝐴𝑥𝐴𝑥1,𝐴𝐴𝐴2𝑥𝑥𝑥1...],
which in mathematical terms is referred to as a Krylov sequence. It indicates that
𝑌𝑌𝑌 = 𝐴𝑋𝐴𝑋𝐴𝑋 is a discrete formulation that is closely tied to a system of continuous
differential equations 𝑑𝑥𝑥𝑥/𝑑𝑡 = 𝐴𝑥𝐴𝑥𝐴𝑥(𝑡) and therewith an eigenvalue problem 𝜆𝜑𝜑𝜑𝑒𝜆𝑡 =
𝐴𝐴𝐴𝜑𝜑𝜑𝑒𝜆𝑡. Conceptually, 𝐴𝐴𝐴 hence describes a dynamical process, whose eigenvectors
𝜑𝜑𝜑 present the Dynamic Modes, with the associated frequencies captured in the
complex eigenvalues 𝜆. Note that in contrast to the modes retrieved from a svd
(Section 3.1.1, [87]), Dynamic Modes do not have to be orthogonal to each other,
which implies that they do not have to be fully independent of each other.
The goal of the DMD is to find the eigenvalues and eigenvectors of 𝐴𝐴𝐴 at min-

imal computational cost. Finding the eigenvalues and eigenvectors straightforward
by first calculating 𝐴𝐴𝐴 ≈ 𝑌𝑋𝑌𝑋𝑌𝑋† († ≡ pseudo inverse) poses a problem for computer
memory: Say video footage has a frame size of 1000 × 1000px, then 𝑋𝑋𝑋 and 𝑌𝑌𝑌
have a row size 𝑚 = 106 resulting in an 𝐴𝐴𝐴 matrix of size 𝑚 × 𝑚 = 106 × 106.
Even in case a computer can handle such data loads, the calculation is slow and
the matrix size suggests a large amount of redundancy. The conceptual idea is to
convert the eigenvalue problem from 𝑚 into a lower dimension 𝑟. Typically, 𝑟 is in
the range 1 − 100 such that 𝑟 ≪ 𝑚, expressing a severe dimensionality reduction.
By deflating the eigenvalue problem 𝑚 → 𝑟, eigenvectors and eigenvalues can be
quickly calculated. Subsequently, the eigenvectors are inflated again 𝑟 → 𝑚 to yield
the Dynamic Modes. Although the details of the conversions differ between DMD
algorithms (e.g., standard DMD vs. optimized DMD, respectively [104] and [94]),
they share the common principle of using 𝑟 modes from the svd of 𝑋𝑋𝑋 (Appendix B.1,
Equation (B.1)) for dimensionality reduction. There exists no general strategy to
make a choice for 𝑟. It may be based on existing knowledge about the observed
system [94], but it can also be based on the amount of singular values needed to
capture a certain percentage of the variance in the video, for example 99% [88],
or on an algorithmic truncation of noise [105].
Note that 𝑋𝑋𝑋 (and 𝑌𝑌𝑌) may first be converted to a time-analytic signal [87]. It is not

necessary, but has the benefit that the DMD, similar to an FFT, does not produce
conjugate Dynamic Mode pairs. Then 𝑟 frequency components associate to 𝑟modes
instead of 2𝑟 modes. Preventing the generation of conjugate modes also prevents
the DMD to produce them imperfectly (i.e., with slightly different frequency to their
counterpart). Analytic extension comes at computational cost; however, since 𝑟
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can be halved to achieve the same number of frequency components, successive
matrix multiplications within the DMD become computationally cheaper.
An important factor when applying a DMD is whether the recorded data contain

standing wave behaviour. Without adjustments a DMD cannot capture standing
waves [89]. For a fixed framerate Tu et al. [89] offer a straightforward solution
through augmentation of the video matrix 𝑋𝑋𝑋 with a time-shifted version of itself, by
which the DMD acquires the skill to detect standing waves.
From the existing DMD algorithms, the ”Optimized DMD based on Variable Projec-

tions” [94] is an elaborate variant. Formulated as a least-squares optimization prob-
lem, it is more accurate than other DMD algorithms and theoretically allows video
frames to be spaced non-equidistantly in time. Instead of splitting the video into two
video matrices 𝑋𝑋𝑋 and 𝑌𝑌𝑌, it uses a single, transposed video matrix 𝑋𝑋𝑋𝑇 = [𝑥𝑥𝑥1, ...𝑥𝑥𝑥𝑁]𝑇.
A detailed explanation can be found in Appendix B.2. The methods skill for com-
plex harmonic analysis was recently demonstrated in modelling rotating detonation
waves [107]. Note that other DMD algorithms could be potent alternatives, for ex-
ample by allowing elaborate forms of regularization to handle noisy or lower quality
images [108].
Wave components in a wave field can be accurately extracted using the DMD

[88]. To illustrate this, a wave field consisting of 6 known wave components is con-
sidered, recorded over a period of 32s at 2 fps. The corresponding video matrix
hence comprises 64 frames (𝑋𝑋𝑋𝑇 has 64 rows, see Appendix B.2, Equation (B.2)).
Subsequently, the signal is made time-analytic such that 𝑟 modes associate to 𝑟
frequency components. The DMD with 𝑟 = 6 modes, identifies the underlying com-
ponents precisely (Figure 3.3a, orange stars)(Figure 3.3b). It demonstrates that the
DMD is not only powerful in analyzing a short frame sequence, but therein super-
ior compared to a standard timedomain Fast Fourier Transform (FFT) (Figure 3.3a,
green squares): the FFT returns (much) more spectral data and with significant
redundancy and yet, the pre-set frequency resolution restricts its ability to capture
the six intrinsic wave components to a mere rough spectral representation. Half of
the components (Figure 3.3a, first, third and fifth component) are poorly captured
in frequency and amplitude.
For a real wave field, the amount of wave components is not known a-priori and

a choice needs to be made for the amount of modes 𝑟 returned by the DMD. The
question arises what the DMD returns if the choice for 𝑟 is smaller or larger than
the actual number of components in the wave field: if 𝑟 is smaller, the DMD simply
returns fewer components, but those components are still correctly represented
(Figure 3.3c, 𝑟 = 3). If 𝑟 is larger, the DMD still identifies the intrinsic components;
however, it also adds spurious modes and these modes may be energetic, which
indicates that 𝑟 being too large is a scenario that should be avoided (Figure 3.3c,
𝑟 = 12). For observations of a real wave-field this scenario is unlikely, as waves have
a stochastic nature and typically dense spectra [100]. In fact, for 𝑟 ∼ 𝑂(1)−𝑂(10)
the number of modes is certainly less than the actual number of wave components
(cf. Figure 3.3c, 𝑟 = 3) and the DMDs representation of the wave field simplifies to
the governing wave components.
A real wave field may also experience standing wave dynamics as waves reflect
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Figure 3.3.: Dynamic Mode Decomposition (DMD) of an artificial wave field with six wave
components (w1–w6 ), recorded over a period of 32s at 2 fps, resulting in
64 video frames. (a) True amplitude spectrum of the wave field (blue dots),
compared against spectra acquired from DMD with 𝑟 = 6 modes (orange stars)
and FFT (green squares); 𝐸{𝑎𝑖} (m) denotes the expected amplitude of the 𝑖𝑡ℎ
wave component and 𝜔 (rad s−1) the angular frequency. (b) Real part of
the complex valued Dynamic Modes acquired from DMD, resembling the true
wave components. (c) The DMD from (a), with 𝑟 = 6 and a progressive wave
field with no wave reflection (reflection coefficient 𝐾 = 0) is used as reference
(dashed grey outline) in a comparison with DMDs of the same progressive
wave field, but where the number of modes is halved (𝑟 = 3, red) or doubled
(𝑟 = 12, red). If 𝑟 > 6, spurious modes appear. The reference case is also
compared against DMDs with the same number of modes (𝑟 = 6), but of
wave fields with mixed progressive standing waves (𝐾 = 0.5, red) or fully
standing waves (𝐾 = 1, red). To acquire the same expected amplitudes as
in the reference case, wave components for the two cases where 𝐾 > 0 are
rescaled in amplitude, accounting for their nodal structures in space (see also
[106], eq. 11).

back from the shoreline. Although at flat dissipative beaches, sea-swell waves
are typically progressive [109], at steeper beaches and longer sea-swell periods,
incident wave reflection can be significant with reflection coefficients up to 𝐾 =
0.4 − 0.45 [110–113]. In the presence of hard structures like sea-walls even up
to 𝐾 ≈ 0.9 [114]. Here, 𝐾 = [0, 1] denotes [no, full] reflection [106]. High wave
reflection signals (partially) standing wave characteristics, prompting adaption of
the DMD as of [89]. Doing so enables the DMD to cope with any degree of incident
wave reflection (Figure 3.3c, 𝐾 = 0, 𝐾 = 0.5, 𝐾 = 1) and thereby accommodates
application to a broad range of wave field scenarios.

3.2.2. Mapping algorithm

T he proposed workflow for a self-adaptive and on-the-fly mapping algorithm of
coastal hydrodynamics and bathymetry, follows a series of steps (Figure 3.4,

labels 1 ... 13 ). The workflow requires video in grey-scale and orthorectified format
as basis input. If the video is in color, standard BGR to grey conversions can be
used to prepare the video. The orthorectification differs per field site and is briefly
treated in Section 3.3. The workflow is set-up in such a way that a video feed
could be processed. For that purpose, the algorithm marches forward in time by
consecutively analysing short sequences of 𝑁 video frames (e.g., 𝑁 = 64) and
then updating the maps of 𝑐𝑐𝑐, 𝑑 and 𝑈𝑈𝑈 after each sequence, which is referred to
as mapping updates. Consecutive frame sequences may overlap, as for on-the-fly
application is explained in Section 3.5 (see also [115], Fig. 3). Default settings for
the algorithm as used in this study are listed in Table B.2 (Appendix B.3).
The workflow commences with the global analysis of a video frame sequence.

The first step is to retrieve 𝑟 Global One-Component Phase Images (GOCPI) through
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Figure 3.4.: Workflow for mapping coastal hydrodynamics and bathymetry on-the-fly from
video of a wave field. Steps in the flowchart are visualized with icons. Box
shapes denote: data (parallelogram), input (right trapezoid), process loop start
(trimmed top corners) and process loop end (trimmed bottom corners), and
process (rectangle). Box- and arrow colours relate to: storage (gold), input
(green), for-loop (blue), parallel-for-loop (magenta). Arrows and their annota-
tions signify flow of information. The input requires video with top-down view,
its pixel resolution and framerate. Computational grid and other settings suf-
fice with default values. The output contains maps of wave directions and
-celerity, depth, and near-surface currents (grey square bottom row). Symbols
represent: 𝐺𝑂𝐶𝑃𝐼 = Global One-Component Phase Images, 𝜔↑ (rad s−1) =
wave frequency per 𝐺𝑂𝐶𝑃𝐼, 𝑘𝑘𝑘↑ (radm−1) = wavenumber vector at gridpoint,
𝑊 (-) = weight per 𝑘𝑘𝑘↑, 𝜔↑ pair, 𝑐𝑐𝑐 (ms−1) = wave celerity vector at gridpoint,
𝑑 (m) = depth at gridpoint, 𝑈𝑈𝑈 (ms−1) = near-surface current vector at grid-
point, subscript 𝑠 = from spectral data storage. Other symbols are labelled
with arrow annotations.

DMD (Figure 3.4, 1 ). GOCPI linked to frequencies outside the ocean wave band
(Appendix B.3, Table B.2, [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥]), are discarded (Figure 3.4, 2 ). (Note that
in case the video is not extended to a time-analytic signal, also conjugate modes are
discarded, see Section 3.2.1). By construction of the DMD, the remaining number 𝑝
of GOCPI with frequencies 𝜔↑1...𝜔↑𝑝 describe dominant wave components. These are
treated equally important (regardless of their spectral weight 𝑏 see Appendix B.2).
Knowing 𝜔↑, the maximum wavelengths in each GOCPI are predictable. The

size of the subdomains that are used to determine local 𝑘𝑘𝑘↑, can thereby be auto-
matically tailored to the individual GOCPI (Figure 3.4, 3 ). This is done ahead of
analysing any location. A conservative rule is to set the subdomain size to one or
two offshore wave lengths, 𝐿𝑜𝑓𝑓(𝜔↑) = 2gπ/(𝜔↑)2, where g denotes the gravita-
tional acceleration. Here, 2×𝐿𝑜𝑓𝑓(𝜔↑) is used, unless this is too large, for example
near a boundary, where the size is reduced up to a minimum of 1×𝐿𝑜𝑓𝑓(𝜔↑). High
frequency GOCPI are analysed with smaller subdomains than low frequency GOCPI,
such that stacking the subdomains in layers creates a pyramid-shaped cell at a cer-
tain location (see Figure 3.4, 3 , yellow pyramid). Note that this contrasts with the
usual cube-shape, whose size is typically predefined manually e.g., [44, 47].
Since the pixel resolution is constant between cell layers, large layers used for

lower frequencies likely encompass plentiful pixels, capturing the underlying waves
in unnecessarily high spatial resolution. It is therefore computationally attractive to
subsample larger cell layers. The rules for subsampling require a minimum resolu-
tion of 8 samples per 𝐿𝑜𝑓𝑓. Instead of skipping pixels for subsampling, the current
set-up lowers the resolution through fast bilinear interpolation. It preserves more
image information and makes the algorithm robust to videos with different pixel
resolutions. For proper analysis a cell layer is set to hold at least 24 × 24 samples.
Note that demanding 8 samples per offshore wave length, may exclude higher fre-
quency GOCPI from being analysed, if the pixel resolution of the video is not high
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enough to capture the correspondingly short wave-lengths.
After subdomain sizes and -resolutions have been determined, the local analysis

of the GOCPI commences. The local analysis occurs around points in a grid. The
processing of different grid point locations can be done in parallel, which increases
computational speed. Since the algorithm aims to map results on-the-fly, the grid
resolution is determined based on computational speed (see also Section 3.5.2).
Note that computation speeds are different for different processing machines. A
solution to find an optimal number of gridpoints for different processing machines
could be to start with a low number of gridpoints and then increase the number of
gridpoints for consecutive frame sequences until an optimum is reached.
To analyse a certain grid point, first a pyramid-shaped cell is built around it (Fig-

ure 3.4, 4 ) using GOCPI subdomains as cell layers with formats as determined
under step 3 . Each cell layer is first autocorrelated in space to accentuate the
waveform, and tapered with a two-dimensional Hanning-window, which focusses
wave information to the centre point and prepares for analysis with two-dimensional
Fast Fourier Transforms (2D-FFTs). For robustness, 𝑘𝑘𝑘↑ (Figure 3.4, 5 ) is estimated
in two different ways: directly, by analysing spatial properties through 2D-FFT and
indirectly, by analysing wave celerity through Particle Image Velocimetry (PIV).
Performing a 2D-FFT on a cell layer yields its spectral content in space. Besides

the footprint of a gravity wave component, 𝑘𝑘𝑘↑, this also includes spectral noise.
Typically, an energy threshold aims to separate the two [47]. To avoid a search for
an optimal energy threshold (see Chapter 2,[3]), here simply the spectral point with
maximum energy is chosen as 𝑘𝑘𝑘↑. Alternatively 𝑘𝑘𝑘↑ can be acquired via the wave
celerity, 𝑘𝑘𝑘↑ = 𝜔↑/𝑐𝑐𝑐↑. The wave celerity is encoded in the complex values of the
cell layer: The difference between the real and imaginary parts denotes a temporal
phase shift of 90°, resembling a quarter wave period. Performing PIV between the
real and imaginary image of the cell layer yields the translation of (wave) patterns
over a quarter wave period, which directly translates to 𝑐𝑐𝑐↑. Note that the temporal
phase shift is 90° regardless of whether the video matrix 𝑋𝑋𝑋 is analytic or whether
dealing with standing waves. While the 2D-FFT approach inherently presumes that
the observed pattern in a cell layer describes a wave, the PIV approach does not, as
it investigates movement of any pattern in the cell layer. Both approaches may have
their benefits in case the pattern is noisy and are therefore used synchronically. If
one or both estimates are unphysical, they are discarded in following filter steps.
Each estimate of 𝑘𝑘𝑘↑ gets a weight 𝑊 assigned, whose value between [0, 1] gives
an indication of the respectively [low, high] quality of the estimate (Figure 3.4, 5
red colourbar). A weight, 𝑊, is calculated from the correspondence between two
images: the source image and the target image. For the 2D-FFT approach this
is the correspondence between the original pattern displayed by the cell-layer and
the approximation of this pattern by its most energetic spectral wave component.
For PIV it is the correspondence between the translated real image of the cell-
layer with the imaginary image of the cell-layer. The correspondence is calculated
via 𝑊 = 1 − 𝜀𝑖𝑚, where 𝜀𝑖𝑚 represents the normalized root-mean-square error
between the source image relative to the target image [116].
Together, the estimates of 𝑘𝑘𝑘↑ over all 𝜔↑ layers in the pyramid cell, form a sparse
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spectral point cloud (SSPC) of 𝑘𝑘𝑘↑, 𝜔↑ pairs with assigned weights 𝑊. The SSPC ex-
pects to follow a cone-shape as described by the dispersion relationship (Figure 3.1;
Equation (3.1)). This pre-knowledge aids in the identification and removal of un-
physical 𝑘𝑘𝑘↑, 𝜔↑ points in the SSPC by means of a wavelength and -direction filter
(Figure 3.4, 6 ). Wave lengths are filtered using their ratio over the offshore wave
length Γ = |𝑘𝑘𝑘𝑜𝑓𝑓|/|𝑘𝑘𝑘↑|, where |𝑘𝑘𝑘𝑜𝑓𝑓| = 2π/𝐿𝑜𝑓𝑓(𝜔↑). SSPC points with Γ < 0.3,
occupy the shallow water regime as they resemble wavelengths larger than twenty
times the local depth [117] and are thereby too large to capture morphological de-
tail. Such 𝑘𝑘𝑘↑ are deemed unsuited for a localized depth estimate, 𝑑. On the other
hand, SSPC points with Γ > 1.0 signalize unphysically short waves if 𝑈𝑈𝑈 is small, and
are therefore also deemed unsuited. Note that in other algorithms this short period
limit is often set lower, to Γ > 0.9, which presents an approximate elbow value
where the uncertainty in estimates of 𝑑 becomes disproportionately large [82, 87,
118]; however, a higher limit Γ > 1.0 preserves spectral points that are valuable for
the estimation of 𝑈𝑈𝑈 and thereby also simultaneous estimates of 𝑑. Lastly, the wave
direction filter excludes SSPC points which do not align with the general direction
by means of the svd filter of Gawehn et al. [3] (see Chapter 2 and section 2.2).

