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Abstract

Increased variability of the water cycle manifested by climate change is a growing global threat to
agriculture with strong implications for food and livelihood security. Thus, there is an urgent need
for adaptation in agriculture. Agricultural water management (AWM) interventions, interventions
for managing water supply and demand, are extensively promoted and implemented as adaptation
measures in multiple development programs globally. Studies assessing these adaptation measures
overwhelmingly focus on positive impacts, however, there is a concern that these studies may be
biased towards well-managed and successful projects and often miss out on reporting negative
externalities. These externalities result from coevolutionary dynamics of human—water systems as
AWM interventions impact hydrological flows and their use and adoption is shaped by the societal
response. We review the documented externalities of AWM interventions and present a conceptual
framework classifying negative externalities linked to water and human systems into negative
hydrological externalities and unexpected societal feedbacks. We show that these externalities can lead
to long term unsustainable and inequitable outcomes. Understanding how the externalities lead to
undesirable outcomes demands rigorous modeling of the feedbacks between human and water
systems, for which we discuss the key criteria that such models should meet. Based on these
criteria, we showcase that differentiated and limited inclusion of key feedbacks in current water
modeling approaches (e.g. hydrological models, hydro-economic, and water resource models) is a
critical limitation and bottleneck to understanding and predicting negative externalities of AWM
interventions. To account for the key feedback, we find agent-based modeling (ABM) as the
method that has the potential to meet the key criteria. Yet there are gaps that need to be addressed
in the context of ABM as a tool to unravel the negative externalities of AWM interventions. We
carry out a systemic review of ABM application to agricultural systems, capturing how it is
currently being applied and identifying the knowledge gaps that need to be bridged to unravel the
negative externalities of AWM interventions. We find that ABM has been extensively used to model
agricultural systems and, in many cases, the resulting externalities with unsustainable and
inequitable outcomes. However, gaps remain in terms of limited use of integrated
surface—groundwater hydrological models, inadequate representation of farmers’ behavior with
heavy reliance on rational choice or simple heuristics and ignoring heterogeneity of farmers’
characteristics within a population.

© 2022 The Author(s). Published by IOP Publishing Ltd
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1. Introduction: agricultural water
management (AWM) interventions for
sustainable development

Climate change manifested in increased variability of
the water cycle is increasing the frequency of extreme
events and reducing the predictability of water avail-
ability (United Nations 2019). This is a growing global
threat to agriculture with strong implications for food
security and poverty reduction (Mendelsohn 2009,
GCA and WRI2019). Already extreme weather events
of floods and droughts account for more than 80% of
agriculture losses (in crop and livestock production)
(FAO 2015) and have reduced global agriculture total
factor productivity by 21% since 1961 (Ortiz-Bobea
et al 2021). Thus, there is an urgent need for adapt-
ation in agriculture without which global agriculture
yields could reduce by up to 30% by 2050, impact-
ing 500 million small farms the most (GCA and WRI
2019). With climate change impact on water and the
reliance of agriculture on water, adaptation in agri-
culture is inextricably linked to how water is managed
(United Nations 2019).

AWM interventions are extensively promoted and
implemented as adaptation measures in multiple
development programs (Evans and Giordano 2012,
Sharda et al 2012, Shah et al 2021). AWM interven-
tions can be broadly defined as interventions on land
that alter the water balance or partitioning of rain-
fall into different fluxes such as transpiration, evap-
oration, and runoff (Calder et al 2008, Barron et al
2009). They can be broadly categorized under supply
(increasing storage through ex-situ or in-situ storage)
and demand-side (e.g. reducing demand via increas-
ing efficiency, cropping system changes) interven-
tions (Barron et al 2009, Sikka et al 2022).

Widely reported and established benefits of
implementing AWM interventions include increased
water availability, improved agricultural vyields,
increased incomes, and increased community aware-
ness about water use (Calder et al 2008, Joshi et al
2008, Glendenning et al 2012, Sikka et al 2022). Des-
pite overwhelming documented positive impacts,
there is a concern that such studies highlighting the
benefits may be biased towards well-managed and
successful projects (Kerr 2002) and often miss out
on reporting negative externalities (Kerr et al 2007,
Barron et al 2008, 2009, Glendenning et al 2012).
Externalities are indirect or accidental feedback asso-
ciated with interventions (Lodha and Gosain 2007)
and can be both positive and negative.

Negative externalities often result from excess-
ive or ill-planned implementation of interventions
not accounting for its interactions, often unintended
and unexpected, with hydrological and social systems.
Examples include reduction in downstream flows
resulting from water harvesting in upstream areas
(Kumar et al 2006, Calder et al 2008) or unexpected
dynamics such as increased water use in response to
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the introduction of water-efficient irrigation practices
(Birkenholtz 2017). These externalities often lead to
unsustainable (e.g. groundwater depletion, drying of
reservoirs) and inequitable outcomes (e.g. uneven
distribution of costs and benefits).

Explicit modeling of coupled human—water sys-
tems is needed to unravel unintended and unex-
pected feedbacks of AWM interventions to enhance
positive benefits while mitigating the negative extern-
alities of the interventions (Khan et al 2017, Pande
and Sivapalan 2017, di Baldassarre et al 2019). Con-
ventional AWM modeling studies have very lim-
ited inclusion of such feedbacks between the human
and the water systems. Often the human-water
systems are considered independent with human
actions explicitly imposed as exogenous scenarios or
boundary conditions to its corresponding water sys-
tem (Lobanova et al 2017, Srinivasan et al 2017,
van Niekerk et al 2019). Unexpected and unintended
outcomes such as social inequalities and vulnerabil-
ities may emerge as a result of AWM interventions
that are designed without due consideration for such
feedbacks (Troost and Berger 2015, di Baldassarre et al
2019).

Modeling of coupled natural-human systems
with bi-directional feedbacks is central to inter-
disciplinary approaches of coupled human and
natural systems (Madani and Shafiee-Jood 2020),
socio-ecological systems (Filatova et al 2013), and
sociohydrology (Sivapalan et al 2012, 2015). The
latter approach of sociohydrology has an explicit
focus on hydrology. Among the two main meth-
ods used in sociohydrology, agent-based model-
ing (ABM) and system dynamics, the use of ABM
has been gaining popularity because of its potential
to integrate and model natural (hydrological) and
human systems while explicitly accounting for the
role of individuals, their behaviors, and micro-level
constraints (Troost and Berger 2015, di Baldassarre
et al 2019). These capabilities are critical to under-
standing the spatiotemporal and often inequitable
impacts of negative externalities of AWM interven-
tions on human water systems. In contrast, system
dynamics focus on the dynamics and evolution of
complex overall lumped systems, making them less
suitable to unravel the inequitable impacts within a
population resulting from the externalities of AWM
interventions (Martin and Schliiter 2015, Yu et al
2017, di Baldassare et al 2019).

The focus of this paper is to explore how ABMs
can unravel the unsustainable and inequitable out-
comes of AWM interventions in human—water sys-
tems. First, an overview of negative externalities and
unexpected outcomes of AWM interventions that
can lead to unsustainable and inequitable impacts is
provided. Next, the potential strengths of sociohydro-
logy based ABM approach over AWM modeling stud-
ies, in unraveling hydrological negative externalities
and societal unexpected feedbacks, are summarized.
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Figure 1. Conceptual diagrams illustrating unsustainable and inequitable outcomes resulting from the coevolutionary dynamics
of unintended negative hydrological externalities and unexpected societal feedbacks of AWM interventions.

Thereafter, a systematic review of ABM applications
in agriculture water systems is carried out to provide
an overview of the current state of the application,
key advances and discuss the remaining shortcomings
of ABM with respect to capturing AWM externalities.
Finally, the paper concludes with what future research
is needed to further strengthen the use of ABM for
understanding the human—water feedbacks of inter-
ventions in agricultural systems.

2. Externalities and outcomes of AWM
interventions: implications for
sustainability and equity

Externalities, defined as indirect or accidental feed-
backs associated with interventions, of AWM can
be both positive and negative. Negative externalit-
ies often result from ill-planned implementations of
AWM interventions that do not account for its hydro-
logical impacts (especially across spatial scales) or
social feedbacks. Though the focus of the paper is
on negative externalities, it is important to high-
light that the benefits of AWM along with multiple
positive externalities of AWM are well documented
(Reddy 2012, Sikka et al 2022). Positive externalit-
ies of AWM include those that lead to enhanced sur-
face and groundwater storage, reduced flood dam-
age, enhanced baseflows during dry seasons, reduced
soil erosion, and reduced sedimentation of reservoirs
(Bouma et al 2011, Reddy 2012, Alam and Pavelic
2020).