The idea behind the next two steps of the workflow (Figure 3.4, 7 , 8 ) is to
augment the SSPC left after 6 with additional spectral points to make it a dense
spectral point cloud (DSPC), which captures directional spread in time and space
and thereby allows for a solid inversion of 𝑑, 𝑈𝑈𝑈. As desired and designed, the
SSPC as is, holds the essence of the local hydrodynamics. The sparsity, however,
brings along statistical uncertainty in time and space. An approach to acquire a
DSPC, is to combine several SSPCs into one. The additional SSPCs can be retrieved
from preceding updates (i.e., previously analysed frame sequences), but also from
surrounding grid locations within a collection radius 𝑅𝑎𝑑 (Figure 3.4, 8 attached
green arrow; Appendix B.3, Table B.2). Such an approach requires memorizing
SSPCs in a designated short-term storage. Therein, the just retrieved SSPC is stored
(Figure 3.4, 7 ) and SSPCs from preceding updates and from surrounding grid loc-
ations are called up (Figure 3.4, 8 ). The size of the short-term storage for SSPCs
is manageable, since by construction, each SSPC holds just a few essential spectral
points. Note that accumulating spectral information over successive updates is only
a valid approach if their computations occur (near) on-the-fly, because it assumes
that the wave signal is stationary across several updates. Hence, SSPC data are dis-
carded after a short stationary time period (e.g., 60s, see Appendix B.3, Table B.2)
and replaced by new SSPCs.

An example illustrates the augmentation of an SSPC to a DSPC by means of
stored spectral data: assuming a wave signal is stationary for 1min, the algorithm
stores SSPCs for 1min. If the processing of a frame sequence takes 15s, the
storage contains stored SSPCs of all grid locations from the preceding 60s/15s = 4
updates. Now, as the algorithm starts to analyse a certain location it retrieves one
new SSPC for that location. By itself this new SSPC might be sufficient to estimate
𝑑, but not 𝑈𝑈𝑈. For that, a DSPC is required, which is achieved by augmenting the
new SSPC with stored SSPCs from the same grid location and surrounding grid
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locations (Figure 3.4, 9 ), be it 10 within some radius 𝑅𝑎𝑑. The acquired DSPC then
consists of 4stored × (1gridloc + 10surr.gridlocs) + 1new × 1gridloc = 45 SSPCs. In this
example, the augmentation of the new SSPC of step 6 has hence produced a
DSCP which is 45 times denser.
Using surrounding grid locations to augment spectral information has benefits and

drawbacks. A drawback is that depth estimates 𝑑 become less localized. A benefit
is that wave refraction caused by near surface currents 𝑈𝑈𝑈 is captured in space,
which is essential for estimating 𝑈𝑈𝑈 (and thereby also improves 𝑑). To minimize the
loss in localization of 𝑑, but still have improved 𝑈𝑈𝑈 estimates, the SSPCs that make
up the DSPC are weighted differently. These SSPC weights are multiplied with the
individual quality weights 𝑊 of the spectral points and subsequently normalized to
the range [0, 1]. In the current set up, the new SSPC at a certain grid location
weighs 50%. Stored SSPCs of the same grid location weigh together 25% and
stored SSPCs from surrounding grid locations weigh together 25%. Hence, 75%
of the spectral information focusses on the currently analysed grid location and 25%
focusses on the surrounding area. Thereby aiming to keep 𝑑 estimates localized,
but still construct a DSPC that includes enough current refraction for 𝑈𝑈𝑈 estimates.
The DSPC from step 9 may include a minority of spectral points from incorrect

wave directions. This occurs because some of the SSPCs, which the DSPC consists
of, contain too little spectral information to determine wave directions at step 6 .
Therefore, the direction filter repeats for the DSPC (Figure 3.4, 10 ). Now, the
DSPC is ready for the algorithm to retrieve wave celerities per frequency, 𝑐𝑐𝑐↑(𝜔↑)
(Figure 3.4, 11) and depths and surface currents 𝑑, 𝑈𝑈𝑈 (Figure 3.4, 12). While
𝑐𝑐𝑐↑ are directly computed via 𝑐𝑐𝑐↑ = 𝜔↑/𝑘𝑘𝑘↑, the inversion of 𝑑, 𝑈𝑈𝑈 is done by fitting
a wave model, here the Doppler shifted dispersion relationship (Equation (3.1)),
to the spectral points of the DSPC. The fit results from of a nonlinear regression
that aims to minimize the sum of residuals between the model frequencies 𝜔𝑗,𝑚𝑜𝑑𝑒𝑙
(Equation (3.1)) and the observed frequencies 𝜔↑𝑗 per spectral point 𝑗 using Equa-
tion (3.2). The implicit link of observed 𝑘𝑘𝑘↑𝑗 with 𝜔𝑗,𝑚𝑜𝑑𝑒𝑙 and 𝜔↑𝑗 is assumed trivial.

minimize F(𝑑,𝑈𝑈𝑈) = 1
2 ∑

𝑗
𝑊𝑗𝜌 (𝑓𝑗(𝑑,𝑈𝑈𝑈)2) (3.2)

subject to
dmin < 𝑑 < dmax

|𝑈𝑈𝑈| < |U|max

with

𝜌 (𝑓𝑗(𝑑,𝑈𝑈𝑈)2) = α2 ln(1 +
𝑓𝑗(𝑑,𝑈𝑈𝑈)2
α2 )

and

𝑓𝑗(𝑑,𝑈𝑈𝑈) = 𝜔𝑗,𝑚𝑜𝑑𝑒𝑙(𝑑,𝑈𝑈𝑈) − 𝜔↑𝑗 ,
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where F(𝑑,𝑈𝑈𝑈) is the cost function, minimized by adjusting the regression para-
meters 𝑑 and 𝑈𝑈𝑈. Typically, residuals per spectral point 𝑗, are evaluated by the
product of their weight𝑊𝑗 with the difference 𝑓𝑗(..) between 𝜔𝑗,𝑚𝑜𝑑𝑒𝑙 and 𝜔↑𝑗 . Here,
𝑓𝑗(..) is first modulated by a Cauchy loss function 𝜌(..) to penalize outliers. A pre-
defined softmargin α tunes 𝜌(..) to the optimization problem. Setting α such that the
Cauchy loss function heavily penalizes residuals larger than ∼ 1/5th of the average
DMD frequency resolution produces accurate 𝑑, while counteracting overfitting of
𝑈𝑈𝑈. Lastly, bounds for depth [dmin, dmax] and surface current magnitude |U|max
set the range in which a solution for 𝑑,𝑈𝑈𝑈 is sought. To improve estimates, first a
regression is done without Doppler shift to acquire a close estimate for 𝑑 that can
be used as initializer for the follow up regression including Doppler shift. Adding
the first regression has little impact on computation times, since its estimate of 𝑑
closely approximates the local minimum of the second regression. The minimization
of Equation (3.2) occurs using a sequential least squares quadratic programming
method (SLSQP) [119], which omits potentially expensive computations of Hessians
and allows for straightforward implementation of loss-functions.
The final step of the mapping algorithm is a Kalman filter (Figure 3.4, 13 ) that

judges the quality of 𝑑,𝑈𝑈𝑈 results based on the sensitivity of the fit with regard
to earlier updates. It causes 𝑑,𝑈𝑈𝑈 estimates to quickly converge over successive
updates. The implementation of the Kalman filter is identical to Gawehn et al.
[3] (Chapter 2 and section 2.5.3). If the observation periods are short, say less
than 5min, morphodynamics but also hydrodynamics can be assumed station-
ary, such that process variance is negligible. If observation periods are longer,
say 10–20min, it may become important to capture changes in surface current
direction (e.g., due to the formation of a rip current). To allow for such ap-
plications, the Kalman filter assumes small process variances Qc and QU for re-
spectively phase celerities and near-surface currents (i.e., Qc = 0.0005m2 s−3,
QU = 0.0005m2 s−3, see Appendix B.3, Table B.2).

3.3. Field sites and data

V ideos of four different field sites around the world are used to test the algorithms
performance (Figure 3.5): Duck (North Carolina, USA) [20], Porthtowan (UK)

[120], Scheveningen (NL) [121] and Narrabeen (AU) [122]. Specifics on video col-
lections are listed in Table 3.1. Cameras are positioned at heights of 43–110m to
observe waves over a large distance without wave-shadowing effects. The recor-
ded videos are available in orthorectified format. The geometries have been solved
using ground control points (GCPs), by matching GCP image coordinates with world
coordinates. The accuracy of the geometries differs per site and is quantified by the
GCP reprojection error in world coordinates. These reprojection errors are generally
in the (sub)meter range, but in case of Scheveningen and Narrabeen they increase
to on average ∼7m at distances of 0.5–2.0km from the camera. At Porthtowan,
the reprojection errors are unknown, yet slight errors in the geometry likely ex-
ist, particularly further afield [123]. Videos from Duck and Porthtowan (UK) are
≈17min long and recorded with Argus stations. The videos of Scheveningen and
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Duck

Porthtowan

Narrabeen

(50.29°, -5.24°)

(52.11°, 4.27°)

(36.18°, -75.75°)

(-33.71°, 151.30°)

Scheveningen

Figure 3.5.: World locations (Lat∘, Lon∘) of video recordings from Duck (North Carolina,
USA), Porthtowan (UK), Scheveningen (NL) and Narrabeen (AU). Videos are
recorded with different instruments with different camera properties and there-
fore have different lighting, format, and orientation.

Narrabeen are ≈9min long and recorded with UAVs. All videos have a framerate
of Δ𝑡 = 2 fps. Pixel resolutions are Δ𝑝𝑥 = 5m for Duck and Porthtowan, and
Δ𝑝𝑥 = 2m at Scheveningen and Narrabeen. The hydrodynamic conditions vary
over the sites between 𝐻𝑠 = 0.80–1.63m and 𝑇𝑝 = 5.0–10.0s (Table 3.2).
Videos of all sites are analysed using sequences of 64 frames equalling 32s.

Marching forward in time, the next frame sequence overlaps 50% with the previous
sequence (i.e., overlap of 32 frames at 2 fps), resulting in mapping updates every
16s of video. This overlap is fixed for reproducibility, since computation times
differ per processing machine. For on-the-fly applications, the overlap varies based
on processing speed. This is simulated in Section 3.5 using a standard laptop.
Each image sequence is decomposed into r = 16 Dynamic Modes. The chosen r
represents a balance between significantly reducing dimensionality, while retrieving
enough pyramid cell layers to estimate 𝑑, 𝑈𝑈𝑈. Details on other settings are found in
Appendix B.3, Table B.2.

In the next Section 3.4, the results of the mapping algorithm are presented. The
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Table 3.1.: Video collection.

Field site Instr. Cam. Cam. Video Frame Pixel Reprojection
height tilt length rate size error (at dist.)
(m) (°) (min) (fps) (m)

Duck Argus 43 68 − 82 17 2 5 < 1m(< 500m)
Porthtowan Argus 44 75 − 85 17 2 5 -
Scheveningen UAV 110 61 9 2 2 ∼ 1m(< 200m)

∼ 7m(400 − 600m)
Narrabeen UAV 89 73 9 2 2 < 1m(< 250m)

∼ 7m(1.5 − 2km)

Table 3.2.: Hydrodynamic conditions during field-recordings.

Field site 𝐻𝑠𝐻𝑠𝐻𝑠(m) 𝑇𝑝𝑇𝑝𝑇𝑝(s) 𝑊𝐿𝑊𝐿𝑊𝐿(m)
Duck 0.79 5.0 0.08
Porthtowan 1.03 10.0 −0.96
Scheveningen 0.75 5.5 0.60
Narrabeen 1.63 8.5 0.67

field-site of Duck, North Carolina, USA, is used as lead case to elucidate the pro-
cessing steps of the workflow for an arbitrary real case. Final results are presented
for all field-sites, Duck (North Carolina, USA), Narrabeen (Australia), Scheveningen
(Netherlands), Porthtowan (UK). The quality of the final results for the depth es-
timates, 𝑑, is assessed by comparison with in-situ bathymetry data. Maps for wave
direction and -celerity, and near-surface currents are discussed in Section 3.5.

3.4. Results

T he site of Duck gives an illustrative example (Figure 3.6) of the processing
steps described in Section 3.2.2. After decomposing image sequences of Duck

(Figure 3.6a) into 16 Dynamic Modes, the modes are normalized to Global One-
Component Phase Images (GOCPI) and filtered for frequency and resolution (as
of Figure 3.4). The frequency filter discards 8 GOCPI and another 4 GOCPI fail
the criterion of minimum 8px/𝐿𝑜𝑓𝑓, leaving 4 GOCPI for further analysis (Fig-
ure 3.6b). These remaining GOCPI reveal intricate wave patterns and finely cap-
ture wave refraction towards the coast. The associated frequencies 𝜔↑(rad s−1) ≈
{0.59, 0.78, 0.97, 1.17} are quite constant across successive image sequences, show-
ing that wave periods 𝑇(s) = {10.6, 8.1, 6.5, 5.4} govern the mixed wave field. On
the basis of these wave components, the subdomain sizes for local analysis are de-
termined. Stacking them in layers for some grid location, reveals a pyramid-shaped
cell and tapering the layers puts focus toward its centre grid point (Figure 3.6c).
Performing PIV and 2D-FFTs to the autocorrelated layers, reveals a sparse spec-
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tral point cloud (SSPC) with 8 points, with 𝑘𝑘𝑘↑ values increasing for increasing 𝜔↑,
sketching a typical wave dispersion curve (Figure 3.6d). In the example, the PIV
and 2D-FFT estimates for 𝑘𝑘𝑘↑ are almost indistinguishably close in three of the four
spectral layers; however, for the upper most layer, they lay further apart. In this
case, the point that lays off track corresponds to the 2D-FFT estimate. This is
signalled by its quality weight 𝑊, which is lower than for the PIV counterpart (Fig-
ure 3.6d, blue vs. yellow point). Augmenting the SSPC with stored SSPCs from the
past minute (i.e., from 4 previous updates) within a radius of 𝑅𝑎𝑑 = 75m, yields
the dense spectral point cloud (DSPC) (Figure 3.6e). The choice of 𝑅𝑎𝑑 = 75m is
arbitrary and represents a balance between extracting information from close by,
while capturing sufficient current refraction (especially of shorter period waves).
Other choices for 𝑅𝑎𝑑 may be made, but the algorithm is not too sensitive to this
parameter since the surrounding SSPCs within 𝑅𝑎𝑑 resemble just 25% of the total
spectral weight. As desired, this lower weighting is apparent from the correspond-
ing spectral points in the DSPC (Figure 3.6e, blue points). Note that in contrast to
Duck, points in DSPCs of Porthtowan, Scheveningen and Narrabeen are more dis-
persed over the frequency domain, because GOCPI frequencies vary more across
successive updates (not shown). Finally, the DSPC is fitted with the Doppler-shifted
linear dispersion relationship (Equation (3.1)) to produce characteristic cones cor-
responding to certain 𝑑,𝑈𝑈𝑈 estimates (Figure 3.6f, magenta cone). Combining the
local estimates from all grid locations yields global maps of 𝑑,𝑈𝑈𝑈.

These resulting maps are not only quickly retrieved, but also show that estimates of
𝑑 are accurate (Figure 3.7). For all four field sites, depth maps compare with ground
truth. Recall that the algorithm is not tuned to the individual field sites. While the
first depth update – after 32s of video – is still rough, it already gives a clear
overall picture of the bathymetry with shallower and deeper regions (Figure 3.7,
1st update). Nearshore sandbars at Duck (Figure 3.7a) are readily visible. With
the fifth update – after 96s of video – (Figure 3.7, 5th update) the depth maps
approximate ground truth (cf. Figure 3.7, 5th update and ground truth). Estimates
quickly improve after the first update, indicating that the temporary spectral storage
together with Kalman filtering effectively converge 𝑑 estimates. Mapping updates
continue to improve and become spatially more coherent towards the end of the
videos (Figure 3.7, 𝑙𝑎𝑠𝑡 update).
For all videos, differences with ground truth are minimal over large parts of the

observed area (Figure 3.7, difference, light areas). Regions with errors |Δ𝑑| > 0.5m
are mostly found in shallow water or the deep water boundary of the observed do-
main. At Duck and Scheveningen depth overestimation of Δ𝑑 ≈ −0.5 to −1.0m
occurs around the sandbars (Figure 3.7a,c, difference, blue areas), while in other
shallow parts the errors are smaller. At Porthtowan and Narrabeen the overes-
timations are larger Δ𝑑 ≈ −0.5 to −2.0m and generally occur in shallow water
(Figure 3.7b,d, difference, blue areas). The reason is probably that wave heights
at Porthtowan and Narrabeen are larger 𝐻𝑠 = 1.0–1.6m (Table 3.2) and more non-
linear close to shore, compared to Duck and Scheveningen where 𝐻𝑠 < 0.8m and
wave breaking restricts to the sandbars after which most wave nonlinearity is lost.
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Figure 3.6.: Processing results for a selected grid location at the Duck field site at the 7th
update. (a) Image sequences (x,y,t space, see Figure 3.2 top) used for suc-
cessive updates depict 32s of wave movement and have 50% frame overlap
in time. (b) Frequency filtered Global One-Component Phase Images (GOCPI)
from Dynamic Mode Decomposition (DMD) (x,y,ω space, see Figure 3.2 right
pathway) uncovering frequencies 𝜔↑ = {0.59, 0.78, 0.97, 1.17} as essential com-
ponents in the wave field recording. GOCPI outside the gravity wave frequency
band are discarded as well as higher frequency GOCPI where 5m pixel resolu-
tion is insufficient to guarantee at least 8 points per offshore wave length (cf.
Figure 3.4, 2 and 3 ). (c) The pyramid cell at the grid location, with sub-
domain layers subsampled for computational speed and tapered with Hanning
windows to focus wave information. A colour gradient from red to yellow high-
lights decreasing subdomain size for increasing frequency. (d) Sparse spectral
point cloud (SSPC) (kx,ky,ω space, see also Figure 3.2 bottom), consisting of
pairs of 𝑘𝑘𝑘↑ estimates from FFT and PIV per frequency layer 𝜔↑. Colours indicate
the weight of each estimate (colour scale)(cf. Figure 3.4, 6 ). (e) The SSPC
augmented to a dense spectral point cloud (DSPC) using stored spectral data
of the grid location and surrounding grid locations within a radius of 75m (cf.
Figure 3.4, 10 ). Blue colours elucidate the lower weighting of stored spectral
data. (f) The 𝑑,𝑈𝑈𝑈 fit on the DSPC (magenta cone) using Equation (3.1) and
Equation (3.2) (cf. Figure 3.4, 12 ).
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Figure 3.7.: Depth updates from video of the field sites (a) Duck, (b) Porthtowan, (c)
Scheveningen, (d) Narrabeen. In (a,b,c,d): left most panel depicts an ex-
ample frame (grey scale) of the video with corresponding dimensions; inverted
depths (𝑑𝑖𝑛𝑣) of the 1st update are overlaid. Following two panels to the right
present inverted depths of the 5th and last update. Ground truth measure-
ments (𝑔𝑟. 𝑡𝑟𝑢𝑡ℎ, 𝑑0) are mapped in the second panel from the right (𝑑𝑖𝑛𝑣 and
𝑑0 in identical colour scale); the extents are indicated by dashed black lines
in panels of last update. Differences between ground truth and last update
(𝑑𝑖𝑓𝑓., 𝑑0 −𝑑𝑖𝑛𝑣,𝑙𝑎𝑠𝑡) are depicted in right most panel, with red/blue indicating
under/overestimation (colour scale).