Negative externalities of AWM
tions result from the coevolutionary dynamics of
human-water systems. Here, we term and classify

interven-

negative externalities of AWM interventions linked
to water and human systems as negative hydrolo-
gical externalities and unexpected societal feedbacks
(figure 1). Negative hydrological externalities are unin-
tended or unexpected changes in spatial and temporal
availability and allocation of water flows (figure 1).
They arise from the interaction of AWM interventions
with hydrological flows (Kumar et al 2006, Calder et al
2008, Barron et al 2009, van Oel et al 2010, Bouma
et al 2011). For example, reduction in downstream
runoff due to water harvesting or storage interven-
tions and reduction in recharge (percolation and
return flows) due to efficient irrigation interventions
(table 1).

The impact of AWM interventions on hydro-
logy is not unidirectional and is further influ-
enced and shaped by the societal response to the
interventions and hydrological externalities i.e. coe-
volutionary dynamics. This response influenced by
socio-economic and cultural contexts, here termed
unexpected societal feedbacks, is usually non-linear
and highly heterogeneousand is typically not expec-
ted at the stage of planning (Walker et al 2015,
Pande and Sivapalan 2017, di Baldassarre et al 2019)
(figure 1). Examples include increased water use,
rather than expected decrease, in response to effi-
cient irrigation interventions and increased demand
in response to supply side interventions (table 1).

This coevolutionary dynamics of hydrological
externalities and unexpected societal feedbacks in
a society, unequally structured with unequal capa-
city and power can lead to outcomes for social
and biophysical systems that are unsustainable and
inequitable (figure 1) (Kerr 2007, Calder et al 2008,
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Table 1. Illustrative examples of negative externalities linked with AWM interventions.

AWM

interventions
Negative Water harvesting, Irrigation efficiency Subsidies (inputs,
externalities storage interventions interventions electricity, water, etc)
Hydrological Reduction in runoff Reduction in return Increased
externalities leading to upstream— flows and percolation evapotranspiration

Societal unexpected
feedbacks

Unsustainable
outcomes

Inequitable outcomes

downstream impacts
(Calder et al 2008,
Bouma et al 2011)

Supply-demand cycle
where more supply
may lead to more
demand (di
Baldassarre et al
2018, Shah et al
2021)

Drying of
downstream lakes or
reservoirs (e.g. Aral
Sea) (Wood and
Halsema 2008, Nepal
et al 2014, Albert et al
2021); reduction in
environmental flows

Benefits of water
harvesting (and
recharge)
concentrated to
nearby farms in
low-lying areas (Shah
etal 2021) and to
influential and richer
farmers having the
financial capacity to
invest in irrigation
infrastructure
(Calder et al 2008,
Bouma et al 2011,
Sarkar 2011)

leading to reduction
in groundwater
recharge (Fabbri et al
2016, Perry and
Steduto 2017)

Increased water use,
rather than expected
reduction in the
absence of any
regulation limiting
water use or
abstraction

(Zhang et al 2014,
Birkenholtz 2017)

Groundwater
depletion; wetland
degradation and lack
of environmental
flows (Zhang and
Shan 2008, Kopittke
etal 2019, Albert et al
2021)

Increased cost of
pumping and
drilling, well failure,
and abandonment of
wells
disproportionately
borne by the
resource-poor
farmers (Shiferaw
et al 2008,

Reddy 2012,
Narayanamoorthy
2015)

demands from shifting
toward more profitable
and water-intensive crops
(Shiferaw et al 2008,
Sarkar 2011)

Increased water use;
increased use of fertilizers
and pesticides (Berka et al
2001, Zhang and Shan
2008)

Hasten groundwater
depletion (e.g. Northwest
India) (Shiferaw et al 2008,
Mukherji 2020); water
quality deterioration of
rivers and aquifers (Berka
et al 2001, Zhang and Shan
2008)

Women farmers with less
access to support services
fail to make the most of
AWM interventions
aggravating the existing
inequity between male and
female farmers (Namara

et al 2010); high-value crop
cultivators and wealthier
farmers benefit the most
from investments made in
farmer-led irrigation
projects (Kafle et al 2020)

Barron et al 2009, Bouma et al 2011, Pande and
Sivapalan 2017). Examples of unsustainable out-
comes include drying of downstream lakes or
reservoirs, groundwater overexploitation, reduced
environmental flows and water quality deterior-
ation (table 1). Further, these AWM impacts are
often mediated and exacerbated by socio-economic
inequalities in financial capital and knowledge, and
gender and power relations (Sharma et al 2008,
Namara et al 2010, Linton and Budds 2014). Often,
benefits of AWM (and their negative impacts) are dis-
tributed unequally (Shiferaw et al 2008, Linton and
Budds 2014, Shah et al 2021) with rich or influential
farmers having more access to social, financial, and
biophysical capital capturing more advantages, more
subsidies, and more benefits (Namara et al 2010, Kafle

4

et al 2020) and resource poor farmers dispropor-
tionately bearing the negative impacts (table 1). The
social-water relationship and how this perpetuates or
even exacerbates inequality, exclusion, and impover-
ishment in response to development has been central
to hydro-social studies (Linton and Budds 2014).

3. Unraveling the negative externalities of
AWM interventions: co-evolutionary
dynamics

With agriculture water demand accounting for 70%
of freshwater withdrawals globally, going up to
95% in developing countries (FAO 2021), how
water is managed in agriculture will have important
implications for agriculture and other linked sectors
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(Satoh et al 2017). It is critical that investments in
AWM interventions lead to sustainable and equit-
able impacts. Modeling presents one tool to under-
stand and predict the impacts of proposed interven-
tions and investments by unraveling their potential
negative externalities. Given the interaction of AWM
interventions with hydrology and society, under-
standing the impacts of AWM interventions requires
that developed models should be able to capture
the coevolutionary dynamics of negative hydrolo-
gical externalities and unexpected societal feedbacks
to avoid inequitable and unsustainable outcomes
(figure 1).

Conventional modeling approaches used to study
the impacts of AWM interventions (e.g. hydrolo-
gical models, hydro-economic, and water resource
models) have generated wealth of information and
knowledge on future availability and use of water,
the impacts and benefits of AWM interventions,
required agronomic conditions, and socio-economic
constraints (Harou et al 2009, Andersson et al 2011,
Garg et al 2012, Hassaballah et al 2012, Satoh et al
2017, MacEwan et al 2017). However, they do not
explicitly model the feedbacks between the human
and water systems, thus missing out on the coevolu-
tionary dynamics that limit their prediction power
over long term (Sivapalan et al 2012, Srinivasan et al
2017, Pouladi et al 2020). In these models, human
actions (or societal feedbacks) are mostly prescribed
externally (mostly as scenarios) (Satoh et al 2017,
Srinivasan et al 2017, Pouladi et al 2020) and human—
water systems are treated as independent of each
other, ignoring the reality that humans think and
act independently with their responses (e.g. irrigation
and cropping decisions, land use) influenced by the
changes in the environmental and socio-economic
conditions (Srinivasan et al 2017, van Niekerk et al
2019, Pouladi et al 2020).

For example, hydrological models can assess and
predict the hydrological impacts of proposed AWM
interventions based on various assumptions about
human processes (e.g. population growth, adoption
of interventions, adaptation responses) (Andersson
etal 2011, Garget al 2012, Satoh et al 2017). Similarly
hydro-economic modeling and water resources sys-
tems that incorporate human modifications such as
dams and canals largely focus on the economic value
of water, optimization of costs, and design and ignore
feedbacks that such interventions have on human
decision making, e.g. with regards to the perception
of scarcity (Harou et al 2009, Hassaballah et al 2012,
MacEwan et al 2017, Srinivasan et al 2017).

The interventions could lead to long term unin-
tended consequences exacerbating social inequalit-
ies and vulnerabilities without accounting for these
human-water feedbacks in its design (Sivapalan et al
2012, Pande and Sivapalan 2017, Srinivasan et al
2017, di Baldassarre et al 2019, Pouladi et al 2020).

M F Alam et al

For example, studies have shown that infrastruc-
ture systems for mitigating floods (e.g. levees) can
expose the population to less frequent but more cata-
strophic events (di Baladassarre et al 2015, Pande and
Sivapalan 2017). Thus, there is need to expand con-
ventional AWM models to integrate human—water
dynamics, especially for longer term planning hori-
zons when human-water feedbacks become increas-
ingly important.

3.1. Sociohydrology: an approach to understanding
the coevolutionary dynamics

Sociohydrology, an interdisciplinary science of
coupled human-water systems, was introduced to
understand and model the coevolutionary dynam-
ics of human-water systems on multiple spatial and
temporal scales (Sivapalan et al 2012). In contrast to
conventional modeling approaches, sociohydrology
explicitly allows for changing and adaptive responses
by humans and how those responses affect the envir-
onment, thus capturing unexpected, emergent beha-
vior of human—water systems (Sivapalan et al 2012,
Pande and Sivapalan 2017, Srinivasan et al 2017,
di Baldassarre et al 2019). Sociohydrology models
are being increasingly applied to understand and
model coevolutionary dynamics of coupled human—
water systems (di Baldassarre et al 2016, Pande and
Sivapalan 2017). The approach has been used for
examining human—flood, human—drought systems
(di Baldassarre et al 2013, 2017), smallholder agri-
cultural human—water systems (Pande and Savenije
2016), water security challenges (Gober and Wheater
2014), and the evolution of ancient societies (Pande
and Ertsen 2014, Kuil et al 2016).

3.1.1. ABM: a promising tool for sociohydrology

The two main methods that have been used to
model sociohydrological systems are ABM and system
dynamics (Pande and Sivapalan 2017, di Baldassarre
et al 2019). In the system dynamics approach, the
focus is on the dynamics and evolution of com-
plex overall lumped systems (e.g. a city, popula-
tion), represented through feedback loops, stocks,
and flows, over time and not the micro-level beha-
vior/interactions (Martin and Schliiter 2015, Yu et al
2017, di Baldassarre et al 2019). However, model-
ing lumped systems misses out on micro-level (e.g.
individual farmers) interactions, constraints, het-
erogeneity, and inequality that give rise to over-
all system behavior. This also means that inequit-
able impacts within the population that is at the
core of AWM externalities (figure 1) cannot be fully
explored.

In contrast, Agent based models (ABMs) can expli-
citly account for micro-level constraints, individual
behavior and their interactions with society and the
environment (Berger and Ringler 2002, Berger et al
2006, Troost and Berger 2015, Khan et al 2017).
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Table 2. Illustrative examples of the potential capabilities of ABM to expand or complement AWM studies to capture externalities.

Externalities leading to
undesirable or unintended

AWM interventions outcomes

ABMs potential to expand or complement AWM studies

Introduction of drip
irrigation

Farmers increase crop
irrigated area leading to
increased water use rather
than conserving water

Water harvesting Increased water supply
leading to increased
demand (Supply—demand
cycle);
downstream—upstream
impacts

Groundwater Long term groundwater
development depletion, inequitable
incentives/policies distribution of benefits

While AWM studies can capture (and focus on) changes in
evapotranspiration requirements, return flows, water
productivity, and water savings (e.g. Nouri ef al 2020),
ABMs potential lies in its capacity to simulate farmers’
behaviors and decisions regarding changes in irrigation or
cropping patterns. This in return influence the hydrological
fluxes such as increased water use in response to increased
efficiency measures.

While AWM studies can capture the increase in water
availability, and reduction in downstream flows in response
to water harvesting interventions (e.g. Garg et al 2012),
ABMs can potentially simulate the long term feedback loop
between the perceived increase in water availability (water
system) to water demand (human system) that may lead to
long term unintended impacts.

While AWM studies can model the impacts of groundwater
incentives on groundwater abstraction and resulting water
tables based on exogenous scenarios (Wada et al 2016),
ABMs can potentially simulate make these scenarios
endogenous by simulating individual farmers’ decisions
based on their socio-economic characteristics in response to
the incentives and makes it possible to assess the
distribution of benefits or impacts within a population.

This allows for a natural representation of the real
world where social behaviors and dynamics at the
macro-level can be attributed to both micro-scale and
macro-scale factors (Khan et al 2017, di Baldassarre
et al 2019). For this capability, ABMs have been
widely used to study the evolution of different sys-
tems including land use, urban, forests, ecosystems,
epidemiology, social-ecological, and agricultural sys-
tems (Le Page et al 2013). This also makes it a
promising tool for sociohydrology to understand and
explore the evolution of coupled human-water sys-
tems, to unravel and understand AWM externalities
and resulting in unsustainable and inequitable out-
comes. Thus, ABMs can expand and complement
conventional AWM model to integrate human—water
feedbacks. Table 2 provides some illustrative examples
of the strengths of ABMs and how they can expand or
complement the AWM studies to capture externalities
generated by AWM interventions.

The applications of ABMs in sociohydrology have
already begun and are broadening (Michaelis et al
2020, Tamburino et al 2020, Ghoreishi et al 2021).
For example, Tamburino et al (2020) developed an
ABM to simulate the impact of water use beha-
vior on crop yield and economic gain in small-
holder farming systems and how this is influenced
by farmer attitudes and behavior. Ghoreishi et al
(2021) developed an ABM to study the rebound phe-
nomenon, i.e. increased water demand in response to
more efficient irrigation, and its controlling factors in
Bow River Basin in Canada.

However, with or without explicit mention of
sociohydrology, ABMs have a long history of applica-
tion in agricultural systems (Berger et al 2001, Berger
and Ringler 2002). This includes ABMs for model-
ing the adoption of AWM interventions (Berger 2001,
Schreinemachers et al 2007, 2009), modeling the
impact of farmers’ agricultural decisions on hydro-
logical systems (Becu et al 2003, van Oel et al 2010)
and simulating a range of policy, trade, and market
mechanisms (Schliiter and Pahl-Wostl 2007, Farhadi
et al 2016, Aghaie et al 2020a, 2020b).

While ABMs have the potential ingredients to
capture AWM externalities and applications are
increasing in sociohydrology, there is limited under-
standing of what can be or has been achieved through
ABM methodological approaches and what are the
remaining methodological gaps that further need to
be bridged to unravel the negative externalities of
AWM interventions as discussed above (figure 1).
With the aim to synthesize the learnings, challenges,
and gaps in modeling AWM externalities through
ABMs, we here carry out a systematic review of meth-
odological approaches taken in AWM-ABM studies.
Since AWM and associated externalities are the focus
here, the scope of review is limited to ABM applic-
ation for modeling AWM interventions. Similarly,
other recent reviews have focused more specifically
on ABM applications for agricultural policy eval-
uation (Kremmydas et al 2018), for Food—Energy—
Water Nexus (Magliocca 2020) and flood risk models
(Taberna et al 2020).



10P Publishing

Environ. Res. Lett. 17 (2022) 103003

M F Alam et al

Table 3. Overview of questions on different components of AWM-ABM models for the review.

Overarching question Sub-questions

Link to AWM externalities and outcomes
(conceptual framework in figure 1)

How does
AWM-ABM resolve

negative hydrological AWM on water flows?

Can hydrological models used in AWM-ABM:
(a) Resolve the spatially explicit impact of

Negative hydrological externalities (e.g.
Spatio-temporal changes in water flows)
Unsustainable outcomes (e.g. groundwater

externalities? (b) Model surface—groundwater (SW-GW) depletion)
interactions?
How are farmers’ (a) Which individual behavioral theories have Unexpected societal feedbacks (e.g. increases
responses, behavior, been used? in crop area and water use)
and interactions (b) How social interactions have been
simulated? simulated?
How does (a) Whether individual agents, critical to Inequitable outcomes (e.g. inequitable profit

AWM-ABM resolve
inequitable impacts?

modeling inequitable impacts within a
population, are represented and simulated?

distribution)

(b) How are individuals’ socio-economic and
biophysical characteristics defined to
represent the heterogeneity of the

population?

4. Review of ABMs application to
agricultural water systems (AWM-ABM)

Developed ABMs for agricultural systems model bio-
physical, economic, and social processes by integ-
rating and coupling biophysical sub-models (e.g.
hydrology, crop growth) and social (e.g. behavi-
ors, decisions, network interaction) systems at differ-
ent spatial and temporal scales (Berger 2001, Troost
and Berger 2015, Dziubanski et al 2020). Methods
employed for modeling these biophysical, economic,
and social processes differ substantially (Le Page et al
2013, Kremmydas et al 2018) and have a direct bear-
ing on the ABMs ability to resolve negative hydrolo-
gical externalities and unexpected societal feedback of
AWM interventions (figure 1). For example, whether
AWM-ABMs can model spatially explicit hydrolo-
gical impacts depends on the hydrological models
employed and the simulations of realistic societal
feedbacks depends on behavioral theories used.
Since ABMs differ substantially in terms of meth-
ods employed, our review focuses on assessing AWM—
ABM methods for their capability to unravel negative
hydrological externalities, assess inequitable impacts
and capture societal unexpected feedbacks (figure 1).
We broadly focus on three overarching questions
(derived from figure 1): (a) How does the AWM-—
ABM resolve negative hydrological externalities?; (b)
How are farmers’ responses, behavior and interac-
tions simulated?; and (c) How does the AWM—-ABM
resolve inequitable impacts by accounting for the het-
erogeneity of society? These were broken down into
sub-questions (table 3) for which information was
collected and synthesized from the reviewed papers.
The sub-questions therefore also serve as criteria to
evaluate the extent to which ABMs can unravel neg-
ative externalities, thereby identifying the remaining

gaps that further need to be bridged to comprehens-
ively understand the impacts of AWM interventions
on sustainable and equitable water use.