Another, physical reason for near-shore depth estimates appearing larger is local
wave set-up [72], which is not accounted for in the comparison with ground truth.
Regions and reasons for depth underestimation differ per site. At Duck, depths
are only underestimated around the pier, which blocks the view to the underlying
waves (Figure 3.7a, red patch). At Porthtowan and Scheveningen depths are un-
derestimated by Δ𝑑 ≈ 0.5–1.5m near the offshore boundary (Figure 3.7b,c, red
patches). At Porthtowan (Figure 3.7b), the underestimation is mainly caused by the
fact that relevant lower frequency cell layers in near-boundary pyramid cells are too
large to be used. The underestimated region also lies >800m from the camera,
where inaccuracies in geometry influence depth estimates [123]. The size of errors
in the video geometries (Table 3.1) suggests a limited effect on depth estimates in
general, yet some depth error may be induced in regions further afield (e.g., for
𝑇 = 8s and 𝑑 = 10m, an error Δ𝐿 = 7m in wave length causes a depth error
of Δ𝑑 ≈ 2m, see also Fig.1 of [82]). At Scheveningen (Figure 3.7b), the underes-
timated region begins further away from the offshore boundary, where boundary
effects should be less pronounced. Here, the underestimation likely stems from the
relatively small waves, 𝐻𝑠 = 0.75m and 𝑇𝑝 = 5.5s, who feel little of the underly-
ing bottom. At Narrabeen, underestimation mainly occurs at the boundary farthest
from the camera. This underestimation is likely caused by similar boundary effects
as at Porthtowan, since also here the underestimated region lies more than 900m
from the camera. In conclusion, depth maps can show regions that are less accur-
ate, yet all in all, the maps approximate local bathymetries: on average ∼80% of
the mapped area has errors Δ𝑑 < 1m.

Direct comparison of estimated depths against ground truth confirms generally ac-
curate depth maps (Figure 3.8). Median depth estimates per given depth are mostly
close to ground truth (cf. Figure 3.8, double green curves and black 1 ∶ 1 line). For
the video of Duck (Figure 3.8a) the similarity is visible for the entire depth range
from 𝑑 = 1.5–5.0m, except for the scour hole where the pier obscures the underly-
ing waves. At Porthtowan, median depth estimates deviate more from ground truth
but remain Δ𝑑 < 2.0m for depths 𝑑 < 10m (Figure 3.8b). Errors are largest in the
breaking region where depths are 𝑑 = 2–3m, which is a common observation in
depth inversion studies e.g., [48]. This is similar for Narrabeen (Figure 3.8d). Here,
however, differences between median depth estimates and ground truth are min-
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Figure 3.8.: Direct comparison between inverted depths (𝑑𝑖𝑛𝑣) and ground truth depths
(𝑑0) for field sites (a) Duck, (b) Porthtowan, (c) Scheveningen, (d) Narrabeen.
Coloured dots correspond to the last update whose median is shown with a
double green line. Analogously, underlying white dots correspond to the first
update whose median is shown with a double grey line. Potential water level
differences within the observed domains, due to for example near-shore wave
set-up, are not accounted for in the comparisons.
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imal for the entire depth range beyond that, 𝑑 = 3–17m. In contrast to Porthtowan
(𝐻𝑠 = 1.0m), the wave heights at Narrabeen are larger (𝐻𝑠 = 1.6m), moreover,
the few large boundary errors in the statistics are outnumbered by otherwise ac-
curate estimates (Figure 3.8d, relatively few outliers). Median depth estimates at
Scheveningen (Figure 3.8c) also confirm earlier spatial observations of slight depth
overestimation near the shallow sandbar and underestimation for 𝑑 > 7m.
Although for each field site, the first mapping update after 32s of video is con-

siderably more scattered compared to the last update (cf. Figure 3.8, white and
blue scattered dots), the median estimate is comparable (cf. Figure 3.8, double
grey and double green curves). Hence, the first mapping updates already give a
rudimentary impression of the bathymetry, albeit with more local uncertainty. It
suggests that waiting for many mapping updates is superfluous and that it may be
efficient to stop after a couple of updates, when a certain degree of accuracy in the
depth map is reached.

Bulk errors decrease with increasing number of mapping updates (Figure 3.9).
Since depth errors are not always constant and linearly distributed over depth
(Figure 3.9b) and may contain outliers (Figure 3.9d), the median bias is adop-
ted to quantify structural over- or underestimation, and the interquartile range
(𝐼𝑄𝑅 = 75th − 25th percentile) to measure the scatter. In comparison to other
common error measures, note that Duck, with quite linear and normally distrib-
uted depth errors (see Figure 3.9a), has a median bias that is almost identical to
the commonly used mean bias and its 𝐼𝑄𝑅 is close to the root mean square er-
ror (not shown). Absolute median biases (Figure 3.9, dashed lines) start small
|Δ𝑑𝑏𝑖𝑎𝑠| < 0.5m with the first update and eventually become |Δ𝑑𝑏𝑖𝑎𝑠| < 0.1m at
Duck (with update 3), Scheveningen (with update 27) and Narrabeen (with update
10). The median bias at Porthtowan reaches Δ𝑑𝑏𝑖𝑎𝑠 ≈ −0.25m. The 𝐼𝑄𝑅s (Fig-
ure 3.9, solid lines) decrease fast over the first couple of updates, signalling fast
improvements in the accuracy of the depth map. After that, the convergence rates
start to relax. The total 𝐼𝑄𝑅 improvements are 0.9m → 0.5m (Duck), 1.7m →
1.4m (Porthtowan), 1.6m → 0.6m (Scheveningen), 2.6m → 1.1m (Narrabeen).
The elbow in the exponentially decreasing curves represents a compromise between
size of error and number of updates. It is difficult to pinpoint the exact locations of
the elbows, but for Duck and Porthtowan, they appear to be somewhere between
the 2nd–6th update, while for Scheveningen and Narrabeen they are more likely
located between the 5th–10th update. The reason for the different elbow positions
probably roots in the instrumentation: Videos of Duck and Porthtowan are recorded
with stationary Argus stations, while the videos of Scheveningen and Narrabeen are
recorded with UAVs. In contrast to the Argus stations, UAVs have some freedom to
move and are not professionally tuned to the field site, which likely causes depth
errors to be initially large; however, these errors decrease rapidly. Concluding the
previous findings, a general rule of thumb might be to stop with the 5th update,
after 1.5min of video. Awaiting more updates may further improve results, but
also requires more computation time and larger video length. A single estimate
based on 32s of video, is enough to get a rough depth map. In the end, the use
of the data and therefore required accuracy determine whether to stop the analysis
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sooner or later.
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Figure 3.9.: Depth errors at successive updates for field sites Duck (red), Porthtowan
(blue), Scheveningen (purple), Narrabeen (orange). Dashed lines present me-
dian bias. Solid lines present confidence intervals by the inter quartile range
(𝐼𝑄𝑅 = 75th − 25th percentile).

3.5. Discussion

A longside the maps of depth, also mapping updates for hydrodynamics, wave
celerity, 𝑐𝑐𝑐, and local near-surface currents, 𝑈𝑈𝑈, are retrieved. Since no ground

truth data are available for these parameters, they are discussed qualitatively in
Section 3.5.1. The subsequent Section 3.5.2 discusses the algorithms ability to
process video on-the-fly.

3.5.1. Maps of 𝑐𝑐𝑐 and 𝑈𝑈𝑈

W hile vector fields of 𝑐𝑐𝑐 remain quite stable after the first mapping update, vector
fields of 𝑈𝑈𝑈 require more updates to converge. Here, approximately the 10th

update (Figure 3.10) shows convergence of the local current patterns. Also, the
current velocities and directions appear realistic. Note that local changes in 𝑐𝑐𝑐 and
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𝑈𝑈𝑈 still occur after the 10th update, as allowed by the process variance in the Kalman
filter (not shown).

Maps of 𝑐𝑐𝑐 reflect the general direction of wave propagation for all videos (Fig-
ure 3.10, left column). Local vectors are oriented normally to the recorded wave
crests and trace characteristic wave refraction towards the coastline. Mean wave
directions per wave period are quite similar for all field sites, except for Duck which
shows some directional spread between shorter and longer period waves (Fig-
ure 3.10a left, red vs. yellow arrows). Wave celerity decreases towards shallower
water being most apparent for Porthtowan and Narrabeen. This is expected as
cross shore differences in depth are the largest at these locations (Figure 3.10b,d,
left). Moreover, the wave celerity of long period waves starts to decrease further
offshore than for short period waves (Figure 3.10d left, starting at offshore bound-
ary, green arrows already get shorter while red arrows have constant length until
close to shoreline). This is also expected since longer waves feel relatively smaller
depths.

Maps of 𝑈𝑈𝑈 show intricate patterns that are largely consistent in time and space
(Figure 3.10 right). Coastal currents are typically tide or wave driven [117] and
have magnitudes of decimetres per second (dms−1) e.g., [124]. They can reach
meters per second (e.g., strong rip currents [125] such as the “Backpackers’ Ex-
press” at Bondi Beach [126]), but such conditions are not likely at the field sites
analysed in this study. With mostly 0–5dms−1, the maps of 𝑈𝑈𝑈 have the correct
order of magnitude. At Duck, near-surface currents close to shore often point in
offshore directions, while further from shore they also point in southerly directions
(Figure 3.10a right). The near-shore offshore-directed flows probably represent
the effect of undertow caused by normally incident waves (see Figure 3.10a left).
It is interesting to note, that surface current estimates using optical flow on wave
averaged images might predict opposite flow directions in shallow water, namely
shoreward directed currents, as recent data analyses for a similar wave situation
at Duck suggest [127]. The hypothesis is that current estimates from optical flow
are more indicative of Stokes Drift, while wave-inverted current estimates capture
the undertow. Especially around the thinner part of the sandbar in the south (see
also Figure 3.7a, ground truth), streamlines from northerly and southerly directions
often converge to form a common flow direction offshore, which could be indicative
of a local rip current and is not uncommon at this site [128]. Although it is visible
throughout many updates (not shown), it is often hard to recognize among enlarged
𝑈𝑈𝑈 estimates on the sandbars. Note that 𝑈𝑈𝑈 estimates on the sandbars are influ-
enced by distorted wave celerity estimates of breakers, which simultaneously leads
to larger depth errors (see Figure 3.7a, difference). At Porthtowan, near-surface
current estimates generally point in south and south-easterly direction, except for
the deeper region where directions are less coherent. Also at shallow parts, cur-
rents point away from the coast (Figure 3.10b right). The southerly directed flows
may reflect some remaining tidal eb flow consistent with the time of the video re-
cording approaching low water. Similar to Duck, offshore directed flows close to
the shoreline are suggestive of a cross-shore directed undertow under almost coast
normal wave incidence. Near-surface current estimates at Scheveningen are well
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Figure 3.10.: Maps for wave celerity, 𝑐𝑐𝑐, and near surface currents,𝑈𝑈𝑈, for field sites (a) Duck,
(b) Porthtowan, (c) Scheveningen, (d) Narrabeen. The maps exemplify the
10th update. Wave celerity vectors of different wave periods, 𝑇, are superim-
posed and coloured according to top-left colour scale. Near surface currents
are indicated by streamlines whose colours highlight the current magnitudes
as of top-right colour scale. In the 𝑈𝑈𝑈-map of (c) the Scheveningen harbour
is outlined in black.

in line with expectation. The video recording was taken just above a harbour (Fig-
ure 3.10c right). During flood, the longshore tidal current accelerates around the
harbour jetties forcing larger current velocities and a characteristic region with ed-
dies and opposite directed flows is formed on the lee side of the northern jetty. Both
effects are visible and current magnitudes of mostly 0.4–0.6ms−1 off the coast also
agree with typical current magnitudes off the near-by Rotterdam coast. Close to
the coastline, 𝑈𝑈𝑈 estimates are again offshore oriented, suggesting undertow. Sim-
ilar to Scheveningen, coastal currents at Narrabeen run mostly alongshore. Here,
however, they are likely not driven by tides, but by waves instead. The direction
of flow at this location is sensitive to the angle of wave incidence and alongshore
differences in wave height and dissipation e.g., [129]. For the recorded situation,
the angle of wave incidence suggests northward flow; however, alongshore differ-
ences in wave height may still force a southward flow as mapped. The true current
direction remains uncertain at this site. Summarizing, near-surface current estim-
ates are coherent and can be explained, but the Scheveningen field-site is most
relatable to expected tidal flow patterns (Figure 3.10c, right).

3.5.2. On-the-fly processing

M aps of 𝑑, 𝑐𝑐𝑐 and 𝑈𝑈𝑈 are realistic and ideally returned on-the-fly. To allow for
an on-the-fly analysis during this study, specific choices are made to bal-

ance calculation time and spatiotemporal resolution of mapping updates. The al-
gorithm marches forward in time by consecutively analysing small sequences of
video frames, giving mapping updates after each sequence. The frame sequences
partly overlap (see legend Figure 3.11a). For pre-recorded video the overlap could
be controlled. It was 50%, since frame sequences were 32s long and the al-
gorithm was set to march forward in 16s intervals. For on-the-fly analysis of a
video feed, this approach does not work, as processing times start to play a role.
A mapping update now needs to reflect the current situation and therefore mostly
bases on the latest recorded video frames. Say the processing time of a frame se-
quence was 20s, then during the processing, 20s of new video frames have been
recorded. The next frame sequence to analyse includes these new 20s plus 12s
from the previous frame sequence representing the overlap. The amount of overlap
hence depends on the processing time, which may vary per update. Statistically,
the shorter a frame sequence, the more it represents a random sample of the wave
field, where waves vary in height and direction, currents change etc. [100]. Also
the video quality itself may vary due to changes in lighting, the accuracy of the or-
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Figure 3.11.: On-the-fly analysis of Duck video. Video frame sequences of 32s (green
boxes, see legend) are consecutively analysed with mapping updates after
each sequence (vertical orange lines). Depending on the computational pro-
cessing time (CPU time), frame sequences overlap more or less (darker green,
see legend). The CPU time mainly depends on the used machine, the grid
resolution, and the amount of spectral data. The amount of spectral data
is controlled by the number of sample grid points within a radius (𝑅𝑎𝑑, see
Section 3.2 and Figure 3.4) from each location and the duration that spectral
data are stored and used, which is the duration the wave signal is assumed
stationary. Timings of the first ten updates are shown for (a) 48 samples in
𝑅𝑎𝑑, stationary time 60s and (b) 12 random samples in 𝑅𝑎𝑑, stationary time
30s. Both grids consist of 720 grid cells. For (a), the 5th mapping update is
visualized as example.
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thorectification etc. This impacts the processing time, which may hence be slower
or faster causing respectively smaller or larger overlap between consecutive frame
sequences.
For the results presented up till now, the processing time for an update – using

a standard laptop with 4 CPUs and a working memory of 4GB – was typically
30–60s. If the fixed, 16s overlap was changed to instead be variable based
on the processing time, this would be too slow. To enter the realm of on-the-fly
computation, the processing time hence needs to be further reduced. The three
main elements influencing processing time are: (𝑖) the computational power, (𝑖𝑖)
the grid resolution, and (𝑖𝑖𝑖) the amount of spectral data points stored and used to
locally derive 𝑐𝑐𝑐, 𝑑, 𝑈𝑈𝑈. In this study the effect of (𝑖𝑖) and (𝑖𝑖𝑖) is considered using
the video of Duck as testcase:
(𝑖𝑖) In a first step to increase computational speed, the grid resolution is re-

duced from 1260 to 720 grid points. As required to simulate on-the-fly analysis,
the overlap is set to depend on processing time. The resulting simulation returns
mapping updates in variable time intervals with correspondingly variable overlap
between analysed frame sequences (Figure 3.11a). Yet, on average every 23s a
mapping update is given. Although the grid resolution is lower, the bathymetry is
still estimated in reasonable detail, as well as wave propagation and near-surface
currents. At the 5th update, after 102s, the results have again converged to a
large extent. The analysis could at this point be deemed on-the-fly; however, more
frequent updates would further improve the user experience. A detailed view of the
first SI≈4 updates reveals that they were returned at a faster pace than consecutive
updates (Figure 3.11a, orange lines closer together and more, darker green over-
lap between frame sequences). During the first updates, the amount of spectral
data in storage still increases towards full capacity, which suggests that the rate of
updates should increase for a smaller number of spectral data points.
(𝑖𝑖𝑖) Reducing the number of spectral data points that are stored and used, re-

duces the number of spectral points in the dense spectral point clouds (DSPCs).
This should be acceptable as long as the true local wave spectra are well repres-
ented by the DSPCs. By construction, a DSPC represents an aggregate of (mostly
stored) sparse spectral points clouds (SSPCs) (Section 3.2). These SSPCs stem from
surrounding grid points within a radius 𝑅𝑎𝑑 (Appendix B.3, Table B.2, 𝑅𝑎𝑑 = 75m)
from the location under analysis and from previous updates within a short period
where the wave signal is assumed stationary (see Section 3.2 and Figure 3.4). Now
instead of using SSPCs from all grid points within 𝑅𝑎𝑑, a random subset can be
selected. Here, a random subset of 12 surrounding grid points is selected from the
full set of 48 grid points. The amount of SSPCs from this subset of grid points can be
reduced even further by simply storing less SSPCs. The storage time, which is the
time that the wave signal is assumed stationary (Section 3.2), is here reduced from
60s to 30s. The effect of both measures on processing speed is significant, while
mapping results remain similar (not shown). The 5th update now occurs approx.
20s earlier and the 10th update even 80s earlier compared to the simulation with
only a reduced grid resolution (cf. Figure 3.11a and b). Updates are on average
returned every 13s, which may be considered a quite continuous temporal output,
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as desired for on-the-fly application (Figure 3.11b). It is noteworthy to mention
that convergence rates appear to depend rather on the number of updates than on
the timing (not shown), which suggests that it may be favourable to return updates
at a faster pace; however, a detailed analysis remains subject for future study.

3.6. Conclusions

T his study describes a fast and self-adaptive algorithm to map coastal parameters
on-the-fly from aerial wave imagery. Updates of depth, 𝑑, wave propagation,

𝑐𝑐𝑐, and near-surface currents, 𝑈𝑈𝑈, are returned every few seconds, such that a video
feed can theoretically be processed on-the-fly and a user does not need to wait
end engage in post processing. The input requires orthorectified video with known
pixel size (m) and frame rate (fps). Apart from that the algorithm works unsu-
pervised for the presented field sites. The basis for fast computational speed and
increased automation lays in the use of the Dynamic Mode Decomposition (DMD),
which is a dimensionality reduction technique that disposes redundant video in-
formation. It reduces the video to a set of, here 16, intrinsic wave patterns and
autonomously finds the corresponding frequencies. Applying a DMD, the search for
optimal spatial sampling schemes can also be automated, such that in the end, no
manual choices underly the local wave spectra, which are the basis to derive 𝑐𝑐𝑐 and
invert 𝑑, 𝑈𝑈𝑈. Consecutive mapping updates are improved by taking specific meas-
ures, such as using an innovative system to temporarily store and call up spectral
data, but also by penalizing spectral outliers through a loss-function, and Kalman
filtering. The algorithms potential for all-round application was demonstrated us-
ing video data from stationary camera installations and UAVs, recorded at four
different field sites, Duck (USA), Porthtowan (UK), Scheveningen (NL), and Narra-
been (AU), with hydrodynamic conditions ranging between 𝐻𝑠 = 0.75–1.63m and
𝑇𝑝 = 5–10s. Validating the depth maps, 𝑑, showed that they accurately reflected
ground truth measurements. The maps quickly improved from the first update to
typically the fifth update, at 1.5min into the video, after which the rate of im-
provement relaxed. It suggests that for time-efficient coastal mapping of depths,
1.5min of video suffice, such that the next location of interest can be recorded.
The inter quartile range (IQR) of depth errors decreased from the first update,
with minimum and maximum values of respectively 0.9m (Duck) and 2.6m (Nar-
rabeen), to the last update, with values of 0.5m (Duck) and 1.3m (Porthtowan).
Absolute depth biases were small throughout all updates, slightly improving from
minimum and maximum values of respectively 0.1m (Scheveningen) and 0.4m
(Porthtowan) at the first update to 0.0m (Duck) and 0.3m (Porthtowan) at the
last. Maps of wave celerity, 𝑐𝑐𝑐, and near-surface currents, 𝑈𝑈𝑈, could not be valid-
ated at this stage; however, qualitative assessment showed vector fields of 𝑐𝑐𝑐 to
match observed wave propagation and vector fields of 𝑈𝑈𝑈 to match expected tide-
and wave-induced currents. The algorithm finally demonstrated its potential for on-
the-fly video feed analysis by taking computational processing times into account.
Therewith the groundwork is laid for a fast and easy-to-use tool for coastal recon-
naissance. Striving towards universal applicability, more field cases and community
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driven development are desired, wherefore the code and data are openly available
at https://doi.org/10.4121/c.5704333.

https://doi.org/10.4121/c.5704333
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Frequency-derived

bathymetry with satellite

hey satellite man your time has come your words received by everyone

Satellite, The Hooters

This chapter explores the feasibility to use a frequency-based depth inver-
sion algorithm (DIA) on satellite imagery. Raw satellite imagery is typic-
ally deficient in either framerate or record length. Imagery of Capbreton,
France, collected by the Pleaides mission, is therefore temporally augmen-
ted by considering spatial pathways of propagating waves. The resulting
video is subsequently processed with the DIA from Chapter 3.
Lessons learned:

• Pre-existing techniques for image augmentation and depth inversion can
be combined to form a two-step approach for deriving bathymetry from
temporally sparse satellite imagery.

• A sequence of 12 images from Capbreton, France, collected at 1/8 fps
by the Pleiades satellite, is augmented to a 1.5min (pseudo) video with
a framerate of 1 fps. The spectral wave-content in the video compares
with in-situ buoy measurements.

• A depth map is successfully derived using a frequency based DIA. The
complex canyon bathymetry is approximated to a large extent as high-
lighted by an overall depth bias of −0.5m, yet estimates are spatially
noisy with an interquartile range of depth errors of 5.4m.

• The acquired accuracy is sufficiently high to apply a numerical wave
model and predict wave heights over the shoreface.

This chapter has been published in Remote Sensing 14, 1847 (2022) [35].
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4.1. Introduction

K nowledge of the coastal bathymetry is paramount for evaluating the vulnerability
of coastal areas to flooding and erosion [60]. Bathymetric boundary conditions

are an important pre-requisite for setting up numerical models that are typically
used in such evaluations. With coastal morphology constantly changing, coastal
managers need to systematically monitor the shoreface to assess coastal safety
[62] and consider possible intervention with protection measures [59]. The need
for coastal monitoring increases as climate change expects to impact the coastal
zone with accelerated sea level rise, and more frequent and intensive storms [130,
131].
Conventional field measurements are labour-intensive, causing bathymetry data

often to be outdated or even absent for large parts of the global coastline. Space-
based monitoring offers the opportunity to fill this data gap on a global scale,
with satellites having global coverage and potentially allowing bathymetry meas-
urements on large spatial scales [13] at daily to weekly return intervals [132, 133].
Bathymetry can be derived from optical satellite imagery of the water surface by
estimating depths from color differences [134, 135] or from wave characteristics
[136]. Deriving depths from wave characteristics has the benefit that the technique
also works in turbid waters, which often is the case in dynamic coastal zones.
Wave-based depth estimation is commonly performed on a time sequence of

wave images. By extracting wave numbers, wave frequencies or a combination
through wave celerity, depths are inverted via the theoretical linear dispersion re-
lationship of gravity waves [82]. Ideally, the image record has a minimum length
of 32–90s and has a framerate of 1–2 fps to capture the relevant gravity wave
frequencies [34, 67, 87]. Yet, Earth Observation missions only offer limited tem-
poral information due to the rapid passage of the satellite and required agility to
stay focused on a certain area of interest. Two challenging signal-processing cases
exist: (1) the record length is short; (2) the framerate is low [137]. An example
of case (1) are Sentinel-2 images, which contain an inherent time-shift between
colour-bands of ∼0.5s, which consequently can be used to generate an image se-
quence at 2 fps; due to the limited amount of colour bands the total sequence spans
∼1–2s [138]. In this case, the retrieval of ocean wave frequencies is challenging
by nature of the Gabor-Heisenberg limit [139], which states that a signal cannot
be sharply localized in both time and frequency. As an example of case (2), image
sequences of satellite missions such as Pleiades or Worldview-2 may span ∼100s
as the satellite can be repointed to the target area during overpass; however, the
corresponding framerates are low at 0.08–0.125 fps [136, 140], which is in the
same order or even lower than the characteristic periods of ocean waves. In this
case, the retrieval of the relevant wave frequencies is challenging by nature of the
Nyquist limit.
The different satellite missions have each brought forward their own tailor-made

algorithms to handle either a short record length or low framerate in pursuit of
approximating wave celerity/frequencies and enable depth estimation [69, 70, 138,
141]. These techniques have reported accuracies between <1m to 2.6m, yet
these numbers are based on specific analyses of one or two field cases. When such
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techniques are generally applied to more field sites, the accuracy can drop to errors
of 6–9m [13].

If the image record length was sufficiently long and the framerate was sufficiently
high to naturally extract wave-frequencies (e.g., via Fourier Transformation, Prin-
cipal Component Analysis or Dynamic Mode Decomposition), many more existing
depth inversion algorithms could be used. Such frequency-based depth inversion
algorithms are used on imagery of shore-based cameras [20, 87, 142], UAVs [12,
66] and Xband-radars [3, 21, 27, 33] (see also Chapter 2) and have been broadly
applied over the past decades. These algorithms have matured with typical ac-
curacies of 0.5–2m [15, 23, 34] and are well-embedded in the coastal remote
sensing community. Also, recent efforts have aimed to make these algorithms easy
to access and use. Accessibility and use of this algorithms is facilitated by increased
robustness, self-adaptation to the data, computational speed, and open availability
[15, 34, 143] (see also Chapter 3). Connecting the collection and analysis of satel-
lite imagery to these depth inversion algorithms and their users remains an open
challenge. To address this challenge, the satellite data needs to be prepared in a
way that wave-frequencies can be naturally extracted. This may be possible for
satellite imagery that is deficient in record length and/or in framerate. Recent stud-
ies suggest that ∼90s image sequences of propagating wave fields at framerates of
1–2 fps can be created from raw satellite footage of Sentinel-2 (short record length)
or Pleiades (low framerate). Almar et al. [144] developed a technique to augment
temporally sparse wave field observations towards a continuous video: assuming
that wave information travels at a certain phase speed through one point in an im-
age to neighbouring points, spatial pathways of wave trains are used to reconstruct
local time-series, which spatially combine to a video. Hence, using the physical link
between time and space of a wave field in motion, the approach aims to fill gaps
in time with relatively high resolute information in space, as was demonstrated for
Pleiades satellite imagery at Capbreton, France [144]. The results prompted further
in-depth study with synthetic data to create a controlled test environment [137].
Using a numerical model, a wave field over a barred shoreface was generated. The
numerical model output was then collected at framerates specific to Sentinel-2 and
Pleiades satellite settings (i.e., 2 fps and 1/8 fps respectively) to simulate the two
image sources. The sparse image data were subsequently augmented to video and
validated against the ground truth wave field. In both simulated cases, 8 source
images were enough for accurate video reconstruction and using 4 source images
was sufficient to capture main wave movement. Note that this was particularly
the case for the propagation of wave phases, not their amplitudes; however, amp-
litudes are of less importance here as they are not needed for depth inversion via
linear wave theory. It suggests that video reconstruction is potentially feasible for
satellite imagery with either short record length or low framerate, opening a pos-
sibility for using established depth inversion algorithms on data from a variety of
earth observation missions.

The aim of this study is to explore the feasibility of using a video-based depth in-
version algorithm on augmented spaceborne video. As a proof of concept, augmen-
ted video from the Pleiades data of Almar et al. [144] is used and then processed
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with the open-source algorithm of Chapter 3,[34] to invert depths. These depths
are subsequently validated against ground truth data to evaluate the feasibility of
the methodology for general use.
Section 4.2 describes the Capbreton field site and data. The video augmentation

method and the used depth inversion method are summarized in Section 4.3. Res-
ults of an application to Pleiades data are presented in Section 4.4. A discussion on
the usability of the bathymetry estimates for practical wave-height predictions and
a discussion on the detection of sandbars follows in Section 4.5. The findings are
concluded in Section 4.6.

4.2. Field site and data

(43.65°, -1.44°)

7 km
1
2
 k

m

Figure 4.1.: Pleiades satellite collecting 12 images of the field-site Capbreton, France. The
observed area and its location (Lat °, Lon °) are depicted in the top right.

T he data used in this study were acquired during the COMBI Capbreton 2017 field
experiment by the Airbus/CNES Pleiades mission [145]. Capbreton, in South-

Western France, was chosen as showcase due to its unique complex bathymetry
around a deep underwater canyon [146, 147](Figure 4.1), providing a large range
of depths. In a single pass-over, the Pleiades satellite took 12 consecutive images of
the target site at ∼8s intervals and a resolution of 0.7m. These images were then
orthorectified with homologue ground points using SRTM30 DEM and the SIGMA
software of CNES. As such, a superimposable image sequence of an area spanning
12km alongshore by 7km cross-shore was established. A bathymetric survey
of this region from 2010 [147] was fused to near-shore surveys from the COMBI
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project to generate a ground truth reference map. On the day of recording, 18
November 2017, at 11h35, hydrodynamic conditions were governed by swell waves
arriving from north westerly directions at 315°, with a significant wave height 𝐻𝑠 =
2.0m and a peak period of 𝑇𝑝 = 11.6s.

4.3. Method

T o derive bathymetry from temporally sparse satellite imagery with a stand-
ard frequency-based depth inversion method, a two-step approach is explored.

First, the sparse image sequence (1/8 fps) is augmented to continuous video (1 fps)
as of Almar et al. [144]. Second, this video is processed using the depth inversion
algorithm of Chapter 3, [34]. Core elements of both methods are summarized in
Section 4.3.1 and Section 4.3.2 respectively.

4.3.1. Temporal image augmentation

F or augmenting sparse temporal information with dense spatial information a
physical principle related to local wave celerity is used. If travel speed and

direction of waves at some point in an image are known, it can be hindcasted
where these waves were in the recent past and where they will be in the near future.
Hence, by looking at different distances from a certain point stochastic evidence can
be found for the time-series in that point. This process is repeated for all pixels in an
image. The ensemble of time-series from all these pixels shows the reconstructed
video of the moving wave field. The augmentation process represents a stochastic
spatio-temporal interpolation, which increases the frequency resolution and extends
the Nyquist frequency (as shorter period oscillations can be reconstructed, see [144]
Figure 4). It adds frames and counteracts aliasing [137] and thereby specifically
aims to prepare for frequency-based analysis with conventional depth inversion
algorithms (typically requiring at least ∼64 frames [34, 87]).
Since the video reconstruction process builds on knowledge of local wave celerity,

the accuracy of the celerity determines the quality of the resulting video. Due to
the limited temporal images in the raw satellite imagery, the local wave celerity
vectors need to be approximated. The wave celerity vectors are determined through
spatiotemporal cross-correlation in combination with a Radon transform as of [137,
144]. Note that there exists an ambiguity in the celerity vector orientation of 180°
(i.e., waves could just as well travel in opposite direction). Here, the wave direction
is postulated to be towards the coast, by only considering the signal within 0–90°
(Eastward) in Radon polar space. The method could however pick the correct
direction by ruling out the unrealistic travel speed of the opposite direction. For this
study, images were reconstructed from multiple pass-band filtered images. This
was done in the spatial domain using the deep water linear wave dispersion for
periods ranging from 5–20s.
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4.3.2. Frequency-based depth estimation

T he algorithm that is used to estimate depths from the augmented satellite video
was recently developed and chosen because of its generally accurate perform-

ance and open accessibility. The algorithm was built to automatically adapt to given
video data and to be computationally fast (see Chapter 3,[34]). Its performance
relies on a skill-bed, which largely shows errors in the submeter range. To date, the
algorithm has not been tested on augmented spaceborne video, which is a novelty
in this study.
One of the key principles of the depth inversion algorithm is to reduce data

complexity. For this purpose, a dimensionality reduction technique is employed.
It comes in the form of the Dynamic Mode Decomposition (DMD), which allows
to automatically extract main wave features and corresponding frequencies from
given video of a moving wave field. The wave features are captured by the dy-
namic modes, which closely relate to so-called “global one-component phase im-
ages” (GOCPI) (Chapter 3 and section 3.1.1,[34]). Similar to other depth inversion
algorithms [20, 21, 87], such phase images are used to estimate local wavelengths
and are therefore a key part of the depth inversion procedure. The GOCPI and
their corresponding frequencies can be extracted from relatively short image se-
quences (64 frames in [34]), which is attractive for the current application. Know-
ing the dominant frequencies at an early stage, proper sampling schemes can be
determined to find local wavenumbers in the GOCPI. Combining frequencies and
wavenumbers local wave spectra are formed, which expect to reflect natural wave
dispersion properties. Under this assumption, the Doppler-shifted linear dispersion
relationship aids as a theoretical model that can be fitted to the observed spectral
data to estimate local depths.
The algorithm automatically determines the grid resolution for efficient processing.

For large scale bathymetry estimation in the result Section 4.4, this grid resolution
is 100m. In the discussion Section 4.5.2 a local, smaller scale depth inversion
analysis is performed with 22m grid resolution.
Although the algorithm aims to avoid manual adjustment of settings, the recon-

structed satellite video presents a challenging case as the displayed wave hydro-
dynamics represent an approximation to the real wave-field. In addition, a large
portion (67%) of the observed area is relatively deep >15m, which means that
depth induced changes in wave characteristics are limited and thereby harder to
detect. We find that slight changes to parameter settings offer improvement for
the deeper regions. Changes compared to Gawehn, de Vries and Aarninkhof [34]
(see Appendices B and B.3) are listed in Appendix C Table C.1. Most importantly,
some leeway is given for maximum wave lengths. In the deeper regions, sev-
eral wave components are close to their theoretical offshore wave length limit
(𝐿/𝐿𝑜𝑓𝑓 = Γ𝑚𝑎𝑥 ≈ 1). To capture this from noisy spectra, detected wavelengths
are allowed to marginally exceed this theoretical limit (Γ𝑚𝑎𝑥 = 1.2, Appendix C
Table C.1). It gives leeway for the spectral data cloud to scatter (uniformly) around
the deep water dispersion limit and thereby allows for an unbiased fit of the dis-
persion shell to the data. Further improvement for the deeper regions is gained
by slightly increasing the grid cell size. It causes depth estimates to be a little less
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localized, but the larger sampling area increases the accuracy of the wavelength
estimates offshore.

4.4. Results

T he reconstructed video and the following depth inversion are respectively presen-
ted in Section 4.4.1 and Section 4.4.2.

4.4.1. Results from the augmentation

Figure 4.2.: First four frames of the reconstructed video at times t0 = 0s to t0+ 3=3s.
Wave movement is highlighted by zooming in on two example regions (white
boxes), and looking at the difference with respect to t0 (colorscale). Yellow,
positive differences point out rising water levels due to incoming wave fronts.
Red, negative differences point out the associated falling water levels at the
back of the wave. For clarity, only differences >10% are depicted.

A ugmentation of the 12 Pleiades images to 1 fps video yields 93 frames. The total
length of the video thereby spans just over 1.5min. Wave patterns are spatially

homogenous and show offshore waves to refract and wavelengths to get smaller as
they approach the coastline (see Figure 4.2, t0). Wave motion is continuous and
appears realistic for large parts of the domain (Figure 4.2, upper boxes). Some small
patches exist where the reconstruction quality is lower based on visual assessment
(Figure 4.2, lower boxes). Especially near the image or natural boundaries, the
augmentation proves more difficult. Fewer spatial points can be used for time-
series reconstruction at those locations. Also, depth estimation near the coastline
is particularly challenging as the time-series reconstruction becomes less accurate
due to complex wave patterns and wave breaking.
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To assess whether wave motion in the reconstructed video reflects reality, the
optical spectrum of the video is subsampled around and compared against the
measured spectrum from a local wave-buoy (Figure 4.3)(see also [148]). The op-
tical spectrum displays the highest variance density at ∼315° and at frequencies
of 0.09–0.13Hz which is consistent with the buoy measurements. Angular wave
spreading is less pronounced than in the buoy data. This difference may be ascribed
to a combination of artefacts from both the buoy data as well as the video recon-
struction procedure. Pitch and roll buoys have the tendency to produce broader
spectra than reality especially in case of narrow banded spectra [149] (Figure 4.3,
top right). The video reconstruction procedure has the opposite tendency, as it
determines wave directions uni-directionally from the Radon-transform [144] (Fig-
ure 4.3, bottom right). Considering these spectral artefacts, the variance density
spectra from the in-situ buoy and the reconstructed video suggest that the recon-
structed video captures the present wave field.