4.1. Review design

For our review, search criteria from Kremmydas et al
(2018) were modified to focus specifically on ABM
developed for AWM interventions to synthesize the
learnings, challenges advances, and gaps in unravel-
ing AWM externalities through ABMs. Kremmydas
et al (2018) reviewed ABM use for agricultural policy
evaluation. To capture a wide range of articles and
for that, we interpret AWM in a broad sense includ-
ing AWM-ABM studies that not only model AWM
interventions but also simulate management, mar-
ket, and trade mechanisms and agents’ behavioral
aspects that directly impact agricultural water use. We
reviewed articles published in peer-reviewed journals
with their title, abstract or keywords including:

e One or more of ‘agent-based) ‘agent based’, ‘abm,
‘multi-agent’ or ‘multi agent’

e AND any word beginning from ‘water’, ‘groundwa-
ter) ‘gw’

e AND any word beginning from ‘farm’, ‘agricul, or
‘crop.

This is equivalent to the following SCOPUS
search command:

TITLE-ABS-KEY (‘agent-based” OR ‘agent based’
OR ‘abm’ OR ‘multi-agent’ OR ‘multi agent’) AND
TITLE-ABS-KEY (farm*) OR TITLE-ABS-KEY
(agricul*) ORTITLE-ABS-KEY (crop*) AND TITLE-
ABS-KEY (water*) OR TITLE-ABS-KEY (ground-
water) OR TITLE-ABS-KEY (gw*) AND (LIMIT-
TO (LANGUAGE, ‘English’)) AND (LIMIT-TO
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(DOCTYPE, ‘ar’) OR LIMIT-TO (DOCTYPE, ‘ch’)
OR LIMIT-TO (DOCTYPE, ‘re’)).

The search produced 206 documents that were
further refined based on the criteria detailed below:

Criteria 1: Agricultural systems and ABM

Papers were excluded which were not related to
ABM or focusing on agricultural systems. Examples
include papers from chemistry, pest, diseases, marine,
urban etc.

Criteria 2: Focus on AWM interventions

e Paper is considered to be relevant if the AWM is a
key component of the model that directly affects
the model outcome and consequently the paper
focuses on the relation of the policy to the model
outcome.

e Excluded ABMs where the focus is exclusively on
land use or urban or ecosystems but not AWM.

o Additionally, review papers were also excluded.

Additionally, papers not in SCOPUS search but in
authors knowledge were added. Finally, we reviewed
69 papers.

5. Review results

5.1. Modeling negative hydrological externalities

Modeling negative hydrological externalities resulting
in unsustainable outcomes (e.g. groundwater deple-
tion, upstream—downstream conflicts) requires integ-
ration/coupling of hydrological models in ABMs.
These hydrological models employed in AWM—-ABMs
are concerned with modeling and simulating spatial
and temporal patterns of water flows and the impact
of AWM on the same. To capture and predict the
hydrological changes, with spatial variability and cut-
ting across surface—groundwater (SW-GW) systems,
the hydrological models should at least be: (a) semi-
distributed to account for the spatial heterogeneity of
water quantity and quality processes and (b) include
groundwater—surface water interactions (Glendening
et al 2012, Khan et al 2017). The following section
explores the extent to which these criteria are met.

5.1.1. Hydrological models in AWM-ABMs

Whether spatially explicit hydrological changes and
interactions can be modeled or not depends to a
large extent on spatial scales considered and the
type of hydrological models integrated/developed in
AWM-ABM studies. AWM-ABM:s where spatial scale
is either individual farm or administrative region
(figure 2(a), 27%), is not conducive for modeling
hydrological flows and interactions. In these AWM-—
ABMs, water flows are largely modeled at individual
plot/farm levels either using one-dimensional soil
water balance (Tamburino et al 2020, Wens et al 2020)
or empirical models (van Duinen et al 2016, Zagaria
et al 2021). AWM-ABMs with a focus on individual
farms are largely concerned with modeling individual
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farmers socio-economic temporal dynamics result-
ing from their response, behavior, and adoption of
AWM interventions. For example, Wens et al (2020)
modeled individual farmers’ adaptive behavior, sim-
ulated using multiple behavioral theories, to estimate
future drought risk in a region in Kenya. In the study,
hydrology is modeled at an individual plot scale using
The Food and Agriculture Organization of the United
Nations (FAO) crop model AquacropOS.

AWM-ABMs at an administrative scale in addi-
tion to individual farmers socio-economic dynamics
can also model spatial dynamics (e.g. crop changes,
land-use change, adaptation diffusion) emerging
from individual farmers decisions, direct or indirect
social environmental interactions (Schreinemachers
et al 2007, Barnaud et al 2008, Troost and Berger
2015, Hampf et al 2018). However, hydrology, if
modeled, is still mostly modeled at individual farm
scales (Schreinemachers et al 2007, Troost and Berger
2015). With hydrological impact not the focus in
many AWM-ABMs at an administrative scale, more
than 50% of such studies do not employ any hydro-
logical model (figure 2(a)). For example, Troost and
Berger (2015)2021 modeled regional land user and
crop production dynamics resulting from individual
farmer decisions at farm-level to adapt to climate
change in a mountainous area in southwest Germany.
Water flows were not modeled with the study focus-
ing on analyzing the effect of income, crop changes,
and agriculture supply.

Hydrological flows and interactions, via sur-
face and groundwater, can be explicitly modeled
in AWM-ABMs where the spatial scale is either
watershed/basin (Berger 2001, Becu et al 2003,
Schreinemachers et al 2009, van Oel et al 2010, Ng
et al 2011) or irrigation systems (Barreateau et al
2004, Schliter and Pahl-Wostl 2007, Ghazali et al
2018). Overall, 62% and 10% of AWM-ABMs have
the watershed and irrigation systems as their spatial
scale, respectively (figure 2(a)). In these AWM-ABMs
negative hydrological externalities can be captured as
agents’ actions impact other agents’ water flows and
availability, simulated as the change in surface water
flows (Becu et al 2003, van Oel et al 2010, Pouladi
et al 2020), groundwater depth (Noél and Cai 2017,
Hu and Beattie 2019, Du ef al 2020) and water quality
(Pouladi et al 2019). In AWM—-ABM modeling irriga-
tion systems, water flows and availability are determ-
ined by canal flows, rather than watershed hydro-
logy (Barreateau and Bousquet 2000, Barreateau et al
2004). This is done largely using empirical models
(figure 2(a)).

In AWM-ABMs at the watershed scale, both semi-
distributed and distributed hydrological models have
been used (figure 2(a)). In semi-distributed hydro-
logical models, aggregated hydrological response
(e.g. runoff, recharge, drainage) of sub-units (sub-
watershed, hydrolgic response unit (HRUs)) is
modeled at the overall basin/watershed outlet (Becu
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Figure 2. Percentage of AWM-ABMs reviewed (a) across different spatial scales considered in AWM—-ABMs and proportion of the
type of hydrological models used under each, (b) inclusion of groundwater in AWM—-ABM:s and proportion of the type of

hydrological models used under each.

et al 2012, Dziubanski et al 2020). Examples of semi-
distributed models include using soil conservation
service (SCS) curve number method to assess the
impacts of land cover changes, aggregated at sub-
basin unit, resulting from decisions made by differ-
ent agent types (Dziubanski et al 2020) or linking
hydrologic-agronomic model soil & water assess-
ment tool (SWAT) in Salt Creek watershed in Central
Illinois, USA to simulate farmer behavior regarding
best management practices and its effect on stream
nitrate load (Ngetal2011). In semi-distributed mod-
els, flow at each point/grid is not simulated so they are
more useful where the query of interest is assessing the
impact on hydrology from the aggregated response
of agents. This may limit their utility to assess the
impact on individual agents from changes in hydro-
logy, especially when there are significant differences
in socio-economic-biophysical capital of farmers in
the aggregated units (sub-watershed, HRUs).