Figure 4.3.: Comparison of an in-situ measured (left, red ‘x’) variance density spectrum
from a local buoy (top right) against a corresponding optical variance density
spectrum from reconstructed satellite video (bottom right) of a representative
area (2km × 2km) around the buoy location (left, white box). Both spectra
are normalized to unit magnitude for comparison.

So far, the quality assessment of the reconstructed video reveals that wave mo-
tion is continuous (Figure 4.2) and that local optical spectra compare with measured
wave spectra (Figure 4.3). While the presented spectra provide directional informa-
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tion about dominant wave periods, they do not couple them to wave lengths. Since
this coupling is crucial for estimating depths via the dispersion relationship, the spa-
tial structure of the dominant frequency components is checked. This is done by in-
specting the global one-component phase images (GOCPI) per frequency compon-
ent, gained from the depth inversion algorithm (Chapter 3 and section 3.1.1,[34])
used here (Figure Figure 4.4). For the reconstructed video, the GOCPI depict co-
herent, long-crested wave patterns in line with a swell wave climate. Moreover,
spatial scales and time scales match, as wave lengths decrease for shorter period
waves (Figure Figure 4.4, left to right). Overall, the quality assessment of the
reconstructed video thereby suggests a solid basis for depth inversion analysis.

Figure 4.4.: Global one-component phase images (GOCPI) of dominant frequency compon-
ents 𝑓 = 0.09, 0.11,0.14Hz in the reconstructed video. The phase images are
naturally retrieved via the Dynamic Mode Decomposition as part of the depth
inversion procedure [34]. In total, 9 phase images are used for analysis, of
which 3 are presented as example.

4.4.2. Results from depth inversion

D epth results underscore the potential of combining video reconstruction with
a standard frequency-based depth inversion technique (Figure 4.5). The es-

timated depth map correctly represents the overall shoreface from the shoreline
down to the deeper offshore at ∼35m (Figure 4.5 centre). The location of the
underwater canyon is also captured, albeit not its depth, which extends to ∼200m
(Figure 4.5 left). At such depths, waves are no longer significantly affected by the
bathymetry and therefore the depth comparison should be considered as a weak
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proxy. Errors in the depth estimates are largely <± 5m (Figure 4.5 right). Mostly
around the edge of the canyon and near the shoreline, errors are larger. The edge
of the canyon features sharp depth gradients, which are hard to capture because
wave patterns are reconstructed [144] and analysed [34] using spatial sampling
areas and wave attenuation is not instant. Similar situations occur in areas close to
the coastline. Less usable spatial samples to locally reconstruct time-series in com-
bination with wave breaking cause inconsistencies in wave propagation (see also
Figure 4.2, lower white box), eventually leading to noisy depth estimates. Yet, for
the largest part, the depth estimates approximate ground truth (Figure 4.5 right,
light areas).
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Figure 4.5.: Comparison of depths, 𝑑, from ground truth (left) against depths estimated
from reconstructed satellite video (centre). Ground truth depth contours
are superimposed on estimated depths for reference. Depths are indicated
from red (shallow) to blue (deep) as of centre colourbar. The difference,
Δ𝑑, between estimated depths and ground truth, is presented in right panel,
with red/blue respectively denoting under-/overestimation of depth (right col-
ourbar). Parts where 𝑑 > 35m are masked and indicate the underwater
canyon where waves are unaffected by the bathymetry.

The distribution of errors over depth is further studied through a direct compar-
ison between estimated depths and ground truth (Figure 4.6). The median estimate
over depth closely follows the ground truth (cf. Figure 4.6, green and black lines)
and thereby highlights a small overall depth bias of −0.9m. Depth estimates are
scattered, which is quantified by the inter quartile range (IQR) (Figure 4.6, red
shaded band), which averages to IQR = 5.1m. As indicated by the spatial differ-
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ences in depth error (Figure 4.5 right), this scatter in the depth estimates is larger in
shallow parts where 𝑑 < ∼7m and deeper parts where 𝑑 > ∼23m. For the depth
range in between, the scatter is smaller. In the near-coastal region with depths up
to 15m, the IQR averages to 3.6m, which is small considering that estimates are
extracted from originally just a few temporally sparse satellite snapshots.

Figure 4.6.: Direct comparison of inverted depths, 𝑑𝑖𝑛𝑣 against ground truth, 𝑑0 (blue dots).
The median is indicated in green and aims to approximate the black 1 ∶ 1 line.
The 25𝑡ℎ −75𝑡ℎ percentile is shaded red and superimposed on the 10𝑡ℎ −90𝑡ℎ
percentile shaded orange.

Note that some error in the statistics can probably be attributed to morphological
changes that occurred between the time of ground truth measurements, mostly
dating from 2010, and the time of depth estimates in 2017. Possible depth errors
due to surface current effects are expected to be limited as both measured and
estimated surface currents were weak. An ADCP recorded current magnitudes of
2–21cms−1 (10th −90th percentile), which is representative of typical tidal current
magnitudes at Capbreton [150]. Currents impose a Doppler-shift, which the depth
inversion algorithm seeks to take into account. Here, this is challenging due to
the unidirectionality of waves, but the algorithm estimated near-surface current
magnitudes to be mostly <26cms−1 (90% of the estimated area), which is in line
with ADCP measurements and also suggests a limited effect on inverted depths.

4.5. Discussion

T he upcoming Section 4.5.1 discusses the possible use of the large scale bathy-
metry estimates for predicting and mapping coastal hydrodynamics. Coastal

morphodynamics typically occur in the active coastal zone and may produce near-
shore features such as sandbars. Section 4.5.2 explores whether such sandbars
can be captured.
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4.5.1. Using satellite derived depths for coastal wave height
predictions
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Figure 4.7.: Predicted wave height distributions over ground truth bathymetry and estim-
ated bathymetry of Capbreton using a numerical wave model. a,b) ground
truth depths and estimated depths, respectively used in the model, where
red/blue indicate shallow/deep regions (top colorbar). Salt-and-pepper noise
has been removed from (b) using a 3 × 3 median filter. c,d) significant wave
height distribution associated to (a,b), respectively, where red/blue indicate
high/low wave heights (bottom colorbar). The 35m depth contour is super-
imposed to outline the location of the canyon. Hydrodynamic field conditions
with 𝐻𝑠 = 2m, 𝑇𝑝 = 11s and wave direction = 315° measured by a local
buoy (see Figure 4.3) during satellite overpass are used as boundary forcing.

W hile the estimated bathymetry map of Capbreton approximates reality, the
question arises whether it can be used for practical applications, such as for

wave height predictions over the coastal shoreface along the coast. Such predic-
tions are typically made with numerical models, in which the local detailed bathy-
metry is a required boundary condition to propagate wave energy. It is worthwhile
exploring whether the large scale, satellite derived bathymetry could substitute for
this purpose, as local ground truth data may not always be available.
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A straightforward stationary wave model was used to compute wave refraction
and the spatial distribution of wave heights at Capbreton [151]. It repeatedly solves
the wave action balance and includes dissipation formulations for wave breaking
and bottom friction [152, 153]. The model was applied to the estimated bathymetry
(Figure 4.7b) as well as the ground truth bathymetry (Figure 4.7a) and the resulting
wave height distributions (Figure 4.7c,d) were then qualitatively compared. To
mitigate the influence of salt-and-pepper noise, the estimated bathymetry data
were first filtered with a small 3 × 3 median filter. The numerical model was forced
using the hydrodynamic conditions observed by the offshore wave buoy during
overpass of the satellite (𝐻𝑠 = 2m, 𝑇𝑝 = 11s, wave direction = 315°)(see also
Figure 4.3).

Figure 4.8.: The beach La Piste at Capbreton, France.

The computed wave heights at Capbreton displayed a characteristic pattern of in-
creased wave heights to the south and north of the canyon and lower wave heights
at the canyon head (Figure 4.7c,d). This is consistent with earlier observations for
typical winter month conditions at this site [154]. Wave height predictions using
the estimated bathymetry (Figure 4.7d) were noisier than for the ground truth ba-
thymetry (Figure 4.7c). Smaller wave heights at the head of the canyon were less
pronounced (Figure 4.7d), because the canyon depth was underestimated there
(Figure 4.7b). However, the increased wave heights to the north and especially
the south of the canyon were captured. Submarine canyons are known to re-
fract waves in complex patterns, leading to a variable distribution of wave heights
along the coast [155]. Local focussing of wave energy typically causes hotspots
of increased wave height, which may be associated to popular locations for wave
surfing [154, 156]. In this case, the southern band of increased wave heights leads
up to a beach called La Piste, a renowned wave surfing spot (Figure 4.8). Being
able to recognize such wave energy hotspots from satellite derived bathymetries is
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valuable, also for safety purposes, as hotspots are a determining factor in coastal
hazard assessments [60]. At La Piste wave focussing also contributes to observed
shoreline and dune retreat (Figure 4.8).

4.5.2. Satellite derived sandbars

T he Capbreton bathymetry is complex, featuring a large underwater canyon, but
also fine sandbar structures along the adjacent coastline. Sandbars are an

important element for understanding coastal systems [117] and it would therefore
be valuable to capture them.
Sandbars are relatively small morphological features and therefore require a more

detailed depth inversion analysis. Zooming in on the location of a sandbar at Cap-
breton, a refined local wave-field video was reconstructed with a framerate of 2 fps
(Figure 4.9a). As these sandbars are located in the near-shore region with charac-
teristic depths of 0–15m (Figure 4.9b), the depth inversion analysis (Figure 4.9c)
was done using the standard algorithm settings of Gawehn, de Vries and Aarninkhof
[34] (see Appendices B and B.3).
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Figure 4.9.: Sandbars from depth inversion of a locally reconstructed video of the near-
shore wave-field. a) reconstructed video with framerate of 2 fps. b) satellite
image showing the position of the sandbar. c) Depth estimates based on (a).
For reference, dashed black contours outline the position of the sandbar and
the solid black line indicates the position of coastline.

The estimated sandbar morphology (Figure 4.9c) was qualitatively compared to
the sandbar position visible through optical imagery (Figure 4.9b). Ground truth ba-
thymetry data were too coarse and outdated in this area. The comparison showed,
that the local depth inversion analysis distinctly captured the sandbar morphology.
Approaching the sandbar from the offshore, the water depth decreased up to the
position of the sandbar at an estimated depth of ∼5m, which is in line with ex-
pectation for this site [147]. This was then followed by a trough shoreward of
the sandbar and eventually the coastline. The analysis demonstrates that the pro-
posed depth inversion methodology can expose small-scale features from satellite
imagery, and may thereby add morphological detail in regions with absent or coarse
knowledge of the present bathymetry. Sandbar estimates could potentially be im-
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proved using wave breaking and -dissipation as additional proxy for depth [29, 43]
or be combined with depth estimates from satellite SAR imagery on cloudy days
[157, 158].

4.6. Conclusions

T his study explored the estimation of coastal bathymetry from satellite imagery
with a frequency-based depth inversion method. Wave-based depth inversion

methods in the frequency domain share a large user community and are widely
applied to derive bathymetry from video of camera stations, UAVs and Xband-
radars. It would therefore be appealing if these standard methods could also be
used on satellite imagery. However, as is, the temporal resolution of satellite im-
agery remains sparse. To enable frequency-based depth inversion to work, satellite
imagery was temporally augmented in this study, which was achieved using pre-
existing techniques. As such, depth inversion becomes a two-step process, with
the first step being the augmentation of sparse satellite imagery to video, and the
second step being the analysis of this video with a frequency-based depth inver-
sion method. As a proof of concept, Pleiades images of the study site Capbreton
in France were temporally augmented from originally 1/8 fps to 1 fps video last-
ing just over 1.5min. The resulting augmented video showed smooth propagation
of wave crests and its spectral content accurately represented in-situ buoy meas-
urements. The video was subsequently analysed using a frequency-based depth
inversion algorithm, which works largely unsupervised and is openly accessible.
The resulting depth estimates approximated the ground truth with an overall depth
bias of −0.9m, yet estimates were spatially noisy with an interquartile range of
depth errors of 5.1m. Still, the acquired accuracy was sufficiently high to correctly
predict wave heights over the shoreface with a numerical wave model and to find
hotspots where wave refraction leads to focussing of wave energy that has potential
implications for coastal hazard assessments. Furthermore, detailed depth inversion
analysis of the near-shore region demonstrated the potential to capture small-scale
morphological features such as sandbars. This study demonstrates that pre-existing
techniques can be combined to estimate bathymetry from satellite imagery and that
these estimated bathymetries may serve coastal management purposes.
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Synthesis of wave-based
coastal remote sensing

All we need is one worldwide vision

One Vision, Queen

5.1. Introduction

T he success of wave-based coastal remote sensing techniques (WCRS) depends
on the ability of end-users to solve problems using these techniques [10, 11,

31]. Identifying coastal problems, answering managements questions and ex-
ecute policy requires data, and these data can be provided by WCRS. Such data
include up-to-date bathymetry to assess the state of the shoreface and identify
erosional/accretional trends, but may also include information about hazardous hy-
drodynamics.
Chapter 1 placed WCRS within the broader context of a technology to be used

by potential end-users. One can thereby think of the maturity of a technology in
terms of technological readiness, but also of a technology’s potential to be adopted.
This thesis was motivated by the observation that WCRS showed high technolo-
gical readiness, but that existing WCRS software prevented a broad adoption by
the coastal community. This Chapter 5 reflects on the technological readiness and
adoptability of WCRS based on the work conducted in this thesis (Section 5.2) and
discusses some properties of WCRS, which can be further improved upon in the
future (Section 5.3). The discussion is followed by a brief summary (Section 5.4)
and context with neighbouring remote sensing techniques (Section 5.5). Finally a
vision is given for the future of WCRS (Section 5.6). With the exponential growth
of data volumes worldwide [159], future software will have to process raw (video)
data on-board, such that smaller data volumes can be transferred for storage (see
Chapter 2; [3]). Data clouds will be able to facilitate storage and offer future
perspectives for online integration of data with numerical models and modern data
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science techniques like neural networks. This will create new possibilities for under-
standing system dynamics, through allowing on-the-fly hindcasting and forecasting
and thereby provide valuable tools for decision makers in coastal management, the
industry and the coast guard.

5.2. Technological readiness and adoption

I n Chapter 2, [3] the technological readiness of WCRS was tested. It was demon-strated that WCRS works in an operational environment, which corresponds to
a technological readiness level (TRL) 7 (see Chapter 1). That study subsequently
initiated the multi-year employment of WCRS in a government-financed project,
showing that WCRS technology is fully ready for market use (see Chapter 1, TRL
9) [160], at least for this XBand-radar application. Still, it is questionable whether
WCRS is complete and qualified (TRL 8). WCRS is complete and qualified in terms of
scalability, as this study demonstrated that fixed land-based and flexible airborne
(Chapters 2 and 3) instruments can provide data on local scales of 𝑂(100m2)-
𝑂(100km2), and this can now be extended to global scales with space-borne
(Chapter 4) instruments (Figure 5.1). Moreover, such large scale data can be
achieved at high temporal resolution and more affordably compared to in-situ meas-
urements: after setting up an Xband-radar it can provide several bathymetry maps
a day, as was demonstrated in Chapter 2, which is not feasible with in-situ transect-
or multibeam surveys.
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Figure 5.1.: Idealized illustration of characteristic spatial scales and temporal resolutions of
the remote sensing instruments used in this study. In-situ data collection is
indicated in grey for comparison.

Yet, to date, there exists no all-round software package to be used on different
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remote sensing hardware for operational use. Depth inversion algorithms (DIA)
form a crucial part of the required software and by developing self-adaptive software
(Chapter 3, [34]) and applying it to multiple instruments (Chapters 2 to 4, [3, 34,
35]), this work contributed to reach TRL 8. Yet, further steps are necessary for
standalone, fully-integrated software. Concluding, this work has helped to bring
WCRS further towards TRL 8 and 9, but there is still a need for further automation
and technological completeness.
To assess the status in the adoptability of WCRS, the end-user considerations

(EUCs) of Chapter 1 are revisited:

 (EUC 1) relative advantage compared to existing tools

 (EUC 2) compatibility with pre-existing systems/hardware

 (EUC 3) complexity/difficulty to learn

 (EUC 4) testability

 (EUC 5) potential for reinvention

 (EUC 6) observed effects

Viewing these EUCs as a check-list, confirms that this studies’ aim to innovate
wave-based depth inversion towards accessible, smarter and faster algorithms does
(indeed) promote broad community use: Relative advantages compared to existing
tools/algorithms (EUC 1) are possibilities to operationally monitor complex systems
over large areas and monitor nourishments from large distances. Other advantages
are improved accessibility and user-friendliness of DIAs and possibilities to acquire
depth estimates on-the-fly enabling the analysis of video feeds and lean-and-mean
mapping (Chapter 3, [34]). Also the compatibility of WCRS with pre-existing sys-
tems (EUC 2) was proven by application to data from four different remote sensing
instruments (Chapters 2 to 4, [3, 34, 35]). The complexity/difficulty to learn WCRS
(EUC 3) was directly addressed by designing self-adaptive algorithms (Chapter 3,
[34]). The testability of WCRS (EUC 4) has also been improved, by establishing a
skill-bed and making software openly accessible (Chapter 3, [34]). It was also pos-
sible to reinvent WCRS (EUC 5) by showing potential application of DIAs to video
feeds (Chapter 3, [34]), but also to sparse video-footage, which it was initially not
designed for (Chapter 4, [35]).
Finally, by striving towards fast, visually responsive, yet robust, multifunctional

and accurate DIAs, potential end-users can easily collect, map and present coastal
data, which has observed effects (EUC 6). This was first shown by relatively inex-
perienced people (students who just entered their masters). During a field experi-
ment at the Sand Engine (Figure 5.2a) it was aimed to derive bathymetry using a
UAV (Figure 5.2b) and validate those data against ground truth bathymetry data.
Aside from setting out GCPs and the orthorectification of the drone movie, the lay-
men required little help in the process. The application of the self-adaptive DIA
was straightforward. Without any tuning of the DIA, within 10min an accurate
map of bathymetry was obtained (Figure 5.2c) with errors of mostly 0–1m within
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Figure 5.2.: Laymen application of a self-adaptive depth inversion algorithm (DIA). a) View
of the field site at the Sand Engine and b) the used drone, a DJI Mavic. c)
Depth, 𝑑, obtained with novel DIA, based on a drone field survey in October
2020 with significant wave heights of 0.7m. d) Difference, Δ𝑑, with ground
truth.

500m from the coast (Figure 5.2d). This user case gives a first indication that self-
adaptive DIAs may be suited for a large user community with little to no experience
in remote sensing. Yet, this is still to be shown in practice, as more people start to
use such DIAs.
From the viewpoint of end-user adoption, the concept and development of fast

and self-adaptive software in this study stimulates a broader community use of
WCRS, making way for an early majority of adopters (see Figure 1.4, Chapter 1).

5.3. Five properties of WCRS: Current status and
future developments

T he improvement of WCRS for effective coastal monitoring is a process to be
continued. The ability of end-users to acquire data with WCRS increases with

more affordable hardware and easy-to-use, yet powerful software. The success
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will be reflected by a broad coastal user community ranging from researchers to
managers, to the coast guard and the industry. The more people are able to use
WCRS the more effective it is. To steer future developments, a set of five WCRS
properties is suggested, which can be improved upon:

 accessibility

 multifunctionality

 quality

 robustness

 user friendliness

These five properties regard both the instruments to record the wave-field and the
software to analyse the recorded wave-field. This work has contributed to improving
the software-side and more specifically, the DIAs used to make estimates of depth,
near-surface currents and wave celerity (Chapters 2 to 4, [3, 34, 35])
If the complexity of WCRS decreases the end-user community increases as it

becomes easier to collect information to address a coastal problem. This Section 5.3
elaborates on that using the five highlighted properties of WCRS as guideline. The
state of each property is discussed in detail and possible future developments are
suggested.

 Accessibility
WCRS is in the process of becoming more accessible, both the necessary
hardware as well as the software. This process of becoming more accessible
is an important change starting in the early 2010’s.

WCRS hardware (camera, UAV, Xband-radar, satellite) has gone through dif-
ferent phases of accessibility from the past until now. For several decades,
hardware was expensive (e.g., [161, 162]). Professional stationary camera
installations were costly, UAV’s were not as far developed and also costly.
Satellite data were also either costly and/or not open-source, such as data
from Landsat. Some satellite data were not yet available such as Sentinel-2
data. XBand-radar is still an expensive instrument. In recent years technical
innovations have brought forth affordable high resolution cameras and af-
fordable UAV’s with autonomous stabilization and equipped with high quality
gimbles and cameras. Although, currently the use of UAV’s experiences a set
back, as regulations to fly drones become stricter and licensed pilots are re-
quired [163]. Satellite data are becoming more open source and Chapter 2
has demonstrated that existing navigational XBand radars can be utilized.

In terms of software, also large steps have been made in their accessibility.
Cameras, for example of UAV’s, can be automatically calibrated with built-
in software or with tools from openly accessible platforms such as OpenCV
[164]. Such platforms provide an inventory of sophisticated software tools,
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which can be used to reduce the complexity of WCRS, for example by enabling
autonomous optical tracking of Ground Control Points (GCP) needed for or-
thorectification. Satellite data can be accessed and processed via platforms
such as the Google Earth Engine and occur in the cloud [165]. From own
experience, XBand-radars still require specialist, third-party software tools,
which are not easily accessible. Until recently, post-processing software to
estimate depths, wave directions or surface currents were not open-source.
Not being able to utilize the capabilities of such software, WCRS was difficult
without involvement of third-parties. This is changing due to a growing open-
science mindset, which shows to accelerate research [166], increases public
attention and brings new opportunities for collaboration [143], jobs and fund-
ing [167]. Software like cBathy [20] has become open-source and accessible
via platforms such as GitHub [143], yet it is currently only available in com-
mercial Matlab programming language. The software developed during this
study is openly available [34] and also programmed in open source Python
language.

However, the use of WCRS typically necessitates a three-step process, (1) the
collection of the video data, (2) a pre-processing step to convert video to or-
thorectified format and (3) the post-processing step with a DIA. For orthorec-
tification an additional challenge lays in the use of GCPs, which are typically
manually put into the field and individually located with GPS. All these steps
might be combined into a single, integrated, multifunctional WCRS software.

Future developments: To reach a broad user-community, improvements can
still be made. In terms of hardware, WCRS is an accessible alternative to
in-situ techniques (e.g., a UAV is more affordable than a jet-ski). In terms of
software, many algorithms are only available in the form of computer code
like Matlab or Python. If organisations such as the coast guard or the in-
dustry are meant to use WCRS, software will have to be provided in the form
of stand-alone, freely downloadable applications in order to be accessible.
One of the desired goals of this study was to develop such an application for
analysis of drone video feeds Figure 5.3. To achieve this goal, methodological
innovation of DIAs was still required, which resulted in a prototype algorithm
that could be used in an application [168]. It is now the task of (software)
developers to transform bare Python and Matlab codes of DIAs and implement
them in stand-alone applications (e.g., for Android or iOS). This task might be
achieved through collaboration with university students from software engin-
eering departments. Stand-alone applications will increase accessibility and
thereby benefit a broad WCRS user community. These applications should
be integrated, seamlessly combining video recording with pre-processing and
post-processing. Concretely, it is desirable if the process of orthorectifying
video and the process of analysing the video could be combined and per-
formed on-the-fly to a video-feed. This is technologically feasible.

Specifically the process of orthorectification should be simplified, as it can
form a labor-intensive pre-processing step. Orthorectification might be sim-
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Figure 5.3.: Field visit to the Sand Engine. Members of the ZABAWAS foundation without
technical background are flying a UAV. A tablet displays the drone video feed.
It would be ideal if an application could be opened to show maps of the local
bathymetry and surface currents on-the-fly.

plified for hardware with RTK-GPS, as it may circumvent the necessity for GCPs
[169]; however, RTK-GPS functionality (e.g., for UAVs) is currently expensive
and hence does not score on accessibility. A different approach could be to
combine optical imagery of a certain instrument (e.g., UAV) with geo-located
satellite imagery. By automatically detecting overlapping features between
satellite imagery and imagery from a different recording instrument (e.g.,
UAV), the satellite GPS coordinates of those features could be used to or-
thorectify the imagery of the other recording instrument [12]. This requires
automatic feature detection to find natural GCPs. In the past this was not
a viable option as potent feature detectors were patented, but in the mean-
time open source alternatives like ORB exist [170]. Note that Convolutional
neural networks (CNN) could also orthorectify drone imagery an do so on-
the-fly, even in GPS-denied environments [171]. Seamlessly integrating the
orthorectification process with the video collection and on-the-fly DIA post-
processing in a stand-alone application would present a major step forward:
reducing the complexity of WCRS and thereby increasing its accessibility.

 Multifunctionality

An intrinsic strength of WCRS is that it can be multifunctional. It is possible to
estimate several hydrodynamic parameters and morphology simultaneously
from video and/or time exposures, regardless of the used instrument e.g.,
[33, 75]. During this study, algorithms were developed, which offered to map
wave-hydrodynamics, near-surface currents and depths, all simultaneously,
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see Chapters 2 and 3. WCRS also allows to map current profiles [46] and
wave heights e.g., [172, 173], albeit such methods are typically not integrated
in depth inversion algorithms (DIAs).

The multifunctional capability means a multifunctional range of application.
This range of application is determined by coastal zone management goals,
flood safety, ecological and recreational directives, swimmer safety, but pos-
sibly also navigational safety and industrial process monitoring [1–4]. These
applications need reliable up-to-date coastal data fromwhich relevant products
can be derived like erosion trends, volumetric changes, nourishment beha-
viour, system behaviour, but also hotspots for endangered swimmer safety or
wave-surfing hotspots.

In the intoduction Chapter 1 an example was given for coastal management
needs in the Netherlands, such as the need to know coastal erosion in order
to plan for intervention measures. This work has demonstrated that WCRS
can answer questions like ”what is the evolution of a nourishment?”, by deriv-
ing trends in nourishment volumes and recognizing (the movement of) mor-
phological features (Chapters 2 and 4). Even complex morphological sys-
tem behaviour can be monitored [160], such as ebb-channel migration and
switching, which can be valuable for navigational safety. On-the-fly WCRS
estimates could also allow to identify temporary hotspots of strong currents
(Chapter 3) in the field. Chapter 4 has also shown that large-scale, space-
borne bathymetry estimates can be combined with fast numerical models to
reveal hotspots of increased wave energy having implications for recreational
coastal functions like wave-surfing, but also public safety. The current study
has made WCRS easier to use, faster and gave insight into measurement re-
liability and demonstrated that it is ready for implementation in monitoring
projects.

Future developments: There are twomain challenges for multifunctional WCRS.
The first challenge concerns (1) multifunctional software, and the second chal-
lenge concerns the (2) multifunctional application of WCRS.

(1) The multifunctionality of the software could be further extended by adding
functionality to estimate current profiles and wave heights. Stand-alone ap-
plications could be programmed towards such all-purpose software for use
by a broad coastal community. Methodologically, the necessary tools exist
and could be combined. Note that both for process integration as well as the
estimation of various coastal parameters neural networks are a potent future
alternative. Convolutional neural networks (CNN) have not only made their
entry in DIAs [71, 73]. Fast advancements in computer vision have recently
brought forth neural networks capable of unprecedented instant three dimen-
sional real-world reconstruction from a few snapshots[174]. Such methods
can enable on-the-fly three dimensional wave-field analysis instead of two
dimensional analysis, offering extraction of wave-energy spectra instead of
optical intensity spectra and direct derivation of local wave heights. These
estimates could directly be used to identify hotspots for endangered public
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safety, but also hotspots for coastal recreation (e.g., wave-surfing). Hence,
machine learning offers new perspectives for multifunctional and instantan-
eous WCRS.

(2) The second challenge lays in the multifunctional application of WCRS.
The Dutch Ministry of Infrastructure and Water Management shows renewed
interest in the application of WCRS for real-time coastal bathymetry monitor-
ing [3, 160]. Other organizations should follow this lead, as it aids in refining
user-needs [10]. The technological readiness of WCRS is at a stage where it is
able to provide necessary up-to-date coastal information with little effort com-
pared to traditional spatio-temporally coarse (in-situ) measurements. This
implies that efforts should be channelled towards reaching out to researchers
through presentations and regular workshops such as via the Coastal Ima-
ging Research Network [143]. Similarly, WCRS can be pitched to coastal
managers, the industry and the coast guard. Yet, for convincing arguments,
specifically to the industry and coast guard, the WCRS software should first
be more integrated as to demonstrate easy implementation and adoption (see
accessibility and Section 5.2).

 Quality
The quality of WCRS is determined by estimate accuracy and spatial coverage,
which can be influenced by the instrument to record video (see Chapters 3
and 4), the software to analyse video [169], but also hydrodynamic [44] and
weather conditions ([3, 15]). Typically, an image resolution of 5–10m suf-
fices, which can be achieved with most instruments. A clear sky is favourable
and can be a necessity for passive sensor instruments, like optical cameras
of fixed stations, UAVs or satellites. But clear skies can also cause sun-glare,
especially in records from fixed camera stations or UAVs, which can decrease
spatial data coverage [15]. Instruments with active sensors, like Xband-radars
are known to produce qualitatively sufficient wave-imagery also under poor
weather conditions like rain and fog [175].

In terms of software, most wave-based DIAs are based on linear wave theory,
which seemingly works for most field applications, but also has its limitations
for example under breaking waves or storm weather conditions. Typically, es-
timates of depth have errors <2m and data coverage is 90–100%, as was
found for a wide range of hydrodynamic conditions with both a Fourier-based
DIA (Chapter 2), but also a DMD-based DIA (Chapter 3) and which is in line
with other reported DIA accuracies (e.g.,[20, 23, 44]). Different measures can
be taken to improve estimates, such as Kalman filters [20]. This work showed
that improvement can also be achieved with loss-functions in optimization and
temporary spectral data storage (see Chapter 3, [34]). Depth errors <2m are
larger than for in-situ measurements, for example from jet-ski surveys (errors
∼10cm, [176]), but they allow to derive relevant products such as volumet-
ric changes of a nourishment to significant accuracy (7%)(Chapter 2). An
important factor influencing result accuracy is the record length, which may
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be restricted. Openly available satellite imagery contains little temporal in-
formation, which leads to increased uncertainty in the determination of wave
celerity and wave frequency - the basis to derive depths and near-surface cur-
rents (see Chapter 4, [35]). This work demonstrated that spatial pathways
of wave trains can be used to increase the temporal confidence in wave fre-
quencies as to estimate coastal parameters with standard, frequency-based
DIAs. Estimates of depths remain less accurate with errors <5m if tem-
poral information is sparse. Still, even if estimate accuracies are seemingly
rough, bathymetry maps with large spatial coverage (e.g., from satellites, see
Chapter 4) have quality for end-users, as they can be used in hydrodynamic
models to identify hotspots of increased wave height along a coastline and
thereby allow for first-order assessments on coastal recreational- and safety
functions (see Chapter 4, [35]). Thereby WCRS can readily help as an op-
erational or lean-and-mean assessment tool in making coastal management
decisions, without necessitating high depth estimate accuracy.

The quality of near-surface currents was not validated for accuracy, because
ground-truth data were not available. However, the estimated near-surface
current maps often compared qualitatively to expected local currents, for ex-
ample by correctly indicating zones where currents were stronger (e.g., cur-
rents through ebb-channel Ameland inlet in Figure 2.9, Section 2.5.1 or con-
vergence around Scheveningen harbour in Figure 3.10, Section 3.5.1), which
can be valuable to monitor swimmer safety.

Future developments: Software to map coastal indicators such as depths
and near-surface currents may be further improved. Depths estimates might
be improved by combining estimates from linear-wave theory with wave-
dissipation based estimates [29, 43] and color-based depth estimates [134,
135]. Near-surface current estimates might be improved by accounting for
their variability over depth [86], but also by combining wave-derived estimates
with optical-flow of the undisturbed, wave-averaged, water surface [127].
Yet, the quality of WCRS does not lay in its accuracy, but in its ability to
provide spatial and presentable information with little effort. The accuracy is
fundamentally restricted by the physical model (e.g., linear wave theory), the
size of the waves (e.g., the spatial resolution) and weather conditions. For
many years developers have invested in improving accuracy, which appears
to have come to a halt at errors of several decimeters [15]. Future develop-
ments should now focus on other aspects, like smart, visually attractive and
responsive stand-alone applications to reach a broad coastal community.

 Robustness

WCRS should be robust, which is defined as the ability to generate continu-
ous, reliable and usable products. In terms of hardware the user has a choice.
XBand-radars can continuously and robustly produce wave-field video, be-
cause they are less susceptible to poor weather conditions and work during
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the dark [175]. Optical instruments provide less continuous and robust wave-
field video as they are largely restricted to day-light conditions (apart from
specialistic infrared cameras, which work during the dark [177]) and do not
provide usable wave-imagery during poor weather conditions, like thick fog or
heavy rain (or cloud cover in case of satellites). Yet, the different instruments
can be robust enough to assess a certain coastal problem, depending on the
required spatiotemporal scale. For example, five cloud-free and wave-rich
satellite image records per year may be enough to follow long-term changes
in bathymetry at a certain fieldsite, such that it is not required to use the high
temporal resolution of an XBand radar.

WCRS estimates are ideally robust to different fieldsites and hydrodynamic
conditions. In the past, WCRS software has often been applied experiment-
ally on short data sets (e.g.,[23]) and/or single field sites (e.g., [15, 20]). Such
an approach does not provide confidence in using the software operationally.
This study tried to change this experimental and/or single field-site practice by
validating and presenting DIA performances for long time periods and several
field sites. It was demonstrated that traditional 3D-FFT based algorithms can
be used operationally to robustly extract spectral wave characteristics over
long time periods (Chapter 2, [3]). This was demonstrated for continuous
video data from an XBand radar. Depth estimates, near-surface current es-
timates and wave directions were returned operationally. In a second step,
the robustness of an algorithm was tested by application to a set of video data
from different instruments, field sites, lighting conditions and hydrodynamic
conditions (Chapter 3, [34]). This approach was inspired by the use of skill-
beds for validating the robustness of numerical models [178].

Future developments: The robustness of algorithms should be tested for dif-
ferent instruments, field sites and hydrodynamic conditions. For this purpose
it would be favourable to adopt the common practice of skill-beds for valid-
ating the robustness of WCRS algorithms. A general and openly accessible
skill-bed containing videos of different field-sites (Duck, Porthtowan, Narra-
been, Scheveningen) with corresponding ground truth data could thereby be
a big step forward. This work has initiated the generation of such a skill-bed,
which is hosted on an openly accessible platform [179].

 User-friendliness
In the past, WCRS has not been user-friendly. The cost of applying WCRS
came in the form of required user-knowledge on photogrammetry, DIAs and
general software skills. These costs had to compete with the benefits of
spatial measurements, multifunctionality and the fact that WCRS relies on
straightforward optical analysis. In fact, optical analysis is an extensively
researched field of science (e.g., used in robotics, the car industry etc. [164,
180, 181]), which suggests that tools exist to make WCRS more user-friendly.
Yet, large improvements can still be achieved.

In terms of instruments, cameras and UAVs have become more user friendly
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and also satellite data have become easier to use with tools like the Google
Earth Engine [165]. XBand radars can be user friendly if the internal pro-
cessing produces workable video. The possibilities for improvement mainly
lay in the software. Until recently, the focus in improving depth and current
inversion software has mainly been on the accuracy of the estimates. Little
attention has been put on features that would make such algorithms more
user-friendly. This study has started to address user-friendliness by striving
for fast, intelligent, and visually responsive algorithms (Chapter 3,[34]). A
goal was to develop algorithms that could return maps of estimated coastal
parameters on-the-fly. Potential end-users would thereby receive immediate
and continuous visual response. Another aim was to create algorithms that
would not have to be tailored to hydrodynamic conditions (Chapter 3,[3]) and
field-sites (Chapter 3,[34]) through manual adjustments of settings. Instead,
the algorithms should self-adapt to the data, moving the expertise from the
user to an intelligent algorithm.

Future developments: Making WCRS algorithms user-friendly makes it more
attractive to use them. In this study, important steps have been made to-
wards this goal, but further improvements are still required. WCRS algorithms
should become visually attractive. Again, integrated, standalone-applications
are a way to improve, but also the response that WCRS algorithms provide.
It is key to move away from the three-step process of video collection, pre-
processing and post-processing, and instead move towards integrated soft-
ware that provides direct response to the user during data collection. Such
algorithms are ideally self-adaptive and computationally fast. Standalone
applications could additionally include tools to directly derive products like
erosion trends, track nourishments or other morphological features and alert
the end-user if bathymetry trends or (rip) currents indicate that human ac-
tion/intervention is required.