In contrast, in distributed hydrological models,
hydrology is modeled at each part/grid and can be
linked to underlying individual agents. Examples of
distributed models are by Becu et al (2003 ) and Bithell
et al (2009) both of which developed spatially dis-
tribute models as part of AWM-ABM and linked
each point/grid in space with underlying agents. This
allows for modeling two-way feedbacks between indi-
vidual actions/decisions and hydrology. The most
often used distributed models in AWM-ABM come
from studies assessing groundwater management and
sustainability (~47%, figure 2(b)). In these studies,
the use of the distributed modular groundwater flow
model (MODFLOW) have been frequent (Farhadi
et al 2016, Noel and Cai 2017, Nouri et al 2019).
For example, Noel and Cai (2017) developed an
integrated ABM—-MODFLOW model where farmers’

daily irrigation decisions are used as input to MOD-
FLOW which in turn provides updated water-table
and baseflow information to agents in Republican
River Basin, USA. In contrast, only a few studies
(~10%, figure 2(b)) modeling surface water flows
have used spatially distributed models (Becu et al
2003, Bithell et al 2009, Du et al 2020). This could be
due to relatively more ease in integrating stock vari-
ables (e.g. groundwater head, lake storage) in com-
parison to output fluxes (i.e. streamflow) in ABMs
code (Khan et al 2017).

5.1.2. Groundwater—surface water interactions in
AWM-ABMs

The examples of negative hydrological externalities
discussed earlier show that they often result from
interactions of SW-GW systems. Examples include
the change in potential recharge from surface stor-
age structures and changes in return flows (as brought
on by efficiency improvements practices). Resolv-
ing these processes requires that hydrological mod-
els should be able to capture SW—-GW interactions.
However, our review shows that there are large gaps
in this part. First, only ~30% of reviewed papers had
considered groundwater (figure 2(b)). Even in these
studies, many simulate integrated SW—GW systems in
a very simplistic way, such as modeling groundwater
irrigation but not process-based recharge and storage
modeling (Holtz and Pahl Wostl 2012, Tambourino
et al 2020, Wens et al 2020).

Second, very limited studies use integrated mod-
els with SW-GW interactions in place (~14% of
studies) (van Oel et al 2010, Du et al 2020, Mirzaei
and Zibaie 2021). Most studies model surface water
(Nikolic et al 2013, Dziubanski et al 2020) or ground-
water (Farhadi et al 2016, Noél and Cai 2017,
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Nouri et al 2019, Aghaei et al 2020a, 2020b) in isola-
tion. One explicit case of distributed integrated SW—
GW model use in AWM-ABMs is by Du et al (2020)
where GSFLOW (an integrated SW—GW model) was
integrated with an ABM to model water use and
understand its impact on hydrology in the Heihe
River Basin, China, under the influence of collective
water management policies. This lack of inclusion of
groundwater and integrated SW—GW process means
that many of the AWM externalities cannot be cap-
tured or predicted.

5.2. Modeling society unexpected feedbacks in
AWM-ABMs

Incorporating agent responses and feedbacks to the
environment to capture unexpected society feedbacks
is central and critical in AWM-ABMSs models. Mod-
eling this requires a suitable and dynamic represent-
ation of agent behavior, goals, and decision-making
processes (Miiller-Hansen et al 2017). Multiple stud-
ies have reviewed the use of decision-making behavi-
oral theories in ABM focusing on natural resources
(An 2012, Miiller-Hansen et al 2017, Schliiter et al
2017). Based on our review, we broadly categorized
AWM-ABMs into two types: AWM-ABMs where
agent behavior is modeled in isolation without
accounting for social interactions, and AWM-ABMs
where the influence of social interactions on indi-
vidual behavior is incorporated. We review individual
behavior theories and social interaction theories used
separately in the following sections.

5.2.1. Simulating individual farmers’ responses and
behavior in AWM-ABMs

Individual decision-making and behavior in AWM-
ABMs include taking decisions regarding crop pro-
duction, irrigation, investment in AWM interven-
tions, and other agronomy aspects (fertilizers, labor,
etc). These decisions differ among agents based on
the assumptions made about three key determinants
of human choices: goals and needs, constraints, and
decision rules (Miiller-Hansen et al 2017, Schliiter
et al 2017). Based on these three key determinants,
Schliiter et al (2017) categorized theories used for
modeling agent decision making. We use these cat-
egories to analyze how frequently they appear in
AWM-ABMs (figure 3(a)).

Our review shows that the most used theories
in AWM-ABMs are rational choice and bounded
rationality (including heuristics) (figure 3(a)).
Rational and bounded rationality are both based
on expected utility maximization where an agent’s
decision-making is goal oriented. Agents choose
a strategy, under given constraints, with the best-
expected outcome or utility (An 2012, Schliter
et al 2017). The rational choice theory assumes that
agents make rational choices. These rational choices
achieve outcomes that maximize their advantage
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or income by optimizing their decision regard-
ing crops, irrigation, and resource use under given
constraints. An example of rational theory used in
AWM-ABMs is the application of the mathematical
programming-based multi agent systems (MP-MAS)
model where farmers’ investment decisions are sim-
ulated to maximize expected long-term average levels
of net farm and non-farm incomes (Berger 2001,
Schreinemachers et al 2007, 2009).

However, field evidence suggests that farmers are
not always rational (Bluemling et al 2010, Howley
et al 2015, Dessart et al 2019). Examples include
farmers’ unwillingness to covert land to forestry even
with expected higher economic returns as that does
not align with their attitudes (Howley et al 2015)
or the economic cost of increased pumping being
an insignificant factor in choosing efficient irrigation
technology (Blueming et al 2010). This is because
human decisions are complex, and decisions are made
under the influence of experiences, rules, psycholo-
gical factors, and social influences (van Duinen et al
2016, Dessart et al 2019, Du et al 2020).

Bounded rationality theory, a modification of
rational choice theory, aims to account for these
factors by putting constraints or bounds on the
agent’s information receiving, understanding, and
cognitive capacity (An 2012, Schliiter et al 2017).
There are many different approaches to formalize
bounded rationality with respect to limited inform-
ation, quality of information, and cognitive capa-
cities of decision-makers (van Duinen et al 2016,
Schliiter et al 2017). The most often used approach
is heuristics, where agents are assigned rules, derived
from empirical data or observations, that drive their
decision-making (Schliiter and Pahl-Wostl 2007, van
Qel et al 2010, An 2012). In heuristics, decisions
emanate from farmers’ experience, accumulated
knowledge, and p (Schliiter and Pahl-Wostl 2007).
Examples of heuristics include ‘if/then/else’ rules
where agents make cropping decisions based on
the predefined threshold such as capital, soil pH,
and groundwater levels (Castilla-Rho et al 2015) or
sensitivity to crop water stress (Noél and Cai 2017).
Though heuristics can mimic an agent’s behavior and
decisions, it fails to explain the underlying reasons
for the same as this is without a strong theoretical
basis (An 2012). While this can suffice for modeling
behavior to known stimuli/changes/options but has
limited utility in case of unexpected and unforesee-
able scenarios.

Thus, to drive actual motivations and incentives
behind the decisions, there is an increasing realiza-
tion and call for grounding agent decisions in estab-
lished social-science theories (e.g. protection motiv-
ation theory (PMT), theory of planned behavior
(TPB), learning) rather than rational or simple heur-
istics (Schliiter et al 2017, Taberna et al 2020, Wens
et al 2020). PMT, a version of bounded rational-
ity, offers an example (Dziubanski et al 2020, Wens
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Figure 3. (a) Proportion of different individual decision-making behavioral theories used for modeling agents in reviewed papers;

(b) proportion of papers implementing social interactions.

et al 2020, Zagaria et al 2021). In PMT, farmer
adaptation is simulated as the integration of farm-
ers’ perceived risk and appraisal of their capacity to
adapt (Wens et al 2020, Zagaria et al 2021). Wens
et al (2020) applied PMT to explore the adaptation
decisions of farmers in Kenya. Their results show
that bounded rationality can model complex human
adaptation decisions more realistically over theory
based on rational agents.

In contrast, there is a relatively lower applica-
tion of other theories in AWM-ABMs, namely the
habitual or reinforcement learning theory, TPB, and
prospect theory (PT) (figure 3(a)). In Habitual or
Reinforcement learning, positive and negative exper-
iences (history) are stored in the state (knowledge)
and reflected in the habit formation of agents (Nikolic
et al 2013, Schliiter et al 2017, Yuan et al 2021).
Castilla-Rho et al (2015) partially include this in heur-
istics behavior by including ‘history’ of risk accu-
mulating where agents learn to avoid risky invest-
ments. TPB focuses on farmer intention, shaped by
agent attitudes, subjective norms, and perceived con-
trol, as the main determinants of implementing a cer-
tain behavior (Kaufmann et al 2009, Pouladi et al
2019, Yang et al 2020). Pouladi et al (2019) used
TPB to assess farmer decisions on the conservation of
water resources in the Zarrineh River Basin, Iran. PT
takes into account the differences in risk preferences
of agents with the idea that people are much more
sensitive to losses (risk-averse) and evaluates possible
future outcomes differently based on the subjective
probabilities rather than objective probabilities (Ng
etal 2011, Balbi et al 2013, Ding et al 2015, Gonzalez-
Ramirez et al 2018). Ng et al (2011) applied PT to
model farmers’ crop and best management practice
decisions where farmers maximize total utility as a
function of their perceptions of future conditions and
risk attitude.
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5.2.2. Simulating social interactions in AWM-ABMs
Social interactions among individuals play a critical
role in influencing individual responses and decisions
(Barreute et al 2004, Schreinemachers et al 2007,
2009, Ng et al 2011). The specific sets of indi-
vidual behaviors influenced by neighbor’s decisions
and behavior are also referred to as sideward look-
ing theories (Miiller-Hansen et al 2017). Agents can
interact, observe, or share information with other
similar agents (i.e. horizontal interactions) or with
higher authorities, governments, markets (i.e. ver-
tical interactions), or both. We focus on the former
as the latter act more like constraints or incent-
ives for individual behavior (Aghaie et al 2020a).
Of the reviewed papers, only one-third incorporate
agent social interactions or sideways looking theories
(figure 3(b)).

These AWM-ABMs have used social interactions
to model diffusion and adoption of adaptation prac-
tices (Berger 2001, Schreinemachers et al 2007, 2009,
Ng et al 2011, Schreinemachers and Berger 2011),
mimicking of behaviors (such as cooperative or non-
cooperative behavior) and decisions regarding crop-
ping practices (Barreteau et al 2004, Nikolic et al
2013, Castilla-Rho et al 2015, Farhadi et al 2016,
Cai and Xiong 2017, Ghazali et al 2018, Bazzana
et al 2020).

The model of diffusion is based on a principle
that agents mimic and learn from other farmers’
decisions. Most AWM-ABMs have employed social
influence as a model of diffusion (Young 2009), where
adoption of practices is modeled as threshold func-
tions. In these models, agents adopt practices or
interventions once a certain threshold of the popula-
tion has adopted them (Schreinemachers et al 2007,
2009, Schreinemachers and Berger 2011, Farhadi
et al 2016, Cai and Xiong 2017). Order of adoption
between agents is based on agent behavioral values
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such as innovativeness or risk behavior, which can be
either based on empirical data or randomly allocated
to agents.

Another model of diffusion used is the contagion
model, where agents adopt interventions when they
meet others who have adopted them (Young 2009,
Holtz and Pahl Wostl 2012). In this model, the diffu-
sion of an innovation is modeled as a self-reinforcing
process that tends toward a final saturation level of
adopters (Holtz and Pahl-Wostl 2012). For example,
Nikolic et al (2013) modeled social interactions where
farmers are able to imitate the cropping patterns of
neighbors resulting in higher yields during the previ-
ous season.

The third type of diffusion mode is the social
learning model of diffusion where agents also ration-
ally evaluate, rather than adopting it based on
whether others have, the evidence of proposed bene-
fits of interventions generated by prior adopters
(Young 2009). The use of social learning in AWM~
ABMs is however limited (Ng et al 2011, Daloglu et al
2014, Perello-Moragues et al 2019). For example, Ng
et al (2011) used social learning where agent adop-
tion is influenced by variances of the net return on the
adoption of interventions, which decreases as more
people adopt it.

Extensive use of the social influence diffusion
model, with its roots in the study of hybrid seed
corn in the USA in the 1940s (Rogers 2004),
has been a leading theory of agriculture exten-
sion work employed in many international rural
development programs and research (AgriFutures
2016). Application of the diffusion model in the
field often includes identifying lead or progress-
ive farmers (more innovative or more risk-taking)
who are trained or provided support for interven-
tions with the assumption that others will learn and
mimic their practices (Tsafack et al 2015, Franzel
etal 2019).

However, the application of the theory can be a
source of inequity as the expectation that introduced
practices will trickle down from lead farmers (mostly
more progressive and economically well-off) may not
happen (Monu 1995, AgriFutures 2016). This is so
because diffusion models often assume homogenous
social systems with respect to the introduced techno-
logy, which is often not the case (Monu 1995). Empir-
ical field research has shown that the decision making
on adoption is influenced by a range of factors includ-
ing preferences and socio-economic and ecological
constraints (Shilomboleni et al 2019), social groups,
clans, acceptability (de Roo et al 2019), attitude, cul-
tural norms, and abilities (Kaufmann et al 2009,
Daniel et al 2019). Thus, there is a need to intern-
alize and incorporate the wealth of empirical field
research and move away from the use of a simplistic
threshold-based approach as often done in AWM-
ABMs (Kaufmann et al 2009).
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5.3. Modeling inequitable outcomes of AWM
interventions in AWM-ABMs

Modeling inequitable outcomes resulting from het-
erogeneities in social, economic and biophysical cap-
ital of farm/farmers requires an accurate and appro-
priate representation of agents in the modeling
domain. Representation of AWM-ABMs deals with
how agents (farmers or farms) are defined in terms
of their socio-economic characteristics and location
in space. This requires two main considerations: (a)
each farmer located within the study domain should
be represented to simulate their impact on hydro-
logy and vice versa and (b) farmers’ characteriza-
tion in the model should capture their relevant socio-
economic characteristics and associated biophysical
endowments.

5.3.1. Representation of farmers in AWM—-ABMs

Our reviews show there are two broader methods of
representing spatially distributed farmers: modeling
individual farmers (Berger 2001, Schreinemachers
et al 2007, 2009, Arnold et al 2015) and modeling
aggregate farmers (Hu ef al 2015, Farhadi et al 2016,
Hu and Beattie 2019). The latter has also been termed
as areal agents by Wens et al (2019). There can also
be non-spatial agents such as institutions and mar-
kets (Wens et al 2019). These are not reviewed here
explicitly as the focus is on farmers or farms, but they
are implicit in agents’ behavior where they set rules
and constraints.

In AWM-ABMs modeling individual agents,
agents are assigned to discrete spatial units (e.g. plots,
grids) in the model spatial domain where each agent
interacts and provides feedback to the underlying
environment and hydrological flows (Berger 2001,
Schreinemachers et al 2007, 2009, van Oel et al 2010,
Arnold et al 2015, Noél and Cai 2017). These AWM-—
ABMs differ depending on whether the entire popula-
tion is modeled (Schreinemachers et al 2009, Arnold
et al 2015) or only a subset of the population is
modeled (Ng et al 2011, Holtz and Pahl-Wostl 2012).
For example, Schreinemachers et al (2007) modeled
soil fertility and poverty dynamics of all 520 farm-
ers in two village communities in Uganda by divid-
ing the spatial domain into grid cells of area 0.5 ha,
corresponding to the size of the smallest agricultural
field cultivated in the study area. In contrast, Holtz
and Pahl Wostl (2012) divided the farmers based on
land size and simulated only 100 farmers per land size
class in Upper Guadiana, Spain. Results were extra-
polated from this representative population to assess
the influence of farmers’ characteristics on land-use
change and associated groundwater over-use.

Modeling a subset of the population, taken as
representative of the total population, limits model
runs when the spatial domain is large, saving com-
putational costs. Conclusions on broader dynamics
may be drawn from this representative population
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(Ngetal 2011, Holtz and Pahl-Wostl 2012, Troost
and Berger 2015). However, this may restrict the com-
plete representation of all possible spatial and social
interactions among the agents. The challenge is also
to build the best representative typologies that can
explain the farmer’s decision/behavior.