5.4. Summary

S ince the beginnings of WCRS, the algorithms to derive depths, near-surface
currents and wave celerity have become more accessible [143], multifunctional

[32], robust [18] and the quality improved [33]. This work put additional attention
to the user-friendliness of such algorithms, by making them smarter and faster
[3, 34]. By reaching broader user communities, WCRS becomes an increasingly
effective coastal monitoring tool. Still much improvement can be gained and efforts
should now be channelled towards integrated and fast standalone applications.
WCRS is already a useful tool to derive products for coastal assessments even if

it has not yet reached its full potential, for example in terms of multifunctionality
or accuracy. To illustrate, monitoring volume changes of a large nourishment may
not necessitate highly accurate depth measurements in the moment. It is rather
important to detect and monitor changes over longer time periods to be able to plan
for possible new intervention measures [36]. For such a purpose, the hardware and
software may also not have to be multifunctional, as long as they work robustly for
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measuring depths over longer time periods (Chapter 2,[3]).
So how to currently utilize WCRS as an end-user? That depends on the avail-

able instrumentation, the budget, and the coastal problem at hand. In this work,
different instruments were used to derive depths: Xband-radar (Chapter 2), sta-
tionary cameras (Chapter 3), UAV’s (Chapter 3) and a satellite (Chapter 4). The
choice between instruments can be made based on what is already available, for
example a UAV, or be based on what is the most effective instrument for the scale
and purpose at hand (Figure 5.1). For example, if changes in bathymetry due to
dredging and dumping operations have to be monitored, it might be easiest to use
a UAV that sits in the shelf. Yet, if the monitoring program is meant to continue
over long periods of time for a large area, it could be more effective to invest in an
XBand radar. It might also be an option to combine data of different instruments,
for example, the UAV monitoring program could be extended with openly accessible
satellite data. Hence, different options exist to choose from as an end-user.
The algorithm that is used to make estimates from video, mostly depends on

the coastal parameter which is to be monitored, but also accessibility and user-
friendliness may play role. For example, different options exist to estimate depths.
Some of the algorithms are openly accessible, like cBathy [20] or the on-the-fly
algorithm developed during this study [168]. Yet, not every algorithm is also mul-
tifunctional. For example, if besides depths it is desired to map surface current
patterns, one might resort to algorithms like XMFit.

5.5. Neighbouring remote sensing techniques

B esides WCRS other remote sensing techniques exist that can be of interest. For
example, much effort has been put into the tracking of shoreline positions [182–

184]. This can locally be done via projects like CoastSnap [183], which involve the
public to take images of beaches. Global tracking of shoreline positions can be done
using openly available satellite imagery [182, 184]. Such data can give first order
impressions of coastal erosion or accretion and are often already openly available.
A benefit of shoreline detection is that shorelines observed during different tidal
levels can also be used as isolines of the intertidal bathymetry [185]. In contrast
to WCRS, no physical model underlies the intertidal bathymetry estimate, making it
ideal to capture the morphology around the coastline where WCRS accuracy suffers
from errors due to non-linear wave dynamics (e.g., [48]). Intertidal bathymetries
can also be joined with near-shore WCRS bathymetry estimates to extend coverage
and converge accuracy [43].
Similar to estimating bathymetry from WCRS, it is also possible to derive bathy-

metry from multispectral optical imagery [135]. Such bathymetry estimates can
reach high accuracies of a few decimetres, but depend on light penetration through
the water body. Multispectral bathymetry estimates are therefore sensitive to water
turbidity and depth estimates typically do not extend to depths of 15–30m [17],
as is the case for WCRS (see Chapters 2 to 4).
Besides optical tracking of the shoreline, many more coastal remote sensing tech-

niques and instruments exist (e.g., lidar [186], HF radars [187, 188], structure from
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motion [189] etc.). WCRS has its separate position in coastal remote sensing and
is generally attractive because different instruments can be used to record video
from which a variety of coastal parameters can be estimated, such as bathymetry,
but also currents and wave characteristics.

5.6. Vision for the future

S o how will future coastal remote sensing look like? It will be simple and mostly
space-borne, as it becomes easier to launch satellites and their revisiting periods

become shorter (Figure 5.1: satellite moves up towards position XBand radar). As
more of these satellite data become openly accessible, this data source will likely
start to dominate, which is underscored by the exponentially increasing number of
publications concerning ”satellite coastal remote sensing” (Figure 5.4, red). Yet,
the other remote sensing techniques remain a workable alternative.
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Figure 5.4.: Number of articles published per year containing the key words ”satellite coastal
remote sensing” (red) and ”coastal machine learning” (blue). Source: https:
//app.dimensions.ai

In efforts to integrate software and map as many coastal parameters as possible,
WCRS will become part of a larger framework. Together with wave dissipation based
algorithms [29, 43], optical flow algorithms [127], shoreline tracking algorithms
[182] and color-based algorithms [135], coastal parameters will be mapped accur-
ately and robustly at high time resolution. The different techniques will be coupled

https://app.dimensions.ai
https://app.dimensions.ai
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and computations will occur on-board of the instrument (Chapter 2,[3]), which
sends the resulting data to a data cloud, similar to a Google Earth Engine [165].
One can also think of a back and forth coupling with advanced process based nu-
merical models to further improve accuracy in depth and current estimates via data
assimilation and Kalman filter based approaches [43, 75]. This would also improve
the hydrodynamic and morphodynamic model predictions (e.g., with Delft3D flex-
ible Mesh [190]), such that they could bridge over observation-free periods.
At some point neural networks will start to replace all the existing techniques to

deliver ever more accurate and plentiful coastal information. The developments in
the field of (coastal) machine learning are rapidly increasing, as indicated by the ex-
ponential increase in the number of published articles in this field (Figure 5.4, blue).
This number of articles has more than tripled over the past five years 2016-2021. In
the future, neural networks will achieve on-the-fly orthorectification [171], spatially
three-dimensional wave-field analysis [174] and all-purpose parameter inversion
[71, 73]. Such networks will also utilize observations from non-optical satellites,
like Synthetic Aperture Radar (SAR) satellites (e.g., Sentinel-1, [191]) and laser-
altimetry satellites (e.g., ICESat-2, [192]). The collection of space-borne instru-
ments will be able to collect the desired data during every weather condition.
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Figure 5.5.: Future of remote sensing. Imagery will be processed on the fly and transferred
to the cloud. End-users can access the data online or in virtual reality. Remote
sensing data and numerical models will be integrated and hindcasts and fore-
casts can be made online and on-the-fly.

The only thing left to do as an end-user, will be to access a website (Figure 5.5).
This website will show the coastal data for the entire globe (e.g., as [165, 184]).
The same platform will also include future predictions, based on neural networks
combining observed data with on-the-fly predictions of numerical models running
in the cloud. The user will also be able to visit a coastal site in virtual reality,
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look under the waves to see the bathymetry and currents and see how they have
changed in the past and how they will change in the future. The user will be able
to experience different scenarios in virtual reality and will be able to understand if
and what interventions need to be undertaken. The user will also be able to give
feedback on the performance of the tools and will thereby help to optimize them
to their needs, such that developers and users together create a dynamic WCRS
environment.



6
Conclusions

T he previous chapters demonstrate that a broad coastal community can effect-
ively collect coastal information at different scales from wave-based coastal

remote sensing (WCRS). Monitoring coastal bathymetry, near-surface currents and
wave hydrodynamics is not only valuable to researchers, but also for decision mak-
ing in coastal management. Also the industry and coast guard may benefit from
the lean-and-mean mapping possibilities of WCRS.
With different instruments to chose from, such as XBand-radars, stationary cam-

era installations, UAVs/drones or satellites, WCRS has become accessible, scalable
and more attractive to use. Previous financial barriers are disappearing, as in-
struments like UAVs have become affordable and as pre-existing instruments, like
navigational XBand radars can be employed. Besides that, the application of these
remote sensing instruments is less labor-intensive compared to traditional in-situ
measurement techniques.
WCRS instruments typically have large spatial coverage and can be used to gen-

erate an image sequence, or video, of the coastal waters at some location of in-
terest. Specifically, the wave field and its motions are thereby valuable to record as
they contain information about both hydrodynamics and bathymetry. By studying
the observed wave characteristics, it is possible to determine the main wave com-
ponents in the wave field and their wave-direction and phase celerity. Studying
wave characteristics moreover allows to invert depths and apparent near-surface
currents. This is due to the fact, that waves feel the underlying bathymetry and
currents, and react by changing their appearance. Hence, a variety of both hydro-
dynamic and morphological coastal parameters can be estimated and mapped, from
simply observing a wave-field in motion. From these data erosion/accretion trends
can be derived, the evolution of nourishments, but also hotspots of concentrated
coastal currents or wave-energy.
Over the past four decades, different methods and algorithms have been de-

veloped to process image sequences of a wave field and derive the desired hydro-
dynamics and morphology. Specifically in the context of estimating coastal depths
(as proxy for bathymetry), such algorithms are referred to as ”depth inversion al-
gorithm” (DIA). Although they are an appealing alternative to labor-intensive in-situ
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measurements along transects, DIAs have often only been applied experimentally.
Practical applications, for example for coastal management purposes, have been
limited. The group of WCRS users has remained small within the broader coastal
community. Plausible reasons are plentiful and found in both hardware and soft-
ware.
Some problems belong to the past, such as the accessibility of remote sensing

instruments, which were previously expensive to purchase (e.g., high resolute cam-
era systems) or not accessible at all (satellites, UAVs). Other problems are in the
process of being resolved, such as the open availability of DIAs. With nowadays
possibilities to straightforwardly use various remote sensing instruments and share
software on openly accessible platforms, the aim of this work was to innovate DIAs
towards operational, smarter and faster algorithms. Hopes are that this will stimu-
late a broader use of WCRS by the coastal community. This work required meth-
odological innovation and gave answer to a set of research questions, which will be
addressed point-by-point in the following:

To what extent can DIAs be used on wave-field records of different re-
mote sensing instruments (X-band radar, fixed camera, UAV, satellite) to
demonstrate scalability and spatiotemporal coverage ofWCRS? (Chapters 2
to 4,[3, 34, 35])

• DIAs can be applied to wave-field records of XBand-radars, fixed cameras,
UAVs and satellites. Operational use of a DIA on XBand-radar video en-
ables monitoring on scales of 𝑂(10–100km2) at a temporal resolution of
1
50map/min (Chapter 2,[3]). Video from fixed cameras and drones can be

analyzed on scales of 𝑂(0.1–1km2) at a temporal resolution of 112map/s (i.e.,
on-the-fly) (Chapter 2,[3]). Satellite imagery can be monitored at scales of
𝑂(100km2), where the temporal resolution mostly depends on the revisiting
time of the satellite (days-weeks).

How can DIAs be used operationally to monitor the placement and evolu-
tion of a nourishment for dredging and dumping surveillance and coastal
management? (Chapter 2,[3])

• a DIA can be configured for operational monitoring. A robust, continuous ana-
lysis is achievable by using an iterative approach to handle spectral noise. A
3D-FFT-based spectral decomposition was chosen as basis for the DIA, which
is a frequently used approach. It suggests that such ”standard” DIAs are
suited for operational application over long time periods.

• errors in depth estimates of ±2m do not prevent coastal managers to gain
valuable insights. Complex tidal inlet bathymetries of more than 200km2

can be monitored over periods of years at a time resolution of hours. What is
more, volumetric changes in a nourishment area can be accurately followed,
and that can be done from a distance of 7km. For that purpose an XBand-
radar can serve as remote sensing instrument.
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• an existing XBand radar, originally set up for navigational purposes, can be
used as remote sensing instrument. It stresses the fact that seemingly ex-
pensive instruments can be accessible.

How can DIAs self-adapt to wave-field video from different field-sites to
reduce required user-expertise (Chapter 3,[34])

• a DIA can be designed to self-adapt to given video data, such that little expert-
ise is needed to apply the DIA. This was demonstrated by analysing video of
stationary camera installations and UAVs recorded at four different fieldsites
around the world - without manually adjusting algorithm settings.

• to test and validate a DIA, it is favourable to create a skill-bed consisting of
several videos and ground truth data. In line with what is common practice
for validating numerical models.

• to acquire a self-adaptive and fast DIA, several innovative techniques can be
combined. The Dynamic Mode Decomposition (DMD) reduces the data com-
plexity of wavefield video and automatically finds dominant wave components
by their phase images and corresponding frequencies. This technique can be
combined with loss-functions to counteract spectral outliers and overestima-
tion of near-surface currents, which also has positive effect on the accuracy
of depth estimates. Lastly, estimates of depth, wave celerity and surface cur-
rents can be quickly converged by temporarily storing and calling up spectral
information. Additional fast convergence is achieved using Kalman filtering.

To what extent can DIAs acquire on-the-fly processing capability for ana-
lysis of video feeds and lean-and-meanmappingwithWCRS? (Chapter 3,[34])

• the processing of video data can occur on-the-fly, with frequent visual re-
sponse (every few seconds). It suggests the potential application to video
feeds of for example UAVs, where continuously mapping updates are given
of the bathymetry, but also of wave celerity and near-surface currents. This
provides perspective for mapping hydrodynamic and morphological paramet-
ers in the field.

• merely 32s of video footage were needed for a first mapping update with
average depth errors of 0.9–2.6m. These further reduced to 0.5–1.4m as
the videos continued and more mapping updates were returned.

How can standard DIAs be used on temporally sparse imagery to achieve
an increased application range of WCRS? (Chapter 4,[35])

• using pre-existing techniques, satellite data can be augmented to (pseudo)
video, which accurately resembles the present wave-field. A sequence of 12
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images from Capbreton, France, collected at 1/8 fps by the Pleiades satellite,
was augmented to a 1.5min (pseudo) video with a framerate of 1 fps. The
spectral wave-content in the video compared with in-situ buoy measurements.

• augmented satellite imagery can successfully be analysed with a frequency-
based DIA to map bathymetry. A complex canyon bathymetry was approxim-
ated to a large extent as highlighted by an overall depth bias of −0.9m, yet
estimates were spatially noisy with an interquartile range of depth errors of
5.1m.

• in line with findings of Chapter 2 the acquired accuracy of depth estimates,
although inferior to in-situ surveys, can be sufficient for practical use. The
remotely sensed bathymetry could be applied within a numerical wave model
to predict wave heights over the shoreface. Hotspots where wave refrac-
tion leads to focussing of wave energy were correctly identified, which has
potential implications for coastal hazard assessments.

• Small scale morphological features, such as sandbars could be captured.

What are the perspectives ofWCRS for broad future application? (Chapter 5)

This work has demonstrated that WCRS with DIAs provides a flexible set of in-
struments and tools, to be used by and be useful to the coastal community. The
presented possibilities and capabilities of WCRS sketch new perspectives for future
application. Coastal management can benefit as complex morphodynamic systems
and nourishments can be operationally monitored, for example using existing nav-
igational XBand radars. But also the dredging industry and the coast guard may
benefit from lean-and-mean mapping of depths and currents in the field, for ex-
ample using UAVs and on-the-fly mapping algorithms.
By establishing self-adaptive and on-the-fly software, this study has taken import-

ant steps to open WCRS up to a broader end-user community. Laymen can now
map the coastal bathymetry. Moreover, by proving WCRS in an operational environ-
ment this work has brought the technology to higher readiness levels. Still further
improvements are necessary to make WCRS more effective. These improvements
can be achieved on five properties of WCRS: accessibility, multifunctionality, qual-
ity, robustness and user-friendliness. The key takeaway for effective, adoptable
WCRS is that developments should strive towards integrated, self-adaptive soft-
ware, which gives prompt visual response and requires little user-expertise. These
measures reduce the difficulty to learn WCRS, increase its compatibility with data
from different instruments (cameras, UAVs, Xband-radars, satellites) and thereby
enable relatively easy coastal measurements.
As satellite data become more available to the general public, an important new

image source with global coverage can be exploited for potential hydrodynamic and
morphological analysis. In the future, spaceborne remote sensing will play a crucial
role in the acquisition of coastal data. These data may be combined with numerical
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models to establish integrated software for hindcasting and forecasting and could
be powered by machine learning techniques and cloud computing.
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A
Appendix A

A.1. Radar properties

Table A.1.: Radar properties at the Sand Engine and Ameland Inlet

Properties Sand Engine Ameland Inlet

Antenna Height (𝑚, 𝑁𝐴𝑃) 15 60
System Type (-) Terma Scanter 2000 Terma Scanter 2001
Antenna Width (𝑓𝑡) 14 21
Range (𝑘𝑚) 3.75 7.5
Pulse Length (𝑛𝑠) 50 60
Horizontal Beam Width (°) 0.5 0.43
Vertical Beam Width (°) 23 23
PRF (𝑘𝐻𝑧) 4.0 2.2
Rotation Speed (𝑟𝑝𝑚) 25 21
Output Power (𝑘𝑊) 25 25
Polarization (-) VV VV

A.2. Computational settings
A.2.1. Sand Engine

F or computational efficiency of XMFit, a variable grid spacing of 25m near the
shoreline and 250m further offshore was used, resulting in 9380 grid points.

The computational cubes were time-averaged by subdividing them into 32 image
bins with 8 images overlap. The spatial extents were 64px (240m) within 300m
Parts of this appendix have been published in Coastal Engineering 159, 103716 (2020) [3].
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Figure A.1.: Computational grids (green) used for (a) the Sand Engine (b) and the Ameland
Inlet. The grids are overlaid on typical radar images of both sites.

from the shoreline and 128px (480m) further offshore. The reduced cube size in
the nearshore region was chosen in order to capture more morphological detail.
For consistency, XMFit settings were chosen to be similar to the application at

Ameland. The spectral frequency filter was set to include shorter wave periods,
[Tmin,Tmax] = [3.5, 15] (s) (Figure 2.1, 2 ). Depth limits were set to [dmin,dmax] =
[0.5, 25] (m) (Figure 2.1, 3 ), and the near-surface current velocity limit was set
to |Umax| = 1.25(ms−1) (Figure 2.1, 6 ).

A.2.2. Ameland tidal inlet

I n case of the Ameland Inlet, a constant grid spacing of 100m was used amount-
ing to 8328 grid points in total. Computational cubes were time-averaged using

32 image bins without overlap and had a spatial extent of 128px (960m).
The inversion process was constrained by the wave period limits[Tmin,Tmax] =

[5, 15] (s) (Figure 2.1, 2 ), depth limits [dmin,dmax] = [0.2, 25] (m) (Figure 2.1,
3 ), and |Umax| = 1.5 (ms−1) (Figure 2.1, 6 ).
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B.1. Review of strategies to extract spectral gravity
wave signatures

• e.g.,Young, Rosenthal and Ziemer [26], Dugan, Piotrowski and Williams [28],
Ziemer [68] and Irani, Gotwols and Bjerkaas [80]

The most straightforward strategy is to transform local video cut-outs from
3D xxx, t into 3D kkk,ω spectra via 3D Fast Fourier Transforms (3D-FFTs). An en-
ergy threshold can then be used to separate the spectral footprint of gravity
waves 𝑘𝑘𝑘↑, 𝜔↑ from the noise floor. A benefit of this approach is the possibility
to retrieve spectral data up to 2 times the Nyquist frequency [51], which can
be important if frame rates are low (e.g., slow radar rotation speeds).