In AWM-ABMs modeling aggregated agents,
individual agents are aggregated and are represen-
ted as one super-agent, over a larger region such as
a sub-basin, watershed, or a city (Nikolic et al 2013,
Xiao et al 2018, Hu and Beattie 2019, Nouri et al
2019). It is the aggregated responses and feedbacks
of agents that are simulated and integrated with bio-
physical systems (Nikolic et al 2013, Hu et al 2017,
Hu and Beattie 2019). For example, Hu and Beattie
(2019) modeled 46 counties with each county aggreg-
ated as one farmer, Farhadi et al (2016), and Nikolic
etal (2013) modeled 13 and 28 sub-watershed/basins,
each acting as one independent agent. Aggregation
of agents can facilitate practical model development,
especially where large basins are modeled. How-
ever, aggregated agents limit the model’s capability
to include local variability and heterogeneity, missing
out on equity dynamics within a population (Berger
and Ringler 2002). This is critical, especially in an
unequal society where the adoption and response to
AWM and the impact of AWM externalities could be
quite different within the population.

5.3.2. Representing farmer’s heterogeneity in
AWM-ABM:s

Agent characterization in AWM-ABMs is a way to
represent the heterogeneity of a population. Rep-
resenting population heterogeneity is important to
model inequities in cost and benefits sharing and
capacities of the agents to adapt AWM practices.
Agents are characterized by their socio-economic
characteristics, biophysical endowments, and behavi-
oral characteristics. Behavioral characteristics define
agent behavior and decision-making and are dis-
cussed in the next section.

Our review shows that most of the studies con-
sider socio-economic characteristics of households
and farms (family, family composition, household
composition, age, sex, area) (table S1). This determ-
ines the availability of labor, consumption, and
expenses of agents. Other often used socio-economic
characteristics, based on the objective of AWM-—
ABMs, are ownership of assets, machinery, and cap-
ital, access to extension services, credit, markets, and
off-farm income sources. These all determine the eco-
nomic, social, and knowledge endowment of agents.
The use of a wide range of characteristics already
shows the importance and centrality of consider-
ing the heterogeneity of agents in AWM-ABM stud-
ies. The data for these socio-economic characterist-
ics are either collected from existing microeconomic
datasets (obtained from sample surveys, censuses,
and administrative systems) (Noél and Cai 2017) or
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through primary surveys (such as household surveys
and focus group discussions) (van Oel et al 2010,
Pouladi et al 2019, Wens et al 2019).

Biophysical endowments of agents are mostly
derived from underlying maps of biophysical datasets
(e.g. soil, elevation, rain). Biophysical endowments
characteristics considered (table S1) differ markedly
between studies but most consider data on soil type,
elevation, precipitation, and irrigation sources. In
addition, relative locations of the agents’ farms (such
as upstream or downstream of other agents, com-
mand area, flood plains, etc) have been used to dif-
ferentiate agents. These data are mostly acquired
through secondary data and geographical databases
such as cadastral maps, digital elevation models, land
use maps, soil maps, etc.

One critical aspect that is of importance while
providing biophysical endowments to agents is how
agent’s location in space is determined. Agent loc-
ation in space is of paramount importance as this
determines their biophysical endowments (e.g. soil
quality, water availability), interactions with hydro-
logy, neighbors, and social groups. Our review shows
that despite the importance of location, only a few
studies use real location data to distribute agents spa-
tially (Schreinemachers et al 2007, van Qel et al 2010,
Arnold et al 2015, Noél and Cai 2017). For example,
Noél and Cai (2017) use certified irrigated acres from
the existing database on pumping wells to delineate
the agents. The results of our review are similar to
the conclusion of Kremmydas et al (2018), who found
that only 2 of the 32 reviewed papers used observed
location data.

6. Synthesis

The review confirms the ability of AWM-ABMs to
expand the capabilities of conventional AWM stud-
ies, as stated in table 2, by incorporating human—
water feedbacks (a key limitation of conventional
AWM studies and models) and capturing the negat-
ive externalities possibly generated by AWM interven-
tions and unraveling the unintended consequences
including unsustainable and inequitable outcomes.
The review shows that methods employed by
AWM-ABMs can successfully integrate a range of
farmer behavior including the adoption of AWM
interventions (Ng et al 2011, Schreinemachers
and Berger 2011, Wens et al 2020), investing in
farming inputs, choice of crops (Becu et al 2003,
Schreinemachers et al 2009, Schreinemachers and
Berger 2011, Arnold et al 2015) and land use (Troost
and Berger 2015) and irrigation (Van Oel et al 2010,
Nikolic et al 2013, Xiao et al 2018). This modeling of
farmers’ behaviors and decisions makes the scenarios
endogenous, thus allowing the modeling of long-term
coevolutionary dynamics. For example, Ghoreishi
et al (2021), show how ABM that includes farmers’
behavior can shed light on long-term rebound
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phenomenon where adoption of efficient improving
measures leads to increased water use.

Farmer’s decisions and resulting co-evolutionary
dynamics resulting from AWM interventions
have been successfully linked to their subsequent
impacts on natural and social systems (Berger 2001,
Schreinemachers et al 2007, 2009, Dziubanski et al
2020, Wens et al 2020). This includes explicitly mod-
eling AWM hydrological externalities including agri-
cultural water use impact on groundwater overex-
ploitation (Du et al 2020), water quality (Daloglu
et al 2014), and downstream flows (Pouladi et al
2019). AWM-ABMs do this by linking farmers and
societal modules (human systems) with coupled spa-
tially distributed surface (Becu et al 2003, Du et al
2020) and groundwater hydrological models (Noél
and Cai 2017, Hu and Beattie 2019) (water systems).
For example, Hu and Beattie (2019) successfully
modeled the impact of farmers’ irrigation decisions
on groundwater table levels in the High Plains Aquifer
in the USA and van Oel et al (2010) simulated the
impact of farmer’s decisions on spatial and temporal
distribution of surface water resources in a river basin
in Brazil.

Further, the modeling of human—water feedbacks
in AWM-ABMs can capture inequitable impacts of
AWM interventions on human—water systems. It does
so by capturing and modeling individual farmers
based on their heterogeneous socioeconomic char-
acteristics (Barreteau et al 2004, Ng et al 2011,
Ohab-Yazdi and Ahmadi 2018, Yuan et al 2021).
For example, AWM-ABMs have modeled inequit-
able adoption of AWM interventions based on land
size and financial resources (Holtz and Pahl-Wostl
2012, Wens et al 2020); (in) equity in water alloca-
tion (Mirzaei and Zibaie 2021), and inequitable water
distribution and interaction between upstream and
downstream farmers (Becu et al 2003, Barreteau et al
2004, van Oel et al 2010). Yet the review also brings
to fore the remaining methodological gaps of AWM-—
ABMs in resolving AWM externalities and the result-
ing unsustainable and inequitable outcomes.

6.1. Gaps and future research need in AWM-ABMs

to unravel negative externalities

Despite all the advances, some methodological gaps
remain that need to be filled to fully exploit the
strengths of ABMs in context of AWM interven-
tions. These gaps mainly arise from missing necessary
methodological ingredients (table 3) in AWM-ABMs
that limit their capacity to unravel one or more of the
externalities. In the section below, we identify these
gaps under each component of AWM-ABMs and the
research needed to bridge these gaps (table 4).

6.1.1. Modeling negative hydrological externalities

Despite AWM interventions being intricately linked
with hydrology (section 2), our review shows that a
quarter of AWM—-ABMs simulate dynamics at indi-
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vidual farms or administrative regions (figure 2(a))
where spatial scale is not conducive to model hydro-
logical interactions. In these studies, the subject of
inquiry is not hydrological changes but dynamics
such as emergent land use, adoption of interven-
tions, and changes in the cropping system. Given that
AWM are intricately linked with hydrology, the sim-
ulated dynamics can cause hydrological externalities
leading to unsustainable and inequitable outcomes.
Thus, there is a need to supplement/complement
these studies with hydrological models to account for
and predict any negative hydrological externalities.

Additionally, even in AWM-ABMs with the cap-
ability to model water flows (i.e. the spatial scale of
the watershed, and basins), methodological gaps limit
their capacity to completely resolve the hydrological
externalities of AWM interventions. This includes a
lack of incorporation of spatially distributed models,
limited inclusion of groundwater systems, and almost
non-existent integrated SW—GW models (figures 2(a)
and (b)). Spatially distributed hydrological models
are required to capture the spatial heterogeneity of
both biophysical systems and agents in the region
and capture spatially explicit hydrological externalit-
ies of AWMs. The lack of spatially distributed mod-
els means that the impact of hydrological changes on
individual farmers and vice versa cannot be modeled.
This limits the capability of AWM—-ABMs to resolve
inequitable impacts. Additionally, the non-inclusion
of the groundwater system and lack of integrated SW—
GW limits AWM-ABM capability to capture the hol-
istic hydrological impact of AWM interventions that
often leads to reallocation/changes within SW-GW
systems.

Our review shows a clear need to enhance the rep-
resentation of hydrological systems in AWM—-ABMs if
they are to be used to assess the negative hydrological
externalities of AWM interventions. This requires
coupling ABMs with spatially distributed and integ-
rated models. This can be done by developing hydro-
logical models as part of ABMs or coupling ABM code
with existing open-source models (e.g. GSFLOW,
spatial processes in hydrology (SPHY)). An example
of the latter is by Du et al (2020) where GSFLOW, an
integrated SW—GW model, was tightly coupled with
ABM at the source code level.

6.1.2. Modeling society feedbacks

A realistic representation of individuals’ behavior and
interactions forms the basis of modeling society’s
unexpected and emergent dynamics. This requires
a suitable, accurate, and dynamic representation
of agent behavior and decision-making processes.
Though a range of farmer decision-making beha-
vior has been simulated, there remain gaps in terms
of incorporating appropriate behavioral theories in
AWM-ABMs. The empirical field research has shown
that human behavior is shaped by a range of
factors such as socio-economic, cultural norms, risk
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attitudes, perceptions, and other psychological char-
acteristics (Kaufmann et al 2009, Daniel et al 2019,
Pouladi et al 2019). However, there is a large gap in
incorporating the same in AWM-ABMs. Our review
shows that the use of rational choice theory and
simple heuristics is still dominant (figure 3(a)). The
rational theory assumes agents make rational choices
and discount the impact of a range of factors such as
socio-economic, cultural norms, risk attitudes, and
other psychological characteristics or both. Similarly,
farmers’ heuristics devised based on experience, accu-
mulated knowledge, and preferences lack the theoret-
ical background to explain the underlying reasons for
the same.

There is limited but increasing use of theor-
ies grounded in social science and field research to
account for these constraints (e.g. PMT, PT, and
TPB). There is a greater need to formalize these
theories in AWM-ABMs. A general lack of suffi-
cient and good-quality primary data on agent beha-
vior makes derivation, validation, and verification
of agent behavioral rules difficult (Hu et al 2017).
Multiple studies have shown that this can be done
with primary data collection through surveys or focus
group discussions (Kaufmann et al 2009, Pouladi
et al 2019, Wens et al 2020). Additionally, there is a
need to incorporate further behavioral models such
as risk-, attitude-, norm-, ability-, self-regulation-
(RANAS) model originally developed for the water,
sanitation and hygeine (WASH) sector (Mosler 2012).
RANAS combines multiple important behavioral the-
ories (including the TPB) to explain and change beha-
vior and can be adapted to a range of situations and
already provides a standard template of questions to
quantify behavioral factors and analyze the behavior
(Callejas et al 2021).

Another gap in AWM-ABM studies is the
lack of incorporation of social interactions among
agents (figure 3(b)). In limited studies where social
interaction is in place, social interaction is largely
modeled simplistically following simple thresholds
or contagion-based diffusion model approaches.
These approaches assume agents adopt interventions
or behaviors once certain other people have adop-
ted, or they come in touch with someone who has
(Schreinemachers et al 2007, 2009, Ng et al 2011).
These are found to ignore a range of factors influ-
encing adoption, including preferences and socio-
economic and ecological constraints as has been
showcased in multiple empirical field research stud-
ies (Kaufmann et al 2009, Daniel et al 2019). Thus,
like individual theories, there is a need to expand
the AWM-ABMs social interactions theories in use,
employing more holistic adoption and diffusion
models.

6.2. Modeling inequitable outcomes
There remain gaps in fully exploiting the ABM cap-
abilities to resolve spatially explicit and inequitable
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externalities of AWM interventions. Multiple
AWM-ABMs aggregate agents over an area (e.g.
region, basin, watershed) and simulate their aggreg-
ated response. In large areas, this paves the way for
easy implementation of the model where the com-
putational cost of modeling each agent could be very
high. However, such representation may mask both
the heterogeneity of responses within the population
and the inequitable impacts of AWM interventions.
Thus, while these studies may be beneficial to simu-
late lumped dynamics, there is a need to supplement/
complement them with disaggregated studies that can
account for this heterogeneity of farmer populations.
One other way to reduce computation cost and time
are to model a subset of agents based on predefined
typologies and extrapolate the results (Ng et al 2011,
Holtz and Pahl-Wostl 2012). However, to com-
pletely account for spatial interaction and individual
farmer dynamics, the best way is to model individual
agents.

Another main gap is that farmer characteriza-
tion lacks spatial location/attribution. This is crit-
ical as the spatial location of farmers determines
their biophysical capital and neighbors. A completely
random allocation will not reflect reality, especially
where good and productive lands (better soil, more
access to water) might be owned by better-off farm-
ers (Bhattarai et al 2002, Sharma et al 2008). Thus,
there is a need for AWM-ABMs to locate agents based
on some plausible evidence. Accessing the location
of each farmer, especially in a large area, may not
always be feasible given labor and cost constraints
along with concerns of data privacy. A way forward
could be the use of existing microeconomic datasets
at multiple levels (e.g. census, sample surveys) to loc-
ate populations and their endowments within a con-
strained area. One example is the study by Noél and
Cai (2017), who used the existing census of pumping
wells with their spatial location to delineate the agents
and irrigated area.

Despite the strength of AWM-ABMs to model
human-water feedbacks, one key tradeoff involved
is the inherent uncertainty in its predictions, relat-
ive to conventional AWM models. This is because
human actions are inherently uncertain and human-
water feedbacks are still poorly understood, especially
over longer time periods (di Baldassarre et al 2016,
Srinivasan et al 2017). The calibration and validation
of AWM-ABMs is more complex in comparison to
that of the convention AWM models (Sivapalan and
Bloschl 2015, Troy et al 2015, Pande and Sivapalan
2017). Sivapalan and Bloschl (2015) discuss a way
to deal with the parameter estimation, validation,
and uncertainty assessment of sociohydrology mod-
els in this regard. However, ignoring the human water
feedback in human dominated systems in favor of
more conventional models using a scenario-based
approach may lead to imprecise and unrealistic pre-
dictions (Sivapalan et al 2012) and as we argue,
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lead to negative unexpected consequences over the
long term. Thus, a balanced use of conventional
AWM models and AWM-ABMs is required. For long
term strategic investment decisions, AWM—ABMs are
critical to understand the human—water dynamics
and scale interactions and explore the whole space
of possible future trajectories (including uninten-
ded and irreversible consequences) (Sivapalan and
Bloschl 2015, Pande and Sivapalan 2017, Srinivasan
etal 2017).

7. Summary

AWM interventions have been widely implemented
globally with well-documented benefits and posit-
ive externalities. However, ill-planned AWM inter-
ventions can lead to negative externalities result-
ing from unintended spatio-temporal changes in
hydrological flows and unexpected societal feed-
backs. These often lead to long-term unsustainable
and inequitable impacts. To avoid this, interdiscip-
linary approaches that can model the coevolution-
ary dynamics of coupled natural-human systems
are needed. Sociohydrology, studying bidirectional
feedbacks in coupled natural-human systems with a
focus on hydrology, has been proposed and increas-
ingly used in this context. Among different meth-
ods employed in sociohydrology, the use of ABM has
been increasing as it provides the unique capability
of modeling coupled natural-human systems while
explicitly accounting for the role of individuals and
micro-level constraints.

Our review shows that ABMs have been extens-
ively used in agricultural systems to assess the adop-
tion of AWM interventions and to simulate their
impact on natural and social systems. Many of these
studies have explicitly modeled unsustainable and
inequitable outcomes. However, there are gaps in
methods employed that require further research,
especially to interpret spatially explicit and inequit-
able outcomes (table 3). The main gaps include: (a)
lack of spatially distributed and integrated hydro-
logical models, which limits the capacity of AWM~
ABMs to resolve hydrological negative externalities;
(b) over-reliance on rational and simple heuristics for
modeling individual behavior and (c) lack of inclu-
sion of social interactions. Our review highlights the
need for further research and development of AWM—
ABMs to fill these limitations and gaps. Finally, with
ABMs unique capabilities to unravel the dynamic
interactions of heterogeneous biophysical and social
systems, they should be widely used to plan, design,
and implement AWM interventions to avoid negat-
ive hydrological externalities and unexpected societal
feedbacks resulting in long-term unsustainable and
inequitable outcomes.
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