• Senet et al. [21]

The strategy starts as [26, 28, 68, 80], but with reduced size of the video cut-
out, which requires a follow up step: After producing 3D kkk,ω spectra, they are
sliced into separate 2D wavenumber layers 𝑘𝑘𝑘𝑗 , 𝜔𝑗 per constant frequency 𝜔𝑗.
These spectral layers are then filtered to separate the wavenumber signature
of gravity waves from the noise floor. Subsequently, using inverse 2D Fast
Fourier Transforms (2D-FFT-1), each filtered 2D 𝑘𝑘𝑘𝑗 , 𝜔𝑗 layer is transformed
back to the spatial domain to produce a corresponding complex valued im-
age (𝑥𝑥𝑥𝑗 , 𝜔𝑗), which depicts the local wave pattern associated to 𝜔𝑗. Being
associated to one frequency component and neglecting spatial differences
in amplitude (which can be achieved through entry wise normalization), the
complex valued images represent LOCPI. Finally, assuming the wave field
is homogenous, spatial gradients in each LOCPI yield a local representative

Parts of this appendix have been published in Remote Sensing 13, 4742 (2021) [34].
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Table B.1.: Pros and cons of different strategies used to retrieve local gravity wave 𝑘𝑘𝑘↑, 𝜔↑
signatures from video of a moving wave-field.

Strategy Pros Cons

e.g.,[80] • simple approach
• spectral data: 2× Nyquist limit

• comp. load: full dimensional video

[21] • LOCPI: sugg. higher localisation
• spectral data: 2× Nyquist limit

• comp. load: full dimensional video

[20] • LOCPI: sugg. higher localisation
• freedom local pixel sampling

• comp. load: full dimensional video
• approximate 𝜔↑

[87] • G𝑂𝐶PI: sugg. higher localisation
• freedom global pixel sampling
• globally coherent wave patterns
• predict subdomain sizes from 𝜔↑
• comp. load: reduce dimensionality

• Sensitive to mixing Fourier modes

proposed • GOCPI: sugg. higher localisation
• freedom global pixel sampling
• globally coherent wave patterns
• predict subdomain sizes from 𝜔↑
• comp. load: reduce dimensionality

vector 𝑘𝑘𝑘↑𝑗 associated to that frequency component 𝜔𝑗 = 𝜔↑𝑗 . The suggested
benefit of extracting 𝑘𝑘𝑘↑𝑗 from LOCPI, instead of straight from 3D kkk,ω spectra,
is that the reduced size of the video cut-out leads to better localisation of
𝑘𝑘𝑘↑, 𝜔↑.

• Holman, Plant and Holland [20], Stockdon and Holman [82] and Plant, Holland
and Haller [193]

Similar to [21], this strategy constructs one-component phase images. First,
the video is transformed from 3D xxx, t to 3D xxx, ω via FFTs in time. This pro-
cess finds GOCPI per Fourier frequency, but without taking spatial coherence
into account. A subsequent local analysis aims to find this spatial coherency.
Cross-spectral matrices are computed for predefined frequency bands with
central frequencies 𝜔𝑐. The idea is that the strongest eigenvector of each
cross-spectral matrix, after entry-wise normalization to unit magnitude, re-
sembles a spatially coherent LOCPI (𝑥𝑥𝑥𝑐 , 𝜔𝑐) corresponding to 𝜔𝑐. Analogous
to [21], 𝑘𝑘𝑘↑ is finally deduced from phase gradients and 𝜔𝑐 = 𝜔↑𝑐. A benefit
of this strategy is that the video can be sampled in any fashion (e.g., non-
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regularly) in preparation of local cross-spectral matrices. A drawback of this
strategy is the uncertainty around the frequency associated to 𝑘𝑘𝑘↑ as it lies
within a frequency band and needs to be approximated by the bands’ central
frequency 𝜔↑𝑐.

• Simarro et al. [87]

The most recently developed strategy suggests that globally coherent GOCPI
can be found through a singular value decomposition of the time-analytic sig-
nal of the video. First, the video is reshaped into a matrix 𝑋𝑋𝑋, whose columns
represent the video frames squeezed into arrays and whose rows hence con-
tain the timeseries of a pixel. Each timeseries is converted into its analytic
signal using the Hilbert transform, which makes the timeseries complex valued
(with a single-sided frequency spectrum) and prepares for a natural retrieval
of phases. A singular value decomposition (svd) of the video matrix 𝑋𝑋𝑋, Equa-
tion (B.1), then describes the video as a sum of modes, given by pairs of
spatial structures and their associated temporal evolution:

𝑋𝑋𝑋 = 𝑈Σ𝑉𝑈Σ𝑉𝑈Σ𝑉∗ =∑
𝑗

𝑗𝑡ℎ mode
⏜⎴⏞⎴⏜𝜎𝑗𝑢𝑢𝑢𝑗𝑣𝑣𝑣∗𝑗 , (B.1)

where the orthonormal columns 𝑢𝑢𝑢𝑗 of 𝑈𝑈𝑈 represent the (squeezed) spatial
structures (≠ 𝑈𝑈𝑈 of Equation (3.1)), the columns 𝑣𝑣𝑣𝑗 of 𝑉𝑉𝑉 the associated tem-
poral evolution, and the diagonal matrix contains the singular values 𝜎𝑗, which
sorted in decreasing order denote the contribution of each mode to the total
variance in 𝑋𝑋𝑋. The asterisk denotes the complex conjugate transpose.
Unfolding 𝑢𝑢𝑢𝑗 into the two spatial video dimensions, now provides GOCPI.
Simarro et al. [87] argue that the associated time evolution 𝑣𝑣𝑣𝑗 closely cor-
responds to a fixed-frequency oscillation 𝜔𝑗 and can therefore be estimated
by the averaged temporal phase gradient. This moreover implies that 𝑢𝑢𝑢𝑗 ap-
proximately resemble Global One-Component Phase Images (𝑥𝑥𝑥𝑗 , 𝜔𝑗), that is
GOCPI. In practice, the final deduction of local 𝑘𝑘𝑘↑ is done from phase gradients
in local subdomains of the GOCPI.

However, the GOCPI being only approximately one-component (i.e., G𝑂𝐶PI,
where ∼ denotes approximate) flags a deeply rooted issue: using the svd
on a wave signal, whether analytic or not, is prone to the mixing of Fourier
modes, meaning that wave patterns of different frequencies mix together in
𝑢𝑢𝑢𝑗 (Equation (B.1)) (see [88], Fig. 6). The problem can be understood from
the fact that the svd result for 𝑢𝑢𝑢𝑗 is invariant to the ordering of the video
frames [88]. As such, these G𝑂𝐶PIs do not reflect the distinctly sinusoidal
time dynamics of ocean waves.
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B.2. Optimized DMD based on Variable Projections
B.2.1. Synopsis

T he optimized DMD by Askham and Kutz [94] finds a solution to Equation (B.2)
via non-linear least-squares minimization (Equation (B.3)).

𝑋𝑋𝑋𝑇 ≈ ΨΨΨ(𝜔𝜔𝜔, 𝑡)𝐵𝐵𝐵 (B.2)

or

𝑚×𝑛
⏜⎴⎴⎴⏞⎴⎴⎴⏜
[
−−− 𝑥𝑥𝑥1 −−−
⋮ ⋮ ⋮
−−− 𝑥𝑥𝑥𝑚 −−−

] ≈

𝑚×𝑟
⏜⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏜
[
e𝜔1𝑡1 … e𝜔𝑟𝑡1
⋮ ⋱ ⋮

e𝜔1𝑡𝑚 … e𝜔𝑟𝑡𝑚
]

𝑟×𝑛
⏜⎴⎴⎴⏞⎴⎴⎴⏜
[
−−− 𝛽𝛽𝛽1 −−−
⋮ ⋮ ⋮
−−− 𝛽𝛽𝛽𝑟 −−−

]

solved via

minimize
1
2‖𝑋𝑋𝑋

𝑇 −ΨΨΨ(𝜔𝜔𝜔, 𝑡)𝐵𝐵𝐵‖2 (B.3)

Tailored to the case of processing grey-scaled video frames, the rows 𝑥𝑥𝑥1…𝑥𝑥𝑥𝑚 of
𝑋𝑋𝑋𝑇 ∈ ℝ𝑚×𝑛 denote the 𝑚 frames of the video, each squeezed into an array of 𝑛
pixels (e.g., 10×10 frame becomes 𝑛 = 100 array). Typically, the number of pixels is
larger than the number of video frames, 𝑛 > 𝑚. The superscript 𝑇 signifies that the
video matrix 𝑋𝑋𝑋 is transposed in this DMD formulation. The complex valued matrix
ΨΨΨ(𝜔𝜔𝜔, 𝑡) ∈ ℂ𝑚×𝑟 holds in its columns the timeseries of 𝑟 sinusoids with frequencies
𝜔𝜔𝜔 = {𝜔1...𝜔𝑟} over time t1… tm such thatΨ(𝜔, 𝑡)𝑖,𝑗 = e𝜔𝑗𝑡𝑖 . The dependency on 𝑡𝑖 is
implicit (i.e., 𝑡𝑖 are known). The rank 𝑟 is a choice, typically 𝑟 ∼ 𝑂(1)−𝑂(10), such
that 𝑟 < 𝑚 < 𝑛. The rows 𝛽1…𝛽𝑟 of 𝐵𝐵𝐵 ∈ ℂ𝑟×𝑛 resemble weighted Dynamic Modes
coupled to the frequencies 𝜔1…𝜔𝑟. The key to “variable projections” [94] is that
Equation (B.2) can be solved purely by optimizing 𝜔𝜔𝜔: Say 𝜔𝜔𝜔 was known, then 𝐵𝐵𝐵 ≈
Ψ(𝜔, 𝑡)†𝑋𝑋𝑋 and Equation (B.3) becomes minimize12‖𝑋𝑋𝑋−ΨΨΨ(𝜔𝜔𝜔, 𝑡)ΨΨΨ(𝜔𝜔𝜔, 𝑡)

†𝑋𝑋𝑋‖2, which
can be iteratively solved using a Levenberg-Marquardt algorithm. For computational
details see [94].
Finding a local minimizer for𝜔𝜔𝜔 automatically finds corresponding𝐵𝐵𝐵, whose weighted

Dynamic Modes 𝛽𝛽𝛽𝑗 reflect pre-products of one-component phase-images. The fre-
quencies and corresponding phase-images are hence found together as the optimal
building blocks to form the video matrix 𝑋𝑋𝑋𝑇. Note that conform the introduction of
the DMD in Section 3.2.1, the weighted Dynamic Modes 𝛽𝛽𝛽𝑗 resemble (scaled) eigen-
vectors of the linear model 𝐴𝐴𝐴 in the system of differential equations 𝑑𝑥𝑥𝑥/𝑑𝑡 = 𝐴𝑥𝐴𝑥𝐴𝑥(𝑡).
This is shown in Appendix B.2.2. Weighted Dynamic Modes 𝛽𝛽𝛽𝑗 are split into a Dy-
namic Mode with unit norm, 𝜑𝜑𝜑𝑗 = 𝛽𝛽𝛽𝑗/𝑏𝑗 with associated spectral weight 𝑏𝑗 = ‖𝛽𝛽𝛽𝑗‖.
The complex valued entries of 𝜑𝜑𝜑𝑗 differ in magnitude, accounting for spatial dif-
ferences in the importance of the Dynamic Mode. To retrieve a phase-image, all
entries of 𝜑𝜑𝜑𝑗 need to be normalized to unit magnitude, upon which the array can
be reshaped back into a plane of the original video-frame dimensions.
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To boost computational speed, the dimensionality of the video matrix 𝑋𝑋𝑋𝑇 can
first be strongly reduced 𝑚 × 𝑛 → 𝑚 × 𝑟 by projecting 𝑋𝑋𝑋 onto the first 𝑟 columns
𝑈𝑈𝑈𝑟 = {𝑢𝑢𝑢1, ...𝑢𝑢𝑢𝑟} in 𝑈𝑈𝑈 of its svd (Equation (B.1)), �̃̃��̃�𝑋 = 𝑈𝑈𝑈𝑇𝑟𝑋𝑋𝑋. Substituting �̃̃��̃�𝑋𝑇 for 𝑋𝑋𝑋𝑇
in Equations (B.2) and (B.3), yields a set of deflated Dynamic Modes �̃̃��̃�𝐵, which are
straightforwardly inflated back to the original video frame dimensions, via𝐵𝐵𝐵𝑇 = 𝑈�̃�𝑈�̃�𝑈�̃�𝑇
(see [94], Alg. 3). The weights and frequencies stay the same.
The optimized DMD needs proper initialization [94]. The implicit trapezoidal

rule (i.e., 2nd order Adams Moulton formula) in the exact DMD-like algorithm 4
of Askham and Kutz [94] may fail a proper initialization of the optimized DMD. This
especially occurs if 𝑟 > 1.5−2 times the actual number of components in the data.
It is therefore advisable to use a 3rd or 4th order Adams-Moulton formula instead
([194], p.466). For regular, equispaced video frames, alternatively also a standard
or exact DMD algorithm ([89], Alg. 1 or Alg. 2) can be used as initializer; however,
the computation requires more working memory.

B.2.2. Eigenvectors 𝐵𝐵𝐵 of linear model 𝐴𝐴𝐴
Askham and Kutz [94] and Boyce and DiPrima [194], p.414-419

A system of differential equations 𝑑𝑥𝑥𝑥/𝑑𝑡 = 𝐴𝑥𝐴𝑥𝐴𝑥(𝑡) has a (fundamental) set of
vector functions 𝑥𝑥𝑥𝑗(𝑡) = 𝜑𝜑𝜑𝑗𝑒𝜔𝑗𝑡 as solutions (Equation (B.4), LHS), where each

𝑥𝑥𝑥𝑗(𝑡) combines an eigenvector 𝜑𝜑𝜑𝑗 of 𝐴𝐴𝐴 with an exponential function of the corres-
ponding eigenvalue 𝜔𝑗 of 𝐴𝐴𝐴 (Equation (B.4), RHS).

[
||| ||| …

𝑥𝑥𝑥1(𝑡) 𝑥𝑥𝑥2(𝑡) …
||| ||| …

] = [
||| ||| …
𝜑𝜑𝜑1 𝜑𝜑𝜑2 …
||| ||| …

] [
e𝜔1𝑡

e𝜔2𝑡
⋱
] (B.4)

or

𝑋𝑋𝑋(𝑡) = ΦΦΦ𝑄𝑄𝑄(𝜔𝜔𝜔, 𝑡)

A superposition of these vector functions yields the general solution to the system
of differential equations: 𝑥𝑥𝑥(𝑡) = 𝑋𝑋𝑋(𝑡)𝑐𝑐𝑐, where𝑋𝑋𝑋(𝑡) is referred to as the fundamental
matrix and 𝑐𝑐𝑐 is a vector of coefficients.
Given some initial conditions 𝑥𝑥𝑥(0) = 𝑥0𝑥0𝑥0 and noticing that 𝑋𝑋𝑋(0) = ΦΦΦ (since

𝑄𝑄𝑄(𝜔𝜔𝜔, 0) = 𝐼𝐼𝐼) the coefficients 𝑐𝑐𝑐 are determined straightforward (from the general
solution) 𝑥0𝑥0𝑥0 = Φ𝑐Φ𝑐Φ𝑐 → 𝑐𝑐𝑐 = ΦΦΦ†𝑥0𝑥0𝑥0. Substituting the expression for ccc back into the
general solution and using 𝑋𝑋𝑋(𝑡) = Φ𝑄Φ𝑄Φ𝑄(𝜔𝜔𝜔, 𝑡) (Equation (B.4)) finds Equation (B.5):

𝑥𝑥𝑥(𝑡) = Φ𝑄Φ𝑄Φ𝑄(𝜔𝜔𝜔, 𝑡)ΦΦΦ†𝑥0𝑥0𝑥0 (B.5)

Now note the similarity between Equation (B.2) and Equation (B.5): If a frame
𝑥𝑥𝑥𝑖 (Equation (B.2)) = 𝑥𝑥𝑥(𝑡𝑖) (Equation (B.5)), and recognizing that Ψ(𝜔, 𝑡)𝑖,𝑗 =
𝑄(𝜔, 𝑡𝑖)𝑗,𝑗 = e𝜔𝑗𝑡𝑖 , then 𝛽𝛽𝛽𝑗 = 𝑠𝜑𝜑𝜑𝑗. Where the scalar value 𝑠 = Φ†𝑗,∶𝑥0𝑥0𝑥0. It proves
that the weighted Dynamic Modes 𝛽𝛽𝛽𝑗 resemble scaled eigenvectors 𝑠𝜑𝜑𝜑𝑗 of the lin-
ear model 𝐴𝐴𝐴 in the system of differential equations 𝑑𝑥𝑥𝑥/𝑑𝑡 = 𝐴𝑥𝐴𝑥𝐴𝑥(𝑡). Moreover, it
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shows that Equation (B.2) is inherently linked to the differential equation problem
Equation (B.5), and that given 𝑥𝑥𝑥(𝑡𝑖) at sample times 𝑡𝑖, Equation (B.5) can hence
be used to solve this system of differential equations for 𝐴𝐴𝐴.

B.3. Default algorithm settings

Table B.2.: Default parameter values of the mapping algorithm .

Parameter Value

𝑁 64 frames
overlap 16s (results, Section 3.4)

variable (on-the-fly, Section 3.5)
analytic extension of 𝑋𝑋𝑋 True
mode frequencies (= 𝑟 if 𝑋𝑋𝑋 is analytic) 16
[𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥] [3,15] s
subdomain size per 𝜔↑ 2 × 𝐿𝑜𝑓𝑓(𝜔↑) (maximum)

1 × 𝐿𝑜𝑓𝑓(𝜔↑) (minimum)
[Γ𝑚𝑖𝑛,Γ𝑚𝑎𝑥] [0.3,1.0]
𝑅𝑎𝑑 75m
stationary time (temp. spectral storage) 60s
𝛼 0.012
|𝑈𝑈𝑈|𝑚𝑎𝑥 0.75ms−1
[𝑑𝑚𝑖𝑛,𝑑𝑚𝑎𝑥] [0.1,50] m
𝑄𝑐 0.0005m2 s−3
𝑄𝑈 0.0005m2 s−3
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C.1. Depth inversion paramter settings

Table C.1.: Default parameter values of the depth inversion algorithm

Parameter Value

overlap 56s (in [34]: 16s)
time analytic extension False (in [34]: True)
maximum subdomain size per fre-
quency

2.5 × 𝐿𝑜𝑓𝑓(𝜔↑) (in [34]: 2.0 × 𝐿𝑜𝑓𝑓(𝜔↑))

Γ𝑚𝑎𝑥 1.2 (in [34]: 1.0)
𝛼 0.0075 (conform 1 fps video)

Parts of this appendix have been published in Remote Sensing 14, 1847 (2022) [35].
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